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Abstract

Battery energy storage systems (BESS) that are integrated with the electricity grid have proven to be
a suitable solution for reducing costs by providing flexible demand, but are often uneconomical when
used solely for this purpose. Despite the research efforts showing the benefits of an energy-integrated
harbor-area smart grid (HASG), the integration of onboard BESS in synergy with shore power connec-
tions has not been considered in the literature. Moreover, not from the financial perspective of the
vessel owner.

This thesis addresses the integration of onboard BESS with a shore power system. More specifically,
by presenting a cost-effective energy management system (EMS) that uses a stochastic approximation
to define the charging and discharging decisions based on electricity prices. Additionally, the system
takes the uncertainty of wind power production into account and reduces the power strain on the
grid. Besides this, the research provides an analysis of the battery parameters that influence the cost-
reducing ability of the EMS. As a result, the additional cost reduction presented while at berth may
allow for previously uneconomical investments in onboard BESS for SSCV operators.

The wait-and-see (WS) approach was applied to provide an optimal energy scheduling solution
with regard to uncertainty in wind power generation. Within the WS, three strategies were applied.
By optimally scheduling a 5MWh BESS, the arbitrage, arbitrage + peak shaving, and peak shaving
strategies respectively achieved a 1.4%, 15.7%, and 10.2% yearly reduction in electricity costs for the
vessel operator during a 100-day stay in port.
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1
Introduction

1.1. Introduction
Climate change is an urgent issue affecting people worldwide which imposes humankind with the most
difficult challenges in recent history. Greenhouse gases (GHG) are emitted as a result of the burning of
fossil fuels which results in a global rise in average temperatures. The sectors responsible for the largest
emissions of GHGs are the transport, energy, industry, and agriculture sectors. To avoid the most ex-
treme consequences of climate change the Intergovernmental Panel on Climate Change (IPCC) predicts
that global temperatures should be limited by 1.5 degrees Celsius compared to pre-industrial levels [1].

Climate policy measures will address energy consumption in addition to the production of renewable
energy. New policy measures and the general attitude toward climate change will have a significant
impact on the transportation sector which remains heavily reliant on fossil fuels [2]. Shipping plays
an essential role in transportation since it is responsible for 90% of global trade and makes up 5% of
global GHG emissions [3][4]. Climate regulations set by the Dutch government require the shipping
sector to reduce its emissions by 40% in 2030 [5]. To achieve this, ships can reduce emissions in two
different places; while being operational offshore or while being moored in port. This research focuses
on the vessel’s operations in port.

In an effort to reduce the emissions GHG, the IPCC recommends the deployment of renewable en-
ergy sources (RES) such as wind energy and solar photovoltaics (PV) [6]. To ensure compliance with
the climate agreement, the necessary measures are laid down in both EU and national laws and reg-
ulations. On a European level, the Renewable energy directive set up rules to achieve a 32% fraction
of energy coming from renewable energy sources (RES) in 2030 [7]. On a national level, the ”Klimaat
akkoord” from the Dutch government states to have increased the production of renewable energy
by 84 TWh by the year 2030 [8]. As a downside, the introduction of RES, has increased to volatility
of electricity prices on the market, due to its intermittent nature. Moreover, increased electrification
forms another barrier for developing renewable energy project such as shore power, as the grid is
increasingly facing congestion problems. As a result, consumers are challenged to develop innovative
ways to guard against higher prices [9].

To be more specific, this dissertation aims to develop an optimal method to reduce the costs of
electricity for vessel operators during shore power connections. This cost reduction should be achieved
while limiting the burden on the grid and increasing the use of locally produced renewable energy. In
the end, this will enable the ultimate goal of wide-scale adaptation of battery-equipped vessels and
adequate shore power connections by improving the business case for onboard batteries and reducing
the grid capacity requirements.

This introductory chapter will go over the following topics. Section 1.1.1 presents the characteristics
and limitations of battery-equipped vessels. Subsequently, in section 1.1.2 the trends requirements and
limitations with regard to Cold-ironing are explained. Section 1.1.3 presents the opportunities of shore
power connected vessels in an energy-integrated port. This leads to the research question of the thesis
in section 1.2. Lastly, the thesis outline and motivation are provided in section 1.3.

1



1.1. Introduction 2

1.1.1. Hybrid Electric Vessels
Due to current climate policy measures, the shipping sector has started to invest in battery-electric
energy storage systems (BESS) in order to meet policy standards and contribute to lower emissions
of GHG [10]. Within the world’s shipping fleet, onboard BESS are becoming an increasingly common
phenomenon as can be seen in Figure 1.1. The prices of BESS are rapidly decreasing due to a year-over-
year increase in production volume which is making the investment in such a system more attractive
[11]. The interest in these types of vessels will only increase in the future, as policy will become more
stringent on tailpipe emissions.

Figure 1.1: Alternative fuel uptake in the world fleet by number of ships and gross tonnage [12]

For small vessels such as ferries, a BESS can be utilized for the full operational profile since these
ships have relatively low energy requirements [10]. Besides this, ferries are able to frequently charge
during loading and offloading and have a fixed route. Batteries are however not always capable of
storing the often vast amounts of energy that a ship requires. For these vessels, there are other use
cases for onboard BESS.

Whereas small vessels are able to fully depend on BESS for their energy storage demand, large
vessels have introduced BESS for peak shaving-, and for backup-power purposes [11]. Hybrid systems
are especially valuable for vessels that operate using dynamic positioning. Using a hybrid system, these
ships are able to operate their engines at higher efficiencies and can sometimes even turn off genera-
tors. The aforementioned BESS can have a significant impact on reducing fuel consumption by 10-25%
depending on the operational profile and with that reduce GHG emissions during their operations [11].
The rising trend in onboard BESS is likely to continue to grow as both company incentives, policy mea-
sures and decreasing battery prices keep motivating this sector towards investing in such systems [11].

The incorporation of BESS on ships has been demonstrated to provide a range of benefits. These
systems can serve as the primary energy source, backup power supply, or provide peak shaving. Uti-
lization of BESS has been shown to result in significant fuel savings, with reductions of greater than
10% resulting in the reduction of greenhouse gas emissions [13][11]. Besides this, an onboard BESS
can also provide power quality issues to ship microgrids [14]. All the benefits that a BESS can provide
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are however only relevant during the operational sailing profile of the vessel [15]. This poses a financial
challenge for a ship operator considering investing in an onboard BESS for hybrid operations especially
for Semi Submersible Crane Vessels (SSCV). Since long stays in port of SSCV limit the ability for cost
reductions since these are predominantly realized during the offshore operation of the vessel. As a re-
sult, SSCV experience an extended return on investment for on-board BESS. In addition to the financial
challenge, the non-use of the BESS is a waste of this valuable asset. This is particularly noteworthy
when considering that BESS may be able to serve a useful purpose during periods of time when the
vessel spends in port. Therefore, it is important to consider the potential for utilizing BESS during these
periods in order to avoid this unnecessary waste.

As mentioned, increased RES penetration will likely result in highly variable pricing, and being able
to adjust electricity demand accordingly will play an increasingly important role [9]. Furthermore,
having existing infrastructure contribute to the electricity grid will increase the utilization of assets
and simultaneously provide more financial incentives for adapting vessels with BESS. The synergies
between shore power and BESS-equipped vessels should be explored in order for vessel operators and
infrastructure to benefit from the onboard high-capacity BESS.

1.1.2. Cold-Ironing Hot Topic
Most large vessels rely on Diesel Generators (DG) to provide auxiliary power for onboard facilities during
their stay in port [16]. Although this is still the most commonly used method, there is a growing trend
for supplying this power through a shore-side power supply or cold-ironing facility which connects to
the ship’s grid via a cable [16]. This renders the DG useless and cold, hence it gets the term cold-
ironing [16]. Cold-ironing enables ships-at-berth to significantly reduce GHG emissions by providing
the vessel with renewable electricity while the ship can continue to be operational [16]. Furthermore,
a major benefit of shore power is the elimination of engine noise and emissions of particulate matter
(PM)[16].

In addition to the many advantages, there are also disadvantages to using shore power. The neces-
sary infrastructure to facilitate the high power requirements for cold-ironing requires large investment
costs for constructing the onboard-, and shore power connection due to the high cost of Power Electron-
ics (PE) [16]. In addition to the ship owner, the port authority may need to invest in a grid-connected
storage system in order to mitigate the strain on the grid as a result of the large power requirements
of the shore power connection [14]. Adjustments for the high power requirement of ships to the grid
can delay the construction of shore power by sometimes years.

Another cost aspect for the vessel operator are electricity tariffs that have a significant impact on
the economic viability of cold-ironing. These costs comprise of energy-, and power-related costs. Ships
are subject to the day-ahead prices for their energy, which are traded on the European Power Exchange
(EPEX) while connected to shore power [17]. During cold-ironing both the average and variability of
prices impact the operational costs for the vessel. The price volatility of electricity on the spot market
will only keep increasing in the future due to the impact of RES on the behavior of electricity prices
[9]. Since RES have near-zero marginal costs they come first in the merit order and push out more
operationally expensive forms of electricity production [18]. Although this will result in an overall lower
average electricity price, the volatility will increase. Besides the prediction from academic sources, an
increase in real-world price volatility can already be observed. The Dutch Transmission System Oper-
ator (TSO) Tennet also observed increased volatility from 2019 to 2020 in its yearly overview [19]. In
order to utilize most RES and reduce costs, it is therefore essential for ship operators to be able to
optimize their energy use according to energy prices.

Grid-related costs consist of transport costs which are based on the maximum power demand during
a specified period. While in port, power consumption varies depending on the machinery in use at the
time. Lifting loads and moving the cranes results in short peak in power demand of the SSCV. These
short peaks, lasting no more than 15 minutes result in increased transport costs for the next month.
Locally produced electricity for RES is often available at reduced peak tariffs. The ability to ’shave off’
peaks in power demand with BESS, or shifting the peaks to periods with an abundance of renewable
energy can result in lower costs of electricity for the vessel operator. Due to the intermittent nature of
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renewable energy, it is important to consider uncertainty in such an energy scheduling problems.

BESS-equipped vessels and shore power are likely to play a significant role in sustainable devel-
opments in the maritime sector. At the same time, the combination of these technologies has the
potential to provide financial incentives for investments in onboard BESS through a reduction in elec-
tricity costs. Additionally, the battery can act as a buffer during the peak load demand of the vessel,
thereby reducing necessary the peak power capacity of the grid. This will improve the construction
of new shore power locations in congested ports, while also reducing transport costs for the vessel
operator. It is therefore fundamental to understand the synergy between the two technologies and
explore the gap in the academic literature which will be described in chapter 2.

1.1.3. Grid Integrated Vessels: Opportunities and challenges
Within the electric mobility sector, many research efforts can be found that aim to increase battery
utilization in electric vehicles (EVs). The utilization of the battery is mostly done by providing ancillary
services to the grid, this type of utilization is called vehicle grid integration (VGI). Since electric vehicles
are only used as a means of transportation for 5% of their lifetime they can be considered more like
batteries on wheels than cars [20]. Utilizing the battery in other fields can therefore help reduce the
cost of ownership and open new business models[20] [21].

The field of VGI can be divided into two main categories which are distinct because they differ in
their power flow to and from the grid. When the car can only determine its charging rate it falls within
the category of grid-to-vehicle (G2V) [21]. The ability to provide power to the grid by discharging is
called vehicle-to-grid (V2G) [21]. VGI is able to contribute to the reliability of the grid by providing
ancillary services such as frequency response in short term as well as load leveling, peak shaving,
and demand balancing [20]. By providing such services the vehicle is able to generate revenue for
the owner whereby the cost of ownership of the vehicle will be decreased [20]. Within this relatively
new market of VGI, the individual EV owner or aggregator can benefit from new business opportu-
nities through renewable energy storage and grid balancing services [20]. The DSO benefits since
grid-connected vehicles act as a new resource for ancillary services through power storage and the up
and down regulation of power consumption [20]. By doing so, VGI is able to facilitate the necessary
flexibility for the penetration of intermittent renewable energy sources as well as provide solutions for
problems like grid congestion by delaying or even circumventing the need for grid reinforcements [20].

The potential for ship operators is potentially much higher since the usage profiles for ships are
radically different than those of EVs. Compared to EVs, there are many more benefits for vessel-grid
integration. First of all, ships have longer times connected to shore power and have a more predictable
load. Besides this, the state-of-charge (SOC) and schedule are often known days or months in advance.
Furthermore, onboard BESS are equipped with a higher energy and power capacity. Lastly, vessels
have the possibility to work in conjunction with other loads in the port as will be discussed in section
(2.1). Flexibility is another important aspect ship-to-grid integration can provide.

In an overview of newly built hybrid and fully electric vessels, reference [10] notes that half of all
battery-equipped ships currently in use or under construction are ferries. The other 35% are offshore
vessels or tugs, the remaining part constitutes cargo- and cruise ships [10]. Ferries are amongst the
most obvious ships to be electrified since they require relatively little energy and are able to charge
often. Other uses for BESS can be observed in vessels with highly variable loads such as the case
for tugs and offshore vessels. Reference [22] shows that even non-variable loads such as container
vessels might benefit from an onboard BESS by generating onboard electricity from the main engine
shaft take in, utilizing the much more efficient two-stroke main engine instead of the more inefficient
auxiliary engine(s). Therefore in a future fleet, most ships can benefit from having BESS on board.

In a future scenario, the large number of electric and hybrid vessels can be aggregated to provide
energy flexibility to the port. Estimating the exact energy flexibility that a fully electrified shipping fleet
can provide to the electricity grid is difficult to make. A rough estimation for the port of Rotterdam
can however be made. To start off an analysis of the number of docked vessels and the respective
onboard BESS power and energy capacity. On satellite images from Google Maps, 118 docked vessels
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were counted in the Rotterdam port area. Assuming that of these vessels roughly 20% were in the
process of docking, un-docking, or otherwise not able to be connected to shore power we are left with
a selection of 80-100 vessels. From this selection, we assume that all vessels will be equipped with an
onboard BESS of 1-5 MWh which is equivalent to the capacity of 12-62 long-range EV battery packs
[23]–[26]. When assuming an average SOC of 50% this would amount to a flexibility of 50-2500 MWh.
The total wind turbine capacity that is currently installed and under construction in the Port of Rotter-
dam is 336.1 MW as shown in Table A.1. Under the maximum wind generating conditions, up to 3.5
hours of the total maximum wind energy generated in the port area can be stored with this flexibility.
While this future scenario will not be considered in the thesis, studying the synergy between shore
power connected vessels and smart vessel grid integration may contribute to bringing this scenario
closer.

Many changes are occurring within the landscape of sustainable shipping. The growing number
of investments in hybrid- and electric vessels is resulting in an ever-growing fleet of battery-equipped
vessels. Additionally, sustainable policies are driving the introduction of cold-ironing connections in
ports. The combination of these technologies opens a gap for grid participation for grid-integrated
vessels, which itself is a new topic within the scientific literature. While the opportunities for electricity
cost reduction appear promising for vessel operators, many questions remain unanswered. The next
section will focus on the most important questions.
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1.2. Research Objectives
The research objectives are provided in this section. The answers are presented in Chapter 7.

1.2.1. Research Questions
Ships are currently not utilizing the full potential of onboard BESS whilst connected to shore power.
As a result of the increasing penetration of RES the electricity market in which ships are operating
is moving towards ever-increasing volatility in prices. Furthermore, the electrification of ships poses
significant challenges to the capacity of the electricity grid.

The scientific literature describes use cases for BESS in a RES-powered grid and the role of electric
vehicles within this system is given as well. Yet the synergy between these two technologies is not
well studied. Addressing this by answering the research questions can accelerate the adaptation of
onboard BESS and contribute to more efficient and economic use of energy storage assets.

How to develop a cost-effective energy management strategy for a
semi-submersible crane vessel (SSCV) to increase the economical benefits for

the ship operator which uses cold-ironing service via an on-board BESS?

To be able to formulate an answer to this research question, the analysis must involve different subjects.
In that respect, the main research question will be answered through the use of the following sub-
questions:

1.2.2. Research sub-questions
1. What energy management strategies can be performed considering infrastructural

constraints of the shore power connection, the grid, and the BESS?
The energy management strategy uses the generated wind power scenarios from sub-question
4. This results in a model which is described in chapter 3 based on the case study presented in
5. The results of which a presented in chapter 6.

2. Which type of support services and participation in the short-term electricity market can
generate economic benefit to the ship operator during cold ironing using an onboard BESS?
This sub-question provides information on the most suitable electricity markets in which vessel
operators can offer their battery capacity. The answer to this will be found by means of a literature
study of electricity markets in chapter 2.

3. What factors influence the optimal energy and power specifications for an onboard BESS
for Vessel-to-Grid participation?
This sub-question will be addressed by a sensitivity analysis of the basic parameters of the battery
in chapter 6. Different variations in charge-, discharge rate, and energy capacity will be tested
to quantify the optimal battery size.

4. What is a suitable scenario generation method for generating wind data scenarios from
historical data?
Scenario generation is a necessity to retain computational tractability for the stochastic program-
ming problem. Yet there are many approaches to generate scenarios. In Chapter 2 these are
reviewed. The methods are condensed into 3 viable methods which elaborated upon in chapter
4 and are tested on the wind data to find the most suitable method.
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1.3. Thesis outline
1.3.1. Outline
Answering the research questions will be approached by following the flowchart in Figure 1.2. Chap-
ter 2 provides an elaborate overview of the state-of-the-art of vessel-grid-integration, battery energy
management strategies and uncertainty approaches in energy scheduling. Chapter 2 will conclude by
addressing the gap in the literature and provide a summary on how this thesis will contribute to the
scientific literature.

Chapter 3 provides the problem definition in which all necessary equations to come to cost optimal
dispatch of an onboard battery are described. This includes a deterministic formulations of the problem,
including the objective function and constraints. Chapter 4 describes the chosen approach for energy
scheduling in an environment with uncertain wind generation. This includes a stochastic approximation
method, to reduce the computational effort. Followed by three scenario reduction approaches within
𝑘-means clustering to reduce the number of scenarios and calculate the probability distribution.

The case study is addressed in Chapter 5 in which all the specific elements that make up the system
are described. The results for the case study can be found in chapter 6. Finally, the the conclusion
and discussion are given in chapter 7.

Figure 1.2: Flowchart Methodology



2
State-of-the-Art

The literature review in this chapter aims to provide a theoretical framework for the study of grid-
integrated vessels, cost-reducing battery energy management systems, and uncertainty modeling. In
particular, the state-of-the-art in these areas will be reviewed, with a focus on identifying gaps in the
current literature. Section 2.1 will discuss the latest developments in vessel-grid-integration, while
Section 2.2 will focus on energy scheduling models and the markets in which battery energy storage
systems (BESS) can be utilized. In Section 2.3, the state-of-the-art in uncertainty handling within
energy scheduling models will be reviewed. After identifying the gaps in the literature, Section 2.4 will
outline the contributions of this dissertation.

2.1. Vessel-grid-integration
The integration of vessels and power grids is a fairly new concept in the shipping sector. Whereas
multiple studies have looked at vehicle-to-grid integration (VGI) in the car sector, fairly little research
has been performed on the integration of ships with the electricity grid through cold-ironing. Ref-
erence [27] is one of the few studies that explore the battery electric energy storage potential and
boat-to-grid integration. Most other studies within the state-of-the-art of cold-ironing focus on smart
grids. Smart grids are integrated systems in which different loads and energy producers are able to
communicate [16]. The main goal of a smart grid is to improve the efficiency of energy transactions in
a cost-effective manner [16][28]. Reference [29] found that improved energy management systems
can decrease electricity costs by 20-30%. The ultimate method by which this can be achieved is by
improving the balance of electricity supply and demand with the management of smart loads that are
able to adjust their demand based on electricity supply [29].

Within smart grids, there are opportunities for ship operators to function as smart loads. As a
smart-load vessels are able to contribute to flexibility in the grid, allowing for higher penetration RES
[16]. Furthermore, it can also help smooth the demand of the inland grid [16]. Building on the ca-
pacity of vessels to function as smart loads, on a system scale; this allows ports to function as electric
energy hubs [16]. The main reason for ship operators to adopt this new technology will be the financial
incentive that is provided for the ship operator and the infrastructural benefits for the harbor grid. As
the European framework described by Directive 2009/72/EC will allow individual electricity consumers
to provide demand response based on variable tariffs. While reference [16] presents a possibility for
vessels to act as smart load and allowing a port to function as an energy hub, it only presents a frame-
work for how this can be studied. Furthermore, the paper considers only on-shore BESS to enable the
possibility for participation in the smart grid.

The Harbour Area Smart Grid (HASG) is a subcategory of smart grids in that it has all the same
objectives and functionalities as a smart-grid, but differs in that it concentrates on ports only. The
concept of a HASG was first proposed by [30] recognizing that a future scenario with hybrid vessels
and all-electric ships (AES) requires a harbor area grid architecture that must be able to facilitate a
sufficient power supply for both cold-ironing and the charging of such vessels. The paper presents the
use of on-shore BESS that provides ancillary- and balancing services thereby supporting the weak grid
and enabling energy arbitrage and peak shaving. Whereas the paper stresses the need for the port to
facilitate the growing number of AES and hybrid vessels, the authors do not consider using the onboard
BESS of these vessels in the HASG. While the opportunities for energy arbitrage are briefly described,
the main focus of the paper is on the grid infrastructure of the port and the benefits of on-shore BESS in
a new system architecture. Furthermore, the paper does not touch upon the benefits for the individual
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vessel operator.

A more in-depth study on the control of a BESS in a HASG is provided by [31]. In this paper, an
on-shore battery is used for the reliable operation of the smart grid. The function of the battery is to
provide an additional source of power that mitigates the negative effects of peak power demand from
shore power connected vessels. This will allow ports with limited electrical infrastructure to provide
cold ironing berths without an extensive redevelopment of the current infrastructure. In the newly
proposed topology, the economic aspect is only described very generally. It describes the possibility
to mitigate the aforementioned investments in electrical infrastructure such as cable and transformers
without addressing the costs of grid reinforcements with the use of a battery system in detail. The en-
ergy management system described by the paper uses a simple rule-based algorithm, which considers
state-of-charge and power demand to control the charge and discharge rates of the on-shore BESS.
Other factors such as renewable energy generation, day-ahead prices, uncertainty, or peak demand
tariffs are not considered. As presented earlier, the focus of [31] is on the operational advantage of
the port’s grid as a whole and not on the benefits to the ship owner.

Whereas previous references explored the use of on-shore BESS, reference [32] examines real-time
energy control and the positive impact of Plugged-in Electric Vehicles (PEV) in a port. Contrary to on-
shore BESS discussed in the aforementioned papers, this more closely resembles the characteristics of
onboard batteries. While the paper emphasizes that locally produced wind energy is a very efficient way
of providing green electricity to berthed vessels through cold-ironing. Moreover, the authors stress the
impact of irregular energy production on the grid and the necessity for methods to control this volatility.
Amongst other controllable energy consumers such as reefers, the demand of a PEV park is controlled
by a day-ahead scheduling algorithm that bases its decision on a forecast of various parameters such
as wind speed, temperature and electricity price. Errors in the forecast are subsequently adjusted by
a control loop using real-time power measurements to provide frequency support to the grid. In the
paper, PEV contribute to the grid by providing ancillary services to the electrical infrastructure of the
port which adds to the relevance of using BESS. However, the proposed approach only considers the
added benefits of demand control from a grid conducive system perspective without considering the
cost benefits for the providers of this flexibility.

Within the academic literature, a general consensus for the benefits of BESS to the local grid is
found. The use of on-shore BESS and PEV technologies are provided as solutions for providing de-
mand response in a supply and demand imbalance as a result of RES. Yet most references do not
regard the cost benefits for the individual providers of this flexibility. As most approaches see benefits
for a BESS but look at the problem from a system perspective. If mentioned at all, the algorithms used
in the papers are relatively simple deterministic ones based on only power supply and demand. Other
factors such as prices, renewable energy generation, or uncertainty are not considered.
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2.2. Battery energy management strategies
A prerequisite for a viable business case for BESS utilization during shore power connection at berth is
the ability to reduce the costs of electricity for the individual vessel operator. As mentioned in Chapter 1
many studies have been performed on energy management systems to reduce electricity costs. Build-
ing on the previous section, this chapter will elaborate on these studies, explain their differences, and
explore which approach is most relevant to the case study described in Chapter 5. In preparation for
determining the most suitable way for a vessel operator to utilize the onboard BESS in a cost-reducing
manner, a study was performed on the landscape in which such a system would operate. This included
a study on electricity markets in the Netherlands and a study on the type of energy management strate-
gies which can be found in Appendix B and Appendix C of this dissertation. As a result of these studies,
behind-the-meter type BESS are seen as the most appropriate method for use in a cost .

Since shore-connected battery-equipped ships are effectively behind-the-meter (BTM) energy stor-
age devices we dive deeper into this subject. The difference between a BTM application and V2G or
on-shore BESS is the ability of a BTM system to do self-consumption while staying connected to the grid.
In this use case, the battery acts as an energy buffer that can be charged and discharged depending
on the objective of the system. In order to look at the potential benefits and gaps in knowledge, the
following articles were consulted. This paragraph aims at listing the current state-of-the-art models
within the realm of cost-reducing BTM BESS and explores the gap in knowledge within the scientific
literature.

The use of BTM systems occurs on a variety of scales. Reference [33] reviews the economic ben-
efits of energy arbitrage for a home-based grid-connected microgrid with self-generation through PV.
The paper makes use of a deterministic linear programming method to determine the optimal dispatch
for the battery in order to maximize the economic benefits, by taking into account the revenue and
investment costs. As a result, the optimal size of the BESS is determined.

Contrary to the smaller domestic load, [34] explores the possibility of generating revenue streams
for BESS in industrial applications through offering primary control reserve (PCR), peak shaving, and
energy arbitrage in the day ahead- and intraday markets, with the objective to minimize costs for the
operator. It uses a linear programming method to find the optimal dispatch of the BESS within these
markets with perfect foresight. Hereafter, it analyses the optimal battery size by including investment
costs in the model. The use of renewable energy generation is not taken into consideration in this
study. Reference [34] also describes a gap in the literature regarding research on the influence of
different industrial load profiles. The LP approach used in the aforementioned papers allows for a fast
and simple way calculation method to find the optimal value. Where it however lacks in is taking into
account the uncertainty surrounding the problem. Where it is relatively simple and fast to calculate an
optimal solution with perfect hindsight, making an accurate decision for the future would be impossible.

Uncertain circumstances can however be modeled with alternative modeling methods. Where pre-
viously mentioned cases make use of linear programming methods, reference [35] uses a combination
of dynamic programming (DP) and mixed-integer linear programming (MILP) for arbitrage and peak
shaving. The system regards a smart grid with multiple domestic electricity consumers with renewable
generation through wind and PV at various nodes. The main objective is to optimally schedule multiple
hubs as to reduce the energy hub’s costs. Uncertain behavior of the system is modeled through a
Monte-Carlo approach. Furthermore, the number of scenarios is reduced through a fast-forward selec-
tion method which allows for a more time-efficient calculation of the optimum.

Yet another approach is used [36] which explores energy arbitrage optimization and looks at indi-
vidual control of a BESS using a Markov decision process (MDP) for frequency regulation and energy
arbitrage. The case study of this paper aims to generate revenue for the battery operator by trading
in the frequency response market in combination with energy arbitrage. To make this profitable, it
requires the operation in more than one market, allowing the battery operator to ’stack’ revenue de-
pending on favorable circumstances in the market. Although the paper mentions the advantages of
balancing ability of a BESS, the uncertain nature of RES is not taken into consideration in this research.
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Contrary to earlier studies, reference [37] considers external RES. The aim of the research is to
reduce energy costs for consumers by dispatching home batteries. This is achieved by optimizing the
energy management system such that wind power generation is stored in the home batteries at favor-
able tariffs for the battery operator. From the perspective of the wind-farm operator, its feed-in is not
curtailed thus the co-optimization benefits both parties. Additionally, the optimization includes variable
tariffs for electricity allowing the EMS to dispatch the battery without increasing transport costs as a
result of increased peak power demand.

Most behind-the-meter applications are utilizing some form of optimization to optimally dispatch
the battery. Self-consumption of energy from the battery is a prerequisite for BTM systems, most
research papers consider self-generation and consumption from renewable energy generation assets
in the system. On an industrial scale, however, these assets are often managed by external parties
which changes the business case for self-consumption. Regarding self-consumption, most studies on
BTM energy management systems focus on home systems. While reference [34] does explore the
benefits of BESS for the load profiles of German small-medium enterprises, the opportunities for the
shipping sector remain unexplored. Moreover, the scientific literature mainly focuses on the potential
revenue streams from selling electricity back to the grid and utilizing self-generated RE. However, for
BTM energy storage the self-consumption loads and constraints imposed by the energy user i.e. the
ship are not considered. In this case, the stored electricity is not sold but consumed, the economic
benefit can be measured by the price that would otherwise have to be paid by the vessel. This leaves a
gap in the scientific literature for energy management strategies of onboard BESS with the load profile
of a ship.
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2.3. Uncertainty in Energy Scheduling
The focus of this research is to develop an energy management strategy that uses onboard BESS to
accomplish a cost reduction for a vessel operator through smart scheduling of a battery. As stated
in the introduction, this is a novel method of dispatching a battery that has not been described in
the literature. The broader theme of smart energy scheduling is however well described topic, in this
section the state-of-the-art of uncertainty within energy scheduling models will be described.

In a future energy system, the energy will increasingly be produced by RES. In some cases, cus-
tomers are charged different tariffs depending on whether the energy originates from locally produced
wind energy, or if it is purchased from the grid. In this first case, the power generation is subject to
wind speed patterns. As it is impossible to accurately predict the wind power production in advance,
the uncertain nature of wind speed has to be taken into account in the scheduling models. Whereas
energy scheduling with perfect hindsight can be described with deterministic programming problems,
handling uncertainty is described by stochastic programming.

Stochastic programming can generally be categorized by two types of models, which are coined
wait-and-see and here-and-now models [38]. The first example indicates that a decision was made
after the realization of the uncertainty, while in the here-and-now case the decision has to be made
without prior knowledge of the uncertain parameters. In either case, the necessary components for
these computations are a set of scenarios including their respective probability of occurrence. The
method by which these scenarios are selected is described by scenario generation.

The review paper of [39] gives general overview and the state-of-the-art of scenario generation
methods for integrated energy systems with wind power generation. Amongst others, the most popular
scenario generation methods in publications are; Sampling based, ARMA and Clustering based scenario
generation. These three sub-classifications are; sampling-based, forecast-based, and optimization-
based methods.

Figure 2.1 provides an overview of the various scenario-generation methods that can be applied to
stochastic programming. As can be seen, there are many methods one can choose from. From this
large set, a selection of three methods - each within a different subcategory - was chosen, to further
elaborate on. This was motivated by the fact that the scope of this dissertation should have a generally
good working model, rather than finding the perfect scenario generation technique. This being said,
a selection of the most popular techniques as described by [39] and highlighted in Figure 2.1 will be
discussed in Section 3.
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Figure 2.1: Classification of scenario generation methods [39]

Classical selection
A sampling-based scenario generation method typically uses a set of historical data which is analyzed
for its uncertainty features. These features are subsequently used to sample data with similar stochas-
tic properties. Monte-Carlo sampling is one of the methods that fall within this subcategory.

The paper of [40] uses a selection of two methods for describing the uncertainty in wind power
generation. Historical wind speed data from one year is used to generate scenarios. The paper then
describes using the classical selection mechanism based on probabilistic sampling method. In order
to maintain the inter-temporal relation between the generated wind speeds it uses another cumulative
distribution function (CDF) based on deciles. Using this method, 50 scenarios are generated which are
subsequently reduced by a 𝑘-means clustering method. This is a distance-based reduction method
that clusters based on similar features. The exact method by which 𝑘-means clustering is used is not
described in the paper.

While the intertemporal relationship and the overall probability distribution were maintained, the
method relies on a clustering method to determine the reduced number of clusters and the respective
probabilities.

ARIMA
Similar to the previous method, forecast-based scenario generation uses a large set of historical data
to replicate the stochastic features of the data to generate a new representative data set with similar
uncertain properties. The auto-regressive moving average (ARMA) method is an example of such a
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prediction model.

In reference [41] an ARIMA scenario generation method is used to generate wind scenarios. The
generated scenarios are subsequently reduced by a probability distance based Kantorovich Distance
(KD) scenario reduction technique. For the case study 1000 scenarios were generated and reduced to
10 scenarios.

K-means clustering
Whereas previous methods generate synthetic scenarios based on the statistical properties of historical
data, another approach is to generate scenarios by selecting historical data. This approach is described
by [42]. As mentioned before, the main reason for using scenarios is to represent the distribution of the
original data set with a smaller selection thereby reducing the computational burden whilst preserving
most of the data related to the original distribution. Historical data can be used as scenarios simply by
randomly sampling from a historical data set. This can however result in unrepresentative scenarios,
especially when the method is applied to result in a small number of scenarios.

One popular method to reduce the number of historical scenarios that omits the problem of skewed
results is by using 𝑘-means clustering [39]. 𝐾-means clustering can be used to reduce the number of
synthetically generated scenarios as well as reducing a historical data set. This final section will focus
on the latter approach.

Modellers of uncertainty modelling face a choice when it comes to the scenario generation method.
Either a scenario generation method that generates synthetic data based on statistical features of a
historical data set can be used, or the modeller chooses to sample from historical data. The use of
historical data has several benefits when compared to the synthetic approach. Since we are looking
at complex sequences of wind data it is important that the relationship between the data points is
realistic. The use of historical data firstly guarantees that intertemporal relationship of data points
is accurate, since the scenario actually occurred [42]. Secondly, the actual occurrence of the data
sequence can result in a higher level of confidence from the model users perspective, for the same
reason that it does not use ’synthetic’ data, and the model uses the actual data set provided by the user.

The limitations for using historical data are the limitation to only use sampling and reduction tech-
niques for scenario generation. Whereas other techniques are able to generate large sets of data which
can subsequently be reduced to match the original distribution [42]. Moreover, the modeller should
take the fact that clustering may also result in a ’synthetic’ scenario thus not abiding by the preference
of the model user. This can however be avoided by choosing an actual scenario, closest to the cluster
center.

Reference [43] analyses the impact of wind power scenario reduction techniques. In the article,
the authors show that compared to peak-density and average criterion, 𝑘-means performs the best at
scenario clustering. The performance was based on statistical quality. Where the 𝑘-means method
lacks in performance is with regard to the extremes since 𝑘-means clustering is more likely to discard
the upper-, and lower bound scenarios [43].

Similar to the previous method, reference [44] uses k-means clustering but in this paper it is com-
bined with dynamic time warping (DTW) for building scenario generation framework. In the paper,
wind power production from multiple sites with similar time series data are clustered in order to reduce
the overall scenario generation calculation. The various scenarios are subsequently used to solve a
day-ahead stochastic unit commit problem.

Lastly, reference [45] provides an in depth review of performance of the various clustering methods.
It reviews elastic distance functions within the time series clustering framework, such as; dynamic time
warping, Barycenter averaging and k-medoids methods. The reviewed three approaches from the open
source clustering package for Python, provided in the tslearn.
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Considerations of k-means clustering
The k-means clustering methods is a relatively simple clustering method. One of the main advantages
in general, is the guarantee of convergence and that it easily scales with large data sets [46]. Since
𝑘 is manually chosen and dependent on the starting position some variations in results may occur,
especially with low numbers of 𝑘 [46]. Fortunately it is possible to bypass most of these problems by
starting with different initial positions for 𝑘 and by varying the number of cluster centers.
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2.4. Research gap
In order to make a contribution to the scientific literature, a gap in the literature should be defined
and addressed. Therefore, three fields within the harbor-, energy-, and mobility landscape have been
explored in sections 2.1-2.3.

Vessel-to-Grid
Firstly, there is a broadly accepted consensus within the scientific literature about the necessity of BESS
in a future grid with a high share of renewable energy sources. Within the field of vehicle-to-grid, there
are many studies regarding the grid integration of electric vehicles. Moreover, these studies focus on
both the benefits with regard to the electricity grid as well as the vehicle owner. Similar benefits can
be expected when battery-equipped vessels are able to provide such flexibility, especially since a large
battery capacity on board a vessel and a more reliable operational profile allow for higher utilization
of the battery. While grid integration of battery-equipped vessels has been studied[47] and [27], the
vessel operator-centered approach when it comes to electricity cost reductions is a novelty in the field.

Smart grids and cold-ironing form the state-of-the-art within future port developments. Within this
field research efforts regarding energy management is mainly performed from a system perspective.
Reference [16] highlights the impact of flexible loads on the grid in a HASG. Whereas battery electric
storage is repeatedly addressed as being able to provide this flexibility in [14], [16], [31] only on-shore
BESS is being considered. In applications where onboard batteries are utilized to support the harbor
grid, research only considers the battery use of PEVs [32]. Moreover most papers again only consider
the benefits to the grid. As a result, an individual perspective is missing, which could be aimed at
improving the financial benefits for the ship operator.

Furthermore, the reason why flexibility will become more important in a future grid is through the
introduction of more RES. Whereas this topic is mentioned in some of the research, papers from [16]
and [32] do not consider the influence of RES in their research.

Energy arbitrage could deliver significant cost reductions for an energy consumer. While this is a
commonly discussed topic in the literature, this is only briefly discussed in [16] without any deeper
analysis of the cost impact. The possibility to perform peak shaving is a more popular topic within the
reviewed papers, but the aspect was considered mostly from a grid conducive perspective, as it would
allow port authorities to delay the investments in electricity infrastructure.

Table 2.1: Comparing relevant studies with regards to Vessel-to-Grid participation

Vessel-to-Grid

Ref.
On-board
BESS RES

Energy
Arbitrage

Electricity
cost reduction

Grid
conducive

Peak
shaving

[16] 7 3 7 3 3 3
[30] 7 7 3 7 3 3
[32] 3 3 7 7 3 7
[31] 7 7 7 7 3 3
This study 3 3 3 3 3 3



2.4. Research gap 17

Battery Energy Management Strategies
The opportunity for using onboard BESS as flexible loads would allow for significantly larger power and
energy flexibility when compared to domestic flexibility. As the BESS of ships is orders of magnitude
larger than their home counterparts. In the reviewed literature, however, most battery energy man-
agement strategies such as [33], [36], [37] a focus on home use. While [34] considering the use of a
BESS for industrial use, it does not resemble the hotel load of a shore-power-connected ship.

Renewable energy sources such as solar PV and wind depend on weather effects for their en-
ergy production and as a result, are subject to uncertainty. It is therefore important to deal with the
stochastic nature of renewable energy generation in the analysis of such systems. Whereas most stud-
ies recognize this importance, not all reviewed papers consider this in the results. When a deterministic
analysis was made with perfect hindsight, this may lead to a positive bias resulting in a skewed view
of the benefits of the system.

Multiple papers include an analysis of the effects of the battery parameters such as power and en-
ergy capacity in the optimization problem. Whereas some fail to include this. As a vessel operator will
consider vessel-to-grid applications in the future, the battery size will be the most important aspect with
respect to the investments needed. Since the battery size and power rating will subsequently influence
the power electronics and other converters needed. Therefore it is important to make an analysis of
some sort to determine the influence of battery parameters on the cost reduction of electricity for the
vessel operator.

Table 2.2: Comparing relevant studies with regards to Battery energy management strategies

Battery Energy
Management Strategy

Ref.
Industrial
Scale

Wind
Energy

Stochastic
solution

Battery
sizing

Day-Ahead
scheduling

[36] 7 3 3 7 3
[37] 7 3 ? ? ?
[33] 7 7 7 3 7
[34] 3 7 7 3 3
[35] 7 3 3 7 ?
This study 3 3 3 3 3



2.4. Research gap 18

Contributions
This study will fill the gap in the literature by exploring the economic synergy of shore power and ship-
to-grid integration. While this is done through a vessel operator-centered perspective, this research will
also address other benefits to the electricity grid. The vessel will be operating with an onboard BESS
of industrial scale. As the vessel will be operating in a HASG, the BESS will be controlled through an
energy management system. The strategy of this EMS is based on day-ahead prices, as well as peak-
power-related costs. Locally produced wind energy will partly provide the vessel with electricity. Since
this is an uncertain process, the model will deal with the stochastic nature of wind energy. This will be
done through a stochastic programming method in which an optimal schedule will be presented based
on uncertainty in wind power generation and certain day-ahead prices, and load. The uncertainty in
wind generation is presented through a set of representative scenarios with an associated probability
of occurrence. The scenarios will be generated through three different variants of time series 𝑘-means
clustering. Of these methods, the most suitable method will be applied to the problem. Subsequently,
a stochastic approximation will be found. As the scope of this dissertation focuses on the problem as
a whole it will aim to find approach the stochastic solution. The objective of this problem will be to
minimize the costs of electricity for the vessel operator. This will be achieved by scheduling the BESS
in the most cost-optimal way, through energy arbitrage on the day-ahead market.

Based on the state-of-the-art and the reviewed articles, this study will provide the following contri-
butions to the scientific literature:

• A cost-reducing EMS from a vessel operator perspective will be developed for battery-equipped
shore power-connected vessels, which is a novelty in the field of vessel-grid-integration.

• Developing an industrial scale day-ahead energy arbitrage scheduling model, considering grid
limitations and capacity that deals with uncertainty in renewable energy generation.

• Sensitivity analyses for the vessel operator on the effects of various battery parameters such as
C-rate and capacity on the cost reducing ability of BESS.

• Evaluation of the applicability of three wind scenario generation methods.

• Stochastic approximation to find the electricity-cost reductions.



3
Problem Definition and Formulation

This section will describe the complete energy system of the shore power connected vessel. All in-
dividual modules contributing to providing power to the vessel and constituting the final optimization
problem will be discussed. The structure of each unit of the mentioned energy system will be discussed
which includes extracting the relations between different units. That is, all the equations that describe
the functions of each module as well as its interactions with other units will be specified. In this way,
the problem formulation is extracted, which includes the objective function, technical and economic
constraints of the units and other equations that must be considered in the effective and coordinated
operation of the system.

Figure 3.1: Energy flows through system

3.1. The wind power generation system
A local wind park is one of the two providers of electricity to the vessel. This wind park is connected
to the vessel through the e-house which houses the power converters which adjust the voltage and
frequency according to the requirements of the vessel. The e-house is indicated by the left node
in Figure 3.1, which allows from 𝑃𝑤𝑖𝑛𝑑 and 𝑃𝑖𝑚𝑝𝑜𝑟𝑡𝐺 to flow to the vessel. Moreover, the e-house is
equipped with an energy meter so that the energy of the wind farm can be separated from that of the
grid allowing for different tariffs.

19
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3.1.1. The hourly energy production of the wind park
The amount of power produced by the wind farm is mainly determined by the actual wind speeds
driving the turbine. Since data related to energy production is closely held by the wind park operator
the power produced is deduced through the current wind speeds at the site.

The power produced by wind turbines is described by the power curve provided by the manufac-
turer. The power curve relates power to wind speed at the hub height. Since the available wind speed
data is often measured at an arbitrary height, an empirical method for extrapolating the wind speed at
the hub height from measured wind speeds.

As the surface roughness of the earth influences the airflow over it, this results in an ever-decreasing
wind speeds as the wind speed is measured closer to the ground. This phenomenon is called wind
shear and will be used for the extrapolation at the wind speed at hub height. As surfaces differ from
place to place, the surface roughness of various landscapes differs as a result of this. By using the
Hellman exponent one is able to approximate the surface roughness by surface type [48].

To conclude, the wind speeds at hub height is a function of surface roughness 𝛼, the wind speed at
reference height 𝑣0 and the ratio between reference height 𝐻0 and hub height 𝐻 as shown in equation
3.1 [49].

𝑣ℎ𝑢𝑏 = 𝑣0 × (
𝐻
𝐻0
)
𝛼

(3.1)

After this calculation, the wind power produced by the wind park is simply computed by multiplying
the power curve value by the number of turbines. Finally resulting in wind park power production
bound by a minimum and maximum production:

𝑃𝑊 = 𝑃𝑇 ⋅ 𝑛𝑇 (3.2)

0 ≤ 𝑃𝑊 ≤ 𝑃𝑊 (3.3)
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3.2. Energy scheduling problem formulation
3.2.1. List of symbols

Symbol Definition
Sets and Vectors
𝑇 Set of time periods (horizon length) {𝑡 ∈ ℕ|1 ≤ 𝑡 ≤ 96}
𝑆 Set of reduced scenarios {𝑠 ∈ ℕ|1 ≤ 𝑠 ≤ 10}
Δ𝑡 Duration of time period (0.25h)
𝜋𝑠 Vector with the scenario probabilities ∀𝑠 ∈ 𝑆
𝑃𝑊𝑡,𝑠 Wind scenario set ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆

Decision variables
𝑃𝐶𝑡,𝑠 Charge power [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐷𝑡,𝑠 Discharge power [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐺𝑡,𝑠 Power flow through shore power [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆

State variables
𝐸𝐵𝑡,𝑠 Energy stored in BESS at time 𝑡 [MWh] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑢𝑡,𝑠 Binary variable related to charging
𝑣𝑡,𝑠 Binary variable related to grid power exchange

Parameters costs
𝜆𝐷𝐴𝑀𝑡 Day-ahead price data at time 𝑡 [€/MWh]
𝜆𝑁𝐿 GO tariff for local wind power [€/MWh]
𝜆𝐵𝐸 GO tariff for grid power [€/MWh]
𝜆𝑀 Monthly power peak grid tariff [€/MW]
𝜆𝑌 Yearly power peak grid tariff [€/MW]
𝑐𝐺𝑡 Grid import costs at time 𝑡 [€/MWh]
𝑐𝑊𝑡 Wind import costs at time 𝑡 [€/MWh]
𝑐𝑀 Monthly grid costs [€/MW]
𝑐𝑌 Yearly grid costs [€/MW]

Parameters BESS
𝐸𝐵𝑡,𝑠 Maximum battery capacity [MWh] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝐸0 Energy in battery at time 𝑡 = 0 [MWh] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝜂𝐶 Charge efficiency [p.u.]
𝜂𝐷 Discharge efficiency [p.u.]
𝜂𝑠𝑡𝑏 Standby efficiency [p.u.]

Power parameters
𝑃𝑊𝑡,𝑠 Wind park power generation [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐿𝑡 Power demand of vessel [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝜄𝑡,𝑠 Power import from grid [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝜄𝑡,𝑠 Maximum power import from grid [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝜖𝑡,𝑠 Power export to grid [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝜖𝑡,𝑠 Maximum power export to grid [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐺 Maximum power shore power cable [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐶𝑡,𝑠 Maximum charge power [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
𝑃𝐷𝑡,𝑠 Maximum discharge power [MW] ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆
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3.2.2. Objective function
The main objective of the EMS is to minimize costs for the operator of the vessel. This is done by dis-
patching the BESS in an optimal way to minimize transport costs and optimize for fluctuating spot prices
on the DAM. The objective function is formulated to be adaptable to various scenarios represented by
the variable ’s’ and their corresponding probabilities, as well as for a single scenario.

𝑚𝑖𝑛 ∑
𝑠∈𝑆
𝜋𝑠 ∑

𝑡∈𝑇
Δ𝑡 ⋅ (𝑐𝐺𝑡 𝑃𝐺𝑡,𝑠 + 𝑐𝑊𝑡 𝑃𝑊𝑡,𝑠) (3.4)

3.3. Constraints
The power balance constraint in equation 3.5 ensures that all power flows are in balance.

𝑃𝐿𝑡 + 𝑃𝐶𝑡,𝑠 = 𝑃𝐺𝑡,𝑠 + 𝑃𝐷𝑡,𝑠 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.5)

The grid balance constraint 3.6 balances the power flows in the e-house on the left node.

𝑃𝐺𝑡,𝑠 = 𝑃𝑊𝑡,𝑠 + 𝑃𝜄𝑡,𝑠 − 𝑃𝜖𝑡,𝑠 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.6)

The grid import constraint 3.7 with binary variable 𝑣𝑡 limits the amount of power that the wind park
can export to the grid and prevents simultaneous importing and exporting to the grid. The mechanism
works by setting 𝑢𝑡 = 1 if 𝑃𝜄𝑡,𝑠 > 0, and 𝑢𝑡 = 0 if 𝑃𝜖𝑡,𝑠 > 0. However, if 𝑃𝜄𝑡,𝑠 or 𝑃𝜖𝑡,𝑠 exceed certain limits
or both have a value greater than 0, then 𝑢𝑡 would be both 0 and 1, breaking the binary constraint,
resulting in an infeasible solution.

𝑃𝜖𝑡,𝑠 − 𝑣𝑡,𝑠 ⋅ 𝑃𝜖 ≤ 0 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.7)

Similar to the previous constraint, equation 3.8 uses binary variable 𝑣𝑡 to prevent simultaneous
importing and exporting of electricity to the grid and limits the maximum import power.

𝑃𝜄𝑡,𝑠 + 𝑣𝑡,𝑠 ⋅ 𝑃𝜄 ≤ 𝑃𝜄 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.8)

3.3.1. The shore power service
Cold ironing is the method by which the vessel receives electricity. Both powers from the wind park
and electricity imported from the grid are converted by power electronics in the e-house. This system
is bound by power limitations as stated by Equation 3.9.

0 ≤ 𝑃𝐺𝑡,𝑠 ≤ 𝑃𝐺 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.9)

The power flow of the cold ironing facility is unidirectional meaning that it can only provide electricity
from the grid side to the vessel. Therefore 𝑃𝐺 cannot be negative.

3.3.2. The battery energy storage system
In order to reduce the costs of electricity for the vessel operator, the operator should be able to con-
trol the power demand of the vessel through time. Since the load of the vessel is predetermined and
can therefore not be controlled, the only decision variable is the charge- and discharge power of the
onboard BESS.

The BESS state of charge is described by equation 3.10 which includes the charge and discharge
efficiencies [50].

𝐸𝐵𝑡,𝑠 = 𝐸𝐵𝑠,𝑡−1 ⋅ 𝜂𝑠𝑡𝑏 + 𝜂𝑐 ⋅ Δ𝑡𝐸𝐶𝑠,𝑡−1 −
Δ𝑡𝐸𝐷𝑠,𝑡−1
𝜂𝐷

∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.10)
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Equations 3.11 and 3.12 limit the maximum charge and discharge rates. Simultaneously, binary
variable 𝑢𝑡 prevents simultaneous charging and discharging. It work by the follow mechanism; if
𝑃𝐷𝑡,𝑠 > 0 then 𝑢𝑡 = 1 and if 𝑃𝐶𝑡,𝑠 > 0 then 𝑢𝑡 = 0. However in the situation at which 𝑃𝐷𝑡,𝑠 or 𝑃𝐶𝑡,𝑠 exceeds
the limits or are both > 0, then 𝑢𝑡 should be both 0 and 1 thus violating the binary constraint.

𝑃𝐷𝑡,𝑠 − 𝑢𝑡 ⋅ 𝑃𝐶𝑡,𝑠 ≤ 0 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.11)

𝑃𝐶𝑡,𝑠 + 𝑢𝑡 ⋅ 𝑃𝐷𝑡,𝑠 ≤ 𝑃𝐷𝑡,𝑠 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.12)

The following equations ensure a battery operation remains within the physical capacity constraints
3.13 and does not allow discharging below 0% SOC 3.14.

∀𝑡, 𝐸𝐵𝑡,𝑠 ≤ 𝐸𝐵 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.13)
∀𝑡, 𝐸𝐵𝑡,𝑠 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.14)

3.3.3. Transport costs of electricity
The transport fees for electricity are determined by the DSO. As these costs are calculated on a per-
month basis, they are not included in the optimization problem. After optimization over 𝑡 and 𝑠, the
maximum grid-imported power demand 𝑃𝜄𝑡,𝑠 determines the maximum grid costs for the specific month.
The transport costs as calculated are given in equation 3.15:

𝑐𝑀 = 𝜆𝑀 ⋅ 𝑃𝜄𝑡,𝑠 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.15)

3.3.4. The total cost of electricity
The cost of electricity from the two different sources is determined by the sum of the price on the
day-ahead market and to the source of electricity. When electricity is provided by the local wind park,
guarantee of origin costs 𝜆𝑁𝐿 are charged in addition to the day ahead prices as shown in Equation
3.16.

𝑐𝑊𝑡 = 𝜆𝐷𝐴𝑀𝑡 + 𝜆𝑁𝐿 ∀𝑡 ∈ 𝑇 (3.16)

In the situation in which the vessel is partially or fully supplied by electricity from the grid, then
guarantee of origin certificates are bought from a belgian renewable energy supplier as described by
Equation 3.17.

𝑐𝐺𝑡 = 𝜆𝐷𝐴𝑀𝑡 + 𝜆𝐵𝐸 ∀𝑡 ∈ 𝑇 (3.17)



4
Uncertainty modelling method

Energy optimization can be divided into two schools; deterministic and stochastic. The field of de-
terministic optimization works with certain parameters, as a result, there is only one optimal solution
possible. Since renewable energy sources are subject to natural phenomena such as wind speeds,
stochastic models are used to generate a more realistic representation. While wind speeds can be
forecasted, a level of uncertainty surrounds this forecast. The ability to handle uncertainty will improve
the quality of the simulation by representing the real-world situation in an improved way.

The aim of this chapter is to provide the necessary information for the energy scheduling program-
ming problem described by the case study in Chapter 5. The chapter is divided into two main sections.
The first Section 4.1 describes the uncertain parameters and the necessity for dealing with uncertainty.
As general formulation for two stage stochastic programming is subsequently given as to provide con-
text for applying approximation methods. Secondly, Section 4.2 elaborates on the 𝑘-means clustering
method that is is used to reduce the number of historical scenarios. Three methods are tested with
the provided wind data from section 5.2. From these tests a suitable method for scenario generations
is found to generate scenarios for the stochastic programming problem in Chapter 5.

4.1. Approximating Uncertainty
4.1.1. Uncertain parameters
In Chapter 5 the importance of dealing with uncertainty in the dispatching problem was stressed. In the
proposed energy scheduling problem three parameters; electricity prices, wind power production and
the power of the load can be considered as the uncertain parameter. However, in order to simplify the
optimization, only one parameter is considered to be uncertain. Firstly, uncertainty in the day-ahead
electricity market only exist after the 24-hour time horizon. Since the energy scheduling problem will
only concern a day ahead scheduling problem. This takes away the uncertainty since the scheduling
problem will never exceed the previously mentioned 24-hour period in which the day-ahead prices are
certain. Secondly, the energy demand of the vessel is relatively stable. Only with short duration spikes
in power demand that do not have a big impact on the average energy consumption which makes
dealing with that uncertainty not a priority. As a result, wind power production was chosen as the
uncertainty variable in the stochastic programming problem.

In Chapter 2 various methods were reviewed for addressing wind uncertainty in an energy schedul-
ing problem. This rest of this chapter will focus on the stochastic behavior of wind, provide the frame-
work for the 2-stage stochastic programming problem including its requirements and will give an in-
troduction to the various methods of generating wind speed scenarios that match the requirements of
the chosen optimization method.

4.1.2. Stochastic process of wind
In dealing with the accurate modeling of wind power generation and the uncertainty that surrounds
it, multiple methods have been described in the literature. Reference [51] describes three different
approaches for dealing with uncertainty in wind generation in a imbalance minimization problem. The
first method is accurate forecasting speeds which will naturally lead to a reduced level of uncertainty.
The main disadvantage is the difficulty of accurately forecasting wind speeds due to the many envi-
ronmental factors and technical challenges surrounding the forecast. The second method is coupling
wind generation with predictable power generation such as gas turbines. Lastly, the third method is
stochastic programming. In this method, multiple wind speed scenarios represent possible outcomes.

24
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The optimal dispatch of the battery system is subsequently optimized over the different scenarios in-
cluding their respective probability of occurrence [51].

Within uncertainty programming the decision maker can choose between multiple approaches to find
the most optimal solution. The two most popular methods are; Robust Optimization (RO) and Stochas-
tic Programming (SP) [52]. The main difference between the two approaches is the consideration of
risk. As a result of the worst-case-scenario approach of RO, this often results in an over-conservative
dispatch. The RO approach is very effective for systems that may never fail, such as the power supply
to a hospital, but due to its conservativeness it almost never results in the most cost effective outcome.
For the SP solution, a large number of scenarios is required to ensure a good solution quality, this
increases the computational difficulty. Computational complexity and cost optimality form the main
trade off between the two methods. In the case of this dissertation, the vessel will always be able
to purchase power from the grid, the main risk in violating the expected wind power scenario is an
increase in cost which does not affect the operation of the vessel. This dissertation will therefor focus
on the latter approach due to its higher cost optimality and will reduce computational complexity by
reducing the number of scenarios using the 𝑘-means clustering method described in section 4.2.1.

4.1.3. Stochastic programming
Stochastic programming describes the field optimization in which at least one of the input parameters
is uncertain [53]. Many variant of stochastic programming exist. This research will describe the most
common form, which is a two-stage stochastic programming problem. While this is ultimately a good
method to find a cost effective solution under uncertain circumstances, this research will mainly focus
on the bound surrounding this solution. Nevertheless, a general description of this type of optimization
will be provided below, since the requirements for doing the approximation of the SP solution have
many similarities.

As the name suggests, two-stage stochastic programming consists of two stages. In this scheduling
problem, the first - certain - stage, constitutes the day-ahead prices including the corresponding cer-
tain constraints. The first-stage decisions are made prior to the realization of the uncertain parameters
[54]. This here-and-know decision is therefore independent of the stochastic process.

The second-stage concerns the uncertain part, which is described by different scenarios and their
corresponding probability. Logically, the second stage otherwise known as the wait-and-see decision
is made after the results from the first stage are provided. Both stages can best be represented
graphically in a scenario tree. Figure 4.1 shows a two-stage scenario tree. At the root of the decision
tree, the first-stage decision is made. After this, all the random variables or vectors in the leaves of
the second stage node are calculated. It should be noted that there are as many leaves as there are
scenarios.



4.1. Approximating Uncertainty 26

Figure 4.1: Scenario tree

The scenarios in the second stage can either be represented by a single value, when the problem
consist of one-time step by value 𝜆 [54]. In the case of this problem, a time series consisting of
multiple steps are considered and represented by a vector 𝜆(𝜔) [54]. In the latter case, 𝜔 represents
the scenario index and 𝑁Ω the total number of considered scenarios. The complete set of scenarios is
represented by 𝜆Ω, i.e. 𝜆Ω = {(1), ..., 𝜆(𝑁Ω)}. Finally, every single 𝜆(𝜔) has a corresponding probability
𝜋(𝜔) the sum of which should be 1. This probability is described in equation G.15[54].

𝜋(𝜔 = 𝑃(𝜔|𝜆𝜆𝜆 = 𝜆𝜆𝜆(𝜔)), 𝑤ℎ𝑒𝑟𝑒 ∑
𝜔∈Ω

𝜋(𝜔) = 1 (4.1)

After identifying the scenarios and probabilities, the two-stage stochastic programming problems
can be formulated as shown in equations (G.16, G.21)[54]. The identification of scenarios, will be
done through a scenario generation algorithm described in Section 4.2.1. The method by which the
corresponding scenario probabilities are calculated will also be presented in that section.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒x𝑧 = c⊤x+ ℰ{𝒬(𝜔)} (4.2)
subject to Ax = 𝑏𝑏𝑏 (4.3)

𝑥𝑥𝑥 ∈ 𝑋 (4.4)
where

𝑄(𝜔) = {Minimizey(𝜔) q(𝜔)⊤y(𝜔) } (4.5)

subject to T(𝜔)x+W(𝜔)y(𝜔) = h(𝜔) (4.6)

y(𝜔) ∈ 𝑌}, ∀𝜔 ∈ Ω (4.7)

The first- and second-stage variables are denoted by x and y(𝜔) respectively. The variables A, b,
c, h(𝜔), q(𝜔), T(𝜔), and W(𝜔) are vectors and matrices with known values. It should be noted that
the values in (G.16, G.21) can but do not have to be dependent on the stochastic scenario set Ω. The
latter part of the problem (G.19, G.21), depicts the recourse problem.

Equations (G.16, G.21) can also be described in the deterministic form, which can subsequently be
used by the solver. This results in equations (G.22, G.25)[54].
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Minimizex,y(𝜔) 𝑧 = c⊤x+ ∑
𝜔∈Ω

𝜋(𝜔)q(𝜔)⊤y(𝜔) (4.8)

subject to Ax = b (4.9)
T(𝜔)x+W(𝜔)y(𝜔) ∼ h(𝜔), ∀𝜔 ∈ Ω (4.10)
x ∈ 𝑋,y(𝜔) ∈ 𝑌, ∀𝜔 ∈ Ω (4.11)

The deterministic equivalent can either be described in a in a node-variable or scenario-variable
way. In the node-variable formulation is decision point-based, while the latter is scenario-based. The
two formulations differ from each other in terms of size and ease of computation. The node-variable
formulation is relatively compact and more easily solved for a direct solution. While the scenario-based
has neither of these properties, its structure is more suited for decomposition [54].

A node-variable formulation will be used in this dissertation as the focus is to approximate the SP
solution, and decomposition methods such as Bender’s are therefor not necessary. Moreover, the type
of the approximation provided in Section 4.1.4 is a form of a direct solution further motivating the choice.

This section gave an overview of the requirements for handling uncertainty in linear programming
problems. After considering the parameters in this optimization problem, wind was chosen to the only
parameter to be considered uncertain in the final optimization problem. Considering the risk profile
of the scheduling problem, SP was considered to yield the most realistic results from an economical
perspective. However, due to the complex nature of SP, a alternative method for approximating this
solution will be provided in Section 4.1.4.

4.1.4. Stochastic approximation
The use of a stochastic method leads to more insight into behavior under conditions of uncertainty.
While this may lead to more realistic results it is considered ’good practice’ to evaluate the use of
the stochastic method [54]. In addition, the wait-and-see (WS) solution and expected outcome using
the expected value (EEV) can provide the bounds of the SP solution without the added complexity
of actually calculating the SP solution. The resulting lower complexity and resulting problem size of
the deterministic approach of approximating the SP wile still providing sufficient insight motivates the
choice for the approximation approach.

The relevance and accuracy of the stochastic method are assessed by two metrics. The Expected
Value of Perfect Information (EVPI) is commonly used for two-stage stochastic programming problem
evaluations. Besides this method, the Value of the Stochastic Solution (VSS) is used to evaluate the
added benefit of the stochastic approach over the deterministic one.

Lastly, the out-of-sample assessment is used to judge the outcome quality of the model by inserting
data for which the scenarios were not generated [54]. The mathematical formulation as well as the
relevance of these methods will be provided in the following subsections.

Expected Value
Figure 4.2 shows the relation between the various approximations of the SP problem. Moving from left
to right, the solution becomes increasingly less optimal. As a result of the relation, the WS and EEV
solution respectively provide the upper and lower bound of the cost reduction. Prior to calculating the
EVPI and VSS the EV, WS and EEV solutions have to be found. The following sections will describe how
each is calculated.

The Expected Value (EV) provides the result that corresponds with the average deterministic sce-
nario. In this solution, the mean value of the scenarios is calculated by multiplying the scenario values
with the corresponding probability and subsequently adding all values. This mean scenario is used as
an input for the deterministic problem which results in the EV solution [55]. The equation for the EV
solution in provided in equation G.5.
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Figure 4.2: Relation between the various stochastic approach methods

The deterministic form of the expected value is described in equation [38]:

𝐸𝑉 ∶= 𝔼𝜔 [min
𝑥∈𝑋0

𝑔(𝐸[𝜔], 𝑥)] = 𝔼𝜔[𝑔(𝐸[𝜔], �̄�)] (4.12)

Wait-and-See solution
Equation 4.13 denotes the WS solution. It this solution is the optimal solution is made after observing
the actual value of the various scenarios 𝜔. As a result, for every value of scenario set 𝜔 there exists a
different optimal solution. This set is defined denoted by �̂�(𝜔). The mean value of �̂�(𝜔) characterizes
the WS solution [38].

𝑊𝑆 ∶= 𝔼𝜔 [min
𝑥∈𝑋0

𝑔(𝜔, 𝑥)] = 𝔼𝜔[𝑔(𝜔, �̂�(𝜔))] (4.13)

As it holds true that every optimal solution for the various scenarios is feasible but not necessarily
optimal, it is given that[38]:

𝑊𝑆 ≤ 𝑆𝑃 (4.14)

The difference between the WS solution and the SP problem is called the Expected Value of Perfect
Information (EVPI). This value is described in Subsection 4.1.4

Expected result of the Expected Value solution
The EEV from equation 4.15 is calculated by fixing the first stage variables with the results of the EV
solution [38]. The second stage is subsequently solved through stochastic programming for the chosen
scenarios. The resulting value is less optimal than the SP solution, since the first stage is fixed at a
sub-optimal value. The resulting outcome therefore reflects the true cost the deterministic solution
[55].

𝐸𝐸𝑉 ∶= 𝔼𝜔[𝑔(𝜔, �̄�)] (4.15)

As the resulting value is less optimal than the SP approach, if follows that:

𝑆𝑃 ≤ 𝐸𝐸𝑉 (4.16)

It can be concluded that under weak conditions, the lower bound of the optimal value is given by
the Wait-and-See solution, while the Expected result of the Expected Value provides the upper bound
[38].
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Expected Value of Perfect Information
The expected value of perfect information describes how much the decision maker is rationally willing
to pay for a perfect forecast of the uncertain variable about the future [54].

The expected value of perfect information represents the quantity that a decision-maker is willing to
pay for obtaining perfect information about the future. It constitutes a proxy for the value of accurate
forecasts.

In the case study of this paper, wind speeds are assumed to be the uncertain parameter. The
wind speeds of one year are summarized by 10 different scenarios ranging from low to high and from
constant to fluctuating. Since these scenarios have a relatively high bandwidth, the ability of these
scenarios to accurately forecast the future is relatively low. If this bandwidth can be reduced, or even
represented by a line, then it means a better prediction resulting in better results in terms of money.
The value of this line of Perfect Information with respect to the stochastic solution is described by the
EVPI.

Assuming a minimization problem, the objective function for the two-stage stochastic programming
problem is described by 𝑟𝑆∗ in which superscript 𝑆 describes that it concerns the stochastic problem.
On the other hand, the objective function for which there is no uncertainty is described by 𝑟𝑃∗. In which
the Perfect Information is denoted by superscript 𝑃. In the latter function, all decisions are made with
perfect information about the future. A problem that is solved with perfect foresight is also known as
the wait-and-see solution. For a minimization problem, the EVPI is calculated as:

𝐸𝑉𝑃𝐼𝑚𝑖𝑛 = 𝑟𝑆∗ − 𝑟𝑃∗ = 𝑆𝑃 −𝑊𝑆 (4.17)

Value of the Stochastic Solution
The value of the stochastic solution describes the added value of the stochastic method over the de-
terministic approach.

In comparing the stochastic method with the deterministic approach, first, the deterministic method
needs to be clarified. In this approach, the random variables from the stochastic one are replaced with
the corresponding expected values. Solving this deterministic problem results in the optima for the
first-stage variables, which will then be fixed to the original stochastic programming problem. The re-
sult is a problem that is solved scenario by scenario. The optimal value of this fixed first-stage problem
is described by 𝑅𝐷 where 𝐷 describes the deterministic approach of this problem.

Calculating the value of the stochastic for a minimization problem is performed as

𝑉𝑆𝑆𝑚𝑖𝑛 = 𝑟𝐷∗ − 𝑟𝑆∗ = 𝐸𝐸𝑉 − 𝑆𝑃 (4.18)

Similar to equation 4.17 the stochastic solution is described by 𝑟𝑆∗. In short, the VSS describes how
the stochastic approach yields better results than the deterministic one and expresses it as a value.
The relation between the quality metrics discussed is summarized in figure (4.2).

Out-of-Sample Assessment
The out-of-sample assessment describes the real-world value of the stochastic programming method
by using data for which the model was not trained. Since all scenarios are a deduction of historical
data, this is what the model has been ’trained’ for. When using a new data set within the scenario
framework, an assessment of the effectiveness of the stochastic method can be made.

Moreover, a comparison between different methods such as stochastic and deterministic can be
made using out-of-sample simulations.
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4.2. Scenario reduction
A historical data set will be used to solve the stochastic programming problem. This poses the problem
of being computationally difficult to solve. In order to mitigate this, a representative set of scenarios
needs to be chosen. The process of choosing a set that still contains most of the stochastic information
of the original set is called scenario generation, which will be discussed in 4.2.1.

Popular methods for addressing scenario generation are fitting the data to a statistical model and
subsequently generating a random sample from this set [56]. While this method will yield the desired
properties for a reliable solution, it requires a large data set to achieve this. Generating a scenario set
in which probability distance represents the true distribution requires smaller data sets to produce a
reliable solution and yields a more stable solution with respect to the sampling approach[56].

In Chapter 2, the three most common methods within scenario generation were discussed and
compared. In this comparison the k-means clustering proved to be a suitable method for this case.
The first reason is its statistical certainty with regards to intertemporal relationship between between
the wind speeds, since no synthetic data is being generated by this method. Building on this, the
actual historical occurrence of the data results in a higher confidence level for the model user. The
third argument, is that this form of clustering is highly versatile method which can also be applied on
top of alternative scenario generation methods.

4.2.1. K-means clustering
The essence of 𝑘-means clustering is minimizing the Euclidean distance between 𝑘 randomly chosen
cluster centers and the data data that has to be clustered. The goal is to reduce the number of scenarios
by identifying certain patterns collecting these in various clusters[57].

HISTORICAL WIND DATA PROCESSING DATA
DETERMINING CLUSTER 

CENTERS ‘K’

DETERMINE CLUSTERING 
METHOD

CALCULATE PROBABILITY
CALCULATE FINAL 

SCENARIOS

Euclidean distance

DBA k-means

Soft-DTW

Based on mean value

Figure 4.3: Clustering flowchart

Algorithm 1: General algorithm used for 𝑘-means clustering [58]
1 Randomly select 𝑘 points as initial cluster centroids;
2 repeat
3 Assign every data-point to the closest cluster center thereby forming 𝑘 clusters;
4 Determine the new centroid for each cluster;
5 until the position of the centroid stays fixed;
6 Observe elbow at which marginal benefit decreases;

Determining cluster centers
Determining the optimal number of clusters is an important park when applying the k-means clustering
approach. The most common method for determining this is by using the elbow method. This method
relies on measuring the inertia or variance of the data points and plots them against the number of
clusters [58]. As the number of clusters is increased, their relevance will increase at first. At some
point the marginal benefit of more cluster centers will decrease. At this point, the marginal gain thus



4.2. Scenario reduction 31

drops which is indicated by the ’elbow’ in the graph. The number of clusters indicated by the ’elbow
criterion’ provides information about the ideal k-value [58].

Algorithm 2: The Elbow method [58]
1 Initialize 𝑘 = 1;
2 repeat
3 Increase value 𝑘 + 1;
4 Measure the sum of Euclidean distance or Inertia;
5 until 𝑘 reaches stopping value 𝑛;
6 Observe elbow at which marginal benefit decreases;

In Figure 4.4 the elbow criterion is applied to the set of historical wind data. Although this curve
does not show a clear inflection point, a linear decrease in return can still be observed at 10 clusters.
A k-value of 10 was therefor chosen.

Figure 4.4: Elbow curve for historical 2022 wind data

Determining Clustering Method
Three clustering methods within the 𝑘-means type clustering will be tested. The most suitable method
will be determined by the lowest inertial value given the same number of cluster centers. The three
types that will be compared are Euclidean k-means clustering, Dynamic Barycenter Averaging (DBA)
k-means and Soft Dynamic Time Warping (Soft-DTW) k-means.

Euclidean k-means clustering is the least complicated method. It works by applying the algorithm
described in Algorithm 1. Patterns in time series can however show temporal displacements. When
the Euclidean algorithm is applied on such data, it results in a flattening of the curve, causing it to lose
data with regards to pattern. Euclidean k-means clustering is unable to properly capture the pattern.

The introduction of Dynamic Time Warping (DTW) deals with this problem by shifting or ’warping’
the data in time in order to match other time series. Resulting in a cluster that more resembles the
shape of the original data. By calculating the sum of the squared distances, DTW minimizes the dis-
tance between each element in X to the nearest point in Y [59]. Dynamic time warping forms the basis
of the other two methods.

In DBA k-means clustering the barycenters are shifted with DTW. A barycenter, also described as
cluster centroid, forms the average value of a group of time series in a cluster. In the DTW Barycenter
Averaging (DBA) algorithm, the sum of squared DTW distance between the barycenter and the series
in the cluster are minimized [59].

Lastly Soft-DTW k-means clustering is somewhat similar to the previous method, through its use
of DTW. It differs however in one key aspect. In the soft-DTW algorithm the weighted sum of soft-



4.2. Scenario reduction 32

DTW distances are minimized between the barycenter and the series in the cluster. As a result, the
centroids have an average shape that mimics the shape of the members of the cluster, regardless of
where temporal shifts occur amongst the members [59].

Calculating final scenarios
As wind data shows little patterns, resulting scenarios after scenario reduction will therefore be less
similar to the original data. Even with DTW the resulting scenario will be more resembling of the
average wind speed of the selected clusters. As stated in the disadvantage section, with choosing a
small number for 𝑘, even outliers will be added to one of the clusters. Since the average value of the
cluster center is chosen, nor the extremes or the most volatile scenarios. The benefits of this method
outweigh the disadvantages as if will be easier to compare the the cost reducing ability of the EMS for
various average wind scenarios. The performance of the EMS during volatile winds scenarios should be
tested by separately by applying simple heuristics to test the problem. Finally, the clustering method
that will be applied to the stochastic approach will be chosen based on the smallest sum of distances
to the cluster center, this is also named ’inertia’.

Calculate probability
Finally the probability of scenario per cluster is determined by the number of time series assigned to
each cluster. The general equation is shown in Equation 5.1.

number of scenarios per cluster
total number of scenarios

× 100 (4.19)



5
Case Study

The main objective of this chapter is to provide an overview of all the relevant information necessary
for developing a cost-effective energy management system for this specific vessel in order to reduce
the costs of electricity during cold-ironing. This case study will focus on the Semi-Submersible Crane
Vessel Sleipnir which is operated by an offshore marine contractor. A picture of the vessel while it is
at its berth place is shown in figure 5.1.

The introduction briefly touched upon these benefits of an onboard BESS during offshore opera-
tions as well as the challenging business case due to the vessel spending roughly 100 days per year
in port. The aim for the EMS is to provide an additional cost benefit for the vessel operator and since
Sleipnir spends approximately 100 days per year in port, making it a good candidate for this type of
system. As a result, this could lower the barrier for vessel operators to invest in a BESS for both on- and
offshore operations. As the Sleipnir is currently not equipped with an onboard BESS this chapter will
provide a general description of the required equipment. Finally, the assumed battery specifications
are described.

The outline of this chapter is as follows: The first section 5.1 provides an overview of the context of
the vessel including power generations, grid connections, and the location in port. Subsequently, the
necessary equipment and specifications are described. In the next section 5.2, the data collecting and
processing is described which includes the power demand of the vessel, and wind power generation.
In the last subsection 5.2.3, the tariffs and electricity price data is presented in order to determine the
potential cost savings of using a BESS on the Sleipnir.

Figure 5.1: Overview of Sleipnir during first shore power tests in 2022
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5.1. Overview and infrastructure
The satellite image in figure 5.2 provides a general impression of Sleipnir as it is connected to shore
power in the Calland Channel. The vessel is connected to the Rozenburg wind park and the grid through
the on-shore e-house as indicated by the colored lines.

Figure 5.2: Overview of the vessel in Calland Channel

The shore power energy management system relies on three key infrastructural components for
its function. The first component is power generation, including both renewable and from the grid.
Secondly, transporting the power to the vessel through the E-house and shore power connection.
Followed by the onboard BESS which will partially provide energy to supply the load of the vessel. These
infrastructural components are all illustrated in figure 5.3 including the constraints and specifications.
The specifications of the components will be described in more detail in the subsequent subsections.

Figure 5.3: Overview of the vessel, and surrounding infrastructure
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5.1.1. Power generation and transportation
Rozenburg wind park
A part of the electricity to the Sleipnir is provided by ’Windpark Landtong Rozenburg’ which consists of
9 Vestas V126-3.45 wind turbines each of which is able to deliver a maximum of 3.45 MW [60] [61].
The total installed capacity is 34 MW, however, the actual power production is dependent on the wind
speed at hub height [60]. The relation between wind speed and power production is visualized in the
power curve shown in figure 5.4.

Figure 5.4: Vestas V126-3.45 MW Power Curve [62][63]

Table 5.1 describes in a discrete form, the curve which is shown in figure 5.4. These values are
instrumental in accurately determining the power output of the Rozenburg wind park.

The cut-in wind speed of the turbine is set at 3 m/s after which the turbine will start producing
electricity. As the wind speed increases the power output of the turbine also increases, reaching its
maximum at a wind speed of 11 m/s. Beyond this point, the power output remains constant until the
cut-out speed of 22.5 m/s is reached. At this point, the turbine enters the vane position and rotation
is stopped.

Table 5.1: Power curve of Vestas V126-3.45 [62]

Wind speed [m/s] Power [kW]
0 0
1 0
2 0
3 35
4 184
5 404
6 725
7 1172
8 1760
9 2482
10 3187
11 3433

Wind speed [m/s] Power [kW]
12 3450
13 3450
14 3450
15 3450
16 3450
17 3450
18 3450
19 3450
20 3450
21 3450
22 3450
23 0

The second power source for the vessel is by importing electricity from the grid which is generally
stable and reliable, as it is not subject to external factors that could disrupt the electricity supply.
Therefore, no further information with regard to the power supply from the grid is necessary. The
constraints imposed by the E-house do however need to be considered and will be discussed in the
next section.
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5.1.2. E-house and shore power connection to onboard grid
The necessary equipment to handle the power supplied by both the grid and wind park is located
in the E-house on the shoreside near the vessel. The schematic presented in Figure 5.5 offers a
comprehensive representation of the power electronic systems, both within the onshore E-house and
aboard the vessel. The numbered components are described in Table 5.2. Within the E-house, the
25kV voltage is transformed to 11kV and the frequency is converted from 50Hz to 60Hz. The maximum
operational power is limited to 10 MW by the electrical infrastructure of the shore power facility. This
limit ensures a safe operation and avoids imbalance on the shore power grid. The power is subsequently
transferred through the junction box and shore power cable to the vessel. At the vessel, the incoming
voltage of 11 kV is first transformed to 4.16 kV. Subsequently, it is routed to the main switchboard
which serves as the connection point to the battery energy storage system as well as the powergrid of
the vessel.

Figure 5.5: E-house to vessel diagram

Table 5.2: Key shore power components

Nr IEC description Location Description
1 Shore supply system E-house Incoming current and breaker
2 Shore-side converter E-house 25kV | 50Hz conversion to 11kV | 60 Hz

3
Shore-side protection
relaying E-house Monitoring and protection device

4
Shore-side circuit-breaker
and earth switch E-house Functionality covered by 3-way switch.

5 Control shore
E-house / onshore
junction box

Connection e-house HV cable to
’offshore’ HV cable with earthing switch.

6
Shore-to-ship connection
and interface equipment

Power Pile /
e-loop

Platform with ’offshore’ junction box
connection flexible HV cables

7 Control vessel Vessel Power Management System

8
On-board protection
relaying Vessel

Communication shore to ship through
optic fiber connection.

9
On-board shore
connection switchboard Vessel PS / SB connection rooms with the LCP

10
On-board transformer
(where applicable) Vessel

Thialf transformer 11:4.16 kV
(N/A for Sleipnir & Aegir)

11
On-board receiving
switchboard Vessel

Sleipnir main switchboards:
MS1, MS2
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5.1.3. Battery specifications
In addition to the constraints imposed by the shore power infrastructure, it must also be acknowledged
that the battery system possesses inherent limitations in terms of its power and energy capacity. An
earlier internal study that was conducted on the use of onboard BESS forms the basis for the battery
specifications in this case study. The previous study used used a BESS with a Lithium Ion NMC/Graphite
cell type. Three configurations with regard to energy and power capacity and were considered. The
power capacity was defined by C-rate, which is maximum allowable continuous charge and discharge
power relative to energy capacity. I.e. a battery capacity of 5MWh with a C-rate of 0.5, has a maximum
charge and discharge rate of 2.5 MW. The energy capacity ranged between 2.7 MWh to 5.5 MWh. All
configurations had a maximum DoD of 50% and a C-rate of 3. A more detailed table of the battery
specifications is provided in the Appendix in table E.1.

Three configurations with similar energy capacities are tested in this study. Table 5.3 presents the
three configurations that were studied. It provides details on their respective energy capacities, maxi-
mum depth of discharge (DoD), and C-rate. The parameters in Table 5.3 all influence the functioning of
a battery. These parameters will therefore be varied in order to analyze the effects on the performance
of the EMS this will be performed in section 6.4. For the base case of this study a 5 MWh battery will
be considered with an allowable DoD of 100% and a C-rate of 1.

Table 5.3: Battery specifications from Heerema hybridization study

Low energy capacity Base case High energy capacity
Total System Energy
[kWh] 2000 5000 8000

DoD max 100% 100% 100%
C-rate max 1C 1C 1C

It should be noted that the BESS from the prior study are high C-rate batteries, which are able to
be fully discharged and charged in 20 minutes. This ability does not provide added befits for energy
arbitrage, since prices are determined for every hour. However, its functionality is mostly advantageous
during peak shaving, as peaks in power demand mostly occur during relatively short instances. The
power profile will be discussed further in Section 5.2.1.



5.2. Data collecting and processing 38

5.2. Data collecting and processing
5.2.1. Ship-side Power Demand
The cost of electricity is ultimately determined by the energy and power demand of the vessel. The EMS
will utilize this information to optimally dispatch the BESS. This requires accurate data on the power
demand of the vessel during its connection to the shore power system. The power demand of the
vessel is registered within the company in the data aggregation program K-IMS on which power data
is collected on a minute-by-minute basis. Since the energy scheduling is performed on a 15-minute-
by-15-minute basis, the power has to be processed to match the time steps. The data processing will
be discussed in this section.

As depicted in Figure 5.6, the bottom timeline illustrates the power demand of the vessel during an
11-day period. On this power demand timeline, three important sections have been highlighted. The
significance of each section will be discussed below:

1. Section (1) represents the commissioning of the vessel. During this period power systems were
tested at high peak loads for a longer duration. It shows a power demand of 8MW lasting
roughly 4 hours. This long-lasting high power demand was synthetically produced by running
two thrusters in opposite directions.

2. Section (2) represents a normal operational profile and will be used as a base case for power
demand. The mean power demand during this period is 5.5MW with a short-lasting power peak
of 8.6MW.

3. Section (3), similar to section (2), shows a normal power demand of the vessel. In this part the
peak power demand is lower, however, it is occurring and lasts for a longer period. A part of this
section will be used in the out-of-sample assessment.

Figure 5.6: Sleipnir shore power demand over a 7-day period (27-02-2022 to 6-03-2022)
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The energy capacity requirements of the onboard BESS were estimated by studying the histogram
of the power demand shown in Figures 5.7 and 5.8. The distribution of the power demand of Sleipnir
during the period from 27-02-2022 to 10-03-2022 is shown in figure 5.7. The mean value of the power
demand is between 5MW and 6 MW. An enlarged version of the same histogram in figure 5.8 show a
maximum peak at 8.6 MW lasting only for a short period. The maximum power demand and duration
of power surges were estimated to remain below 20 minutes.

Figure 5.7: Histogram of power demand distribution of
Sleipnir

Figure 5.8: Enlarged histogram of power demand
distribution of Sleipnir

The data from Figure 5.6 was processed so as to fit in a 15-minute-based model. This was achieved
by down-sampling the minute-by-minute power demand to 15-minute periods. The down-sampling was
performed on the representative power demand which included a power peak. This selection is shown
in Figure 5.9. The lack of power demand data between hours 9-12 shown in Figure 5.9 was corrected
by means of mean imputation during this period [64]. The corrected power demand shown in Figure
5.10 was used as the representative power demand in the day-ahead scheduling problem.

Figure 5.9: Power demand 15 minute intervals
uncorrected

Figure 5.10: Power demand 15 minute intervals zero
power replaced by mean value
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5.2.2. Wind
Electricity is supplied to the vessel from both the grid and local Rozenburg wind park through the shore
power system. While energy prices for both sources are determined on the DAM, the grid-related costs
differ. For locally produced wind energy, the vessel operator is exempted from any transport costs. The
equation for grid-related costs is presented in subsection 5.2.3. In order to determine the transport
costs for the vessel operator, the energy produced by the wind park and supplied to the shore power
facility has to be determined.

Energy generation
In order to ascertain the energy generated by the wind park on a 15-minute-by-15-minute basis, it
is necessary to first determine the wind speeds at the site of the wind park. Similar to the data for
the electricity spot prices, historical data provided the local wind speeds. The wind speed data was
generated by the Hoek van Holland weather station (STN 330) which is operated by the KNMI. This
weather station measures wind speeds at 13 meters above ground level [65]. A preview of the data
released by the KNMI is shown in table 5.4. The station number is indicated by ’STN’, the year and
date by ’YYMMDD’, hours are indicated by ’H’ and lastly, the wind speed is indicated by ’FH’ in 0.1 m/s.

Table 5.4: Hourly average wind speeds (FH) in 0.1 m/s at Hoek van Holland weather station. [65]

STN YYYYMMDD H FH
330 20210101 1 20
330 20210101 2 30
330 20210101 3 30
⋮ ⋮ ⋮ ⋮
330 20210101 22 50
330 20210101 23 60
330 20210101 24 40

During the year 2021, the wind speeds at the Hoek van Holland weather station were distributed in
the Weibull distribution shown in figure 5.11. Since the peak shaving function of the BESS will only be
relevant during periods at which the wind park cannot supply the peak power demand of the vessel.
By utilizing this distribution in combination with the cut-in speed of the wind turbine, the probability of
a peak in power demand coinciding with an insufficient supply of renewable energy can be determined.

Figure 5.11: Wind speeds in 2021 histogram
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Wind shear affects wind speed at different altitudes, the wind speed provided by KNMI is measured
13 meters above the ground level. However, the power output of wind turbines is based on the wind
speed at the hub height of the turbine. Therefore, conversion of the measured data must be made to
calculate the wind speed at hub height, to estimate the power output of the turbine[49].

The tip height of the turbine is 193 meters and the rotor diameter is 126 meters, this gives a hub
height of 130 meters [60] [61]. The conversion based on known parameters is described by reference
[49]. The conversion make use of reference height 𝐻0 at which the wind speed is measured, the hub
height 𝐻 and the friction coefficient 𝛼 or Hellman exponent described in Table 5.5. This yields the wind
speed 𝑣ℎ𝑢𝑏 at hub height. Reference [48] uses a Hellman exponent of 0.143 to describe an open land
surface which is the most common landscape in the Netherlands. In this report, a friction coefficient
of 0.20 is used to describe the area of the Rozenburg wind park. Although there is a large open
water surface surrounding the wind turbines, this coefficient was conservatively chosen considering
the industrial land use at the site. As a result of the wind shear a 58% higher wind speed is observed
at the hub height compared to the wind speeds measured by the Hoek van Holland weather station at
13 meters above ground level.

Table 5.5: Friction coefficient α for a variety of landscapes. [49]

Landscape type Friction coefficient 𝛼
Lakes, ocean and smooth hard ground 0.10
Grasslands (ground level) 0.15
Tall crops, hedges and shrubs 0.20
Heavily forested land 0.25
Small town with some trees and shrubs 0.30
City areas with high-rise buildings 0.40

After deriving wind speed at hub height from the measured data, the generated power per turbine
can be calculated by using the power curve. Finally the generated power has to be multiplied by the
number of turbines to find the combined power output of the wind park.

Wind scenario time series 𝑘-means clustering
The wind speed data of 2022 at the berth location of the vessels will be reduced using the 𝑘-means
clustering method. The three of clustering methods described in Chapter 4 were tested, which included
Euclidean distance 𝑘-means, DBA 𝑘-means, Soft-DTW 𝑘-means clustering. The initial number of cluster
centers was determined by means of an elbow plot 5.12. Since the elbow plot in Figure 5.12 does not
show a clear inflection point, a value was found using heuristics. Figure 5.13 shows a the diminishing
return of additional cluster centers more clearly at around 10 cluster centers.

Figure 5.12: Elbow plot Figure 5.13: Number of scenarios per cluster

To invigorate the argument for choosing 10 clusters, a plot was made showing 100 Euclidean 𝑘-means
cluster centers in Figure 5.14. This figure illustrates that most cluster centers contain only 1 to 4
clusters, while only a limited number contain 8 to 10 clusters. This shows that increasing the number
of cluster centers does not lead to a significant improvement in the representativeness of the cluster
center.
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Figure 5.14: Daily wind speed scenarios of 2021 divided over 100 clusters

A lower inertia indicates that the sum of squared distances is closer to the cluster center. Table 5.6
shows the values of inertia for the three clustering methods. The DBA 𝑘-means clustering method was
chosen as it presented the lowest inertia value.

Table 5.6: Inertia values for three 𝑘-means clustering methods

Cluster type Inertia value
𝑘-means 54.92
DBA 𝑘-means 21.33
Soft DTW 𝑘-means 690.46

When applying the DBA 𝑘-means clustering method, 365 wind speed scenarios are spread over 10
clusters. The resulting reduced cluster centers are shown in Figure 5.15. The black opaque lines
represent the individual scenarios from historical data. The 10 red lines represent the cluster centers
that form the reduced wind scenarios. The Euclidean 𝑘-means and soft DTW 𝑘-means scenarios can
be found in Figures D.1 and D.3 in Appendix D. The probability of each scenario was determined by
assessing the number of members per cluster center. The probability of with was calculated as shown
in equation 5.1:

number of scenarios per cluster
total number of scenarios

× 100 (5.1)
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Figure 5.15: DBA 𝑘-means 10 clusters

Applying Equation 5.1 on the DBA 𝑘-means clustering methods gives the probability of each reduced
scenario.

Table 5.7: Distribution of scenarios over cluster centers for DBA 𝑘-means method

DBA 𝑘-means
Cluster Count Probability [p.u.]
1 32 0.11
2 52 0.077
3 14 0.115
4 39 0.03
5 41 0.096
6 23 0.145
7 56 0.055
8 10 0.175
9 41 0.142
10 51 0.055
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The wind speed data is up-sampled and linearly interpolated to match the 15-minute time steps of
the power demand. This is shown in the transformation from Figure 5.16 to 5.17.

Figure 5.16: Power produced one hour intervals Figure 5.17: Power produced 15 minute intervals

As a final step, the 10 red cluster centers from 5.15 are represented in a single plot shown in Figure
5.18. The relative probability of each scenario is indicated by the color of each line. A lighter color
indicates a lower relative probability.

Figure 5.18: Wind power production 10 scenarios

5.2.3. Tariffs
The input for the market data is given in hour-by-hour steps as shown in table 5.8. This total electricity
costs for the vessel operator are determined by multiplying the hourly day-ahead price 𝜆𝑡 by the total
energy consumption during this hour. This yields the total costs of electricity bought on the day-ahead
market during that hour 𝐶𝑠𝑝𝑜𝑡𝑡 .
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Table 5.8: EPEX DAM Market prices data set 2021 [66]

Hour Spot price [€/MWh]
1 48.19
2 44.68
3 42.92
⋮ ⋮
22 44.88
23 45.00
24 47.20

The price developments throughout the year 2021 are shown in Figure 5.19. It should become clear
from this figure, that both the volatility as well as the average prices for electricity increase towards the
last months of the year. In order to make a representative analysis with regard to costs for the vessel
operator, the prices of day 101 of 2021 provided a representative mean value and volatility were used
in the base case scenario. Both the average cost and volatility will be varied in the analysis to observe
the effects of the EMS during different price conditions.

Figure 5.19: Day-Ahead prices 2021

As mentioned in subsection 5.2.2, other factors besides the DAM prices, influence the costs of
electricity for the vessel operator. One of which is determined by the origin of electricity production
which affects the transport costs of electricity as well as the Guarantee of Origin (GO) price for the
vessel operator. The GO is a certificate that guarantees the renewable origin of electricity coming either
from HollandseWind from the Rozenburg 𝜆𝐺𝑂,𝑁𝐿 wind park or from Groene stroom Belgie 𝜆𝐺𝑂,𝐵𝐸. In
the model the fees are €5/MWh for 𝜆𝐺𝑂,𝑁𝐿 and €10/MWh for 𝜆𝐺𝑂,𝐵𝐸.

Transport costs of electricity
The transport fees for electricity are determined by the DSO. The electricity for shore power is delivered
by DSO Stedin. The transport costs are calculated as: The highest load occurring in each consumption
month separately, expressed in kilowatts, and determined as the average load of a 15-minute period
unless agreed otherwise with Stedin. In 2023 this tariff is 𝜆𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡2023 = 2944 €/𝑀𝑊𝑝𝑒𝑎𝑘/𝑚𝑜𝑛𝑡ℎ max-
imum power demand per month as well as 4018 €/𝑀𝑊𝑝𝑒𝑎𝑘/𝑚𝑜𝑛𝑡ℎ for the maximum yearly power
demand. Both fees can be found in the Appendix H.
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Results

In this chapter, the results of the cost-reducing energy management system are presented and dis-
cussed. This is done based on the two stochastic programming methods described in Chapter 4.1.4.
Both the Expected value (EV) and Wait-and-See solution (WS) methods will be tested for four different
energy management strategies. The results for the EV solution are presented in Section 6.2. The WS
is subsequently presented in Section 6.3. A sensitivity analysis is finally performed in Section 6.4 which
includes the sensitivity analysis for battery size, C-rate, day-ahead price volatility, variations in mean
value of the day-ahead price, and the influence of grid tariffs on the cost-reducing performance of the
EMS.

6.1. Overall performance
Four different strategies were considered to determine the most effective energy management strategy
within the given conditions. The (1) No BESS strategy represents the baseline scenario, in which there
is no BESS or EMS. The second strategy, (2) Arbitrage, involves dispatching the BESS to minimize elec-
tricity costs but does limit the import from the grid. The third strategy, (3) Arbitrage + peak shaving,
incorporates both arbitrage and peak shaving, it limits the maximum power that can be imported from
the grid. Finally, the (4) Peak shaving strategy only considers peak shaving.

The ’Base case’ scenario serves as the reference point for comparison with all other variations. The
base case as described in Section 5.1.3 comprises a 5MWh, 1C, 100% DoD BESS. In addition, the day-
ahead prices detailed in Section 5.2.3 and the power demand outlined in Section 5.2.1 were utilized.
For the duration of the base case, a 100-day uninterrupted stay in port is assumed. The performance
of the EV and WS methods for the base case scenarios are presented in Table 6.1 for the four strategies.

Table 6.1: Comparison of EV and WS solution

Scenario
100-days

No BESS
Total costs

Arbitrage
Cost reduction

Arbitrage + Peak shaving
Cost reduction

Peak shaving
Cost reduction

Expected value
Solution €828,800 €66,100 €66,100 €0

8.0% 8.0% 0.0%

Wait-and-See
Solution €1,180,147 €16,065 €184,851 €119,915

1.4% 15.7% 10.2%

Table 6.1 presents the results for the cost reductions achieved by four strategies within the expected
value, and the wait-and-see solutions. The data shows that the arbitrage + peak shaving strategy
results in the largest absolute and relative cost reductions. Additionally, the peak shaving strategy
alone also exhibits a significant reduction in costs among the strategies analyzed within the wait-and-
see approach. In Section 6.2, the results and performance of the EV solution will be discussed in
greater detail, along with an examination of its limitations. Section 6.3 will subsequently present an
analysis of the wait-and-see solution.

46
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6.2. Expected value solution
The expected value solution presents a probable outcome for decision-makers to consider when making
decisions. For the expected value solution, the expected wind speed was used, as this factor primarily
determines the condition under which the EMS will provide value to the vessel operator. In order to
calculate the expected value, the average wind scenario was used as an input. Based on 10 generated
scenarios an average wind scenario was constructed, which subsequently determined the power pro-
duced by the wind park.

Figure 6.1 shows the load, expected wind power production, and power imported from the grid.
The wind power production of 16 MW is sufficient to meet the power demand of the vessel for the
complete duration of the simulation. As a result, EMS is unable to reduce costs by performing peak
shaving, since grid tariffs are exclusively imposed on power imported from the grid. The absence of
values for ’Grid import’ confirms this observation. Despite this, energy arbitrage can still be utilized.

Figure 6.1: Grid import and wind power production
for the arbitrage & arbitrage + peak shaving strategies

Energy arbitrage is performed by the EMS as the vessel operates in a volatile electricity market.
Figures 6.2 and 6.3, show the EMS optimally dispatching the battery in order to achieve the lowest
electricity costs for the vessel operator. Consequently, the electricity costs are reduced by 8% while
the grid tariffs remain zero as no power is imported from the grid.
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Figure 6.2: Battery SOC and day-ahead price for
strategies (2 & 3)

Figure 6.3: Charge, discharge power and energy stored
in BESS for strategies (2 & 3)

Finally, the daily electricity costs for the four considered strategies are presented in Table 6.2. Based
on these costs, strategy (2) and (3) are the most optimal in terms of reducing daily costs. However,
these results do not consider the total costs for a longer port stay. An assessment of the cost reduction
during a 100-day stay is given in the next section 6.2.1.

Table 6.2: Daily electricity costs for expected value solution under four EMS strategies

No BESS Arbitrage Arbitrage +
Peak shaving Peak shaving

Energy costs
[€/day] €8288 €7627 €7627 €8288

6.2.1. Analysis of expected value solution
The primary objective of the EMS strategies is to reduce costs for the vessel operator. To evaluate the
performance of these strategies, a scenario of 100 days in port is considered. The total costs for a
100-day stay in port is presented in Figure 6.4 for three strategies. The costs presented in this figure
consist only of energy-related costs since the expected value assumes there is no import of electricity
from the grid. As a result, Figure 6.4 demonstrates that the peak shaving strategy in this case has no
effect on cost reduction for the vessel operator, as wind power covers the complete power demand
of the vessel. From this point forward, for the purpose of conciseness, the term peak shaving will be
represented by the abbreviation PS in the figures.

€720,000.00

€740,000.00

€760,000.00

€780,000.00

€800,000.00

€820,000.00

€840,000.00

No BESS Arbitrage, No PS Arbitrage + PS PS

Figure 6.4: Expected 100-day costs
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Figure 6.4 demonstrates that the cost reduction for both the arbitrage without peak-shaving and the
arbitrage + peak shaving case is significant as the algorithm is able to capitalize on price volatility while
keeping grid import tariffs low. The final strategy, which only uses peak shaving, results in no overall
cost reduction. As previously mentioned, Figure 6.1 illustrates no net import of electricity from the grid.
Resulting in both monthly, and yearly grid costs of €0.00, as the peak load can be covered entirely by
generated wind energy, eliminating the need for grid imports. By presenting such an unlikely scenario,
the EV solution highlights its limitations.

The use of the expected value solution for wind power profiles has the potential to be effective,
but an important factor must be considered in order to accurately assess its effectiveness. This factor
is the inherent variability of wind speeds, which can vary throughout the day and from day to day.
This variability has a significant impact on the results of using this solution, as periods of low wind
production increase the demand for the vessel operator to import electricity from the grid. In the event
of a scenario in which a high peak power demand coincides with a period of low wind, the capacity of
the BESS may be inadequate to meet the power requirements, thereby necessitating the importation
of electricity from the grid. This subsequently leads to an increase in the associated grid-related costs
for the vessel operator. Overall, the use of the expected value solution for wind power profiles must
take into account the variability of wind speeds in order to accurately predict its effectiveness.

The results of using the expected value solution for wind power production, in this case, show that
it is generally able to fully provide the vessel with the necessary energy. However, this result is likely
to be overly optimistic, particularly in regard to grid costs. This is due to the inherent variability of
wind speeds, which can impact the ability of the solution to accurately predict the amount of energy
that will be available from wind power production. As a result, the estimated grid costs may not be
accurate and could be significantly higher in reality. It is important to consider the potential impact of
wind speed variability in order to accurately assess the effectiveness of this solution.

The wait-and-see solution, which takes into account various wind generation scenarios, will be used
in the next section of this study. This approach provides a more realistic representation of the potential
impact of wind on grid costs, as it accounts for the inherent variability of wind speeds. By considering
a range of wind scenarios, this solution is able to provide a more accurate prediction of the potential
impact on grid costs. This is important in order to accurately assess the effectiveness of using wind
power production in this specific context.
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6.3. Wait-and-see solution
The wait-and-see solution provides a solution under uncertainty by optimizing various scenarios. Each
scenario has a corresponding probability of occurrence. The sum of all scenarios are multiplied by its
probability results in the WS solution. In this way, a decision maker is able to see the behavior of
the energy management system in varying weather conditions, which will influence the realized cost
reduction as well as the optimal parameters of the BESS.

The scenarios and probabilities are the result of the DTW k-means clustering method described in
section 4. The probability of the ten wind speed scenarios are given in table 6.3 and will be used for
determining the costs for the vessel operator. The weighted combinations of the scenario outcomes
form the final wait-and-see solution. Table 6.3 shows the wait-and-see solutions for the four different
strategies applied to the base case described earlier in Section 6.1.

Table 6.3: Wait-and-See solutions, four strategies (costs of energy in €/day)

Scenario Probability
[p.u.] No BESS Arbitrage Arbitrage +

Peak shaving Peak shaving

Scenario 1 0.11 €8290 €7629 €7628 €8290
Scenario 2 0.077 €8661 €7963 €7999 €8661
Scenario 3 0.115 €8288 €7626 €7626 €8288
Scenario 4 0.03 €8438 €7779 €7784 €8438
Scenario 5 0.096 €8885 €8210 €8378 €8885
Scenario 6 0.145 €8288 €7627 €7626 €8288
Scenario 7 0.055 €8545 €7879 €7879 €8545
Scenario 8 0.175 €8306 €7631 €7630 €8306
Scenario 9 0.142 €8292 €7631 €7631 €8292
Scenario 10 0.055 €8288 €7627 €7627 €8288
Wait-and-see
solution €8397 €7729 €7747 €8397

As every WS solution involves multiple scenarios, plotting all scenarios may be confusing. Three
EMS Strategies; No BESS, Arbitrage, and Arbitrage + PS are respectively shown in Figures 6.5, 6.6 and
6.9 to demonstrate the effects of different dispatch strategies for grid import power demand.
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Figure 6.5: Strategy (1), No Arbitrage, No Peak Shaving
Illustrative example, wind scenario (2/10)

In the No BESS base case shown in Figure 6.5, the grid import power follows the power demand of
the vessel during periods with no wind power generation. During periods of wind power generation,
the power generated by the wind park is subtracted from the power imported from the grid. During
the peak power demand at t=12 h, the wind park is able to partially supply this demand thus limiting
the effect on grid imports. While this is beneficial for this specific scenario, other scenarios with low
wind power generation show a peak grid import power similar to the peak in power demand of 8.6 MW
which will increase grid-related costs.

Figure 6.6: Strategy (2), Arbitrage
Illustrative example, wind scenario (2/10)
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Figure 6.7: Charge and discharge rates strategy (2) Figure 6.8: Day-ahead price and battery scheduling
strategy (2)

The unrestricted arbitrage dispatch strategy in Figure 6.6 shows a completely different grid import
pattern compared to the No BESS strategy in Figure 6.5 or the arbitrage + peak shaving and peak
shaving strategies that are shown later. This divergent pattern explains the disappointing results with
regard to the cost-reducing ability of the strategy of only 1.4%. To facilitate energy arbitrage, grid im-
ports approach 10MW during hours 5 to 6. This is a result of the arbitrage strategy as a large amount
of energy is purchased for a low price on the day-ahead market as depicted by figure 6.7. As grid costs
are determined on a monthly basis, they are not included in the optimization.

As a result, the optimization prioritizes arbitrage without considering the effects of grid import power
on grid costs. During most periods, the wind park is able to supply sufficient power to meet the full, or
partial power demand of the vessel, resulting in no additional grid import costs. However, when a peak
power demand coincides with a period with limited or no wind power production such as in Figure 6.8,
the EMS will import power from the grid. As the purchase of large quantities of energy during a limited
time period yields the best results for the arbitrage strategy, peaks in power demand will occur more
often resulting in increased grid costs when compared to the No BESS or business as usual case.

Figure 6.9: Strategy (3), Arbitrage + Peak Shaving
Illustrative example, wind scenario (2/10)
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Figure 6.10: Charge and discharge rates strategy (3) Figure 6.11: Day-ahead price and battery scheduling
strategy (3)

The combination of peak shaving and arbitrage is shown in Figure 6.9 in which the grid import is
limited to 5.5MW. It should be noted that limited grid import power does not limit importing power
from the wind park as wind power can be used at no extra grid costs. In addition to limiting grid import
costs, the arbitrage + peak shaving strategy restricts the ability of the EMS to fully exploit the effects
of the arbitrage strategy. This is demonstrated by the battery SOC in Figures 6.10 and 6.11 which
shows are slower and less optimal increase with respect to the day-ahead prices when compared to
the SOC in Figures 6.7 and 6.8. In summary, the arbitrage + peak shaving strategy limits the induced
peak in power demand by the arbitrage strategy as well as peaks in power demand from the vessel as
shown in Figure 6.8. As a result, this strategy has the highest cost-reducing performance of the tested
strategies.
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6.3.1. Analysis of Wait-and-see solution
Similar to the expected value solution, the EMS is evaluated for various strategies. This time the strate-
gies can be tested under a range of wind scenarios which provides more insight into the conditions
that drive certain decisions and costs. Moreover, it will result in a more robust and realistic solution as
the most negative scenario i.e. the scenario with the highest grid import determines the grid costs. A
situation as in section 6.3 in which grid costs are absent is prevented.

The number of wind scenarios in the WS solution results in the same number of solutions with
regard to daily expected electricity costs. The values that were previously described in Table 6.3 are
now visualized in Figure 6.12. Overall, a similar distribution in daily electricity costs is observed. The
arbitrage and arbitrage + peak shaving strategies both result in the lowest daily expected costs of
electricity. The data presented in Figure 6.12 appears to indicate that strategies (2) and (3) yield the
most favorable outcomes in terms of cost reduction. However, it is crucial to also take into account the
grid-related costs associated with these strategies, as these costs can significantly impact overall cost
efficiency.
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Figure 6.12: Outcomes of the wait-and-see solution

During a 100-day stay in port, the vessel operator is subject to costs of electricity as well as yearly-
and monthly grid-related costs. Figure 6.13 presents the absolute cost distribution during this period
while Figure 6.14 presents the relative distribution of costs. Contrary to what was presented in Figure
6.12, Figure 6.13 reveals that the arbitrage strategy is less effective over a 100-day period. Further-
more, it is apparent that although the total costs may have decreased, the yearly peak grid-related
cost exhibits a marked increase when the arbitrage strategy is implemented, as demonstrated in Fig-
ure 6.13. The increased grid costs is a direct outcome of the utilization of an unrestricted arbitrage
strategy. As this approach seeks to optimize cost reduction through arbitrage, it subsequently elicits a
substantial demand for grid importation, thus leading to an increase in grid costs.

An effective method to mitigate the negative impacts of high arbitrage power demand is through
the implementation of grid import constraints. This can be achieved by limiting the maximum power
that the vessel can import from the grid. The arbitrage + peak shaving strategy clearly demonstrates
this effect as the yearly grid-related costs are reduced by approximately 50% in comparison to the
arbitrage strategy.

In the context of arbitrage operations, the EMS repeatedly charges and discharges the BESS at a
high frequency, with approximately two complete cycles per day. This frequent usage can result in sig-
nificant stress on the BESS, potentially impacting its overall performance and longevity in the long term.
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Figure 6.13: Cost distribution for a 100 day stay in €
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Figure 6.14: Cost distribution for a 100 day stay in %

A peak shaving-only strategy was implemented as a final approach, in which the potential cost
reductions of peak shaving were considered separately from the negative impacts of charge- and
discharge cycles in arbitrage operations. The results of this strategy, as shown in Figure 6.15, indicate
a cost reduction of 11%. While the cost reduction is lower than that achieved through the combination
of arbitrage and peak shaving, this strategy has the added benefit of limiting the stress on the BESS. It
is worth noting that a lifetime assessment of the BESS to further investigate the effects of arbitrage on
it, could be an interesting next research step. However, it falls outside the scope of this current study.
In addition, decision-makers should be aware of the risk related to limiting the grid import constraints.
As an increased power demand during a longer duration with no wind power production may result
in a blackout. In light of the given circumstances, utilizing soft constraints may offer a more optimal
solution.
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Figure 6.15: Cost reductions four strategies for base case scenario

As illustrated in Figure 6.15, the combination of arbitrage + PS strategies has been found to pro-
vide the greatest cost reduction for vessel operators, yielding a 16% reduction in costs. However, this
strategy also leads to increased stress on the BESS due to the frequent discharge and charge cycles. In
contrast, the arbitrage strategy, while also causing stress on the BESS, also results in larger grid-related
costs, resulting in a limited cost reduction of 2%. The peak shaving strategy, while not achieving the
highest cost reduction, is a viable alternative as it reduces costs by 11%, or €120,000 per year, without
inducing additional stress on the BESS.

In addition to the cost reductions already achieved in the base case scenarios, in order to fully
assess the cost-reduction capabilities of the EMS, it is necessary to conduct sensitivity analyses under
a variety of conditions. These analyses will be performed in Section 6.4 and will serve to evaluate the
performance of the EMS under varying specifications.
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6.4. Sensitivity analysis
The EMS will operate in a wide range of price conditions which makes it difficult to accurately determine
its performance as it is dependent on those conditions. In addition, the system’s performance is
subject to its architecture and specifications. As a combination of all factors will finally determine
the performance a sensitivity analysis is made. By consistently altering only one variable, the decision-
maker is able to gain insights on how each variable influences the performance of the complete system.

6.4.1. Grid Tariffs
One of the two cost-reducing methods of the EMS is limiting electricity import from the grid by peak
shaving. This section shows how varying grid tariffs affect the performance of the EMS. Throughout
the recent three years, grid tariffs have increased by 50% as presented in Appendix H. The sensitivity
analysis in Figures 6.18 and 6.19 shows the performance of the EMS under varying grid tariffs.

Grid tariffs make up 20-33% of costs as is shown in Figures 6.16 and 6.17. As a result, increased grid
tariffs will negatively impact grid costs. While the overall costs for a 100-day stay rose from €1,059,986
to €1,180,147 from 2021 to 2023, Figure 6.18 shows an increased absolute cost for the vessel operator
as grid tariffs increased by 50% from 2022 to 2023. Moreover, the relative cost reduction increased
with increased grid tariffs as displayed in Figure 6.19. Thus by adopting either the arbitrage + ps or
peak shaving strategy, vessel operators are able to hedge against an increase in grid tariffs.
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Figure 6.16: Cost distribution for a 100 day stay in €
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Figure 6.17: Cost distribution for a 100 day stay in %
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Figure 6.18: Grid tariff sensitivity on cost reduction
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Figure 6.19: Grid tariff sensitivity on cost reduction
percentage
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6.4.2. Price volatility
Energy costs account for approximately 75% of the total shore power costs for a vessel operator. Elec-
tricity prices are reduced by energy arbitrage, which relies on volatile prices. This section assesses
the influence of volatility on the performance of the EMS under higher and lower volatility rates with
respect to the base case.

Figure 6.20 presents the three price scenarios. In the more volatile scenario, the prices are pro-
cessed to deviate 20% more from the mean while the opposite is applied to the 20% less volatile
scenario.
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Figure 6.20: Volatility of day-ahead prices

The results of the three price scenarios are presented in Figures 6.21 and 6.22. As the volatility of
the day-ahead prices changes, the grid-related costs remain at the same value as these values are not
influenced by the day-ahead price. For the arbitrage-based EMS strategies, an increase in effectiveness
is observed as volatility increases. Increased volatility from -20% to +20% caused the cost-reducing
for the arbitrage and arbitrage + peak shaving strategies to increase by 4.8% and 4.7% respectively.
Whereas this results in a hedging strategy for the vessel operator, it poses a risk, especially for the
arbitrage strategy since a volatility decrease of 20% resulted in a net cost increase.

As volatility is decreased, the cost reduction for the arbitrage strategy resulted in a cost increase of
0.8% as costs reduced by arbitrage were no longer sufficient to balance costs as a result of induced grid
import. The arbitrage + peak shaving strategy, resulted in a 13.5% cost reduction despite the reduction
in volatility. A cost reduction which, despite the sensitivity to reductions in volatility, still shows the best
performance. Exceeding the peak shaving strategy that achieved a 10.2% cost reduction despite
being unaffected by varying volatility. Adapting the arbitrage + peak shaving strategy will result in
an increased cost reduction performance in an environment with increased day-ahead price volatility.
Despite a decreased performance in less volatile electricity markets, this strategy still performs best.
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Figure 6.21: Volatility sensitivity
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Figure 6.22: Volatility sensitivity percentage

6.4.3. Day-ahead prices
The analysis in this section covers the EMS performance under increased day-ahead prices without
changes to volatility. The three price scenarios are generated by increasing and reducing the base case
prices by 20%. The three scenarios are shown in Figure 6.23.
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Figure 6.23: Variable mean in day-ahead prices

As the price conditions are varied, grid-related costs remain the same as can be deduced by the
constant cost reduction for the peak shaving strategy in Figure 6.24. An increase in day-ahead prices
results in a larger absolute cost reduction achieved through the arbitrage and arbitrage + peak shaving
strategy by the EMS. However, since energy costs form a relatively larger part of the total costs, the
percentual cost reduction decreases as the mean value of day-ahead prices decreases as shown in
figure 6.25. As the day-ahead prices are lowered and increased by 20% with respect to the base case,
the arbitrage + peak shaving cost reduction decreases from 16.8% to 14.8% and the peak shaving
reduces from 11.7% to 9.0%. The decrease in performance, albeit small, is not insignificant. An
increase in day-ahead prices under similar volatility conditions will result in a relative decrease in the
performance of the EMS. Nonetheless, the arbitrage + peak shaving strategy performs the best in all
conditions, compared to the other strategies.
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Figure 6.24: Sensitivity day-ahead prices
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Figure 6.25: Sensitivity day-ahead prices

6.4.4. BESS energy capacity
The energy capacity of the BESS is a significant factor in the costs of the EMS, determining the influence
of energy capacity on the performance should therefore be evident. Different battery sizes affect the
cost reduction for the vessel operator in different ways. Figures 6.26 and 6.27 show the achieved cost
reduction by three battery capacities.

A clear decrease in the costs of electricity can be observed for the arbitrage + peak shaving and
peak shaving as the energy capacity of the system increases. Although a diminishing return can be
observed as the BESS capacity increases, 4.5% from 2 to 5 MWh versus 7.3% from 5 to 8 MWh, the
cost reduction for the arbitrage + peak shaving and peak shaving strategy reach the maximum cost
reductions of 20.2% and 12.1% respectively. While the previous strategies show a linear increase in
cost reductions, the arbitrage scenario shows a decreased reduction of 0.9% from 2 to 5MWh followed
by an increase from 1.4% to 4.4% as the energy capacity is increased to 8MWh. Again, this is the
result of an induced grid import power at the 5 and 8 MWh capacities. While the 8MWh BESS could
make up for this increased grid cost by utilizing the increased capacity energy arbitrage, the 5MWh
capacity did not allow for this. Contrary to this, the 2MWh battery was limited by the smaller power
capacity, as the C-rate of 1 resulted in a maximum power capacity of 2MW. This limited the ability of
the 2MWh BESS to induce large grid import power, which prevented additional grid costs.
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Figure 6.26: BESS energy capacity sensitivity
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Figure 6.27: BESS energy capacity sensitivity percentage
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6.4.5. C-rate
The rate at which the BESS can charge and discharge is the second most important battery parameter.
A sensitivity analysis was made, in order to determine the influence of the C-rate on the ability of the
battery to achieve a cost reduction for the vessel operator.

The effects of the cost-reducing performance of the EMS at various C-rates are shown in Figure
6.28. In general, an increase in the total cost reduction can be observed as the C-rate increases. This
increased benefit persists for the arbitrage + PS and PS only strategies, as C-rate is increased from 0.2
to 1, the cost reductions increase from 7.1% and 3.1% to 15.7% and 10.2% respectively. Contrary to
this, after an initial increase a decrease in cost reduction is observed for the arbitrage strategy. The
reason why this is only prevalent in the arbitrage is due to the same balance between induced grid
imports and arbitrage benefits described in the previous subsection. As a result of increased C-rates,
first the added benefit of arbitrage outweights the increased costs due to increased grid import. After
the peak cost reductions of 5.2% at a C value of 0.4, the increase in induced grid imports starts to out-
weight the added arbitrage benefits, leading to an overall relative decrease in cost reductions achieved
by the arbitrage strategy.

As the C-rate approaches 1, a stabilization of the expected cost is observed for the arbitrage + PS
and PS only strategies. This effect is a result of the pricing method for the vessel operator. Because
tariffs are determined on an hourly basis, the battery can achieve its maximum cost-reducing effect by
completely discharging when the day-ahead price is at its highest point. As the battery is discharging
its energy to the vessel, it eliminated the need to purchase power at this high price point. To reach
the maximum effect, the battery must partially supply the vessel with energy during this complete
hour since any excess power will otherwise be purchased from the grid. As a result, no additional cost
reductions can be achieved with arbitrage by increasing the C-rate.

An increase in C value above 1 can have beneficial effects during peak shaving. As peaks in power
demand often occur during periods lasting for short periods of minutes. In this case, a high C-rate BESS
can provide peak power without being oversized in terms of energy capacity. Since the conducted tests
included energy arbitrage which requires a significant energy capacity, lower energy capacity batteries
with high C-rates were not considered in this research.
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Figure 6.28: Sensitivity C-rate BESS
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6.5. Results summary
To conclude this chapter, a summary of the relative cost reduction is provided in Table 6.4. In a com-
parison of two stochastic optimization approaches, the wait-and-see solution was found to produce
the most realistic outcomes. The better performance of the WS solution can be attributed to its con-
sideration of multiple wind scenarios. As the cost-reducing ability of the system is heavily dependent
on extreme scenarios, the incorporation of multiple scenarios in the WS approach exposed the EMS to
these scenarios, which resulted in a more accurate solution. As the WS approach provided the most
accurate results, the cost-reducing performance of three strategies within the WS was tested and an-
alyzed through a sensitivity analysis. The outcome of these tests gave varying results. Considering all
factors, the peak shaving strategy is the overall best-performing strategy.

Table 6.4: Summary of results

No BESS
100-days

Arbitrage
Cost reduction

Arbitrage + Peak shaving
Cost reduction

Peak shaving
Cost reduction

Expected value
Solution €828,800 €66,100 €66,100 €0

8.0% 8.0% 0.0%

Wait-and-See
Solution €1,180,147 €16,065 €184,851 €119,915

1.4% 15.7% 10.2%

2021 grid costs 3.2% 13.5% 7.3%
2022 grid costs 3.1% 13.5% 7.4%
2023 grid costs 1.4% 15.7% 10.2%

-20% volatile -0.8% 13.5% 10.0%
+20% volatile 4.0% 18.2% 10.2%

+20% day-ahead 2.2% 14.8% 9.0%
-20% day-ahead 0.3% 16.8% 11.7%

2 MWh BESS 2.3% 8.4% 6.1%
5 MWh BESS 1.4% 15.7% 10.2%
8 MWh BESS 4.4% 20.2% 12.1%

C = 0.2 4.3% 7.1% 3.1%
C = 0.4 5.2% 11.3% 6.3%
C = 0.6 5.0% 14.9% 9.5%
C = 0.8 2.8% 15.6% 10.2%
C = 1.0 1.4% 15.7% 10.2%

The arbitrage strategy performed the worst of the three strategies, as it induced additional grid
imports through performing arbitrage. This resulted in increased grid costs, which in most cases re-
versed the cost reduction brought about by performing energy arbitrage. For the base case scenario
the arbitrage strategy was able to decrease the costs by 1.4% or €16,065 during a 100-day stay. The
most promising results from Arbitrage strategy are found in the increased day-ahead price scenario, as
it is the only strategy that shows an improvement cost reduction under this condition. Nevertheless,
this cost reduction is with 2.2% still smaller than the other two strategies.

The arbitrage + peak shaving strategy performed the best in both absolute and relative cost re-
duction. While the ability to perform arbitrage was slightly reduced by constraining the import power,
it prevented the unwanted increase in grid costs thus it profited from both reducing energy and grid
import costs. For the base case, the arbitrage + peak shaving strategy reduced costs by 15.7% or
€184,851. Moreover, through sensitivity analyses the arbitrage and arbitrage + peak shaving strategy
performed 4.5% better under conditions with a 20% increase in day-ahead price volatility, while the



6.5. Results summary 62

peak shaving strategy showed no improvement. As price volatility was decreased by 20%, the arbi-
trage strategy showed an increase in costs, resulting in a negative benefit to the vessel operator. By
performing arbitrage the BESS underwent 2 charge-, and discharge cycles per day, which has a large
impact on the lifetime of the BESS. A real life implementation of such a system is therefore doubtful.

To achieve a cost reduction without the negative consequence of frequent charge cycles the peak
shaving strategy stands out. The peak shaving strategy had the second best cost reducing performance
during all tests. In the base case this strategy reduced the overall costs by 10.2% or €119,915 during
a 100-day stay. The Peak shaving strategy is the least effected by BESS energy capacity while still
providing a significant cost reduction. It showed an increase of 1.9% and a decrease of 4.1% as the
energy capacity was respectively increased and decreased by 3 MWh. As the sensitivity to battery
capacity is low for this strategy, and energy capacity is the main driver of costs for a BESS, shows
this to be a promising strategy. Considering the negative effects on the lifetime of the battery in the
arbitrage strategy, the peak shaving strategy is the overall best-performing strategy.



7
Conclusion & Recommendations

This chapter will provide the answers to the research questions in section 7.1. The subsequent sections
?? will give a reflection on the research and the limitations of the research are also addressed. Finally,
suggestions for future research are given in section 7.3.

7.1. Answers to the research questions
This section starts with the sub-questions followed by the main question, as the sub-questions have
been constructed in order to answer the main question.

7.1.1. Sub-questions
1. What energy management strategies can be performed considering infrastructural

constraints of the shore power connection, the grid, and the BESS?
The shore power connection of the case study uses unidirectional frequency converters, which
limits the ability of a vessel-to-grid application. However, as the BESS and load are both located
behind the meter, there is an opportunity for behind-the-meter application leading to cost re-
duction for the vessel operator. The cost reductions that can be achieved by this application are
mainly peak-shaving and energy arbitrage. In a day-ahead scheduling approach with energy
arbitrage, a cost reduction is achieved by shifting the load and charging the BESS at the lowest
day-ahead price point. During periods of high electricity prices, the vessel is able to reduce the
imported electricity consumption by relying on the BESS, thereby reducing the overall costs of
electricity.

In addition, the vessel operator is exempted from grid costs when the vessel is supplied by
local wind power. The EMS should therefore base the dispatch of the battery on the expected
wind power production. The stochastic nature of wind speeds and the subsequent wind power
production does not guarantee a perfect forecast, using uncertainty modeling methods for
approaching the optimal scheduling under uncertainty is therefore important.

Lastly, the vessel operator has to pay a monthly, and yearly fee for the highest power demand
during that month or year for the grid connection. As this fee can be a significant portion of the
total shore power costs of the vessel operator, the energy management strategy should include
the ability for peak shaving.

2. Which type of support services and participation in the short-term electricity market can
generate economic benefit to the ship operator during cold ironing using an onboard BESS?
It can be concluded that vessel operators can utilize the onboard BESS to generate economic
benefits by performing two strategies. The first strategy is peak shaving. The occasional peak in
the power demand of the vessel puts added stress on the electricity infrastructure within the port.
The DSO charges peak power costs for both the maximum power demand during a month as
well as max power demand for the year. The combination of these costs makes up roughly 30%
of the total operational costs related to shore power for the vessel operator during the season.
By employing peak shaving, the vessel operator supplies peaks in power with the onboard BESS,
thereby reducing the strain on the grid and moreover lowering the power-related costs from the
DSO. In addition to the economic benefit for the vessel operator, peak shaving alleviates power
demand on the local grid which may delay or prevent additional investments in grid reinforce-
ments.

63
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The second form of participation is energy arbitrage. This strategy reduces costs for the vessel
operator by purchasing electricity at lower day-ahead price points, which is provided to the load
of the vessel during a period during which energy prices peak. As a result, the vessel operator
reduces the total costs by 1.4%. However, energy arbitrage not in combination with peak shaving
leads to an increase in power demand. This reverses the supporting benefit to the grid and vessel
operator. The combined strategy of arbitrage and peak shaving prevents this, and in addition
results in the largest cost reduction for the vessel operator of 15.7% without inducing additional
power demand on the grid.

3. What factors influence the optimal energy and power specifications for an onboard BESS
for Vessel-to-Grid participation?
There are two specifications, C-rate and Energy capacity that determine the specifications of the
BESS. The optimal choice of specifications depends on the conditions under which the EMS is
operating which ultimately determines the choice of EMS strategy that the vessel operator will
employ.

Energy capacity is the first and most crucial factor to be discussed since it is the primary driver
of costs for a BESS. The performed sensitivity analysis on energy capacity showed improved
performance as the energy capacity was increased. A maximum cost reduction of 20.2% was
achieved by the arbitrage + peak shaving strategy a 4.5% increase from the 5MWh BESS. For the
peak shaving strategy, a maximum cost reduction 12.1% was observed for the 8 MWh BESS which
was only a marginal improvement of 1.9% compared to the 5MWh BESS. As energy capacity is the
main factor in determining arbitrage performance, increased volatility conditions will favor
large energy capacities. The other factor determining energy capacity is the power demand
of the vessel during its connection to shore power. As peaks in power demand last for longer
periods or occur more often, a larger energy capacity is required. The added benefit is that the
power capacity or C-rate increases linearly with BESS energy capacity.

The main factors influencing the C-rate of the BESS are the grid tariffs. An increase in grid
tariffs results in a higher potential benefit for peak shaving. From the sensitivity analysis on C-
rate, it can be concluded that the arbitrage + peak shaving and the peak shaving strategies show
improved performance as C-rate is increased. While a higher C-rate results in the largest cost
reduction, the increase from a C-rate of 0.4 to 0.6 results in the highest relative increase as cost
reduction for the peak shaving strategy increase from 6.3% to 9.5%. As the C-rate approaches 1,
the cost reduction ability levels off at 15.7% for the arbitrage + peak shaving strategy and 10.2%
for the peak shaving strategy. At C-rates higher than 1 no additional benefit can be observed due
to the fact that day-ahead prices are determined on an hourly basis. Therefore discharging the
battery at a faster than one hour rate does not result in an increased cost reduction.

4. What is a suitable scenario generation method for generating wind data scenarios from
historical data?
Of a wide variety of options, DTW 𝑘-means clustering was considered to be a suitable scenario
generation method. Firstly, 𝑘-means clustering is generally easily implemented and guarantees
convergence. Additionally, the clustering method scales to large data sets, and finally, the in-
tertemporal relationship between data points is preserved. Of the three tested methods, the
DTW 𝑘-means expressed the highest resemblance to the original data set.
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7.1.2. Main Question
This study concludes by emphasizing the impact of adopting a cost-effective energy management
strategy for operators of BESS-equipped vessels. The potential for cost reduction, as an increased
number of hybrid vessels will enter the fleet, is significant. A conservative estimate suggests a reduction
of up to 10% in operational costs with minimal additional expenditures for necessary equipment. In
addition to the vessel operator, the EMS benefits the DSO as it mitigates power demand on the grid.
Consequently, this can be answered in response to the main research question:

How to develop a cost-effective energy management strategy for a
semi-submersible crane vessel (SSCV) to increase the economic benefits for
the ship operator which uses cold-ironing service via an on-board BESS?

It can be concluded that the peak shaving + arbitrage strategy resulted in the best cost reduction
results considering all factors. The peak shaving strategy reduced shore power costs for the vessel
operator by 15.7% or €184,851 over a 100-day period. This energy management strategy was derived
from the wait-and-see solution which was demonstrated to be superior to the expected value solution
as it derived the solution from a range of wind power production scenarios, it resulted in a more real-
istic representation of the grid-related costs. The wind power production scenarios were reduced and
generated from historical wind data through a DBA 𝑘-means clustering method. The data was reduced
from 365 to 10 scenarios with a respective probability of occurrence.

While the Arbitrage + Peak shaving strategy demonstrated better a cost-reducing performance
across all tested scenarios and exhibited improved performance under more volatile day ahead market
conditions, the implementation of arbitrage resulted in significant stress on the BESS as it underwent
two daily charge- and discharge cycles. As a consequence, this may lead to a rapid reduction in the
lifetime of the system. The peak shaving strategy, which reduced costs by 10.2% or €119,915 during
the 100-day stay, shows limited cycling and should be considered when a reduced number of charge
and discharge cycles is preferred.
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7.2. Reflection
The results of this study can be interpreted from multiple perspectives. First and foremost, this work
has presented a novel method for utilizing onboard BESS for operators of hybrid vessels during the
connection to shore power. By employing one of the presented methods, hybrid vessel operators are
able to significantly reduce the costs of electricity and grid-related costs by up to 15.7% on a yearly
basis.

The strategies presented here can be used by ship owners to identify additional business cases for
the onboard BESS. Moreover, this work provides an assessment of various scenarios and sensitivities
providing tools for determining the BESS specifications under various conditions. Additionally, this re-
search can function as a road map for vessel operators that are currently unable to finance onboard
BESS due to an insufficient return on investment. As result, the additional cost reductions presented
here may increase the efficiency of a part of the vessel fleet by lowering the threshold for investments
in onboard BESS.

Furthermore, the use of grid-integrated vessels through shore power can help port authorities with
a solution for grid-related problems. Grid congestion and long lead times can hinder the deployment of
renewable infrastructure. Added demand for shore power-connected vessels aggravates these prob-
lems if not handled in the correct way. The peak-shaving solution presented in this work can function
as a proof of concept for a new concept of alleviating these problems.

Based on this study, the Port of Rotterdam and research institute TNO have shown interest in this
topic and are currently exploring possibilities to use a containerized battery on board a crane vessel
for peak shaving and energy arbitrage. After the completion of this thesis, research will be conducted
with various suppliers as well as the technical crew of the vessel to study the economic viability as well
as the necessary requirements and challenges regarding the implementation of the EMS presented in
this work.

7.3. Recommendations for future research
First, improvements with regard to the optimization could be made by increasing the time horizon. The
current day-ahead scheduling approach that was conducted, although it was exposed to multiple wind
power production scenarios, did not provide any information on the workings of the system for multiple
consecutive days. As longer run can provide more accurate information on the behavior of the system.

Further improvements in the optimization could be made by changing the modeling method to re-
course modeling. The problem with the optimization right now is that there is no risk of recourse related
to the peak shaving mode. In other words, the constraint put on the maximum import tariff cannot
be violated. The introduction of risk management such as chance constraints or a form of recourse
actions could contribute to a better modeling method. Moreover, recourse modeling would allow for
simulating a monthly dispatching problem in which recourse costs could be appointed for crossing cer-
tain thresholds in the peak power demand. Doing this would weigh the benefits of utilizing the full
power potential of the grid with its additional costs. In the current modeling method, this number can
only be roughly approached.

Improvements in handling risk could be made with the introduction of chance constraints. Building
on the previous statement, chance constraints would allow for violating certain important parameters
such as the grid import power limits. When change constraints would be instated and we work with
an uncertain load, other researchers can play with the allowable risk in working with unknown power
demand.

The most optimal solution presented in this work employed the arbitrage strategy. While the cost-
reducing effects of this EMS strategy were outstanding, it did stress the BESS with two daily charge
and discharge cycles. Based on the information from studies conducted on onboard BESS, frequent
cycling was not recommended. In order to study the effects of arbitrage on battery degradation would
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improve the results. After a degradation analysis, a substantiated consideration could be made with
regard to the use of the arbitrage strategy.

As the EMS will ultimately be used in an uncertain environment, interesting future research could
consider a model in which all conditions are uncertain and explore the behavior of the model in a two-
stage stochastic programming model which makes use of weather forecasts.

Lastly, while the effects of a single grid-connected vessel on congestion are limited, research on the
aggregated benefits of multiple BESS-equipped vessels in a Harbor-Area Smart Grid could be conducted
to show the benefits of combining the flexibility of multiple vessels.
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A
Appendix

Windpark name Capacity [MW]

Windpark Slufterdam 50.4
Windpark Zuidwal 24
Windpark Maasvlakte 2 116.7
Windpark Dintelhaven 15
Windpark Suurhoffbrug 12
Windpark Landtong Rozenburg 36
Windpark Nieuwe Waterweg 18
Windpark Hartel II 24
Windpark Hartelbrug II 40

Total capacity [MW] 336.1

Table A.1: Total wind generation capacity in the Port of Rotterdam. [67]
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B.1. Electricity Markets
As stated earlier the level of success will be quantified in terms of money. In this case study, this can
either be through earnings from trading or cost reductions through active participation in electricity
markets. This literature study will focus on the Dutch electricity market since the shore power case
study is located in the port of Rotterdam. Electricity markets are continuously adapting to new pro-
ducers, users, and use cases. In order to have a known base to work with, an overview of relevant
electricity markets for revenue generation is given in this paragraph. The scope of this study will be
limited to the current electricity market in terms of regulations, structure, and pricing.

The Dutch electricity market is divided into the wholesale market and the balancing market which
can be seen in figure B.1. The main difference between these markets is the time frame in which they
operate. For the wholesale market, all transactions take place prior to the final ’delivery’ of electricity.
The balancing market on the other hand, takes place in real-time. In the paper of [68] an oversight of
the Dutch electricity market is given from 2015. Figure B.1 gives a visual representation of the whole-
sale market which is divided into three main sections based on the length of time until the delivery.

Futures market
Within the wholesale market, the European Energy Derivatives Exchange (ENDEX) futures market
serves the market furthest away from the point of consumption. In this market contracts for en-
ergy delivery to the Dutch high voltage grid are traded for different durations. This can be weeks,
months, or years in advance. Within these time frames, there are nine different contract types [68].
One of these is the ”Dutch Power Base Load” future (DPBL) [68]. This contract ensures the delivery of
1 MWh for each hour throughout the contract delivery period which extends from midnight on the first
day of the period to midnight of the last day of the contract period [69]. There are also more specific
contracts i.e. the “Dutch Power Peak Load” (8–20) (DPPL8–20) which only applies to weekdays from
08:00 to 20:00.

The aforementioned contracts all expire 48 hours before the physical delivery. At the time of expi-
ration, the contract is converted to a day-ahead contract and the supplier is now required to deliver.
This process is done through market-clearing which is performed by EPEX [68]. Adjusting this position
is however still possible through trading in the EPEX spot market [68].

Spot market
The spot market is divided into two markets, the day-ahead market (DAM) and the intraday market
(IDM). On the DAM the electricity prices for the next day are determined on a per hour basis. The
DAM opens at 00:00 CET from this point buyers and sellers can anonymously place orders for different
volumes and prices. At 11:00 CET the TSO publishes the Available Transfer Capacity (ATC) [68]. The
ATC is defined as ”the transfer capacity remaining available between two interconnected areas for
further commercial activity over and above already committed utilization of the transmission networks
[70].” Then at 12:00, the market closes, and with the help of an algorithm called COSMOS which
processes all bids taking into account all physical constraints. [68] The hourly prices are determined
by maximizing social welfare after this, the results of the auction are published at 12:55 CET [68]. The
prices of the DAM are limited by the EPEX to 3000 (Euro/MWh) and -500 (Euro/MWh). The monthly
volume traded on the Dutch spot market equated to 2760 GWh in October 2021 [71].
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Intraday market
Once the hourly electricity prices are determined and the day-ahead market closes, the intraday power
market opens for market participants for further adjustments to their positions [68]. The IDM is always
open and positions can be adjusted up to 5 minutes before final delivery once the prices from the DAM
are determined [68]. The prices on the IDM are considerably higher compared to the DAM and are
capped between -99,999.90 (Euro/MWh) and +99,999.90 (Euro/MWh) [68]. The volume traded on
the IDM is generally much smaller than on the DAM with around 515 GWh compared to 2760 GWh on
the DAM [71]. Although a future scenario in which battery-equipped vessels are participating in the
intraday market is conceivable. This is not yet of interest to the current situation in the case study for
Heerema. Besides this, it will probably also require the intervention of an aggregator to achieve the
required volumes needed to participate in this market.

Balancing market
It is vital for electricity grids to always be balanced so that supply and demand are continuously in
harmony. Since no model or market can precisely predict the actual demand and production a system
should be in place in order to resolve imbalances in the grid [68]. This is performed in real-time in
the balancing market. The balancing market is regulated by the Dutch TSO (TenneT) which requires
all producers above 60 MW to make bids on spare capacity which it is willing to provide [68]. The
balancing market is also where most ancillary services are being provided. These include frequency
containment reserves (FCR) and frequency restoration reserves (FRR). The balancing market will not
be of interest for this case study, since the balancing ancillary services are aimed at the high voltage
transmission system instead of the distribution grid. An aggregator could however make this a possible
future scenario.

Congestion management GOPACS
Congestion is a problem that can occur on the distribution grid when the capacity of the transformers
and cables reaches its limit and become unable to handle the power. Congestion is likely to occur
during peak loads or generation. The mitigation of peaks can therefore contribute to the reduction
of congestion. The flexibility of batteries can be used to flatten such power peaks on the distribution
grids. GOPACS is a market platform introduced with the aim of reducing congestion by allowing parties
within the distribution grid to monetize their flexibility [72]. In this market, parties are able to utilize
their flexibility to generate revenue while simultaneously reducing congestion problems. The flexibility
of battery-equipped vessels connected to shore power are hypothetically able to provide this service in
the whole port area. A white paper of [73] states that for BESS operators the GOPACS market forms
an important source of additional revenue.

Figure B.1: Tennet market overview [19]
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C.1. Energy management systems
A prerequisite for a viable business case for BESS utilization during shore power connection at berth
is the ability to reduce the costs of electricity or in the best case generate revenue. As mentioned in
Chapter 1 many studies have been performed on energy management systems to reduce electricity
costs. Building on the previous section, this chapter will elaborate on these studies, explain their
differences, and explore which approach is most relevant for the case study described in chapter 5.

C.1.1. BTM - Behind-the-meter
The field of revenue-generating-, or cost-reducing energy management strategies (EMS) can be divided
into two main categories. Behind-the-meter (BTM) and In-front-of-the-meter (FTM) systems. The main
reason for differentiating between the two is for regulatory use [74]. A practical distinction between
BTM and FTM is that the first can be considered a being beneficial for the owner while the latter is
more advantageous for the grid [74]. BTM systems are used in systems such as solar PV-powered
households to increase self-consumption of solar energy or to reduce the costs of the grid connection
thus providing an economic benefit to the stakeholder [74]. Industrial use cases can also be found at
solar and wind parks where BTW storage applications can prevent curtailment. Since this will mainly
focus on consumer benefit, BTM will be regarded as the main category of interest. However, since BTM
and FTM are mostly different on a regulatory basis, some generally non-consumer beneficial aspects
of FTM will also be regarded such as maximal utilization of RES. Table ?? provides different technically
feasible strategies for BTM battery utilization. Some of these different strategies will be explored fur-
ther in this section. Other strategies such as power outages and ramp control are outside the scope.

Table C.1: ”Technically feasible applications of large-scale Li-ion BESS connected to any level of the electric network or to
isolated microgrids” As part of a complete table from: [75]

BTM
Commercial &
Industrial

Increase PV Self-
Consumption
Tariff Optimization
Backup Power
UPS

Time Arbitrage
Ramp Control
Peak Power Reduction
Power Outages
Power Quality

Aggregation Virtual Power Plant
Grid Services
Wholesale Markets
Demand Response

• Commercial Industrial

• Time arbitrage/ Time of use (TOU)

• Peak Power Reduction

• Power quality

• Aggregation

• Grid services

• Wholesale markets (DAM & IDM)

• Demand response
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Time arbitrage / Time of use / Renewables
Arbitrage is defined as buying an asset or product for a certain price on a market and subsequently
selling it in another market for a higher price [76]. This can be done on either a stock exchange,
currency exchange, or the electricity market. An important boundary condition is the price differential.
Any form of arbitrage in the electricity market needs a time lag between buying and selling. Neverthe-
less, we make a distinction between time arbitrage and price arbitrage. Within time arbitrage the time
of storage is most important, think of the storage of renewable energy to prevent curtailment. One
can also think of preventing grid congestion, but this will be discussed in more detail later. Although
this form of arbitrage is promising, the implementation of a stand-alone BESS is not yet proven to be
economically feasible [75]. However, this does not mean that these types of systems are not being
built. Economic benefit can be achieved if, for example, grid reinforcement can be avoided by investing
in a BESS.

Price arbitrage
Within price arbitrage, the price of electricity is leading in making a buying or selling decision. The goal
here is to derive economic benefit from the price difference between the purchase and sale price [77].
Selling back the electricity to the grid is however not a necessary precondition for EA. Another way in
which this can result in economic benefit is when the electricity is utilized by the energy demand behind
the meter of the application to which it is attached hence the name behind-the-meter. A necessary
prerequisite for doing energy arbitrage is the presence of variable electricity prices. Since Heerema
is a large industrial customer for electricity it pays the variable day-ahead prices for electricity. One
advantage of price arbitrage on board vessels equipped with BESS is that the investment in storage
has already been made. The on-board battery will be used primarily for other purposes such as peak-
shaving and spinning reserve during offshore operations. As a result, it is not economically necessary
to recover the battery costs through EA. The cost reduction in this case provides a faster return on
investment and not the full return on investment.

Peak power reduction
Peak power reductions are another form of reducing energy costs. Industrial electricity consumers
pay the usual energy costs as well as grid connection costs [74]. These are called transmission costs.
Transmission costs are determined by the maximum power the customer uses from the grid. Heerema’s
shore power connection is operated by DSO Stedin. The transport costs are determined by Stedin by
averaging the peak power over fifteen minutes [78]. For the highest peak power in the year, Heerema
pays the transport costs. However, because the Sleipnir and Thialf are connected to shore power only
100 days a year, it is important to keep the transport costs as low as possible. In addition, Heerema
also makes use of local wind generation. No transport costs are charged for this. During optimization,
this must also be taken into account so that optimal use can be made of it.

Also within peak power reductions, there is a distinction between BTM and FTM. As for EA, BTM
peak power reductions are aimed at reducing costs for the customer [74]. FTM peak reduction works
to the benefit of the energy provider [74].

For the case study, an elaborate deconstruction of the electricity bill will be included in the opti-
mization program since significant savings can be realized when peak demand will remain relatively
low.

Power Quality
Reactive power compensation (QC) [74] In a perfect alternating current grid, the current and voltage
are in phase. Inductive- or capacitive loads can respectively draw a lagging or leading current with
respect to the voltage. This will result in a current that is out of phase with the voltage. As a result,
this may cause inefficient transmission and wastes capacity [79]. In some liberalized energy markets
tariffs are imposed on industrial consumers that consume electricity at a power factor below 0.95 in
order to incentivize for solutions and mitigate losses [79]. The agreement with the Port of Rotterdam
states that VAr rates will be charged according to the rates of the grid operator. The rates that Stedin
charges for VAr are a fraction of the total price and will therefore not be regarded [78].

Aggregation / Virtual power plant
Under aggregation three technically feasible strategies can be defined which are; grid services, par-
ticipation in wholesale markets, and demand response. The reason why they are attributed under
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aggregation is that these use-cases require scale [75]. As discussed in subsection B.1 BESS can reduce
congestion problems by shifting peak demand or supply. When the capabilities of a single battery are
multiplied and controlled by a single aggregator other use-cases are unlocked. In the section 1.1.3
a brief description is given of the flexibility potential of a completely vessel-to-grid connected port.
Unlocking the full potential of such a system will have to be performed by an aggregator. Since in
this thesis the perspective of the ship operator is taken, the perspective of the aggregator will not be
regarded.

Stacking, dynamic stacking
In the previous subsections, many methods for generating revenue or cost reduction are given. Yet
the versatility and contractility of power in a battery allows for the combination of multiple revenue-
generating strategies. Combining multiple strategies is called stacking and is what enables BESS to
move from cost reduction to revenue-generating. This process is described by [75] and can the principle
is shown in figure??. In this thesis revenue stacking will be regarded in order to maximize the potential
of the BESS.

C.1.2. FTM - In-front-of-the-meter
System-conducive or FTM applications are applications that primarily serve the grid. Whereas BTM
applications serve a commercial goal, FTM does not have this as a primary purpose. This lack of
economical incentive will ensure that commercial parties have no interest in them, for this reason, they
are often made mandatory by the DSO or TSO [74] [74]. As stated before, FTM differs from BTM mostly
on paper. As is stated in C.1.1, a collection of BESS is able to provide grid services trade in wholesale
markets and have demand control. Considering this, models that are applied for FTM purposes can
also be applied to BTM purposes. Since the scope is on the economic benefits of cold-ironing, FTM
applications will not be considered further.
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Figure D.1: Euclidean 𝑘-means
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Table D.1: Distribution of scenarios over cluster centers for Euclidean 𝑘-means method

Euclidean 𝑘-means
Cluster Count Probability [%]
7 64 17.5
5 53 14.5
8 52 14.2
2 42 11.5
0 40 11
4 35 9.6
1 28 7.7
6 20 5.5
9 20 5.5
3 11 3

Figure D.2: Eulidean 𝑘-means 10 scenarios
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Figure D.3: Soft DTW 𝑘-means

Table D.2: Distribution of scenarios over cluster centers for Soft DTW 𝑘-means method

Soft DTW $-means
Cluster Count Probability [%]
6 56 15.3
1 52 14.2
9 51 14
4 41 11.2
8 41 11.2
3 39 10.7
0 32 8.8
5 29 7.9
2 14 3.8
7 10 2.7



83

Figure D.4: Soft DTW 𝑘-means 10 scenarios
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Figure E.1: Corvus battery specifications
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G
Stochastic Optimization

G.1. Stochastic programming
Time dependency
In order for the model to handle with uncertainty, a multiple time step two-stage stochastic program-
ming has to be adopted. In order for this to be solved, a set of different wind scenarios needs to be
provided. Since we are looking at short term battery dispatching, irregularities should be accounted
for, and no average wind speeds can be used. This must therefor be represented in multiple time se-
ries representing possible realizations of wind speeds along the period of a day[80]. Many approaches
in the literature use marginal distributions to generate scenarios for every time step in the scenario
[80]. While this might be an appropriate approach for values independent from each other, this does
not apply for wind speeds. The reason is because there exists an inter temporal relation between
wind speeds prior to the next data point as one might intuitively know. While it is possible that wind
speeds makes large steps in speed, it is highly unlikely. The resultant scenario would be highly variable,
and not representative for actual wind scenarios. A method representing this time-dependency should
therefor be used. This method is described in subsection ??[80].

The exploration of two-stage stochastic programming has given an insight in the requirements for
coming to a solution. The stochastic programming method requires scenarios for which it should op-
timize in the form of time series. As the computing time grows exponentially with the number of
scenarios a method for generating a limited number of scenarios has to be found.
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G.2. Two-Stage Stochastic Programming Formulation
Now that the relevant scenarios have been generated and reduced to a set of 10 the final two-stage
stochastic programming problem can now be formulated. In the first part of this chapter in subsection
G.1 a general description of stochastic programming was provided for the specific problem. This section
will elaborate on the two methods for formulating a two-stage stochastic programming problem by
means of chance constraint or recourse modelling. Secondly a motivation for the chosen method is
given. Lastly, the two-stage problem will be formulated.

G.2.1. General 2 stage formulation
G.2.2. Handling constraints
Chance constraints
Depending on the problem one can either choose for a two-stage problem with recourse modelling or
chance constraints [38].

”chance constraints arise as tools for modeling risk and risk aversion in random linear programs,
interpreted as here-and-now decision problems [38].”

Recourse modelling
”It is fair to say that recourse models are the most important class of models in stochastic programming,
both in theory and in applications. Recourse models are reformulations of decision problems that model
stochastic infeasibilities by means of corrections afterwards [38].”

G.2.3. 2-stage formulation with recourse
We start of with a random parameter in the constraints. Do we have random parameters in the
constraints of my problem?

(LP0(𝜔)) min
𝑥∈ℝ𝑛

{
𝐴𝑥 = 𝑏

𝑐𝑥 ∶ 𝑇(𝜔)𝑥 ∼ ℎ(𝜔)
𝑥 ∈ 𝑋

} (G.1)

The lower and upper bounds are described by set 𝑋.

𝑋 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢} (G.2)

Lower and upper bounds, are most commonly described as 𝑥𝑙 = 0 and 𝑥𝑢 = inf. Furthermore
𝐴𝑥 = 𝑏 describes the deterministic equality constraint 𝑚1. The 𝑚 random (in)equality constraints are
described by 𝑇(𝜔)𝑥 ∼ ℎ(𝜔). In which 𝑇(𝜔) is an 𝑚 × 𝑛 matrix and ℎ(𝜔) a 𝑚 × 1 vector that both
depend om random variable 𝜔 [38].

Since the decision problem has to decide on 𝑥 before knowing the value of 𝜔 the random constraints
of the linear problem 𝐿𝑃(𝜔) needs to be transformed to random constraints. As this problem deals
with a recourse problem, these constraints are modelled as soft constraint [38]. Soft constraints can
be violated, this violation will however come at a cost, thereby explaining the name recourse model.
The cost of this violation does have an influence on the optimal choice of 𝑥. The second stage variables
𝑦 ∈ ℝ𝑝 describe how violations are dealt with [38].

Recourse structure
The formal structure for a recourse model is described by (𝑌, 𝑞,𝑊) in which:

𝑌 = {𝑦 ∈ ℝ𝑝 ∶ 𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢}, usually 𝑌 = {𝑦 ∈ ℝ𝑝 ∶ 𝑦 ≥ 0}, the recourse actions that are feasible are
described by set 𝑦

𝑞 is a 1 × 𝑝 vector of unit recourse costs

𝑊 is an 𝑚 × 𝑝 matrix, the recourse matrix
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This leads to the following 𝐿𝑃(𝜔) problem with recourse:

(SLPwR) min
𝑥∈𝑋

⎧⎪
⎨⎪⎩

𝑐𝑥 + 𝔼𝜔[min
𝑦∈𝑌

{𝑞𝑦 ∶ 𝑊𝑦 ∼ ℎ(𝜔) − 𝑇(𝜔)𝑥}
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

second-stage LP

] ∶ 𝐴𝑥 = 𝑏
⎫⎪
⎬⎪⎭

(G.3)

Note that in the second-stage part of G.3 the relation 𝑊𝑦 ∼ ℎ(𝜔) is the same as in the random
constraints in equation G.1 [38].

Recourse model in a compact form
Introducing additional functions gives rise to a clearer picture of the recourse action and its cost. In
this compact form, the recourse part is split up in a second-stage value functionG.4 and a expected
value functionG.5.

𝑣(𝑧) ∶=min
𝑦∈𝑌

{𝑞𝑦 ∶ 𝑊𝑦 ∼ 𝑧}, 𝑧 ∈ ℝ𝑚 (G.4)

𝑄(𝑥) ∶= 𝔼𝜔[𝑣(ℎ(𝜔) − 𝑇(𝜔)𝑥)], 𝑥 ∈ ℝ𝑛 (G.5)

Equation G.4 describes the cost of recourse when the random constraint 𝑇(𝜔)𝑥 ∼ ℎ(𝜔) is violated.
Similarly, equation G.5 describes the expected value of the recourse cost. Both equations leads to a
minimization problem similar to G.3 presented in G.6.

min
𝑥∈𝑋

{𝑐𝑥 + 𝑄(𝑥) ∶ 𝐴𝑥 = 𝑏} (G.6)

Modelling Deterministic equivalent Recourse Formulation
Implementing optimization with recourse in a model, requires a deterministic equivalent formulation of
the SLPwR problem given below.

(𝐿𝑃1(𝜔)) min
𝑥,𝑦(𝜔)

𝑐𝑥 + 𝔼𝜔[𝑞𝑦(𝜔)] (G.7)

s.t. 𝐴𝑥 = 𝑏 first-stage constraint (G.8)
𝑇(𝜔)𝑥 +𝑊𝑦(𝜔) ∼ ℎ(𝜔)∀𝜔 ∈ Ω second-stage constraint (G.9)
𝑥 ∈ 𝑋 𝑦(𝜔) ∈ 𝑌 (G.10)
↑ ↑

first-stage second-stage
decisions decisions

For large scale problems the following equation describes the large scale deterministic formulation.

min
𝑥∈ℝ𝑛𝑦𝑠∈ℝ𝑝𝑠=1,…,𝑆

𝑐𝑥 + 𝑝1 ⋅ 𝑞𝑦1 + 𝑝2𝑞𝑦2 + ⋯ + 𝑝𝑆𝑞𝑦𝑆 (G.11)

𝐴𝑥 = 𝑏 (G.12)
𝑇1𝑥 + 𝑊𝑦1 ∼ ℎ1 (G.13)
𝑇2𝑥 + 𝑊𝑦2 ∼ ℎ2
⋮ ⋱

𝑇𝑆𝑥 + 𝑊𝑦𝑆 ∼ ℎ𝑆
𝑥 ∈ 𝑋 𝑦1 ∈ 𝑌 𝑦2 ∈ 𝑌 𝑦𝑆 ∈ 𝑌 (G.14)

In equations (G.11, G.14) the recourse action is modelled by 𝑦𝑠 = 𝑌(𝜔𝑠) when 𝜔𝑠 of 𝜔 occurs.
Being a linear program it is easily solved by a solver. Yet it comes with a main disadvantage being the
exponential growth once more and more variables and constraints are added. As an example, even a
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reasonable amount of 20 variables and 10 constraint can lead to an enormous matrix. As the size of
the matrix is 𝑛 + 𝑝𝑆 variables and 𝑚1 +𝑚𝑆 constraints, this leads to a value of 𝑆 = 1020. It is therefor
of the utmost importance to limit the distribution of 𝜔 to a small discrete set for the equation to remain
tractable [38].

General formulation
This is a repetition of the beginning of this chapter, but this description is (temporarily )included here
to improve readability.

𝜋(𝜔 = 𝑃(𝜔|𝜆𝜆𝜆 = 𝜆𝜆𝜆(𝜔)), 𝑤ℎ𝑒𝑟𝑒 ∑
𝜔∈Ω

𝜋(𝜔) = 1 (G.15)

After identifying the scenarios and probabilities two-stage stochastic programming problem can be
formulated as follows in equations (G.16, G.21)[54].

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒x𝑧 = c⊤x+ ℰ{𝒬(𝜔)} (G.16)
subject to Ax = 𝑏𝑏𝑏 (G.17)

𝑥𝑥𝑥 ∈ 𝑋 (G.18)
where

𝑄(𝜔) = {Minimizey(𝜔) q(𝜔)⊤y(𝜔) } (G.19)

subject to T(𝜔)x+W(𝜔)y(𝜔) = h(𝜔) (G.20)

y(𝜔) ∈ 𝑌}, ∀𝜔 ∈ Ω (G.21)

The first- and second-stage variables are denoted by x and y(𝜔) respectively. The variables A, b,
c, h(𝜔), q(𝜔), T(𝜔), and W(𝜔) are vectors and matrices with known values. It should be noted that
the values in (G.16, G.21) can but do not have to be dependent on on the stochastic scenario set Ω.
The latter part of the problem (G.19, G.21), depicts the recourse problem.

Minimizex,y(𝜔) 𝑧 = c⊤x+ ∑
𝜔∈Ω

𝜋(𝜔)q(𝜔)⊤y(𝜔) (G.22)

subject to Ax = b (G.23)
T(𝜔)x+W(𝜔)y(𝜔) ∼ h(𝜔), ∀𝜔 ∈ Ω (G.24)
x ∈ 𝑋,y(𝜔) ∈ 𝑌, ∀𝜔 ∈ Ω (G.25)
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Aansluiting en transport voor grootverbruikers

ELEKTRICITEIT
TARIEVEN 2021



DISCLAIMER

Dit tariefblad is met de grootst mogelijke zorg 

samengesteld. Desondanks kunnen aan de gegevens 

geen rechten worden ontleend. Maandtarieven 

kunnen als gevolg van afronding afwijken van de 

gereguleerde ACM-tarieven.  

ELEKTRICITEIT
TARIEVEN 2021

2 Elektriciteit tarieven 2021

Sinds de invoering van de Elektriciteitswet (1998) en de Gaswet 
bestaat er een onderscheid tussen de energieleverancier,  
de netbeheerder en het meetbedrijf. Stedin draagt als 
netbeheerder zorg voor het beheer en onderhoud van het 
elektriciteitsnet in uw regio. 

In dit tariefblad vindt u een overzicht van de aansluit- en 
transportvergoedingen voor elektriciteit. Deze tarieven gelden 
voor grootverbruikers (> 3 x 80A) met een aansluiting op het 
elektriciteitsnet van Stedin. 
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WAT BETAALT U?

Aan Stedin betaalt u vergoedingen voor het transport van elektriciteit en de aansluiting 
op het elektriciteitsnet. Deze vergoedingen dekken onder andere de kosten voor de 
aanleg en onderhoud van het regionale elektriciteitsnet en de aansluiting.  

Naast deze kosten die u aan Stedin betaalt, betaalt u ook voor de levering van 
elektriciteit (inclusief energiebelasting), de elektriciteitsmeter en de periodieke 
meteruitlezing. Deze kosten worden echter niet door Stedin in rekening gebracht,  
maar door uw energieleverancier en meetbedrijf.  
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EENMALIGE AANSLUITVERGOEDING

Voor het maken van een nieuwe aansluiting op het elektriciteitsnet betaalt u een 
eenmalige aansluitvergoeding (tabel 1). Als de aansluitkabel langer is dan 25 meter, 
betaalt u een bedrag per meter meerlengte (tarief meerlengte). 

Tabel 1 - Eenmalige aansluitvergoeding

Aansluitcapaciteit Aansluitvergoeding 
in € excl. BTW per aansluiting¹

Tarief meerlengte  
in € excl. BTW per meter2

> 3 x 80A t/m 3 x 125A 4.530,00 51,00

> 3 x 125A t/m 175 kVA 5.750,00 54,00

> 175 kVA t/m 630 kVA 39.800,00 90,00

> 630 kVA t/m 1.000 kVA 41.000,00 100,00

> 1.000 kVA t/m 1.750 kVA 50.000,00 269,00

> 1.750 kVA t/m 3.000 kVA 213.000,00 340,00

> 3.000 kVA t/m 10.000 kVA 290.000,00 382,00

1 Exclusief de kosten voor een vereiste meetinrichting 
2 Als er een verbinding tussen knip en beveiliging van meer dan 25 meter nodig is
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PERIODIEKE AANSLUITVERGOEDING

Jaarlijks betaalt u een vast bedrag om de aansluiting in stand te houden
(periodieke aansluitvergoeding).

Tabel 2 - Periodieke aansluitvergoeding

Aansluitcapaciteit Aansluitcategorie3 In € excl. BTW  
per jaar

In € excl. BTW 
per maand

LS5  35,0000 2,91678

> 80A t/m 175 kVA Trafo MS/LS8  83,0000 6,91678

> 175 kVA t/m 1.750 kVA MS-distributie8   765,0000 63,75008

> 1.750 kVA t/m 3.000 kVA Trafo HS+TS/MS8  1.680,6137 140,05118   

> 3.000 kVA t/m 10.000 kVA Trafo HS+TS/MS8  8.360,0000 696,66674

> 10.000 kVA TS8 Maatwerk Maatwerk8

³  Geldt voor aansluitingen aangelegd na 1 januari 2007. Aansluitingen die daarvoor zijn angelegd, zijn ingedeeld op basis  
van aangesloten netvlak. De aansluitcategorieën zijn weergegeven in volgorde van oplopend netvlak

4  Voor aansluitingen > 3.000 kVA en ≤ 10.000 kVA. Daarnaast geldt een periodieke aansluitvergoeding voor  
meerlengte > 3MVA van € 6,3500 per meter per jaar

5 Geldt alleen voor aansluitingen aangelegd vóór 1 januari 2007: grootverbruik aansluitingen die op LS-net zijn aangesloten

TRANSPORT VERGOEDING

De transportvergoeding bestaat voor grootverbruikers uit een vast- en een variabel deel 
(tabel 3). Het vaste deel is het transportonafhankelijk tarief (vastrecht). Het variabele 
deel bestaat uit het transportafhankelijk tarief – afhankelijk van het gecontracteerde 
transportvermogen en het feitelijk afgenomen maximale vermogen – en een deel dat 
afhankelijk is van het verbruik. Het gecontracteerde transportvermogen is het maximaal 
benodigde vermogen dat u verwacht op enig moment in het jaar nodig te hebben.  
Ook betaalt u voor eventueel extra blindverbruik.
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Tabel 3 - Transportvergoeding (alle bedragen zijn excl. BTW)

Transportcategorie Grens  
gecontracteerd  

transport - 
vermogen6

Transportdiensten

Vastrecht Variabele tarieven11

Transport 
 in € per 

maand

kW 
contract 
in € per 
maand 
per kW

kW max 
in € per 
maand 

per kW7

Dubbel 
tarief 

normaal 
in € per 

kWh9

Dubbel 
tarief 
laag  

in € per 
kWh10

Blind 
verbruik 
in € per 
kVARh

LS t/m 50 kW 1,50 0,7292 -8 0,0357 0,0220 0,0082

Trafo MS/LS 51 t/m 150 kW 36,75 1,9167 1,56658 0,0094 0,0094 0,0082

MS 151 t/m 1.500 kW 36,75 1,0296 1,56658 0,0094 0,0094 0,0082

Trafo HS+TS/MS reserve > 1.500 kW 230,00 0,9583 0,85158 - - 0,0082

Trafo HS+TS/MS > 1.500 kW 230,00 1,9167 2,46008 - - 0,0082

TS reserve > 1.500 kW 230,00 0,9083 0,87928 - - 0,0082

TS > 1.500 kW 230,00 1,8167 2,54008 - - 0,0082

 6   Geldt voor aansluitingen aangelegd na 1 januari 2007. Daarnaast geldt dat de transportcategorie (netvlakniveau) 
niet hoger kan zijn dan de aansluitcategorie (zie tabel 2)

 7  De hoogste, in elke verbruiksmaand afzonderlijk opgetreden, belasting uitgedrukt in kilowatt (kW), en bepaald 
als gemiddelde belasting van een periode van 15 minuten tenzij anders met Stedin is overeengekomen

 8 Wordt per week berekend
 9 Geldt van maandag t/m vrijdag van 7.00 uur tot 23.00 uur
10   Geldt voor alle overige uren en op feestdagen, te weten: Nieuwjaarsdag, 2e Paasdag, Koningsdag, Hemelvaartsdag, 

2e Pinksterdag, 1e en 2e Kerstdag.
11 Als waarden niet zijn ingevuld, betekent dit dat de tariefdrager niet van toepassing is voor deze specifieke categorie

TRANSPORTKOSTEN BLINDVERBRUIK
Dit tarief wordt in rekening gebracht als de arbeidsfactor buiten de grenzen valt,  
zoals vastgelegd in de artikelen 2.1.5.6 en 2.1.5.6.a van de Netcode Elektriciteit.
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MEER INFORMATIE

De tarieven in deze brochure maken onderdeel 

uit van de Tarieven- en vergoedingsregeling als 

bedoeld in artikel 15 van de Algemene Voorwaarden 

Aansluiting en Transport Stedin Elektriciteit 2008 

voor afnemers > 3 x 80A (niet zijnde producenten) 

en de Algemene Voorwaarden Aansluiting 

en Transport Stedin Elektriciteit 2008 voor 

producenten of zoals deze gewijzigd zullen worden. 

De Tarieven- en vergoedingsregeling en Algemene 

Voorwaarden kunt u inzien op www.stedin.net of 

opvragen bij onze Klantenservice.
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