### **MSc. Geomatics**

### Integrated modeling of utility networks in the urban environment

### Androniki Pavlidou

Supervisors: Giorgio Agugiaro, Jantien Stoter Co-reader: Bastiaan van Loenen External supervisor: Jan van der Voorst







### Introduction/ Motivation





#### Problem statement





Literature review





### Methodology

Results

Conclusions

### Introduction/Motivation

- The ever-increasing need for the existence of the dual representation of the geographical information for the underground utility networks
- Improvement and development of the data-driven models
- The need for evaluation of the existing information related to the underground utility networks condition



Source: <u>https://www.city-journal.org/untangling-nyc-underground-utility-infrastructure</u>



### Problem statement

# $\oslash$

The limited availability of a detailed and accurate geo-referenced map for the underground utility networks



- Bad data quality
- Incomplete and/or unreliable datasets
- Information mostly in 2D
- Lack of metadata
- Not up-to-date





### There is a need for a reliable and wellmaintained network

## **Research objective**

### **Research question:**

How is it possible to model underground utility networks in 3D, integrated with the above-ground objects, such that they can be suitable for multiple uses?

### **Sub-questions:**

- How to represent a direct connection with the above-ground condition?
- Is it possible to achieve that connection?
- Is the 3D information useful?
- Is it possible a limited 3D information to be extended to a larger network?



### Literature review

#### **Developed models supporting utility networks mapping**

- INSPIRE Network
- CityGML Utility Network ADE
- Industrial Foundation Classes -IFC
- ESRI Geometric Network
- Model for Underground Data Definition and Integration-MUDDI

#### **Related work:**

- **den Duijn et al., 2018**: Modelling below and above-ground utility network features with the CityGML Utility Network ADE: Experiences from Rotterdam
- Yan et al., 2018: Three-Dimensional Data Modelling for Underground Utility Network Mapping
- Fossatti et al., 2020: Data modeling for operation and maintenance of utility networks: implementation and testing
- Boates et al., 2018: Network modeling and semantic 3D city models: Testing the maturity of the Utility Network ADE for CityGML with a water network test case



### Methodology







### **Data collection**



|                                                                                                              | Raster data                                                                                                   |                                                                                                                  |                                                                                                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Attributes                                                                                                   | Geometry                                                                                                      | Topology                                                                                                         | Elevation                                                                                                                             |  |  |  |
| Data features<br>that describes<br>their nature<br>(e.g. network<br>type, usage,<br>semnatic<br>information) | Information<br>related to data<br>shape, legnth<br>and type of<br>geometry (e.g.<br>geometry: line,<br>point) | Information about<br>the connectivity<br>between the stored<br>entities and the<br>between them<br>relationships | Height information<br>related to the<br>surface of the study<br>area, extracted from<br>the corresponding<br>Digital Terrain<br>Model |  |  |  |







### Data analysis



# **Quantitative:** Refer to numerical analysis; finding patterns, cause-effect relationships

**Qualitative:** Refer to the elements characterize the data



Refer to the study of the entities using their topological, geometric, and geographic properties.



# e the data - Content analysis

### **Data analysis**



Attributes: Analyze the stored records that characterize the network and network elements (e.g. available 3D information)

Qualitative Quantitative Spatial

Geometry: Clarification of the shapes and lengths of the available features.

**Topology:** Examine connectivity between the features stored in the vector data as well as the existing relationships



| Dataset/                 | Total number | Rows with complete | Rows with incomplete |  |  |
|--------------------------|--------------|--------------------|----------------------|--|--|
| completeness             | of rows      | information        | information          |  |  |
| TU Cable or Pipe line Z  | 1407         | - 3.7%             | 1407                 |  |  |
| TU Cable element point Z | 912          | 34                 | 878                  |  |  |
| TU Cable pipeline Z      | 1407         | -                  | 1407                 |  |  |
| TU Sewer knot point Z    | 1986         | - 0.9%             | 1986                 |  |  |
| TU Sewer line Z          | 2080         | 19                 | 2061                 |  |  |
| TU pipe element point Z  | 1038         | -                  | 1038                 |  |  |





















### Data cleaning process: manual modifications









Perceelaansluitleiding / sewer infiltration

### Sewage network Infiltration network Plot connection pipes

### A × 11 11111 1.64 2.11 5 Perceelaansluitleiding / plot connection pipe



# 2. Data processing and integration:addition of fields to createinterdependencies between thedatasets and their components

| Network_id | Edge_id | Subnetwork_id | Node_start | Node_en |
|------------|---------|---------------|------------|---------|
| 2          | 2       | 130           | 157        | 55      |
| 2          | 1       | 174           | 73         | 56      |
| 2          | 2       | 167           | 173        | 57      |







### 3. Topology reconstruction:

Extract the significant nodes of the networks

associate them with the point datasets information





#### Maintenance of the attributes of the initial point dataset- *spatial overlay*

| Node_id | Network_id | Sub_network | OBJECTID |
|---------|------------|-------------|----------|
| 1       | 2          | 1           | 2563     |
| 3       | 2          | 1           | 3347     |
| 4       | 2          | 1           | 4272     |
| 5       | 2          | 2           | 3808     |
| 6       | 2          | 2           | 4492     |
|         |            |             |          |







### 4. Data integration - 3D model of underground utility networks



**DTM:** filled values







#### **Draped features**

### **Data integration**



# 5.1 Utility network model integration with city objects (Buildings)



Base layer: BRT Achtergrondkaan LoD: 2.2



Building footprints Building centroid

.



#### Integrated undeground utility networks



- Virtual edges connected with buildings' centroid
- Connection between topological nodes and city object



Sewage network Infiltration network Fire pipes network Plot connection pipes



#### 5.2 Utility network model integration with city objects (Addresses)



### Addresses point approach

### Building-centroid approach





#### **Attributes**

- House number id
- Postcode
- Building entity id

. . . . . . . . . . . . . . . . . . .

• Municipality

|    | openbareru     | isnumn | iuislette | isnumn | postcode | ponplaa | emeenten | irovinciei 📥 | verblijfso | ppervlal | verblijf_1  | peadre: | adresseerb      | pandid        | andstati r | ndbouv | nummeraand      |
|----|----------------|--------|-----------|--------|----------|---------|----------|--------------|------------|----------|-------------|---------|-----------------|---------------|------------|--------|-----------------|
| 1  | Rotterdamseweg | 139    | В         | 11     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 33       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 2  | Rotterdamseweg | 139    | В         | 46     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 30       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 3  | Rotterdamseweg | 139    | В         | 51     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 30       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 4  | Rotterdamseweg | 139    | В         | 53     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 30       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 5  | Rotterdamseweg | 139    | В         | 14     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 29       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 6  | Rotterdamseweg | 139    | В         | 47     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 31       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 7  | Rotterdamseweg | 139    | В         | 17     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 31       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 8  | Rotterdamseweg | 139    | В         | 28     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 29       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 9  | Rotterdamseweg | 139    | В         | 5      | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 29       | Verblijfsob | VBO     | NL.IMBAG.Verbl  | NL.IMBAG.Pand | Pan        | 2010   | NL.IMBAG.Nummer |
| 10 | Rotterdamsewed | 139    | В         | 44     | 2628AL   | Delft   | Delft    | Zuid-H       | woonfu     | 30       | Verbliifsob | VBO     | VIL IMRAG Verbl | NL.IMBAG.Pand | Pan        | 2010   | NL IMBAG Nummer |



### Integrated underground utility networks with address points



#### Legend

OpenStreetMap

### Sewage network **Plot connection** pipes



### Storage

Storage

#### 6. Relational database - using PostGIS/PgRouting extensions





- Initial tables:
  - □ Topological nodes
  - □ Topological edges
- Reconstructed tables:
  - □ Noded\_network (table in the middle)
  - Routing tables (shortest path)

| ed | network) |
|----|----------|
|    |          |
|    |          |
|    |          |
|    |          |
|    |          |

### Storage

Storage

#### 6. Relational database - using PostGIS/PgRouting extensions





- Initial tables:
  - □ Topological nodes -addresses
  - □ Topological edges
  - Overlapping points
- Reconstructed tables:
  - □ Noded\_network (table in the middle)
  - Routing tables (shortest path)

### **Case study: results**

Application development **7. Case 1:** *Disaster management- shortest path algorithm for building service* **Case 2:** Cost-effective route detection





| e ID | Node From | Node To | Length (m) |
|------|-----------|---------|------------|
|      | 1         | 2       | 15.3       |
|      | 2         | 3       | 14.5       |
|      | 3         | 4       | 17         |
|      | 3         | 5       | 12.3       |
|      | 3         | 6       | 11.9       |
|      | 3         | 8       | 19.4       |
|      | 8         | 7       | 8.5        |
|      | 8         | 9       | 5.5        |
|      | 8         | 10      | 17.6       |

Node

Vertex

E: Edge



### Cost optimum path for building service





#### Case 2

Modification of the length from selected edges, to calculate the most optimum route based on the 'cost'

#### Cost optimum path for address(-es) service



# **Objectives**







3D model of underground utility networks

- **Topology reconstruction**
- "DTM 3D information"

Integration with the above-ground objects

- Integration with the buildings of the study area Integration with the addreses of the study area
- Simulation of real-world scenarios applications

- data quality.

- network)



Many assumptions required due to poor

 Both approaches are based on assumptions. The connectivity must be confirmed by an expert.

 For connectivity applications topology is important (reconstruction)

 Gravity dependent applications 3D information is important (e.g. sewage

## **Comparison of the two approaches**

#### **Building- centroid**

- Connectivity at the building level
- Simplified integration

- More realistic model
- Spatially refined connectivity

- Methods are based on assumptions regarding the connectivity
- the validity of the connections must be confirmed by an expert



#### **Addresses**

### Conclusions

### **Research question:**

How is it possible to model underground utility networks in 3D, integrated with the above-ground objects, such that they can be suitable for multiple uses?

### **Sub-questions:**

- How to represent a direct connection with the above-ground condition?
- Is it possible to achieve that connection?
- Is the 3D information useful?
- Is it possible a limited 3D information to be extended to a larger network?



## Conclusions

#### Strengths

#### Weaknesses

- The proposed methodology works for the transformation of the geographical information into the topological representation
- The assumptions made were operational and allowed for the utilization of the final model
- List of recommendations for improving data quality

- The integration was achieved using the topological nodes, not the survey points
- The current condition of the data does not allow for their compliance with one of the available standards
- Data quality cannot be improved by Geomatics experts only



#### **Opportunities**

- Time must be invested in the detection of the existing inconsistencies in the available data
  - Validity should be ensured
  - Spatial processing/cleaning
  - Harmonization/ integration with available models
- The data should be enriched by adding the missing information (e.g. depths) networks' depth - fieldwork

### Thank you for your attention!

