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Abstract

Disturbances are an important factor in the performance of complex large scale systems.
These complex large scale systems can be modeled by a broad class of hybrid dynamical
systems. The current practice of controlling such processes is one way, from the scheduling
level to the control level. The performance of these complex systems can be improved by
allowing an exchange of information between both the scheduling and control level.

Although the techniques derived in this thesis are applicable to general class of hybrid systems,
this thesis focuses on a railway network. This network, or a part of it, is modeled so that
information at regular time instances can be sent to a dynamic scheduler which outputs an
optimal schedule back to the control level, based on the current conditions in the network.

To this end, the railway system is abstracted into a Discrete-event system (DES). Essentially,
the abstraction removes the continuous dynamics of a hybrid dynamical model and replaces
them with discrete-events. All these discrete-events together form the railway network as a
DES. Furthermore, the DES is modeled in max-plus algebra such that a Max-plus linear
(MPL) is obtained.

The scheduling problem is solved by a Model predictive control (MPC) scheme which is
solved by a Mixed-integer linear programming (MILP) problem. For this scheme, the MPL
model is converted into a Switching max-plus linear (SMPL) model which is written as a
set of mixed-integer linear constraints. In contrast to the scheduler which only contains
a macroscopic model of the railway network, the trajectory planner includes microscopic
constraints. Therefore, to complete the scheduling, the schedule found by the scheduler is
iterated between the scheduler and a trajectory planner for further improvements. A part of
a railway network is studied in a case study, showing that updating the schedule results in
less delay in case a delay is introduced.
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Chapter 1

Introduction

1-1 Motivation

Complex large scale systems play an important role in our ever-expanding industrial society.
Furthermore, when these processes are part of a growing demand that involves up scaling of
the plants which consist of not only larger plants but also highly complex processes. When
a small initial delay is introduced in a process, this can later have a large effect on other
connected components of the plant. This effect can vary from a delay at the end process or
even breakdown of the plant which is obviously highly inefficient. Therefore, control plays an
important role in efficiently handling these processes and letting them work together, aiming
to minimize cost and maximize profit. The current approach is that plants follow a predefined
schedule where lower level controllers take care of keep track of the main schedule. Instead
of constantly optimizing the whole process, the plants only have a single optimized schedule
for the process, that has to deal with all disturbances. The main schedule must therefore be
robust against disturbances and is, most of the time, not an ideal schedule for the current
situation of the plant. Another drawback of a rigid schedule is that it cannot cope with a
situation that is not taken into account in the robust timetable and this could result in a
breakdown or at least decreased performance.
An integrated approach for controlling the plant processes is desirable, but causes large and
complex optimization problems for which solutions are hard to find. Therefore the authors
of [1] propose an integrated sequential approach where the control problem is broken down
and solved sequentially for the different sub problems.

1-2 Research goals

This thesis is part of an ongoing research [1], the aim of which is to integrate both scheduling
and control in industrial plants. The focus in this thesis is on abstracting a dynamical
process at a certain time into a Discrete-event system (DES). This DES, made with real time
information, is used for scheduling and possible rescheduling operations such that the main
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2 Introduction

schedule can be adapted to the current real time situation. The abstracted system represents
a macroscopic model of the plant, however in order to include microscopic control decisions
in the optimized schedule, a trajectory planner calculates the actual trajectories on the basis
of the control decisions made by the scheduler. The information of these actual trajectories is
returned to the scheduling level to check for any changes in the control decisions made by the
scheduler. This process is repeated until the control variables do not change and a previous
solution is found. The research question is therefore formulated as:

How can a hybrid dynamical system be abstracted such that the model only contains discrete
event timing information and no time-driven dynamics. Furthermore, how can a feasible
schedule be obtained and further optimized during operation of the system.
Instead of considering a broad class of hybrid systems, this thesis focuses on an application
in railway management because this brings down the complexity of the sub problems, namely
abstraction, optimization and further optimization along with a trajectory planner.

1-3 Outline

The outline of the thesis is as follows: first, a background is given on hybrid systems, max-
plus algebra and an abstraction technique for hybrid systems in Chapter 2. Following this,
Chapter 3 shows the outline of a general sequential interactive model. In Chapter 4 we focus
on a railway network to apply the general structure of Chapter 3 to. Next is Chapter 5, where
scheduling is described with Model predictive control (MPC). In Chapter 6, a case study of a
small railway network is executed in order to optimize and reschedule the nominal timetable
in case of a delay. Finally, the conclusions are given in Chapter 7.
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Chapter 2

Background

In this chapter, we introduce two special classes of hybrid systems in the first section:
Piecewise affine (PWA) and Mixed-logical dynamical (MLD). Since the first class is the
continuous-time equivalent of the later discussed, event-driven Switching max-plus linear
(SMPL) systems. The latter class MLD systems is introduced because the PWA framework
can be recasted in a MLD form and solved by a Model predictive control (MPC) optimization.
Then Max-plus linear (MPL) and SMPL systems are introduced with the help of max-plus
algebra, since the aim of this thesis is to write the abstraction of a hybrid system into a SMPL
framework. Finally, we introduce the principles of train operation, train dynamics and safety
since that is chosen to be the application for this thesis work.

2-1 Hybrid Systems

This introduction is based on [2], who gives a systematic overview of hybrid systems. Hybrid
systems are a combination of both time-driven and event-driven dynamics in one framework.
For example a gearshift in a car. The car can run in different modes, say gear one, two
etc. Each mode has its own time-driven dynamics. A hybrid system contains a coupling
between the time-driven dynamics which are formed by differential and difference equations
and event-driven dynamics which are discrete transitions to another time-driven system.

There are multiple models to describe such a system, each with their own advantage such
as stability, control and analysis techniques. These models can be divided in two categories,
the explicit model description and the implicit model description. In the following section,
first an explicit model is introduced because the graphical structure gives a clear view of
the hybrid nature i.e. the switching between time-driven dynamics and the event-driven
dynamics. Then two implicit models are presented, these are piecewise affine systems and
mixed logical dynamical systems. This latter category is more general than the explicit model
description and cannot be directly solved for an arbitrary model. The reason for using an
implicit approach is that it is often easier to implement constraints [3] and the framework is
more general.
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4 Background

2-1-1 Hybrid automata

A hybrid automaton [4] is a general model description for a hybrid system. In this description,
a hybrid system is modeled as a finite automaton [2]. A finite automaton consists of edges,
places and labels. In Figure 2-1, the labels (a,b) are labeling the edges which are indicated
by arrows and the places are the vertices (l1, l2).

l1 l2

a

b

Figure 2-1: Finite automaton

A hybrid automaton combines the continuous and discrete dynamics in a graph in the same
way as the finite automaton as shown in Figure 2-2. The discrete transitions are the jumps
from block q0 → q1 and vice versa indicated by the vertices in the graph. The continuous
dynamics in the blocks (q0, q1) are the modes of operation within a certain range. This range
is determined by Guards and Invariants. The Guards, given as G(q∗,q∗), provide a structure
where a discrete transition takes place i.e. a guard condition says when a transition to another
mode is enabled and the hybrid system can jump to the next mode. The Invariants, given
as Inv(q∗), determine when the system must take the transition i.e. forced to another mode
if the invariant is no longer satisfied, this in contrast to the guard which only enable the
transition and does not force the system to jump.
The Resets, given as R(q∗,q∗), is a map how the continuous state is reset from one mode to
another.

q0
ẋ = f(q0, x)
x ∈ Inv(q0)

q1
ẋ = f(q1, x)
x ∈ Inv(q1)

G(q0, q1)

R(q1, q0)

R(q0, q1)

G(q1, q0)

Figure 2-2: Hybrid automaton

The formal definition of a hybrid automaton is adopted from [5]

Definition 2.1. A Hybrid automaton H is a collection H = (Q,X, f,D,E,R), where

The state of the hybrid automaton is (q, x) ∈ Q × X, TX is the tangent bundle on X and
P (X) is the power-set of X which is the set of all the subsets of X.
The execution of a hybrid automaton consist of three hybrid signals. The hybrid time set,
the discrete state q and the continuous states x. Formally defined as:
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2-1 Hybrid Systems 5

Q is a finite set of discrete variables;
X is a finite set of continuous variables;
f : Q×X → TX is a vector field;
Init ⊆ Q×X is a set of initial states;
D : Q→ P (X) is a domain;
E ⊆ Q×Q is a set of edges;
G : E → P (X) is the guard condition;
R : E ×X → P (X) is the reset map;

• τ a hybrid time set

• q = {qi}Ni=0 with qi : Ii → Q

• x = {xi}Ni=0 with xi : Ii → X

with initial condition (q0, x0) ∈ Init providing that the system start at a desired position.

The discrete evolution given by the set of Edges, Guard condition and Reset map determine
when the transition is enabled and how the state is related through the reset map is given:

for all i, e = (qi(τ ′i), q + i+ 1(τi+1)) ∈ E)

• xi(τ ′i) ∈ G(e) and

• (xi(τ ′i), xi+1(τi+1)) ∈ R(e)

The continuous evolution is given by a differential equation, where the discrete state remains
constant during the evolution over the continuous vector field. Furthermore, the continuous
part is allowed to flow within the domain which is indicated by the invariant. This results in:

for all i

• qi : Ii → Q is constant, that is, qi(t) = qi(τi) for all t ∈ Ii;

• xi : Ii → X is the solution of the differential equation ẋ = f(qi(t), x(t)) on the interval
Ii, with initial condition xi(τi) at τI ;

• for all t ∈ [τi, τ ′i ] it holds that xi(t) ∈ Inv(qi(t))

2-1-2 PWA systems

The class of piecewise affine systems [6] forms a simple extension on a linear system and can
still model hybrid phenomena. The system is described by

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for
[
x(k)
u(k)

]
∈ Ωi (2-1)
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6 Background

Figure 2-3: Polyhedral partition of the state and input space

Where Ωi is a finite convex polyhedral partition of the state/input space. With finite index
i ∈ I and with discrete time step k, x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rl

An example of an arbitrary piecewise affine system will now be given with the help of a graph.

Example 2.2.

The graphical representation shows how the state and input space can be partitioned with
x(k), u(k) ∈ R

In figure 2-3, the numbers (1.-5.) indicate the polyhedrons Ω1 − Ω5 which are modeled by a
finite number of inequalities. These five regions are each associated with a linear dynamical
system. So this figure represents the mathematical equation 2-1 where the first part is the
dynamical system and the latter in which this system is active.

2-1-3 MLD systems

This framework describes the continuous variables by linear equations and the discrete vari-
ables are expressed by logical statements. The logical variables are associated with a binary
variable (0,1) after which the logical statements can translated into linear inequalities. How-
ever, the system contains both logic and continuous dynamics. This means that the resulting
system contains mixed-integer linear inequalities.

The most important equations will now be shown, how these are obtained can be found [7].

[f(x) ≤ 0]⇔ [δ = 1]is true if and only if
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ

(2-2)

With f : Rn → R and x ∈ X where X is the interval for which the function f is defined.
Where M and m are the maximum and minimum respectively of the function f(x) on the
defined interval X . The variable ε is a small tolerance introduced because only non-strict
inequalities are allowed in linear programming.

The nonlinear product δ(k)f(x(k)) can be represented by linear inequalities by introducing
an auxiliary variable z(k).
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z(k) ≤Mδ(k) (2-3)
z(k) ≥ mδ(k) (2-4)
z(k) ≤ x(k)−m(1− δ(k)) (2-5)
z(k) ≥ x(k)−M(1− δ(k)) (2-6)

with these equations, a system in the form

x(k + 1) =
{
f1(x) if x(k) ≥ 0
f2(x) if x(k) < 0

(2-7)

can be transformed if δ(k) ∈ {0, 1} is defined as [δ = 1]⇔ [f ≥ 0].
Then the equation (2-7) can be represented by

x(k + 1) = f1(x(k))δ(k) + f2(x(k))(1− δ(k)) (2-8)

This system representation contains the nonlinear product δf(x(k)) with the help of the
equations (2-3-2-6) this can be translated into linear constraints.

The generalized system description is of the form:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 g

(2-9)

where δ(k) is ∈ {0, 1} and x(k) = [xTr (k)xTb (k)]T with xr(k) ∈ Rnr the continuous and
xb(k) ∈ {0, 1}nb the binary variables. This structure is also applied to y and u.

An example from [7] will be given to illustrate the above

Example 2.3.

x(k + 1) =
{

0.8x(k) + u(k) if x(k) ≥ 0
−0.8x(k) + u(k) if x(k) < 0

(2-10)

Where x(k) ∈ [−10, 10], and u(k) ∈ [−1, 1]. The form is the same as in equation 2-7 and thus
by defining δ(k) ∈ {0, 1} by [δ = 1]⇔ [f ≥ 0] the equation can be written as

x(k + 1) = (0.8x(k) + u(k))δ(k) + (−0.8x(k) + u(k))(1− δ(k))
= 1.6x(k)δ(k)− 0.8x(k) + u(k)

(2-11)

To write equation 2-11 subject to the linear constraints (2-2-2-6) in the general form, define
z(k) = δ(k)x(k)

Master of Science Thesis J.H.C. de Bruijn
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x(k + 1) = −0.8x(k) + u(k) + 1.6z(k) (2-12)
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10
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0
0
M
−M
10
10
1
1


(2-13)

2-2 Discrete event systems

The class of Discrete-event system (DES) describe systems where the state of the dynamical
system does not change by the tick of the clock, but by events. Since the events are generally
asynchronous it is therefore not efficient to use time as the element that drives the dynamical
system. So, where the variable k in time-driven systems stands for the time, the k in event-
driven systems is the event counter. From now on in this thesis the variable k refers to the
event counter in event-driven systems.
Moreover, we define the DES as a system which is event driven with a discrete state space.
The state space is some discrete set of events and whenever an event occurs this may cause
a change in the state as opposed to discrete time systems where the state may change each
discrete time instant. A DES consists of a finite number of resources shared by different
users called jobs. These jobs all contribute to the same goal which is completing the product.
The dynamics of a DES ca typically be described by synchronization, routing and ordering.
Synchronization is needed if a job requires different resources at the same time. If a job can
follow different routes through the system, then routing fixes the path for the job to follow.
In the end, ordering plays a role when different jobs take the same route at the same time,
so the order between the jobs must be determined.
Most of the models are nonlinear in traditional algebra, but there is a class of DES that can
describe nonlinear behaviour in a linear manner in the max-plus algebra. This class contains
only synchronization with a fixed order and a fixed route. With the help of SMPL models, the
synchronization, ordering and route can be changed by changing the structure of the system
matrix. As will be come clear in the next section, systems written in max-plus algebra are
particular suitable for systems that behave cyclically and the tools from linear algebra can
be applied.

2-2-1 Max-plus algebra

Max-plus algebra allows one to rewrite a non-linear system in conventional algebra to write
it in a linear form in the max-plus algebra [8]. Max-plus algebra uses two operations

a⊕ b = max(a, b) (2-14)
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and
a⊗ b = a+ b (2-15)

In addition, the max-plus zero element is defined as ε = −∞ and the max-plus identity ele-
ment is defined as e = 0. This forms the max-plus semi-ring which is the set Rmax = {ε}∪R.
Matrix operations in a max-plus fashion are defined as follows

for A,B ∈ Rn×mmax
[A⊕B]ij = aij ⊕ bij = max(aij , bij) (2-16)

for A ∈ Rn×lmax and B ∈ Rl×mmax

[A⊗B]ik =
l⊕

j=1
aij ⊗ bjk = max(aij + bij) for i ∈ n and k ∈ m (2-17)

To illustrate equation 2-16 with an example, consider the matrices A,B both in R2×2
max

Example 2.4. let

A =
[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]

Then

A⊕B =
[
a11 ⊕ b11 a12 ⊕ b12
a21 ⊕ b21 a22 ⊕ b22

]
=
[
max(a11, b11) max(a12, b12)
max(a21, b21) max(a22, b22)

]

With the same A and B matrices, equation 2-17 reads as

A⊗B =
[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=
[

(a11 ⊗ b11) ⊕ (a12 ⊗ b21) (a11 ⊗ b12) ⊕ (a12 ⊗ b22)
(a21 ⊗ b11) ⊕ (a22 ⊗ b21) (a21 ⊗ b12) ⊕ (a22 ⊗ b22)

]

=
[
max(a11 + b11, a12 + b21) max(a11 + b12, a12 + b22)
max(a21 + b11, a22 + b21) max(a21 + b12, a22 + b22)

]

The conventional linear algebra rules can thus directly be applied to the matrix multiplication
and addition in max-plus algebra. The only difference is the definition of the operators. In
max-plus ⊕,⊗ and in conventional algebra +,× respectively.

With the basic elements ε and e defined, the max-plus zero E ∈ Rn×mmax and identity matrices
E ∈ Rn×mmax defined as follows:

[E]i,j =
{
e, if i = j
ε, if i 6= j

(2-18)
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[E ]i,j = ε, ∀ i, j (2-19)

Finally, let u ∈ Bε = {e, ε} be a max-plus binary control variable. Its adjoint ū ∈ Bε is defined
as:

ū =
{
e, if u = ε
ε, if u = e

(2-20)

2-2-2 Solving linear systems and its characteristics

The equation
x = A⊗ x⊕ b (2-21)

with A ∈ Rn×nmax and b ∈ Rnmax can be solved by the vector

x = A∗ ⊗ b (2-22)

where, A∗ def= E ⊕A+ =
∞⊕
k=0

A⊗k

This equation (2-22) is an important result in solving max-plus linear systems.

Eigenvalues and eigenvectors are defined in the same manner as conventional algebra. If for
a matrix A ∈ Rn×nmax , a vector v ∈ Rnmax and a scalar λ ∈ Rmax it holds that

A⊗ v = λ⊗ v (2-23)

with v 6= E , then λ is an eigenvalue of A and v is an eigenvector of A. An eigenvalue in a
max-plus system represent the minimal time between two events and the eigenvectors show
the steady state behaviour of the system. If a matrix is irreducible, then the communication
graph related to this matrix is strongly connected and there is only one unique eigenvalue.

Now the cyclicity theorem of max-plus algebra will be introduced. This theorem provides a
way to obtain unique eigenvalues for irreducible matrices.

Theorem 2.5. [9] Let A ∈ Rn×nmax be an irreducible matrix with eigenvalue λ and cyclicity
σ = σ(A). Then there is an N such that

A⊗(k+1) = λ⊗σ ⊗A⊗k (2-24)

for all k ≥ N .

2-2-3 Max-plus linear systems

As stated before, a certain class of discrete-event systems can be rewritten with max-plus
algebra and then become linear in this algebra. This is a class of systems where only synchro-
nization occurs. Synchronization can be thought of as different resources must be available at
the same time. For example, in a railway environment, one train must wait for another train
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2-2 Discrete event systems 11

to let passengers transfer. Or in a chemical plant, a reaction takes place in a reactor vessel
but this reaction starts only when all resources are available. These systems can be described
by a model of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

(2-25)

where, A ∈ Rn×nmax , B ∈ Rn×mmax , C ∈ Rp×nmax and x the state, u the input and y the output
vectors.

This form relates events from the current cycles to events in the previous cycle. The input
u(k) contains information about when the events happen in cycle k. If the input is omitted,
then events happen as soon as possible. A railway system is a simple example to show how
the input acts as a timetable reference. The input is the timetable for when trains are leaving
and arriving at stations. The trains cannot leave or arrive earlier than the scheduled times in
the timetable since the input is connected to the model with a (⊕, max-operation). Meaning
that a train is only allowed to depart from a station if the departure time is greater than
or equal to the arriving time from a previous station plus the dwell time or the scheduled
departure time provided by u(k).

2-2-4 Switching max-plus linear systems

In a MPL system the structure is fixed. This means that the order and synchronization
of events cannot be changed. To break and change this structure SMPL systems [10] are
introduced.

x(k) = Al(k) ⊗ x(k − 1)⊕Bl(k) ⊗ u(k)
y(k) = C l(k) ⊗ x(k)

(2-26)

where l(k) ∈ {1, .., nm} is the mode for the k-th event step and nm is the number of modes.
Furthermore, each mode contains max-plus linear model as in equation 2-25.

The switching variable z(k) ∈ Rnz
max is determined by function which may depend on the

previous state x(k − 1), the previous mode l(k − 1), input u(k) and a control variable v(k).

z(k) = ψ(x(k − 1), l(k − 1), u(k), v(k)) ∈ Rnz
max (2-27)

To obtain the mode l(k), the domain Rnz
max is partitioned in nm subsets Zi, i = 1, .., nm. Now

the set in which the variable z(k) is in event k determines the mode l(k). So if z(k) ∈ Zi,
then l(k) = i.

As stated before, the max-plus algebra allows for rewriting the dynamical model of a DES
and transforms it into a linear model. This can only be done with systems where only
synchronization occurs. Now with the help of breaking the structure in a SMPL system, every
mode l(k) contains a MPL model and all nm modes together form the possible combinations
of synchronization, routing and ordering decisions.
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2-3 Abstraction of hybrid systems

The models of dynamical systems contain information about the properties of these systems.
When analyzing such a system some properties are important for that particular analysis
and some are not. System abstraction deals with removing the undesired properties while
preserving others. The resulting model belongs to a simpler class than the original model. In
the case of this thesis, we aim at removing all dynamics of the hybrid system and describe the
evolution of the system by time intervals for which an event takes place. This is the hybrid
time set as defined in [11].

2-3-1 Hybrid time trajectories

The evolution of a hybrid system over a certain time is called the hybrid time set. The
execution of a hybrid system takes place over time and within this horizon the hybrid system
executes a trajectory from an initial position to a desired state. The executions exist of the
evolution of continuous dynamics and discrete jumps. So, the hybrid time set exist of some
discrete time intervals where the start of the next interval begins at the end of the previous
interval such that the time makes no jumps and is continuous.

Definition 2.6. [11] A Hybrid time set is a sequence τ = {I1, I2, ..., IN} = {Ii}Ni=1, finite or
infinite (i.e. N =∞ is allowed)such that

• Ii = [τi, τ ′i ] for all i < N ;

• if N <∞ then either IN = [τN , τ ′N ] or IN = [τN , τ ′N ); and

• τi ≤ τ ′i = τi+1 for all i

where τ indicates the start time of the event and τ ′ is the end time of the event. With N as
the number of events. There can be multiple events at the same time which is indicated by
the counter i. Each event is associated with a discrete state.

Example 2.7.

Let N = 4, there are 4 intervals I1 = [τ1, τ
′
1], I2 = [τ2, τ

′
2], I3 = [τ3, τ

′
3] and I4 = [τ4, τ

′
4]

according to definition 2.6. Let the duration of I0, I2, I3 be 5 seconds and I1 be 0 seconds.

Then figure 2-4 shows how the time τ and the events are related. For this example, the hybrid
automaton is thus defined on the closed interval τ = [1 − 15] seconds. At τ = 5 seconds it
can be observed that 3 events are executed at the same time, these are event 1, event 2 and
event 3.
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time [s]

event [i]

0 5 10 15
0

1

2
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[ ]
I3

[ ]
I4

Figure 2-4: Time set of a hybrid automaton

2-4 Asymptotic abstraction hybrid systems

This section is mainly based on [12]. Abstraction can be done using simulation relations
for continuous systems or partitioning the state space. The abstraction mapping relates the
vector fields of the abstracted system and original system with each other under a surjective
map. This precise mapping is not always desirable and particularly in the case where the aim
is to map continuous hybrid dynamics to purely discrete dynamics and being only left with
the maximum time it takes for the system to make a discrete transition. The authors of [12]
also make use of abstracting hybrid dynamical systems by partitioning the state space. This
abstraction approach is based on the asymptotic behaviour of a stable dynamical system, the
assumptions of this system are that there must exist a finite number of disjoint positive limit
sets [13]. For a hybrid system, the limit sets are contained in the guards. Defining the positive
limit set it is no longer necessary to make a reachability analysis (which can be very hard
due to undecidability [14],[15]). The concept of finite time abstraction is introduced which
partition the state space in equivalence classes according to the distance at time T away from
a point in the limit set. The abstraction is constructed by the following two definitions.

Definition 2.8. (Finite-time Equivalence relation [12]) Consider an autonomous system
(Z, f), where Z is a compact subset of a smooth manifoldM and f a vector field that represent
the closed loop dynamics. Let L+ =

⋃l
k=1 L

+
k , l <∞, be the positive limt of (Z,f), where each

L+
k is simply connected. Two points z1, z2 ∈ Z are said to belong to the same T -equivalence

class, and we write z1 ∼T z2, if
1) z1 ∼ z2, and
2) if for some k, limt→∞ dist(Φt(z1), L+

k ) = limt→∞ dist(Φt(z2), L+
k ) = 0, then dist(ΦT (z1), L+

k )
= dist(ΦT (z2), L+

k ).

Where Φt(z(1,2)) is the flow of system (Z, f) passing though point z(1,2) ∈ Z at time t = t0.
The distance of a point to a subset is dist(point, Subset)

Now, L+
k + Bd is used to define the set {x+ y|x ∈ L+

k , y ∈ Bd} with Bd the ball of radius d.

Definition 2.9. (Finite Time Abstraction [12]) Consider a system (Z,f), where Z is a compact
subset of a Banach manifold M , and let Φt(p) is the flow of f from p ∈ M . Suppose that
(Z, f) has a positive limit set L+ =

⋃l
i=1 L

+
i , l < ∞. The finite-time T -abstraction of (Z, f)

is a (set valued) map, that associates each point p ∈ M to the set L+
k + Bd, where k is such
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that limt→∞ dist(Φt(p), L+
k ) = 0, d = dist(ΦT (p), L+

k ), and Bd is the ball of radius d centered
at the origin.

Figure 2-5: Time equivalences of points in Z ⊂M

Figure 2-5 shows a graphical representation of definition 2.8, note that only the compact
subset Z ⊂ M is shown. The lines drawn from the points z1..z4 to positive limit point L+

k

are the flows Φtn(z) for n→∞. The ball of radius Bd around L+
k defines what points are in

which finite T-class. Since the trajectories are flowing towards L+
k when time go to infinity,

the flows reaching the ball of radius d in finite time T . According to 2.9 the four points are
partitioned into two T -equivalence classes. Points (z1, z2) are in the same T-class and (z3, z4)
in another.

The two definitions mention only an autonomous system, but they also hold for the non-
autonomous case. The smooth vector field can represent closed loop dynamics without show-
ing the actual inputs. This is because a stable system is needed in order to obtain the positive
limit sets. The construction of the T -equivalence classes is done by defining a Lyapunov-like
function for the trajectories of the system. The Lyapunov functions is conservative with re-
spect to the actual trajectory and only proves reachability after some time i.e. the system
will reach the limit set in time T .

The Lyapunov-like function is proposed, in which all the trajectories of the actual system are
contained. With this information can be said that the system will always reach a specified
point in the time calculated with the help of the Lyapunov function. This as a downside bring
in conservatism to the system, however the avoidance of directly calculating the trajectories
is preferable for most dynamical systems where no analytic solution exist and numerical
integration is computationally expensive.

In order to complete the abstraction of the original hybrid system, a few assumptions by
[12] need to be made in order to transform the finite time abstraction of definition 2.9 into a
hybrid automaton (see definition 2.1).

• X is subset of a Banach manifold M, modeled on Rn;

• G(e) 6= ∅,∀e ∈ E;
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• R(e, x) 6= ∅, ∀x ∈ G(e);

• For each q ∈ Q, the positive limit set L+ of the flows f(q, x) satisfies L+(q) ⊆ G(e), for
e ∈ {(q, p)|(q, p) ∈ E};

These assumptions ensure that the resulting hybrid automaton is deterministic. This is
necessary because if the hybrid system can ’choose’ between continuous evolution or discrete
transition, then no useful timing information can be subtracted because the trajectories are
not unique.

2-4-1 Obtaining event-times

In order to construct the T -equivalence classes, the authors of [16] make a proposition. Before
stating this proposition, a general procedure to find Lyapunov functions is introduced because
the proposition makes use of this procedure.

A first general procedure for finding a Lyapunov function was introduced by [17]

Theorem 2.10. ([16] from [17]) The set Ω is the region of attraction of a periodic orbit
x = ϕ(t) with period T , if and only if there exist two functions V (x) and W (x) defined on Ω
satisfying:

1. V (x) is continuous on Ω and the domain of W (x) can be extended to the entire state
space X,

2. V (x) ∈ (0, 1)∀x ∈ Ω \ ϕ, and V (x) = 0 for dist(x, ϕ) = 0,

3. W (x) > 0 for dist(x, ϕ) > 0 and W (x) = 0 for dist(x, ϕ) = 0,

4.

∇V T f(x) = −W (x)
√

1 + ||f ||2(1− V ), with f the dynamics of the hybrid system
(2-28)

5. limx→∂ΩV (x) = 1.

From this theorem, a Lyapunov function can be calculated and that brings to the following
proposition

Proposition 2.11. ([16]) Let L+
k (q) be an asymptotically stable limit set with region of at-

traction Ωk(q) and Vk(q, x) a solution to equation 2-28 that satisfies the requirements of The-
orem 2.10. Then the (T, d)-equivalence class for ẋ = f(q, x) is a subset of the level set
Vk(q, x) = 1− (1−c)e−dT , where c is the minimum of Vk(q, x) on the boundary of L+

k (q)+Bd.
For the proof is referred to [16]

The time bound obtained with this method is conservative because the T -equivalence class is a
subset of the Lyapunov function. This conservativity can be reduced by introducing a scaling
parameter λ > 0. The function W (x) is now replaced by λVk(x) such that λVk(x) ≤W (x).
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2-5 Summary

In this chapter, we gave summary of what already exists in the literature about hybrid
systems. As a general modeling class, automata and two specific classes, the PWA and MLD
systems. The former is the continuous time equivalence of a SMPL system whereas the latter
is used to serve as an example how to introduce logical binary variables in the SMPL system.
Thereafter, max-plus algebra is introduced because we are going to model the abstracted
hybrid system into this algebra as a SMPL model. Finally, a strategy for the abstraction
of stable hybrid systems is presented that preserve the reachability properties of the original
hybrid system.
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Chapter 3

Abstraction used in a interactive
sequential model framework

Scheduling and control of dynamical systems are an important part of the operation of com-
plex processes like in the process industry or traffic management. The current approach is
that the scheduling level passes information to the control level. However for an optimal
performance it would be desirable to update the schedule regularly to avoid breakdown and
optimize the processes. Current models that integrate both levels are large, nonlinear opti-
mization problems and result in difficulties to implement this in real time application. This
chapter focuses on the approach of [1] which proposes a distributed sequential interactive
control framework. For this thesis, a simplified version of this model is set up such that we
can study the how the abstraction model behaves in this framework.

3-1 General model

However, the main interest in this thesis is in the abstraction, this is part of a larger structure
where it fits into a sequential framework that controls the system. A finite number of resources
where one or multiple jobs can be processed by the system. The abstraction makes it so the
dynamics are omitted and only the timing information is preserved. This timing information
is fed into a scheduler. The scheduler then decides if and what control actions are needed in
order to meet the objective. The resulting schedule goes to a path planner where these paths
serve as a reference for the low level controller that controls the actual system.

The upper part of Figure 3-1 is driven by discrete-events where the lower part is driven
by time. Connection of the lower and upper part will result in timing issues for the optimal
control problem solved by the scheduler. These issues are dealt with in Chapter 5 by including
certain states in the constraints and by choosing which cycle as the current cycle carefully.

Figure 3-1 reads as follows. The dynamic scheduler provides a feasible schedule for the jobs
to complete their tasks. Vector x(k, tc) is the state of the Discrete-event system (DES) and
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Figure 3-1: Sequential interactive model

contains information about the begin and end times of a task, furthermore synchronization
between jobs is handled by the scheduler as is the order and route of the different jobs. Where
tc ∈ R is the point in time at which the continuous system is being abstracted and an optimal
timetable is produced. This timetable is valid for all t ≥ tc. Index k ∈ N is the cycle for
which the planner makes a schedule.

In the trajectory planner, a cost function decides how the optimal output trajectory of the
system should evolve over time. For chemical plants this can be the efficiency of the raw
product that is used for the end product, or minimal energy consumption during the process.
Information stream xiref

(t) contains the optimal trajectories for all jobs in the controlled
system and of course, the synchronization, routing and ordering decisions are now fixed into
these reference trajectories and thus indirectly passed from the scheduling level to the control
level.

It is assumed in this schematic model that the hybrid dynamical system is controlled by a
lower level controller that is not specified. The controller is assumed to be able to comply
with the reference trajectories provided by the dynamic trajectory planner. The continuous
time state space is given by differential equations of the form ξ̇(t) = f(q(t), ξ(t), v(t)), with
qi the mode of the hybrid system, ξ the state and v a control input. Where qi is constant
∀ t ∈ Ii i.e. the hybrid mode remains constant until the system jumps to another mode. From
this block, the state ξ0(tc) is extracted at regular time intervals. These states are taken as
initial conditions for the abstraction level.

The hybrid dynamical system will now be abstracted into a hybrid time set every time it
sends its current state to the abstraction level. The abstraction level provides multiple hybrid
time sets τmin,j(tc), for j = 1...Nj where Nj is the number of jobs, to the scheduling level
where each τmin,j(tc) represents a minimal process time for a job to complete on one or several
resources.

The sequential model as given in Figure 3-1 connects at two positions, the discrete-event
evolution with continuous time evolution.
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Figure 3-2: model of a printer with two resources

3-1-1 Scheduling

An important part of this whole system is the scheduling level. Normally the system is
scheduled according to predefined process times and a schedule for this normal situation is
implemented in the dynamical system. However the framework shown in Figure 3-2 assumes
a continuous interaction with the system and provides a schedule each instance the hybrid
dynamical system sends its characteristics to the abstraction level. Hence the schedule is not
a fixed quantity from where information is only given downwards to the control level, but
interactive. Now, not only in case of serious events happening at the plant level i.e. breakdown
of the system, but also if trajectories are not able to follow the predicted path due to, for
example unforeseen inputs or modeling errors, the schedule is rescheduled accordingly. This
thesis aims at scheduling using max-plus algebra. The scheduling is therefore not performed
in the continuous or discrete time domain, but the discrete-event domain. To enter this
domain, abstraction of the continuous dynamics is required. The abstract model only needs
to preserve timing information of the trajectories and not exactly how the system evolves over
time. More specifically this model does not need to preserve timing information about all the
trajectories of the system, but only of the fastest trajectory the system can achieve with the
state initialized at some point ξ0tj for process j ∈ Nj at time t.

Scheduling example with τmin:

To illustrate this behaviour consider the following scheduling problem of a printer, this ex-
ample is partially derived from [18].

τmin,1 τmin,2 τnom,1 τnom,2
6 4 7 5

Table 3-1: process times

This simplified version of a printer setup is modeled with two resources for a job to complete
the printing task. The first resource includes the paper input, applying ink to the front,
inverting the paper and bringing it into position for the second resource. This second resource
applies ink to the back of the paper after which the paper leaves the printer. The dynamical
model for this semi cyclic printer system can be derived from Figure 3-2 as follows:
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20 Abstraction used in a interactive sequential model framework

x1(k + 1) = max(x1(k) + τ1, x2(k + 1)− τ1)
x2(k + 1) = max(x1(k) + τ2, x1(k + 1) + τ1)

(3-1)

x(k + 1) = (A0 ⊗ x(k + 1))⊕ (A1 ⊗ x(k)) (3-2)

with
A0 =

[
ε −τ1
τ1 ε

]
, A1 =

[
τ1 ε
ε τ2

]
(3-3)

This implicit model can be solved for its explicit form with A∗0 since

x(k + 1) = A∗0 ⊗A1 ⊗ x(k) (3-4)

with A = A∗0 ⊗A1 =
[
τ1 τ2 − τ1
2τ1 τ2

]

The system described by (3-5) is for the autonomous case, for the nonautonomous case this
is:

x(k + 1) = A⊗ x(k)⊕ u(k) (3-5)

where u(k) = T k ⊗ u(0) and T the cycle time.

The state x at k = 0 is calculated by:

x(0) = A∗0 ⊗ x0 (3-6)

This example shows the importance of τmin versus τnom for obtaining schedules that are as
fast as possible given the dynamical system constraints and a possible input. The input for
this particular system is, if it exists, the timetable according to which the events must be
scheduled. This is done by considering the following cases for both τnom and τmin. Both τ ’s
are put in an autonomous and nonautonomous system, after which both systems give results
for the on-time case and the nonautonomous is also delayed to show the time is takes to
return to the schedule.

The initial conditions for all cases are the same we assume x0 =
[
9 9
]T , u(0) =

[
0 τ1

]T , a
cycle time of T = 11 and the parameters as given in Table 3-1, the eigenvalue for all cases is
determined such that the minimum cycle time is known . By letting the state evolve over k
and observe when (x(k + 1) − x(k)) does not change anymore, then steady state is reached
and eigenvalue λ can be determined by (x(k + 1)− x(k)) for k.

The autonomous behaviour of the system is given by:

The transient behaviour of the system for τnom is given below and is in steady state for k ≥ 1
with a cycle time of 7.

x(1)− x(0) =
[
7
7

]
, x(2)− x(1) =

[
7
7

]
, x(3)− x(2) =

[
7
7

]
, x(k + 1)− x(k) =

[
7
7

]
for k ≥ 0
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3-1 General model 21

k 0 1 2 3
x1(k) 9 16 23 30
x2(k) 16 23 30 37

Table 3-2: nominal τ autonomous

k 0 1 2 3
x1(k) 9 15 21 27
x2(k) 15 21 27 33

Table 3-3: minimal τ autonomous

Similarly, for τmin the state of the system given by Table 3-3 reaches steady state at k = 1
but now with a cycle time of 6.

x(k + 1)− x(k) =
[
6
6

]
for k ≥ 0

Clearly the eigenvalue related to τmin is λ = 6 and the eigenvalue related to τnom is λ = 7.
In this case no input is available and the events are scheduled as fast as possible.

The nonautonomous system behaviour is given below by Table 3-6 and Table 3-7

k 0 1 2 3
x1(k) 9 16 23 33
x2(k) 16 23 30 40

Table 3-4: nominal τ nonautonomous

k 0 1 2 3
x1(k) 9 15 22 33
x2(k) 15 21 28 39

Table 3-5: minimal τ nonautonomous

For both systems the cycle time is 11 since this is coordinated by the input timetable u(k).
However, there is a delay in the system introduced by the initial conditions for the nonau-
tonomous system. We view the delay propagating through the system and leaving it after
some k since the system is stable because of λ ≤ T .

The delay z is defined as

z(k) = x(k)− u(k) (3-7)

k 0 1 2 3

z(k)
[
9
9

] [
5
5

] [
1
1

] [
0
0

]

Table 3-6: delay propagation τ nominal

k 0 1 2 3

z(k)
[
9
9

] [
4
4

] [
0
0

] [
0
0

]

Table 3-7: delay propagation τ minimal

The settling period for the nominal event times is ks(nom) = 3 and for the minimal events
times τmin, the settling period is ks(min) = 2.

This example shows the behaviour of a printer for a case where the system is autonomous
and where an input is present. The printer that can print a paper the fastest is the printer
for which no schedule is given and a minimal τ is provided. However, when the printer is
controlled by a schedule, the limit for handling a paper is given by the maximum of the cycle
time T and eigenvalue λ. Since in this example we picked T > λ, both the cycle time of τmin
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22 Abstraction used in a interactive sequential model framework

and τnom are equal and when the printer is in steady state, the paper is printed equally fast
for both event times. When the system is delayed, the desired timetable cannot be followed
by the printer, but the settling period for τmin is smaller than the settling period of τnom and
so the system reaches steady state in a shorter time and is therefor faster.
This example shows why we picked τmin instead of τnom or even τmax as the variable that
has to be send to the scheduler if, as is generally the case, the objective of the scheduler is to
maximize the output of the system and in doing so minimize the total production time.

3-1-2 Abstraction

It is important to note that the abstraction block takes τmin as an input. The variable τmin
is not just a process time, but the minimum time required by the system to reach a specified
goal. This will ensure that the scheduler can come up with the fastest possible timetable.
Fastest in the sense that if there is no input u(k, tc) provided, the jobs will be scheduled as
soon as they can possibly be processed by the system. If an input u(k, tc) is provided in
the scheduler and this input happens to be the nominal schedule the system has to follow,
then this input limits the throughput of the system. However, if the τ ’s provided by the
abstraction are not the minimal τmin but the nominal process times τnom, then the scheduler
can never provide a schedule with a faster throughput than the τnom process times indicate.
When there is no input u(k, tc) provided or even when a faster timetable for the system is
provided, the limiting behaviour of the τnom is the bottleneck for faster scheduling. So, the
abstraction scheme should be made valid for obtaining the minimum event times.

3-1-3 Trajectory planning

The trajectory planner provides sufficient information to the hybrid system to keep track of
the general schedule provided by the scheduler. The input for this operation is the part of
the state vector x(k) of the scheduler which contains the begin tb(k) and te(k) end times of
all jobs that are taken into account in the scheduling operation. These are the processes that
are in the predicted future and for which it holds that tc < tb(k). Furthermore, the processes
that are currently running and cannot be rescheduled anymore, i.e. they are contained in the
constraints of the scheduler, for these it holds that tc ≥ tb(k).
The connection at the trajectory planning block will take the framework from the event
domain to the time domain. This implies that k is omitted as driving variable and replaced
with t. Since the state is now again the state of the dynamical system ξ(t) this state evolves
over time. Therefore the trajectory planner needs access to the state of the dynamical system
at time tc in order to acquire the correct initial state conditions.
The reference trajectory is generated using a mapping:

ξrefj
(t) =

{
φj(ξ0tj (t), tej (k)) if t ∈ [tbj

(k), tej (k))
φj(ξ0j , tbj

(k), tej (k)) if t < tbj
(k) (3-8)

Where ξ0j ∈ Rn is time invariant for a particular process which holds t < tbj
(k) i.e. process

has not started yet and therefore no continuous dynamics are associated with it unless tbj
(k) ≤

t ≤ tej (k).
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k + 1k
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τ2

time

resource

1
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x1(k)

x2(k)

� -
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Figure 3-3: model of a printer with internal synchronization

From the section timing issues the convention is set up that the current cycle k for x(k) is
chosen so that all events are completely known in cycle k − 1. This means that the initial
conditions put forward to the abstraction level are all at least in cycle k and possibly in future
cycles. To complete this reasoning, if the scheduler provides cycle k until the greatest cycle for
which the initial conditions are provided, then at least the schedule is provided for the events
that are currently running. Extending this with more future processes where tc > tbj

(k) is
easy since the initial state for these processes is fixed and known.

3-1-4 Handling events

A delay on the hybrid system is not modeled in the hybrid system itself, but is handled by the
scheduler. This ensures that several hybrid systems can fulfill a task together in an optimal
way, because the scheduler has the overview of what has to be done when and where and
what operations could possible wait in order for the whole system to benefit from it.

There are three types of scheduling that can be handled by the scheduler: synchronization,
routing and ordering of jobs. However, which jobs are handled by the hybrid system and which
jobs are handled by the scheduler is dependent of the level of abstraction that is wanted. If
there is still a high level of detail in processes then the max-plus model is very large and
may contain scheduling types that cannot be rescheduled (such as a fixed route or order or
synchronization between multiple processes. Then the model becomes unnecessarily complex
and in that case some processes have to be grouped together in order to obtain a smaller
scheduling model with a higher abstraction level. The switching points of a hybrid dynamical
system form natural process times for a job to complete a task, however these switching points
do not necessarily, and in practice they will usually not, intersect with the three scheduling
control operations. This will be illustrated with an example of the print job as seen above,
but slightly modified:

Synchronization between the processes ensures maximization of plant productivity. However,
in this case, synchronization does not depend on an event time directly as can be seen from
Figure 3-3. The hybrid model of the printer is the same as the previous example, but this
time it is assumed that the next printing job cannot start until the tail of the current paper
reaches some point in the printer to make sure that both papers keep a certain distance
such that both printing jobs do not disturb each other. This is a problem in modeling since
the events cannot be directly related to each other by their respective begin and end times
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k + 1k
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time
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Figure 3-4: simplified printer model with general distance simulating internal synchronization

since they are internally synchronized by a different state which is not contained in the begin
or end-point of the system trajectory and therefore cannot be directly accessed. Therefore,
this synchronization problem is not easily handled by the scheduler directly. The trajectory
planner has direct access to all the states of a system and the scheduler has not. So instead of
trying to model all synchronization process times explicitly we aim at grouping together many
process times that belong to one job into one process time and schedule according to a general
notion of synchronization and let the trajectory planner handle the specific synchronization.
The job of the scheduler is to come up with an overall best schedule, but minor corrections can
take place introduced by the trajectory planner. By applying this to the printer, the model
showed in Figure 3-4 is obtained where the two process times τ1 and τ2 are grouped together.
However, the scheduler still needs a prediction of the synchronization time τsync between the
processes. This will allow the scheduler to come up with a feasible schedule on a macroscopic
level, where the trajectory planner fine-tunes this schedule on a more microscopic level. For a
feasible timetable for the printer, τsync is introduced based on the paper dimensions and worst
case scenario. This ensures that the distance between successive papers is always respected
and can be relaxed by the planner. Note also that the axis that showed the resources is
replaced with cycle index k.
This grouping of τ1 and τ2 makes sense for this model since synchronization does not depend
on one of the processes τ1, τ2. Because the both processes are not explicitly needed by the
scheduler the state of the scheduler can be reduced if the two processes are combined.

3-2 Summary

In this chapter, we introduced a generally distributed interactive sequential model that con-
tinuously (by this we mean: at regular time intervals) exchange information from plant level
to scheduling level and from scheduling back to the controller of the plant level. Scheduling
is performed with abstracted trajectories of the continuous time-domain hybrid dynamical
system in the even-domain. Furthermore, we have shown that the process time that has to
be communicated to the scheduling level must be the minimal process time.
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Chapter 4

Sequential model application in railway
management

The previous chapter shows an overview of a hybrid dynamical system that is sequentially
controlled and scheduled for optimal performance. However, there does not exist a general
procedure for verification of hybrid systems that can be implemented directly for all systems.
The general model is more a general idea than a procedure that can be directly applied to all
hybrid dynamical systems. Since the problem of solving the model is so difficult we choose to
apply this to a railway management problem. By limiting the problem to this railway system,
we can manage the complexity and be more specific about the data streams in the model.

4-1 Dynamical model for train operation

The trains are modeled as a point-mass using Newton’s equations of motion. This type of
modeling is accepted and frequently found in the literature [19],[20],[21]. It is assumed that
the forces acting on the point-mass are tractive effort and resistance forces. This yields the
following model:

m
dv

dt
= ft(v)− res (v(t)) (4-1)

Where m is the mass of the train, dv/dt is the derivative of the velocity, ft is the control
variable for force i.e. the traction or braking force and res the resistance forces. Both forces
res and ft depend on the speed making this a non-linear equation. Resistance forces are built
up of roll resistance, air resistance and resistance forces due to the topology of the track [22]:

res(v) = m(a0 + a1v + a2v
2 + fcurve + fline) (4-2)
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26 Sequential model application in railway management

coefficients a0 and a1 represent the mechanical resistance where a3 is the coefficient for the
air resistance force. In this equation, the track resistances fcurve and fline are considered
constant.

ft,max(v) =
{
c0 + c1v if v ≤ vlimit
c2/v if v > vlimit

(4-3)

The maximum tractive effort is linear for speeds lower than vlimit where adhesion limits the
hyperbolic curve of the tractive power [19].

traction force limit

resistance force

total maximum driving force

Figure 4-1: traction and resistance forces

Modeling the nonlinear hybrid system of (4-1) into a general class of hybrid systems as a
hybrid automaton yields the model as in Figure 4-2 wherein this system is modeled into
five modes q ∈ {1, 2, 3, 4, 5} and each mode is accessible from any other mode. The model
does not contain any resets of the state, however there are guards and invariants assigned to
the model, but these guards and invariants come from the constraints as established by the
railroad track. Therefore, the guards and invariants are not set up explicitly at this point,
because they only hold for specific cases. The guards are placed at the beginning of each
arrow G(qi, qj) with i 6= j and i, j ∈ {1, 2, 3, 4, 5}

4-1-1 Optimal trajectory

A trajectory for trains is determined by three or four phases [19] through which the state
evolves over time:

1. The first phase is acceleration, in which the tractive effort is used to achieve acceleration
until a certain speed is achieved at which point the train will go on to the next phase.
(f(t) > res(v))

2. Second phase is where the train keeps the constant speed achieved in the previous phase.
Tractive effort is this phase equals the resistance forces. (f(t) = res(v))
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4-1 Dynamical model for train operation 27

3. Third phase is coasting, in which the train does not input any power into the system
and the train drives only against the resistance forces. (f(t) = 0)

4. The last phase involves braking after coasting or cruising. A train must break in order
to safely reach the station. This braking point is determined by the braking coefficient
and the speed of the train. (f(t) < 0)

q1
acceleration
ṡ = v

mv̇ = f − r
ξ ∈ Inv(q1)

q2
cruising
ṡ = v

mv̇ = 0
ξ ∈ Inv(q2)

q3
coasting
ṡ = v

mv̇ = −r
ξ ∈ Inv(q3)

q4
braking
ṡ = v

mv̇ = f − r
ξ ∈ Inv(q4)

q5
stopped
ṡ = v

mv̇ = 0
ξ ∈ Inv(q5)

Figure 4-2: hybrid automaton train dynamics

For a minimal running time, the trajectory consists of at least the first mode and the fourth
and fifth mode, the second mode is applied if the train does not drive far enough to reach
the next station and since the third mode is used for energy optimal driving, this mode is
completely left out when considering only the shortest time path. To achieve the shortest
possible running time, the train has to use maximal traction in order to accelerate as fast as
possible until the speed limit is reached or the breaking point for the next stop. If the train
reaches the speed limit before the breaking point, then this train cruises at maximal speed
until the breaking point is reached and it has to brake with maximal force in order to stop
on time at the next station.

For energy optimal driving the train trajectory is not as obvious as that for time optimal
driving. It is unclear whether a train has to accelerate fast or slow, drive at maximum speed
or below speed limit, include coasting or not and apply moderate or maximal braking for
arriving at a station. The energy optimal trajectory minimizes the energy over a given time
T and takes into account the track constraints.

The optimal driving regimes can be simply obtained by using the Pontryagins maximum
principle [19]. For braking, we assume just as [19] that this does not cost or regenerate
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28 Sequential model application in railway management

energy. Therefore, if the traction f(t) is below zero i.e. braking, the force is set to f(t) = 0.
The objective is to minimize the mechanical energy that drives the train:

J =
∫ T

0
f(t)v(t) (4-4)

s.t.

fmin(v) ≤ f(t) ≤ fmax(v) (4-5)

0 ≤ v ≤ vmax (4-6)

s(0) = 0, v(0) = 0
s(T ) = send, v(T ) = 0

ξ̇ =
[
ṡ
v̇

]
=
[

v
f(t)− res(v)

]
(4-7)

The Hamiltonian will read as:

H(s, v, f, p) = −fv + pξ̇ (4-8)

Where p is a Lagrange multiplier that is introduced by the constraints of the train. Since no
regenerative braking is assumed, the Hamiltonian is split up in two regimes

H(s, v, f, p) =
{
pξ̇

−fv + pξ̇

=
{
p1v − p2res + p2f if f(t) < 0
p1v − p2res + (p2 − v)f if f(t) ≥ 0

(4-9)

For all four phases the energy can be minimized by adjusting the traction force which is the
control variable, and maximizing the Hamiltonian function. With the help of the Lagrange
multiplier p2 the following solutions are obtained:

optimal value f(t) Lagrange multiplier condition phase
fmax(t) p2 > v acceleration
[0..fmax] p2 = v cruising
[0..fmax] p2 = 0 cruising

0 0 < p2 < v coasting
fmin(t) p2 < 0 braking

Table 4-1: Optimal driving regimes

For both the first and last phases, this shows that the train must accelerate and brake with
the maximum convenient traction and braking force for an energy optimal performance. This
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4-2 Signaling 29

behaviour can be intuitively explained by considering two trains, the first train accelerates and
brakes with maximum force whereas the second train accelerates and brakes at a lower rate.
In order for the two trains to achieve the same running time, the second train must accelerate
to a higher maximum speed to compensate for the slower acceleration and braking rates.
Therefore the first train is more energy efficient. The optimal driving regimes only mention
a cruising and coasting phase, no optimal maximum speed can be derived from Table 4-1 nor
any coasting point. About coasting can only be stated that the earlier the coasting phase
starts the more energy is saved. Furthermore, it can be concluded that if a trajectory consists
of three or four phases that include maximum acceleration and maximal braking, then this
trajectory is considered to be an energy optimal trajectory for some running time T .

4-2 Signaling

Modelling train paths so that the capacity on the line is as high as possible depends on the
minimum headway between two successive trains. The minimum headway is determined by
the blocking times [23] of the scheduled path of the trains. A blocking time is the total amount
of time in which a section of the track is exclusively allocated to a train and therefore blocked
for any other trains. A block section on a track is determined to be the length that is covered
between two control signals, Figure 4-3 shows how the line is divided into block lengths, each
section limited with signals. The signals provide authority over that block length and indicate
an approach for the whole block section. Signaling is done so that the train must have cleared
the block section and is protected by a stop signal [23]. Before this red stop signal, a yellow
approach signal is in place to ensure that the train approaches the red stop signal with a
moderate speed. Before the yellow approach signal, the block section is fully clear with a
corresponding green signal and the train can proceed that block with maximum allowable
speed.

Figure 4-3: Line divided into blocks

The actual blocking times are not only the physical occupation of the train, but it also
contains:

- clearing signal and reset to normal position

- signal watching time
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Figure 4-4: blocking time for fixed blocks (Source: Pachl (2002))

- approach time

- physical occupancy of the block section

- time to clear the block section by reaching the clearing point

- release time to unblock the block section

All components of the blocking time can be viewed in a distance time diagram with the line
divided into blocks, Figure 4-4.

This will be illustrated with an example of two trains running over a single train line of 15
kilometer in the same direction. We assume the following characteristics for the two trains
(for convenience, these train characteristics are derived from Table 6-1 which are used in the
case study from Chapter 6):

train type max speed
[m/s]

max braking-
distance [m]

duration max
braking [s]

slow, heavy (freight) 16.7 731 88
fast, lighter (intercity) 36 1490 84

Table 4-2: Maximum braking characteristics, two train example

With the blocks optimized for the speed profile, the block length is the length of the braking
distance of the train. For multiple trains on the track, the block length is chosen according
to the train with the largest braking distance.

With the train characteristics as in Table 4-2, the freight train has the shortest breaking
distance of 731 meter but the longest stopping time of 88 seconds. The longest braking
distance comes from the intercity which is lighter than the freight train, but this is mainly
because this train has a much higher maximum speed compared to the freight train. The
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(a) blocking time freight train (b) blocking time intercity

Figure 4-5: blocking times

block length for safe operation should be the highest from Table 4-2 since that represents the
worst case scenario.

For simplicity in this example, the speed profiles pictured in Figure 4-5a and Figure 4-5b are
the profiles for minimum running time. Later on an optimal speed profiles can be applied
with coasting involved.

The minimum headway with the freight train going first is the minimum time that the intercity
has to leave after the freight train in order to guarantee safe operation of the system i.e. no
overlapping blocking times. The minimum headway can be calculated by letting the two
trains start from the same starting time. Then define the lower and the upper limit of the
blocking times, tL,i(b) is the begin of the blocking time of train i in block j and tU,i(b) is the
end of the blocking time train i in block b.

The minimum headway is defined as [23]:

th,ij = max(tU,1(b) − tL,2(b)) for b = 1...nb (4-10)

where th,ij is the minimum headway for train j following train i and nb is the number of block
sections.

The minimum headway if the freight train is i and intercity j is then, th,ij =663 [s] and
th,ji =150 [s].

The definition of the minimum headway given in (4-10) holds if only one headway is given and
states when a consecutive train can leave the station behind the leading train. Later on in
the case study Chapter 6 we make use of a slightly modified version of the minimum headway
as used in [24]. This modification consists of introduce a separate headway for departure
and arrival events. So instead of taking the minimum time between two trains for a conflict
free train run, the headway times are purely extracted from the separation of the blocks at
the start and end of the line. This makes the separate headways both smaller as one overall
headway as in (4-10) and more suitable for rescheduling actions.
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(a) minimum headway with freight train first (b) minimum headway with intercity first

Figure 4-6: minimum headway’s

4-2-1 Linearization of train dynamics

The dynamical model in (4-1) is nonlinear due to the dependence of the speed. However,
to simplify the hybrid system we want to end up with a time-driven model that can be
linearly described by the speed and distance. Obviously, in cruising mode the system behaves
linearly, but when the speed changes, nonlinearity arises. However, in order to abstract the
train dynamics and send the running times to the scheduler, linear dynamics are much more
tractable and therefore desirable to handle. The goal is to end up with a linear hybrid system
where:

1. All nonlinearity that is introduced due dependence of speed is omitted without com-
promising the trajectory simulation.

2. The time consumed for the trajectory of the linearized system should be equal to the
time consumed by the nonlinear system.

The first condition advocates that the nonlinearities are taken care of by approximating them
by a Piecewise affine (PWA) system just as in [21]. The second condition resembles mostly the
first, but emphasizes that though there may be a mismatch between the real and simulated
trajectory, the part that is most important for scheduling, timing information, is preserved.
As can be seen from Figure 4-1, the total force behaves less nonlinearly than the traction
force limit curve, this is because the total force is the difference between the resistance and
traction force and some of the nonlinearities cancel out in this equation or are less significant.
Therefore, the following PWA approximation is proposed for the maximum traction force:

fPWA,tot =
{
s0 + c1v if v ≤ vswitch
s1 − s2v if v > vswitch

(4-11)

With the new coefficient s0..s2 are chosen so that the error between ft(v)− r(v) and fPWA,tot

is minimized.

So far, we have only looked at the Force - Speed dynamics, when actually the more interesting
dynamics are the Speed - Time and Distance - Time relations since they directly show the
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PWA approximation
total driving force

constant

Figure 4-7: PWA approximation total driving force

nonlinear behaviour of the state of the train. Where the Force - Speed diagram shows only
a function of the input and one state variable, Figure 4-8 and Figure 4-9 indirectly show the
nonlinear input force for the linear approximation from Figure 4-7 as a function of speed, but
explicitly the components of interest i.e. the state ξ as a function of time. From these two
figures the PWA system is further simplified by grouping together linear vector fields.

linear approximation

constant

Figure 4-8: Speed - Time diagram

Both figures, Figure 4-8 and Figure 4-9 only shows a trajectory involving the three phases of
acceleration, cruising and braking. The coasting phase is not shown here, but it is easy to
see from Figure 4-1 that the resistance force also can be approximated with a single affine
function, therefore the cruising phase consists of one mode.

Grouping together the affine flows of the multi-mode acceleration- and braking phase, (4-11),
reduces each of these phases to one mode and therefore the resulting hybrid model has again
five modes, for each phase one mode. More specifically, this results in a hybrid dynamic model
with linear dynamics associated to each mode.
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linear approximation

constant

Figure 4-9: Distance - Time diagram

Furthermore, to simplify the system even more, every PWA approximation for the phases
acceleration,coasting and braking are replaced with a constant value independent of speed.
Figure 4-8 and Figure 4-9 also show the speed-time and distance-time profiles for a train that
is approximated with constant values for acceleration and braking.

What can be seen from these figures is that the total trajectory can be approximated with
the constants tuned so that this linearized, simplified model matches the nonlinear trajectory
as close as possibleat the start and end of the train run. This model is therefore a good
approximation for the total running time but causes an error; the trajectory is approximated
when the train is already running with an initial speed 0 < vinit < vmax. This error causes
a shorter running time than in reality and causes trains to be scheduled to early. To com-
pensate for this and be on the safe side, the maximum error can be calculated and used as a
compensation term. For this thesis we do not go into that direction since the main goal is to
show that the railway network or a part of it can be optimized during operation.

With the forces modeled as constants, the following simplified free body diagram for modeling
a train can be drawn:

m

s

F

Figure 4-10: free body diagram train

The equations of motion of the free body diagram can be derived from Newton’s law,

F = ma (4-12)

where m is the mass of the train, a the acceleration and F the vector sum of all forces acting
on the train without any dependency on speed.
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For the system in figure 4-10 this can be written as

F = ms̈ (4-13)

The state variables
ξ1 = s(t), ξ̇1 = ṡ(t) = ξ2

ξ2 = ṡ(t), ξ̇2 = s̈(t)
u = F (t)

(4-14)

The state space model becomes

[
ξ̇1
ξ̇2

]
=
[
0 1
0 0

] [
ξ1
ξ2

]
+
[

0
1/m

]
u (4-15)

where, ξ1 is the distance traveled in m
ξ2 is the speed of the train in m/s
u is the normalized force in N/kg
m is the mass of the train in kg

In order to implement this model for all five modes in a computer, the model must be dis-
cretized. The sampling time is Ts and is chosen as a tradeoff between calculation time and
accuracy, the maximal speed of a train limits the sampling time as the error is the largest
at high speeds. The method for discretization is ’zoh’ which means zero order hold. This
method is used because the input signal is discontinuous i.e. when the hybrid train model
switch to the next mode, this is assumed to be instantaneous.

The discretized model of equation 4-15 is

ξ(z + 1) =
[
1 Ts
0 1

]
ξ(z) +

[
0

Ts/m

]
u (4-16)

Both of the above rules are valid for the linearized hybrid model with F tuned for the three
phases where a net force acts on the system, acceleration, coasting and braking.

This system can be formalized into the hybrid automaton which is shown in Figure 4-11

Where ξ ∈ R2 is the two-dimensional state of the train, consisting of the distance s ∈ R+ and
speed v ∈ R+. Matrix A ∈ R2×2 contains the linear system description and matrix B ∈ R2 is
the input matrix, input u ∈ R is either the net (constant) normalized input. The net forces
acting on the mass are; acceleration force Facc in mode q1, coasting force Fco in mode q3,
braking force Fbr in mode q4 or zero in both modes q2, q5.

4-3 Abstraction using timed automata

In this section, we are setting up a procedure to abstract the continuous dynamics of each
mode of the hybrid automaton into clocks of a timed automaton. The timed automaton
should be able to follow the trajectories of the hybrid automaton and should therefore preserve
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q1
acceleration

ξ̇ = Aξ +Buacc
ξ ∈ Inv(q1)

q2
cruising
ξ̇ = Aξ

ξ ∈ Inv(q2)

q3
coasting

ξ̇ = Aξ +Buco
ξ ∈ Inv(q3)

q4
braking

ξ̇ = Aξ +Bubr
ξ ∈ Inv(q4)

q5
stopped
ξ̇ = 0

ξ ∈ Inv(q5)

Figure 4-11: hybrid automaton, linear train dynamics

reachability. The goal is to extract timing information and collect data from multiple hybrid
models, in this research this means multiple trains, and bring this timing information together
in a max-plus linear model that describes the interaction between the trains in a railway
network.
The idea to verify a hybrid dynamical system in a timed automaton is proposed by [16]. This
idea is briefly introduced in Chapter 2, the method [16] introduced depends heavily on the
assumption that the flows of each mode are bounded and go, if time goes to infinity, to one or
more disjointed positive limit sets. The strenght of this concept is that they do not assume
asymptotic stability of the equilibria, which is in general stricter than the existence of limit
sets. However, the strength of this method is unfortunately also the main drawback. The flows
must be bounded and have a finite limit point. Now, if the hybrid automaton of Figure 4-11 is
considered, it is easy to see that the flows of the vector fields are not bounded and do not sink
into finite limit points. Therefore, the method of [16] can not be directly applied. However,
in this section we propose new conditions that hold for the hybrid automaton representing
the train dynamics as in Figure 4-11.
The first condition introduced is that in every mode of the hybrid system, the state space
of that mode described by differential equations, is locally Lipschitz continuous. If M is a
compact metric space, then the function describing the vector field is locally Lipschitz if and
only if it is Lipschitz continuous for every compact subset of M , given as; f : M →M . This
condition states that the functions in every mode are continuously differentiable and this will
simplify the calculation of timing constraints for the timed automaton.
The guards and invariants play an important role in switching between different modes in the
hybrid automaton. The guards allowing a discrete jump to another mode, whereas invariants
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dictate a discrete jump, so if the invariant is not satisfied anymore, the system is forced to
jump to another hybrid mode. So guards can also be viewed as lower limits for a discrete
jump and invariants are the upper limits.

Proposition:
- To provide unique trajectories that hold for the lower and upper time bounds, the transition
relation given by the guard does only enable a jump to the next hybrid mode at the edge of
the set. So, when a trajectory did not take the lower bound to jump, it must remain in the
hybrid mode until the invariant condition states that a transition must take place. This way,
the trajectory is only allowed to make a discrete transition at two distinct points in times,
namely when the edge of the guard set is reached and when the invariant condition is no
longer satisfied.

All flows in a mode must flow through the guards and invariants of that mode. Formally we
define a distance metric dist(p,s) which is zero when the flow from a certain point p reaches
the guard or invariant set.

With the sets defined as: Gs ⊂ M contains the guards and invariant set and Q ⊂ M where
Q ∩Gs = ∅ ∀p ∈ Q we have that:

limt→tG dist(φt(p), G(q, q∗)) = 0
limt→tI dist(φt(p), Inv(q)) = Br

(4-17)

with tG ≤ tI < ∞. If p already starts at a point where the guards are enabled, ∀p ∈ Gs it
holds that:

limt→tI dist(φt(p), Inv(q)) = Br (4-18)

with tI <∞

where dist(p,s) is the euclidian metric ||p− s|| with p, s ∈M .

This assumption prevents that the flows in a certain mode have an equilibrium point that is
somewhere in the invariant set, therefore preventing the system to jump to the next mode.
However, if an equilibrium point exists in the boundary of Inv(q), a small ball of radius Br
[13] around this equilibrium is included. This ball of radius ensures that the flows will reach
the invariant in finite time. Because, if there is an equilibrium in a mode that lies within the
invariant set, then the hybrid system is not able to perform any transitions to other modes
and therefore cannot reach the goal-set.

An example that shows these properties is illustrated in Figure 4-12

The flows φt will first reach the guard set in finite time and later reach the ball of radius
around the invariant set. The ball of radius is needed to reach the edge of the invariant in
finite time, because the stable limit point of the system is included in the invariant. If a point
p is at a point that the guards are enabled, then the flows will not leave the guard set but
will flow through to the invariant.

Figure 4-13 clearly shows that it is not necessary to have an equilibrium point contained in
the guards. However, both (4-17) and (4-18) are valid and provide a consistent mapping for
all the flows that fall into the compact subset of M .
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Gs

Br

Figure 4-12: flows whithin a hybrid mode with equilibrium point

Gs

Invs

Figure 4-13: flows within a hybrid mode without equilibrium point

Furthermore, it must be ensured that the guard set GS and the invariant set InvS are at the
same distance in a fixed time, because we want to ensure a consistent switching between the
hybrid modes in terms of a lower and upper bound on the process time. This means that it
should hold

dist(Gs, Invs) = inf{dist(φT (p), g)|p ∈ Gs, g ∈ Invs} for a fixed T. (4-19)

This means that the two sets are at a constant ’distance’ (actually the distance is a time
along the trajectories of function f) T away from each other. Applying this to both figures,
Figure 4-12 and Figure 4-13 yield the following:

Figure 4-14 shows for both figures two different trajectories to go from the edge of the guard
set to the edge of the invariant set. It is clear that all the trajectories in Figure 4-14a flow
from the guard to the edge of the invariant set in the same time. Therefore (4-19) holds and
T1 = T2 for any starting point p on the boundary of set Gs. For Figure 4-14b is it clear
that this will not hold. Imagine that a first trajectory starts at the intersection of the guard
set with the invariant set. Clearly, the same time the guard is reached, the invariant is no
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Gs

Br

T1

T2

(a) time duration for the flows to go from the guard
edge to the ball of radius around the equilibrium

Gs

InvsT1
T2

(b) time to go from the guard to the invariant set

Figure 4-14: example regarding the positioning of the guard set w.r.t. the invariant set

longer satisfied and the system is forced to jump to the next mode i.e. T1 = 0. However, if
a trajectory starts from a second point that does intersect with both sets then T2 6= 0 and
therefore (4-19) does not hold for this second figure.

For the hybrid automaton in Figure 4-11 holds that multiple invariant sets, Invni ∈ I where
ni = {1...Ni} and Ni the number of invariant sets, can identified on the basis of track con-
straints. A track can be divided into multiple regions where each region holds a different speed
limit. We propose that each region is considered as a separate invariant set. By dividing the
total trajectory into these regions, every region has a single speed limit associated to it and
can therefore described by an invariant of the speed limit, where the speed limit is continuous
with no discrete transitions to another speed limit in that invariant.

If we have for example a track between two stations with three different speed limits, vmax,1,
vmax,2 and vmax,3 divided over the track as follows:

v

s

vmax

{Inv}

1 2 3 4 5

sp0 sp1 sp2
sp3 sp4

sp5 sp6 sp7

Figure 4-15: identify invariant sets for 3 different speed limits

From Figure 4-15 can be determined that there are five invariant sets where for each of
these regions holds that the invariant has its own dependence on the maximum speed. The
invariants are configured so that they divide the state space into time equivalence classes if
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the minimal running time is considered. Sets 1,3 and 4 have the constraint that v ≤ vmax
where vmax is a constant. Set 2 and 5 exist because the maximum speed makes a transition
between two speed limits. In these sets, the constraint v ≤ vmax still holds, but now the
maximum speed is a function of the distance s.

In Figure 4-16, where the speed against the time is plotted, it can be clearly seen how a timed
trajectory for the minimal time is obtained. For the minimal running time, the paths of the
hybrid automaton are forced to take the fastest route in order to reach the next destination as
fast as possible. Minimization of the running time leads thus to a reduced timed automaton.
In contrast to the hybrid automaton in Figure 4-11 where any edge can be taken if the guard
is enabled. For minimal running time, the guard set is reduced to the invariant set such that
a transition is forced and therefore can be steered into the optimal direction i.e. minimizing
the running time.

v

t

T1 T2 T3 T4 T5

Figure 4-16: uninitialised time equivalence classes for minimal running time

Every invariant set consists of at most two hybrid states to reach the next set along the
optimal trajectories of a minimal running time. Furthermore, in this example the state space
is partitioned so that the invariant set I = {1, 2, 3, 4, 5} consists of multiple positively invariant
sets P where:

P1 = {2, 3, 4, 5}
P2 = {3, 4, 5}
P3 = {4, 5}
p4 = {5}

P4 ⊂ P3 ⊂ P2 ⊂ P1 ⊂ I

(4-20)

This means that if a trajectory starts in P2 \ P3, the trajectory has to propagate to P3.
Because the sets are positively invariant, a trajectory that starts in P3 cannot propagate to
P2 \ P3. This means that a train is not allowed to head back to the starting position, but is
forced towards the destination station. The different sets and invariant classes are depicted
in Figure 4-17
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q1
acc

q2
const

q3
acc

q4
br

q5
acc

q6
const

q7
acc

q8
const

q9
acc

q10
br

Inv 1

Inv 2

Inv 3

Inv 4

Inv 5

P4

P3

P2

P1

I

Figure 4-17: initialization for every invariant set in I

4-3-1 Time equivalence classes of the timed automaton

The procedure for finding the timed trajectory for the minimal running time first needs the
calculation of the time equivalence classes for every invariant set in I. Thereafter, the timed
automaton has to be initialized in order to get the real timed trajectory from the point at
which the train is on the track when the state is transmitted towards the scheduler. A minimal
time trajectory is built from a maximal acceleration curves, cruising at maximal speed and
maximal braking curves. By integration of (4-15), for uniform acceleration, the formula for
the distance is given by:

v =
∫

u

m
dt =

∫
a dt

= v0 + at
(4-21)
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and
s =

∫∫
u

m
dtdt =

∫∫
a dtdt

= s0 + v0t+ 1
2at

2
(4-22)

combining (4-22) and (4-21) yield the formula that relates directly the speed and distance by:

v =
√

2a(s− s0) + v2
0 (4-23)

and rewritten for the distance:
s = v2 − v2

0
2a + s0 (4-24)

With a the acceleration in [m/s2], s the displacement in [m], v the velocity in [m/s] and v0,
s0 the initial speed and initial displacement, respectively. It can be easily verified that if
the acceleration is negative i.e. the train is braking, that v0, s0 are the final speed and final
position of the curve. When the acceleration is positive, v0 and s0 are the initial speed and
distance.
The switching points spns ∈ RNs with Ns the number of switching points, and at what distance
the hybrid automaton switch from one mode to another must be determined in order to
simulate the behaviour of the train. The switching points for the example in Figure 4-15 for
the minimal running time are given by (sp0...sp7). With the switching points and knowledge
of the speed limit on the track, the switching points can be determined with (4-24).

When considering the example in Figure 4-15, the switching points (sp0,sp3,sp4,sp7) are al-
ready fixed by the mapping of the three different speed limits (vmax,1...vmax,3). Then we have
two types that determines a switching point. With the first type, a switching point is reached
from a fixed switching point by acceleration from this point, with the second type a fixed
switching point is reached after braking. In the proposed example, (sp1,sp5) belongs to the
first and (sp3,sp6) belongs to the second type. With this information, we can conclude:

sp1 =
v2

max,1
2aac

+ sp0 (4-25)

sp5 =
v2

max,3 − v2
max,2

2aac
+ sp4 (4-26)

sp2 =
v2

max,1 − v2
max,2

2abr
+ sp3 (4-27)

sp6 =
v2

max,3
2abr

+ sp7 (4-28)

Now, the time equivalence classes T can be calculated for all invariant sets by solving (4-22)
for t by completing the squares:

t =
−v0 ±

√
v2

0 − 2a(s0 − s)
a

(4-29)
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If we again consider the example from Figure 4-15 the trajectory is divided into the following
time equivalence classes:

T1 = t1 + t2 =
√
−2aac(sp0 − sp1)

aac
+ (sp2 − sp1)

vmax,1
(4-30)

T2 = t3 =
−vmax,2 −

√
v2

max,2 − 2abr(sp3 − sp2)
abr

(4-31)

T3 = t4 = (sp4 − sp3)
vmax,2

(4-32)

T4 = t5 + t6 =
−vmax,2 +

√
v2

max,2 − 2aac(sp4 − sp5)
aac

+ (sp6 − sp5)
vmax,3

(4-33)

T5 = t7 = −
√
−2abr(sp7 − sp6)

abr
(4-34)

by filling in ((4-26) - (4-28)) into ((4-31) - (4-34)), the T equivalence classes become:

T1 = vmax,1
aac

+ (sp2 − sp1)
vmax,1

(4-35)

T2 = vmax,2 − vmax,1
abr

(4-36)

T3 = (sp4 − sp3)
vmax,2

(4-37)

T4 = vmax,3 − vmax,2
aac

+ (sp6 − sp5)
vmax,3

(4-38)

T5 = −vmax,3
abr

(4-39)

Every set ni ∈ I has a time equivalence class associated to it. With the information about
the number of invariant sets Ni, a timed automaton can be formed that is an abstract version
of the hybrid automaton of Figure 4-2. The timed automaton is as follows:

start
ξ̇TA = 1
ni ∈ I

ξ̇TA = 1
ni ∈ I

ξ̇TA = 1
ni ∈ I

stop
ni /∈ I

ξTA ≥ T1 ξTA ≥ TNi

Figure 4-18: general timed automaton for a train run

where ξTA ∈ R+ is the state of the timed automaton and the evolution of the state is equal
to one since it is a clock variable. The start mode lies within the invariant set I as do all the
modes that are involved in the minimal running time, but the stop mode is modeled outside
the invariant set I because the continuous time dynamics of the hybrid automaton are zero
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for every state variable. The goal is to reach the next station, because from there the train
can travel further through the network. Because it is not assumed that a train stops on the
track before reaching the station area, this stop mode only appears once in the hybrid state
trajectory and can stay there as long as desired. Because this waiting time does not belong to
a class where the state of the hybrid system evolves over time, this part does not contribute
to the running time between station and is therefore excluded from invariant set I.

Note that we aim for the minimal time to traverse an invariant set. The calculation of the
equivalence classes therefore, takes into account only the minimal time that is needed for the
trajectories to reach the guard. In doing so, all trajectories that represent a slower path to
the destination should be forgotten.

4-4 Determine switching points of the hybrid automaton

In order to determine the total minimal running time of a train as described in section 4-3,
the switching points for which the train has to brake or accelerate must first be known. We
consider three types of switching points following from acceleration or braking or both. First,
we consider the case where a braking or acceleration curve intersects with the maximum
speed. The maximal speed is known for the whole train line and the restriction of the speed
includes that if a section with a lower maximum speed follows after a section with a higher
maximum speed, the train has to brake so that at the entrance of the section with the lower
speed limit, the train has an entrance speed of that speed limit. A speed less than the speed
limit is allowed only in cases where the block sections are so short that the maximum speed
cannot be reached before braking again for the next speed limit.

With the next three cases, all switching points can be obtained so that the constraints for
the speed restrictions are satisfied. Since no coasting is present in the minimal running time
trajectory, only three different curves can be applied. The acceleration and braking curves
are derived from (4-23) and the maximum speed is assumed to be constant. The section in

(s0a, v0a)
s

Figure 4-19: intersection, acceleration curve with maximum speed

Figure 4-19 has a maximal constant speed vmax associated to it. When a train is accelerating
towards this maximum speed from an initial known begin speed v0a and begin position s0a
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the point for which the train reaches this maximum speed is obtained with:

vmax =
√

2aacc(s− s0a) + v2
0a −→ s = v2

max − v2
0a

2aacc
+ s0a (4-40)

(s0b, v0b)
s

Figure 4-20: intersection, braking curve with maximum speed

The section in Figure 4-20 also has a constant maximum speed, but this time a train has to
brake to reach the desired end speed v0b at position s0b. The switching point is determined
with:

vmax =
√

2abr(s− s0b) + v2
0b −→ s = v2

max − v2
0b

2abr
+ s0b (4-41)

Note that the initial state of the train is taken differently by braking than with the acceleration
curve. Whereas it is logical for determining the switching points for every section associated
to the acceleration curve in ascending order, for braking it is more convenient to start with
the last section and work backwards in a descending order through the sections with different
speed limits. This is because the way the braking curve is calculated is also in the reverse
direction of the train movement.

The last case is where the train does not have time to reach the maximum speed since it
intersects before the speed limit with the braking curve for the next section.

(s0a, v0a)

(s0b, v0b)
s

Figure 4-21: intersection acceleration and braking curve
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The switching point is obtained by:√
2aacc(s− s0a) + v2

0a =
√

2abr(s− s0b) + v2
0b −→ s = 2aaccs0a − 2abrs0b + v2

0b − v2
0a

2(aacc − abr)
(4-42)

With these three cases, all switching points can be obtained for an arbitrary number of
different maximum speed sections over a track. These switching points can then be used for
determining the minimal running time.
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Chapter 5

Model Predictive Control used for
scheduling

The abstraction level provides predictions for the running times of all trains in the network
to the scheduling level. The scheduler schedules the trains according to a timetable that
minimize delays and optimizes performance of the railway network. The predictions of the
different trains are not coupled and are sent individually to the scheduler. To stimulate safe
distances between trains a headway is introduced. As a result, the scheduler can schedule
the macroscopic railway network only up to the precision of the prediction of this headway.
In this chapter, we propose an iterative scheduling process that starts with the prediction of
the running times and comes up with a feasible schedule. The next step is to implement this
schedule into a trajectory planner where the resulting arrival and departure times are again
fed back to the scheduler in order to check whether improvements to the control decisions
made by the scheduler are possible. The iterations stop if one of the predefined stop conditions
is satisfied. This concept allows inclusion of microscopic network actions to be considered by
the macroscopic network scheduler.

5-1 Constraints for modeling a macroscopic railway network

The evolution of a macroscopic model for a railway network can be modeled as a discrete-event
system [25]. Constraints relate the discrete-events, departure and arrival times of trains, at
stations. In nominal operation, the trains in the network have a fixed synchronization and
ordering between the discrete-events according to the timetable. The constraints that are
necessary for nominal train operations are running time constraints, dwell time constraints,
headway constraints and timetable constraints. We adopt the definitions for these constraints
from [24]:

• Running time constraints relates arrival and departure of a train run in the same cycle
with each other by separating these two events by a minimum running time:
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ai(k) ≥ di(k) + τr,i(k) (5-1)

with ai, di arrival and departure times for train run i in cycle k and τr,i the minimal
running time for train run i in cycle k.

• At some stations, a transfer between trains is given by the schedule. The dwell time
constraint therefore relates departure and arrival events of different train runs to each
other by:

di(k) ≥ ac(k − µi,c) + τdw,i,c(k) (5-2)

with ac as the arrival time of the connecting train for the transfer, τdw,i,c as the dwell
time for the transfer and k−µi,c indicating which cycle the connecting train is in. When
the connecting train is the same as train run i and µi,c = 0, then the dwell time is the
time for the passengers to board and alight the train at the station.

• With the method described in subsection 4-3-1, we are able to abstract the trajectory of
a single train into a running time that predicts when a train is able to arrive at the next
station. Since the abstraction predicts only times between stations, the scheduler can
only consider control decisions at the station. This means that in the macro network
the only nodes where trains can interact with each other are at the stations in the
network. The scheduler cannot handle control actions that require interaction between
two trains somewhere on the track. For example, the scheduler cannot directly control
the synchronization of two consecutive trains to maintain a safe distance between the
two, or if a line has a junction, merging or splitting lines, the scheduler cannot directly
synchronize trains at this point, because it lays on the track and not at a station. We are
considering a railway network where trains can only interact at stations. So, a railway
network consists of stations that are connected by times between those stations that
indicate how fast the stations can be reached by a particular train. However, because the
scheduler cannot directly handle synchronization between trains, indirectly the scheduler
has to be able to cope with these control decisions in order to end up with a feasible
schedule for the whole network. Including those constraints is thus necessary for good
performance of the network. Indirectly the constraints must be taken into account by
the scheduler. For the synchronization between consecutive trains a general constraint
is introduced which, rather than synchronize the trains for every block section, finds
a minimal time that holds for every block section and implements that at as a start
constraint for a consecutive train. In this way, the headway between two trains is not
directly controlled by synchronization for every block section but handled as a single
constraint, the minimal headway. This constraint is written as:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) (5-3)
ai(k) ≥ al(k − µi,l) + τh,a,i,l(k) (5-4)

with di, ai, dl, al the departure and arrival times for train run i and l, k the cycle
counter and µi,l establishes the link between train run i in cycle k and train run i in
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cycle k−µi,l and τh,d,i,l, τh,a,i,l is the minimum departure and arrival headway between
train run i and l.

• A railway network has to deal with multiple objectives and passenger satisfaction is an
important one. Keeping up with the timetable is of great importance to avoid delays, it
is therefore tempting to leave earlier than the scheduled departure time at the station.
However, this is as bad as a delay in terms of passenger satisfaction and can easily be
avoided by adding the timetable constraint for departures. Furthermore, sometimes a
train is not allowed to arrive earlier than scheduled, this leads to the constraints:

di(k) ≥ rd,i(k) (5-5)
ai(k) ≥ ra,i(k) (5-6)

with rd,i, ra,i the scheduled departure and arrival times.

With the above constraints a railway network with nominal conflict-free operation for all
trains can be described if we assume that the given timetable is feasible and conflict-free.
The event driven dynamical model for this network has a state that consists of the arrival
and departure events and the input to this network is the timetable. The constraints can be
recasted as an Max-plus linear (MPL) model when grouping together (5-1) - (5-1) as:

di(k) ≥ max
(
ac(k − µi,c) + τdw,i,c(k), dl(k − µi,l) + τh,d,i,l(k), rd,i(k)

)
(5-7)

ai(k) ≥ max
(
di(k) + τr,i(k), al(k − µi,l) + τa,i,l(k), ra,i(k)

)
(5-8)

We assume that the frequency of the departures and arrivals is as high as possible. This
assumption leads to a model where the trains depart and arrive as soon as the constraints are
satisfied. Therefore, the inequality constraints can be replaced by equality constraints and
the following model:

di(k) = max
(
ac(k − µi,c) + τdw,i,c(k), dl(k − µi,l) + τh,d,i,l(k), rd,i(k)

)
(5-9)

ai(k) = max
(
di(k) + τr,i(k), al(k − µi,l) + τa,i,l(k), ra,i(k)

)
(5-10)

Using the rules for max-plus algebra described in (2-14) and (2-15), the equality constraints
of (5-9) and (5-10) can be recasted as a MPL model, just as (2-25) by:

x(k) =
µmax⊕
µ=0

Aµ(k)⊗ (k − µ)⊕ r(k) (5-11)

with µ describing the relation between the current cycle k and another cycle µ cycles away.
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we define the state vector as:

x(k) =



d1(k)
...

dn(k)
a1(k)

...
an(k)


∈ R2n

max (5-12)

as a consequence the reference vector looks like:

r(k) =



rd,1(k)
...

rd,n(k)
ra,1(k)

...
ra,n(k)


∈ R2n

max (5-13)

The max-plus model of (5-11) is written in a compact form where Aµ ∈ R2n×2n
max .

5-1-1 Binary control variable

The model we obtained in (5-11) has a fixed model structure and can therefore not be changed
and thus not be rescheduled. The model as described in (2-26) has a structure where the
structure is not fixed anymore but the dynamics of the model can now be switched and give
room for control. Therefore, the model of (5-11) is extended with a binary switching variable
such that the fixed MPL model can be transformed into a Switching max-plus linear (SMPL)
model structure.

First of all, the max-plus binary variable s(k) ∈ {0, ε} is introduced. This variable can switch
a constraint on and off as follows.
Consider for example the variables c,d ∈ Rmax and the case that:

d ≥ c⊗ s (5-14)

The max-plus binary variable ensures that a constraint can become active or inactive. When
a constraint is active, the max-plus binary variable is equal to 0, and the constraint becomes:

d ≥ c if s = 0 (5-15)

However, when the variable is equal to ε = −∞ the constraint becomes,

d ≥ ε if s = ε (5-16)

Which is inactive because the variable d is always larger than ε and therefore the constraint
is trivially satisfied for any value of c.
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This control variable s(k) becomes an important tool in changing the order of constraints
by introducing the adjoint max-plus binary variable s̄(k) ∈ Rmax. The adjoint is the exact
opposite of s(k) such that:

if s(k) = 0, s̄(k) = ε (5-17)
if s(k) = ε, s̄(k) = 0 (5-18)

This way the constraints can be re-synchronized because:

d ≥ c⊗ s
c ≥ d⊗ s̄

In this way, this constraint set can only be active for one possible ordering in synchronization.

Since −∞ cannot be directly implemented, the max-plus binary control variable is adjusted
with a large negative number β � 0 instead of ε. A normal binary variable u(k) ∈ {0, 1}
is therefore introduced with its adjoint variable ū(k) ∈ {0, 1}. The new binary variable is
implemented as:

s = βu

s̄ = β(1− u)
with β large enough so that the constraints with the max-plus binary variable remain un-
changed compared to the new binary variable.

5-2 Optimization

The constraints for the departure and arrival events in a MPL model can be transformed into
the constraints of a SMPL model [10] with the help of a binary control variable. With the
ability of the SMPL model to brake synchronization, the model can be controlled in order
to come up with a new optimized timetable in case a delay is present. The optimization
problem for MPL systems can be solved as a Model predictive control (MPC) problem [26].
With the cost function defined for a certain objective and mixed-integer linear constraints.
The optimization problem is as follows:

min c>z
s.t. Az ≤ b

(5-19)

with
z =

[
d1 . . . dn a1 . . . an u1 . . . um

]>
(5-20)

and
c = [1 . . . 1︸ ︷︷ ︸

n

1 . . . 1︸ ︷︷ ︸
n

0 . . . 0︸ ︷︷ ︸
m

] (5-21)

where d,a are the continuous departure and arrival variables and u is the binary control
variable, variable c is a weighting vector, n the number of trains and m determines the
maximum number of control variables depending on the prediction horizon and the number
of control actions i.e. connecting different trains or ordering of trains.
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5-2-1 Constraints for ordering

We only consider the control action for breaking the synchronization between trains, in order
to allow a reordering control actions and obtain an optimized schedule by solving a Mixed-
integer linear programming (MILP) problem [27]. Reordering between two train runs i and
l is done by rewriting the headway constraints of (5-3) and (5-4) as a set of mixed-integer
linear constraints as follows:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) (5-22)
dl(k − µi,l) ≥ di(k) + τh,d,l,i(k − µi,l) (5-23)

ai(k) ≥ al(k − µi,l) + τh,a,i,l(k) (5-24)
al(k − µi,l) ≥ ai(k) + τh,a,l,i(k − µi,l) (5-25)

With a binary variable, (5-22), (5-24) and (5-23), (5-25) can be switched on or off at the
same time and able to change the order of the trains. The constraint for the arrival and
departure times di, ai and dl, al for both options, i before l and l before i are switched by a
single max-plus variable s and its complement s̄ that determines the order as follows:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) + s(k) (5-26)
dl(k − µi,l) ≥ di(k) + τh,d,l,i(k − µi,l) + s̄(k − µi,l) (5-27)

ai(k) ≥ al(k − µi,l) + τh,a,i,l(k) + s(k) (5-28)
al(k − µi,l) ≥ ai(k) + τh,a,l,i(k − µi,l) + s̄(k − µi,l) (5-29)

Implementing the max-pus variable with β ∈ R and u ∈ {0, 1}, this leads to:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) + βu(k) (5-30)
dl(k − µi,l) ≥ di(k) + τh,d,l,i(k − µi,l) + β(1− u(k − µi,l)) (5-31)

ai(k) ≥ al(k − µi,l) + τh,a,i,l(k) + βu(k) (5-32)
al(k − µi,l) ≥ ai(k) + τh,a,l,i(k − µi,l) + β(1− u(k − µi,l)) (5-33)

If β � 0 is chosen correctly, equation (5-34) - (5-37) is manipulated by u such that the
ordering between train run i and l is changed accordingly:

di(k) ≥
{
dl(k − µi,l) + τh,d,i,l(k) for u=0 ’active’
dl(k − µi,l) + τh,d,i,l(k) + β for u=1 ’inactive’

(5-34)

dl(k − µi,l) ≥
{
di(k) + τh,d,l,i(k − µi,l) + β for u=0 ’inactive’
di(k) + τh,d,l,i(k − µi,l) for u=1 ’active’

(5-35)

ai(k) ≥
{
al(k − µi,l) + τh,a,i,l(k) for u=0 ’active’
al(k − µi,l) + τh,a,i,l(k) + β for u=1 ’inactive’

(5-36)

al(k − µi,l) ≥
{
ai(k) + τh,a,l,i(k − µi,l) + β for u=0 ’inactive’
ai(k) + τh,a,l,i(k − µi,l) for u=1 ’active’

(5-37)
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5-3 Iteration between the microscopic and macroscopic railway network 53

5-3 Iteration between the microscopic and macroscopic railway
network

The infrastructure of the network that is implemented in the scheduler in section 5-2 is a
macroscopic version of the network. Since the MILP formulation in (5-19) is an optimization
problem that belongs to the class of NP-hard problems [28] it is therefore necessary to model
the network with less detail, because the computational complexity grows exponentially with
the number of variables. The macroscopic network includes stations and junctions modeled
by nodes and train lines modeled by single links. Microscopic models are more detailed and
contain more details about the infrastructure of the network. This detailed model typically
includes speed limits, block sections, signals and all tracks. Because the microscopic model
is detailed and takes into account the most important characteristics of the railway network,
this model is used for conflict detection of the general schedule given by the macroscopic
scheduler. This results in a conflict-free schedule. However, this conflict-free schedule does
not necessarily represent the most optimal schedule possible and therefore the main properties
of this schedule are fed back to the macroscopic scheduler to check for improvements in
the control variables. Stopping conditions are necessary to apply to the iterations because
otherwise a solution might not be found. The stopping conditions should at least contain a
maximum computations time to prevent that the iterations form a bottleneck for the whole
control system. Detailed stopping conditions for the iterations in the case study are defined
in Section 6-6-1.

Figure 5-1: Iterations between the macroscopic and microscopic network

Figure 5-1 shows the iterative behaviour between the scheduler which contains the macroscopic
characteristics of the network and the trajectory planner which takes into account the details
at the microscopic network level. The input for the scheduler is the predicted arrival and
departure times at the stations given by x̂ at time t(k) and the main timetable given as
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a reference r. The scheduler outputs a rough schedule to the trajectory planner and the
trajectory planner refines this schedule. In case of a conflict, the departure and arrival times
of the relevant trains are shifted into a feasible direction. This results in a new schedule, but
note that no actual scheduling control decisions are being made by the trajectory planner.
The planner is only allowed to turn the rough schedule into a feasible schedule with the fixed
control variables. So, no re-ordering, rerouting and re-synchronization can be done by the
planner, however their only task is to fit a feasible trajectory for all the trains according to
the microscopic constraints.

5-3-1 Safety control

The trajectory planner deals with the interaction between multiple trains and track con-
straints. The latter is mostly controlled by the signaling systems at the track and speed
limits for the sections of the track. After the optimal schedule is calculated, it is transmitted
to a lower level controller that controls the movement of the trains. This controller should, in
normal operations, only keep track of the trajectories put forward by the planner as a refer-
ence. However, in real-time operations there are extra constraints for this controller in order
to guarantee safe operation. The safety of a railway network is mainly because all trains keep
a safe distance from each other so that a train can always brake if a preceding train makes
an unscheduled emergency stop. The safety distances between the trains are maintained by
block sections where each block section is equipped with light signals to indicate a free en-
trance to that sections, or if a train is still on that block section, the latter train is blocked
with a red signal to prevent that train from entering the block section and therefore keeping
a safe distance between the trains. This practice is described in section 4-2. This means
that independent of the conflict-free reference trajectories given by the trajectory planner, an
event can still happen so that a block section cannot be released for an upcoming train and
this train must reduce its speed or even make an unscheduled stop before the entrance of this
block section. So, the line side signals for safety are an extra constraint for the lower level
controller and are independent of the predicted optimal schedule.

5-4 Summary

In this chapter, we laid out how the macroscopic model can be rescheduled when translating a
set of inequality constraints that form the MPL network into mixed-integer linear constraints
so that a SMPL network is obtained which can be solved by a MILP method for optimization.
A basic feasible schedule is obtained from the real-time abstracted railway network. Further-
more, we have introduced iterations between the macroscopic and microscopic network in
order to further optimize the schedule and end up not only with an optimized schedule ac-
cording to macroscopic constraints but take also into account the microscopic constraints,
thereby optimizing the interaction between trains.
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Chapter 6

Case study: Scheduling of a real-time
abstracted railway network

In this chapter, we outline a scenario of multiple trains running over a single train line. This
small network is abstracted at regular time intervals. The abstracted network contains the
predicted arrival times of the trains that are already on the track. All the predicted and
known process times are then modeled as a Switching max-plus linear (SMPL) framework,
subsequently this framework is optimized by Model predictive control (MPC) and the SMPL
framework is translated into a set of linear constraints which are solved by Mixed-integer
linear programming (MILP). The control actions considered are only to change the order of
the trains.

6-1 Case study: part of a railway network

In this case study we consider a small part of a large railway network. The corridor Rotterdam
CS - Delft CS [22] served as an example for our case study (number of stations in this
corridor and approximately the total line length). This corridor consists of three stations
(Rotterdam CS,Schiedam CS,Delft CS). These stations are renamed in the case study as
(A,B,C) respectively. We assume that at stations A and C, all trains must make a stop and
at station B only stop trains make a scheduled stop. Furthermore, we assume that the track
between the stations consists of a single line per direction. Also it is assumed that no trains
can be overtaken once on the track. Trains from different locations in the network arrive
at station A and eventually leave the track section at station C. Since it is assumed that at
station B no train can be overtaken, this station is abstracted away and only the running times
between station A and C are used in the optimization model. However, note that the stop
at station B is contained in the total running time between station A and C. Furthermore,
the track is divided into block sections to guarantee a safe distance between all trains. The
length of the block sections is equal divided over the whole track. The track in numbers: the
total track length between station A and C is 15000 meters and the block sections have a
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56 Case study: Scheduling of a real-time abstracted railway network

length of 1500 meters, with station B between A and C. The length of the block sections is
chosen so that it is larger than the longest worst case braking distance of all trains running
over over the track [19], also described in Section 4-2.

Figure 6-1: Track section considered for case study

The track section of Figure 6-1 is part of a larger railroad network and to place this in
perspective the following distributed optimization network [24] is shown for an entire railway
network. Note that [24] described this distributed network so that the MPC problem can be
handled efficiently.

Figure 6-2 shows how an entire railway network can be optimized in a distributed way. The
network is divided in sections and these sections are divided into micro sections. The track
section of Figure 6-1 is such a micro section. So, this case study is just a small part of a large
network.

Figure 6-2: Distributed representation of an entire railway network

6-2 Rolling stock

We assume three different train types on the track with different characteristics in maximum
speed, acceleration and braking behaviour. These characteristics are given in Table 6-1 and
comes from the typical values for the different train types in [29]. Furthermore, one of the
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trains is a stop train and has an extra stop at station B. At this stop the train cannot be
overtaken by other trains since we assume a single train line. In this case study, we study
only the train movements in one direction so that all trains run towards the same station and
not in the opposite direction. The parameters of the rolling stock are given in Table 6-1.

train type freight train stop train intercity symbol
train mass [kg] 2 · 106 1.8 · 105 3.2 · 105 m

pull up force [N] 3.8 · 105 9.3 · 104 1.4 · 105 Fa

friction force [N] −4.8 · 103 −1.44 · 104 −1.44 · 104 Fc

braking force [N] −3.8 · 105 −9.3 · 104 −1.4 · 105 Fb

maximum speed [m/s] 16.7 36.1 36.1 Vmax

Table 6-1: parameters per train type

The maximum speed is equal for both the stop train and intercity while the freight train has
a lower maximum speed. This is because a freight train has a much longer braking trajectory
than the lighter intercity’s and stop trains. Since we do not have access to realized train data
for the train types we have chosen, the forces and train masses for each train type follow from
an educated guess for the acceleration of each train type. We can make these assumptions
since the simulation is not compared to real train data and only to show how the control
decisions are being made in the case of a disturbance scenario.

6-3 Obtaining the timed automaton used for abstraction

For this case study, we want to get rid of the continuous dynamics present in the modes of
the hybrid automaton of Figure 4-11 and replace them with timing information in a timed
automaton.

First of all, keep in mind that we are not aiming at a full reproduction of all the trajectories
that can actually be made by the automaton in Figure 4-11, but only the minimal time
trajectories since these minimal process times are modeled as a Max-plus linear (MPL) model.
The assumptions and limitations made on the minimum run time of a train are:

• Between stations, only a single maximum speed limit is allowed.

• If a train has started with coasting or braking, the trajectory can no longer be changed.

• The track length is sufficiently long enough that it is always possible for a train to reach
the maximum speed from a starting station to the next station.

The first item is introduced to reduce the number of discrete transitions between the modes of
the hybrid automaton. The second item prevents the train from accelerating or cruising again
if that train already has started with coasting. There are only two paths left in acquiring a
minimum running time. One path includes coasting if the train for which a minimal path has
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mode of
operation at

time t

include in
minimal
running
time
q1

include in
minimal
running
time
q2

include in
minimal
running
time
q3

include in
minimal
running
time
q4

include in
minimal
running
time
q5

q5(start) x x x x
q1 x x x x
q2 x x x
q3 x x x
q4 x x

q5(stop) x

Table 6-2: mode sequence for minimal running time and different starting modes

been determined has already started with coasting and another path excludes coasting if the
real train on the track has not yet started with coasting.

It can be seen that mode q3, coasting, is always avoided except if the train already runs in
that mode. The hybrid automaton that is only valid for the minimal running time reads as:

q1
acceleration

ξ̇ = Aξ +Buacc
ξ ∈ Inv(q1)

q2
cruising
ξ̇ = Aξ

ξ ∈ Inv(q2)

q3
coasting

ξ̇ = Aξ +Buco
ξ ∈ Inv(q3)

q4
braking

ξ̇ = Aξ +Bubr
ξ ∈ Inv(q4)

q5
stopped
ξ̇ = 0

ξ ∈ Inv(q5)

Figure 6-3: hybrid automaton for minimal train run

Finally, for the timed automaton, the connection between q5 and q1 is also broken because
we make use of an initialized timed automaton with final state q5. This allows for unique
trajectories where the timed automaton provides the minimal running time for a particular
initialized trajectory.
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We assume that the guard set coincides with the invariant set and therefore we trivially
satisfy the condition in (4-19). Furthermore, the system has no equilibrium points that
prevent switching (and therefore preventing reaching the destination) until the stop mode is
reached. The speed of the train is by definition zero in q5 and the train can therefore stay
there in theory until infinity, ruining the actual running time between stations. To prevent
this from happening, the time in q5 of the timed automaton is set to zero by definition.

Furthermore, since we have fixed the maximum speed of the train, and have not allowed
cruising at a speed lower than the speed limit, we have a fixed tG = tI . The guard does not
depend on the speed and the distance anymore, but purely on the distance. Therefore, we are
able to construct rectangular constraints for the timed automaton, which makes it decidable.

q1
ξ̇ = 1

q2
ξ̇ = 1

q3
ξ̇ = 1

q4a
ξ̇ = 1

q5

q4b
ξ̇ = 1

ξ ≥ Tg,1

ξ ≥ Tg,2

ξ ≥ Tg,3

ξ ≥ Tg,4a

ξ ≥ Tg,4b

Figure 6-4: timed automaton

An extra mode is introduced, because the hybrid automaton of Figure 6-3 has two incoming
edges, from q2 and from q3, therefore this mode is split into two modes q4a and q4b in order to
obtain a single guard constraint and therefore a unique trajectory per mode. The trajectory
is unique, since modes q3 and q4b can only be accessed if a train on the track is in coasting
mode during optimization of the timetable.

6-3-1 Modeling a railway network

This case study uses the method described in [24], for modeling a railway network as a SMPL
model and how MPC can be applied to obtain to this model at each optimization instant.
The set-up of this case study is that there will be trains running over a single track, where the
track length is 15000 meter. The timetable repeats itself after 30 minutes and the ordering
is assumed as follows; the first train is an intercity, the second a stop train, then an intercity
again, a freight train and finally an intercity again in the nominal schedule as given in the
table:

The timetable is periodic with 30 minutes. With the autonomous behaviour it will be shown
that this nominal timetable is stable.
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Train Departure times [min] Arrival times [min] Minimal running times [min]
1 0 9 8.5
2 2 13 10.3
3 6.5 15.5 8.5
4 8.5 25 16.5
5 23 32 8.5

Table 6-3: Timetable for 5 trains over the same track

Departure Headway [min] Arrival Headway [min]
2 2
2 2
1.5 2
3.5 2
2 2

Table 6-4: headway constraints for the nominal order

r(k) = r(0)⊗ 30⊗k (6-1)

The autonomous behaviour of this example can be obtained with the equations in Section 2-
2-2 so that:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1) = A?0 ⊗A1 ⊗ x(k − 1) (6-2)
The event times for the first four cycles, are obtained as follows:

x(0) =



0
2

6.5
8.5
23
9
13
15
25
32


, x(1) =



25
27
29
31
35
34
37

39.5
47.5
49.5


, x(2) =



37
39
41
43
47

51.5
53.5
55.5
59.5
61.5


, x(3) =



49
51
53
55
59

63.5
65.5
67.5
71.5
73.5


By subtracting event times from consecutive cycles the cycle time behaviour is obtained:

x(1)− x(0) =



25
25

22.5
22.5
12
25

24.5
24.5
22.5
17.5


, x(2)− x(1) =



12
12
12
12
12
17
16
16
12
12


, x(3)− x(2) =



12
12
12
12
12
12
12
12
12
12


(6-3)
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What can be observed from (6-3) is that after some initial transient behaviour, the cycles
repeat within 12 minutes. This means that with a periodic timetable of 30 minutes, the
timetable is stable.

If the trains are allowed to switch in the cycle (k − 1), (k) and (k + 1). The max-plus model
for this system is [24]

x(k) = A0(k, u(k))⊗x(k)⊕A1(k, u(k− 1))⊗x(k− 1)⊕A−1(k, u(k))⊗x(k+ 1)⊕ r(k) (6-4)

x(k) = [d1(k) d2(k) d3(k) d4(k) d5(k) a1(k) a2(k) a3(k) a4(k) a5(k)]> (6-5)

A0,d(k, u(k))) =


ε 2⊗ ū2,1 2⊗ ū3,1 3.5⊗ ū4,1 2⊗ ū5,1

2⊗ u2,1 ε 2⊗ ū3,2 3.5⊗ ū4,2 2⊗ ū5,2
2⊗ u3,1 2⊗ u3,2 ε 3.5⊗ ū4,3 2⊗ ū5,3

1.5⊗ u4,1 1.5⊗ u4,2 1.5⊗ u4,3 ε 1.5⊗ ū5,4
2⊗ u5,1 2⊗ u5,2 2⊗ u5,3 3.5⊗ u5,4 ε

 (6-6)

A0,r(k, u(k))) =


τ1 ε ε ε ε
ε τ2 ε ε ε
ε ε τ3 ε ε
ε ε ε τ4 ε
ε ε ε ε τ5

 (6-7)

A0,a(k, u(k))) =


ε 2⊗ ū2,1 2⊗ ū3,1 2⊗ ū4,1 2⊗ ū5,1

2⊗ u2,1 ε 2⊗ ū3,2 2⊗ ū4,2 2⊗ ū5,2
2⊗ u3,1 2⊗ u3,2 ε 2⊗ ū4,3 2⊗ ū5,3
2⊗ u4,1 2⊗ u4,2 2⊗ u4,3 ε 2⊗ ū5,4
2⊗ u5,1 2⊗ u5,2 2⊗ u5,3 2⊗ u5,4 ε

 (6-8)

A0(k, u(k)) =
[
A0,d(k, u(k)) E
A0,r(k, u(k))) A0,a(k, u(k))

]
(6-9)

With A0,d, A0,a contains the respective departure and arrival headways and A0,r the minimal
total running times from begin station A till end station C.

Headway constraints between departure events of trains from the current cycle and next cycle.

A−1,d(k, u(k)) =


2⊗ ū16(k) 2⊗ ū12(k) 2⊗ ū9(k) 3.5⊗ ū7(k) 2⊗ ū6(k)
2⊗ ū21(k) 2⊗ ū17(k) 2⊗ ū13(k) 3.5⊗ ū10(k) 2⊗ ū8(k)
2⊗ ū25(k) 2⊗ ū22(k) 2⊗ ū18(k) 3.5⊗ ū14(k) 2⊗ ū11(k)

1.5⊗ ū28(k) 1.5⊗ ū26(k) 1.5⊗ ū23(k) 2⊗ ū19(k) 1.5⊗ ū15(k)
2⊗ ū30(k) 2⊗ ū29(k) 2⊗ ū27(k) 3.5⊗ ū24(k) 2⊗ ū20(k)


(6-10)
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62 Case study: Scheduling of a real-time abstracted railway network

Headway constraints between arrival events of trains from the current cycle and next cycle.

A−1,a(k, u(k)) =


2⊗ ū16(k) 2⊗ ū12(k) 2⊗ ū9(k) 2⊗ ū7(k) 2⊗ ū6(k)
2⊗ ū21(k) 2⊗ ū17(k) 2⊗ ū13(k) 2⊗ ū10(k) 2⊗ ū8(k)
2⊗ ū25(k) 2⊗ ū22(k) 2⊗ ū18(k) 2⊗ ū14(k) 2⊗ ū11(k)
2⊗ ū28(k) 2⊗ ū26(k) 2⊗ ū23(k) 2⊗ ū19(k) 2⊗ ū15(k)
2⊗ ū30(k) 2⊗ ū29(k) 2⊗ ū27(k) 2⊗ ū24(k) 2⊗ ū20(k)

 (6-11)

A1(k, u(k)) =
[
A−1,d(k, u(k)) E

E A−1,a(k, u(k))

]
(6-12)

Headway constraints between the departure events of trains from the current and previous
cycle.

A1,d(k, u(k − 1)) =
2⊗ u16(k − 1) 2⊗ u12(k − 1) 2⊗ u9(k − 1) 3.5⊗ u7(k − 1) 2⊗ u6(k − 1)
2⊗ u21(k − 1) 2⊗ u17(k − 1) 2⊗ u13(k − 1) 3.5⊗ u10(k − 1) 2⊗ u8(k − 1)
2⊗ u25(k − 1) 2⊗ u22(k − 1) 2⊗ u18(k − 1) 3.5⊗ u14(k − 1) 2⊗ u11(k − 1)

1.5⊗ u28(k − 1) 1.5⊗ u26(k − 1) 1.5⊗ u23(k − 1) 2⊗ u19(k − 1) 1.5⊗ u15(k − 1)
2⊗ u30(k − 1) 2⊗ u29(k − 1) 2⊗ u27(k − 1) 3.5⊗ u24(k − 1) 2⊗ u20(k − 1)


(6-13)

Headway constraints between arrival events of trains from the current cycle and previous
cycle.

A1,a(k, u(k − 1)) =
2⊗ u16(k − 1) 2⊗ u12(k − 1) 2⊗ u9(k − 1) 2⊗ u7(k − 1) 2⊗ u6(k − 1)
2⊗ u21(k − 1) 2⊗ u17(k − 1) 2⊗ u13(k − 1) 2⊗ u10(k − 1) 2⊗ u8(k − 1)
2⊗ u25(k − 1) 2⊗ u22(k − 1) 2⊗ u18(k − 1) 2⊗ u14(k − 1) 2⊗ u11(k − 1)
2⊗ u28(k − 1) 2⊗ u26(k − 1) 2⊗ u23(k − 1) 2⊗ u19(k − 1) 2⊗ u15(k − 1)
2⊗ u30(k − 1) 2⊗ u29(k − 1) 2⊗ u27(k − 1) 2⊗ u24(k − 1) 2⊗ u20(k − 1)


(6-14)

A1(k, u(k − 1)) =
[
A1,d(k, u(k − 1)) E

E A1,a(k, u(k − 1))

]
(6-15)

No known delays from the past, so the control inputs in A1(k, u(k− 1)) are defined as ui(k−
1) = 0, ∀i.

The current cycle is cycle 1. The control horizon will be set to be 40 minutes. So at time
instance X (25) the following events are happening:

X (25) =
[
a4(0) a5(0) d1(1) d2(1) d3(1) d4(1)

d5(1) a1(1) a2(1) a3(1) a4(1) a5(1) d1(2) d2(2)
]> (6-16)
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d1(k)
d2(k)
d3(k)
d4(k)

d5(k)

d1(k + 1)
d2(k + 1)

a4(k − 1)

a5(k − 1)

a1(k)

a2(k)
a3(k)

a4(k)

a5(k)

Figure 6-5: Time distance path of trains who are in the prediction horizon for the nominal
timetable

As can be seen, all event times from x(1) are scheduled in the interval (25, 65] and a part of
x(0) and a part of x(2). From Figure 6-5 can be seen that train a5−1 should be on the track
at t=25, however, what is not shown in this figure is the delay scenario created. The delay
scenario implies that train a4−1 stands still for a red sign, two blocks ahead of station A. Due
to this scenario is the train with arrival time a5−1 still waiting at station A for a red sign,
because the block section ahead is not cleared by the freight train. This scenario is pictured
in Figure 6-6.
Since the current cycle is defined as cycle 1, the event times from the previous cycle that did
not finish yet (a4(0) and a5(0)) are taken into account in the constraints because there order
cannot change anymore.
Since the max-plus binary variables ui associated to d3(2) − d5(2) and a1(2) − a5(2) are
outside the prediction horizon, they will be set to zero. Simplifying matrices A−1,d(k, u(k))
and A−1,a(k, u(k)) to:

A−1,d(k, u(k)) =


2⊗ u16(k) 2⊗ u12(k) ε ε ε
2⊗ u21(k) 2⊗ u17(k) ε ε ε

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

 (6-17)

and,

A−1,a(k, u(k)) = E (6-18)
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64 Case study: Scheduling of a real-time abstracted railway network

Figure 6-6: delay scenario for trains on the track

The control variables that can be changed are:

ψ(25) =
[
u2,1(1) u3,1(1) u4,1(1) u5,1(1) u3,2(1) u4,2(1) u5,2(1)

u4,3(1) u5,3(1) u5,4(1) u16(1) u12(1) u21(1) u17(1)
]> (6-19)
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6-3 Obtaining the timed automaton used for abstraction 65

the SMPL model becomes:



d1(1)
d2(1)
d3(1)
d4(1)
d5(1)
a1(1)
a2(1)
a3(1)
a4(1)
a5(1)
d1(2)
d2(2)



=
[
A0(1, u(1)) E

E A0(2, u(2))

]
⊗



d1(1)
d2(1)
d3(1)
d4(1)
d5(1)
a1(1)
a2(1)
a3(1)
a4(1)
a5(1)
d1(2)
d2(2)



⊕

⊕
[
A1(1, u(0)) E

E A1,a(2, u(1))

]
⊗
[
x(0)
x(1)

]
⊕
[
A−1(1, u(1)) E

E E

]
⊗
[
x(2)
x(3)

]
⊕ rtimetable

(6-20)

Note that the A matrices are not all full sized, as defined for all event times, but scaled
accordingly so that only the relevant headway constraints are taken into account valid for the
state defined for the control interval.

6-3-2 Model simplification and include abstraction times

The model put forward in (6-4) is valid for all cycles k and a schedule can be obtained for
a whole day, week or more. This is, however, not the aim of this case study, where we want
to optimize a part of the schedule for all current and a few upcoming trains. It is therefore
desired to simplify the model of (6-4) so that we end up with a model that correspond to
the model in (6-20) but without the dependency of cycle counter k. Furthermore, instead of
expressing the prediction and control horizon in a time frame, we would rather express them
as the number of trains we are optimizing at a time instance t. We do this because then all
relevant information for rescheduling is actually present in the model and a weighted decision
can be equally made for all trains in the optimization. The goal is a model that is only valid
for the events in the prediction and control horizon, however with the benefit that we can
model the whole control and prediction horizon as one cycle.
Instead of having a control horizon of 40 minutes as shown in Figure 6-5, we want to control
the order of the first 7 trains that can be reordered. Since at time t = 25, there are already
two trains on the track that can no longer be reordered (since the IC, after the stopped freight
train, is already at the track waiting to leave this IC is considered to be ’on the track’), the
control variables are already fixed, but are still included in the constraints. As can be seen in
(6-21), all events are virtually assumed to be in cycle 1 thereby simplifying the model of (6-4)
so that only the matrix of A0(k, u(k)) is preserved for the events that can be rescheduled.
The events that are included in the control horizon are given by:

X (25) =
[
a4−1(1) a5−1(1) d1(1) d2(1) d3(1) d4(1) d5(1)

d6(1) d7(1) a1(1) a2(1) a3(1) a4(1) a5(1) a6(1) a7(1)
]>
(6-21)
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66 Case study: Scheduling of a real-time abstracted railway network

The new SMPL model with all events virtually in the same cycle becomes:

a4−1(1)
a5−1(1)
d1(1)
d2(1)
d3(1)
d4(1)
d5(1)
d6(1)
d7(1)
a1(1)
a2(1)
a3(1)
a4(1)
a5(1)
a6(1)
a7(1)



=
[
A0(1, 1) E
Ac0(1, 1) A0(1, u(1))

]
⊗



a4−1(1)
a5−1(1)
d1(1)
d2(1)
d3(1)
d4(1)
d5(1)
d6(1)
d7(1)
a1(1)
a2(1)
a3(1)
a4(1)
a5(1)
a6(1)
a7(1)



⊕ rtimetable ⊕Aabstrr (6-22)

where A0(1, u(1)) ∈ R3×3
max from (6-9) is adjusted and extended with the two new trains.

The information about these trains can be extracted from Table 6-3 and Table 6-4 since the
timetable is periodic with 30 minutes. Matrix A0(1, 1) contains the arrival headways for the
trains on the track, but no control variables are associated with it since these trains cannot
be rescheduled anymore at time t = 25. The arrival headway between the two trains that are
on the track is 3, and since the order is fixed, A0(1, 1) becomes:

A0(1, 1) =
[
ε ε
2 ε

]
(6-23)

Matrix Ac0 ∈ R16×3
max is the connection matrix that connects the headways of the trains that

are going to be scheduled and the trains which cannot be rescheduled anymore. Since this
hold for trains that are already on the track, only an arrival event can still take place for
which a headway should be defined. Matrix A0(1, 1) fixes the order of the trains on the track.
Since all trains are modeled into one cycle, the arrival headway of the last train on the track
(in this case train a5−1 is the last one) is coupled via the minimal running time with the
departures of the trains to be rescheduled as follows:

Ac0(1, 1) =
[
(A1,a,last, row ⊗A0,−r)> E

E

]
(6-24)

where A1,a,last, row contains only the arrival headway’s of the last train on the track and all
other trains that come next, in this case that is the fifth row of A1,a:

A1,a,last, row =
[
2 2 2 2 2

]
(6-25)

Matrix A0,−r is the same as (6-7) but with the slight difference being that all τ ’s are replace
with −τ ’s, this is necessary because only the arrival headways are included. Since if a train is
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6-3 Obtaining the timed automaton used for abstraction 67

delayed, the arrival time related to this train shifts forward, but not necessarily the departure
time, therefore the delay is spread out through the arrival times of the trains on the track.

Aabstrr =



ra4−1minimal

ra5−1minimal

rd1 minimal
...

rd7 minimal

E


(6-26)

Matrix Aabstrr represents the values that follow from the actual conditions on the track. These
values are the fastest time for which the trains could arrive at their end station. The values
in the upper part of the vector ra4−1minimal and ra5−1minimal follow direct from the abstraction
for the trains on the track. The event times in the lower part follow from the abstraction of
another zone in the railway network. In this case study, it is assumed that these trains do
not encounter a delay and they could depart at station A at their scheduled departure times.
Note that we assume a buffer area at station A where the trains could wait for departure
without blocking other trains.
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68 Case study: Scheduling of a real-time abstracted railway network

6-4 Constraints

Writing out the constraints for (6-22) results in the mixed-integer linear constraints for which
the SMPL model is solved. These constraints are given as:

a4−1(1) = 29.5⊕ t⊗ τabs,4
a5−1(1) = 33.5⊕ t⊗ τabs,5 ⊕ 4⊗ a4−1

d1(1) =2⊗ ū2,1(1)⊗ d2 ⊕ 2⊗ ū3,1(1)⊗ d3 ⊕ 3.5⊗ ū4,1(1)⊗ d4 ⊕ 2⊗ ū5,1(1)⊗ d5

⊕ 2⊗ ū6,1(1)⊗ d6 ⊕ 2⊗ ū7,1(1)⊗ d7 ⊕−τ1 ⊗⊕2⊗ a5−1 ⊕ 30
d2(1) =2⊗ u2,1(1)⊗ d1 ⊕ 2⊗ ū3,2(1)⊗ d3 ⊕ 3.5⊗ ū4,2(1)⊗ d4 ⊕ 2⊗ ū5,2(1)⊗ d5

⊕ 2⊗ ū6,2(1)⊗ d6 ⊕ 2⊗ ū7,2(1)⊗ d7 ⊕−τ2 ⊗⊕2⊗ a5−1 ⊕ 34
d3(1) =2⊗ u3,1(1)⊗ d1 ⊕ 2⊗ u3,2(1)⊗ d2 ⊕ 3.5⊗ ū4,3(1)⊗ d4 ⊕ 2⊗ ū5,3(1)⊗ d5

⊕ 2⊗ ū6,3(1)⊗ d6 ⊕ 2⊗ ū7,3(1)⊗ d7 ⊕−τ3 ⊗⊕2⊗ a5−1 ⊕ 39
d4(1) =1.5⊗ u4,1(1)⊗ d1 ⊕ 1.5⊗ u4,2(1)⊗ d2 ⊕ 1.5⊗ u4,3(1)⊗ d3 ⊕ 1.5⊗ ū5,4(1)⊗ d5

⊕ 1.5⊗ ū6,4(1)⊗ d6 ⊕ 1.5⊗ ū7,4(1)⊗ d7 ⊕−τ4 ⊗⊕2⊗ a5−1 ⊕ 43
d5(1) =2⊗ u5,1(1)⊗ d1 ⊕ 2⊗ u5,2(1)⊗ d2 ⊕ 2⊗ u5,3(1)⊗ d3 ⊕ 2⊗ u5,4(1)⊗ d4

⊕ 3.5⊗ ū6,5(1)⊗ d6 ⊕ 2⊗ ū7,5(1)⊗ d7 ⊕−τ5 ⊗⊕2⊗ a5−1 ⊕ 55
d6(1) =2⊗ u6,1(1)⊗ d1 ⊕ 2⊗ u6,2(1)⊗ d2 ⊕ 2⊗ u6,3(1)⊗ d3 ⊕ 2⊗ u6,4(1)⊗ d4

⊕ 3.5⊗ u6,5(1)⊗ d6 ⊕ 2⊗ ū7,6(1)⊗ d7 ⊕−τ6 ⊗⊕2⊗ a5−1 ⊕ 60
d7(1) =2⊗ u7,1(1)⊗ d1 ⊕ 2⊗ u7,2(1)⊗ d2 ⊕ 2⊗ u7,3(1)⊗ d3 ⊕ 3.5⊗ u7,4(1)⊗ d4

⊕ 2⊗ ū7,5(1)⊗ d6 ⊕ 2⊗ u7,6(1)⊗ d7 ⊕−τ7 ⊗⊕2⊗ a5−1 ⊕ 64
a1(1) =τ1 ⊗ d1 ⊕ 2⊗ ū2,1(1)⊗ d2 ⊕ 2⊗ ū3,1(1)⊗ d3 ⊕ 2⊗ ū4,1(1)⊗ d4 ⊕ 2⊗ ū5,1(1)⊗ d5

⊕ 2⊗ ū6,1(1)⊗ d6 ⊕ 2⊗ ū7,1(1)⊗ d7 ⊕ 39
a2(1) =τ2 ⊗ d2 ⊕ 2⊗ u2,1(1)⊗ d1 ⊕ 2⊗ ū3,2(1)⊗ d3 ⊕ 2⊗ ū4,2(1)⊗ d4 ⊕ 2⊗ ū5,2(1)⊗ d5

⊕ 2⊗ ū6,2(1)⊗ d6 ⊕ 2⊗ ū7,2(1)⊗ d7 ⊕ 45
a3(1) =τ4 ⊗ d3 ⊕ 2⊗ u3,1(1)⊗ d1 ⊕ 2⊗ u3,2(1)⊗ d2 ⊕ 2⊗ ū4,3(1)⊗ d4 ⊕ 2⊗ ū5,3(1)⊗ d5

⊕ 2⊗ ū6,3(1)⊗ d6 ⊕ 2⊗ ū7,3(1)⊗ d7 ⊕ 49
a4(1) =τ4 ⊗ d4 ⊕ 2⊗ u4,1(1)⊗ d1 ⊕ 2⊗ u4,2(1)⊗ d2 ⊕ 2⊗ u4,3(1)⊗ d3 ⊕ 2⊗ ū5,4(1)⊗ d5

⊕ 2⊗ ū6,4(1)⊗ d6 ⊕ 2⊗ ū7,4(1)⊗ d7 ⊕ 59.5
a5(1) =τ5 ⊗ d5 ⊕ 2⊗ u5,1(1)⊗ d1 ⊕ 2⊗ u5,2(1)⊗ d2 ⊕ 2⊗ u5,3(1)⊗ d3 ⊕ 2⊗ u5,4(1)⊗ d4

⊕ 2⊗ ū6,5(1)⊗ d6 ⊕ 2⊗ ū7,5(1)⊗ d7 ⊕ 63.5
a6(1) =τ5 ⊗ d5 ⊕ 2⊗ u5,1(1)⊗ d1 ⊕ 2⊗ u5,2(1)⊗ d2 ⊕ 2⊗ u5,3(1)⊗ d3 ⊕ 2⊗ u5,4(1)⊗ d4

⊕ 2⊗ u5,5(1)⊗ d6 ⊕ 2⊗ ū7,6(1)⊗ d7 ⊕ 69
a7(1) =τ5 ⊗ d5 ⊕ 2⊗ u5,1(1)⊗ d1 ⊕ 2⊗ u5,2(1)⊗ d2 ⊕ 2⊗ u5,3(1)⊗ d3 ⊕ 2⊗ u5,4(1)⊗ d4

⊕ 2⊗ u5,5(1)⊗ d6 ⊕ 2⊗ u6,5(1)⊗ d7 ⊕ 75
(6-27)

With the max-plus binary variables transformed into conventional binary variables and max-
plus algebra transformed into conventional algebra, this leads to the following set of con-
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straints of the SMPL model:

d1 ≥



2 + (1− v2,1)β + d2

2 + (1− v3,1)β + d3

3.5 + (1− v4,1)β + d4

2 + (1− v5,1)β + d5

2 + (1− v6,1)β + d6

2 + (1− v7,1)β + d7

a5−1 − τ1 + 2
30

d2 ≥



2 + v2,1β + d1

2 + (1− v3,2)β + d3

3.5 + (1− v4,2)β + d4

2 + (1− v5,2)β + d5

2 + (1− v6,2)β + d6

2 + (1− v7,2)β + d7

a5−1 − τ2 + 2
32

d3 ≥



2 + v3,1β + d1

2 + v3,2β + d2

3.5 + (1− v4,3)β + d4

2 + (1− v5,3)β + d5

2 + (1− v6,3)β + d6

2 + (1− v7,3)β + d7

a5−1 − τ3 + 2
36.5

(6-28)

d4 ≥



1.5 + v4,1β + d1

1.5 + v4,2β + d2

1.5 + v4,3β + d3

1.5 + (1− v5,4β + d5

1.5 + (1− v6,4)β + d6

1.5 + (1− v7,4)β + d7

a5−1 − τ4 + 2
38.5

d5 ≥



2 + v5,1β + d1

2 + v5,2β + d2

2 + v5,3β + d3

3.5 + v5,4β + d4

2 + (1− v6,5)β + d6

2 + (1− v7,5)β + d7

a5−1 − τ5 + 2
53

d6 ≥



2 + v6,1β + d1

2 + v6,2β + d2

2 + v6,3β + d3

3.5 + v6,4β + d4

2 + v6,5β + d6

2 + (1− v7,6)β + d7

a5−1 − τ6 + 2
60

(6-29)

d7 ≥



2 + v7,1β + d1

2 + v7,2β + d2

2 + v7,3β + d3

3.5 + v7,4β + d4

2 + v7,5β + d6

2 + v7,6β + d7

a5−1 − τ7 + 2
62

a1 ≥



τ1 + d1

2 + (1− v2,1)β + d2

2 + (1− v3,1)β + d3

2 + (1− v4,1)β + d4

2 + (1− v5,1)β + d5

2 + (1− v6,1)β + d6

2 + (1− v7,1)β + d7

39

a2 ≥



τ2 + d2

2 + v2,1β + d1

2 + (1− v3,2)β + d3

2 + (1− v4,2)β + d4

2 + (1− v5,2)β + d5

2 + (1− v6,2)β + d6

2 + (1− v7,2)β + d7

43.5
(6-30)

a3 ≥



τ3 + d3

2 + v3,1β + d1

2 + v3,2β + d2

2 + (1− v4,3)β + d4

2 + (1− v5,3)β + d5

2 + (1− v6,3)β + d6

2 + (1− v7,3)β + d7

45.5

a4 ≥



τ4 + d4

2 + v4,1β + d1

2 + v4,2β + d2

2 + v4,3β + d3

2 + (1− v5,4β + d5

2 + (1− v6,4)β + d6

2 + (1− v7,4)β + d7

55

a5 ≥



τ5 + d5

2 + v5,1β + d1

2 + v5,2β + d2

2 + v5,3β + d3

2 + v5,4β + d4

2 + (1− v6,5)β + d6

2 + (1− v7,5)β + d7

62
(6-31)
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a6 ≥



τ6 + d6

2 + v6,1β + d1

2 + v6,2β + d2

2 + v6,3β + d3

2 + v6,4β + d4

2 + v6,5β + d6

2 + (1− v7,6)β + d7

69

a7 ≥



τ7 + d7

2 + v7,1β + d1

2 + v7,2β + d2

2 + v7,3β + d3

2 + v7,4β + d4

2 + v7,5β + d6

2 + v7,6β + d7

73

a4−1 =
{

38.5

a5−1 =
{

33.5
2 + a4−1

(6-32)

Now we can formulate the optimization problem where the objective is to minimize the total
delay, the total departure and arrival delays at the station. To order the constraints in a
structured way, the vector z contains all events that are in the control horizon and all the
control variables as:

z = [a4−1 a5−1 d1 . . . d7 a1 . . . a7︸ ︷︷ ︸
x

v2,1 . . . v7,6︸ ︷︷ ︸
v

]> (6-33)

For the seven trains, the objective function that is minimized is the following:

min
z



0
0
1
...
1
0
...
0



>

·



z1
z2

z3 − r3
z4 − r4

...
z16 − r16
z17
...
z35


(6-34)

s.t. the constraints defined above for the SMPL model hold. When this model is optimized for
z, the resulting vector shows that no reordering takes place because no delays are introduced
in the case study yet i.e. the binary control variables z17 . . . z35 are all equal to 1. The first
three events of z do not show up in the objective function because they cannot be controlled
and are only present in the constraints.

6-5 delays

In this section, we are going to study the scheduling actions when a delay is introduced in the
system. We have one train on the track that cannot be rescheduled. The delay is introduced
as follows, the freight train on the track is assumed to come to standstill before the entrance
of the third block section due to a disruption that causes a red signal. From there the train
has to wait until the signal turns green after which the train is allowed to travel to station C.
Time t = 25 is chosen to be the start of the optimization, furthermore at this time instant,
the traffic light turns green for the freight train on the track.
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6-5-1 Obtaining the minimal running times for trains on the track section

Since the train has come to standstill, the timed automaton starts with q1, then switches to
q2, q4a and to q5 since the coasting phase is not involved. We know that the block sections are
1500 m each, so the train has 3000 m traveled and 12000 m to cover since the total distance of
the track is 15000 m. With a single maximum speed limit, the switching points are obtained
just as in Section 4-3-1. With the switching points for the hybrid system known, the minimal
trajectory is obtained via abstraction of the hybrid automaton. The minimal running time
at t = 25 for the train on the track becomes:

conditions at t = 25 train a4−1 train a5−1

minimal running time to
reach station C 13.5 minutes 8.5 minutes

initial conditions (s, v) (3000,0) (0,0)

Table 6-5: minimal running times

where τ ′min in Table 6-5 represents not the total minimal running time from station A to C,
but the remaining running time from time point t = 25.
The minimal running time of the train is implemented in the mixed-integer linear constraints
of (6-22) where event time a5−1 is adjusted with this information.
This results in a model that is heavily delayed. The optimization showed that reordering
takes place by changing the order of trains 1,2 and 3 as can be observed in the second part
of vector z where the control variables are located.

v =
[

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]>

(6-35)

The control variables in (6-35) indicate that all seven trains are reordered so that the order
of the trains is now [2 3 1 4 5 6 7 ] instead of [1 2 3 4 5 6 7].
The total arrival delay for the seven trains is for this configuration as follows:

train ordering 2 3 1 4 5 6 7
delay [min] 0 3.1 11.9 5.2 0.3 0 0

This adds up to a total arrival delay of 20.5 minutes.
To set this total arrival delay in perspective, we need to obtain the delay propagation over
time in the uncontrolled case i.e. the trajectory planner plans the trajectories according to
the nominal timetable. This results in a total arrival delay of 34.2 minutes for the seven trains
in the control horizon.

6-5-2 Include energy consumption

The objective function in (6-34) assumes that the weights for all trains are equal. However,
the trajectory planner deals with making the trajectories of the trains energy efficient given
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the track constraints and the constraints given by the scheduler. It is therefore desired to
include a sense of energy efficient driving into the scheduling level. The more energy a train
consumes when it needs rescheduling, the higher the weight on the delays in the objective
function. The weight is the resistance to rescheduling or delaying a train. The train type
that consumes the most energy is obviously the freight train. This train does not stop at
the stations in the control horizon of the scheduler. If this train should make an unscheduled
stop or change speed this would cost a lot of energy. The stop train already stops at every
station so it does not cost extra energy to reschedule this train and therefore this weight is
not adjusted. In this case study, the intercity and the freight train make scheduled stops. A
non-linear weight is proposed for trains that does not make scheduled stops at the control
stations. This weight starts initially high and remains constant until the delay for that train
equals the breaking time since then the extra energy is already at its maximum and cannot
increase further. If a delay is larger than the stopping time for a nonstopping train, the train
must make an unscheduled stop, the weight is dropped and made equal with the other trains
that make a scheduled stop since the train is already taking up its extra energy consumption
and extra delay which does not add up to the extra energy consumption. So, the weight is a
constant up until the delay is equal to the braking time of this train after which the weight
drops to a weight that is equal to the other trains.
A continuous function is desired and therefore the weight function has the following form:

wf = wf0 + −wf0 + 1
1 + etbr−d

(6-36)

where wf0 is the approximate initial weight, delay d = z − r is zero, tbr is the braking time
for the freight train to come to a stop.
However, this weight function is not ideal. Since the weight for this train is no longer linear,
the MILP is turned into a mixed-integer nonlinear programming (MINLP) problem which is
not desired since only one train benefits from this complex weight and when this weight is
implemented the optimization can no longer benefit from the relaxation to the MINLP for-
mulation. Instead of using this complex weight, a linear weight is proposed that is considered
valid for all delays and therefore the weight wf0 is lowered by a factor so that the weight can
be implemented linearly, but now valid for the entire region such that the MILP formulation
is still valid and we can still take into account some energy consumption.

wfl = wf0

f1
(6-37)

where wfl is the linear weight function for the ongoing trains and f1 a weighting factor.
However, since all trains in this case study are said to make a scheduled stop at stations
A and C due to the trajectory planner limitations, we cannot directly alter the weights for
a train. To simulate the energy efficient behaviour and circumvent the trajectory planner
limitations, we propose a higher weight for the freight train despite the fact that this trains
already makes a scheduled stop. By showing that this train is more resistant to rescheduling,
possibly another optimum can be found for the rescheduling control variables.
With the new weight for the freight train (set to 5), another optimization is done and indeed
a new optimal ordering is obtained with the new control vector:

v =
[

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]>

(6-38)
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indicating a new ordering, now with the first four trains are reordered by the scheduler [2 3
4 1 5 6 7]. We observe that in contrast to the objective with normalized weights that the
freight train has more resistance to being delayed and therefore the order is different than
with the normalized weights. It can clearly be observed from Figure 6-10 that the freight
train has less delay according to the main timetable, however the total delay of all trains is
higher compared to the order obtained with equalized weights, shown in Figure 6-9.

The total arrival delay for the seven trains is for this configuration as follows:

train ordering 2 3 4 1 5 6 7
delay [min] 0 3.1 3.1 21.2 0.5 0 0

This adds up to a total arrival delay of 27.9 minutes. As expected the total delay is larger
compared to the optimization with equal weights for for all trains. The freight train has
much less delay. However, by inspecting this delay we noticed that it is actually still to high,
because 3 minutes is larger than the stopping time for this train. It is possible to completely
remove the delay of the freight train at the cost of a total arrival delay of 32.2 minutes and
the freight train is in this situation shifted forward to the second position. Although from an
energy efficient point of view this is the best solution, it is not from a time optimal point of
view. For this case study we are satisfied with the solution found in (6-38), since it showed
that we can actually increase the weights in the objective function to shift the, optimized for
time schedule, towards a more energy efficient schedule. Note that we are not able within
the limits of this case study to specify exactly what the weights should be for in the energy
efficient case.

6-6 Trajectory planner

The trajectory planner designed for this case study is built from basic functions to provide
just enough performance to complete the task. We stress that we did not focus on coming
up with the most ideal planner since that is not the purpose of this thesis. We wanted to
show that performance of the total system can be improved by performing a rescheduling
action at regular time intervals based on real-time information. This planner can calculate a
trajectory for a train with a single maximum speed. The track is divided into block sections
that provide safe distances between all trains as described before. The planner fits feasible
trajectories for the trains with information about the departure and arrival events from the
scheduling level. The rules for the planner given are:

• minimize coasting points.

• minimize the total run time.

• trains cannot depart or arrive before the time given by the normal schedule.

• the scheduler is only allowed to shift the arrival and departure times if needed, but does
not perform any control actions.
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• the track is divided into fixed block sections.

• a train is not allowed to cruise at a speed lower than the speed limit.

• trains are delayed at the departure station until it can run freely at maximum speed
over the track i.e. the headway is adjusted such that the minimal distance between
trains is equal to the block distance.

The first item states that a train should be going to coast as early as possible in order to
minimize energy consumption. The second item is part of the objective function to ensure
that a train leaves the departure station as soon as its allowed by the constraints. Both items
are contained in the objective function of the trajectory planner. The objective function can
minimize the running time of the trains as well as extend the running time by minimizing
the coasting point due to the constraints for safety and departure and arrival events. When
no schedule is provided, the planner plans the trains as early as possible. This can be viewed
in an example where four trains are running over the same track, the first is an intercity,
second a freight train and the last two trains are also intercity’s. For safety reasons due to
signaling, the intercity’s maintain a distance of at least two block sections (because we want
these fast trains to always see a green signal) where the distance between intercity and a slow
freight train is only one block section (the speed limit introduced by a yellow signal does not
affect the already low maximum speed). Also, the distance between a freight train preceding
a (faster) intercity is required to be at least two block sections due to safety and signaling.

Figure 6-7: Planning as fast as possible without timetable

The objective function has a penalty function for when the trains are planned with a delay to
the main schedule. This means that the weight for minimal running time is more important
than the weight for energy efficient driving.

Now back to the case study where the seven trains are rescheduled for a disturbance scenario.
The most important part of the scheduler is the control decisions that are made. These control
decisions capture the behaviour of the trains in the railway network. In addition to the control
decisions, the scheduler obviously outputs a schedule, however since the trajectory planner
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refines this schedule based on the control decisions and the main schedule. If no iterations
were planned for the schedule put forward by the scheduler, then the planner could use this
interim schedule from the scheduler for the trajectories of the trains. However, this interim
schedule is, in this framework, not used since the main results of the scheduler is the control
decisions that are made and not the schedule. The planner is much better equipped to obtain
the correct event times with the optimal control decisions. In this way only the information
where the control blocks are dedicated is collected and communicated. The headway times
contains information about the microscopic behaviour of the network and the control decisions
contain information about the macroscopic behaviour of the railway network. As can be seen
in Figure 6-7, the headway times for this particular order of the trains can be directly obtained.

Figure 6-8: nominal train runs

Now, first the trajectories are shown in Figure 6-8 for the nominal schedule for the 7 trains
that are later going to be rescheduled. This figure shows that the nominal schedule gives a
feasible planning and the nominal timetable is thus valid. In Section 6-5-1, we obtained an
optimal order of the 7 trains for the known delay on the track. This optimal order weights all
trains with the same weight and therefore the total delay is minimized as much as possible for
each train. The planning corresponding to the control decisions made is given by Figure 6-9

In Section 6-5-2, we obtained an optimal order of the trains with the delay introduced by the
train on the track. The information of the new order and the delay on the track is sent to
the trajectory planner where an optimal schedule is outputted back to the scheduler in order
to validate the trajectories and check if the control decisions made earlier still hold.

The planning, that is obtained by the planner, at time instance t = 24, is shown in Figure 6-
10. The weight of the objective functions are all equal so that the total delay is minimized in
this figure.

It can be seen directly from the figure that the delay does effect the schedule of the all trains
where it does have an effect on the first four. In contrast to the planning with the minimal
delay the planning of Figure 6-10, it does have a larger total delay, but since the weights have
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Figure 6-9: controlled time optimal planning for delayed trains

Figure 6-10: energy efficient planning for delayed trains

been adjusted towards energy saving, it has a lower energy consumption. It can be seen from
the figure that the delay of the freight train is reduced by half with respect to the minimal
delay optimization and is ordered now before train 1, so train 1 has been given a slightly
larger delay since the freight train weighs more.

In comparison, we show the planning for the delayed train in the uncontrolled case. Since
the nominal timetable of this part of the railway network is stable i.e. the eigenvalue of the
system matrix is smaller than the periodic cycle time.
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At the end of this chapter we can summarize the information streams needed for iterating to
an optimal order and schedule.

From scheduler to planner From planner to scheduler
- actual delays from abstraction

- delay introduced by microscopic constraints
- optimized order

Table 6-6: information exchange

In Table 6-6, the actual delays mentioned are the delays that come either from known delays,
such as the predicted extra waiting time for a train in the control horizon, or follow from
the calculated minimum running time if this minimum running time indicates a delay in the
main timetable.

The event times obtained by the planner are the actual optimal event times that take into
account the microscopic network constraints. This could mean that an extra delay is intro-
duced due to microscopic constraints and the current control decisions. This is implemented
in the scheduler as an extra set of constraints as follows.
These extra constraint during iteration between the planner and scheduler have the following
form:

r ≥
(
Nac −

(
Nac∑
i=1

vnac,i

))
β +

Nin∑
j=1

vnin,j

β + r + extradelay (6-39)

where v ∈ RN and N is the number of control variables, Nac is the number of control variables
that are active and change the order of trains, let vnacRNac be a vector containing the indices
of the control variables that are active with vnac,i the ith element of vector vnac , Nin = N−Nac

is the number of inactive control variables and let vninRNin be a vector containing the indices
of the control variables that are inactive with vnin,j the jth element of vector vnin .
Let us consider the control vector v as in (6-38). Then, for every event time that has an extra
delay due to microscopic constraints:

d ≥ (4− (v1 + v2 + v3))β + (v4 + ....+ v21)β + rplanner

a ≥ (4− (v1 + v2 + v3))β + (v4 + ....+ v21)β + rplanner
(6-40)

So only the arrival and departure events that introduce an extra delay, with respect to the
schedule obtained by the planner, are given an extra constraint as given in (6-39). In this
way, the constraint is active only for the exact combination that was sent to the planner.

In this case study, we do not consider the extra delays introduced at the departure events
because it was assumed that the departure station A has an infinitely large buffer for the
trains to wait for their departure so an extra delay introduced at the departure events does
not influence the connected railway network. Furthermore to simplify the implementation of
the extra arrival constraints, it is chosen to only add only one arrival delay per iteration. The
delay that introduces the largest mismatch between the scheduler and planner is picked for
this constraint in this case study.
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6-6-1 Iterations

An important part of the iterations are the stopping conditions. This is because no proof
of convergence to the optimal solution is given in this thesis, but with this defined stopping
conditions we are still able to tell something about the resulting schedule after that is send
to the lower level controller of the trains. The stopping conditions are defined as, stop if:

• a previous set of control variables matches the current set.

• the total delay introduced by the scheduler for the current iteration is higher than the
delay of the previous iteration.

• a predefined maximum number of iterations is reached.

The first condition prevents the system to enter an infinite loop of alternating between two
solutions. The second condition states that the current found schedule is always a better
overall schedule that the previous iteration. If not, the previous iteration is said to be most
optimal in this set of iterations. This condition is weak in the sense that a better solution
might be found after the solution with an increasing total delay. The reason for still using this
condition is that the trajectory planner is far from optimized and computationally expensive.
The last condition is obvious since we can control indirectly the computation time.

arrival events iteration 1 iteration 2 iteration 3
train 1 60.2 48.6 57.1
train 2 46.5 46.5 46.5
train 3 48.6 60.2 59.4
train 4 58.1 58.1 55
train 5 62.5 62.5 62
train 6 69 69 69
train 7 73 73 73
ordering 2-3-4-1-5-6-7 2-1-4-3-5-6-7 2-4-1-3-5-6-7

total delay [min] 27.9 27.9 32.2

Table 6-7: arrival event times per iteration

The arrival events obtained by the planner for the energy optimal case are given in Table 6-
7. The iterations are aborted during the third iteration after it comes clear that the total
delay, obtained by the planner, increases. For the first two iterations, the total delay is
exactly the same. As can be observed train 1 and train 3 are exchanged, but both these
trains are of the same type and therefore their characteristics are exactly the same. From an
engineering point of view, these two iterations cannot be distinguished, but it seems logical
for passenger satisfaction to pick the ordering what looks most like the main timetable, and
therefore iteration 2 is considered the most optimal schedule.
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6-7 Summary

In this chapter, we showed that an optimal schedule can be obtained by first getting a pre-
diction of the running times for all trains that are on the track and including these in the
constraints of the MILP formulation. We then performed optimization on the upcoming trains
with a MPC scheme. The outcome of this optimization was then used as a starting point for
the planner and, via iterations between planner and scheduler, subsequently an optimal was
schedule obtained.
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Chapter 7

Conclusions and Future research

This chapter is a summary of the contributions made by this thesis. The main focus of
this research is to abstract a hybrid dynamical system into a system where the dynamics
were completely removed and only timing information is preserved. Hereafter, this timing
information must be recasted into a Max-plus linear (MPL) system since max-plus algebra
is especially suited for describing nonlinear timing behaviour of semi-cyclic systems in a
linear fashion. Furthermore a feasible and especially optimal schedule must be obtained
via optimization where the optimization framework makes use of the Switching max-plus
linear (SMPL) model that is derived from the MPL model. The method of optimization
chosen was Model predictive control (MPC) for its constraint handling. However due to the
complexity of hybrid systems as a general class, it was decided that focus should be laid on
a railway network for which a case study is elaborated on.

7-1 Conclusions

Abstraction of hybrid systems

• We have derived an abstraction method with sufficient conditions for a limited class
of hybrid dynamical systems. This abstraction is then applied to a hybrid dynamical
model of a train so that we are able to extract the timing information from any moment
in time if the initial conditions for the trains on the track are known.

• The abstraction method is only valid for obtaining the minimal running times to com-
plete the event. The hybrid dynamical model of a train is adjusted with information
about the current speed limits for the block sections in which the track is divided for
safety reasons. This hybrid model of trains running over a track is modeled in the
case study as a Piecewise affine (PWA) model and because of the constraints set for
the hybrid modes and switching points, the optimal i.e. minimal running times are
automatically obtained.
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Scheduling and planning a railway network

• The resulting minimal arrival times, for the trains on the track section that is considered
for optimization, are compared to the scheduled arrival times so that, in case a delay
happens, rescheduling actions can be applied. This provides an optimal schedule at
regular intervals for which optimization is done.

• We showed how the schedule could be improved by adding extra constraints to the
optimization of the scheduler that results from planning operations by the trajectory
planner. The improvement of the schedule is done by iterating between scheduling and
planning level until the control variables match a previous solution by the scheduler.

7-2 Future research

• The application in this research has been focused on railway management, but sequential
interactive optimization can be applied to and can be beneficial for many more industrial
processes as has already mentioned in Chapter 3. The hybrid models for these systems
each have their own characteristics and the rules for abstraction may be revisited for
each process.

• The trajectory planner is represented only with basic functions in this case study since
it was not our main goal to find the most efficient trajectories but to find a framework
that is suitable to finding an optimal schedule at regular times based on real-time
information. The optimization that finds the trajectories is slow and the trajectories
have a limited behaviour due to this basic implementation. For further research, it is
advised to design a more sophisticated trajectory planner such as the one found in [21].

• This research has only focused on a very small part of the entire railway network, as
shown in Chapter 6. At this point of the thesis, we cannot draw conclusions for the
entire network based on only one sub-region of one of the many regions that form the
total railway network. Therefore, this research should be extended so that an optimal
schedule for all sub-regions can be obtained. It is known from the literature [24] that
distributed optimization can efficiently handle large scale MPC optimization schemes.

• As is already mentioned, the optimized schedule found after iterations is not necessarily
the global optimum. It would be interesting to show under what conditions, a proof of
convergence could be derived.

• Finally, the hybrid model used for abstraction makes use of a linear model. The error
introduced by this linearization is not further researched, but it is interesting to show
how this error influences rescheduling operations on the timetable and the effect on
the performance of the real railway network. Instead, another approach is to apply
advanced nonlinear dynamics to the hybrid model of a train and abstract that model
to obtain more accurate minimal running times.
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Appendix A

Matlab program case study

Overview

The matlab file case_study.m is the main file from where all functions are called by there
function syntax. This main file is structured as follows:

case_study.m

– Adjustable_Variables.m ← (require external inputs)

– Index_Matrices.m

– Abstraction.m

– Timetable.m ← (require external inputs)

– Constraints.m

– Constr_Pos_Delay.m

– Iterations.m

– intlinprog.m (function of the matlab Optimization ToolboxTM)
– Init_opti.m

– Nonlinear_opt.m
– fmincon.m (function of the matlab Optimization ToolboxTM)

– fun.m
– nonlcon.m

– Plot_Rescheduled_Train_Runs.m

every function will now be explained
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Adjustable_Variables

The main variables for the trains used in the case study are defined in this file.

synopsis

[beta, number_of_trains, tpc,trot,type, t_opt, weights, number_of_iterations, tau_r, head-
way_0d, headway_0a] = Adjustable_Variables();

description

The outputs in this function are loaded to the workspace and used in the subsequent func-
tions. This function does not require input arguments.

beta Large negative value for activating or deactivating the binary variables
number_of_trains number of trains considered in the control horizon
tpc trains per cycle, where a cycle is the periodicity of the timetable
trot trains on the track which cannot be rescheduled
type native order of trains in the main timetable sorted per type
t_opt the time the optimization is started
weights weights for the objective function in the MPC problem
number_of_iterations maximum number of iterations between the scheduling and planning level
tau_r minimum running times between the end and begin station
headway_0d departure headway matrix
headway_0a arrival headway matrix
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Index_Matrices

This function finds indexing variables used in the constraints.

synopsis

[U_index, UUt] = Index_Matrices(number_of_trains);

description

Given the number of trains, the switching variables are assigned to the headway’s between
the trains. Furthermore a matrix is build for indexing correct signs for the constraints.

U_index index matrix for building the MILP constraints
UUt matrix keeps track of correct + and - signs in the MILP constraint matrix
number_of_trains number of trains in the control horizon
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Abstraction

Finding the minimal running times.

synopsis

[L] = Abstraction(type, tpc, trot);

description

This function abstract the train dynamics of the trains on the track into minimal running
times to reach the end station. The output is used extend the arrival times of the trains on
the track with this real time information.

L minimum running times for the trains on the track to reach the end station
type native order of all trains expressed in train type
tpc number of trains per cycle
trot number of trains that are actually on the track
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Timetable

Timetable adjusted with real time information by abstraction.

synopsis

[r_main, r_on_track_main, r, r_abstr_on_track] = Timetable(t_opt, L, tpc, trot, head-
way_0a, beta, (r_abstr_on_track));

description

This function outputs the nominal timetable enriched with real time track information. Op-
tional is r_abstr_on_track as an input. In a distributed network, this is an input from
another optimized part of the railway network. In this case study, this input is omitted and
fixed in the function itself.

r_main main timetable for trains to be considered for rescheduling
r_on_track_main main timetable for the trains on the track
r timetable for trains to be rescheduled
r_abstr_on_track resulting timetable for trains on the track
t_opt time for which the optimization starts
L minimum running times for the trains on the track to reach the end station
tpc number of trains per cycle of the nominal schedule
trot number of trains on the track
headway_0a headway matrix used to separate arrival events of the trains on the track
beta large negative number
r_abstr possible timetable adjustment for trains to be rescheduled (optional)
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Constraints

Building the constraints for reordering

synopsis

[A1, V1, p1, p2, q1, s2] = Constraints(number_of_trains, UUt, U_index, beta, headway_0d,
headway_0a, r, tau_r);

description

This function builds the constraints for the MILP problem. The constraints are written as
Axx ≤ V .

A1 constraints ordering matrix, left side inequality for controllable trains
V1 constraints ordering vector, right side inequality for controllable trains
p1 number of departure constraints
p2 number of arrival constraints
q1 number of switching variables
s2 number of optimization variables
number_of_trains number of trains for optimizations
UUt matrix keeps track of correct + and - signs in the MILP constraint matrix
U_index index matrix for building the MILP constraints
beta large negative number for modeling max-plus binary variables
headway_0d departure headway matrix for trains to be rescheduled
headway_0a arrival headway matrix for trains to be rescheduled
r timetable for trains to be rescheduled
tau_r minimum running times for trains to be rescheduled
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Constr_Pos_Delay

Adding constraints that result from the abstraction.

synopsis

[A, V, sa2] = Constr_Pos_Delay(number_of_trains, tau_r, trot, r_abstr_on_track, A1,
V1, p1, p2, q1, s2);

description

Extra constraints are introduced that adds a possible delay scenario based on the outcome of
the abstraction.

A extended ordering constraints matrix, left side inequality
V extended ordering constraints vector, right side inequality
sa2 size of objective function MPC
number_of_trains number of trains considered for rescheduling
tau_r minimum running times for trains to be rescheduled
trot number of trains that are actually on the track and cannot be rescheduled
r_abstr_on_track actual arrival times for trains on track
A1 constraints ordering matrix, left side inequality for controllable trains
V1 constraints ordering vector, right side inequality for controllable trains
p1 number of departure constraints
p2 number of arrival constraints
q1 number of switching variables
s2 number of optimization variables
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Iterations

Iterate optimnized schedule between dynamic scheduler an trajectory planner.

synopsis

[v, x_ideal, times_ideal, times_all, I_ideal, pblock, T_ideal, Y_ideal] = Iterations( num-
ber_of_iterations, weights, number_of_trains, trot, A, V, sa2, s2, r, r_main, type, beta);

description

This function generates a loop over the interaction between the scheduler and trajectory
planner. For each iteration, the optimized schedule and control variables are stored in in the
workspace.

cpid matrix containing optimized coasting point and departure time
v stacked optimal control vector for every iteration
x_ideal optimized event times with the corresponding control vector
times_ideal optimized departure and arrival times
times_all optimized departure and arrival times for every iteration
I_ideal optimized ordering of trains
pblock vector containing blocking length information
T_ideal time vector per train result from simulation
Y_ideal distance vector per train result from simulation
number_of_iterations maximum number of iterations allowed
weights weights for the objective function of the MPC problem
number_of_trains number of trains in the control horizon
trot number of trains on the track which cannot be rescheduled anymore
A extended ordering constraints matrix, left side inequality
V extended ordering constraints vector, right side inequality
sa2 size of objective function MPC
s2 number of optimization variables
r timetable for trains to be rescheduled
r_main nominal schedule for the non delayed network
type native order of trains in the main timetable sorted per type
beta large negative number for modeling max-plus binary variables
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intlinprog

Solving the MPC problem.

synopsis

[xx, Fval] = intlinprog(w_tot, index_int_con, A, V, [], [], lower_b, upper_b)

description

This function solves the MPC optimization problem by a MILP formulation. The result is
an optimal ordering of the trains with their corresponding departure and arrival times.

xx optimal control vector containing event times and switching variables
Fval value of the objective function
w_tot extended weight vector
index_int_con vector containing the indexes of the integer variables
A matrix left side inequality
V vector right side inequality
lower_b lower bound of the control variables
upper_b upper bound of the control variables
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Init_opti

Initialization of the nonlinear optimization.

synopsis

[cpid, times, pblock, T_all, Y_all] = Init_opti(I, r_sched, type, number_of_trains);

description

This function collects the optimal ordering and minimal delay for the first train from the
scheduler and in this function are the track characteristics defined such as track length, block
lengths and dwell time.

cpid matrix containing optimized coasting point and departure time
times all event times for trains in the control horizon
pblock vector containing blocking length information
T_ideal time vector per train result from simulation
Y_ideal distance vector per train result from simulation
I optimized ordering of trains
r_sched timetable extended with delay information due to the abstraction
type assign train type to the train order
number_of_trains number of trains in the control horizon
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Nonlinear_opt

Trajectory planner.

synopsis

[cpid, times, delay, tau, headway_a, headway_d, T_all, Y_all] = Nonlinear_opt(schedule,
pblock, s_end, number_of_trains, type, s_interm_station, dwell_time, order_of_trains);

description

This function finds the trajectories for the trains via a nonlinear optimization function fmin-
con.m and includes microscopic constraints such headway constraints described by blocking
times.

cpid matrix containing optimized coasting point and departure time
times all event times for trains in the control horizon
delay arrival delay vector
tau actual running time according to the planner
headway_a arrival headway matrix
headway_d departure headway matrix
T_all time vectors for simulation of all trains ans all iterations
Y_all distance vectors for simulation of all trains and all iterations
schedule matrix of departure and arrival events according to delays and timetable
pblock vector containing blocking length information
s_end length of the track section
number_of_trains number of trains in the control horizon
type assign train type to the train order
s_interm_station location of the extra station for stop trains
dwell_time passenger transfer time for stop trains
order_of_trains order of trains according to the main timetable
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fmincon

Nonlinear optimization function, Matlab ToolboxTM.

synopsis

[x, fval, exitflag, output] = fmincon(@(x)fun(x, times(n,:), type, s_end, n, s_interm_station,
order_of_trains, schedule, v_max, a_acc, a_des, a_co),x0,a_ineq_fmin,b_ineq_fmin, [], [],
l_b_fmin,u_b_fmin,[1e5 1e5], @(x)nonlcon(x, times(n,:), pblock, type, s_end, n, s_interm_station,
dwell_time, order_of_trains,v_max, a_acc, a_des, a_co), options);

description

This function minimizes the objective function such that the nonlinear constraints are satis-
fied.

x vector containing departure time and start of coasting per train
fval objective function value
exitflag integer for evaluating the found optimum
output summary of optimization algorithm outcome
x0 initial point of x that satisfies all the constraints
a_ineq_fmin left side inequality constraints on x
b_ineq_fmin right side inequality constraints on x
l_b_fmin lower bounds on x
u_b_fmin upper bounds on x
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fun

Objective function of fmincon.m.

synopsis

[Opt_traj, dOpt_traj] = fun(x, times, type, s_end, n, s_interm_station, order_of_trains,
schedule, v_max, a_acc, a_des, a_co);

description

This function contains the objective for the trajectory optimization. For this function is given
that a trajectory is given by f(cp, id) that is, an optimal trajectory is a function of cp, which
is the time interval when a train starts to coast from the begin station and id which is the
departure time of that train.

Opt_traj
dOpt_traj
x vector containing departure time and start of coasting per train
times all event times for trains in the control horizon
type assign train type to the train ordering
s_end length of the track
n train number for which a trajectory is planned
s_interm_station location of the extra station for stop trains
order_of_trains order of trains according to the main timetable
schedule matrix of departure and arrival events according to delays and timetable
v_max speed limit for every train
a_acc maximum acceleration of a train
a_dec maximum deceleration of a train due to breaking
a_co deceleration of a train due to coasting
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nonlcon

Nonlinear constraints of fmincon.m.

synopsis

[c, ceq, dc, dceq] = nonlcon(x, times, pblock, type, s_end, n, s_interm_station, dwell_time,
order_of_trains, v_max, a_acc, a_des, a_co);

description

The nonlinear constraints are build where a trajectory is checked for each block section if a
safe distance is maintained. A safe distance is one or two block sections depending of the
train type.

c inequality constraint
ceq equality constraint
dc derivative of the inequality constraint
dceq derivative of the equality constraint
x vector containing departure time and start of coasting per train
times all event times for trains in the control horizon
pblock vector containing blocking length information
type assign train type to the train ordering
s_end length of the track
n train number for which a trajectory is planned
s_interm_station location of the extra station for stop trains
dwell_time passenger transfer time for stop trains
order_of_trains order of trains according to the main timetable
v_max speed limit for every train
a_acc maximum acceleration of a train
a_des maximum deceleration of a train due to breaking
a_co deceleration of a train due to coasting
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Plot_Rescheduled_Train_Runs

Plot the results of the iterated schedule.

synopsis

Plot_Rescheduled_Train_Runs(times_ideal, number_of_trains, pblock, I_ideal, T_ideal,
Y_ideal);

description

This function requires only input arguments from Adjustable_Variables.m and Iterations.m
to show the results of the optimized schedule found by the interactive framework.

times_ideal optimized timetable for the trains in the control horizon
number_of_trains number of trains in the control horizon
pblock vector containing blocking length information
I_ideal optimized ordering of trains
T_ideal time vector per train result from simulation
Y_ideal distance vector per train result from simulation
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Glossary

List of Acronyms

SMPL Switching max-plus linear

MPL Max-plus linear

PWA Piecewise affine

MLD Mixed-logical dynamical

MPC Model predictive control

DES Discrete-event system

MILP Mixed-integer linear programming

List of Symbols

N Set of natural numbers
R Set of real numbers
Rmax Set of R ∪ {−∞}
τmax Minimum process time
τmax Nominal process time
ξ State variable for the continuous dynamics
G Guard set of a hybrid automaton
I Intervals of the hybrid process time τ
Q Set of modes of a hybrid automaton
q Hybrid mode
r Schedule as reference for the hybrid system
x State variables for the discrete-event system
Inv Invariant set of a hybrid automaton
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