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A B S T R A C T

Crew costs make up the second largest expense for airlines, behind only fuel costs. This motivates a potential
gain in improving crew efficiency within the bounds set by the law and collective labour agreements. Doing
so requires to take into account aircraft routes and crew pairings, and the specifics of the airline’s network.
This work presents an integrated model for obtaining efficient crew pairings for airlines operating point-
to-point networks, while also allowing for flight retiming. By considering simultaneously both crew pairing
and constrained aircraft routing, better-performing solutions can be obtained. The greater complexity of the
integrated model is addressed by means of a custom branch-and-price approach with a shortest path pricing
sub-problem, in order to obtain exact solutions. The results of the integrated model are evaluated on a real-
world case of an European low-cost carrier that operates a short-haul point-to-point network. Results show
a reduction in crew duties of 10% and an increase in crew efficiency metrics by up to 1.5%, optimising the
carrier’s complete network of 926 flights over a full week.
. Introduction

Airline scheduling consists of many different problems that are often
olved independently and subsequently. Schedule optimisation must
reat, on one hand, a competitive market with uncertain demand and
xogenous shocks, and on the other hand, such a sequence of inter-
elated optimisation problems that connect over temporal and resource
ranularities: network design, schedule design, fleet assignment, air-
raft routing, crew scheduling, and operational execution — besides
escheduling and handling operational dynamics.

The potential for integration of various of these problems is well
ecognised in the literature (Xu et al., 2023). The state of the art
ombines for example crew scheduling with one up- or down-stream
roblem (Sandhu and Klabjan, 2007), and often finds a decomposi-
ion or approximation approach necessary (Ben Ahmed et al., 2022;
hiabani et al., 2023).

The literature is less developed on integrated models for aircraft
outing and crew pairing that also allow for flight retiming (Cacchiani
nd Salazar-González, 2020). Further, the literature more commonly
reats the US market rather than the specifics of the European mar-
et (Erdogan et al., 2015), including its flight network topology and
abour regulations. The flight schedules and aircraft and crew con-
traints for point-to-point airlines – such as operated by European low-
ost carriers – exhibit differences from hub-and-spoke carriers (Cook

∗ Corresponding author.
E-mail address: n.yorke-smith@tudelft.nl (N. Yorke-Smith).

1 Currently at KLM Royal Dutch Airlines.

and Goodwin, 2008). Hence the knowledge gap addressed by this
article is how the crew pairing problem can be integrated with the
aircraft routing problem and schedule optimisation, so as to improve
the crew productivity of a carrier operating a point-to-point network.

We develop an integrated mixed-integer linear programming (MILP)
model and show how it captures the integrated problem. We overcome
the scale and computational complexity of solving the model by de-
veloping a branch-and-price decomposition approach. A key technical
piece is a pairing graph, over which we can solve a shortest-path pricing
sub-problem effectively. Even using a prototype implementation, on
week-long schedules with 926 flights, we can reduce the number of
crew duties by 10% and increase overall crew efficiency by 1.5%.

This article contributes to the literature as follows:

• A novel integrated model for point-to-point carriers, integrating
a pair of cost-sensitive problems in schedule optimisation and
allowing flight retiming.

• A custom exact decomposition approach to ensure computational
feasibility while excluding approximation.

• Empirical evidence of the practical value of this approach on real
data of the short-haul network of a European low-cost carrier.

The remainder of the article is structured as follows. Section 2
provides background on the problems addressed and related efforts
ttps://doi.org/10.1016/j.jairtraman.2025.102755
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Fig. 1. Overview of the airline planning process.
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in the literature. Section 3 presents the integrated model and the
incremental solving approach. Section 4.3 reports an empirical study
n the case of a European point-to-point carrier. Section 5 concludes

with remarks for future work.

2. Background and related work

The first phase in airline scheduling is network development, where
the desired origin–destination pairs and their corresponding frequen-
cies are determined. It is then possible to construct a flight schedule,

here each origin–destination pair gets scheduled at specific days
nd times. Subsequently, using demand forecasts, the fleet assignment
roblem is solved. In this problem, all flights in the schedule are
ssigned an aircraft type. The output of the fleet assignment problem
ill be the input for the fourth stage, the aircraft routing problem, where

pecific aircraft registrations are put on each flight, taking into account
aintenance requirements. The last step of the process is scheduling

rew such that all flights can be operated. This is called the crew
cheduling problem. Because crew scheduling is NP-hard, it is usually
olved in two phases: crew pairing and crew rostering. An overview of
he entire airline scheduling process can be seen in Fig. 1. This article

will focus primarily on the aircraft routing and crew pairing phases.
The crew pairing phase aims to generate a set of crew duties, called

pairings, that will cover all flights in the schedule, and minimise the
cost (discussed below) of the set of pairings. A pairing is a sequence
of assignments that begins and ends at the same base, and respects
the law and all labour agreements between the airline and its labour
nions (Golden and Erne, 2022). Besides flights, also called legs, these
ssignments can also include positioning by car, taxi or aircraft, and
otel layovers. Positioning by aircraft is also called dead-heading, and
eans that a crew member will be transported as a passenger (Deveci

and Demirel, 2018b). Additionally, all pairings that contain a flight
leg will include a briefing and debriefing period. If two flight legs
are scheduled immediately after each other, a minimum turnaround
time, needed for re-fuelling, (de)boarding, and other flight preparations
needs to be factored in. Fig. 2 depicts three example pairings, with and
without positioning activities and layovers. Once a set of pairings has
been found that covers all flights and minimises the cost, the pairings
are used as input for the crew rostering problem. Here, the pairings,
free time, and other required activities are assigned to individual crew
members, while aiming to distribute the workload (fairly) over all crew
members (Deveci and Demirel, 2018b). This results in a roster for each
crew member, and completes the airline’s schedule.

2.1. Crew scheduling

Crew costs are an airline’s second highest expense, being only less
expensive than fuel (Wen et al., 2020, 2021). The motivation for the
present research was an industrial partner, a leading European low-cost
airline. This airline, which remains anonymous for commercial reasons,
oes like many European airlines, pay cockpit crew irregardless of the
umber of hours they fly. Because of this pay structure, it is desirable to
ssign crew to the flight schedule as efficiently as possible. Currently,
any airlines solve their various scheduling problems, among which

he aircraft routing and crew pairing problems, independently and
ubsequently (Xu et al., 2023). Because the result of the first problem

(aircraft routing) serves as the input for the second (crew scheduling),
 b

2 
as seen in Fig. 1, integrally solving them could potentially provide
better solutions. The challenge, however, is the greater complexity of
integral solving, which demands thoughtful modelling and algorithmic
approaches (Sandhu and Klabjan, 2007; Xu et al., 2023).

As stated, since the crew scheduling problem is NP-hard and its size
can be challenging for real-world instances, the problem is often solved
in two phases. In the crew pairing phase, a set of optimal sequences of
workdays (pairings), to be executed by the crew are determined such
that all flights are covered; while the individual crew schedules are
determined in the crew rostering phase by assigning these pairings to
crew members. Although individual crew members only get assigned
in the crew rostering phase, the cost-determining phase of the crew
scheduling problem begins with the pairing problem (Kohl and Karisch,
2004; Wen et al., 2021). This is because inefficient covering of flights
y pairings leads to excessive crew numbers during the rostering.

2.1.1. Objectives in crew pairing
The objective of the pairing problem is highly dependent on how

the airline in question operates. In general, studies aim to minimise
the cost of executing a set of pairings, as defined by fixed and variable
crew salary components, crew transportation costs, and the costs of
layovers (Azadeh et al., 2013; Cordeau et al., 2001; Erdogan et al.,
2015; Ozdemir and Mohan, 2001). Others also include cost penalties
ased on time away from base and sitting time (Deng and Lin, 2011;

Mercier and Soumis, 2007). Especially with US airlines the concept
of pay-and-credit, also known as excess cost, is frequently used. The
ay-and-credit (PaC) for a pairing 𝑝 containing 𝑓𝑝 flight hours, with

a minimum of 𝑔 guaranteed hours is calculated according to Eq. (1).
nother frequently used and similar metric for these airlines is the flight
ime credit (FTC), given by Eq. (2) (Chu et al., 1997; Klabjan et al.,

2001). The use of these objectives can be explained by the structure
f crew costs for North American airlines. As there is a minimum
uaranteed number of paid hours, it is advantageous to first use these

hours, before generating pairings that have substantial excess cost.

𝑃 𝑎𝐶(𝑝) = max(𝑔 − 𝑓𝑝, 0) (1)

𝐹 𝑇 𝐶(𝑝) = 𝑃 𝑎𝐶(𝑝)
𝑓𝑝

⋅ 100 (2)

In contrast, many European airlines hire pilots on fixed salary
ontracts, and thus do not know the concept of excess cost and FTC.
nstead, objective functions for these problems are often designed to
inimise the total costs of all pairings as described above (Desaulniers

et al., 1997; Deveci and Demirel, 2018a; Erdogan et al., 2015; Zeren
and Özkol, 2016), or in some cases to minimise the total number of
airings in the final solution (Agustin et al., 2017). Note that works
hich minimise the total number of pairings do not necessarily obtain

olutions that minimise the number of crew members.
A selected overview of studies investigating the crew pairing prob-

lem, their respective data sources, and used objective functions can be
found in Table 1. Surprisingly, quite little is currently known about the
relationship between the value of the objective function in the pairing
problem and the performance of the resulting set of pairings in the
ubsequent rostering problem. This is important to consider, as the
utput of the pairing phase will be used as the input for the rostering
hase. Indeed, when rostering crew, the first pairing of a crew mem-

er’s sequence might have an effect on their availability for subsequent
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Fig. 2. Examples of three different pairings, depicted as the three horizontal rows. Flight activities are coloured green, while the check-in and check-out activities are shown in
ed, and the taxi activities are shown in blue. The dashed lines indicate the location of a rest period. The upper and lower example both span 1 day, while the middle pairing

spans 3 days. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Formulation of the objective function across selected previous studies, studying only the crew pairing problem and sorted by data source.

Year Authors Data Objective function formulation

1997 Chu et al. (1997) American Airlines Minimise pay-and-credit
2001 Klabjan et al. (2001) United Airlines Minimise pay-and-credit
2003 Klabjan et al. (2003) United Airlines Minimise pay-and-credit and cost of deadheads, maximise repetition in schedules
2013 Saddoune et al. (2013) Major US airline Minimise pay-and-credit, pairing duration, duty duration and deadheads
2017 Quesnel et al. (2017) Major US airline Minimise pairing costs (duty length, worked time)
2020 Quesnel et al. (2020) Major North American airline Minimise pairing cost modulated by crew preferences
2022 Ben Ahmed et al. (2022) United Airlines Maximise total profit
2023 Khiabani et al. (2023) American Airlines Minimise total cost after flight disruption

1997 Desaulniers et al. (1997) Air France Minimise total cost
2015 Erdogan et al. (2015) European airline Minimise crew-related costs (deadheads, layovers and ground transportation)
2016 Zeren and Özkol (2016) Turkish Airlines Minimise operating costs (cost per duty day, deadhead hour, layovers)
2017 Agustin et al. (2017) European airline Minimise number of pairings
2018 Deveci and Demirel (2018a) Local Turkish airlines Minimise pairing costs (duty costs, rest expenses, connection time expenses)

2020 Chen et al. (2020) Asian airline Multiple objectives about flight characteristics after disruption
2023 Li et al. (2023) Chinese airline Minimise number of pairings

2001 Ozdemir and Mohan (2001) Multiple airlines Minimise total costs (pay-and-credit, deadheads, sitting time, layovers)

2013 Aydemir-Karadag et al. (2013) Randomly generated Minimise total pairing cost (pay-and-credit, time away from base and total duty cost)
2013 Azadeh et al. (2013) Randomly generated Minimise total crew cost (flight payments, rest expenses, deadhead costs)
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pairings. This is especially the case with very long or late duties, which
require longer rest periods in between pairings. Consequently, a set
of pairings might minimise operating cost or require fewer pairings to
cover all flights, but might not be desirable in the rostering phase. This
is especially the case for airlines that hire flight crew on fixed salaries,
as no costs are associated with individual pairings, but rather with the
required number of crew members. In the case of the airline partner
motivating our work, the total cost is defined by the crew’s available
duty time that is not spent on flying, i.e., the unused hours within and
between duties. This cost depends on the routings (being the specific
flights in the schedule) and the pairings for them (being the crew tasks
to be covered for them).

2.1.2. Crew planning problem horizon
Variants of the crew pairing problem exist with different problem

orizons. Due to the hardness of the problem and its rapidly increasing
ize, many studies solve a daily problem where the flight schedule that
erves as input contains all flights for an airline on one day (Azadeh

et al., 2013; Ben Ahmed et al., 2018; Mercier et al., 2005).
Second, another common approach is that of the weekly prob-

lem (Klabjan et al., 2003). The daily and weekly problems have as an
dvantage that a single problem can be solved first, after which the
olution is copied onto the next day or week, after which any remaining
nconsistencies are solved. These kinds of approaches are therefore very
 s

3 
suitable for airlines that have repetitive schedules, something that is
ostly seen in hub-and-spoke networks.

In many cases, the daily problem is solved first, and it is assumed
that the resulting solution can be repeated seven times, such that an
ntire week is covered. Then, an ‘exceptions’ problem is solved, where
he infeasible pairings – resulting from a not completely repetitive
chedule – are repaired. Although this approach is time-efficient com-
ared to solving an entire week, it results in a lot of dead-heading for
he crew (Kenan et al., 2018; Klabjan et al., 2001, 2003). Not all authors

take the approach of repeat-daily-then-repair: Klabjan et al. (2003),
nstead of repeating the daily problem, formulate a weekly problem
ith regularity variables. On the data of United Airlines, this resulted

n crew pairings that were more regular, contained fewer dead-heads
nd had a lower FTC.

Third, far fewer studies aim to solve a monthly problem. Erdogan
t al. (2015) solve a monthly problem by using a heuristic approach
onsisting of integer programming, enumeration and large neighbour-
ood search, while Saddoune et al. (2013) applied a rolling horizon

technique.
Lastly, for schedules without a repetitive nature at all, a dated

roblem can be solved. However, this kind of problem is relatively
are in literature, as few of the investigated airlines have variable
chedules (Butchers et al., 2001).
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2.2. Solving the crew pairing problem alone

From the first studies onwards, a vast majority of research has
formulated the crew pairing problem as either a set partitioning or a
et cover problem (Erdogan et al., 2015; Klabjan et al., 2001; Rubin,

1973; Zeren and Özkol, 2016). These formulations enforce all flights to
e covered by a pairing, and can easily be extended to capture the scope
f the problem by adding additional constraints. To solve the pairing
roblem as a set cover or set partition problem, a set of candidate
airings is required. This set can be generated by enumeration or with
he use of heuristics. Instead of generating the pairings in advance, it
s also possible to generate pairings during the solving process by using
olumn generation.

Traditionally, the pairing problem has been solved optimally with
he help of column generation and branch-and-bound (Hoffman and
adberg, 1993; Kasirzadeh et al., 2017; Yan et al., 2002; Zeren and
zkol, 2016). Because the crew pairing problem can be formulated

as a binary integer programming problem, column generation is often
used to solve the relaxed problem, while branch-and-bound-price is
used afterwards to obtain the optimal integer solution from the relaxed
olution. A typical example is Yan et al. (2002), who solved the pairing
roblem for cabin crew, while also taking into account different cabin

classes, mixed-aircraft types, and home bases. Yan et al. formulated the
crew pairing problem using flight networks, similar to Deng and Lin
(2011) and Ozdemir and Mohan (2001).

Aiming to get good although not optimal pairings for realistic prob-
lem sizes in less time, meta-heuristic and more recently math-heuristic
methods are employed (Xu et al., 2023); and in the last few years, the
use of data-driven optimisation (Quesnel et al., 2022). Classic examples
of meta-heuristics are the use of evolutionary algorithms (Ozdemir
and Mohan, 2001), variable neighbourhood search (Agustin et al.,
2017) and ant colony optimisation (Deng and Lin, 2011). Deveci
and Demirel (2018b) used memetic algorithms, a combination of
local search and genetic algorithms, to solve the crew pairing prob-
lem. Deveci and Demirel compared their algorithm to meta-heuristic
algorithms by Beasley and Chu (1996) and Zeren and Özkol (2012),
and found that the memetic algorithm achieved better solutions while
runtimes remained similar. Wen et al. (2020) study crew pairing under
robustness metrics, while Wen et al. (2021) survey crew scheduling ap-
roaches with focus on robustness in face of operational changes. Quesne

et al. (2020) and Quesnel et al. (2022) allow for crew preferences.
Two advantages of solving the entire crew scheduling problem (and

pairing and rostering) at once is that it eliminates the need for a
separate pairing objective function, which can be hard to design to
resemble reality, and that it allows for a more optimal global solution.
An early example is Saddoune et al. (2011), who solved the entire crew
scheduling problem using a combination of column generation and
dynamic constraint aggregation. A notable cost saving of approximately
4% are reported on real-life instances. Unfortunately, the study does
not take into account pre-assigned activities, such as safety training,
simulator assignments or holidays. A more recent example is Zeighami
t al. (2020), who address crew pairing and crew assignment together

by means of a Lagrangian integrated approach. Like our work, the
authors give attention to specific constraints. They do not consider
aircraft routing, however.

Li et al. (2023) bring Monte Carlo tree search to crew pairing, in
 simulation–optimisation approach in conjunction with MILP. Their
bjective relates to the number of pairings and reducing overall com-

putational overhead; results are demonstrated on a simplified pairing
roblem of a Chinese airline.

2.3. Integrated problems

The sequential solving of different airline planning problems (Fig. 1)
ight deliver optimal results for each individual problem, but is not

ikely to produce a solution that is optimal for the entire airline
4 
planning problem (Sandhu and Klabjan, 2007). This is due to the inter-
dependence of the problems: the output of one problem acts as input
for the next. As a result, the interest grows for integrated scheduling,
where different planning problems are solved simultaneously (Xu et al.,
2023).

An important line of work on integrated scheduling is combining
the crew pairing problem with the aircraft routing problem. This article
continues in this direction. By determining the crew pairings and
aircraft routes at the same time, it is possible to generate new pairings
that were illegal before due to the extra time and costs associated with
an aircraft change mid-pairing (Cacchiani and Salazar-González, 2013;
Sandhu and Klabjan, 2007).

Papadakos (2009) provides an example of how the crew pairing
problem can be fully integrated with the maintenance and aircraft rout-
ing problems. Because of the large number of constraints, Papadakos
applies Benders decomposition and combines this with a column gen-
eration strategy that is accelerated by using heuristics. The author
presents results on hub-and-spoke networks, and does not consider
light retiming.

Ben Ahmed et al. (2022) integrate fleet assignment, aircraft routing
and crew pairing, with attention to robustness. Their approach is a com-
ined MILP model, solved approximately by using local search around
he linear relaxation. The authors present large-scale computational
esults on a US carrier, for a single day of operation.

Mercier and Soumis (2007) develop a MILP model and a solution
approach combining Benders decomposition, column generation and
‘‘a dynamic constraint generation procedure’’. Solving the integrated
aircraft routing and crew pairing problem, and allowing retiming of
flights by ±5 min, the authors are able to improve solution quality over
the sequential, fixed-time solutions of two unspecified airlines (with
hub-and-spoke networks, it is assumed).

Chen et al. (2020), also like our work, consider integrated aircraft
routing and crew pairing, but with a focus on rescheduling. The authors
propose a multi-objective evolutionary approach. Khiabani et al. (2023)
also consider integrated aircraft routing and crew pairing, for the
ituation of recovery after disruption. The authors adopt a Benders-

based decomposition, and present large-scale computational results on
a US carrier, for a single day of operation.

Limited research considers incorporation of schedule changes within
crew pairing models. When the schedule is fixed, many useful pairings

ight not be generated because they violate a constraint by a small
argin. By allowing changes to the initial flight schedule, it is possible

o facilitate the design of more convenient pairings. An example of a
mall schedule modification is retiming, as we have noted above for
everal studies: adjusting the departure and arrival time of a flight by
 few minutes (Pothos et al., 1994; Cacchiani and Salazar-González,

2020).
Cacchiani and Salazar-González (2020) propose an entirely inte-

grated model for the crew pairing, aircraft routing and fleet assignment
roblems including retiming. The MILP formulation includes retimed
opies for all flight legs, and constraints to make sure only one of the
riginal or copies is chosen for each flight leg. Given the integrated
ormulation, the relaxed problem is first solved, after which one of four

proposed heuristics is used to reach a final (inexact) solution.
Although the (integrated) crew pairing problem has been studied

xtensively in the past, the focus has mostly been on US network
arriers, hub-and-spoke networks, and minimising pay-and-credit. The
ase of European low-cost carriers and optimising crew efficiency for

point-to-point networks is the concern of the present work.

3. Methodology

This section provides a model for the integrated crew pairing and
ircraft routing problem, allowing schedule retiming. First in Sec-
ion 3.1 we introduce the data structures. The model is formulated as

a MILP in Section 3.2. Section 3.3 explains how to derive solutions to
the model using branch-and-bound.
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3.1. Data structures

The MILP model will minimise the combined costs of the chosen
pairings and routes. Its constraints will ensure flights are uniquely
covered, flight combinations are feasible, aircraft numbers by type
are not exceeded, and departure times are aligned in the pairing and
routing problems. Before giving the precise mathematical model, we
explain the auxiliary data structures required for the model and its
solving. These are four, relating to the crew duties, the flight pairings,
the flight routing, and the allowable short connections. We also explain
the way in which flight retiming is incorporated.

3.1.1. Feasible duties generation
The aim of the duty generation process is to find all possible

equences of flights that can legally be operated by a crew member
in one workday. This information is necessary for the crew scheduling.
The resulting sequences of flights are called duties.

As explained in Section 2, crew pairings are made up of working
ays, called duties. While a pairing needs to start and end in the
ame base, a duty can start at any airport and end at any airport.
oth pairings and duties need to abide by a number of complex rules
oncerned among others with the number of flight duty hours, number
f duty hours, and starting time. For example, for some airlines, a duty
hat contains more than 13 flight duty hours may contain at most 3
andings, and if a duty begins before 04:30 local time, no more than 4
equential flights may be assigned (Cao, 2017). To be able to generate

pairings during the solving process using branch-and-price, instead of
generating a priori, it is desirable to represent the possible contents of
a pairing in a network.

As pairings consist of duties, which in their turn consist of flights, it
s possible to construct this network of either flights or duties. Seeing

that the combination of pairing and duty related rules is very complex
to represent in a graph consisting of flights, we take the approach
o first generate duties, which will afterwards be used to construct
he graph. Specifically, we generate the duties by enumeration over
 pruned search-tree, rather than using heuristics. This was done to

ensure that the process results in a set of all feasible duties, which is
desirable because the crew pairing problem is later formulated as a set
partition, where every flight needs to be covered exactly once. Even
though all duties are generated by enumeration, the process takes at
most a few seconds for the tested instances.

In more detail, to generate the duties, a search tree containing all
flights is enumerated in a breadth-first manner. The first layer of the
search tree consists of all flights in the schedule. At the beginning of the
rocess, a stack that contains all nodes that still need to be explored is

created. This entire first layer of nodes is added to the stack. Then, an
iterative process takes place that terminates when the stack is empty.
This process includes getting the first element, consisting of a path in
the search tree, off the stack, and generating a duty including check-in
and check-out activities based on the path. If this duty is legal, it will
be appended to the list of all legal duties. Additionally, all flights that
can be used to further extend the duty will be added as nodes in the
tree. These nodes will be children of the last node of the path popped
in the first step of the process. The last step of the iterative process is
to add the paths from the root to the newly created nodes to the stack
of unexplored options. Whenever a duty is not legal, no child nodes
will be created, resulting in the branch to be pruned and not expanded
upon further. Algorithm 1 gives an overview of the process.

Example 1. Tables 2, 3 and 4 give examples of the duties that result
from this approach. The columns indicate the start time of each activity,
he IATA code of the departure airport, the activity, the IATA code of
he arrival airport, the end time of the activity, and if applicable the

corresponding aircraft type. Table 2 gives an example of a duty that
tarts and ends in the same base, and consists of four activities: a check-
n, a flight from Amsterdam to Hurghada and back, and a check-out.
5 
Algorithm 1: Duty generation
1 𝑡 ← new Tree
2 unexplored ← []
3 duties ← []
// all flights in the schedule are the first

layer of children
4 for flight in schedule do
5 flight_node ← new child node of 𝑡.root containing flight
6 unexplored.append(flight_node)
7 end
// breadth-first search

8 while unexplored is not empty do
9 node ← unexplored.pop() // pop the first element

of the stack
10 duty_sequence ← path from node to root with added

check-in and check-out activities
11 if duty is legal then
12 duties.append(duty)
13 adjacent_flights ← list of flights that can be performed

after last flight
14 for a ∈ adjacent_flights do
15 node.add_child(𝑎)
16 unexplored.append(𝑎)
17 end
18 end
19 end

Table 2
Example of a duty starting and ending in the same base.

01/03/2019 13:10 AMS Check-in AMS 01/03/2019 14:10
01/03/2019 14:10 AMS HV583 HRG 01/03/2019 19:05 B737-800
01/03/2019 20:00 HRG HV584 AMS 02/03/2019 01:40 B737-800
02/03/2019 01:40 AMS Check-out AMS 02/03/2019 02:10

Table 3
Example of a duty starting and ending at outstations, containing an aircraft change for
crew.

02/03/2019 10:40 LPA Check-in LPA 02/03/2019 11:40
02/03/2019 11:40 LPA HV5664 AMS 02/03/2019 16:20 B737-800
02/03/2019 18:25 AMS HV5201 MUC 02/03/2019 19:55 B737-700
02/03/2019 19:55 MUC Check-out MUC 02/03/2019 20:25

Table 4
Example of a duty with only one leg.

02/03/2019 05:30 AMS Check-in AMS 02/03/2019 06:30
02/03/2019 06:30 AMS HV6901 DXB 02/03/2019 13:30 B737-800
02/03/2019 13:30 DXB Check-out DXB 02/03/2019 14:00

Both flights are operated on a Boeing 737–800 aircraft. In contrast,
Table 3 shows a duty that starts and ends in two different outstation
i.e., non-base) airports. Again, this duty contains a check-in, check-

out and two flights. The difference here is that an aircraft change takes
place in Amsterdam, where the crew will switch from a Boeing 737–800
to a Boeing 737–700. Lastly, Table 4 shows a duty that contains only
ne flight, while departing from a base, and arriving in an outstation.

3.1.2. Pairing graph construction
Second, given the set of all legal duties, a pairing graph consisting

of duties and base nodes is constructed, such that a path from a
source base node to a sink base node represents a legal pairing. The
optimisation problem is which pairings to choose. Fig. 3 gives an
example of such a graph. Intuitively, the pairing graph will capture
which activities can be done in sequence (via its edges) and also how
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Fig. 3. Example of a pairing graph containing 4 duties (D0–D3), 3 bases (AMS, RTM, EIN), their respective taxi nodes, indicated with ‘T’, and taxi+overnight nodes, indicated
with ‘O+T’ and ‘T+O’. Unused taxi and taxi + overnight stay nodes are not pictured for image clarity.
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preferable would be doing so (via its edge weights).
In more detail, the pairing graph is a directed acyclic graph con-

isting of source and sink nodes (bases), nodes representing taxi move-
ents, and nodes representing the duties from the duty generation step.

The presence of an edge between nodes indicates that the activities
an be performed sequentially. This resulting graph has 𝑂(𝑛) nodes and
(𝑛2) edges.

In the graph, a path between the source and sink nodes of the
same base then gives a pairing. To later enforce a maximum pairing
uration, the edges have a resource cost attribute, which indicates the
ime needed to perform the activities in a sequence. The edges also

have a weight attribute. The weights are assigned based on the time
that the crew is on duty, but is not operating a flight. In this way,
 connection between two duties without a lot of excessive rest in
etween is preferred to a connection that contains much idle time. In
ddition, the use of taxi’s is discouraged by penalising the edge with
dditional weight. In this way, a pairing that does not contain any

positioning activities, is preferred to the same pairing with additional
taxi activities. The cumulative weight of the edges in a path from sink to
source gives the cost of the pairing to be used in the objective function.

The graph is constructed by first creating individual nodes for all
duties, all sources and all sinks. Additionally, two taxi nodes are created
for each base. One of these nodes indicates the possibility of a pairing
starting with a taxi commute from the base, while the other indicates
the possibility of ending a pairing with a taxi commute to the base.
Similarly, two nodes per base are created representing the combination
of a taxi plus overnight stay.

The rules for the pairing graph are the following:

• All duties starting from a base receive an incoming edge from the
corresponding base source node, and all duties ending in a base
receive an outgoing edge to the corresponding base sink node

• All duties starting from a base receive an incoming edge from the
taxi nodes to all other bases; except for when the duty starts and
ends in the same base or the combination does not respect all
rules.
 a

6 
• All taxi + overnight nodes corresponding to all other bases receive
an edge to a duty only if adding a taxi does not respect all rules;
except for when the duty starts and ends in the same base or the
combination does not respect all rules.

• All duties ending in a base receive an outgoing edge to all the
taxi nodes corresponding to all other bases; except for when the
duty starts and ends in the same base or the combination does not
respect all rules

• All duties ending in a base receive an outgoing edge to all the taxi
+ overnight nodes corresponding to all other bases if adding only
a taxi does not respect all rules; except for when the duty starts
and ends in the same base or the combination does not respect
all rules

• All duties that can be performed in sequence with another duties
receive an edge from the first duty to the following duty.

• All taxi nodes and taxi + overnight nodes receive an edge to their
corresponding source or sink node

Example 2. An example of a pairing that can generated by using the
raph from Fig. 3 is given by the path,

AMS source ⟶ 𝑇 + 𝑂 ⟶ 𝐷2 ⟶ 𝐷3 ⟶ 𝑂

+ 𝑇 ⟶ AMS sink

and translates to the pairing of Table 5.

Further details about the pairing graph construction are provided
y Appendix A.

3.1.3. Routing graph construction
Third, for each aircraft type, a routing graph is constructed to repre-

ent aircraft routes. While the routing graphs are similar to the pairing
raph, they however consist of base nodes and flight nodes. The edge
eights of these graphs are formulated to represent the time that the

ircraft is not flying. The optimisation problem here is which routings
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Fig. 4. An example of a flight routing graph, with 3 bases and 7 flights, for one aircraft type.
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Table 5
Data for example pairing graph.

07/03/2019 17:30 AMS Taxi Check-in AMS 07/03/2019 17:45
07/03/2019 17:45 AMS Taxi GRQ 07/03/2019 20:00
07/03/2019 20:00 AMS Hotel GRQ 08/03/2019 08:30

08/03/2019 08:30 GRQ Check-in GRQ 08/03/2019 09:30
08/03/2019 09:30 GRQ HV5775 TFS 08/03/2019 14:15
08/03/2019 15:00 TFS HV5776 GRQ 08/03/2019 19:40
08/03/2019 19:40 GRQ Check-out GRQ 08/03/2019 20:10
08/03/2019 20:10 AMS Hotel GRQ 09/03/2019 09:10

09/03/2019 09:10 GRQ Taxi AMS 09/03/2019 11:25

to choose. Fig. 4 gives an example of such a graph.
In more detail, to generate aircraft routes, an approach similar to

hat used for pairing generation is used. In contrast to the pairing
eneration, however, there are fewer rules when generating aircraft
outes. The turnaround times should be long enough, and the route

should only include flights that can be operated by the same aircraft
type, as each route represents one aircraft over (often) multiple days.

o accomplish this, a separate directed acyclic graph for each aircraft
ype is constructed. The graph consists of source and sink nodes for each
ase, and nodes representing a flight. The edges are added as described
elow. This results in graphs that together have 𝑂(𝑛) nodes and 𝑂(𝑛2)
dges. In the process of determining edge weights, we allow a weight
arameter 𝑤 which can be set to increase or decrease the importance
f optimising aircraft routes relative to crew pairings.

The rules for the routing graphs are the following:

• All flights starting in a base, receive an incoming edge from the
source node of that base

• All flights arriving at a base, receive an outgoing edge to the sink
node of the corresponding base

• An edge (𝑓1, 𝑓2) is constructed between two flight nodes 𝑓1 and
𝑓2, if the flight corresponding to node 𝑓2 can legally be performed
after flight 𝑓1 by the same aircraft.

• To allow aircraft routes to end in an airport that is not a base, all
nodes that represent a flight that does not end in a base receive
an outgoing edge to the first base in the list of bases. An example
is the edge from F5 to AMS sink in Fig. 4.

In the graphs, a route is defined as a path from a source to a sink
node. Contrary to pairings, aircraft do not have to start and end at the
same airport. The cumulative weights of the edges in the path give the
cost of the route.

Example 3. One possible route that can result from Fig. 4 is repre-
ented by the following path:
 b

7 
AMS source ⟶ 𝐹0 ⟶ 𝐹2 ⟶ 𝐹1 ⟶ 𝐹3 ⟶ EIN sink

and will thus fly the following route:

AMS ⟶ DLM ⟶ AMS ⟶ ALC ⟶ EIN

Further details about the routing graphs construction are provided
y Appendix B.

3.1.4. Short connections constraints
Fourth, to ensure that when crew change aircraft, enough extra

time is available, a list of crew–aircraft short connections is created.
This list can subsequently be used to enforce that if one of the flight
ombinations in the list is operated in the same pairing, it should also

be operated in the same aircraft route. The list of short connections
contains all combinations of two flights 𝑓1 and 𝑓2 for which the
following holds:

• 𝑓1 and 𝑓2 are assigned to the same aircraft type
• The arrival airport of 𝑓1 and the departure airport of 𝑓2 are the

same
• The time between the arrival of 𝑓1 and the departure of 𝑓2 is

larger than the minimum required turn around time, but smaller
than the minimum required turn around time + 15 min.

3.1.5. Incorporating flight retiming
From previous studies on retiming and airline scheduling in hub-

and-spoke networks, it is known that integrating schedule design with
other scheduling problems can also have potential to improve crew
pairings and aircraft routes (Pothos et al., 1994; Cacchiani and Salazar-
González, 2020; Mercier and Soumis, 2007). By allowing the model to
move flights in the schedule, a larger number of possible crew and
aircraft connections can be formed, thus possibly resulting in more
fficient pairings.

In the planning process, the airline acquires departure and arrival
slots at the airport it wants to service. These slots indicate that the air-
line has the right to depart or arrive the airport within the time bracket
corresponding to the slot. Per airport there are only a fixed number
of slots available per time of day. For example, in the summer of
019 at Amsterdam Airport Schiphol, the slot between 08:00 and 08:15
ocal time, has a capacity of 12 arrivals and 25 departures (Airport

Coordination Netherlands, 2019). These slots are allocated twice a year;
nce for the summer season, and once for the winter season. Ideally the
eparture and arrival times stay within the acquired time-brackets after
hey have been retimed, as rescheduling flights outside of their slots
ay not be possible, or at least incur complications. Unfortunately,

ecause the slots and their regulations differ greatly between airports
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Fig. 5. Flight graph showing the potential new connections, indicated by dashed edges, when allowing flight F1 to retime with ±5 min.
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it is at this moment not possible to ensure that flights are always
etimed within their slots. However, by allowing flights to move 5 min

in the schedule, there is a relatively small probability that the flight’s
eparture or arrival time will be outside the slot’s time-bracket (Mercier
nd Soumis, 2007).

Example 4. An example of the potential of retiming a flight by ±5 min
s shown in the flight graph in Fig. 5. Flight 1 is allowed to be retimed
ith 5 min, therefore creating the additional possibilities to connect to

light 3, or flight 0.
To allow for such five minute changes in timing, flight copies are

created. These ‘new’ flight variables share the same properties as their
original flight, but have a departure and arrival time that is shifted
y five minutes. The following sections will describe how these new
ariables can be used in a branch-and-price approach to solve an
ntegrated scheduling model that.

3.2. Mathematical model

Given the data structures described above, we formulate the follow-
ing integer linear program, based on a set partition formulation in line
with the literature. The objective function aims to maximise efficiency
y minimising the crew’s available duty time that is not spent on flying.

Dual variables of constraints are denoted in blue, and explained below.

min
∑

𝑝∈𝑃
𝑐𝑝𝑥𝑝 +

∑

𝑟∈𝑅
𝑐𝑟𝑥𝑟 (3)

s.t.
∑

𝑡∈𝐷𝑓

∑

𝑝∈𝑃
𝑏𝑝𝑓𝑡𝑥𝑝 = 1 ∀𝑓 ∈ 𝐹 𝛼𝑓

(4)
∑

𝑡∈𝐷𝑓

∑

𝑟∈𝑅
𝑏𝑟𝑓𝑡𝑥𝑟 = 1 ∀𝑓 ∈ 𝐹 𝛽𝑓

(5)
∑

𝑝∈𝑃
𝑏𝑝𝑖𝑣𝑗𝑤𝑥𝑝 −

∑

𝑟∈𝑅
𝑏𝑟𝑖𝑣𝑗𝑤𝑥𝑟 ≤ 0 ∀(𝑖, 𝑗) ∈ 𝐶 , (𝑣, 𝑤) ∈ 𝐶𝑖,𝑗 𝛾𝑖𝑣 ,𝑗𝑤

(6)
∑

𝑟∈𝑅
𝑏𝑎𝑟𝑏

𝑘−
𝑟 𝑥𝑟 ≤ 𝑚𝑎𝑥𝐴𝐶𝑘

𝑎 ∀𝑘 ∈ 𝐾 , 𝑎 ∈ 𝐴 𝛿𝑎,𝑘

(7)
∑

𝑝∈𝑃
𝑏𝑝𝑓𝑡𝑥𝑝 −

∑

𝑟∈𝑅
𝑏𝑟𝑓𝑡𝑥𝑟 = 0 ∀𝑓 ∈ 𝐹 , 𝑡 ∈ 𝐷𝑓 𝜖𝑓 ,𝑡

(8)

𝑥𝑝 ∈ {0, 1} ∀𝑝 ∈ 𝑃 (9)

𝑥𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝑅 (10)

with the parameters and variables as in Table 6.
Objective (3) expresses the minimisation of the combined costs

f the chosen pairings and routes. The managerial concern from our
artner airline defines this cost as the unused hours within and between

duties. Constraint (4) and (5) ensure that all flights are covered by
8 
one pairing and one route respectively. Constraint (6) ensures that the
flight combinations present in the set of short-connections can only be
executed on the same pairing if they are also executed by the same
aircraft route. Constraint (7) ensures that there are no more aircraft
used than there are available of each type per base. Constraint (8)
ensures that the same departure time for each flight was chosen in both
the pairing and routing problem. Constraint (9) and (10) are integrality
constraints.

3.3. Solving

Given the complexity of the problem addressed, the above model
s solved using a branch-and-price approach, a combination of column
eneration and branch-and-bound. Unsurprisingly, we found that a
ILP solver could not scale adequately to the model when presented to

he solver as a monolith. Branch-and-price allows us to incrementally
olve the model, taking advantage that a pricing sub-problem can be
olved relatively easily, as we next explain. Fig. 6 gives an overview of

the solving process.
First, beginning with the input flight schedule, the flight copies are

created (Section 3.1.5). These flight copies are from there on used to
construct the duties, pairing graph, routing graphs and short connec-
tions (Sections 3.1.1–3.1.4). For each original flight a ‘fake’ flight vari-
ble is created to ensure that the restricted master problem (RMP, de-

scribed next) is always feasible. At each iteration, a set of sub-problems
are formulated by updating the pairing graph and routing graphs (de-
scribed below), and solving the resulting resource-constrained shortest
path problems on the graphs.

In more detail, for the restricted master problem, the integrality
constraints (9) and (10) are relaxed. The pricing problem for this model
is a set of shortest path problem in updated pairing and routing graphs:
ne shortest path problem in the pairing graph, and one shortest path
roblem for every routing graph. We explain first for the pairing graph;

the routing graph is similar.
The pairing graph is updated by taking a copy of the original pairing

raph and using the dual variables to update the edge weights:

• The values of dual variables 𝛼𝑓 , corresponding to primal con-
straints (5), are subtracted from the weights of the edges incoming
to duty nodes that contain a flight copy of flight 𝑓 .

• The values of dual variables 𝛾𝑖𝑣 ,𝑗𝑤 , corresponding to primal con-
straints (7), are subtracted from the weights of the edges incoming
to duty nodes that contain both flight 𝑖 with departure time 𝑣 and
flight 𝑗 with departure time 𝑤.

• The values of dual variables 𝜖𝑓 ,𝑡, corresponding to primal con-
straints (9), are subtracted from the weights of the edges incoming
to duty nodes that contain flight 𝑓 with departure time 𝑡.

Subsequently, a negative reduced cost column can be found by solv-
ng the shortest path problem on the updated graph (compare Yan et al.

(2002)). The source and target nodes for the shortest path problem are
represented by source and sink nodes of the same base. The solving
methodology for the shortest path problem depends on the number of
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Table 6
Parameters and variables of the MILP model. Dual variables are denoted by blue colour.
Decision variables

𝑥𝑝 Binary decision variable that indicates whether pairing 𝑝 is chosen
𝑥𝑟 Binary decision variable that indicates whether route 𝑟 is chosen

Sets

𝑃 Set of pairings
𝑅 Set of routes
𝐾 Set of bases
𝐴 Set of aircraft types
𝐹 Set of flights in the schedule
𝐷𝑓 Set of departure times for flight 𝑓
𝐶 Set of short connections
𝐶𝑖,𝑗 Set of departure time combinations (𝑣, 𝑤) where 𝑣 belongs to flight 𝑖 ∈ 𝐶, and 𝑤 belongs to 𝑗 ∈ 𝐶

Constants

𝑐𝑝 Cost of choosing pairing 𝑝
𝑐𝑟 Cost of choosing route 𝑟
𝑀 𝑎𝑥𝐴𝐶𝑘

𝑎 Number of available aircraft of type 𝑎 at base 𝑘
𝑏𝑝𝑓𝑡 Binary constant indicating whether flight 𝑓 with departure time 𝑡 is in pairing 𝑝
𝑏𝑟𝑓𝑡 Binary constant indicating whether flight 𝑓 with departure time 𝑡 is in route 𝑟
𝑏𝑎𝑟 Binary constant indicating whether route 𝑟 is operated by aircraft type 𝑎
𝑏𝑘−𝑟 Binary constant indicating whether route 𝑟 starts in base 𝑎
𝑏𝑝𝑖,𝑗 Binary constant indicating whether flight 𝑖 and 𝑗 are in pairing 𝑝
𝑏𝑟𝑖,𝑗 Binary constant indicating whether flight 𝑖 and 𝑗 are in route 𝑟
𝑏𝑝𝑖𝑣𝑗𝑤 Binary constant indicating whether flight 𝑖 with departure time 𝑣 and 𝑗 with departure time 𝑤 are in pairing 𝑝
𝑏𝑟𝑖𝑣𝑗𝑤 Binary constant indicating whether flight 𝑖 with departure time 𝑣 and 𝑗 with departure time 𝑤 are in route 𝑟

Dual Variables

𝛼𝑓 Dual variables for constraints (4)
𝛽𝑓 Dual variables for constraints (5)
𝛾𝑖𝑣 ,𝑗𝑤 𝑙 Dual variables for constraints (6)
𝛿𝑎 , 𝑘 Dual variables for constraints (7)
𝜖𝑓 ,𝑡 Dual variables for constraints (8)
Fig. 6. Overview of the column generation solving process. If the optimal solution to the RMP is not integral, then branch and bound search (with interleaved column generation)
erives the optimal integer solution from it.
u
w

days that a given flight schedule spans. If this number is smaller or
qual to the maximum allowed pairing length, a ‘regular’ shortest path

problem will be solved by using the Bellman–Ford algorithm (Bellman,
1958; Ford, 1956). If the schedule spans more days than the max-
imum allowed pairing length, the problem will become a Shortest
Path Problem with Resource Constraints (SPPRC). For this purpose, the
resource cost edge attribute has been defined during the pairing graph
generation (Section 3.1.2). The sum of these resource costs in a path
indicate how much time has passed since the beginning of the pairing.
To find a shortest path that respects the maximum pairing duration, the
maximum resource that can be consumed in a shortest path is set equal
to the maximum pairing length. As the SPPRC is in itself NP-hard, it is
first attempted to find negative reduced columns by using a heuristic
approach, using a greedy elimination heuristic that eliminates edges
that contribute to infeasible resource costs (Torres Sanchez, 2019).

For the routing graphs, the edge weight updates from the dual
variables are:
9 
• The values of dual variables 𝛽𝑓 , corresponding to primal con-
straints (6), are subtracted from the weights of the edges incoming
to the flight node representing a copy of flight 𝑓 .

• The values of dual variables 𝛾𝑖𝑣 ,𝑗𝑤 , corresponding to primal con-
straints (7), are added to the weights of the edges between flight
nodes representing flight 𝑖 with departure time 𝑣 and flight 𝑗 with
departure time 𝑤.

• The values of dual variables 𝛿𝑎,𝑘, corresponding to primal con-
straints (8), are subtracted from the weight of outgoing edges
from the base source node of base 𝑘 in the routing graph of
aircraft type 𝑎.

• The value of dual variables 𝜖𝑓 ,𝑡, corresponding to primal con-
straints (9), are added to the weights of the edges incoming to
flight nodes that represent flight 𝑓 with departure time 𝑡.

When no more negative reduced cost columns can be found by
sing the heuristic, an exact label-setting algorithm will determine
hether there are no paths with negative reduced cost left (Boland

et al., 2006). This ensures that the overall approach still results in an
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optimal solution.
After the pairing graph and all routing graphs have been updated

sing the dual variables, negative reduced cost columns are found for
ach graph. For the pairing graph, a (resource-constrained) shortest
ath problem is solved as above. This results in a shortest path for
ach base, of which any with negative reduced cost are chosen to be
dded to the restricted master problem. For the routing graphs, the
hortest path problem is solved for each possible base combination in
ach graph. This results in |𝐴| ∗ |𝐾| ∗ |𝐾 − 1| shortest paths, of which
gain any with negative reduced cost will be added to the restricted
aster problem.

As depicted in Fig. 6, the solving process described thus far obtains
he optimal solution to the RMP. It is checked whether this relaxed
ptimal solution consists of all integer values. If this is the case, the
ptimal solution to the relaxed problem is also the optimal solution
o the integer problem. If this is not the case, the problem is embed-
ed in a branch-and- price construction to find the optimal integer
olution (Desrosiers and Lübbecke, 2011).

The branch-and-price search uses the optimal solution of the re-
stricted master problem as the root of its search tree. Each node
corresponds to a linear programming problem, namely the RMP with
additional constraints. In standard branch-and-bound fashion, from
the root of the tree, two child nodes are created by branching, here
on a master problem variable chosen by the simple lexicographical
branching heuristic (i.e., branch on the first non-integer variable). This
variable is set to 0 on the first branch, and 1 on the second branch. For
both child nodes, the objective value (3) is calculated, and branching
akes place from the node with the lowest objective value on the

leftover non-integer variable whose value is closest to 0. The relaxed LP
is solved and its corresponding pricing problems computed as before.
This process is repeated until an integer solution has been found.
The process of branching, fathoming and calculating objective values
repeats until there are no nodes left that have a lower objective value
than the current best integer solution. Some branches will thus not be
explored, as their relaxed objective value is already higher than the
current best integer value; this helps speed up the process of obtaining
an integer solution.

During the process of calculating a bound via the pricing sub-
problems, it is possible that new negative reduced cost columns are
found; these are added in the same way as described for the RMP, until
o more columns can improve the solution. A global column pool can

be used to filter re-generated columns from branch-and-bound nodes,
although for our problem instances we found the default behaviour of
the LP solver was adequate (Desrosiers and Lübbecke, 2011). Note we
do not explicitly discard columns, nor use further cutting planes. In the
end, when all branches have been explored or fathomed, the integer
solution with the lowest objective value is returned as the optimal
solution to the integer problem. The final integer solution will, next
to the optimal crew pairings and routes, give what flight copies should
be executed, and thus how the flights should be retimed.

4. Results and discussion

This section studies the integrated model proposed in terms of (1)
solution quality, (2) practical value for airlines, and (3) scalability. To
this end we undertake a set of computational experiments on real-world
data, also comparing the presented model with direct solving and with
ablated models.

4.1. Data

The input data for all models include a flight schedule consisting
of legs that need to be supplied with crew and an aircraft. In order
to later be able to compare the outcome of the currently presented
crew pairing models and the partner airline’s pairings, it is important
to select a range of flights that enables a comparison that is as fair as
 d
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Table 7
Overview of all data sets and their characteristics.

Dataset number Dataset name # Flights Timespan Date range SPPRC

1 1_day 142 1 day 1–2 March 2019 ×
2 2_day 282 2 days 1–5 March 2019 ✓

3 3_day 438 3 days 1–5 March 2019 ✓

4 4_day 567 4 days 1–6 March 2019 ✓

5 5_day 678 5 days 1–7 March 2019 ✓

6 6_day 789 6 days 1–7 March 2019 ✓

7 7_day 926 7 days 1–9 March 2019 ✓

possible. To this end, the selection of flights took place by looking at
the starting date of the airline’s pairings. For example, for a ‘one-day’
dataset, all flights that were performed in the airline’s pairings starting
from that day were chosen. This avoids that only half of the flights of a
pairing made by the partner airline are in the current dataset, therefore
nabling a more fair comparison of results. The set of all datasets can be
een in Table 7. The timespan indicates how many pairing starting days
ere used to get flights from, while the date range indicates between
hich dates the chosen flights fall. The last column indicates whether
 Shortest Path Problem with Resource Constraints is solved.

4.2. Models

We compare the model and solving approach of Section 3 with
four simpler models. Recall that we wish to compare the integrated
versus direct models. Table 8 summarises whether each model does,
n addition to solving the crew pairing problem, also integrate the
ircraft routing problem, and whether it allows flight retiming. The last
olumn indicates whether the model is a monolithic MILP, or whether
e employ branch-and-price as described previously. In particular, CP

s the vanilla crew pairing model,2 and CG denotes the use of column
generation.

Unless mentioned otherwise, all models use a set of standard param-
eters for the presented experiments below. Table 9 gives an overview
of these parameters.

The models were implemented in Python 3.6, using packages CSPY
nd Pylgrim to implement the solving strategy of the pricing prob-
ems (Weyens and van Vugt, 2019; Torres Sanchez, 2019); CBC 2.10

was used as the MILP/LP solver via the package PuLP. All experiments
were run on a Linux machine with an 8-core 2.40 GHz Intel Xeon Gold
148 processor and 32 GB of RAM. A timeout of 24 h was used.

4.3. Results

We first provide empirical results on the pairing and routing graph
generation, then analyse the size of the problem encoding (Section 4.3.1
before reporting the results of the three main experiments. First, the so-
lution quality and how it develops over dataset size and across different
models (Section 4.3.2). Second, a comparison with the partner airline’s
urrent methodology (Section 4.3.3). Third, the runtime performance of

all models (Section 4.3.4). A sensitivity analysis concludes the empirical
ection (Section 4.4).

4.3.1. Preliminary experiments
Pairing and routing graphs. To give insight into the size of the shortest
ath problems that are solved for each experiment, Table 10 reports an

overview of the pairing and routing graph sizes in terms of the number
of edges and the number of nodes for each data set.

2 For disambiguation, note that ‘CP’ refers to crew pairing, and not to the
ptimisation methodology ‘constraint programming’. In this article we align
ith the use of linear mathematical models and MILP solving techniques; we
o not explore the use of modelling or solving with constraint programming.
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Table 8
Overview of all implemented models and their characteristics.
Model number Model name Crew pairings Aircraft routes Retiming Branch-and-price

1 Vanilla CP ✓ × × ×
2 CP_CG ✓ × × ✓

3 CP_Integrated ✓ ✓ × ×
4 CP_Integrated_CG ✓ ✓ × ✓

5 CP_Retiming_CG ✓ ✓ ✓ ✓
Table 9
Parameters and their standard values used for the presented experiments.
Parameter Explanation Value

Check-in time Time needed for check-in activity 1 h
Check-out time Time needed for check-out activity 30 min
Taxi check-in time Time needed for check-in before a taxi activity 15 min
Default turn-around time Turn-around time used when no time is found for the airport and aircraft combination 40 min
Maximum turn-around time Maximum time between two sequential flights in one duty 3 h
Extra time aircraft change The extra time needed when crew needs to change aircraft 15 min
Maximum pairing length The maximum time a pairing covers 4 days
Maximum layover time Maximum time between two duties in a pairing 3 days
w Importance of optimising aircraft routes relative to pairings. Same importance if w = 1 0.1
Table 10
Specifications of the pairing and routing graphs created for each dataset. In the case of routing graphs, all numbers are reported as a sum over all routing graphs.

Dataset Pairing graph Routing graphs Pairing graph (retimed) Routing graphs (retimed)

# nodes # edges mean degree # nodes # edges mean degree # nodes # edges mean degree # nodes # edges mean degree

1_day 130 276 2.12 154 599 3.89 3300 9015 2.73 438 3963 9.05
2_day 386 1375 3.56 294 2713 9.23 b b × b b ×
3_day 832 4638 5.57 a a × b b × b b ×
4_day 1329 10 535 7.93 a a × b b × b b ×
5_day 1703 15 721 9.23 a a × b b × b b ×
6_day 2075 21 429 10.33 a a × b b × b b ×
7_day 2488 28 332 11.39 a a × b b × b b ×

a Indicates that not enough memory was available to complete the runs.
b indicates that the runs took longer than 24 h to complete.
Table 11
Average number of decision variables per problem (n = 24).

Data set CP CP_CG Difference CPIntegrated CPIntegrated_CG Difference CPIntegratedSchedule_CG

1_day 298 221 −25.8% 1861 704 −37.8% 1927
2_day 1607 506 −68.5% 330 586 4308 −98.7% b

3_day 11 298 921 −91.8% a b × b

4_day 63 533 1397 −97.8% a b × b

5_day 91 789 2045 −97.7% a b × b

6_day 122 099 2697 −97.8% a b × b

7_day 150 046 3244 −97.8% a b × b

a Indicates that the runs did not finish because of not enough memory was available.
b indicates that the run did not finish within 24 h.
It can be observed that for each graph the number of nodes and
dges increases as the dataset covers more days and flights. Addition-
lly, the retimed pairing graph contains more nodes and edges than the
egular pairing graph as a result of the larger set of possible duties due
o retiming. It is interesting to see that next to the number of nodes and
dges, the mean degree in the retimed pairing graph is also larger than
he regular pairing graph for the same data set. This indicates that the
etiming results in more possible paths. The same observations can be
ade for the retimed routing graphs.

Decision variables. To investigate the size of the MILP problems it is
nteresting to examine the number of decision variables per model
nd dataset. This is especially relevant to investigate the difference in
roblem size between the generate-and-test and branch-and-price ap-
roaches, as the aim of column generation is to solve smaller problems
nd add decision variables only as needed. Table 11 reports the average
umber of decision variables generated during the entire model per
odel and dataset, over 24 runs per model–dataset combination.

As can be observed from Table 11, the column generation approach
ses many fewer decision variables than the vanilla CP approach.
11 
Further, the integrated models use more decision variables, as there
is one per crew pairing and one per aircraft route. With regards
to the difference between the generate-and-test and branch-and-price
approaches, it can be seen that the branch and price approaches use a
significantly smaller number of decision variables. For example, CPIn-
tegrated_CG only uses 1.3% of the decision variables compared to
CPIntegrated. Generally, the percentage of decision variables that
do not have to be generated increase with the size of the dataset. In
addition, it can be seen that there is a larger percentile difference for
the integrated models (see Fig. 7).

4.3.2. Experiment 1: Solution quality
Purpose and metrics. A question of central interest is the impact of
the different models on the total objective value. Recall that objective
function (3) is a minimisation. Standard metrics for this purpose will
be the objective value (3) of the integer and linear problems, and
the resulting integrality gap. Additionally, to be able to compare the
different model outcomes, it is important to look at the objective values
themselves. To compare the branch-and-price against the generate-and-
test approach for efficiency, it is interesting to compare the number of
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Fig. 7. Number of decision variables for models CP and CP_CG over problem size.

Fig. 8. Objective value of model CPIntegratedSchedule_CG on the 1_day dataset
per iteration.

possible pairings and routes, with the number of generated and used
pairings and routes.

Hypothesis. The integrated models CPIntegrated_CG and CPIn-
tegrated will have a worse objective value than the retiming-
integrated model CPIntegratedSchedule_CG.

Results. The solution quality of the presented models on the different
datasets is presented in Table 12. It can be seen that the objective
value of models CP and CP_CG, and models CPIntegrated and
CPIntegrated_CG are equal to each other. This is an indicator of the
correctness of the column generation technique in the branch-and-price
approaches, as the branch-and-price algorithm should not alter the
exact outcome of the problem, but only decrease the number of decision
variables. In addition, the CPIntegrated and CPIntegrated_CG
models have a higher objective value than the non-integrated models,
due to the inclusion of routing costs. As expected, the retiming model
CPIntegratedSchedule_CG greatly reduces the objective value
compared to the other integrated models. Interesting to note from
Table 12 is that the solution for the linear problem is equal to the
solution value for the integer problem. With the integrated models, this
is not the case, but the integrality gap is still high at a lowest value of
0.99.

Fig. 8 displays the value of the objective function over the column
generation iterations throughout the branch-and-price process. It can
12 
be seen that the objective value greatly decreases in the first 100
iterations, after which the solution to the linear relaxation is found
around iteration 175. From the 200th iteration onwards, small spikes in
objective value can be observed. These spikes are caused by the branch-
and-bound process, where a variable’s value is fixed while keeping
the existing decision variables. These peaks often get lower because
additional columns are added, or the solution is fathomed.

4.3.3. Experiment 2: Practical value
Purpose and metrics. Since our central interest is to achieve an improve-
ment in the crew productivity, it is important to investigate whether
the models return more productive solutions than the partner airline
designed for the given flight schedules. To achieve this, the results of
all models on all data sets will be compared to the pairings used by the
partner airline for the exact set of flights. One important metric is the
average block hours/duty hours per duty over all pairings as this gives
a measure for the crew productivity. Additionally, the average number
of duties needed to cover all flights is important because it gives a
lower bound on the number of crew needed each day to operate a flight
schedule. It will also be interesting to see whether more layovers will
be implemented, as this might increase the crew productivity, but is
currently not a favourable option for the partner airline because of the
costs associated with them.
Hypotheses.

• It is expected that all models will return an improvement in crew
productivity as measured by the average block hours per duty
hours ratio, compared to the partner airline’s results.

• It is expected that the integrated models will return a larger
improvement compared to the non-integrated models.

Results. Fig. 9 shows a visualisation of the pairings resulting from
running model CP on the 2_day dataset. Each horizontal value rep-
resents one pairing, where the green colour indicates a flight, blue
indicates a check-in or check-out activity, pink is for taxi activities
and grey represents a hotel stay. It can be seen that mostly pairings
consisting of only one duty are formed; only two pairings with layovers
are necessary.

Fig. 10 shows how the results from the different models compare
to the partner airline’s current pairings, in terms of the number of
(long) duties, positioning activities, layovers, and the block hours over
duty period (BH/DP). All these statistics have been multiplied by a
factor to cover their real values. This has been done to protect the
sensitivity of the results, while still being able to show the relationship
between them. As can be seen from Figs. 10(a), 10(b) and 10(c),
generally all models over the 1, 2 and 7_day datasets result in a higher
number of duties and fewer positioning. Additionally, the results for
datasets 1_day and 2_day also contain fewer layovers. This is a positive
outcome, as the number of duties gives a lower bound on the number
of crew members that are needed to cover a schedule, and positioning
and layover activities cost time and money while the crew are at that
moment not operating flights.

The hashed statistics corresponding to these observations can be
found in Table 13. It can be seen that all models have a higher
block hour per duty hour ratio. It stands out that significantly fewer
(4%–10%) pairings are used by the currently presented models. This
percentage decreases with problem size. In addition, the resulting crew
efficiency measured as the ratio between flight hours and duty hours
per duty is 0.6% to 1.5% higher compared to the partner airline’s pair-
ings. These results decrease with problem size, but generally increase
with integration level, as expected.

4.3.4. Experiment 3: Runtime
Purpose and metrics. Solving time is relevant when deciding whether to
use the approach proposed in Section 3. Therefore, the runtime of all
models will be examined for all datasets by recording the total runtime
and the time needed to find a solution to the linear relaxation.
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Table 12
Objective values for the integer and linear problem associated to the different models and data sets, with the average number of column generation iterations (n = 24).

Data set CP CP_CG CPIntegrated CPIntegrated_CG CPIntegratedSchedule_CG

IP LP IP Gap Iterations IP LP IP Gap Iterations LP IP Gap Iterations

1_day 2 141 700 2 141 700 2 141 700 1.0 42 2 469 180 2 469 180 2 469 180 1.0 93 447 779.99 447 780.00 0.99 401
2_day 4 400 700 4 400 700 4 400 700 1.0 101 5 501 370 5 501 369.99 5 501 370 0.99 926 b b × ×
3_day 6 763 200 6 763 200 6 763 200 1.0 203 a b b × × b b × ×
4_day 8 883 000 8 883 000 8 883 000 1.0 369 a b b × × b b × ×
5_day 10 729 500 10 729 500 10 729 500 1.0 647.54 a b b × × b b × ×
6_day 12 535 200 12 535 200 12 535 200 1.0 898.875 a b b × × b b × ×
7_day 14 759 700 14 759 700 14 759 700 1.0 1114.125 a b b × × b b × ×

a Indicates runs were not completed because not enough memory was available.
b Indicates that the run did not finish within 24 h.
Fig. 9. Visualisation of the pairings resulting from model CP ran on the 2_day data set, where each horizontal line at the 𝑦-axis represents a pairing. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Hypotheses.

• Although it is expected that the more integrated models will
provide better solutions, it is also expected that the more a model
is integrated, the longer its runtime will be for the same data set.

• The branch-and-price methodology will be slower than the
generate-and-test approach for small data sets due to the large
13 
number of steps, but faster for larger data sets.

Results. The third experiment studies runtime results for all experi-
ments. The runtimes can be observed from Table 14, and are visualised
in Fig. 11(a). To better show the runtimes that are close together,
Fig. 11(b) shows the normalised runtime.

As expected given the more challenging problem modelled, the
more integrated a model is, the longer its runtime will be for the
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Fig. 10. Barchart comparing the results between the partner airline’s pairings and the different models’ results.
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Table 13
Hashed practical results of the models over the 1, 2 and 7_day datasets. Column ‘Current’ reports the actual values of the partner airline’s
current solution.

Dataset Metric Current CP CP_CG CPIntegrated CPIntegrated_CG CPIntegratedSchedule_CG

#duties 109.56 99.6 99.6 99.6 99.6 99.6
1_day #positioning 13.28 11.62 11.62 11.62 11.62 11.62

BH/DP 1.133 1.150 1.150 1.148 1.150 1.148

#duties 222.44 207.5 207.5 207.5 207.5 b

2_day #positioning 24.9 23.24 23.24 23.24 23.24 b

BH/DP 1.160 1.170 1.172 1.172 1.177 b

#duties 722.1 693.88 693.88 a b b

7_day #positioning 48.14 46.48 46.48 a b b

BH/DP 1.172 1.175 1.179 a b b

a Indicates that the run was not completed due to too little memory.
b Indicates that the run did not complete within 24 h.
Fig. 11. Average (normalised) runtime over problem size for all models (𝑛 = 24).

same dataset. This can clearly be seen in Fig. 11(a), where there is a
large difference between the runtimes of the CP and CPIntegrated
models, as well as between model CP_CG and CPIntegrated_CG.
For the non-integrated models, the runtime of the generate-and-test
15 
approach is always smaller than the runtime of the branch-and-price
approach. This is most likely due to the relatively small number of
decision variables. When looking at the CPIntegrated and CPIn-
tegrated_CG models, it stands out that the generate-and-test method
is faster for the 1_day dataset, while the branch-and-price approach
is faster on the larger 2_day dataset. The branch-and-price approach
therefore seems to be promising for very large problem sizes; this is
conform expectation.

Additionally, it is interesting to look at the mean and maximal
runtimes for all models, as presented in Table 14 and the boxplots in
Fig. 12. Generally, there is a relatively small difference between the
worst-case runtime and the average runtime. This difference is larger
for models using the branch-and-price approach. This is as expected,
because of the different order in which the columns can be added due
to paths having the same weight, and the use of a heuristic for the
SPPRC. The spread of the runtimes is also dependent on the problem
size, where the larger the problem, the larger the difference between
the mean and maximal runtimes becomes. An example hereof is given
by the boxplots in Fig. 12.

As Section 5 will note, we reserve for the future means to increase
the scaling ability of the most integrated models. Possibilities include
improving the branching rule of Section 3.3, reimplementing in a more
performant language such as C++, using learning from a distribution
of problem instances to guide the MILP solving, and moving from exact
solving as in this article to the use of meta-heuristics.

4.4. Sensitivity analysis

Finally, this section investigates the influence of the maximum
pairing length parameter on the solution quality and runtime results.
This parameter is studied due to its importance in practice. To this
end, 12 additional runs per dataset-model combination have been
performed, with the maximum pairing length set to 6 instead of 4
days. All parameters, except the maximum pairing length, were set
to the values presented in Section 4.2. Setting the maximum pairing
length to a larger value influences which solving method is required
for the shortest path problem. Table 15 shows the updated dataset
characteristics with regards to the SPPRC. It can be seen that the pricing
problems of the 2, 3, and 4_day datasets can be now be solved by
solving a regular shortest path problem, instead of the SPPRC.

As can be seen in Fig. 13, the number of decision variables increases
greatly from the 4_day dataset onwards, as that is the first dataset that
has a large number of possible pairings that are longer than 4 days.
Interestingly, a similar piecewise linear function as for a maximum
pairing length of 4 days can be observed. This time only, a strong
increase can be noticed for the CP model from the 4_day dataset
onwards, as many more combinations are possible with a maximum
pairing length of 6 days. These increased number of decision variables
also take up a lot of memory; the CP model with maximum pairing
length of 6 days did not finish on the 6_day and 7_day datasets, as the
program ran out of memory. From Fig. 13 it can also be seen that the
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Table 14
Average and maximum runtimes per model and data set in seconds.

Dataset CP CP_CG CP Integrated CP Integrated _CG CP Integrated Schedule_CG

Mean Max Mean Max Mean Max Mean Max Mean Max

1_day 0.56 0.86 2.35 3.64 3.66 5.61 10.54 16.0 265.15 267.19
2_day 2.9 4.23 16.19 24.73 3219.23 3330.85 864.13 879.68 b b

3_day 19.81 24.56 108.05 112.55 a a b b b b

4_day 64.62 65.42 642.67 663.68 a a b b b b

5_day 175.52 177.37 2411.87 3139.14 a a b b b b

6_day 729.23 735.93 6062.17 8528.28 a a b b b b

7_day 5099.19 5603.89 10 883.6 14 122.46 a a b b b b

a Indicates that the runs did not complete due to too little available memory.
b Indicates that the run took longer than 24 h.
Table 15
Datasets and their updated SPPRC attribute when maximum pairing length is set to 6 days.
Dataset number Dataset name SPPRC (length = 4 days) SPPRC (length = 6 days)

1 1_day × ×
2 2_day ✓ ×
3 3_day ✓ ×
4 4_day ✓ ×
5 5_day ✓ ✓

6 6_day ✓ ✓

7 7_day ✓ ✓
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CP_CG model needs to add a small amount of decision variables before
it finds an optimal solution, compared to the 4-day maximum pairing
ength. However, this increase is far less extreme than can be seen for
he CP model.

When looking at the solution quality, a larger maximum pairing
ength shows to have no effect on the objective value. This can be
een in Fig. 14, as the dotted and star marked lines for the 6 day
aximum pairing length runs are covered by the lines of the 4 day
aximum pairing length runs. This can be explained by the high idle

ime that comes with hotel layovers. Therefore, longer pairings are not
avourable over shorter pairings, unless they cover a flight that could

not be covered before.
With regards to the runtime of the models, Fig. 14 shows that the

runtime for the CP and CP_CG models is lower when the maximum
length is set to 6 days up until the 4_day dataset. For larger datasets,
the runtime for the maximum length of 6 days increases above the
runtime for the maximum length of 4 days. This can again be at-
tributed to the difference between solving a shortest path problem by
using Bellman–Ford or solving a shortest path problem with resource
constraints. This difference is smaller for the integrated models (see
Fig. 15).

5. Conclusion

This article investigated how the crew pairing problem can be
ntegrated with the aircraft routing problem and schedule retiming as to
mprove the crew productivity of a low-cost carrier operating a point-
o-point network. A case study was provided on the network and data

of a European airline which, like many other European airlines, pays
light crew irregardless of the number of hours flown. Because of this
ay structure, it is desirable to assign crew to the flight schedule as
fficiently as possible. While the (integrated) crew pairing problem has
een studied extensively in the past, the literature has mostly focused
n US network carriers and minimising pay-and-credit, while European
ow-cost carriers and optimising crew efficiency are often overlooked.

To fill these gaps, and explore the potential of integrated and
ircraft routing problem with schedule retiming for the partner air-
ine, we developed an integrated mixed-integer linear programming
 d
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model. We overcome the scale and computational complexity of solving
the model by developing a branch-and-price decomposition approach.

omputational results show that the pairings created include fewer
ositioning and layover activities, and have a higher block hour to duty
our ratio, than the pairings used by the partner airline in practice.
dditionally, while the more integrated models have longer runtimes,

hey are also more able to decrease the objective value; moreover, the
untime even with a prototype implementation is acceptable for the
requency and scale of the problem in the case study. In short, the
ractical results of up to 10% fewer duties and up to 1.5% higher crew

efficiency, show that integrated crew scheduling is also promising for
airlines operating a point-to-point network.

Despite these promising outcomes, there are directions to extend
the presented model. Firstly, each aircraft type has different possible
configurations, of which, for example, the maximum take-off weight
is of great importance. Although two aircraft are of the same type, it
might be that one has a lower maximum take-off weight and is there-
fore unable to fly to all of the destinations in the schedule. Secondly,
the current research did not take required maintenance activities into
account. As aircraft need maintenance in a hangar as often as once a
week, including this constraint in the integrated problem will further
increase the applicability of the results in real life. Thirdly, the cur-
rently presented models can be extended with additional possibilities
in the duty generation phase. For example, currently, the models do
ot produce duties where a positioning activity is located in the middle
f a duty, surrounded by flight activities. This is however a possibility
hat can be explored in the future.

From the algorithmic perspective, there are multiple directions for
further improvement. First, we note that the current branch-and-price
hase takes a large number of iterations. This can be a motive to look
urther into promising branching strategies that need fewer iterations to

find an integral solution (Vanderbeck, 2000) and to more sophisticated
ormulations (Lam et al., 2022). Second, it could be beneficial for the
etiming model to not retime all flights, but a select number chosen
y a heuristic: those which are expected to yield improvements in
he pairings that can be made by allowing retiming. Third, to further
ecrease the general runtime of all models, it is advisable to implement
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Fig. 12. Non-integrated, integrated, and schedule-integrated model showing the run-
time results for their largest data sets (𝑛 = 24). The whiskers indicate the area between
the 5th and 95th percentile.
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Fig. 13. Average number of decision variables per dataset for maximum pairing lengths
of 4 and 6 days.

Fig. 14. Objective value per model and dataset with maximum pairing lengths of 4
and 6 days.

these and similar models in a language such as C++ or Rust that is
more suitable for computational efficiency and for multiprocessing.
This reduces the computational overhead of the implementation, and
allows the sub-problems of the integrated models to be solved in
parallel, making the entire solving process a lot faster. Further, the LP
solver of CBC could be replaced by a state-of-art solver such as that of
CPLEX or Gurobi. Lastly, given the potential of machine learning (ML)
aided combinatorial optimisation, particularly in the face of stochastic
settings (Bengio et al., 2021; Dumouchelle et al., 2022), exploring
how ML can accelerate (exact) integrated airline schedule optimisation
remains an interesting avenue; one relevant step is that of Quesnel et al.
(2022).
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Fig. 15. Average (normalised) runtime over problem size for all models and maximum
pairing lengths of 4 and 6 days (𝑛 = 12). Dotted lines and star markers indicate the
use of a 6-day maximum pairing length.
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Appendix A. Pairing graph construction

This appendix explains in detail how the pairing graph is con-
structed. The pairing graph consists of nodes representing bases (source
and sinks), taxi activities, taxi+overnight activities, and duties. The
edges that are possible between all these nodes are given in Fig. 16.
Each edge has an associated weight, representing the amount of idle
time: the available duty time not used to operate flights. Each edge
also contains a resource cost attribute that records the time needed to
execute the pairing. The models that use branch-and-price to find an
optimal set of pairings need this attribute to ensure that the created
pairings do not violate the maximum pairing length. To construct the
pairing graph, all nodes are created first, after which edges and their
corresponding weight and resource costs are created. This is done by
following the steps presented in Section 3.1.2.

Because there is only one taxi node per base source node, the edges
from the source node to the taxi node have both weight and resource
cost 0. The cost of using a taxi is put into the edge attributes of the
edges from the taxi node to the first duty. For the weight, these edges
get their usual weight as edges going into a duty node, but are increased
by the taxi time from the source to the duty’s departure airport. This
also holds for the resource cost attributes. Similarly, the edges going to
a taxi node just include the taxi time as its weight and resource cost. A
full overview can be seen in Fig. 16.

To improve the runtime of all models, and recognising the size of
the graph (Table 10), the pairing graph is kept as small as possible.
This is done by iterating over the pairing graph and removing all nodes
that have an out-degree or in-degree of 0. By iteratively removing these
nodes it is ensured that edges and nodes that cannot be part of a path
between a source and a sink node do not remain in the graph and
therefore do not slow down the process.

Appendix B. Routing graph construction

This appendix explains in detail how the routing graphs are con-
structed for all models presented in the article. Firstly, it is important
to remember that each given aircraft type has its own routing graph,
to simplify finding a solution. To construct a routing graph for one
of the aircraft types, a source and sink node is created for all bases.
Additionally, for all flights that are assigned to that aircraft type, a node
is created.

The process of assigning edges between these nodes is straight-
forward, and only happens when there is enough turn around time
between the two flights. Additionally, all flights that depart from a base
get an incoming edge from the source node of that base, while all flights
that arrive at a base get an outgoing edge to the base’s sink node.

The edges in the routing graphs only have one attribute: weight.
Similar to the pairing graph, the weight is represented as the idle time
of the aircraft (in seconds), as a consequence this also minimises the
number of aircraft that are used to cover all flights. This is accom-
plished by giving outgoing edges from the source node a weight that
corresponds to the difference between the departure time of the node’s
flight and the first flight in the schedule. Similarly, all incoming edges
to the sink nodes get a weight that represents the time between the
arrival time of the flight and the arrival time of the last flight in the
schedule.

As explained in Section 3.1.3, the priority between optimising pair-
ings and aircraft routes can be shifted by adjusting the 𝑤 (i.e., relative
weight) parameter. All edge weights in the routing graphs are multi-
plied by this parameter. All possible edges and their respective weights
can be observed from Fig. 17.
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Fig. 16. All possible edges in the pairing graph, with their corresponding weights and resource costs.
Fig. 17. All possible edges in the routing graphs and their respective weights.
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