
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Federated MaxFuse
Diagonal Integration of Weakly Linked Spatial and
Single-cell Data through Federated Learning

MSc Computer Science Thesis
Krzysztof Baran

Federated MaxFuse
Diagonal Integration of Weakly Linked Spatial

and Single-cell Data through Federated
Learning

by

Krzysztof Baran

Student number

4662148

Thesis advisor: Prof. dr. ir. Marcel Reinders
External advisor: Dr. Jérémie Decouchant (Distributed Systems)
Daily supervisor: MSc Swier Garst
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science
Research Group: Pattern Recognition & Bioinformatics
Defense Date: May 9, 2025

Cover Image: Generated using DALL∙E 3 by OpenAI
Cover: TU Delft Report Style, with modifications by Daan Zwaneveld

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial
and Single-cell Data through Federated Learning

Krzysztof Baran

Delft University of Technology
Delft, The Netherlands

Marcel Reinders
 Delft University of

Technology Delft, The
Netherlands

Swier Garst

Delft University of Technology
Delft, The Netherlands

Jérémie Decouchant
 Delft University of Technology

Delft, The Netherlands

ABSTRACT
Integrating single-cell multi-omic data is crucial for comprehensive
biological discovery, yet it remains challenging due to the weak
correlation between modalities, data heterogeneity, and stringent
privacy regulations. Conventional integration methods that depend
on shared features or matched cells, which are rarely available in
practice. While some diagonal integration approaches might mitigate
some of these limitations, they are sensitive to noise, prone to
overfitting, and challenging to validate, especially in the absence of
centralized data access. This thesis introduces Federated Matching
xcross modalities via Fuzzy smoothed embeddings (MaxFuse), a
novel adaptation of MaxFuse within a Federated Learning (FL)
framework, which enables privacy-preserving diagonal integration
through fuzzy smoothing, federated Canonical Correlation Analysis
(CCA), and iterative matching without exchanging raw data. We
validate Federated MaxFuse on benchmark single-cell datasets,
demonstrating that it achieves matching accuracy and embedding
quality comparable to centralized baselines across supervised and
unsupervised metrics. These findings establish Federated MaxFuse
as a practical and scalable solution for privacy-preserving integration
of multi-omic data, enabling robust cross-institutional analyses under
real-world constraints.

Krzysztof Baran, Swier Garst, Marcel Reinders, and Jérémie Decouchant.
2025. Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial
and Single-cell Data through Federated Learning. 36 pages.

1 INTRODUCTION
Integrating single-cell data is a methodological approach to combine
high-throughput sequencing datasets into a cohesive, harmonized
dataset, originating from different batches, donors, or conditions.
This integration enables comprehensive analysis while preserving
authentic biological diversity, facilitating subsequent studies, and
enhancing the precision of comparative investigations across diverse
datasets [64, 3]. The ultimate goal of the integration is to align shared
cell types and states across datasets, eliminate unwanted technical
discrepancies among experiments, and enhance statistical power
[47], making it a complex endeavor. It is a critical step in extracting
meaningful insights from the wealth of heterogeneous single-cell

© 2025 Copyright held by the owner/author(s).

data generated, enabling a more comprehensive understanding of
complex biological systems [21, 9, 3, 2].

Furthermore, having biasless data integration means that one could
perform downstream tasks such as differential expression, biomarker
detection, or trajectory inference, which can lead to new biological
discoveries about cellular function, development, and disease mech-
anisms [47, 2]. Additionally, more data is being produced with the
recent rapid advancement of single-cell technologies. Nonetheless,
the datasets are at best weakly linked due to differences in settings
and protocols, highlighting the urgent need for new computational
approaches to integrate these datasets [29].

Although new technological innovations in single-cell genomics
assays help quantify and harness biological data, the challenge
remains. There are many heterogeneous data modalities, ranging
from CO-Detection by indEXing data (CODEX) and single-cell
Assay for Transposase-Accessible Chromatin sequencing (scATAC-
seq) to single-cell RNA sequencing (scRNA-seq), each presenting
challenges such as high sparsity, high noise, high dimensionality,
missing information for some properties, and low quantity. Therefore,
weakly linked data requires new protocols.

Furthermore, they all need different preprocessing and normal-
ization streams [3] [77]. Batch effects, sequencing depth, and data
sparsity have a significant impact on the performance of analyses such
as differential expression analysis [61]. These data quality challenges
can often impair the performance of traditional machine learning
methods, such as Deep Neural Network (DNN)s and Support Vector
Machines (SVM)s, which are highly sensitive to noise, sparsity, and
batch effects [3, 14, 58, 69]. Moreover, even when such issues are
mitigated, these models often struggle with the inherent characteris-
tics of biological datasets, namely high dimensionality and limited
sample size, resulting in risks of overfitting or underfitting [14]. On
the other hand, popular statistical dimensionality reduction methods
and regularization methods, such as Least absolute shrinkage and
selection operator (L1), Ridge regression (L2), or Principal Compo-
nent Analysis (PCA), are effective for data analysis or downstream
prediction tasks [17, 20, 69]. However, they do not handle missing
information, assume linearity, and require some prior biological
information, potentially limiting their ability to capture complex
relationships in the data, which is prevalent in -omics applications
[18, 33, 3, 58]. As a result, these methods will not effectively capture
the coupling between different data modalities [3].

Baran, et al.

The integration methods can be divided into three main approaches:
horizontal, vertical, and diagonal. Horizontal integration methods
utilize genomic features with a mapping function, which is used
to align different datasets despite the absence of matched cells in
experiments [85, 89, 4]. It proves beneficial when experiments lack
shared cells but possess overlapping features that can serve as anchors
[84, 34]. Examples of such integration are Harmony [44], Linked
Inference of Genomic Experimental Relationships (LIGER) [80],
and Seurat v3 [73]. Likewise, vertical integration employs shared
cells among various data modalities as integration anchors, allowing
for interesting relationships between different molecular layers within
the same cells locally (associations between specific features) or
globally (identifying broader cellular states)[85, 89, 4, 84]. Examples
of such integration are Canonical Correlation Analysis (CCA)[78],
and integrative Non-negative Matrix Factorization (iNMF) [87].

Nevertheless, while these methods exhibit commendable effi-
cacy in the integration of well-aligned datasets, mainly when prior
knowledge regarding data linkage is available, they suffer from
over-correction, highly dimensional data (possibly zero-inflated)
getting severely distorted [66], batch effects, and forcibly merging
non-matching sub-populations of cells [3, 85, 53]. Technological con-
straints exacerbate this problem, as existing single-cell multi-modal
technologies are unable to efficiently gather data from multiple molec-
ular layers of individual cells at scale [3]. This means that having
shared samples (as in horizontal integration) or shared features (as in
vertical integration) is not always feasible, necessitating integration
strategies beyond these traditional paradigms. Due to these problems
with horizontal and vertical integration, we are interested in diagonal
integration.

Diagonal integration, alternatively termed cross-modal integration
[3, 85], distinguishes itself from the techniques above by operating
independently of anchors, shared features, or cellular structures.
Instead, diagonal integration reconstructs a low-dimensional mani-
fold that captures covariation patterns across diverse modalities [4],
particularly when integrating data lacking explicit feature alignment.
However, this method is hindered by challenges such as intrinsic
heterogeneity of modalities, high dimensionality, noise, and sparsity.
Conventional integration methods often struggle to address these
complexities, and existing integration approaches encounter limita-
tions, particularly when dealing with data that lacks precise feature
matching. This method is inherently more complex, as it requires
the direct learning of inter-modal relationships without the aid of
anchors [85]. Consequently, innovative computational strategies are
necessary, although existing methods have demonstrated limited
success in addressing these complexities effectively [3, 85].

Additionally, the absence of cell or feature matching makes proper
validation or interpretation of diagonal integration methods less
straightforward compared to horizontal or vertical methods [12, 38].
Even partial correlations among modalities do not guarantee success-
ful alignment of their latent manifolds [3, 38, 85]. Approaches like
Manifold Alignment to CHaracterize Experimental Relationships
(MATCHER) [79], which employs a Gaussian process latent variable
model, rely on strong biological assumptions about the data [4].
Several attempts have been made to integrate single-cell data from
different modalities in recent years. One such approach is embedding
spaces to map meaning and influences between modalities [35]. Al-
though this approach is promising, it is not as feasible due to almost

infinite and unseen sequence possibilities that naturally change over
time, akin to those encountered in natural language processing [12].
Similarly, methods relying on ‘weakly linked’ features (those with
limited known mappings) often result in significant mismatches or
leave large portions of data unmatched [12, 54]. Addressing these
shortcomings, the recently proposed Matching xcross modalities
via Fuzzy smoothed embeddings (MaxFuse) method leverages tech-
niques such as static data removal, iterative co-embedding, ‘fuzzy
smoothing’ with NN graphs, de-noising through internal dimensional
reductions through Singular Value Decomposition (SVD) (leverag-
ing Arnoldi/Lanczos methods for sparse matrices [68]), and cell
matching to leverage all information within each modality through
iterative refinement via CCA. This ensures high-quality integration
with little to no batch effects [12]. It was shown to surpass numerous
contemporary methodologies in accuracy and scalability, thereby
establishing it as a significant approach for integrating single-cell
data across diverse modalities and offering potential insights into
the intricate biological mechanisms associated with various diseases
[12, 3].

While these techniques may work well, they all assume that the
data is available in one lab and can be processed using a single method.
This is a problem as datasets tend to be across silos which can be cross-
institutional and cannot be shared. A solution to this is to establish
an agreement between laboratories and data owners, allowing them
to share the data, but this introduces substantial regulatory and
logistical burdens. [62], and simply removing Personally Identifiable
Information (PII) (a process known as pseudo-deanonymization) is
ineffective due to a high risk of re-identification back to the data
owner [43, 63]. On top of that, regulatory constraints such as GDPR
or HIPAA restrict the sharing and centralization of sensitive data
even when pseudonymized [43], and modern computation setups
like Multi-Party Computation (MPC) are inefficient for large-scale
systems with many participants and require special hardware [16],
preventing traditional integration methods from being feasible. As
a result, institutions often face barriers to collaboration. Federated
Learning (FL) is a distributed model training framework involving
multiple participants collaborating to train localized model versions.
These participants train localized versions of the model, share model
parameters (weights), aggregate them, and then return the aggregated
parameters to every network participant [86]. FL’s distributed nature
allows for direct training models on federated networks, enabling the
development of federated formats for tasks such as model pre-training,
life-long learning, and multi-modal learning without having to share
the data [1, 10, 56, 83, 88]. Hence, the Federated Learning (FL)
can mitigate most privacy concerns associated with fully centralized
learning [83].

Additionally, it is also vital to note that FL introduces novel
challenges in the communication of ‘data representation’ that require a
mental shift from traditional approaches and necessitate the utilization
of the capabilities of connected network nodes [50]. Despite these
hurdles, FL has successfully enabled collaborative, decentralized
training of deep neural networks while preserving privacy by avoiding
the sharing of raw data among network participants [51]. Given its
success, a natural question arises: can similar principles be applied
to perform diagonal data integration in a federated setting, thereby
enabling privacy-preserving integration across distributed datasets.
However, it still presents challenges in providing accurate integration,

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

minimizing communication overhead, and ensuring that minimal
information about the data is shared. This is especially important, as
it is not as straightforward and standardized as sharing neural network
weights across networks, typically through the network itself.

This study focuses on diagonal data integration using the single-
cell MaxFuse algorithm, which we have converted into a federated
method to address privacy concerns associated with data sharing.
This approach aims to integrate single-cell data without sharing
the actual data, while achieving the same results as the centralized
MaxFuse algorithm.

2 METHODOLOGY
We developed a federated version of the diagonal integration tech-
nique. Specifically, we adapted the MaxFuse method to operate in a
federated environment, which enables the integration of two different
data modalities without requiring centralized data collection.

2.1 Data
We utilized publicly available datasets that were provided by the
authors of the MaxFuse algorithm [12], sourced from the Wharton
Research Data Services repository [70]. They comprise between
10,000 and 187,000 observations and range from 57 to 20,729
features.

We selected two modality-specific datasets from this collection
for in-depth analysis.. The first consists of strongly matched human
single-cell RNA and protein modalities [26] serving as a benchmark
with known ground truth to assess the accuracy of the MaxFuse
algorithm in modality matching which is a challenge faced by methods
such as LIGER, Harmony, and Seurat V3 [73]. The second dataset
comprises unmatched modalities between human intestine single-
cell datasets, incorporating CODEX image data from Kennedy et al.
[41] and scRNA-seq data from tonsil dissociated cells in King et al.
[42]. This dataset enables evaluation of the robustness of integrating
‘weakly’ feature-linked modalities in final data embeddings to perform
downstream analyses [30, 76].

For modalities with high signal-to-noise ratio, e.g., CITE-seq
and scRNA-seq, we are constructing meta-cells, which are mean
representations of ‘communities’ built by the Leiden clustering
algorithm [75].

The labels overview is presented in Table 1, and the overview of
preprocessing parameters used in this work is provided in Table 2.

Dataset Data Type Source Label Counts

Antibodies CITE-seq [26] Levels (1-3): 8,31,58PBMC [26]

Tonsils scRNA-seq [42] Cluster labels:6CODEX [42]
Table 1: Overview of datasets’ labels.

2.1.1 Matching Benchmark Dataset: CITE-seq & PBMC Antibod-
ies. The first dataset is a CITE-seq dataset that comprises human Pe-
ripheral Blood Mononuclear Cell (PBMC) cells with measurements
from 228 antibodies, which enables a comprehensive analysis of both
RNA and protein modalities [26]. The data were pre-matched through

weighted-NN, which successfully captured extensive lymphoid di-
versity and helped map correspondences in immune responses [26].
The dataset from MaxFuse contains a subset of the original data
of 10,000 cells, with a sparse RNA dataset of 1,707 features and a
non-sparse Protein dataset of 224 features.

2.1.2 Integration Quality Dataset: CODEX & scRNA-seq Tonsils.
The second dataset combines data from two separate studies. The
first data modality is preprocessed CO-Detection by indEXing data
(CODEX) Tonsil Images 1 from five human lymphoid tissues: three
tonsils, one spleen, and one lymph node. These tissues are crucial
sites for immune responses, containing B-cell follicles that play a
key role in antibody production and the immune function [25, 41].
The second data modality is a scRNA-seq Human Tonsil Dissociated
Cells, where the data was obtained from patients aged 3 to 7 years
undergoing routine tonsillectomy, collected and analyzed by King et
al. [42]. The dataset provided by MaxFuse contains a subset of the
original data of 12,977 RNA points (i.e., scRNA-seq Tonsil Cells)
with 5,000 features and 178,919 protein points (i.e., CODEX Tonsil
Images) with 46 features. The authors have already pre-matched the
labels as Cluster Info/Terms.

2.1.3 Preprocessing Pipeline. Both datasets were initially pre-
processed by the authors of the dataset, facilitating tasks such as
analysis and visualization, as well as by the authors of MaxFuse
for further usability and reproducibility of the results. However,
additional steps were required before it could be used, as each
modality requires two input dataset types: an ‘active dataset’, i.e.,
a complete, modality-specific, preprocessed dataset, and a ‘shared
dataset’, i.e., feature-aligned subsets across modalities. Each dataset
has a dictionary-like correspondence. For instance, a protein marker
name exists for an RNA gene name.

The general preprocessing pipeline for both datasets includes
several common steps. Initially, the pipeline involves creating ‘shared
feature sets’ by aligning both modalities based on the pre-established
biological feature correspondences, which can be found in Appen-
dix D. Subsequently, after creating ‘shared feature sets’, it undergoes
variability feature filtering based on the standard deviation across all
cells, retaining only features that surpass modality-specific thresholds
specified in Table 2. After feature selection, both datasets have their
cells normalized by target total, such that each cell is scaled to have
the median total count of its respective dataset before normaliza-
tion. A subsequent log(𝑋 + 1) transformation stabilizes variance
and reduces skewness. Additionally, for specific ‘active datasets’
modalities like the scRNA-seq and CITE-seq, RNA-specific features
are further filtered by identifying Highly Variable Genes (HVGs)
using the Seurat V3 method [65, 73, 90], selecting genes with the
highest normalized dispersion within expression-level bins. The
number of top HVGs can be defined by the user, as defined in Table 2.
Lastly, both datasets are scaled to zero mean and unit variance across
features. Variability filtering is then applied to the ‘active datasets’
based on their standard deviation at the end.

The resulting preprocessed datasets (’shared’ and ’active’) then
serve as inputs to the MaxFuse algorithm for generating embeddings
and downstream inter-modality matching.

1CODEX software: https://github.com/nolanlab/CODEX

https://github.com/nolanlab/CODEX

Baran, et al.

Dataset Data Type Top HVGs
Count

Filtering
Threshold Initial Shape Preprocessed Shape

Active Shared Active Shared Active Shared

Antibodies CITE-seq - 1−5 1−5 10,000 × 20,729 10,000 × 180 10,000 × 1,707 10,000 × 177
PBMC 𝑛/𝑎 1−5 1−5 10,000 × 224 10,000 × 180 10,000 × 224 10,000 × 177

Tonsils scRNA-seq 5,000 1−5 0.5 12,977 × 33,538 12,977 × 53 12,977 × 5,000 12,977 × 32
CODEX 𝑛/𝑎 1−5 0.1 178,919 × 57 178,919 × 53 178,919 × 46 178,919 × 32

Table 2: Overview of datasets preprocessing details, including data types, preprocessing parameters, initial and resulting data shapes.
Each dataset is presented with its associated data type, the number of Highly Variable Genes (HVGs) selected (where applicable),
filtering thresholds during preprocessing for active and shared modalities, and dataset shapes before and after preprocessing (samples
× features).

2.2 Algorithm & Federation
The MaxFuse algorithm is systematically structured into six dis-
tinct phases as illustrated in Algorithm 1. It begins with an initial
preparation step that sets the groundwork for the subsequent five
stages.

Firstly, the shared feature datasets Y◦ and Z◦, obtained through
preprocessing (see subsubsection 2.1.3), are constructed using known
biological mappings described in Appendix D. This preprocessing
procedure is denoted as GetSharedFeatures for their respective
dataset.

Then, in the second step, we optionally perform meta-cell cluster
aggregation using the Leiden clustering algorithm [75] for a dataset
exhibiting a high signal-to-noise ratio, producing datasets Y𝑚 and
Z𝑚 . The idea is to create ‘fake’ cells representing community clusters
of cells of sizes 𝑛𝑦 and 𝑛𝑧 , which is optional to perform for each
modality. The aggregated modality dataset, which we call meta-
modality, clusters are averaged out to get a center of all clusters. The
original data is retained unchanged for the non-aggregated modality
dataset, which we refer to as non-meta-modality.

𝜌 (𝑋,𝑌) =
∑𝑝

𝑘=1 (𝑋𝑘 − 𝑋) (𝑌𝑘 − 𝑌)√︃∑𝑝

𝑘=1 (𝑋𝑘 − 𝑋)
2
√︃∑𝑝

𝑘=1 (𝑌𝑘 − 𝑌)
2
,

where: 𝑋 and 𝑌 are means for 𝑝 features

(1)

The third step is fuzzy smoothing, for which we first construct
𝑘-NN graphs 𝐺Y and 𝐺Z for each modality. Fuzzy smoothing [12,
39, 40] (see Algorithm 2 for the implementation) uses these graphs
to mitigate uncertainty and noise in biological data by adjusting
each cell towards the average of its neighborhood. This smoothing
allows each cell’s features to adopt some of the characteristics of
its neighbors, reflecting real-world ambiguity. This denoising step
reinforces biological structure and improves generalizability by filter-
ing out irregularities and aligning with local patterns. Furthermore,
this prevents analyses from being overly influenced by outliers while
accommodating heterogeneity in the dataset [39, 40]. Consequently,
fuzzy smoothing improves the quality and reliability of the initial
matching Π◦, corrects noisy or erroneous structures originating from
the CCA method during creation of iteratively refined matching Π.

The fourth step involves computing an initial matching between
the smoothed ‘shared’ features, denoted as Ỹ◦ and Z̃◦, obtained
through the previously mentioned “fuzzy smoothing” method [39,
40] (see Algorithm 2). Using these smoothed datasets, we calculate

Pearson correlation 𝜌 (Ỹ◦, Z̃◦), as illustrated in Equation 1. We then
convert this correlation matrix into a distance matrix D◦ by sub-
tracting the correlation values from a matrix of ones. This inversion
step transforms the matching problem from a correlation maximiza-
tion task into a distance minimization task, known as the linear
sum assignment problem [7], defined in Equation 2. To solve this
minimization efficiently, we employ the Jonker-Volgenant algorithm
[15]. The objective is to find the min(𝑛Y, 𝑛Z) best-matching pairs
of cells. This results in a binary assignment matrix 𝑀 , where each
entry indicates whether the 𝑖 th element from Ỹ◦ is matched to the 𝑗 th

element from Z̃◦. From this matrix 𝑀 , we extract pairs of matched
indices {(𝑖𝑘 , 𝑗𝑘)}𝑛𝑘=1 ⊂ Z

+ × Z+ along with corresponding weights
{(𝑤𝑘)}𝑛𝑘=1 ∈ R, , forming the initial match Π◦ = {(𝑖𝑘 , 𝑗𝑘 ,𝑤𝑘)}𝑛𝑘=1.

min
𝑀∈{0, 1}𝑛Y×𝑛Z

∑︁
𝑖, 𝑗

𝑀𝑖 𝑗 D𝑖 𝑗

such that
∑︁
𝑖

𝑀𝑖 𝑗 ≤ 1, ∀𝑗,∑︁
𝑗

𝑀𝑖 𝑗 ≤ 1, ∀𝑖,∑︁
𝑖, 𝑗

𝑀𝑖 𝑗 = min(𝑛Y, 𝑛Z)

(2)

Subsequently, in the fifth step, we enter an iterative refinement
phase. We alternate between integrating the sample and feature
spaces, iteratively using the improved sample space integration to get
a better feature embedding, and vice versa. The output of the initial
matching step Π◦ is set to Π used to align the cells from the data
modalities Y𝑐𝑐 and Z𝑐𝑐 which are initialized as fuzzily smoothed
meta and non-meta modalities Y𝑚 and Z𝑚 respectively. After this, a
refinement loop begins where the algorithm aligns the datasets with
Π to produce aligned datasets of equal number of rows 𝑌 aligned and
𝑍 aligned through indexing the matching with Π0 = {(𝑖𝑘)𝑛𝑘=1} and
Π1 = {(𝑗𝑘)𝑛𝑘=1}. Then it iteratively learns a linear joint embedding
Y𝑐𝑐 and Z𝑐𝑐 of cells across modalities. This is done by computing
a Canonical Correlation Analysis (CCA) based on all features of
the cross-modal matched cell pairs Yaligned and Zaligned. Finally, we
apply fuzzy smoothing (Algorithm 2) to produce Ỹ𝑐𝑐 and Z̃𝑐𝑐 , and
again applies Jonker–Volgenant algorithm (to solve for linear sum
assignment) on the updated distance matrixD𝑐𝑐 and using Equation 2
to create a new iteration of refined matching Π. The refinement loop
continues for a predetermined number of iterations, 𝑇 , yielding a
final, optimized matching Π.

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Finally, step six performs percentile-based filtering and propaga-
tion of matches. The refined matching Π, produced through iterative
refinement, is filtered using a threshold 𝛼 to remove low-quality
matches. This results in Πpivot, allowing for a more accurate rep-
resentation of the relationships between the datasets. From these
filtered pivots, CCA is performed using the filtered pivots aligned
datasets to produce the embedding weights Y𝑚,𝑒 and Z𝑚,𝑒 , which
are used in propagation and for getting the final full data embeddings.
The propagation step produces Πprop, where for any unmatched cell
in either modality, we identify nearest cells NN within the same
modality and assign the same link to the opposite modality cell for
the unmatched cell as the neighboring cell. After that, we calculate
the Pearson correlation (using Equation 1) of the propagation-aligned
datasets and multiply these correlations with each other to get the
new weights for the propagated matching Πprop. Then the redundant
matches that match to the same cells are removed to create Πprop∗ and
filtered again to create Πfinal for weight 𝛽. The final output includes
a list of matched pairs matching with their weights Πfinal and joint
embeddings Y𝑒 ,Z𝑒 of all cells in both modalities that can be utilized
for downstream analysis.

Algorithm 1 Centralised MaxFuse Algorithm
Input:
• Two datasets Y ∈ R𝑁𝑦×𝑝𝑦 , Z ∈ R𝑁𝑧×𝑝𝑧

• Transformation functionsGetSharedFeatures𝑦 : R𝑁𝑦×𝑝𝑦 →
R𝑁𝑦×𝑠 and GetSharedFeatures𝑧 : R𝑁𝑧×𝑝𝑧 → R𝑁𝑧×𝑠 (𝑠 be-
ing number of shared components)
• Meta cell counts 𝑛𝑦, 𝑛𝑧 ∈ Z+ ∪∅ (if ∅, do not create meta-

cells)
• NN count 𝑘 ∈ Z+
• Smoothing interpolation weight𝑤 ∈ (0.0, 1.0)
• Pivot and propagation filtering weight 𝛼, 𝛽 ∈ (0.0, 1.0)
Output:
• Final embeddings Y𝑒 ∈ R𝑁𝑦×𝑠 and Z𝑒 ∈ R𝑁𝑧×𝑠

• Final matching Πfinal = {(𝑖𝑘 , 𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z
+ × Z+ × R

where 𝑛 ≤ 𝑚𝑖𝑛(𝑁𝑦, 𝑁𝑧)

// Step 1: Transform to Shared Features
1: Y◦ ← GetSharedFeatures𝑦 (Y)
2: Z◦ ← GetSharedFeatures𝑧 (Z)
// Step 2: Construct Meta-cells

3: Y𝑚 ← ConstructMetaCells(Y, 𝑛𝑦)
4: Z𝑚 ← ConstructMetaCells(Z, 𝑛𝑧)
// Step 3: Create Nearest-Neighbor Graphs

5: G𝑌 ← NearestNeighborGraph(Y𝑚, 𝑘)
6: G𝑍 ← NearestNeighborGraph(Z𝑚, 𝑘)
// Step 4: Create Initial Shared Data Matching Π◦

7: Ỹ◦ ← FuzzySmoothing(Y◦,G𝑌 ,𝑤)
8: Z̃◦ ← FuzzySmoothing(Z◦,G𝑍 ,𝑤)
9: D◦ ← 1.0 − 𝜌 (Ỹ◦, Z̃◦) // Inverse of Pearson

10: {(𝑖𝑘 , 𝑗𝑘)}𝑛𝑘=1 ← LinearSumAssignment(D) // Equation 2
11: {𝑤𝑘 }𝑛𝑘=1 ← D{ (𝑖𝑘 , 𝑗𝑘)𝑛𝑘=1 } // Get matching scores
12: Π◦ ← {(𝑖𝑘 , 𝑗𝑘 , 𝑤𝑘)𝑛𝑘=1}
// Step 5: Joint Embedding and Iterative Refinement

13: Π ← Π◦

14: Y𝑐𝑐 ← FuzzySmoothing(Y𝑚,G𝑌 ,𝑤)

15: Z𝑐𝑐 ← FuzzySmoothing(Z𝑚,G𝑍 ,𝑤)
16: for 𝑡 = 1 to 𝑇 do
17: Yaligned,Zaligned ← Y𝑐𝑐 (Π0),Z𝑐𝑐 (Π1)
18: Y𝑐𝑐 ,Z𝑐𝑐 ← CCA(Yaligned,Zaligned)
19: Ỹ𝑐𝑐 ← FuzzySmoothing(Y𝑐𝑐 ,G𝑌 ,𝑤)
20: Z̃𝑐𝑐 ← FuzzySmoothing(Z𝑐𝑐 ,G𝑍 ,𝑤)
21: D𝑐𝑐 ← 1.0 − 𝜌 (Ỹ𝑐𝑐 , Z̃𝑐𝑐)
22: {(𝑖𝑐𝑐

𝑘
, 𝑗𝑐𝑐
𝑘
)}𝑛

𝑘=1 ← LinearSumAssignment(D
𝑐𝑐)

23: {𝑤𝑐𝑐
𝑘
}𝑛
𝑘=1 ← D𝑐𝑐

{ (𝑖𝑐𝑐
𝑘
, 𝑗𝑐𝑐
𝑘
)𝑛
𝑘=1 }
// Get matching scores

24: Π ← {(𝑖𝑐𝑐
𝑘
, 𝑗𝑐𝑐

𝑘
, 𝑤𝑐𝑐

𝑘
)𝑛
𝑘=1}

25: end for
// Step 6: Filtering and Final Embedding

26: Πpivot ← FilterOutBadMatches(Π, 𝛼)
27: Y𝑚,𝑒 ,Z𝑚,𝑒 ← FitEmbeddingsCCA(Y𝑚 (Πpivot

0), Z𝑚 (Πpivot
1))

28: Πprop ← Propagate(Πpivot,Y𝑚,Z𝑚,Y𝑚,𝑒 ,Z𝑚,𝑒)
29: Πprop∗ ← RemoveRedundantConnections(Πprop)
30: Πfinal ← FilterOutBadMatches(Πprop∗, 𝛽)
31: Y𝑒 ,Z𝑒 ← GetEmbeddingsCCA(Y,Z,Y𝑚,𝑒 ,Z𝑚,𝑒)
32: return Y𝑒 , Z𝑒 , Πfinal

Lastly, an important step not explicitly reflected in the pseu-
docode is the optional application of truncated SVD, particularly via
Arnoldi/Lanczos methods optimized for sparse matrices [68]. This
step can be applied before computationally intensive procedures or
when denoising is desired. Reducing the dataset’s dimensionality
significantly lowers computational costs and mitigates noise, which
is especially critical for large datasets where excessive noise can ob-
scure generalizable covariance patterns. Further details are provided
in Appendix B.

Algorithm 2 Fuzzy Smoothing
Input:
• Data matrix 𝑋 ∈ R𝑛×𝑑
• NN graph edges𝐺 = (𝑒1, 𝑒2,𝑤) ⊂ Z+×Z+×Rwith incidences

pair and distance
• Smoothing weight 𝜔 ∈ [0.0, 1.0]
Output: Smoothed data matrix 𝑋 ∈ R𝑛×𝑑

1: Initialize adjacency matrix 𝐴 ∈ R𝑛×𝑛 with 0s
2: for 𝑖 = 1 to length(𝑊) do

// Accumulate edge weights
3: 𝐴𝑒1 [𝑖],𝑒2 [𝑖] ← 𝐴𝑒1 [𝑖],𝑒2 [𝑖] +𝑤 [𝑖]
4: end for
5: 𝐷 ← ∑𝑛

𝑗=1𝐴:, 𝑗 // Row sums for normalization
6: 𝐶 ← 𝐴 · 𝑋 // Weighted sum of neighbors

7: for 𝑖 = 1 to 𝑛 do
8: 𝐶𝑖,: ← 𝐶𝑖,:

𝐷𝑖
// Get neighborhood average

9: end for

10: return 𝜔 · 𝑋 + (1 − 𝜔) ·𝐶 // Interpolation

2.2.1 Proposed Federated version of MaxFuse. The federated ver-
sion of the algorithm exhibits certain resemblances to its centralized
counterpart. Nonetheless, it is crucial to recognize the differences
in their operational mechanisms. The premise is that the data is dis-
tributed across organizations that are prohibited from sharing it [72]

Baran, et al.

(see Figure 1). Here, the variable i ∈ 1, 2 denotes the node index (node
1 or node 2). As for the matching, if we denote centralized matching as
Π = {(𝑖𝑘 , 𝑗𝑘 , 𝑤𝑘)𝑛𝑘=1} ⊂ Z

+×Z+×R, we divide this into a matching
belonging to node one is denoted asΠ (0,2) = {(𝑖𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z

+×R
and for node two Π (1,2) = {(𝑗𝑘 𝑤𝑘)}𝑛𝑘=1 ⊂ Z

+ × R. These can be
generalized as Π (i−1,2) . Each node has its indices and shares the
matching weight.

Algorithm 3 Federated MaxFuse Algorithm Initialization
For i = (1, 2) which denotes a node index:
Input:
• Dataset Xi ∈ R𝑁𝑥i×𝑝𝑥i

• Transformation functionsGetSharedFeatures : R𝑁𝑥i×𝑝𝑥i →
R𝑁𝑥i×𝑠

• Meta cell count 𝑛𝑥i ∈ Z+ ∪∅ (if ∅, do not create meta-cells)
• NN count 𝑘 ∈ Z+,
• Smoothing interpolation weight𝑤 ∈ (0.0, 1.0)
Output:
• Initial matching Πi,◦ = {(𝑖𝑘/ 𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z

+ × R
• Meta-cell data X𝑚

i
• NN graph G𝑋𝑖

// NODE 1&2
// Step 1: Transform to Shared Features

1: X◦i ← GetSharedFeatures(Xi)
// Step 2: Construct Meta-cells

2: X𝑚
i ← ConstructMetaCells(Xi, 𝑛𝑥i)
// Step 3: Create Nearest-Neighbor Graphs

3: G𝑋𝑖
← NearestNeighborGraph(X𝑚

i , 𝑘)
// Step 4: Create Initial Shared Data Matching

4: X̃◦i ← FuzzySmoothing(X
◦
i ,G𝑋i ,𝑤)

// Send normalized shared data X̃◦i
′

5: Send(X̃◦i
′
, to=‘SERVER’, action=‘MATCHING’)

// SERVER: Perform matching from Algorithm 4

6: await ServerMatching(X̃◦1
′
, X̃◦2
′)

// NODE 1: Receive indices and matching score
7: Π1,◦ ← Receive(

{(𝑖𝑘 , 𝑤𝑘)}𝑛𝑘=1,
from=‘SERVER’,
action=‘MATCHING’

)
8: return Π1,◦, X𝑚

1 , G𝑋1

// NODE 2: Receive indices and matching score
9: Π2,◦ ← Receive(

{(𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1,
from=‘SERVER’,
action=‘MATCHING’

)
10: return Π2,◦, X𝑚

2 , G𝑋2

Firstly, the initial steps of the federated MaxFuse algorithm are
executed locally and in parallel on each participating modality node,
as shown in Algorithm 3. Each node begins with input data Xi ∈

R𝑁𝑥i×𝑝𝑥i , for which the shared feature representation Xi◦ ∈ R𝑁𝑥i×𝑠

has already been prepared during preprocessing as described in
subsubsection 2.1.3 (Step 1) . Subsequently, meta-cells are optionally
calculated, resulting in the meta-cell representationX𝑚

i (Step 2). Next,
it constructs a nearest-neighbor graph G𝑋i based on the meta-cell
representation and a chosen neighbor count 𝑘 ∈ Z+ (Step 3). Lastly,
the algorithm applies ‘fuzzy smoothing’ as shown in Algorithm 2,
yielding smoothed data X̃◦i ∈ R

𝑁𝑥i×𝑠 . Steps 1-3 are performed locally
by each node/participant. Next, the initial matching step, analogous to
the centralized setting (see Algorithm 1), is performed on the server.
Since each modality node does not have access to the other node’s
shared data, it first computes the L2-normalized and fuzzy smoothed
shared feature matrix X̃◦i

′
and transmits it to the server via the Send

procedure (Step 4). Each node then receives its local assignment,
Πi,◦, containing the modality indices and matching weights

𝜌 (𝑋,𝑌) = 𝑋 ′ · 𝑌 ′

=
(𝑋 − 𝑋)
∥𝑋 − 𝑋 ∥2

· (𝑌 − 𝑌)
∥𝑌 − 𝑌 ∥2

where:

𝑋 ′ =
𝑋 − 𝑋
∥𝑋 − 𝑋 ∥2

, 𝑌 ′ =
𝑌 − 𝑌
∥𝑌 − 𝑌 ∥2

,

𝑋 = row-wise mean,

𝑌 = row-wise mean,

∥𝑋 − 𝑋 ∥2 = L2 norm,
𝜌 (𝑋,𝑌) = Pearson correlation matrix

(3)

On the server side (see Algorithm 4), the received normalized
datasets X̃1◦

′
and X̃2◦

′
are used to compute the correlation matrix

following Equation 3. This calculation, mathematically equivalent
to 𝜌 (X̃1◦, X̃2◦) (see Equation 1), makes explicit the normalization
and mean-centering steps that underlie Pearson correlation. Then
matching Π = (𝑖𝑘 , 𝑗𝑘 ,𝑤𝑘)𝑛𝑘=1 is produced from the distance matrix
D , analogous to the centralized. The assignments are subsequently
redistributed back to the respective nodes.

Algorithm 4 Federated Sever Matching Procedure

Input: Normalized Datasets:X′1 ∈ R
𝑁𝑥1×𝑝𝑥1 andX′2 ∈ R

𝑁𝑥2×𝑝𝑥2

Output: Matching {(𝑖𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z
+ × R for Node 1 and

{(𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z
+ × R for Node 2

1: Receive(X1, from=‘1’, action=‘MATCHING’)
2: Receive(X2, from=‘2’, action=‘MATCHING’)

3: D← 1.0 − X′1 · (X
′
2)
⊤ // Inverse of Pearson

4: {(𝑖𝑘 , 𝑗𝑘)}𝑛𝑘=1 ← LinearSumAssignment(D) // Equation 2
5: {𝑤𝑘 }𝑛𝑘=1 ← D{ (𝑖𝑘 , 𝑗𝑘)𝑛𝑘=1 } // Get matching scores
6: Send({(𝑖𝑘 , 𝑤𝑘)}𝑛𝑘=1, to=‘1’, action=‘MATCHING’)
7: Send({(𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1, to=‘2’, action=‘MATCHING’)
8: return // To the higher-level coordinating logic
In the next stage, the algorithm prepares for the main refinement

loop, which is orchestrated by the server and runs for 𝑇 iterations,
as shown in Algorithm 5. Locally, the initial matching Π◦(i−1, 2) is
assigned to a loop matching Π (i−1, 2) and the modality data X𝑚

i is

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

smoothed and assigned to loop embedding X𝑐𝑐
i . Within this loop, the

CCA is computed in a federated manner, denoted as FederatedCCA,
by exchanging only the necessary weights between the nodes and
the server. This step is the core of the federated process and requires
careful reflection, as it involves sharing model weights. A detailed
breakdown of this procedure is provided in subsubsection 2.2.2.
After FederatedCCA is finished, just like in the initial matching, the
received embeddings X𝑐𝑐

i are locally fuzzily smoothed, yielding X̃𝑐𝑐
i ,

which is then L2 normalized (denoted as X̃𝑐𝑐
i
′
) and sent to the server

through Send procedure where new matching Π (i−1,2) is calculated
as shown in Algorithm 4. This matching is used to align the newly
calculated X𝑐𝑐

i , and this repeats until the loop terminates.

Algorithm 5 Federated MaxFuse Loop
For i = (1, 2) which denotes a node index:
Input:
• Meta-cell dataset X𝑚

i ∈ R
𝑁𝑚
𝑥i ×𝑝𝑥i

• Initial Matching Π◦(i−1, 2) ⊂ Z
+ × R

• NN graph for fuzzy smoothing G𝑋i together with interpolation
weight𝑤 ∈ (0.0, 1.0)

Output: Pivot Matching Π (i−1, 2) ⊂ Z+ × R

// Step 5: Iterative Refinement
// NODE 1&2

1: X𝑐𝑐
𝑖
← FuzzySmoothing(X𝑚

𝑖
,G𝑋i ,𝑤)

2: Π (i−1, 2) ← Π◦(i−1, 2)

// SERVER: orchestrated loop
3: for 𝑡 = 1 to 𝑇 do

// NODE 1&2

4: Xaligned
i ← X𝑐𝑐

i [Πi−1]

// SERVER: CCA from Algorithm 7
// Federated Learning Orchestration

5: (X𝑐𝑐
1 ,X

𝑐𝑐
2) ← FederatedCCA(X

aligned
1 ,Xaligned

2)

// NODE 1&2
6: X̃𝑐𝑐

i ← FuzzySmoothing(X
𝑐𝑐
i ,G𝑋i , 𝑤)

// Send normalized data

7: Send(X̃𝑐𝑐
i
′
, to=‘SERVER’, action=‘MATCHING’)

// SERVER: Perform matching from Algorithm 4

8: await ServerMatching(X̃𝑐𝑐
1
′
, X̃𝑐𝑐

2
′))

// NODE 1&2
9: Receive(Π′(i−1, 2) , from=‘SERVER’)

10: Π (i−1, 2) ← Π′(i−1, 2)
11: end for
// NODE 1&2 : Return pivot matching

12: return Π (i−1, 2)

Lastly, in step 6 in Algorithm 6, the refined matching Π (i−1, 2)
undergoes an additional filtering process where the fraction 𝛼 of
the weakest matches are discarded using a FilterOutBadMatches
procedure by looking at their weights in Π2, which are the same

across nodes. CCA is recalculated on this filtered subset through
using FitEmbeddingCCA, and the resulting final weights can be
used to generate updated modality-specific embeddings, denoted
Xi,𝑒 .

From there, just like in the centralized algorithm, the unmatched
cells are assigned based on the closest NN through a Propagation
procedure. They are added to the matching, yielding Π

prop
i−1 , which

contains the existing indices and positions of new indices that are
closest neighbors of existing indices. Then, these matches are sent to
the server for alignment and redistributed back to the nodes. Once
received, we used the previously calculated embeddings X𝑚

i to align
with Π

prop
i−1 and normalize it. Then, the matching from Algorithm 4 is

performed, which ensures match uniqueness, redundant connections
(duplicate connections with lower weight) are removed via the
RemoveRedundantConnections step, yielding Π∗.

The resulting matches are further percentile filtered using a
second threshold 𝛽 to obtain a final matching Πfinal, which is then
redistributed to local nodes as Πfinal

(i−1,2) . Once received, each node
leverages the CCA weights X𝑚,𝑒

i calculated on the filtered pivots
matching to compute the final embeddings Xi,𝑒 .

Algorithm 6 Federated MaxFuse Final Filtering
For i = (1, 2) which denotes a node index:
Input:
• Meta-cell dataset X𝑚

i ∈ R
𝑁𝑚
𝑥i ×𝑝𝑥i

• Active Dataset Xi ∈ R𝑁𝑥i×𝑝𝑥i

• NN graph for fuzzy smoothing G𝑋i together with interpolation
weight𝑤 ∈ (0.0, 1.0)
• Refined Matching Π (i−1, 2) = {(𝑖𝑘/ 𝑗𝑘 , 𝑤𝑘)}𝑛𝑘=1 ⊂ Z

+ × R
• Pivot and propagation filtering weight 𝛼, 𝛽 ∈ (0.0, 1.0)
Output:
• Final matching Πfinal

(i−1, 2)
• Final embedding Xi, 𝑒

// Step 6: Filtering and Final Embedding
// NODE 1&2

1: Π
pivot
(i−1, 2) ← FilterOutBadMatches(Π (i−1, 2) , 𝛼)

// SERVER: CCA embedding fitting
// Federated Learning Orchestration

2: (X𝑚,𝑒
1 ,X𝑚,𝑒

2) ← FitEmbeddingsCCA(X
𝑚
1 [Π

pivot
0],X𝑚

2 [Π
pivot
1])

// NODE 1&2

3: Π
prop
i−1 ← Propagate(Π

pivot
(i−1,2) , X

𝑚,𝑒
i)

4: Send(
Π

prop
i−1 ,
to =‘SERVER’,
action=‘PROP_MATCHING’

)
// SERVER: Join Propagation indices

5: Receive(Πprop
i−1 , from=‘i’, action=‘PROP_MATCHING’)

6: Πprop ← JoinAndAlign(Πprop
0 ,Π

prop
1)

7: Send(Πprop
i−1 , to=‘i’, action=‘PROP_MATCHING’)

// NODE 1&2

Baran, et al.

8: Receive(Πprop
i−1 ,from=‘SERVER’,action=‘PROP_MATCHING’)

9: X̃i
′ ←FuzzySmoothing(X𝑚

i (Π
prop
i−1)

′,G𝑋i , 𝑤)

10: Send(X̃i
′, to=‘SERVER’, action=‘FINAL_MATCHING’)

// SERVER: Orchestrate Pivot Propagation

11: Receive(X̃i
′, from=‘i’, action=‘FINAL_MATCHING’)

12: {(𝑖𝑘 , 𝑗𝑘 ,𝑤𝑘)}𝑛𝑘=1 ← await ServerMatching(X̃◦1
′
, X̃◦2
′)

13: Π∗ ← RemoveRedundantConnections({(𝑖𝑘 , 𝑗𝑘 ,𝑤𝑘)}𝑛𝑘=1)
14: Πfinal ← FilterOutBadMatches(Π∗, 𝛽)
15: Send((Πfinal

i−1 ,Π
final
2), to=‘i’)

// NODE 1&2
16: Receive(Πfinal

(i−1, 2) , from=‘SERVER’)
17: Xi, 𝑒 ← GetEmbeddingsCCA(X𝑖 ,X𝑚,𝑒

i)
18: return Πfinal

(i−1, 2) ,Xi, 𝑒

2.2.2 Federated CCA breakdown. Canonical Correlation Analysis
(CCA) is a statistical method used to identify and quantify associa-
tions between two sets of multivariate random variables. For instance,
𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛} ∈ R𝑁×𝑛 and 𝑌 = {𝑌1, 𝑌2, ..., 𝑌𝑚} ∈ R𝑁×𝑚
where both sets have the same number of observations 𝑁 and possi-
bly different number of features 𝑛 and𝑚. The goal is to find linear
combinations, known as canonical variates, 𝑢 = 𝑋a and 𝑣 = 𝑌b, that
are maximally correlated [31]. This is achieved by finding canonical
weight vectors a ∈ R𝑛 and b ∈ R𝑚 that solve the optimization
problem shown in Equation 4.

max
a,b

𝜌 (𝑢 = 𝑋a, 𝑣 = 𝑌b) (4)

However, in practice, it has been shown that regular Canonical
Correlation Analysis (CCA) often struggles with overfitting when
the sample size is small relative to the number of variables, leading
to spurious associations that do not generalize well [27, 57, 28]. To
address these limitations, Two-block Mode B Partial Least Squares
(PLS) [24, 81] offers an alternative to traditional Canonical Corre-
lation Analysis (CCA) computation. For 𝐶 shared components, it
constructs latent score vectors 𝜉𝑐 = 𝑋 ·𝑢𝑐 ∈ R𝑁 and𝜔𝑐 = 𝑌 ·𝑣𝑐 ∈ R𝑁
through iterative weighted linear combinations, with the weight vec-
tors 𝑢𝑐 ∈ R𝑛 and 𝑣𝑐 ∈ R𝑚 estimated to prioritize indicators that
contribute most to the predictive association. Additionally, loadings
are calculated 𝛾𝑐 and 𝛿𝑐 , which are coefficients that map latent vari-
ables back to the original data dimensions as presented in Equation 5
and 6, where there is some small error 𝜀𝑋 and 𝜀𝑌 if we were to run the
algorithm for all features for their respective data matrices [59]. This
predictive associativity is especially advantageous when indicator
quality is heterogeneous [57] and has been applied in fields such
as chemometrics, where it has helped model relationships between
spectral data and chemical properties [82] and omics-type data [59].
Due to these reasons, the authors of MaxFuse [12] use Two-block
Mode B PLS as proposed by Wegelin [78], which is the part we are
making federated as seen in Algorithm 7.

𝑋 = 𝜉 · 𝛾⊤ + 𝜀𝑋 (5)

𝑌 = 𝜔 · 𝛿⊤ + 𝜀𝑌 (6)

In Algorithm 7, each node normalizes their data in parallel
which creates their first residuals 𝑋 1

1 ∈ R
𝑁×𝑛 and 𝑋 2

1 ∈ R
𝑁×𝑚 ,

where 𝑁 is the number of samples and 𝑛 and 𝑚 the number of
features in each node (also referred to as view). Then a loop begins
in which we calculate all the approximate singular vectors (𝑢𝑐
and 𝑣𝑐), weights (𝜉𝑐 and 𝜔𝑐), and loadings (𝛾𝑐 and 𝛿𝑐) for index
𝑐 ∈ {1, . . . ,𝐶}, are computed to identify directions of shared variation.
The approximate singular vectors are calculated using the singular
vector power method [78] (see subsubsection 2.2.3), where the goal
is to calculate the maximized cross-correlation C matrix between
𝑋 1 and 𝑋 2 where C = (𝑋 1

𝑐)⊤𝑋 2
𝑐 such that 𝑢⊤𝑐 · 𝑢𝑐 = 𝑣⊤𝑐 · 𝑣𝑐 = 1

and (𝑢𝑐)𝑖 > 0, where 𝑖 = arg max | (u𝑟)𝑖 |. In other words, find the
index 𝑖 of the element in u𝑟 with the most significant absolute value
while ensuring that at the end, it will become a positive value after a
possible flip [78].

In the following stages of the loop, the latent score vectors 𝜉𝑐
and 𝜔𝑐 represent projections of the data onto the latent space. This
weighting is applied by regressing the original data onto the latent
scores, loading vectors 𝛾𝑐 and 𝛿𝑐 . After projecting and reconstructing
the approximated views 𝑋 1

𝑐 = 𝜉𝑐 · 𝛾⊤𝑐 and 𝑋 2
𝑐 = 𝜔𝑐 · 𝛿⊤𝑐 , residuals

𝑋𝑐+1 and 𝑌𝑐+1 are updated through regression from which the next
residual which will be used to calculate singular vectors u𝑐+1 and
v𝑐+1. This continues until the𝐶 number of components is calculated,
which is defined by the algorithm orchestrator, i.e., the server. Lastly,
every score and loading vector is placed into its component index
𝑐, and combined to form the transformation matrices𝑈 · Γ⊤ for 𝑋 1

and 𝑉 · Δ⊤ for 𝑋 2. To apply the CCA transformation, each node
multiplies its local data by the corresponding transformation matrix.

Algorithm 7 Federated Canonical Correlation Analysis
Input (Node 1 & 2): For i = (1, 2) which denotes a node index:
• Data 𝑋 i ∈ R𝑁×𝑛i

• Boolean 𝑏i to determine if only fitting should be performed
Input (Server): shared components number 𝐶
Output: Fitted embedding or full data embeddings:
• Node 1:𝑈 · Γ⊤ or𝑈 · Γ⊤ · 𝑋 1 depending on 𝑏1
• Node 2: 𝑉 · Δ⊤ or 𝑉 · Δ⊤ · 𝑋 2 depending on 𝑏2

// NODE 1&2: Normalize data
1: 𝑋 i

1 ← normalize(𝑋
i)

// SERVER: Initialize main loop
2: for 𝑐 ← 1 to 𝐶 do
// Coordinate finding eigenvectors

3: u𝑐 , v𝑐 ← SingularVectorPowerMethod(𝑋 1
𝑐 , 𝑋

2
𝑐)

// NODE 1: calculate scores and weights
4: 𝜉𝑐 ← 𝑋 1

𝑐 · u𝑐
5: 𝛾⊤𝑐 ← 𝜉𝑐 (𝜉⊤𝑐 𝜉𝑐)−1𝜉⊤𝑐 𝑋

1
𝑐

6: 𝑋 1
𝑐 (𝜉𝑐) ← 𝜉𝑐 · 𝛾⊤𝑐

7: 𝑋 1
𝑐+1 ← 𝑋 1

𝑐 − 𝑋 1
𝑐 (𝜉𝑐)

// NODE 2: calculate scores and weights
8: 𝜔𝑐 ← 𝑋 2

𝑐 · v𝑐
9: 𝛿⊤𝑐 ← 𝜔𝑐 (𝜔⊤𝑐 𝜔𝑐)−1𝜔⊤𝑐 𝑋

2
𝑐

10: 𝑋 2
𝑐 (𝜔𝑐) ← 𝜔𝑐 · 𝛿⊤𝑐

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

11: 𝑋 2
𝑐+1 ← 𝑋 2

𝑐 − 𝑋 2
𝑐 (𝜔𝑐)

12: end for

// NODE 1: Transform data into embedding
13: 𝑈 ←

[
𝑢1 𝑢2 ... 𝑢𝐶

]
14: Γ ←

[
𝛾1 𝛾2 ... 𝛾𝐶

]
15: if 𝑏1 == 1 then
16: return 𝑈 · Γ⊤
17: else
18: return 𝑈 · Γ⊤ · 𝑋 1

19: end if

// NODE 2: Transform data into embedding
20: 𝑉 ←

[
𝑣1 𝑣2 ... 𝑣𝐶

]
21: Δ←

[
𝛿1 𝛿2 ... 𝛿𝐶

]
22: if 𝑏2 == 1 then
23: return 𝑉 · Δ⊤
24: else
25: return 𝑉 · Δ⊤ · 𝑋 2

26: end if

2.2.3 Singular Vectors Power Method Federation. To support
the distributed computation of canonical vectors in a federated
setting with multiple message exchanges, we need to adopt the
Singular Vectors Power Method [78] and modify it into a federated
version, as shown in Algorithm 8. As mentioned in the previous
paragraph, the goal is to approximate the singular vectors of the cross-
correlation matrix C between the residual data blocks𝑋 1

𝑐 and𝑋 2
𝑐 . This

implementation supports Mode B PLS (CCA-equivalent) version
of the algorithm, which requires the use of Moore–Penrose pseudo-
inverses [19, 78] locally on each node through the PseudoInverse
procedure as described by Wegelin [78] and shown in Equation 7.

𝑋 † = (𝑋⊤ · 𝑋)−1 · 𝑋⊤ (7)

The initialization of the latent scores on each node with a random
vector is interpolated with weight 𝑤 with the first feature column
𝑋 i
𝑐 [;, 0] by utilizing Equation 8, so that a column of real data is

not shared. The picking of a good interpolation value𝑤 is explored
further in subsubsection 3.2.4. The nodes then send to server that they
want to begin the loop which ends either when we iterated for𝐾 times
(20,000 was recommended by MaxFuse) or once the absolute dot
product difference between 𝑢𝑘 and 𝑢𝑘−1, 𝛿 = ∥𝑢𝑘 −𝑢𝑘−1∥ is smaller
than some small tolerance value 𝜖 (1−6 was recommended by the
authors of MaxFuse). This loop limit means we have approximated
the eigenvectors of C closely. Therefore, a large 𝐾 is recommended.
During each iteration, nodes exchange their current projected latent
scores 𝜉𝑘 and 𝜔𝑘 , respectively, via the central server. Each node then
updates its salience vectors 𝑢𝑘 and 𝑣𝑘 , using the pseudo-inverse of its
local residual data block and the received latent score. These updated
saliences are then normalized to unit length to ensure convergence
stability. Once convergence is achieved, each node returns its final
weight vector, corresponding to the cross-correlation structure’s first
singular direction between 𝑋𝑐 and 𝑌𝑐 . It is used further inside CCA
component.

NoiseInterpolation(𝑣,𝑤) = (1 −𝑤) · 𝑣 + 𝑤 · N (0, 1)𝑛

where: 𝑣 ∈ R𝑛, 𝑤 ∈ (0.0, 1.0]
(8)

Algorithm 8 Federated Singular Vectors Power Method
For i = (1, 2) which denotes a node index:
Input (Node 1&2): Residuals 𝑋 i

𝑐 ∈ R𝑁×𝑛𝑖
Input (Server):
• Maximum number of iterations 𝐾
• Small tolerance 𝜖
• Interpolation weight𝑤
Output: Weight vector 𝑢𝑘 ∈ R𝑛1 or 𝑣𝑘 ∈ R𝑛2 depending on
Node

// NODE 1&2: Initialize scores and pseudo-inverse
1: 𝜉1 or 𝜔1 ← NoiseInterpolation(𝑋 i

𝑐 [;, 0],𝑤)
2: 𝑋 i,†

𝑐 ← PseudoInverse(𝑋 i
𝑐)

// Server: Initialize loop
3: 𝑘 ← 1
4: 𝛿 ←∞
5: while 𝛿 > 𝜖 and 𝑘 < 𝐾 do
// NODE 1

6: Send(𝜉𝑘 , to=‘2’, via=‘SERVER’)

// NODE 2
7: Send(𝜔𝑘 , to=‘1’, via=‘SERVER’)

// NODE 1&2: Update salience 𝑢𝑘 or 𝑣𝑘
8: Receive(𝜔𝑘 or 𝜉𝑘 , from=‘2 or 1’)
9: 𝑙𝑘 ← 𝜔𝑘 or 𝜉𝑘

10: 𝑢𝑘 or 𝑣𝑘 ← 𝑋
i,†
𝑐 · 𝑙𝑘 (𝑙⊤𝑘 𝑙𝑘)

−1

11: 𝑢𝑘 or 𝑣𝑘 ← Normalize(𝑢𝑘 or 𝑣𝑘)
12: 𝜔𝑘+1 or 𝜉𝑘+1 ← 𝑋 i

𝑐 · (𝑢𝑘 or 𝑣𝑘)

// NODE 1: Send convergence differential
13: 𝛿 ← ∥𝑢𝑘 − 𝑢𝑘−1∥
14: Send(𝛿 , to=‘SERVER’)

// SERVER: increment loop counter
15: 𝑘 ← 𝑘 + 1
16: end while
// NODE 1&2: Return weight vector

17: return 𝑢𝑘 or 𝑣𝑘

2.2.4 Message safety analysis. The federated algorithm was run
on the cluster within a single process that simulates a centralized FL
system, where each message passes through the centralized server,
mimicking the architecture shown in Figure 1. However, ‘fuzzily
smoothed’ and normalized subsets of data and CCA scores are passed
instead of sending the neural network weights as in conventional
federated neural network training, as defined in Algorithm 5, 6, 7,
and 8.

We assume that communication between clients and the central
server occurs over a secure channel, such as a VPN or other private
network [72], to minimize the risk of interception by external parties.

Baran, et al.

Additionally, we assume that participants are non-malicious and that
the central server follows an honest-but-curious model, meaning it
follows the protocol but may attempt to infer private information from
the received data [5]. As discussed in subsubsection 2.2.4, extracting
meaningful information under these assumptions is mathematically
nontrivial but still warrants further investigation.

Figure 1: Federated MaxFuse architecture showing the commu-
nication between nodes and the central server.

Despite Federated MaxFuse circumventing direct data sharing
between participating nodes, intermediary communications such as
smoothed features, canonical correlation projections, and matching
scores are still exchanged. Understanding the nature and potential
risks associated with these shared messages is crucial, particularly
when sensitive biological information is involved. This subsection
scrutinizes the categories of messages transmitted during the feder-
ated integration process, examines what underlying information they
may reveal, and discusses the trade-offs between communication
efficiency, model performance, and data privacy. By systematically
evaluating each shared variable and its associated algorithmic op-
eration, we aim to assess the potential vulnerabilities and propose
safeguards where necessary. In Table 3, we investigate this through
the lens of the variables transmitted in the algorithm.

2.3 Evaluation
Both supervised and unsupervised measures were used to assess
the efficacy of federated MaxFuse. We use cell labels to evaluate
supervised alignment accuracy on both datasets (Antibodies and
Tonsils), based on shared cellular classification labels across modali-
ties and the Antibodies benchmark dataset, which features explicit
cellular-level correspondences for alignment quality. In this con-
text, federated MaxFuse embeddings generated across distributed
silos are aggregated centrally, alongside their known ground-truth
correspondences. The unsupervised evaluation techniques are also
implemented to alleviate potential constraints associated with su-
pervised methods, such as erroneous labels or inconsistent labeling
across datasets. These techniques evaluate the embeddings produced
by MaxFuse by scrutinizing the consistency and structural integrity
in relation to the intrinsic characteristics of the original datasets [37].

2.3.1 Supervised. Supervised measures assess the quality of the
produced matching and embeddings based on pre-existing knowl-
edge, such as cell sample labels and existing matches. For this
category, there are two sub-categories for evaluation: data with exist-
ing matching and per-sample labels, and data with only per-sample
labels.

Firstly, we have measurements that measure the quality of the 1–1
sample-level ground-truth matching as provided by researchers asso-
ciated with MaxFuse: Fraction of Samples Closer Than True Match
(FOSCTTM) [52, 12] and Fraction Of Samples whose true matches
are among their K-Nearest Neighbors (FOSKNN) [12]. For clarity,
we assume that benchmarked evaluation occurs on a single computer,
where matching and data are represented as distances between points
that must be calculated. The FOSCTTM score, as seen in Equation 9,
is calculated by getting Euclidean distances ∥ · ∥2 between two
modalities, which subsequently are used to calculate the proportion
of samples that are situated nearer to the predetermined sample 𝑥
and 𝑦 than to their authentic correspondences (𝑥match, 𝑦match) for
𝑁 = |𝑋 | = |𝑌 | samples. The I(·) is an indicator function, evaluating
to 1 if the condition holds and 0 otherwise. In an optimal alignment
setting, all samples would exhibit proximity to their genuine match,
resulting in a zero score. Therefore, a lower FOSCTTM indicates
superior alignment efficacy. Conversely, a high score suggests that
incorrectly matched cells are nearer to one another than to the accu-
rate ground-truth matches. Likewise, FOSKNN assesses alignment
effectiveness at the single-cell level by determining whether, for each
cell embedding 𝑥𝑖 ∈ 𝑋 from one modality, its actual corresponding
embedding 𝑧𝑖 ∈ 𝑍 from the alternate modality is among its 𝑘-NNs,
denoted as I(𝑥𝑖 ∈ kNN(𝑦𝑖 , 𝑋, 𝑘)) in Equation 10, in the joint em-
bedding space, and vice versa, denoted as I(𝑦𝑖 ∈ kNN(𝑧𝑖 , 𝑌 , 𝑘)) in
Equation 10. Formally, FOSKNN computes the average proportion
of successful matches across all cells, where a higher score indicates
better integration quality. Following the recommendation by the
authors of MaxFuse, the parameter 𝑘 is typically set to 5% of the
dataset size 𝑁 , and we plot this by running FOSKNN from 1 to 5%
of the data.

FOSCTTM(𝑋,𝑌, 𝑁 , (𝑥match, 𝑦match)) =

1
2𝑁

(∑︁
𝑥∈𝑋

∑
𝑦∈𝑌 I(∥𝑥 − 𝑦∥2 < ∥𝑥 − 𝑦match∥2)

𝑁
+

∑︁
𝑦∈𝑌

∑
𝑥∈𝑋 I(∥𝑦 − 𝑥 ∥2 < ∥𝑦 − 𝑥match∥2)

𝑁

ª®¬
(9)

FOSKNN(𝑌, 𝑍, 𝑁 , 𝑘) =

1
2𝑁

(
𝑁∑︁
𝑖=1
I(𝑧𝑖 ∈ kNN(𝑦𝑖 , 𝑍, 𝑘)) +

𝑁∑︁
𝑖=1
I(𝑦𝑖 ∈ kNN(𝑧𝑖 , 𝑌 , 𝑘))

)
(10)

Secondly, we use label-based metrics to evaluate integration qual-
ity based on predefined labels: Accuracy [12], Average Silhouette
Width F1 (ASW F1) [74], and Adjusted Rand Index F1 (ARI F1)
[74]. The accuracy score is simply the percentage of labels that match
after alignment. This explains how effectively labels from different
modalities correspond to the same cell types. Furthermore, ASW
F1 and ARI F1 are used to measure clustering quality, particularly

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Variable Algorithms Description and Reasoning

X̃
′ 3, 5, 6, L2-normalized and fuzzily smoothed feature matrix transmitted to the server for both initial

and iterative matching. Although the data is simplified by smoothing toward neighborhood
centroids, reducing the risk of direct data leakage, local structural patterns could still be exposed if
intercepted. The risk is minimized, however, as only specific forms are shared: the normalized and
smoothed shared columns X̃◦i

′
(see Algorithm 3), the normalized and smoothed CCA embeddings

X̃cc
i
′

(see Algorithm 5), and the normalized and smoothed full datasets for final matching X̃i
′

(see Algorithm 6).

Π 3, 5, 6 Matched indices and similarity scores between modalities. These are primarily computed by
the server and redistributed to the nodes, except during propagation matching (Πprop

i−1), which
requires server-side joining and realignment. While index exposure alone does not reveal feature
content, it could potentially hint at sample relationships if improperly aggregated or analyzed.

𝜉𝑘 , 𝜔𝑘 8 Latent projections exchanged during iterative CCA fitting via the singular vector power method, a
core component of the FL framework. They capture directional trends in local data, but individual
cell-level details remain obscured.

𝛿 8 This denotes convergence metric is a scalar norm difference during CCA convergence checks.
Contains no identifiable information about the raw data.

Table 3: Summary of variables exchanged during Federated MaxFuse, associated algorithms, and reasoning about privacy exposure in
the honest but curious model.

for assessing batch effect correction using labels. The Average Sil-
houette Width (ASW) Score, which has a range [−1, 1], measures
how similar an object is to its cluster with other clusters. On the
other hand, scores close to 0 suggest cluster overlap, and high values
show substantial intra-cluster and weak inter-cluster similarities.
Likewise, the Adjusted Rand Index (ARI) increases the robustness of
clustering comparisons by assessing the agreement between two clus-
terings, corrected for random chance, with a range [−0.5, 1], where
0 represents random labeling and 1 represents perfect alignment.

Label-F1 =
2 · (1 − 𝐵norm) ·𝐶norm
(1 − 𝐵norm) +𝐶norm

where :
𝐵norm ⇐ NormMedian(ARI/ASW(batch labels, 𝑘batch))
𝐶norm ⇐ NormMedian(ARI/ASW(cell-type labels, 𝑘cell-type))

(11)

These F1 scores are computed using Equation 11, which includes
two key components: 𝐵norm and 𝐶norm. The 𝐵norm is a result of
sub-sampling a batch of data (recommended 80% by [74] and [12]),
reducing them to a couple of principal components (recommended
20 [74] and [12]), setting the label as the modality and running
either ASW F1 or ARI F1. The function NormMedian performs
normalization, mapping the values to the [0, 1] range, and calculates
the median. Since ARI compares two clusterings, it requires a
reference clustering obtained through 𝑘-means clustering [55], with
𝑘 being the number of modalities for 𝐵norm score and cardinality
of unique cell-type labels for 𝐶norm score. The 𝐶norm parameter is
to run the ASW or ARI score based on the cell-type labels. All
these scores are normalized between 0.0 and 1.0, the median value
of which is plugged into the equation. The higher F1 values indicate

the effective removal of batch effects and accurate cell-type label
clustering [74].

2.3.2 Unsupervised. As mentioned earlier, unsupervised evalua-
tion provides a practical methodology for assessing the confidence
associated with membership and the stability of clusters across di-
verse data modalities, all while eliminating the need for ground-truth
labels, as highlighted in the work of Chung et al. [13]. These measure-
ments can be categorized into three distinct groups, namely global
metrics, cluster metrics, and local metrics, as discussed by Jeon et al.
[37]. After dimensionality reduction, ‘local’ metrics measure how
well the regional relationships between data points are maintained.
The ‘cluster’ metrics evaluate whether data belonging to the same
cluster in the original space remains in the reduced space. Finally,
the overarching retention of data structures and the identification
of patterns present within the data are quantitatively measured by
employing global metrics.

Firstly, we selected Mean Relative Rank Errors (MRRE) [48] for
the ‘local’ measurement. MRRE is divided into two types of errors:
‘false neighbors’ evaluates the proportion of incorrectly introduced
neighbors (false positives), and ‘missing neighbors’ evaluates the
proportion of actual neighbors lost during the dimensionality reduc-
tion (false negatives). These are formally captured in Equation 13
and 14, both of which are directional variants of the general MRRE
formulation shown in Equation 12 where ‘false neighbors’ the ‘base
ranking’ 𝑅base is of the original data (denoted as 𝑅orig) and ‘target
ranking’ 𝑅target being of the embedding (denoted as 𝑅emb). For the
‘missing neighbors’, it is the other way round. This metric provides a
rigorous evaluation of the extent to which the reduced embedding
preserves the original neighborhood relationships, considering both
the introduction of erroneous neighbors and the exclusion of correct
ones. This is calculated based on embedding and data with 𝑛 rows,

Baran, et al.

each with a precomputed set of 𝑘 NNs per point, represented as
𝑁

target
𝑖

within a target space. Finding the ranks uses 𝑅base
𝑖
(𝑗) and

𝑅
target
𝑖
(𝑗) which represent the position of neighbor 𝑗 ∈ 𝑁 target

𝑖
in

the sorted distance list of point 𝑖 within the base and target spaces,
respectively. Then, the absolute difference between these ranks is
divided by the target-space rank 𝑅target

𝑖
(𝑗), which results in the total

neighbor dislocation. Notably, MRRE hinges on comparing a point’s
global rank among all data points in both the original space and the
embedding, since merely knowing the top-𝑘 neighbors cannot capture
changes in absolute position, for instance going from the 5𝑡ℎ nearest
neighbor to the 15𝑡ℎ . For each point 𝑖, the score is normalized by 𝑐,
defined in Equation 15, and averaged out by 𝑛 to ensure values in the
overall score fall within [0.0, 1.0], where lower scores indicate better
preservation. This rank-based formulation makes MRRE especially
sensitive to alterations in local structure induced by dimensionality
reduction.

MRRE =
1
𝑛

𝑛∑︁
𝑖=1

©­­­­­­­­­«
1
𝑐

∑︁
𝑗∈𝑁 target

𝑖

|𝑅base
𝑖
(𝑗) − 𝑅target

𝑖
(𝑗) |

𝑅
target
𝑖
(𝑗)︸ ︷︷ ︸

Rank error/distortion of neighbors

ª®®®®®®®®®¬
(12)

MRREfalse =
1
𝑛

𝑛∑︁
𝑖=1

©­­«
1
𝑐

∑︁
𝑗∈𝑁 emb

𝑖

���𝑅orig
𝑖
(𝑗) − 𝑅emb

𝑖
(𝑗)

���
𝑅emb
𝑖
(𝑗)

ª®®¬ (13)

MRREmissing =
1
𝑛

𝑛∑︁
𝑖=1

©­­«
1
𝑐

∑︁
𝑗∈𝑁 orig

𝑖

���𝑅emb
𝑖
(𝑗) − 𝑅orig

𝑖
(𝑗)

���
𝑅

orig
𝑖
(𝑗)

ª®®¬ (14)

where:

𝑐 =

𝑘∑︁
𝑟=1

|𝑛 − 2𝑟 + 1|
𝑟

(15)

Secondly, we selected Steadiness & Cohesiveness [36] for the’
cluster’ measurement. Steadiness measures the inter-cluster reliability
inside the embedding (i.e., how closely the embedding’s clusters
reflect the state of clusters in the original data)[36]. At the same time,
Cohesiveness measures the inter-cluster reliability in the original
data (i.e., how closely the original data’s clusters reflect the state
of clusters in the embedding)[36]. Reliability is measured through
the number of clusters, the number of outliers, the distance between
clusters, and the distance between points. The measurement range is
[0.0, 1.0], with the optimal value being 1.0, meaning the excellent
reliability of the projected clusters or superb reliability of the original
data clusters. The clustering algorithm in this measure is based on the
Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) clustering method, which is ideal for objective
evaluation. It can create clusters, handle noise (separating artifacts),
produce clusters of varying densities, and its hierarchical structure
permits examination at multiple levels [8]. The metrics are placed into
a workflow that incorporates randomness to capture complex inter-
cluster structures better. Four key functions are required: a pointwise
distance function, a cluster distance function, a cluster extraction

function, and a clustering function. These are used iteratively to
accumulate local distortions and assess space consistency.

Figure 2: CheckViz and Reliability Map color map interpretation

To help visualize the distortions from the Steadiness & Cohe-
siveness metric, CheckViz [49] and the Reliability Map [36] were
plotted. Both techniques utilize CheckViz to highlight tears and
false neighborhoods, while the Reliability Map displays pointwise
distortions through edge-based distortion encoding. Additionally,
these can be plotted on a 2-dimensional axis chart, which illustrates
how to interpret the scores, as shown in Figure 3. Additionally, a
color map from Figure 2 guides interpreting CheckViz and Reliabil-
ity Maps. The top-right corner (high steadiness and cohesiveness)
represents high reliability, where the embedding and original spaces
preserve each other’s cluster structures well. The top-left quadrant
(low steadiness and high cohesiveness) indicates the presence of
false-positive structures in the embedding, where clusters exist in
the embedding that do not exist in the original data. In contrast, the
bottom right (high steadiness and low cohesiveness) suggests missing
structures where genuine clusters from the original space are not
captured in the embedding. Lastly, the projection on the bottom left
(both low) suffers from false positives and missing values, reflecting
a severe loss of structural fidelity in both directions.

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Figure 3: Steadiness & Cohesiveness Interpretation

Finally, we used the scale-normalized version of Kruskal’s Stress
[45, 46, 60] as our ‘global’ measure, which is calculated as seen
in Equation 16. This metric quantifies the discrepancy between the
distances in the low-dimensional 𝑑 low

𝑖 𝑗
embedding and the original

data 𝑑high
𝑖 𝑗

over all unique pairs of points 𝑖 < 𝑗 , to avoid double-
counting in symmetric distance matrices. Specifically, it adjusts for
scaling effects by introducing an optimal linear scaling factor 𝛼 ,
thereby providing a scale-invariant assessment of embedding quality
as seen in Equation 17. The values are real positive numbers, and
the optimal value is 0.0, representing a perfect embedding in which
all pairwise distances are preserved.

Stress =

√√√√√√√∑
𝑖< 𝑗

(
𝑑

high
𝑖, 𝑗
− 𝛼 · 𝑑 low

𝑖, 𝑗

)2

∑
𝑖< 𝑗

(
𝑑

high
𝑖, 𝑗

)2 (16)

𝛼 =

∑
𝑖< 𝑗 𝑑

high
𝑖, 𝑗
· 𝑑 low

𝑖, 𝑗∑
𝑖< 𝑗

(
𝑑 low
𝑖, 𝑗

)2 (17)

2.4 Computational Resources and Software
Environment

The first version of the MaxFuse algorithm is publicly available
as a complete Python package. Its source code is also available on
GitHub2. The MaxFuse repository contains a wide range of materials,
including Python code, scripts, and Jupyter Notebooks for interactive
computing, primarily used for data collection and analysis, thereby
enhancing the overall research experience. This federated version of
MaxFuse was entirely written in Python, including analysis scripts.

2MaxFuse repository: https://github.com/shuxiaoc/maxfuse/

The computational workflow of the federated implementation is
showcased through Jupyter Notebooks with in-depth analyses. It
significantly depends on a set of widely utilized libraries, such as
‘AnnData’ for managing annotated data, ‘scikit-learn’ for machine
learning purposes, and ‘numpy’ for numerical computations, thereby
enhancing the implementation’s robustness. A particularly significant
enhancement to this framework is the incorporation of the ZADU
package [37], which provides sophisticated unsupervised evaluation
methodologies designed explicitly for assessing embeddings, thereby
enriching the algorithm’s analytical capabilities.

Additionally, it requires additional resources to run evaluations,
which involve calculating distances and NN graphs, as well as NN
ranks. The experiments were carried out on the Delft AI Cluster
(DAIC)3 (runs Slurm workload manager) to manage the computa-
tional demands associated with this investigation efficiently. Finally,
it is essential to mention that the entire codebase for the feder-
ated version of the MaxFuse method is now publicly accessible on
https://kbaran1998.github.io/fed-maxfuse, enabling wider distribu-
tion and potential collaborative improvements among researchers.

3 EXPERIMENTATION
This section presents the details of the experimental setup and the
implementation techniques used to run the MaxFuse algorithm in
both centralized and federated environments, along with the steps
taken to retrieve the output embeddings and the final matching
outcomes. The setup details include data distribution practices, a
description of the federated architecture used for the experiments, the
specific parameter settings employed for each implementation variant,
and a detailed description of the various experiments conducted.

3.1 Experimental Setup
We evaluated the MaxFuse algorithm in centralized and federated
settings across a series of controlled experiments run as SLURM jobs
on the DAIC computational cluster, as indicated in subsection 2.4.
Each job produced embeddings and cell-to-cell matchings, which
were assessed through separate SLURM jobs using supervised and
unsupervised evaluation metrics. Supervised evaluation compares
the results against ground-truth labels, while unsupervised evaluation
assessed embedding quality relative to the original input data (see
subsection 2.3). Metrics from both evaluation types were used
to analyze performance across different experimental conditions.
Additional implementation details can be found in Appendix A.

The hyperparameters used in our experiments follow the default
settings provided in the official MaxFuse example implementations
[12]. Complete configuration files, including training parameters,
graph construction settings, and evaluation criteria, are available in
Appendix C to support reproducibility. The parameter variability
depends on the experiment described in the following sections, and
each parameter combination was run multiple times to account for
algorithmic stochasticity and ensure robust performance estimates.
The total number of runs per dataset and experiment is summarized in
Table 4, broken down by dataset type and grouped by key experimen-
tal conditions: centralized vs. federated setups, CCA initialization
randomness, shared parameter tuning, and batching strategies. Each

3Delft AI Cluster system specifications: https://doc.daic.tudelft.nl/docs/system/

https://github.com/shuxiaoc/maxfuse/
https://kbaran1998.github.io/fed-maxfuse
https://doc.daic.tudelft.nl/docs/system/

Baran, et al.

cell in the table indicates the number of unique configurations multi-
plied by the number of repetitions, which are further described in
subsection 3.2. The final column displays the total number of runs
per dataset, totaling 2,600 experiments.

3.2 Experiment Types
This section provides a comprehensive summary of the experiments
evaluating the MaxFuse algorithm’s performance, resilience, and
flexibility in various settings. The purpose of these studies is to
investigate how algorithm performance varies across multiple param-
eter settings and data distribution scenarios, as well as to highlight
the variations in results between traditional (centralized) and feder-
ated learning configurations. The algorithm’s computing efficiency,
matching accuracy (if applicable), and embedding quality were eval-
uated using both supervised and unsupervised assessment measures
for each experiment type. Important parameters were adjusted to
assess their impact on the results and the feasibility of extending
MaxFuse to federated applications, including the number of SVD
components, CCA components, and loop iterations. Every exper-
iment type investigates distinct MaxFuse algorithm variations or
settings.

Additionally, in these experiments, we refer to datasets as ‘meta-’
and ‘non-meta-’ modality datasets, where ‘meta’ means that we
reduce the sample size using Leiden clustering to create meta-cells
in the initial matching and refinement loop, and later expand the
matching to assign previously unmatched cells. The ‘non-meta-’
modality dataset uses the original samples during those parts of
MaxFuse.

3.2.1 Centralized versus Federated Comparison. To thoroughly
evaluate the feasibility of implementing MaxFuse in a federated
manner, an in-depth comparison with its centralized counterpart
is essential. We utilized the same hyperparameter settings for the
federated and centralized configurations within this experimental
framework.

We employed the non-parametric Mann-Whitney U examination
to evaluate whether the performance distributions of the centralized
and federated models exhibit significant divergence, utilizing a
significance threshold of 0.05. We selected this threshold to reflect
the exploratory nature of our work, the applied context of model
comparison, and the intrinsic stochasticity of MaxFuse, where a less
stringent threshold is appropriate.

3.2.2 Centralized Data Batching. While batching is commonly
used to manage large datasets and reduce variability, our primary
objective in this experiment is to investigate whether MaxFuse can
be extended beyond a simple two-participant setting in a federated
environment, where each node either holds distinct feature sets or
applies internal batching. Although the original MaxFuse implemen-
tation supports data batching, its impact on integration quality has
not been systematically evaluated. We simulate batching within a
centralized setup to establish a controlled baseline, approximating a
federated scenario with two nodes. Due to the increased complexity
of batching implementation in the federated framework, we limited
batching experiments to the centralized setting.

In this batched setup, matching and CCA are conducted between
each pair of opposite modality batches, and only the best-performing

correspondences are preserved after the main loop to construct
the final matching and embeddings. Furthermore, this methodol-
ogy addresses memory limitations and facilitates a more resilient
alignment of datasets exhibiting high variability and has previously
been executed in the centralized MaxFuse but not evaluated as
comprehensively.

Batch size affects not only computational efficiency but also the
statistical properties of the resulting embeddings. While large batches
can mask fine-grained patterns in the data, smaller batches may result
in more variance in estimates, and both compromise the model’s
convergence [67]. Recent work explores optimal batch configura-
tions to balance these trade-offs, underscoring the importance of
experimental design that accounts for sample size and distribution
across biological conditions [6].

We aim to evaluate the effectiveness of batching and its impact
on final alignment quality. Due to the constraints of the original
implementation, batching is governed by a tuple of three key hyper-
parameters (𝜅, 𝜌, 𝜇): the maximum number of cells per batch 𝜅, the
average number of matches per cell 𝜌, and the average number of
cells per metacell 𝜇. This works where we have two input datasets
𝑌 ∈ R𝑁1×𝑑1 and 𝑍 ∈ R𝑁2×𝑑2 where 𝑌 typically represents the ‘meta-
dataset’ and 𝑍 the ‘non-meta-dataset’. The parameter 𝜅 sets an upper
bound on how many individual cells or meta-cells from 𝑌 can exist
within a single batch. The matching density is controlled by 𝜌 , which
specifies the average number of candidates in 𝑍 to be matched to
each unit in 𝑌 . Finally, 𝑌 may be compressed into meta-cells, with 𝜇
defining the average number of raw cells per meta-cell.

Given these parameters, the maximum batch size for𝑍 is computed
as B𝑍 = 𝜅 · 𝜌 . The number of batches for 𝑍 is then 𝐵𝑍 =

⌈
𝑁2
B𝑍

⌉
, and

each batch has approximate size 𝑏𝑍 =

⌊
𝑁2
𝐵𝑍

⌋
. For 𝑌 , the maximum

batch size depends on whether meta-cell aggregation is used. If 𝜇 is
defined, we set B𝑌 =

⌊
𝑏𝑍
𝜌/𝜇

⌋
to balance the number of metacells in 𝑌

with the size of the corresponding 𝑍 batch. Otherwise, B𝑌 = 𝜅 · 𝜌.
The number of batches for 𝑌 is then 𝐵𝑌 =

⌈
𝑁1
B𝑌

⌉
, and each batch is

of size 𝑏𝑌 =

⌊
𝑁1
𝐵𝑌

⌋
. It is also important to note that these batches are

randomly assigned and might also be unequally distributed across the
dataset, if the total number of cells is not evenly divisible by the batch
size (i.e., 𝑏𝑌 × 𝐵𝑌 < 𝑁1 or 𝑏𝑍 × 𝐵𝑍 < 𝑁2), the final batch will be
smaller than the others but is nonetheless included in the algorithmic
pipeline. The specific configurations used in our experiments are
summarized in Table 5.

Finally, this batching experiment is a stepping stone toward more
complex scenarios, such as implementing the Generalised Canonical
Correlation Analysis (GCCA) approach. By analyzing the effects of
batching versus full dataset processing, we can better understand the
trade-offs in accuracy, efficiency, and ultimately assess the feasibility
of scaling to more nodes in a federated network.

3.2.3 Federated Shared Feature Selection. Identifying shared
features across multiple datasets can be challenging, especially when
the exact correspondences between features are unknown. MaxFuse
relies on these shared features to function correctly, but in practice,
such correspondences might not always be available in advance.
Before starting MaxFuse, a preprocessing pipeline was run, as
described in subsubsection 2.1.3, which is necessary for MaxFuse

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Dataset Type
Number of experiments ran (configurations × repetitions)

TotalCentralized VS Federated CCA Shared Parameters BatchingCentralized Federated
CITE-seq & PBMC Antibodies 1 × 250 1 × 250 11 × 25 11 × 25 10 × 25 1300
scRNA-seq & CODEX Tonsils 1 × 250 1 × 250 11 × 25 11 × 25 10 × 25 1300

Total 500 500 550 550 500 2600
Table 4: Distribution of experiment configurations and repetition counts.

CITE-seq (𝑁 = 10, 000) & PBMC (𝑁 = 10, 000) Antibodies scRNA-seq (𝑁 = 12, 977) & CODEX (𝑁 = 178, 919) Tonsils
𝜅 𝜌 𝜇 Meta batches Non-Meta batches 𝜅 𝜌 𝜇 Meta batches Non-Meta batches

5,000 3 2 1 × 10,000 1 × 10,000 8,000 4 2 1 × 12,977 5 × 32,000 + 18,919
8,000 4 2 1 × 10,000 1 × 10,000 8,000 4 2 1 × 12,977 5 × 32,000 + 18,919
8,000 4 - 1 × 10,000 1 × 10,000 8,000 4 - 1 × 12,977 5 × 32,000 + 18,919
1,000 3 - 3 × 3,000 + 1,000 3 × 3,000 + 1,000 1,000 3 - 4 × 3,000 + 977 59 × 3,000 + 1,919
2,000 4 2 2 × 4,000 + 2,000 1 × 8,000 + 2,000 2,000 4 2 3 × 4,000 + 977 22 × 8,000 + 2,919
1,000 4 2 5 × 2,000 2 × 4,000 + 2,000 1,000 4 2 6 × 2,000 + 977 44 × 4,000 + 2,919
1,000 4 - 2 × 4,000 + 2,000 2 × 4,000 + 2,000 1000 4 - 3 × 4,000 + 977 44 × 4,000 + 2,919
1,000 4 5 2 × 4,999 + 2 2 × 4,000 + 2,000 1000 4 5 2 × 4,999 + 2,979 44 × 4,000 + 2,919
100 10 5 20 × 500 10 × 1,000 100 10 5 25 × 500 + 477 178 × 1,000 + 919
500 2 10 2 × 4,999 + 2 10 × 1,000 500 2 10 2 × 4,999 + 2,979 178 × 1,000 + 919

Table 5: Batching configuration pairs and corresponding parameter settings for evaluating the effect of batching on performance.

to create two aligned datasets with known feature correspondences.
These are used to generate an initial matching, which initiates the
primary iterative process (as shown in lines 1–12 of Algorithm 1 for
the centralized version, and in Algorithm 3 for the federated version)
and affects MaxFuse’s convergence to the most optimal matching.

Therefore, this experiment investigates how the number and quality
of shared features impact MaxFuse’s performance. Specifically, we
test two conditions: (1) how well MaxFuse performs when using
only a random subset of the actual shared feature correspondences,
and (2) whether randomly selected, non-corresponding features can
be treated as shared and still lead to stable results. To evaluate this,
we vary the randomly selected variables (2, 5, 20, 50, 100, and 150)
and the proportion of true shared features used (10%, 20%, 50%,
80%, and 100%).

3.2.4 Random Initialization in Federated CCA. In the federated
version, as described in subsubsection 2.2.2, federated CCA, specifi-
cally the Singular Vector Power Method as delineated in Algorithm 8
(in lines 1 and 4), cannot simply distribute a stochastic vector from
actual data to latent scores 𝜉1 ∈ R𝑛 and 𝜔1 ∈ R𝑚 . We incorpo-
rate stochastic normal noise N(0, 1)𝑛 or N(0, 1)𝑚 and apply linear
interpolation-based smoothing with 𝛼 ∈ [0, 1] interpolation ratio
governing the extent of noise as seen in Equation 8. This facilitates the
assessment of its impact on matching consistency and determines the
degree of noise that can be initially introduced without jeopardizing
the integration output. Therefore, we chose 10%, ’20%, 50%, 70%,
90%, and 100% as interpolation values.

4 RESULTS
This section presents the evaluative insights regarding our federated
and centralized implementations of the MaxFuse algorithm. The

experimental design evaluates integration quality across multiple
metrics, including both supervised and unsupervised ones. We focus
on whether the federated MaxFuse preserves alignment and structural
integrity compared to its centralized counterpart, without degrading
embedding quality or matching performance.

To evaluate MaxFuse across different experiments, we deployed
metrics that capture various integration performance dimensions,
including alignment precision, cluster unity, and the maintenance of
neighborhood ties. Supervised metrics, such as accuracy, ASW F1
and ARI F1, FOSCTTM, and FOSKNN, measure alignment quality
by leveraging ground-truth labels and established cell correspon-
dences, thus delivering powerful insights into the efficacy of direct
match integration. Conversely, unsupervised metrics such as MRRE,
Steadiness, and Cohesiveness evaluate structural preservation in-
dependently of labels, thus enabling us to scrutinize intrinsic data
alignment quality within the federated framework.

Our findings highlight the potential trade-offs between perfor-
mance and structure in the federated approach.

4.1 Centralized versus Federated Comparison
We perform an in-depth comparison with its centralized counterpart
to evaluate the feasibility of implementing MaxFuse in a feder-
ated setting. We utilized the same hyperparameter settings for the
federated and centralized configurations. Here, we employ a compre-
hensive set of evaluation metrics to analyze performance thoroughly.
Additionally, we performed statistical tests to determine whether
the differences between centralized and federated metrics were sig-
nificant using the Mann-Whitney U test at a significance level of
𝑝 < 0.05.

Baran, et al.

Figure 4: Summary of Accuracy per cell label on Federated
versus Centralized MaxFuse

Firstly, comparison of classification performance between cen-
tralized and federated, as shown in the Figure 4, MaxFuse reveals
that matching towards labels, whether at Level 1, 2, or 3 for the
Antibodies dataset (CITE-seq and PBMC) and Cluster Info/Term for
the Tonsils dataset (scRNA-seq and CODEX), generally seems to
perform very similarly. However, we can observe that the federated
setting closely aligns with the centralized version across various
labels. However, statistically significant differences indicate that
centralized integration slightly outperforms federated approaches for
certain label types (see Table 6). The underlying cause for this dis-
crepancy in the Antibodies dataset is likely implementation-related.
Notably, these differences become less pronounced at finer label
levels, where there is a higher number of unique labels (see Table 1),
suggesting that federated learning retains most of its classification ca-
pability at detailed annotation levels, as well as at the centralized one.
However, on the more heterogeneous Tonsils dataset, the federated
setting exhibits greater variability and a noticeable drop in accuracy,
with statistically significant differences that consistently favor the
centralized approach. We believe this is caused by implementation
issues and the fact that, by default, the centralized algorithm for the
Tonsils dataset performs batching, which facilitates a greater number
of possible cell-to-cell matches. At the same time, the federated
version does not implement it owing to implementation complexity.

Figure 5: Summary of Average Silhouette Width F1 and Adjusted
Rand Index F1 per cell label on Federated versus Centralized
MaxFuse

Secondly, metrics ASW F1 and ARI F1 metrics show that fed-
erated MaxFuse achieves clustering quality comparable to that of
its centralized counterpart(see Figure 5). Both methods perform
similarly across all label levels in the Antibodies dataset, with minor,
statistically insignificant differences at finer resolutions. For the Ton-
sils dataset, federated integration shows slightly greater variability
but maintains strong overall performance. These results indicate that
federated MaxFuse effectively preserves cell-type clustering and
corrects for batch effects, validating its applicability for decentralized
multi-omic data integration. However, it does come with a trade-off:
the federated version appears to be much less stable, as its metrics
seem rather varied.

Figure 6: FOSCTTM on Federated versus Centralized MaxFuse.

Thirdly, further analysis of embedding quality, which we have only
performed for the Antibodies dataset, through supervised metrics
such as FOSCTTM (see Figure 6) and FOSKNN (see Figure 7)
shows that federated MaxFuse achieves comparable performance to
centralized MaxFuse. The near-identical curves in FOSKNN and the
non-significant statistical differences indicate that local neighborhood
structures are well-preserved in the federated setting (see Table 6).
Similarly, unsupervised metric MRRE plots (Antibodies dataset)
demonstrate largely overlapping performance between federated and

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

centralized embeddings, and results lie within the green quadrants
on the plot, which specifies that there were not so many missing
or false neighbors (see Figure 8). This is noteworthy, given that
MRRE evaluates based on the ranking of 𝑘-NN. This means that
MaxFuse can place close neighbors in the almost correct order of
proximity with very few wrongly assigned neighbors inside the
embedding. However, a minor statistically significant difference is
noted in the missing neighbors component for the meta-modality
(see Table 6). The meta-modality also performs worse than the
non-meta-modality due to the cells-as-cluster summarization as an
output of Leiden’s Algorithm [75], which could remove some crucial
structural information.

Figure 7: FOSKNN on Centralized versus Federated MaxFuse.

Furthermore, as illustrated in Figure 9, the analysis of Steadi-
ness and Cohesiveness metrics (for Antibodies dataset) indicates
that federated embeddings create almost the same quality of cluster
structures as centralized ones. Both settings show tight clustering
in the favorable upper-right region of the plots, with no significant
differences in most statistical tests (see Table 6). These results provide
strong evidence that federated MaxFuse can preserve cluster struc-
tural features during integration, an essential downstream analysis
consideration for non-meta data modality as they are within the green
quadrant, which signifies reliability of MaxFuse creating cluster
structures within the embedding as in the original data (see Fig-
ure 3). However, performance is significantly worse for the meta-data
modality, with very low cohesiveness. This suggests that MaxFuse
introduced artificial cluster structures within the embedding that
are not present in the original dataset. One possible reason is the
summarization effect of the Leiden algorithm, which also explains
the behavior observed in MRRE metric.

Figure 8: MRRE on Centralized versus Federated MaxFuse.

Additionally, we can visualize Steadiness and Cohesiveness using
CheckViz and Reliability Maps. These provide further intuitive
validation of the embedding quality findings as seen in Figure 11.
Both centralized and federated settings display largely consistent
structures, with reliable regions overlapping substantially. However,
federated embeddings exhibit slightly larger distorted areas, which
are visible through darker and expanded patches in the CheckViz
overlays. This aligns with the slight deterioration observed in stress
and MRRE metrics for the federated setting. While these distortions
are minor for the Antibodies dataset, they become more prominent in
the Tonsils dataset. This confirms that federated diagonal integration
maintains competitive quality under simpler conditions but faces
increased data heterogeneity and complexity challenges.

Lastly, some significant differences emerge when analyzing stress
scores, a metric that captures the preservation of distances. While
stress scores between centralized and federated embeddings are
similar for the Antibodies dataset, federated embeddings exhibit
significantly higher stress in the Tonsils dataset, most likely caused
by the MaxFuse using data batching by default for the Tonsils dataset.

Baran, et al.

Feature Dataset Type U1 U2 𝑝-value Reject 𝐻0 (𝑝 = 0.05)
L1 Accuracy Antibodies Supervised 50198.0 12302.0 8.94e-32 True
L2 Accuracy Antibodies Supervised 50325.5 12174.5 3.52e-32 True
L3 Accuracy Antibodies Supervised 40879.0 21621.0 2.51e-09 True
Cluster-Term Accuracy Tonsils Supervised 56214.0 4795.0 4.57e-59 True
L1 Silhouette F1 Score Antibodies Supervised 35538.0 26962.0 7.95e-03 True
L2 Silhouette F1 Score Antibodies Supervised 30305.0 32195.0 5.59e-01 False
L3 Silhouette F1 Score Antibodies Supervised 29794.0 32706.0 3.68e-01 False
L1 ARI F1 Score Antibodies Supervised 35300.0 27200.0 1.22e-02 True
L2 ARI F1 Score Antibodies Supervised 28978.0 33522.0 1.60e-01 False
L3 ARI F1 Score Antibodies Supervised 30648.0 31852.0 7.10e-01 False
Cluster-Term Silhouette F1 Score Tonsils Supervised 2281.0 58728.0 8.34e-71 True
Cluster-Term ARI F1 Score Tonsils Supervised 8049.0 52960.0 1.74e-45 True
FOSCTTM Antibodies Supervised 32752.0 29748.0 3.53e-01 False
FOSKNN Antibodies Supervised 124288.0 125712.0 8.76e-01 False
Steadiness (15-NN, Non-Meta Modality) Antibodies Unsupervised 32259.0 30241.0 5.32e-01 False
Steadiness (15-NN, Meta Modality) Antibodies Unsupervised 32904.0 29596.0 3.06e-01 False
Cohesiveness (15-NN, Non-Meta Modality) Antibodies Unsupervised 32427.0 30073.0 4.66e-01 False
Cohesiveness (15-NN, Meta Modality) Antibodies Unsupervised 30949.0 31551.0 8.52e-01 False
MRRE (15-NN, Meta Modality, Missing) Antibodies Unsupervised 26708.0 35792.0 4.93e-03 True
MRRE (15-NN, Non-Meta Modality, Missing) Antibodies Unsupervised 33906.0 28594.0 1.00e-01 False
MRRE (15-NN, Meta Modality, False) Antibodies Unsupervised 28132.0 34368.0 5.36e-02 False
MRRE (15-NN, Non-Meta Modality, False) Antibodies Unsupervised 32365.0 30135.0 4.90e-01 False
Stress (Meta Modality) Antibodies Unsupervised 29290.0 33210.0 2.25e-01 False
Stress (Non-Meta Modality) Antibodies Unsupervised 26667.0 35833.0 4.56e-03 True
Stress (Meta Modality) Tonsils Unsupervised 13848.0 47161.0 8.70e-26 True
Stress (Non-Meta Modality) Tonsils Unsupervised 49799.0 11210.0 4.94e-34 True

Table 6: Statistical comparison of metrics for the Centralized versus Federated MaxFuse comparison with Hypothesis Testing through
Mann–Whitney U test

Figure 9: Steadiness and Cohesiveness on Centralized versus
Federated MaxFuse.

Figure 10: Stress on Centralized versus Federated MaxFuse.

4.2 Centralized Data Batching
We examine whether MaxFuse can be extended beyond two partic-
ipants in a federated environment, where two participants utilize

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Figure 11: CheckViz and Reliability Map of the Steadiness and Cohesiveness for the Antibodies dataset

batching. Due to significant implementation challenges and com-
plexity associated with federated batching support, we only examine
centralized batching as a baseline for assessing its effects on integra-
tion quality with two clients.

Figure 12: Summary of Accuracy per cell label on Batched
MaxFuse for Antibodies Dataset

Figure 13: Summary of Accuracy per cell label on Batched
MaxFuse for Tonsils Dataset

As shown in Figure 12 and Figure 13, batching only marginally
impacts cell label prediction accuracy, provided that the number
of batches remains moderate and sufficiently large batch sizes are
maintained. For both the Antibodies and Tonsils datasets, excessive
fragmentation (i.e., tiny batches) leads to noticeable drops in accuracy.
Interestingly, the non-batched (default) setting generally performs
among the best, indicating that while batching is feasible, there is

Baran, et al.

no inherent advantage for simple supervised accuracy when datasets
are manageable in size.

To complement these findings, we further examined the behavior
of F1 scores, which capture a trade-off between batch mixing and
cell-type clustering, as shown in Figure 14 and Figure 15.

Figure 14: Summary of ASW F1 (Level 1,2,3) and ARI F1 (Level
1,2,3) scores on Batched MaxFuse for Antibodies Dataset

These results reveal that a moderate degree of batching can
sometimes improve F1 scores, particularly when the batch sizes are
balanced and not too small. However, aggressive batching, for in-
stance, involving many small or large batches, significantly degrades
the quality of clustering metrics. This suggests that minor batching,
when carefully controlled, can facilitate better preservation of struc-
ture during integration without overly distorting batch correction or
cell-type resolution.

Figure 15: Summary of ASW F1 (Cluster Info/Term) and ARI
F1 (Cluster Info/Term) score on Batched MaxFuse for Tonsils
Dataset

We analyze the FOSKNN and FOSCTTM metrics to gain further
insight into the preservation of embedding structure.

Figure 16: Centralized MaxFuse FOSKNN metric on Batched
Antibodies Dataset

In Figure 16 and Figure 17, we observe that carefully applied
2-3 medium-sized batches can yield marginal improvements in local
neighborhood preservation. Specifically, lower FOSCTTM values
and slightly higher FOSKNN curves suggest that moderate batching
enables better proximity matching, likely due to reduced cross-batch
embedding distortions. However, these improvements quickly vanish
if batch sizes become too small, emphasizing that while batching
can be beneficial, excessive fragmentation must be avoided.

Figure 17: Centralized FOSKNN FOSKNN metric on Batched
Antibodies Dataset

4.3 Federated Shared Feature Selection
MaxFuse relies on shared features to function correctly, but such cor-
respondences might not always be available in advance. We explore
how the number and quality of shared features affect MaxFuse’s
performance. Specifically, we test two conditions: (1) using only a
random subset of shared features, and (2) selecting features randomly,
to see whether non-corresponding features can be treated as shared
and still lead to stable results. We vary the proportion of true shared
features used (10%, 20%, 50%, 80%, and 100%), and the randomly
selected variables (2, 5, 20, 50, 100, and 150) in their respective ex-
periments. Since we alter only the shared-feature selection parameter,
we focus on FOSCTTM and FOSKNN, as these metrics are particu-
larly sensitive to embedding alignment quality and nearest-neighbor

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

matching stability, and thus effectively reflect broader performance
trends seen across various supervised and unsupervised metrics.

Figure 18: FOSCTTM on Federated Shared Feature Selection

Figure 18 and Figure 19 clearly illustrate a stark contrast between
using actual shared and randomly chosen features. Specifically,
random features severely impair the integration quality, indicated by
significantly poorer FOSKNN and higher FOSCTTM scores. This
decline in performance can be attributed to an inability to establish
meaningful initial correspondences, leading to suboptimal canonical
correlations and inaccurate embeddings. Conversely, performance
improves when leveraging substantial proportions of about 60-80%
of actual shared features, nearing optimal results obtained using the
complete shared dataset. These findings underscore the necessity
of careful and meaningful feature selection for achieving reliable
federated diagonal integration, and that comparable results can still
be achieved even if not all information feature correspondences are
available.

Figure 19: FOSKNN Federated Shared Feature Selection

4.4 Random Initialization in Federated CCA
As described in subsubsection 2.2.2, federated CCA, specifically
the Singular Vector Power Method as delineated in Algorithm 8,
requires the addition of noise as seen in Equation 8. To investigate the
sensitivity of the method to random initialization, we systematically

varied the degree of added randomness in the range 𝑤 ∈ [0.0, 1.0]
(with a step size of 0.1) and assessed its impact on integration
performance. It is essential to note that, as stated in the equation, 0.0
is undesirable, as it implies that a column of data must be shared
during the initialization step.

Given that we are only perturbing the initialization step, we
focused on evaluating two core metrics, FOSCTTM and FOSKNN,
which effectively capture fine-grained matching fidelity and neighbor
structure preservation, and are highly representative of broader
trends across supervised and unsupervised metrics as mentioned in
subsection 4.3.

Figure 20: FOSCTTM Federated Random CCA Initialization
Selection

The results in Figure 20 show that varying the level of random ini-
tialization has only a minor effect on integration quality, as reflected
by relatively stable FOSCTTM scores. Interestingly, introducing
approximately 60% randomness achieves the lowest median FOS-
CTTM value, suggesting slightly improved matching fidelity, where
matched cell pairs remain closer than mismatched ones. This obser-
vation implies that moderate stochasticity may help avoid suboptimal
convergence during the singular vector updates, although the overall
effect size remains small.

Figure 21: FOSKNN Federated Random CCA Initialization
Selection

Similarly, Figure 21 shows that the FOSKNN scores remain
stable across different randomness levels, with only minor variations.
This further supports the conclusion that introducing reasonable
amounts of random noise during initialization does not significantly
impact neighbor preservation or overall integration quality. These
findings validate the robustness of Federated CCA under various
noise settings, providing flexibility in implementation for enhancing
privacy or improving convergence stability.

Baran, et al.

5 DISCUSSION
This study investigates whether federated diagonal integration of
two modalities, specifically through the Federated MaxFuse algo-
rithm, can match the performance of centralized approaches while
addressing pressing privacy concerns inherent in multi-omic data
analysis. Integration enables the combined exploitation of individ-
ual dataset strengths, potentially facilitating a more comprehensive
understanding of cellular interactions and immune responses within
the tonsil microenvironment by subjecting it to downstream analysis
or other algorithmic methods. Our experiments examined different
dimensions of the problem, evaluating integration quality, matching
accuracy, stability, and sensitivity to architectural and methodologi-
cal choices. This section presents the key findings, limitations, and
implications of each experimental setup and identifies future work
directions.

5.1 Centralized versus Federated Comparison
Our analysis shows that, with respect to cell annotation accuracy
and embedding quality, the federated version of MaxFuse performs
as accurately as its centralized equivalent. Although the integration
is generally effective, it struggles to delineate cluster boundaries
and preserve fine-grained biological structures clearly. Future en-
hancements may investigate more complex optimization techniques,
such as adaptive learning rates or the incorporation of additional
regularization approaches, to further improve stability and accuracy.

Notably, non-meta datasets consistently outperform meta-aggregated
counterparts. This difference likely arises due to the information
loss inherent in meta summarization, specifically from using Leiden
cluster centroids, which suggests a trade-off between computational
efficiency and relative improvement in generalization. Nevertheless,
MaxFuse effectively maintains strong local proximity preservation
with minimal neighbor misalignments, accurately reflecting biologi-
cal relationships within embeddings.

In general, the centralized approach yields slightly higher scores
in metrics that measure cluster reliability and boundary clarity,
specifically in terms of steadiness and cohesiveness. These results
suggest that centralized integration provides slightly more robust
embeddings, closely reflecting actual biological structures.

Despite these modest advantages of centralization, the federated
version of MaxFuse demonstrates significant promise, particularly in
scenarios with lower complexity and heterogeneity. Its performance
gap in more intricate datasets underscores the necessity for targeted
improvements, particularly in implementing federated batching,
enhancing embedding stability, and strengthening local structure
preservation.

Our findings highlight the substantial potential of federated di-
agonal integration methods. They outline specific areas for future
research to bridge current performance gaps and expand the applica-
bility of their approach across diverse biological datasets.

5.2 Centralized Data Batching
The exploration of centralized data batching within the MaxFuse
algorithm highlights batching as a practical method for simulating
federated environments involving multiple clients or datasets that
share a common feature space. The findings suggest that, under
controlled conditions, batching maintains high-level integration

performance. Specifically, when batch sizes are moderately large
and data fragmentation is minimized (small, low-volume batches),
the overall matching accuracy and clustering quality are largely
preserved. This suggests that federated scenarios, where clients
may possess subsets of a shared feature space, can achieve reliable
integration without substantial loss of alignment fidelity if carefully
managed batching is employed.

Nevertheless, the findings also show that overly granular batch-
ing causes a noticeable decline in label accuracy and embedding
quality, primarily when the data is split into multiple tiny batches
(fragmented). The matching process may be compromised, and the
resulting embeddings may become unstable due to the tendency
of smaller batches to enhance noise and fragment local structures.
This underscores the importance of optimizing batch size in any
federated adaptation of MaxFuse or similar frameworks: batching
should strike a balance between representing distributed data and
preserving sufficient local structure for robust integration.

These results suggest that centralized batching can effectively
mimic federated integration; however, careful calibration is neces-
sary to achieve this. They encourage more research into multi-lab
federated networks, especially for multi-modality applications like
federated GCCA. Future research should investigate intrinsic data
structure-based adaptive batching algorithms and address the real-
world challenges of deploying batching in federated environments
with stricter privacy and communication regulations. These problems
must be resolved to scale federated diagonal integration to large
multi-institutional partnerships.

5.3 Federated Shared Feature Selection
The shared feature selection experiments highlight the critical role of
meaningful correspondences in achieving robust federated diagonal
integration. When true shared features are available, even when
only 60–80% of the original correspondences are retained, they are
sufficient to maintain strong matching and embedding performance.
However, incorporating features selected randomly results in a pro-
nounced deterioration of integration quality, likely attributable to the
absence of coherent alignment among modalities. These results indi-
cate that federated integration is resilient to moderate reductions in
shared information. However, it remains vulnerable to the quality and
relevance of the features selected for integration. Consequently, the
meticulous curation of shared features is paramount for dependable
integration, particularly in contexts where prior knowledge regarding
correspondences may be lacking.

5.4 Random Initialization in Federated CCA
The primary reason for introducing randomness is to maintain data
privacy. Additionally, randomness can facilitate faster convergence
or yield better canonical correlations, which are more suitable
for matching. Maximizing the stochasticity of initialization may
improve convergence properties and correlation outcomes. Our
analysis shows that the integration process in Federated CCA is
remarkably robust to variations in the degree of random initialization.
Integration quality remains stable across various randomization
levels, with only minor improvements observed at moderate noise
levels. These improvements suggest that introducing stochasticity
during the initialization phase can marginally enhance matching

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

fidelity, likely by helping the algorithm escape poor local optima
during singular vector updates. However, the aggregate effect size
persists as minimal, indicating that Federated CCA remains robust
even with adjustments to the randomness parameter. This adaptability
enhances its pragmatic utility by reconciling the safeguarding of
privacy with superior integration results.

5.5 Limitations
While this investigation reveals that Federated MaxFuse can achieve
robust matching and embedding efficacy without centralized data
access, several notable limitations remain. Primarily, the methodol-
ogy presupposes the presence of honest-but-curious participants and
fails to furnish formal privacy assurances against active adversaries.
Secondly, the dependence on a centralized server architecture may
introduce communication bottlenecks and algorithmic intricacies,
particularly during federated CCA, which may hinder scalability to
larger datasets or networks comprising numerous nodes. Thirdly,
assessment in truly federated environments remains problematic,
as most validation metrics necessitate centralized access to com-
prehensive embeddings or ground-truth correspondences. Fourthly,
due to the substantial memory demands of implementing existing
unsupervised metrics, we were unable to comprehensively evaluate
performance on extensive datasets, mainly because of these sub-
stantial memory demands. Lastly, although this study focused on
integrating two modalities, extending the methodology to encompass
additional modalities or highly heterogeneous multi-omic datasets
presents an unresolved and challenging avenue for future work.

Firstly, although federated learning inherently provides some
level of data minimization by sending only partial, normalized data
representations with optional noise interpolation, formal guarantees
such as resilience to poisoning, robustness against network attacks,
or robustness against message dropping have not been established.
This was not the primary focus of this work, and our findings
indicate that the federated setting can partially preserve privacy by
design since raw data remains local without apparent degradation
in matching and embedding quality. Additionally, we relied on
the assumption that participating nodes and the server do not act
maliciously. This simplifies the security landscape but limits real-
world applicability, as adversarial behavior is possible and could
attempt to reconstruct private data from aggregated model parameters.
Therefore, it is recommended to explore the possibility of rebuilding
it, if feasible, and to determine the extent of the reconstruction.
Additionally, it would be beneficial to investigate alternative methods
for communicating and securing the aggregation of calculations,
which should be considered.

Secondly, the architecture of having a centralized server that
handles all communication might not be the best, as it requires
more message complexity than necessary and, in real-world settings,
can cause latency and a single point of failure, where if the server
goes down, all communication will be disrupted. These complexities
especially add up when calculating CCA with the PLS model B,
where there would be 𝑇 loops for 𝐶 shared components, where each
node needs to find singular vectors𝐾 times in the worst case scenario.
Therefore, exploring more efficient communication methods or
alternative decentralized approaches that eliminate reliance on a

central server to hold and manage data is essential to overcoming
these bottlenecks.

Furthermore, evaluating federated MaxFuse performance intro-
duces significant challenges, particularly due to limitations of existing
supervised metrics, which typically require complete embedding data
and explicit cell-level correspondences. In federated scenarios, these
correspondences are often unavailable or impractical to establish, and
transmitting full embeddings to a central node may compromise data
privacy. Although benchmark datasets like CITE-seq and PBMC [26]
can facilitate supervised evaluation when explicit correspondences
exist, practical federated settings demand new evaluation strategies.
Therefore, developing novel metrics or adapting existing methods ca-
pable of assessing alignment quality across silos—without requiring
complete data sharing—is critical for accurately evaluating federated
integration algorithms.

Additionally, a significant limitation of several unsupervised eval-
uation metrics, such as Steadiness, Cohesiveness, and Mean Relative
Rank Errors, is their primary implementation in the ZADU package
[37]. These metrics rely on calculations using full distance matrices,
distance rank matrices, or sparse matrices that are dominated by
zeros, all of which require significant memory allocation. In practice,
we encountered substantial issues when working with datasets that
exceeded 100,000 cells and used 32-bit floating-point numbers. These
cases needed at least 37GB of memory, demonstrating limited scala-
bility since memory demands increase by𝑂 (𝑛2) with the dataset size.
Although addressing these memory limitations would be valuable, it
was beyond the scope of this paper, since metric optimization was
beyond the scope of this study. Nevertheless, we recommend future
work on developing more memory-efficient implementations of these
metrics.

Lastly, our study experiments focused on two-modality integration,
which we considered a case where batching is not used within the
calculations. However, there could be more complex cases involving
over 500,000 cells or even many cells with the same modality spread
across multiple devices. This data size problem would severely de-
grade the performance, and as the centralized batching experiments
showed, they can help improve specific metrics. However, the current
batching method should be evaluated to determine the best approach.
Additionally, we must consider how to scale to three or more modali-
ties in a federated fashion, which remains an unresolved challenge,
particularly in achieving both consistency and scalability. Tri-omic
analysis has been performed in a centralized manner by the authors
of MaxFuse [12], who applied a ‘merged’ Generalised Canonical
Correlation Analysis (GCCA) to fitted and filtered pivots. It remains
to be analyzed whether this approach is the best. Additionally, it
would be necessary to explore whether complex implementation
variants of distributed CCA/GCCA, such as communication-efficient
[71, 22] or MAX-VAR [32, 23], are suitable. Additionally, it might
be valuable to look into different ways of calculating CCA, whether
that would be through kernels, probabilistic models, or even deep
models [11].

6 CONCLUSION
This empirical study demonstrates that applying MaxFuse to two-
modal data integration in a federated setting provides a promising
foundation for extending the method to multi-modal, decentralized

Baran, et al.

applications. Despite practical challenges and inherent limitations,
the findings establish a groundwork for scalable, flexible, and privacy-
conscious cross-modality correspondence in federated environments.
Future research should focus on enhancing formal privacy guarantees,
improving communication efficiency, optimizing batching strategies,
and broadening support for more diverse and complex modality
configurations.

REFERENCES
[1] Amir "Jaberzadeh et al. “"Blockchain-Based Federated Learn-

ing: Incentivizing Data Sharing and Penalizing Dishonest
Behavior"”. In: "Blockchain and Applications, 5th Interna-
tional Congress". Ed. by José Manuel "Machado et al. "Cham":
"Springer Nature Switzerland", 2023, "186–195".

[2] Nigatu Adossa et al. “Computational strategies for single-
cell multi-omics integration”. In: Computational and Struc-
tural Biotechnology Journal 19 (2021), pp. 2588–2596. issn:
20010370. doi: 10.1016/j.csbj.2021.04.060. url: https:
//doi.org/10.1016/j.csbj.2021.04.060.

[3] Ricard Argelaguet et al. “Computational principles and chal-
lenges in single-cell data integration”. In: Nature Biotech-
nology 39.10 (2021), pp. 1202–1215. issn: 15461696. doi:
10.1038/s41587-021-00895-7. url: http://dx.doi.org/10.
1038/s41587-021-00895-7.

[4] Tasbiraha Athaya et al. “Multimodal deep learning approaches
for single-cell multi-omics data integration”. In: Briefings in
Bioinformatics 24.5 (2023), pp. 1–15. issn: 14774054. doi:
10.1093/bib/bbad313.

[5] Franziska Boenisch et al. “When the Curious Abandon Hon-
esty: Federated Learning Is Not Private”. In: Proceedings - 8th
IEEE European Symposium on Security and Privacy, Euro S
and P 2023 (2023), pp. 175–199. doi: 10.1109/EuroSP57164.
2023.00020.

[6] Bram Burger, Marc Vaudel, and Harald Barsnes. “Automated
splitting into batches for observational biomedical studies with
sequential processing”. In: Biostatistics 24.4 (2023), pp. 1031–
1044. issn: 14684357. doi: 10.1093/biostatistics/kxac014.

[7] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello.
Assignment Problems. Revised reprint. English. 393 Seiten.
SIAM - Society of Industrial and Applied Mathematics, 2012.
isbn: 978-1-611972-22-1.

[8] Ricardo J.G.B. Campello, Davoud Moulavi, and Joerg Sander.
“Density-based clustering based on hierarchical density es-
timates”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 7819 LNAI.PART 2 (2013),
pp. 160–172. issn: 03029743. doi: 10.1007/978- 3- 642-
37456-2{_}14.

[9] Kai Cao et al. “A unified computational framework for single-
cell data integration with optimal transport”. In: Nature Com-
munications 13.1 (2022), pp. 1–15. issn: 20411723. doi:
10.1038/s41467-022-35094-8.

[10] Tien Dung Cao et al. “A federated deep learning framework for
privacy preservation and communication efficiency”. In: Jour-
nal of Systems Architecture 124.January (2022), p. 102413.

issn: 13837621. doi: 10.1016/j.sysarc.2022.102413. url:
https://doi.org/10.1016/j.sysarc.2022.102413.

[11] James Chapman and Hao-Ting Wang. “CCA-Zoo: A col-
lection of Regularized, Deep Learning based, Kernel, and
Probabilistic CCA methods in a scikit-learn style framework”.
In: Journal of Open Source Software 6.68 (2021), p. 3823.
doi: 10.21105/joss.03823.

[12] Shuxiao Chen et al. Integration of spatial and single-cell data
across modalities with weakly linked features. Springer US,
2023. doi: 10.1038/s41587-023-01935-0.

[13] Neo Christopher Chung. “Statistical significance of cluster
membership for unsupervised evaluation of cell identities”. In:
Bioinformatics 36.10 (2020), pp. 3107–3114. issn: 14602059.
doi: 10.1093/bioinformatics/btaa087.

[14] A.G. Cioletti et al. “Deep Learning in Bioinformatics”. In:
Advances in bioinformatics and biomedical engineering book
series (2024), pp. 137–168. doi: 10.4018/979-8-3693-3192-
7.ch005.

[15] David F. Crouse. “On implementing 2D rectangular as-
signment algorithms”. In: IEEE Transactions on Aerospace
and Electronic Systems 52.4 (2016), pp. 1679–1696. issn:
00189251. doi: 10.1109/TAES.2016.140952.

[16] Varsha Dani et al. “Secure multi-party computation in large
networks”. In: Distributed Computing 30.3 (2017), pp. 193–
229. issn: 01782770. doi: 10.1007/s00446-016-0284-9.

[17] Ozgur Demir-Kavuk et al. “Prediction using step-wise L1, L2
regularization and feature selection for small data sets with
large number of features”. In: BMC Bioinformatics 12 (2011),
pp. 1–10. issn: 14712105. doi: 10.1186/1471-2105-12-412.

[18] Lei Ding, Gabriel E. Zentner, and Daniel J. McDonald. “Suffi-
cient principal component regression for pattern discovery in
transcriptomic data”. In: Bioinformatics Advances 2.1 (2022),
pp. 1–8. issn: 26350041. doi: 10.1093/bioadv/vbac033.

[19] Arnold Dresden. “The fourteenth western meeting of the
american mathematical society”. In: Bulletin of the Ameri-
can Mathematical Society 26.9 (1920), pp. 385–396. issn:
02730979. doi: 10.1090/S0002-9904-1920-03322-7.

[20] Paolo Fardin et al. “The l1-l2regularization framework un-
masks the hypoxia signature hidden in the transcriptome of a
set of heterogeneous neuroblastoma cell lines”. In: BMC Ge-
nomics 10 (2009), p. 474. issn: 14712164. doi: 10.1186/1471-
2164-10-474.

[21] Mattia Forcato, Oriana Romano, and Silvio Bicciato. “Com-
putational methods for the integrative analysis of single-cell
data”. In: Briefings in Bioinformatics 22.1 (2021), pp. 20–29.
issn: 14774054. doi: 10.1093/bib/bbaa042.

[22] Xiao Fu et al. “Efficient and Distributed Generalized Canoni-
cal Correlation Analysis for Big Multiview Data”. In: IEEE
Transactions on Knowledge and Data Engineering 31.12
(2019), pp. 2304–2318. issn: 15582191. doi: 10.1109/TKDE.
2018.2875908.

[23] Xiao Fu et al. “Scalable and Flexible Multiview MAX-VAR
Canonical Correlation Analysis”. In: IEEE Transactions
on Signal Processing 65.16 (2017), pp. 4150–4165. issn:
1053587X. doi: 10.1109/TSP.2017.2698365.

[24] Paul Geladi. “Notes on the history and nature of partial least
squares (PLS) modelling”. In: Journal of Chemometrics 2.4

https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1038/s41587-021-00895-7
http://dx.doi.org/10.1038/s41587-021-00895-7
http://dx.doi.org/10.1038/s41587-021-00895-7
https://doi.org/10.1093/bib/bbad313
https://doi.org/10.1109/EuroSP57164.2023.00020
https://doi.org/10.1109/EuroSP57164.2023.00020
https://doi.org/10.1093/biostatistics/kxac014
https://doi.org/10.1007/978-3-642-37456-2{_}14
https://doi.org/10.1007/978-3-642-37456-2{_}14
https://doi.org/10.1038/s41467-022-35094-8
https://doi.org/10.1016/j.sysarc.2022.102413
https://doi.org/10.1016/j.sysarc.2022.102413
https://doi.org/10.21105/joss.03823
https://doi.org/10.1038/s41587-023-01935-0
https://doi.org/10.1093/bioinformatics/btaa087
https://doi.org/10.4018/979-8-3693-3192-7.ch005
https://doi.org/10.4018/979-8-3693-3192-7.ch005
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1007/s00446-016-0284-9
https://doi.org/10.1186/1471-2105-12-412
https://doi.org/10.1093/bioadv/vbac033
https://doi.org/10.1090/S0002-9904-1920-03322-7
https://doi.org/10.1186/1471-2164-10-474
https://doi.org/10.1186/1471-2164-10-474
https://doi.org/10.1093/bib/bbaa042
https://doi.org/10.1109/TKDE.2018.2875908
https://doi.org/10.1109/TKDE.2018.2875908
https://doi.org/10.1109/TSP.2017.2698365

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

(1988), pp. 231–246. issn: 0886-9383. doi: 10.1002/cem.
1180020403.

[25] Yury Goltsev et al. “Deep Profiling of Mouse Splenic Archi-
tecture with CODEX Multiplexed Imaging”. In: Cell 174.4
(2018), pp. 968–981. issn: 10974172. doi: 10.1016/j.cell.
2018.07.010. url: https://doi.org/10.1016/j.cell.2018.07.010.

[26] Yuhan Hao et al. “Integrated analysis of multimodal single-
cell data”. In: Cell 184.13 (2021), pp. 3573–3587. issn:
10974172. doi: 10.1016/ j .cell .2021.04.048. url: https:
//doi.org/10.1016/j.cell.2021.04.048.

[27] Markus Helmer et al. “On the stability of canonical correlation
analysis and partial least squares with application to brain-
behavior associations”. In: Communications Biology (2024).
issn: 2399-3642. doi: 10.1038/s42003-024-05869-4. url:
http://dx.doi.org/10.1038/s42003-024-05869-4.

[28] Jörg Henseler et al. “Common Beliefs and Reality About PLS:
Comments on Rönkkö and Evermann (2013)”. In: Organi-
zational Research Methods 17.2 (2014), pp. 182–209. issn:
15527425. doi: 10.1177/1094428114526928.

[29] Lukas Heumos et al. “Best practices for single-cell analysis
across modalities”. In: Nature Reviews Genetics 24.8 (2023),
pp. 550–572. issn: 14710064. doi: 10.1038/s41576-023-
00586-w.

[30] John W. Hickey et al. “Organization of the human intestine at
single-cell resolution”. In: Nature 619.7970 (2023), pp. 572–
584. issn: 14764687. doi: 10.1038/s41586-023-05915-x.

[31] Harold Hotelling. “Relations Between Two Sets of Variates”.
In: Biometrika 28.3/4 (1936), p. 321. issn: 00063444. doi:
10.2307/2333955.

[32] Charles Hovine and Alexander Bertrand. “Distributed MAX-
VAR: Identifying Common Signal Components across the
Nodes of a Sensor Network”. In: European Signal Process-
ing Conference 2021-Augus (2021), pp. 2159–2163. issn:
22195491. doi: 10.23919/EUSIPCO54536.2021.9615952.

[33] Lauren L. Hsu and Aedin C. Culhane. “Impact of Data
Preprocessing on Integrative Matrix Factorization of Single
Cell Data”. In: Frontiers in Oncology 10.June (2020). issn:
2234943X. doi: 10.3389/fonc.2020.00973.

[34] Christopher A. Jackson and Christine Vogel. “New horizons
in the stormy sea of multimodal single-cell data integration”.
In: Molecular Cell 82.2 (2022), pp. 248–259. issn: 10974164.
doi: 10.1016/j.molcel.2021.12.012. url: https://doi.org/10.
1016/j.molcel.2021.12.012.

[35] Derry Jatnika, Moch Arif Bĳaksana, and Arie Ardiyanti
Suryani. “Word2Vec Model Analysis for Semantic Similar-
ities in English Words”. In: Procedia Computer Science
157 (2019). The 4th International Conference on Computer
Science and Computational Intelligence (ICCSCI 2019) :
Enabling Collaboration to Escalate Impact of Research Re-
sults for Society, pp. 160–167. issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2019.08.153. url: https://www.
sciencedirect.com/science/article/pii/S1877050919310713.

[36] Hyeon Jeon et al. “Measuring and Explaining the Inter-Cluster
Reliability of Multidimensional Projections”. In: IEEE Trans-
actions on Visualization and Computer Graphics 28.1 (2022),
pp. 551–561. issn: 19410506. doi: 10.1109/TVCG.2021.
3114833.

[37] Hyeon Jeon et al. “ZADU: A Python Library for Evaluating
the Reliability of Dimensionality Reduction Embeddings”.
In: Proceedings - 2023 IEEE Visualization Conference -
Short Papers, VIS 2023 (2023), pp. 196–200. doi: 10.1109/
VIS54172.2023.00048.

[38] Iain M. Johnstone and D. Michael Titterington. “Statistical
challenges of high-dimensional data”. In: Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 367.1906 (2009), pp. 4237–4253. issn:
1364503X. doi: 10.1098/rsta.2009.0159.

[39] Adam Jóźwik. “A learning scheme for a fuzzy k-NN rule”. In:
Pattern Recognition Letters 1.5-6 (1983), pp. 287–289. issn:
01678655. doi: 10.1016/0167-8655(83)90064-8.

[40] James M. Keller and Michael R. Gray. “A Fuzzy K-Nearest
Neighbor Algorithm”. In: IEEE Transactions on Systems,
Man and Cybernetics SMC-15.4 (1985), pp. 580–585. issn:
21682909. doi: 10.1109/TSMC.1985.6313426.

[41] Julia Kennedy-Darling et al. “Highly multiplexed tissue imag-
ing using repeated oligonucleotide exchange reaction”. In:
European Journal of Immunology 51.5 (2021), pp. 1262–
1277. issn: 15214141. doi: 10.1002/eji.202048891.

[42] Hamish W. King et al. “Integrated single-cell transcriptomics
and epigenomics reveals strong germinal center–associated
etiology of autoimmune risk loci”. In: Science Immunology
6.64 (2021). issn: 24709468. doi: 10 . 1126 / sciimmunol .
abh3768.

[43] Jip W.T.M. de Kok et al. “A guide to sharing open health-
care data under the General Data Protection Regulation”. In:
Scientific Data 10.1 (2023), pp. 1–10. issn: 20524463. doi:
10.1038/s41597-023-02256-2.

[44] Ilya Korsunsky et al. “Fast, sensitive and accurate integration
of single-cell data with Harmony”. In: Nature Methods 16.12
(2019), pp. 1289–1296. issn: 15487105. doi: 10.1038/s41592-
019-0619-0. url: http://dx.doi.org/10.1038/s41592-019-
0619-0.

[45] J. B. Kruskal. “Nonmetric multidimensional scaling: A nu-
merical method”. In: Psychometrika 29 (1964), pp. 115–129.
issn: 00333123. doi: 10.1007/BF02289694.

[46] J. B. KRUSKAL and BELL. “Multidimensional scaling by
optimizing goodness of fit to a nonmetric hypothesis”. In:
BELL TELEPHONE LABORATORIES MURRAY HILL, N.
J. 29 (1964), pp. 1–27. issn: 26515032. doi: 10.5137/1019-
5149.JTN.14036-15.1.

[47] Tomasz Kujawa, Michał Marczyk, and Joanna Polanska. “In-
fluence of single-cell RNA sequencing data integration on
the performance of differential gene expression analysis”. In:
Frontiers in Genetics 13.November (2022), pp. 1–13. issn:
16648021. doi: 10.3389/fgene.2022.1009316.

[48] John A. Lee and Michel Verleysen. “Quality assessment of
dimensionality reduction: Rank-based criteria”. In: Neuro-
computing 72.7-9 (2009), pp. 1431–1443. issn: 09252312.
doi: 10.1016/j.neucom.2008.12.017.

[49] Sylvain Lespinats and Michaël Aupetit. “CheckViz: Sanity
check and topological clues for linear and non-linear map-
pings”. In: Computer Graphics Forum 30.1 (2011), pp. 113–
125. issn: 14678659. doi: 10.1111/j.1467-8659.2010.01835.
x.

https://doi.org/10.1002/cem.1180020403
https://doi.org/10.1002/cem.1180020403
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s42003-024-05869-4
http://dx.doi.org/10.1038/s42003-024-05869-4
https://doi.org/10.1177/1094428114526928
https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1038/s41586-023-05915-x
https://doi.org/10.2307/2333955
https://doi.org/10.23919/EUSIPCO54536.2021.9615952
https://doi.org/10.3389/fonc.2020.00973
https://doi.org/10.1016/j.molcel.2021.12.012
https://doi.org/10.1016/j.molcel.2021.12.012
https://doi.org/10.1016/j.molcel.2021.12.012
https://doi.org/https://doi.org/10.1016/j.procs.2019.08.153
https://doi.org/https://doi.org/10.1016/j.procs.2019.08.153
https://www.sciencedirect.com/science/article/pii/S1877050919310713
https://www.sciencedirect.com/science/article/pii/S1877050919310713
https://doi.org/10.1109/TVCG.2021.3114833
https://doi.org/10.1109/TVCG.2021.3114833
https://doi.org/10.1109/VIS54172.2023.00048
https://doi.org/10.1109/VIS54172.2023.00048
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1016/0167-8655(83)90064-8
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1002/eji.202048891
https://doi.org/10.1126/sciimmunol.abh3768
https://doi.org/10.1126/sciimmunol.abh3768
https://doi.org/10.1038/s41597-023-02256-2
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
http://dx.doi.org/10.1038/s41592-019-0619-0
http://dx.doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1007/BF02289694
https://doi.org/10.5137/1019-5149.JTN.14036-15.1
https://doi.org/10.5137/1019-5149.JTN.14036-15.1
https://doi.org/10.3389/fgene.2022.1009316
https://doi.org/10.1016/j.neucom.2008.12.017
https://doi.org/10.1111/j.1467-8659.2010.01835.x
https://doi.org/10.1111/j.1467-8659.2010.01835.x

Baran, et al.

[50] Tian Li et al. “Federated Learning: Challenges, Methods, and
Future Directions”. In: IEEE Signal Processing Magazine
37.3 (2020), pp. 50–60. issn: 15580792. doi: 10.1109/MSP.
2020.2975749.

[51] Wenqi Li et al. “Privacy-preserving Federated Brain Tumour
Segmentation”. In: Machine Learning in Medical Imaging.
Vol. 1. October. Shenzhen, China: Springer US, 2019, pp. 673–
680. isbn: 978-3-030-32691-3. doi: 10.1007/978-3-030-
32692-0{_}16. url: https://doi.org/10.1007/978-3-030-
32692-0_16.

[52] Jie Liu et al. “Jointly embedding multiple single-cell omics
measurements”. In: Leibniz International Proceedings in
Informatics, LIPIcs 143.10 (2019), pp. 1–10. issn: 18688969.
doi: 10.4230/LIPIcs.WABI.2019.10.

[53] Malte D. Luecken et al. “Benchmarking atlas-level data in-
tegration in single-cell genomics”. In: Nature Methods 19.1
(2022), pp. 41–50. issn: 15487105. doi: 10.1038/s41592-
021-01336-8.

[54] Emma Lundberg and Georg H.H. Borner. “Spatial proteomics:
a powerful discovery tool for cell biology”. In: Nature Re-
views Molecular Cell Biology 20.5 (2019), pp. 285–302.
issn: 14710080. doi: 10.1038/s41580-018-0094-y. url:
http://dx.doi.org/10.1038/s41580-018-0094-y.

[55] MacQueen, James and others. “Some methods for classifi-
cation and analysis of multivariate observations”. In: Pro-
ceedings of the fifth Berkeley symposium on mathematical
statistics and probability 1.14 (1967), pp. 281–297. url:
http: / /books.google.de/books?hl=de&lr=&id=IC4Ku_
7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+
methods + for + classification & ots = nNTcK1IdoQ & sig =
fHzdVcbvmYJ - lTNHu1HncmOFOkM # v = onepage & q =
MacQueen%20some%20methods%20for%20classification&
f=false.

[56] Julian Matschinske et al. “The FeatureCloud Platform for Fed-
erated Learning in Biomedicine: Unified Approach”. In: Jour-
nal of Medical Internet Research 25 (2023). issn: 14388871.
doi: 10.2196/42621.

[57] Agoston Mihalik et al. “Canonical Correlation Analysis and
Partial Least Squares for Identifying Brain – Behavior Associ-
ations : A Tutorial and a Comparative Study”. In: Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging 7.11
(2022), pp. 1055–1067. issn: 2451-9022. doi: 10.1016/j.bpsc.
2022.07.012. url: https://doi.org/10.1016/j.bpsc.2022.07.
012.

[58] Hai C.T. Nguyen et al. “Benchmarking integration of single-
cell differential expression”. In: Nature Communications 14.1
(2023). issn: 20411723. doi: 10.1038/s41467-023-37126-3.

[59] Giuseppe Palermo, Paolo Piraino, and Hans Dieter Zucht.
“Performance of PLS regression coefficients in selecting vari-
ables for each response of a multivariate PLS for omics-
type data”. In: Advances and Applications in Bioinformatics
and Chemistry 2.1 (2009), pp. 57–70. issn: 11786949. doi:
10.2147/aabc.s3619.

[60] Fernando V. Paulovich et al. “Least square projection: A fast
high-precision multidimensional projection technique and its
application to document mapping”. In: IEEE Transactions on

Visualization and Computer Graphics 14.3 (2008), pp. 564–
575. issn: 10772626. doi: 10.1109/TVCG.2007.70443.

[61] Liangrui Ren et al. “Single-cell RNA-seq data clustering by
deep information fusion”. In: Briefings in functional genomics
23 (May 2023), p. 1570. doi: 10.1093/bfgp/elad017.

[62] Nicola Rieke et al. “The future of digital health with federated
learning”. In: npj Digital Medicine 3.1 (2020), pp. 1–7. issn:
23986352. doi: 10.1038/s41746-020-00323-1. url: http:
//dx.doi.org/10.1038/s41746-020-00323-1.

[63] Luc Rocher, Julien M. Hendrickx, and Yves Alexandre de
Montjoye. “Estimating the success of re-identifications in
incomplete datasets using generative models”. In: Nature
Communications 10.1 (2019). issn: 20411723. doi: 10.1038/
s41467-019-10933-3. url: http://dx.doi.org/10.1038/s41467-
019-10933-3.

[64] Yeonjae Ryu et al. “Integration of Single-Cell RNA-Seq
Datasets: A Review of Computational Methods”. In: Molecules
and Cells 46.2 (2023), pp. 106–119. issn: 02191032. doi:
10.14348/molcells.2023.0009.

[65] Rahul Satĳa et al. “Spatial reconstruction of single-cell
gene expression data”. In: Nature Biotechnology 33.5 (2015),
pp. 495–502. issn: 15461696. doi: 10.1038/nbt.3192.

[66] Eric E. Schadt et al. “Genetics of gene expression surveyed in
maize, mouse and man”. In: Nature 422.6929 (2003), pp. 297–
302. issn: 00280836. doi: 10.1038/nature01434.

[67] Bruce Schmeiser. “Batch Size Effects in the Analysis of
Simulation Output”. In: INFORMS 30.3 (1982), pp. 556–568.

[68] Jennifer A. Scott. “An Arnoldi Code for Computing Selected
Eigenvalues of Sparse, Real, Unsymmetric Matrices”. In: ACM
Transactions on Mathematical Software (TOMS) 21.4 (1995),
pp. 432–475. issn: 15577295. doi: 10.1145/212066.212091.

[69] Angela Serra et al. “Data integration in genomics and systems
biology”. In: 2016 IEEE Congress on Evolutionary Computa-
tion, CEC 2016 (2016), pp. 1272–1279. doi: 10.1109/CEC.
2016.7743934.

[70] Wharton Research Data Services. Wharton Research Data
Services — wrds-www.wharton.upenn.edu. https : / / wrds -
www.wharton.upenn.edu/. [Accessed 17-09-2024]. 1993.

[71] Sagar Shrestha and Xiao Fu. “Communication-Efficient Fed-
erated Linear and Deep Generalized Canonical Correlation
Analysis”. In: IEEE Transactions on Signal Processing 71
(2023), pp. 1379–1394. issn: 19410476. doi: 10.1109/TSP.
2023.3265886.

[72] Djura Smits et al. “An Improved Infrastructure for Privacy-
Preserving Analysis of Patient Data”. In: Studies in Health
Technology and Informatics 295 (2022), pp. 144–147. issn:
18798365. doi: 10.3233/SHTI220682.

[73] Tim Stuart et al. “Comprehensive Integration of Single-Cell
Data”. In: Cell 177.7 (2019), pp. 1888–1902. issn: 10974172.
doi: 10.1016/j.cell.2019.05.031.

[74] Hoa Thi et al. “A benchmark of batch-effect correction meth-
ods for single-cell RNA sequencing data”. In: Genome Biology
(2020), pp. 1–32.

[75] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain
to Leiden: guaranteeing well-connected communities”. In:
Scientific Reports 9.1 (2019), pp. 1–12. issn: 20452322. doi:
10.1038/s41598-019-41695-z.

https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1007/978-3-030-32692-0{_}16
https://doi.org/10.1007/978-3-030-32692-0{_}16
https://doi.org/10.1007/978-3-030-32692-0_16
https://doi.org/10.1007/978-3-030-32692-0_16
https://doi.org/10.4230/LIPIcs.WABI.2019.10
https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/10.1038/s41580-018-0094-y
http://dx.doi.org/10.1038/s41580-018-0094-y
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen%20some%20methods%20for%20classification&f=false
https://doi.org/10.2196/42621
https://doi.org/10.1016/j.bpsc.2022.07.012
https://doi.org/10.1016/j.bpsc.2022.07.012
https://doi.org/10.1016/j.bpsc.2022.07.012
https://doi.org/10.1016/j.bpsc.2022.07.012
https://doi.org/10.1038/s41467-023-37126-3
https://doi.org/10.2147/aabc.s3619
https://doi.org/10.1109/TVCG.2007.70443
https://doi.org/10.1093/bfgp/elad017
https://doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41467-019-10933-3
https://doi.org/10.1038/s41467-019-10933-3
http://dx.doi.org/10.1038/s41467-019-10933-3
http://dx.doi.org/10.1038/s41467-019-10933-3
https://doi.org/10.14348/molcells.2023.0009
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nature01434
https://doi.org/10.1145/212066.212091
https://doi.org/10.1109/CEC.2016.7743934
https://doi.org/10.1109/CEC.2016.7743934
https://wrds-www.wharton.upenn.edu/
https://wrds-www.wharton.upenn.edu/
https://doi.org/10.1109/TSP.2023.3265886
https://doi.org/10.1109/TSP.2023.3265886
https://doi.org/10.3233/SHTI220682
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/s41598-019-41695-z

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

[76] Chenfei Wang et al. “Integrative analyses of single-cell tran-
scriptome and regulome using MAESTRO”. In: Genome
Biology 21.1 (2020), pp. 1–28. issn: 1474760X. doi: 10.1186/
s13059-020-02116-x.

[77] Xuesong Wang et al. “Con-AAE: contrastive cycle adversar-
ial autoencoders for single-cell multi-omics alignment and
integration”. In: Bioinformatics 39.4 (2023), pp. 1–7. issn:
13674811. doi: 10.1093/bioinformatics/btad162.

[78] J.A. Wegelin. A survey of Partial Least Squares (PLS) methods,
with emphasis on the two-block case. Seattle, 2000. url: https:
//stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf.

[79] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins.
“MATCHER: Manifold alignment reveals correspondence
between single cell transcriptome and epigenome dynamics”.
In: Genome Biology 18.1 (2017), pp. 1–19. issn: 1474760X.
doi: 10.1186/s13059-017-1269-0.

[80] Joshua D. Welch et al. “Single-Cell Multi-omic Integration
Compares and Contrasts Features of Brain Cell Identity”.
In: Cell 177.7 (2019), pp. 1873–1887. issn: 10974172. doi:
10.1016/j.cell.2019.05.006.

[81] HERMAN WOLD. “11 - Path Models with Latent Variables:
The NIPALS Approach**NIPALS = Nonlinear Iterative PAr-
tial Least Squares.” In: Quantitative Sociology. Ed. by H.M.
Blalock et al. International Perspectives on Mathematical and
Statistical Modeling. Academic Press, 1975, pp. 307–357.
isbn: 978-0-12-103950-9. doi: https://doi.org/10.1016/B978-
0-12-103950-9.50017-4. url: https://www.sciencedirect.
com/science/article/pii/B9780121039509500174.

[82] Svante Wold and Michael Sjostrom. “PLS-regression : a basic
tool of chemometrics”. In: (2001), pp. 109–130.

[83] Lang Wu et al. “A Survey on Blockchain-Based Federated
Learning”. In: Future Internet 15.12 (2023), pp. 1–22. issn:
19995903. doi: 10.3390/fi15120400.

[84] Mengyun Wu, Huangdi Yi, and Shuangge Ma. “Vertical inte-
gration methods for gene expression data analysis”. In: Brief-
ings in Bioinformatics 22.3 (2021), pp. 1–14. issn: 14774054.
doi: 10.1093/bib/bbaa169.

[85] Yang Xu and Rachel Patton McCord. “Diagonal integration
of multimodal single-cell data: potential pitfalls and paths
forward”. In: Nature Communications 13.1 (2022), pp. 1–4.
issn: 20411723. doi: 10.1038/s41467-022-31104-x.

[86] Qiang Yang et al. “Federated machine learning: Concept and
applications”. In: ACM Transactions on Intelligent Systems
and Technology 10.2 (2019), pp. 1–19. issn: 21576912. doi:
10.1145/3298981.

[87] Zi Yang and George Michailidis. “A non-negative matrix
factorization method for detecting modules in heterogeneous
omics multi-modal data”. In: Bioinformatics 32.1 (2016),
pp. 1–8. issn: 14602059. doi: 10.1093/bioinformatics/btv544.

[88] Chun-Han Yao et al. “Federated Multi-Target Domain Adapta-
tion”. In: 2022 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). IEEE, Jan. 2022, pp. 1081–1090.
isbn: 978-1-6654-0915-5. doi: 10.1109/WACV51458.2022.
00115. url: https://ieeexplore.ieee.org/document/9706703/.

[89] Ziqi Zhang et al. “scMoMaT jointly performs single cell
mosaic integration and multi-modal bio-marker detection”.

In: Nature Communications 14.1 (2023). issn: 20411723. doi:
10.1038/s41467-023-36066-2.

[90] Grace X.Y. Zheng et al. “Massively parallel digital transcrip-
tional profiling of single cells”. In: Nature Communications 8
(2017). issn: 20411723. doi: 10.1038/ncomms14049.

https://doi.org/10.1186/s13059-020-02116-x
https://doi.org/10.1186/s13059-020-02116-x
https://doi.org/10.1093/bioinformatics/btad162
https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf
https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf
https://doi.org/10.1186/s13059-017-1269-0
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/https://doi.org/10.1016/B978-0-12-103950-9.50017-4
https://doi.org/https://doi.org/10.1016/B978-0-12-103950-9.50017-4
https://www.sciencedirect.com/science/article/pii/B9780121039509500174
https://www.sciencedirect.com/science/article/pii/B9780121039509500174
https://doi.org/10.3390/fi15120400
https://doi.org/10.1093/bib/bbaa169
https://doi.org/10.1038/s41467-022-31104-x
https://doi.org/10.1145/3298981
https://doi.org/10.1093/bioinformatics/btv544
https://doi.org/10.1109/WACV51458.2022.00115
https://doi.org/10.1109/WACV51458.2022.00115
https://ieeexplore.ieee.org/document/9706703/
https://doi.org/10.1038/s41467-023-36066-2
https://doi.org/10.1038/ncomms14049

Baran, et al.

ACRONYMS
ARI Adjusted Rand Index 13
ARI F1 Adjusted Rand Index F1 12, 13, 17, 18, 22
ASW Average Silhouette Width 13
ASW F1 Average Silhouette Width F1 12, 13, 17, 18, 22

CCA Canonical Correlation Analysis 3, 4, 6, 7, 9, 10, 11, 13, 15, 16,
17, 23, 24, 25, 30
CITE-seq Cellular Indexing of Transcriptomes and Epitopes by
Sequencing 5, 6, 17, 18, 25
CODEX CO-Detection by indEXing data 3, 5, 6, 17, 18

DAIC Delft AI Cluster 15, 30
DNN Deep Neural Network 3

FL Federated Learning 3, 4, 11, 13
FOSCTTM Fraction of Samples Closer Than True Match 12, 17,
18, 22, 23
FOSKNN Fraction Of Samples whose true matches are among their
K-Nearest Neighbors 12, 17, 18, 19, 22, 23

GCCA Generalised Canonical Correlation Analysis 16, 24, 25
GDPR General Data Protection Regulation 4

HDBSCAN Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise 14
HIPAA Health Insurance Portability and Accountability Act 4
HVGs Highly Variable Genes 5, 6

iNMF integrative Non-negative Matrix Factorization 4

L1 Least absolute shrinkage and selection operator 3
L2 Ridge regression 3
LIGER Linked Inference of Genomic Experimental Relationships
4, 5

MATCHER Manifold Alignment to CHaracterize Experimental
Relationships 4
MaxFuse Matching xcross modalities via Fuzzy smoothed embeddings
3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 30, 31
MPC Multi-Party Computation 4
MRRE Mean Relative Rank Errors 13, 14, 17, 18, 19

NN Nearest Neighbour 4, 5, 6, 7, 8, 9, 12, 14, 15, 19

PBMC Peripheral Blood Mononuclear Cell 5, 6, 17, 18, 25
PCA Principal Component Analysis 3
PII Personally Identifiable Information 4
PLS Partial Least Squares 10, 11, 25

scATAC-seq single-cell Assay for Transposase-Accessible Chro-
matin sequencing 3
scRNA-seq single-cell RNA sequencing 3, 5, 6, 17, 18
SVD Singular Value Decomposition 4, 7, 16
SVM Support Vector Machines 3

UUID Universal Unique Identifier 30

WRDS Wharton Research Data Services 5

A TECHNICAL IMPLEMENTATION AND
REPRODUCIBILITY

All experiments were executed on the Delft AI Cluster (DAIC),
where each was submitted as a job through the SLURM queuing
system. Each job was initialized from a JSON configuration file,
which included paths to data and labels, training hyperparameters,
and a specification of the experiment type (e.g., standard vs. federated
MaxFuse, CCA randomization) as seen in the example in Appen-
dix C. These per-run configuration files were derived from a master
JSON file containing parameter lists, from which combinations were
generated automatically.

All software dependencies and binaries were containerized to
ensure reproducibility and consistent environments across machines.
Docker images were built locally and pushed to the GitHub Container
Registry, then pulled on DAIC and executed with Apptainer (formerly
Singularity), as root access is restricted on the cluster.

Each run was tagged with a unique identifier composed of a UUID
and a SLURM-generated ID. Output from each run included:

• Embedding files: ‘meta_embedding.npy’ and
‘non_meta_embedding.npy’
• Matching results: ‘matching.csv’
• Evaluation outputs: ‘supervised_evaluation_metrics.json’,

‘unsupervised_evaluation_metrics.json’ and
‘local_evaluation_metrics.json’

As the names suggest, ‘supervised_evaluation_metrics.json’ con-
tains supervised and ‘unsupervised_evaluation_metrics.json’ un-
supervised scores, while ‘local_evaluation_metrics.json’ provides
localized unsupervised metrics, useful for distortion visualization
via CheckViz and Reliability Map. The directory structure of outputs
is shown in Figure 22. This fine-grained implementation was used to
ensure that the job would complete and save the result to disk in the
event of a failure.

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

out

Centralized_vs_federated

regular_cite_seq_pbmc_params_{ID}

supervised_evaluation_metrics.json

unsupervised_evaluation_metrics.json

local_evaluation_metrics.json

meta_embedding.npy

non_meta_embedding.npy

matching.csv

regular_tonsils_params_{ID}

federated_cite_seq_pbmc_params_{ID}

federated_tonsils_params_{ID}

shared_params

federated_cite_seq_pbmc_params_{ID}

federated_tonsils_params_{ID}

cca

federated_cite_seq_pbmc_params_{ID}

federated_tonsils_params_{ID}

batching

regular_cite_seq_pbmc_params_{ID}

regular_tonsils_params_{ID}

Figure 22: Directory structure of the experimental output

B TRUNCATED SVD
Truncated SVD (leveraging Arnoldi/Lanczos methods) can be utilized
either for dataset denoising, computing an approximation �̃� = 𝑈𝑘 ·
diag(Σ𝑘) · 𝑉⊤𝑘 , where 𝑋 ≈ �̃� , or for dimensionality reduction by
retaining only the 𝑘 most significant singular values and vectors,
represented by 𝑈𝑘 · diag(Σ𝑘). Here, 𝑈𝑘 ∈ R𝑚×𝑘 , 𝑉𝑘 ∈ R𝑛×𝑘 , and
Σ𝑘 ∈ R𝑘×𝑘 . Although optional, this step is highly recommended to
enhance computational efficiency and overall performance.

C CONFIGURATION EXAMPLE
This section provides a concrete example of a configuration used
in our experiments. It is intended to help readers reproduce our
setup and gain a better understanding of the parameters and structure
involved. The example includes representative values and settings
that align with the methodology described in the main text.

Each listing corresponds to a distinct use case for a regular or fed-
erated MaxFuse run on different datasets, namely CITE-seq PBMC
and RNA-seq CODEX tonsils. The structure is divided into high-
level categories such as training and evaluation, with further
subdivisions that distinguish between meta_data_parameters and
non_meta_data_parameters, reflecting MaxFuse’s dual-modality
optimization.

Key configurable elements include:
• Dimensionality reduction settings (e.g., svd_components,
is_randomized)
• Batching and matching strategy (e.g., matching_ratio,
meta_cell_size)
• Graph construction and clustering (e.g., Leiden resolution

parameters)

• CCA refinement loop configurations
• Propagation and filtering weights
• Evaluation metrics used for performance benchmarking

These JSON files serve as templates for users who wish to adapt
MaxFuse to their datasets.

1 {
2 "dataset_id": "cite_seq_and_pbmc",
3 "training": {
4 "global_parameters": {
5 "svd": {
6 "is_randomized": false,
7 "runs": 1
8 },
9 "split_into_batches": {

10 "assignment_method": "random",
11 "batching_scheme": "pairwise",
12 "grouping": {
13 "max_outward_size": 5000,
14 "matching_ratio": 3,
15 "meta_cell_size": 2
16 }
17 },
18 "graph_construction": {
19 "leiden_algorithm": {
20 "resolution": 2.0,
21 "resolution_tol": 0.1,
22 "runs": 1
23 },
24 "randomness_seeds": {
25 "leiden_seed": null,
26 "nn_graph_seed": null
27 },
28 "fuzzy_smoothing": "centroid_shrinkage"
29 },
30 "refinement_loop": {
31 "cca": {
32 "randomness": 0.0,
33 "components": 20,
34 "max_loop_iterations": 2000,
35 "bad_filter_wt": 0.0
36 },
37 "loop_iterations": 3,
38 "previous_cell_matching_distance_wt": 0.0
39 },
40 "filtering": {
41 "pivot_wt": 0.3,
42 "propagation_wt": 0.0
43 }
44 },
45 "meta_data_parameters": {
46 "graph_construction": {
47 "nearest_neighbors": 15,
48 "svd_components": 30,
49 "randomness_seeds": {
50 "leiden_seed": null,
51 "nn_graph_seed": null
52 }
53 },
54 "initial_correlation": {
55 "svd_components": 25,
56 "shrink_wt": 0.7
57 },
58 "refinement_loop": {
59 "svd_components": 30,
60 "smoothing_weight": 0.7
61 },
62 "propagation": {
63 "smoothing_wt": 0.7,
64 "svd_components": 30
65 }
66 },
67 "non_meta_data_parameters": {
68 "graph_construction": {
69 "nearest_neighbors": 15,
70 "svd_components": 30,

Baran, et al.

71 "randomness_seeds": {
72 "leiden_seed": null,
73 "nn_graph_seed": null
74 }
75 },
76 "initial_correlation": {
77 "svd_components": 20,
78 "shrink_wt": 0.7
79 },
80 "refinement_loop": {
81 "svd_components": 30,
82 "smoothing_weight": 0.7
83 },
84 "propagation": {
85 "smoothing_wt": 0.7,
86
87 "svd_components": 30
88 }
89 }
90 },
91 "evaluation": {
92 "knn_alignment_proportion": 0.05,
93 "repetitions": 20,
94 "principle_components": 20,
95 "sub_sampling_ratio": 0.8,
96 "neighborhood_k": 15
97 }
98 }

Listing 1: Regular MaxFuse Run configuration for CITEseq-
PBMC

1 {
2 "dataset_id": "tonsils",
3 "training": {
4 "global_parameters": {
5 "svd": {
6 "is_randomized": false,
7 "runs": 1
8 },
9 "split_into_batches": {

10 "assignment_method": "random",
11 "batching_scheme": "pairwise",
12 "grouping": {
13 "max_outward_size": 8000,
14 "matching_ratio": 4,
15 "meta_cell_size": 2
16 }
17 },
18 "graph_construction": {
19 "leiden_algorithm": {
20 "resolution": 2.0,
21 "resolution_tol": 0.1,
22 "runs": 1
23 },
24 "randomness_seeds": {
25 "leiden_seed": null,
26 "nn_graph_seed": null
27 },
28 "fuzzy_smoothing": "centroid_shrinkage"
29 },
30 "refinement_loop": {
31 "cca": {
32 "randomness": 0.0,
33 "components": 25,
34 "max_loop_iterations": 2000,
35 "bad_filter_wt": 0.0
36 },
37 "loop_iterations": 1,
38 "previous_cell_matching_distance_wt": 0.0
39 },
40 "filtering": {
41 "pivot_wt": 0.5,
42 "propagation_wt": 0.3
43 }
44 },
45 "meta_data_parameters": {

46 "graph_construction": {
47 "nearest_neighbors": 15,
48 "svd_components": 40
49 },
50 "initial_correlation": {
51 "svd_components": 25,
52 "shrink_wt": 0.3
53 },
54 "refinement_loop": {
55 "svd_components": 40,
56 "smoothing_weight": 0.3
57 },
58 "propagation": {
59 "smoothing_wt": 0.7,
60 "svd_components": 40
61 }
62 },
63 "non_meta_data_parameters": {
64 "graph_construction": {
65 "nearest_neighbors": 15,
66 "svd_components": 15
67 },
68 "initial_correlation": {
69 "svd_components": 20,
70 "shrink_wt": 0.3
71 },
72 "refinement_loop": {
73 "svd_components": null,
74 "smoothing_weight": 0.3
75 },
76 "propagation": {
77 "smoothing_wt": 0.7,
78 "svd_components": null
79 }
80 }
81 },
82 "evaluation": {
83 "knn_alignment_proportion": 0.05,
84 "repetitions": 20,
85 "principle_components": 20,
86 "sub_sampling_ratio": 0.8,
87 "neighborhood_k": 15
88 }
89 }

Listing 2: Regular MaxFuse Run configuration for RNAseq-
CODEX Tonsils

1 {
2 "dataset_id": "cite_seq_and_pbmc",
3 "training": {
4 "global_parameters": {
5 "svd": {
6 "is_randomized": false,
7 "runs": 1
8 },
9 "graph_construction": {

10 "leiden_algorithm": {
11 "resolution": 2.0,
12 "resolution_tol": 0.1,
13 "runs": 1
14 },
15 "randomness_seeds": {
16 "leiden_seed": null,
17 "nn_graph_seed": null
18 },
19 "fuzzy_smoothing": "centroid_shrinkage"
20 },
21 "refinement_loop": {
22 "cca": {
23 "randomness": 0.0,
24 "components": 20,
25 "max_loop_iterations": 2000,
26 "bad_filter_wt": 0.0
27 },
28 "loop_iterations": 3,
29 "previous_cell_matching_distance_wt": 0.0

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

30 },
31 "filtering": {
32 "pivot_wt": 0.3,
33 "propagation_wt": 0.0
34 }
35 },
36 "meta_data_parameters": {
37 "graph_construction": {
38 "nearest_neighbors": 15,
39 "svd_components": 30,
40 "randomness_seeds": {
41 "leiden_seed": null,
42 "nn_graph_seed": null
43 }
44 },
45 "initial_correlation": {
46 "svd_components": 25,
47 "shrink_wt": 0.7
48 },
49 "refinement_loop": {
50 "svd_components": 30,
51 "smoothing_weight": 0.7
52 },
53 "propagation": {
54 "smoothing_wt": 0.7,
55 "svd_components": 30
56 }
57 },
58 "non_meta_data_parameters": {
59 "graph_construction": {
60 "nearest_neighbors": 15,
61 "svd_components": 30,
62 "randomness_seeds": {
63 "leiden_seed": null,
64 "nn_graph_seed": null
65 }
66 },
67 "initial_correlation": {
68 "svd_components": 20,
69 "shrink_wt": 0.7
70 },
71 "refinement_loop": {
72 "svd_components": 30,
73 "smoothing_weight": 0.7
74 },
75 "propagation": {
76 "smoothing_wt": 0.7,
77 "svd_components": 30
78 }
79 }
80 },
81 "evaluation": {
82 "knn_alignment_proportion": 0.05,
83 "repetitions": 20,
84 "principle_components": 20,
85 "sub_sampling_ratio": 0.8,
86 "neighborhood_k": 15
87 }
88 }

Listing 3: Federated MaxFuse Run configuration for CITEseq-
PBMC Antibodies

1 {
2 "dataset_id": "tonsils",
3 "training": {
4 "global_parameters": {
5 "svd": {
6 "is_randomized": false,
7 "runs": 1
8 },
9 "graph_construction": {

10 "leiden_algorithm": {
11 "resolution": 2.0,
12 "resolution_tol": 0.1,
13 "runs": 1
14 },

15 "randomness_seeds": {
16 "leiden_seed": null,
17 "nn_graph_seed": null
18 },
19 "fuzzy_smoothing": "centroid_shrinkage"
20 },
21 "refinement_loop": {
22 "cca": {
23 "randomness": 0.0,
24 "components": 25,
25 "max_loop_iterations": 2000,
26 "bad_filter_wt": 0.0
27 },
28 "loop_iterations": 1,
29 "previous_cell_matching_distance_wt": 0.0
30 },
31 "filtering": {
32 "pivot_wt": 0.5,
33 "propagation_wt": 0.3
34 }
35 },
36 "meta_data_parameters": {
37 "graph_construction": {
38 "nearest_neighbors": 15,
39 "svd_components": 40
40 },
41 "initial_correlation": {
42 "svd_components": 25,
43 "shrink_wt": 0.3
44 },
45 "refinement_loop": {
46 "svd_components": 40,
47 "smoothing_weight": 0.3
48 },
49 "propagation": {
50 "smoothing_wt": 0.7,
51 "svd_components": 40
52 }
53 },
54 "non_meta_data_parameters": {
55 "graph_construction": {
56 "nearest_neighbors": 15,
57 "svd_components": 15
58 },
59 "initial_correlation": {
60 "svd_components": 20,
61 "shrink_wt": 0.3
62 },
63 "refinement_loop": {
64 "svd_components": null,
65 "smoothing_weight": 0.3
66 },
67 "propagation": {
68 "smoothing_wt": 0.7,
69 "svd_components": null
70 }
71 }
72 },
73 "evaluation": {
74 "knn_alignment_proportion": 0.05,
75 "repetitions": 20,
76 "principle_components": 20,
77 "sub_sampling_ratio": 0.8,
78 "neighborhood_k": 15
79 }
80 }

Listing 4: Federated MaxFuse Run configuration for RNAseq-
CODEX Tonsils

D RNA TO PROTEIN NAME MAPPING

Baran, et al.

Table 7: RNA to Protein Name Correspondences

CD80 CD80

CD86 CD86

CD274 CD274

PDCD1LG2 CD273

TNFRSF14 CD270

TNFRSF14-AS1 CD270

TNFRSF4 CD252

PVR CD155

NECTIN2 CD112

CD47 CD47

CD70 CD70

TNFRSF8 CD30

CD48 CD48

CD40 CD40

CD40LG CD154

CD52 CD52

CD8A CD8a

CD8B CD8a

CD8A CD8

CD8B CD8

CD19 CD19

ITGAX CD11c

CD34 CD34

TNFRSF17 CD269

KIT CD117

PTPRC CD45RA

PTPRCAP CD45RA

IL3RA CD123

ENG CD105

PROCR CD201

CCR4 CD194

CD14 CD14

IL2RA CD25

PTPRC CD45RO

PTPRCAP CD45RO

PDCD1 CD279

TIGIT TIGIT

RNA name Protein name

Continued on next page

Table 7: RNA to Protein Name Correspondences (Continued)

MS4A1 CD20

NCR1 CD335

PTGDR2 CD294

PECAM1 CD31

PDGFRA CD140a

PDGFRB CD140b

ERBB2 CD340

MCAM CD146

CDH1 CD324

CD40LG IgM

CCR5 CD195

CCR6 CD196

CXCR5 CD185

ITGAE CD103

CD69 CD69

CTLA4 CD152

LAG3 CD223

CD27 CD27

LAMP1 CD107a

FAS CD95

TNFRSF4 CD134

CD1C CD1c

FCGR1A CD64

THBD CD141

CD1D CD1d

KLRK1 CD314

CR1 CD35

B3GAT1 CD57

HAVCR2 CD366

BTLA CD272

ICOS CD278

CD96 CD96

ENTPD1 CD39

FASLG CD178

CX3CR1 CX3CR1

CD24 CD24

CR2 CD21

RNA name Protein name

Continued on next page

Federated MaxFuse: Diagonal Integration of Weakly Linked Spatial and Single-cell Data through Federated Learning

Table 7: RNA to Protein Name Correspondences (Continued)

CD79B CD79b

CD244 CD244

GYPA CD235ab

GYPB CD235ab

MRC1 CD206

SIGLEC1 CD169

CLEC9A CD370

XCR1 XCR1

TNFRSF13C CD268

GP1BA CD42b

ICAM1 CD54

SELP CD62P

IFNGR1 CD119

CD68 CD68

CCR2 CD192

ICAM2 CD102

VCAM1 CD106

IL2RB CD122

TNFRSF13B CD267

FLT3 CD135

ITGA2B CD41

TNFRSF9 CD137

SPN CD43

CD163 CD163

CD83 CD83

TNFRSF18 CD357

CD59 CD59

IL4R CD124

ANPEP CD13

CXCR4 CD184

CD2 CD2

ITGB1 CD29

CLEC4C CD303

ITGA2 CD49b

ITGB3 CD61

CD81 CD81

SLC7A5 CD98

RNA name Protein name

Continued on next page

Table 7: RNA to Protein Name Correspondences (Continued)

CD55 CD55

ITGB2 CD18

CD28 CD28

CRLF2 TSLPR

IL7R CD127

FUT4 CD15

CD22 CD22

TFRC CD71

CCR3 CD193

CSF1R CD115

MSR1 CD204

CDH5 CD144

CLEC10A CD301

CD1A CD1a

CD207 CD207

CD63 CD63

TLR4 CD284

NRP1 CD304

CD36 CD36

SIRPA CD172a

LILRA4 CD85g

ABCB1 CD243

CD72 CD72

MERTK MERTK

L1CAM CD171

CDH2 CD325

CD93 CD93

CD200 CD200

ABCG2 CD338

C5AR2 C5L2

GYPA CD235a

ITGA1 CD49a

ITGA4 CD49d

NT5E CD73

CD79A CD79a

CD9 CD9

TREM1 CD354

RNA name Protein name

Continued on next page

Baran, et al.

Table 7: RNA to Protein Name Correspondences (Continued)

LAIR1 CD305

ENPP3 CD203c

CD209 CD209

MPL CD110

NCR3 CD337

TNFSF10 CD253

CXCR6 CD186

CD226 CD226

LY75 CD205

CD109 CD109

ITGB2 CD18

IL6R CD126

CD164 CD164

F3 CD142

FCRL4 CD307d

FCRL5 CD307e

SLAMF7 CD319

CD99 CD99

CLEC12A CLEC12A

FCGR3A CD16

KLRB1 CD161

CCR10 CCR10

NGFR CD271

IL6ST GP130

CCR9 CD199

CD46 CD46

CLEC1B CLEC2

IGHD IgD

CRLF2 TSLPR

CD99 CD99

HLA-DRA HLA.DR

HLA-DRB1 HLA.DR

RNA name Protein name

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data
	2.2 Algorithm & Federation
	2.3 Evaluation
	2.4 Computational Resources and Software Environment

	3 Experimentation
	3.1 Experimental Setup
	3.2 Experiment Types

	4 Results
	4.1 Centralized versus Federated Comparison
	4.2 Centralized Data Batching
	4.3 Federated Shared Feature Selection
	4.4 Random Initialization in Federated cca

	5 Discussion
	5.1 Centralized versus Federated Comparison
	5.2 Centralized Data Batching
	5.3 Federated Shared Feature Selection
	5.4 Random Initialization in Federated cca
	5.5 Limitations

	6 Conclusion
	A Technical Implementation and Reproducibility
	B Truncated SVD
	C Configuration Example
	D RNA to Protein Name Mapping

