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Abstract

In this report a semi-analytic solution to the Laplacian magic window is proposed. The Laplacian magic win-
dow is a term recently introduced in 2017[2]. When a uniform wavefront hits a refractive surface, it creates
an illumination distribution behind the surface. When the curvature of the surface is sufficiently small, it
can be related linearly to the target illumination, and thus creates a ‘magic window’. The main idea of the
semi-analytic solution is that a target illumination or a surface given in terms of Zernike polynomials can
be solved analytically and expressed again in Zernike polynomials. The Zernike polynomials are set of com-
plete and orthogonal polynomials that are already used in the field of optics to describe wavefronts of optical
surfaces. The results of the semi-analytic solution agree qualitatively with the numeric results and work for
complex and diverse inputs. The implementation is done in 2D, but the method is general enough so it can
be extended to 3D.
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1
Introduction

The field of optics is one with a long history. Already since 1300 there have been glasses to improve eyesight.
Nowadays optics still play a vital part in daily life. You are either reading this on a computer screen composed
out of LED lights or this document was printed by a laser printer. Classical optics address to problem of cre-
ating an image of an object and it’s used in many devices such as cameras, mirrors, glasses, and machinery
used in the lithography industry. Many advances have been made to improve image quality such as aberra-
tion and diffraction corrections, or even adaptive optics. A field that is less explored is that of non-imaging
optics. The first thorough introduction was published in 2008 [4]. In this new field, the goal is not to cre-
ate an image, as the name suggests, but to obtain a certain target illumination. Applications are very wide
and useful. Examples are decreasing or increasing the spread of LED lights, improving the design of head-
lamps in cars and streetlights, creating compact projection display systems, and focusing the concentration
of solar energy to increase the yield of solar panels. Non-imaging optics have several advantages over tradi-
tional imaging designs: they are more compact, can consist of fewer parts, are better suited to combine light
sources from different places and are especially cheap to produce with recent improvements of production
techniques such as 3D printing, and can be more robust.

A recent paper in 2017 by Berry [2] introduces a new method to solve non-imaging optics problems. When
a uniform wavefront in medium with refractive index greater than one, reaches a transparent surface with air
or vacuum behind it, the curvature of the surface can be related to the target intensity behind the surface.
More precisely, a linear relation is found between the target intensity and the Laplacian of the surface, if the
curvature of the surface is sufficiently small. The direct problem - calculating the intensity given the surface
- can be solved straightforwardly numerically with ray tracing techniques. The inverse problem - computing
the surface given a target intensity - is a lot harder to solve since calculating the inverse Laplacian is not very
straightforward. The paper by Berry does not give a precise technique how to solve this and uses standard
numerical methods.

This report aims to solve the direct and indirect problem using a semi-analytic method. The main idea
is that an intensity or surface given in terms of Zernike polynomials can be solved analytically and expressed
again in Zernike polynomials. The Zernike polynomials are set of complete and orthogonal polynomials that
are already used in the field of optics to describe wavefronts of optical surfaces.

In chapter 2, the problem stated above and the solution of Berry will be explained more in depth. In chap-
ter 3, a rigorous mathematical description of the Zernike polynomials will be given, and the application of the
Zernike polynomials will be discussed in chapter 4. In chapter 5, the analytic solution will be proposed, along
with details of the implementation and comparison to ray tracer solutions and checks. The discussion of the
solution and check with numerical results can be found in chapter 6. Chapter 7 contains the conclusion of
this report.

This report is part of the thesis project of the double degree program Applied Mathematics and Applied
Physics at the TU Delft.
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2
Problem and methods

2.1. Introduction
The problem is to find the best optical surface that for a known incident light gives a desired illumination
output. This is visualised in figure 2.1.

r

z I

Figure 2.1: General representation of the problem. The dotted lines describe some optical system, and behind the optical system we
have an intensity distribution.

As can be seen from figure 2.1 we have collimated beam of light coming from the left. This is passed
through an optical system denoted by the dotted line. The light is then propagated to some receiver plane
where there will be some intensity distribution. The optical system can in principle consist of an arbitrary
number of lenses, mirrors and other optical apparati, but the focus of this report is on a single element with
one or two transparent surfaces. The single or double nature is inherent to the methods used as will be
discussed. Multiple surfaces have certain advantages, namely that they can correct for aberration and dis-
persion, and have more precision. This however is beyond the scope of this project.

The direct problem is to find the intensity, given the optical system. The inverse problem would be to
find the optical surface, given the intensity. This problem can easily be generalised to go from one intensity
problem to another by first solving an inverse problem, giving a collimated beam, and then use the inverse
problem to find the second optical system. The final result would be placing the two optical systems behind
each other along the optical axis.

It should be noted that all methods used are limited to geometrical optics. It is expected that this will not
be a problem because the aperture of the optical system can be chosen large enough that diffraction won’t
play a big role. Also the accuracy of the system doesn’t need to be so accurate as such as the output intensity
is only to be observed with naked eye, for example.

2.2. Known techniques
First a few methods will be described that could be used to solve this problem. The methods can sometimes
be used only to solve the direct or inverse problem respectively, or both. Most methods have advantages and
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2.2. Known techniques 3

disadvantages and these will be discussed. This section will introduce the methods briefly, but by no means
give an extensive way to solve the problem.

2.2.1. Ray tracing
A very straightforward and useful technique is ray tracing. This can of course only be applied to the direct
problem. Once the optical system has been found, one can initialise a set of rays, and trace them through the
system. In the appendix the following formula is derived for this purpose.

vrvrvr = n1

n2
vivivi +

n1

n2
(vivivi •nnn)nnn −

√
1−

(
n1

n2

)2

(1− (vivivi •nnn)2)

nnn

where vrvrvr is the refracted ray and vivivi the incoming ray. nnn is the normal vector of the refractive surface and ni

represent different refractive indices. After the optical system one can easily find, for each ray, its position in
space via r = az+b where the parameters a and b can be found with the boundary conditions of the direction
of the refracted ray and the position when it leaves the optical system. Then one can make a histogram of the
ray density at the output plane in order to obtain the intensity distribution. This is a very useful method since
it is very simple and straightforward. Because it can only be applied for the direct case and is computationally
heavy, its main purpose is to check and compare solutions found by other methods.

2.2.2. SMS method
The first attempt at solving the inverse problem was the SMS method, which is an acronym for Simultane-
ous Multiple Surfaces[3]. As the name implies it outputs two, or more, surfaces simultaneously. However, it
is restricted to uniform intensities by its nature. As input it takes two planes in three dimensions and finds
two surfaces between the planes. These 2 surfaces can be connected in order to produce a lens. The method
works by finding points of the lens via an iterative method, and is computationally light. It can be useful for
certain applications, when one only cares about uniform intensity. The specific workings of the method can
be found in the appendix, along with a worked out example produced by the method.

The SMS method deserves a mention in this report because it solved the problem, but is very limited in
use since it has to stick to uniform densities. Therefore others method should be preferred. The next subsec-
tion will describe such a method.

2.2.3. Laplacian magic window
The Laplacian magic window is technique coined by Sir Micheal Berry [2] only recently in 2017. If the op-
tical system consists of one surface, it relates its curvature to the intensity behind the lens (linearly) by the
Laplacian of the surface. This method works before the first caustic of a system. This is due to the fact that a
caustic, where rays cross, give an infinite density of rays. This is not compatible with the method as will now
be explained. The following situation is sketched.

n > 1 n = 1

θ

φ

r

z

h(r )

R(r )

Figure 2.2: Geometry for refraction by a magic window. The curvature is exaggerated for clarity. Based on [2].

Define angles θ and φ, coordinates r and z, surface h, and the receiver plane R as in figure 2.2. Then
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Snell’s law can be used to obtain [2]

R(r ) = r + (z −h(r ))
tan(θ−φ)

|t (r )| t (r ) (2.1)

where t (r ) =∇h(r ) is the transverse gradient of the surface. Then trigonometry leads to[2]

tan(θ−φ)

|t (r )| = n
√

1− (n2 −1)|t (r )|2 −1

1− (n2 −1)|t (r )|2 (2.2)

It is then possible to find the intensity at the image plane via

I (R) =
(
det

(
∂R(r )

∂r

)
r=r (R)

)−1

(2.3)

where r (R) = R(r )−1. Here we can immediately see that I (R) needs to be single valued i.e. no caustics. This
means that h(r ) needs to be sufficiently small. This can be checked by validating the solution with a ray tracer.
Because assume that h(r ) is small, we Taylor expand to find

R(r ) ≈ r + z(n −1)∇h(r ) (2.4)

We then neglect the quadratic (∂xx for example) and higher order terms to find

I (r ) ≈ 1

1+ (n −1)z 4h(r )
(2.5)

which can again be expanded into a linear relation

I (r ) ≈ 1− (n −1)z 4h(r ) (2.6)

The paper[2] then goes on by calculating h(r ) numerically by standard inverse Laplacian solvers. However,
we can use techniques in order to calculate h(r ) from equation 2.6 directly. These techniques involve choos-
ing a smart mathematical basis such as using Zernike decomposition. In order to use it more background is
needed on the Zernike polynomials, which are used for the Zernike decomposition. That will be described in
the next section.

The following figure gives an overview of the problem and solutions we have mentioned so far.
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Lens surface

Magic window

Ray tracing

Zernike decomposition Magic window Zernike composition

Intensity distribution

Numerical Calculate Laplacian

Semi-analytic

Intensity distribution

Magic window

Zernike decomposition Magic window Zernike composition

Surface

Numerical

Calculate
inverse

Laplacian

Semi-analytic

Figure 2.3: Decision chart to solve the direct (upper chart) and inverse (lower chart) problem. Red smoothed rectangles represent starting
and stopping nodes. Green diamonds represent a decision and orange rectangles processes.
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2.3. Zernike polynomials
The Zernike polynomials are a type of orthogonal polynomials that form a complete set on the unit disc. This
makes them a very attractive candidate to describe wave fronts, since a lot of applications in optics are disc
or ellipse like. Their orthogonal nature makes them ideal form easily finding the correct coefficients for two
reasons. First of all the one can find an explicit expression for the coefficients as will be seen in later chap-
ters. Secondly, if n coefficients are given, and higher order terms are required for greater precision or other
reasons, finding the higher order coefficients will not change the value of the first n coefficients because the
associated eigenfunctions are linearly independent. However, there are more sets of eigenfunctions that have
the same properties. For example the Rogers-Szego polynomials [6]. However, the Zernike polynomials are
useful specifically for optics and this report. For optics in general they are very useful to describe wave fronts
because the terms of the Zernike polynomials are in the same form as types of aberration often observed in
optical tests [12]. Specifically for this report they are useful because they have ‘nice‘ properties. The prop-
erties will be more thoroughly discussed in the next chapter, but for now it suffices to know that separation
of variables can be done in polar coordinates, they preserve their form if rotated over an arbitrary angle, and
they can be expressed in a single infinite sum, rather than 2 sums which can be the case for polynomials in 2
dimensions. Furthermore their relevance for optics led to a lot of research of the Zernike polynomials, which
means that a lot of information can be found about them in literature. This makes them an attractive candi-
date for using them in this report.

It should be noted that Zernike polynomials are not perfect. They cannot describe air turbulence well [12]
and they are not orthogonal when only a finite number of points on the unit disc are known. That means that
blind use of Zernike polynomials can lead to unforeseen consequences: from not being able to describe the
properties you want to test, to numerical errors that can lead to very disastrous representations of reality. In
this report care is taken to take these problems into account and make sure they can be neglected as much
as possible. A section in chapter 4 will be dedicated to take make sure the coefficients converge so numerical
errors are minimised.

The next chapter will go into great depths on how the Zernike polynomials are constructed in order to get
a better understanding of them, whilst also doing a lot of the groundwork that is needed in order to introduce
a semi-analytic solution to the Laplacian magic window problem.



3
Orthogonal polynomials

In this chapter we will work towards building up the Zernike polynomials. As we will find out, they are com-

plete and orthogonal and defined directly by the Jacobi polynomials P (α,β)
k . This is why first a look needs to

be taken at the Jacobi polynomials in order to understand the Zernike polynomials.

3.1. Definitions of orthogonal polynomials
For completeness we state the definition of orthogonality and orthonormality here [6] since we will refer to
these definitions a lot, and build our proofs from the grounds of these concepts.

Definition 3.1.1. Orthogonality. A set of functions { f1(x), f2(x), ..., fl (x)}, with l finite or infinite, is orthogonal
with respect to a weight function w(x) if

b∫
a

w(x) fn(x) fm(x) d x = hnδnm , ∀n,m ≤ l

where fn belongs to the class L2(a,b) and hn is a constant.

Definition 3.1.2. Orthonormality. A set of functions f1(x), f2(x), ..., fl (x), with l finite or infinite, is orthonor-
mal with respect to a weight function w(x) if it is orthogonal and hnm = 1 ∀n,m ≤ l .

The following remark will be very useful in a number of proofs, and is general enough to be included in
this section.

Remark. Let {p0(x), p1, (x), ..., pn(x), ...} be a set of polynomials where pn(x) is a polynomial of precise degree
n and the system {pn(x)} is orthonormal. Then every πn , where πn denotes a polynomial of degree n, can be
represented as a linear combination of {p0(x), p1, (x), ..., pn(x), ...}. Then every pn(x) is orthogonal to any πn−1.

3.2. Jacobi polynomials
The Jacobi polynomials share a lot with the Laguerre and Hermite polynomials and are therefore called the
classical orthogonal polynomials. A lot of special cases of the classical polynomials are used throughout
quantum mechanics, like Legendre and Bessel function, to optics, like the Zernike polynomials, and in many
other realms of science. Studying them is in that context a very important field of work. They all share very
similar definitions, recurrence relations, and proofs of orthogonality and completeness are very similar for
these polynomials. Studying the Jacobi polynomials is very useful because it is so easy to generalise them to
other functions. The Jacobi polynomials are defined as follows [6]

Definition 3.2.1. Let a = −1,b = 1, w(x) = (1− x)α(1+ x)β,α > −1,β > −1. Then, up to a constant factor, the

orthogonal polynomial pn(x) is the Jacobi polynomial P (α,β)
n (x).

Most sets of orthogonal polynomials, like the Bessel or Legendre, can be derived from the fact that they
are the solutions to a differential equation. This is no different for the Jacobi polynomials.

7



3.2. Jacobi polynomials 8

Theorem 3.2.1. The Jacobi polynomials satisfy the following linear homogeneous second order differential
equation:

(1−x2)y ′′+ [β−α− (α+β+2)x]y ′+n(n +α+β+1)y = 0 (3.1)

Proof. Consider the expression
d

d x
{(1−x)α+1(1+x)β+1 y ′}

Since y is a πn the above expression above has the form (1−x)α(1+x)βz with z a πn . We claim that z = c y
with c a constant. To that end let ρ(x) be an arbitrary πn−1. If we can prove that

1∫
−1

d

d x
{(1−x)α+1(1+x)β+1 y ′}ρ(x) d x = 0

we have proved the claim. Integration by parts of the left-hand side of the above equation gives

[
(1−x)α+1(1+x)β+1 yρ(x)

]1

−1
−

1∫
−1

(1−x)α+1(1+x)β+1 y ′ρ′(x) d x = 0−
1∫

−1

(1−x)α+1(1+x)β+1 y ′ρ′(x) d x

where the equality holds since α+1,β+1 6= 0. Once again using integration by parts gives

−
[

(1−x)α+1(1+x)β+1 yρ′(x)
]1

−1
+

1∫
−1

y
d

d x
{(1−x)α+1(1+x)β+1ρ′(x)} d x = 0+

1∫
−1

y
d

d x
{(1−x)α+1(1+x)β+1ρ′(x)} d x

The coefficient of y in this last integrand is d
d x {(1−x)α+1(1+x)β+1ρ′(x)} which is of the form (1−x)α(1+x)βr (x)

with r a πn−1. Hence the integral vanishes and the claim follows. In theorem 3.2.2 it is found that c =−n(n +
α+β+1). The following equation combines everything we have found

d

d x
{(1−x)α+1(1+x)β+1 y ′} =−n(n +α+β+1)(1−x)α(1+x)βy (*)

Using the chain rule on the left-hand side of the above equation gives

l.h.s.(*) = d

d x
{(1−x)α+1}(1+x)β+1 y ′+ d

d x
{(1+x)β+1}(1−x)α+1 y ′+ d

d x
{y ′}(1−x)α+1(1+x)β+1

= (1−x)α(1+x)β(α+1)(1+x)y ′+ (1−x)α(1+x)β(β+1)(1−x)y ′+ (1−x)α(1+x)β(1−x)(1+x)y ′′

= (1−x)α(1+x)β
[

y ′((α+1)(1+x)+ (β+1))+ y ′′(1−x)(1+x)
]

= (1−x)α(1+x)β
[

y ′(β−α− (α+β+2)x)+ y ′′(1−x2)
]

(**)

Becauseα,β>−1, the expression (1−x)α(1+x)β never becomes zero or infinite1 so we can combine equation
(*) and (**) and divide by (1−x)α(1+x)β to prove the theorem.

Theorem 3.2.2. Let α>−1,β>−1. Then the differential equation

(1−x2)y ′′+ [β−α− (α+β+2)x]y ′+γy = 0

where γ is a parameter, has a non trivial polynomial solution if and only if γ = n(n +α+β+1) with n ∈N>0.

This solution is cP (α,β)
n (x), with c a constant, and no solution which is linearly independent of P (α,β)

n (x) can be
a polynomial.

1The relevant interval is (−1,1) and not [−1,1]



3.2. Jacobi polynomials 9

Proof. Let y =
∞∑
ν=0

aν(x −1)ν. Then y ′ =
∞∑
ν=0

νaν(x −1)ν−1 and y ′′ =
∞∑
ν=0

ν(ν−1)aν(x −1)ν−2

(1−x2)
∞∑
ν=0

ν(ν−1)aν(x −1)ν−2 + [β−α− (α+β+2)x]
∞∑
ν=0

νaν(x −1)ν−1 +γ
∞∑
ν=0

aν(x −1)ν = 0 (3.2)

−(1+x)
∞∑
ν=0

ν(ν−1)aν(x −1)ν−1 − [2(α+1)+ (α+β+2)(x −1)]
∞∑
ν=0

νaν(x −1)ν−1 +γ
∞∑
ν=0

aν(x −1)ν = 0 (3.3)

−((x −1)+2)
∞∑
ν=0

ν(ν−1)aν(x −1)ν−1 −
∞∑
ν=0

[2ν(α+1)−γ+ν(α+β+2)(x −1)]aν(x −1)ν−1 = 0 (3.4)

−
∞∑
ν=1

2[ν(ν−1)+ν(α+1)]aν(x −1)ν−1 +
∞∑
ν=0

[γ−ν(ν+α+β+1)]aν(x −1)ν = 0 (3.5)

−
∞∑
ν=0

2(ν+1)(ν+α+1)aν+1(x −1)ν+
∞∑
ν=0

[γ−ν(ν+α+β+1)]aν(x −1)ν = 0 (3.6)

which yields the recurrence formula

[γ−ν(ν+α+β+1)]aν = 2(ν+1)(ν+α+1)aν+1 (3.7)

Now assume that y is a polynomial and an the last non zero coefficient. That means that the left-hand side
of equation 3.7 must vanish and we find γ= n(n+α+β+1). Since coefficient of an+1 never vanishes, we find
that am = 0 ∀m > n.
For the second part of the proof, we let z be a second solution to equation 3.1. Consider the expression

(1−x)α+1(1+x)β+1(y ′z − y z ′) (3.8)

From theorem 3.2.1 we know that this equals a constant for all x ∈ [−1,1]. Taking x →±1 we can see that this
constant equals zero. That means the Wronskian W (y, z) = 0 almost everywhere on the relevant interval. We
see that y and z cannot both be polynomials unless the constant in the right member is zero, that is, unless y
and z are linearly dependent.

3.2.1. Hypergeometric functions
We have found a way to tie a unique differential equation to the Jacobi polynomials. In the next section we
will rewrite this differential equation into a form that we know the solution of. Specifically the solutions will
be the hypergeometric functions.

In equation 3.1 substitute x = 1−2z. Then d x =−2d z and we find

(1−x2)y ′′+ [β−α− (α+β+2)x]y ′+n(n +α+β+1)y = 0 (3.9)

(1− (1−2z)2)
d2 y

d(1−2z)2 + [β−α− (α+β+2)(1−2z)]
d y

d(1−2z)
+n(n +α+β+1)y = 0 (3.10)

(4z −4z2)
d2 y

4d z2 + [−2α−2+2(α+β+2)z]
d y

−2d z
+n(n +α+β+1)y = 0 (3.11)

z(1− z)
d2 y

d z2 + [α+1− (α+β+2)z]
d y

d z
+n(n +α+β+1)y = 0 (3.12)

which can be recognised as the hypergeometric equation of Gauss

z(1− z)
d2 w

d z2 + [c − (a +b −1)z]
d w

d z
−abw = 0. (3.13)

The solution is the hypergeometric function2 defined for |z| < 1 by the power series

F (a;b;c; z) =
∞∑
ν=0

(a)ν(b)ν
(c)ν

zν

ν!
. (3.14)

2I could have chosen to derive this as well, but my project is finite. I think to keep the focus on the Jacobi polynomials, this is a good
moment to refer to literature.
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It is undefined if c equals a non-positive integer. Here (q)ν is the rising Pochhammer symbol defined as

(q)ν =
{

1 ν= 0

q(q +1)...(q +ν−1) ν> 0
(3.15)

Using the second part of theorem 3.2.2 we find the important representation

P (α,β)
n (z) =

(
n +α

n

)
F (−n;n +α+β+1;α+1;

1− z

2
) (3.16)

Where the constant c has been replaced with
(n+α

n

)
. This constant can be determined by the normalisation

factor

P (α,β)
n (1) =

(
n +α

n

)
(3.17)

The series terminates if either a or b is a non-positive integer, in which case the function reduces to a poly-
nomial

F (−m,b;c; z) =
m∑
ν=0

(−1)ν
(

m

ν

)
(b)ν
(c)ν

zν (3.18)

We can combine everything we know to obtain an explicit expression for the Jacobi polynomials.

P (α,β)
n (x) = 1

n!

n∑
ν=0

(
n

ν

)
(n +α+β+1) . . . (n +α+β+ν)(α+ν+1) . . . (α+n)

(
x −1

2

)ν
. (3.19)

A useful corollary for generating functions is 3.2.2.1. To find an expression for the derivative in the same basis
is obviously useful and from this corollary many other relations with the derivative can be found.

Corollary 3.2.2.1. Let P (α,β)
n (x) the Jacobi polynomials. Then the following equation holds

d

d x
{P (α,β)

n (x)} = 1

2
(n +α+β+1)P (α+1,β+1)

n−1 (x) (3.20)

Proof. Apply equation 3.19 to the left-hand side of the formula above

d

d x
{P (α,β)

n (x)} = d

d x
{

1

n!

n∑
ν=0

(
n

ν

)
(n +α+β+1) . . . (n +α+β+ν)(α+ν+1) . . . (α+n)

(
x −1

2

)ν
}

= 1

n!

n∑
ν=0

(
n

ν

)
1

2
ν(n +α+β+1) . . . (n +α+β+ν)(α+ν+1) . . . (α+n)

(
x −1

2

)ν−1

= 1

2
(n +α+β+1)

1

(n −1)!

n−1∑
ν=0

(
n −1

ν

)
1

2
ν(n +α+β) . . . (n +α+β+ν)(α+ν+1) . . . (α+n −1)

(
x −1

2

)ν
= 1

2
(n +α+β+1)P (α+1,β+1)

n−1 (x)

3.2.2. Generalised product rule
We state the generalised product rule and give a proof because it will be required in the proof of theorem
3.2.4. The generalised product rule is also referred to as the Leibniz’ rule.

Theorem 3.2.3. Generalised product rule. Let f and g be n times differentiable. Then the product f g is also
n times differentiable and the n-th derivative is given by

( f g )(n)(x) =
n∑

k=0

(
n

k

)
f (n−k)(x)g (k)(x). (3.21)
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Proof. We will proof theorem 3.2.3 by induction. The induction basis is n = 1. Then equation 3.21 reduces to

( f g )(1) = f ′g + g ′ f (3.22)

which is the well known product rule. For the induction step we assume equation 3.21 to hold for an arbitrary
n, then

( f g )(n+1) =
[

n∑
k=0

(
n

k

)
f (n−k)g (k)

]′
(3.23)

=
n∑

k=0

(
n

k

)
f (n+1−k)g (k) +

n∑
k=0

(
n

k

)
f (n−k)g (k+1) (3.24)

=
n∑

k=0

(
n

k

)
f (n+1−k)g (k) +

n+1∑
k=1

(
n

k −1

)
f (n+1−k)g (k) (3.25)

=
(

n

0

)
f (n+1)g +

n∑
k=1

(
n

k

)
f (n+1−k)g (k) +

n∑
k=1

(
n

k −1

)
f (n+1−k)g (k) +

(
n

n

)
f g (n+1) (3.26)

= f (n+1)g +
(

n∑
k=1

[(
n

k −1

)
+

(
n

k

)]
f (n+1−k)g (k)

)
+ f g (n+1) (3.27)

= f (n+1)g +
n∑

k=1

(
n +1

k

)
f (n+1−k)g (k) + f g (n+1) (3.28)

=
n+1∑
k=0

(
n +1

k

)
f (n+1−k)g (k). (3.29)

So the statement also holds for n +1. This completes the induction step and thus the proof.

3.2.3. Rodrigues’ formula
A different, but equivalent, definition is given by Olinde Rodrigues (1865). It is a very useful formula and can
be used to obtain various relations.

Theorem 3.2.4. Rodrigues’ formula. Let α>−1, β>−1. Then

(1−x)α(1+x)βP (α,β)
n (x) = (−1)n

2nn!

(
d

d x

)n

{(1−x)n+α(1+x)n+β}. (3.30)

Proof. The proof will be very similar to the proof of theorem 3.2.1. Consider the expression(
d

d x

)n

{(1−x)n+α(1+x)n+β}. (3.31)

Using the generalised product rule we find this expression equals

n∑
k=0

(
n

k

)
[(1−x)n+α](n−k)[(1+x)n+β](k)

= [(1−x)n+α](n)[(1+x)n+β](0) +
n−1∑
k=1

(
n

k

)
[(1−x)n+α](n−k)[(1+x)n+β](k) + [(1−x)n+α](0)[(1+x)n+β](n)

= (−1)n[n +α]n(1−x)α(1+x)β(1+x)n +
n−1∑
k=1

· · ·+ [n +β]n(1−x)α(1+x)β(1−x)n

= (1−x)α(1+x)βρ1(x)+
n−1∑
k=1

· · ·+ (1−x)α(1+x)βρn(x)

= (1−x)α(1+x)βρ1(x)+ (1−x)α(1+x)βρ2(x)+
n−2∑
k=2

· · ·+ (1−x)α(1+x)βρn−1(x)+ (1−x)α(1+x)βρn(x)

...

= (1−x)α(1+x)βρ(x)
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Here ρi (x) is a πn and [q]ν denotes the falling Pochhammer symbol:

[q]ν =
{

1 ν= 0

q(q −1)...(q −ν+1) ν> 0
(3.32)

Similar to the proof of theorem 3.2.1, to show that ρ(x) = cP (α,β)
n (x), it suffices to proof that

1∫
−1

(
d

d x

)n

{(1−x)α+n(1+x)β+n}r (x) d x = 0 (3.33)

where r (x) is an arbitrary πn−1. To that end we use integration by parts n times

1∫
−1

(
d

d x

)n

{(1−x)α+n(1+x)β+n}r (x) d x

=
[(

d

d x

)n−1

{(1−x)α+n(1+x)β+n}r (x)

]1

−1
−

1∫
−1

(
d

d x

)n−1

{(1−x)α+n(1+x)β+n}r (1)(x) d x

= 0−
1∫

−1

(
d

d x

)n−1

{(1−x)α+n(1+x)β+n}r (1)(x) d x

=
[(

d

d x

)n−2

{(1−x)α+n(1+x)β+n}r (x)(1)
]1

−1
+

1∫
−1

(
d

d x

)n−2

{(1−x)α+n(1+x)β+n}r (2)(x) d x

= 0+
1∫

−1

(
d

d x

)n−2

{(1−x)α+n(1+x)β+n}r (2)(x) d x

...

= (−1)n

1∫
−1

(1−x)α+n(1+x)β+nr (n)(x) d x

which vanishes since r (x) is a πn−1 so r (n)(x) = 0. Now let x → 1, then we can find the constant

c = lim
x→1

1

P (α,β)
n (x)

1

(1−x)α(1+x)β

(
d

d x

)n

{(1−x)α+n(1+x)β+n}

= lim
x→1

1

P (α,β)
n (x)

1

(1−x)α(1+x)β

(
(−1)n[n +α]n(1−x)α(1+x)β(1+x)n +

n∑
k=1

(
n

k

)
[(1−x)n+α](n−k)[(1+x)n+β](k)

)

= 1

P (α,β)
n (1)

(−1)n[n +α]n2n

= 1(n+α
n

)(
n +α

n

)
(−1)nn!2n

= (−1)nn!2n

It readily follows that using Leibniz’ rule on the right-hand side of Rodrigues’ formula, we can find other
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expressions for the Jacobi polynomials

P (α,β)
n (x) = 2−n

n∑
ν=0

(
n +α
ν

)(
n +β
n −ν

)
(x −1)n−ν(x +1)ν (3.34)

=
n∑
ν=0

(
n +α
n −ν

)(
n +β

n

)(
x −1

2

)n−ν (
x +1

2

)n

(3.35)

=
(

n +α
n

)(
x +1

2

)n

F (−n;−n −β;α+1;
x −1

x +1
) (3.36)

Furthermore, from Rodrigues’ formula, we can immediately see the symmetry relation

P (α,β)
n (−x) = (−1)nP (β,α)

n (x) (3.37)

Next we will try to find the coefficients so that we can find a orthonormal set associated with the weight
function (1−x)α(1+x)β on −1.1).

Theorem 3.2.5. Let w(x) = (1− x)α(1+ x)β on (−1.1). Then the orthonormal set associated with the weight
function w(x) is pn(x) with

pn(x) =
[

2n +α+β+1

2α+β+1

Γ(n +1)Γ(n +α+β+1)

Γ(n +α+1)Γ(n +β+1)

] 1
2

P (α,β)
n (x) (3.38)

Proof. We use Rodrigues formula, integration by parts, and the beta function B(x, y) =
1∫

0
t x−1(1− t )y−1 d t =

Γ(x)Γ(y)
Γ(x+y) respectively.

1∫
−1

(1−x)α(1+x)β[P (α,β)
n (x)]2 d x (3.39)

= l (α,β)
n

1∫
−1

(1−x)α(1+x)βP (α,β)
n (x)xn d x (3.40)

= (−1)n

2nn!

1∫
−1

(
d

d x

)n

{(1−x)n+α(1+x)n+β}P (α,β)
n (x)d x (3.41)

= (−1)2n

2nn!

1∫
−1

(1−x)n+α(1+x)n+β
(

d

d x

)n

{P (α,β)
n (x)}d x (3.42)

= (−1)2n

2nn!

1∫
−1

(1−x)n+α(1+x)n+βd (α,β)
n,n P (α+n,β+n)

0 (x)d x (3.43)

= 2n +α+β+1

2α+β+1

Γ(n +1)Γ(n +α+β+1)

Γ(n +α+1)Γ(n +β+1)
(3.44)

where d (α,β)
n,k = Γ(n+k+α+β+1)

2kΓ(n+α+β+1)
and is obtained by using corollary 3.2.2.1 k times.

So we have found an orthonormal set of eigenfunctions on the interval (0,1) for the differential equation
3.1. We acquire completeness from the fact that differential equation 3.1 is in fact a Sturm-Liouville problem.
I will not discuss this further since this is out of the scope of this project. Interested readers can find more
about this[7]. Now we are ready to use this set to describe functions on a unit disc. This is where the Zernike
polynomials come into play.
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3.3. Zernike polynomials
The Zernike polynomials play an important part in optics, since they are orthogonal over the unit disc. This
section will look at the mathematical part - definitions, recurrence relations, theorems - of the Zernike poly-
nomials, whilst the next chapter will look into the application of the polynomials.
The Zernike polynomials Z m

n (r,θ) are defined as

Z m
n (r,θ) =

{
Rm

n (r )cosmθ m ≥ 0

Rm
n (r )sinmθ m < 0

(3.45)

where the radial function Rm
n (r ) is given by

Rm
n (r ) = (−1)(n−m)/2r mP (m,0)

(n−m)/2(1−2r 2) (3.46)

and it can be seen that they are directly linked to the Jacobi polynomials. Furthermore the only ‘interesting’
part is the radial function, since the azimuthal part is ‘just‘ an exponential. That is why most theorems will
focus on the radial function.

In the special case that the input of the Jacobi polynomials is real and that k,k +α,k +β and k +α+β are
non-negative integers equation 3.35 reduces to

P (α,β)
k (x) = (k +α)!(k +β)!

∑
s

1

s!(k +α− s)!(β+ s)!(k − s)!

(
x −1

2

)k−s (
x +1

2

)s

(3.47)

The radial function is a polynomial of degree 2n and can be written as

Rm
n (r ) =

(n−|m|)/2∑
s=0

(−1)s (n − s)!

s! ((n +|m|)/2− s)! ((n −|m|)/2− s)!
r n−2s (3.48)

where r ∈ [0,1], n ≥ m and n −m even.
One can write the Zernike polynomials also in Cartesian coordinates, but this will not be useful for our appli-
cation, so I refrain from doing so. Interested readers can find more about this in literature[11][9].

3.3.1. Orthogonality
We have claimed many times the Zernike polynomials are orthogonal. Now we have enough background
to finally prove this. The proof will also result in an expression of the orthogonality constant, which is very
important to find the Zernike coefficients which will become clear next chapter.

Theorem 3.3.1. Let Rm
n denote the radial function of the Zernike polynomials. Then the functions are orthog-

onal and have normalisation constant
√

1
2(n+1) .

1∫
0

Rm
n (r )Rm

n′ (r )r dr = 1

2(n +1)
δnn′ (3.49)

Proof. My approach is to use theorem and try to work towards an expression for the radial part. We start from
the orthogonality condition

1∫
−1

w(x)pk (x)pk (x) d x = δkk ′ (3.50)

1∫
−1

(1−x)α(1+x)βP (α,β)
k (x)P (α,β)

k ′ (x) d x = h2
kδkk ′ (3.51)

where h2
k =

(
2k+α+β+1

2α+β+1
Γ(k+1)Γ(k+α+β+1)
Γ(k+α+1)Γ(k+β+1)

)−1
. We substitute the parameters in the Jacobi polynomials that cor-

responds with the Zernike polynomials: α= m, β= 0, k = (n−m)/2. Orthogonality should be clear and I care
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mostly about the orthogonality constant so I will assume, that k = k ′

1∫
−1

(1−x)mP (m,0)
(n−m)/2(x)2 d x = h2

k (3.52)

We substitute x = 1−2r 2. d x
dr = d

dr (1−2r 2) =−4r . So d x =−4r dr and r (x) =
√

1−x
2 . The boundaries are then

mapped via r (x) as follows: −1 7→ 1,1 7→ 0. This gives

0∫
1

(1− (1−2r 2))mP (m,0)
(n−m)/2(1−2r 2)2 ·−4r dr = h2

k (3.53)

2m+2

1∫
0

r 2m+1P (m,0)
(n−m)/2(1−2r 2)2 dr = h2

(n−m)/2 =
2

n +1
2m (3.54)

1∫
0

r 2m+1P (m,0)
(n−m)/2(1−2r 2)2 dr = 1

2(n +1)
(3.55)

1∫
0

r 2m+1P (m,0)
(n−m)/2(1−2r 2)2 dr = (3.56)

1∫
0

(−1)2k r 2mP (m,0)
(n−m)/2(1−2r 2)2r dr = (3.57)

1∫
0

(
(−1)(n−m)/2r mP (m,0)

(n−m)/2(1−2r 2)
)2

r dr = (3.58)

1∫
0

Rm
n (r )2r dr = N m

n (3.59)

So indeed we find the desired result that N m
n = 1

2(n+1) .

The orthogonality conditions of the azimuthal part are rather simple integrals. And I present them with-
out proof

Theorem 3.3.2. The azimuthal Θm
n part of the Zernike polynomials are orthogonal and have normalisation

constant π(1+δm0)δmm′ .

Proof.

2π∫
0


cosmθcosm′θ
sinmθ sinm′θ
cosmθ sinm′θ
sinmθcosm′θ

dθ =


π(1+δm0)δmm′

πδmm

0

0

(3.60)

Therefore we can combine them to obtain orthogonality

Theorem 3.3.3. The Zernike polynomials Z m
n are orthogonal and have normalisation constant π(1+δm0)

2(n+1)

Proof. Using the definition of the Zernike polynomials and applying theorem 3.3.1 and 3.3.2 directly gives the
desired result.
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3.3.2. Important relations
To extend the understanding of the Zernike polynomials I will present more proofs of important relations

Theorem 3.3.4. For the radial function of the Zernike polynomials the following relation holds.

d

dr
Rm

n (r ) = n2 +m2 −2nr 2

2nr (1− r 2)
Rm

n (r )− n2 −m2

2nr (1− r 2)
Rm

n−2(r ) (3.61)

Proof. By definition of the Zernike polynomial, and some calculus we find

(−1)(n−m)/2 d

dr
Rm

n (r ) = d

dr

(
r mP (m,0)

(n−m)/2(1−2r 2)
)

= d

dr

(
r m)

P (m,0)
(n−m)/2(1−2r 2)+ r m d(1−2r 2)

dr

d

d(1−2r 2)

(
P (m,0)

(n−m)/2(1−2r 2)
)

= m

r
(−1)(n−m)/2Rm

n (r )−4r m+1 d

d(1−2r 2)

(
P (m,0)

(n−m)/2(1−2r 2)
)

This is why we need to find an expression for the derivative of the Jacobi polynomial. This can be found in
standard math handbooks [1] equation 22.8.1.

(2k +α+β)(1−x2)
d

d x
P (α,β)

k (x) = k(α−β−x(2k +α+β))P (α,β)
k (x)+2(k +α)(k +β)P (α,β)

k−1 (x)

We fill our new knowledge and find

d

dr
Rm

n (r ) = Rm
n (r )

m

r
− (−1)(n−m)/24r m+1·(

n−m
2 (m − (1−2r 2)(2 n−m

2 +m))

n(1− (1−2r 2)2)
P (m,0)

(n−m)/2(1−2r 2)+ 2( n−m
2 +m)( n−m

2 )

n(1− (1−2r 2)2)
P (m,0)

(n−m)/2−1(1−2r 2)

)
= Rm

n (r )
m

r
− (−1)(n−m)/24r m+1·(

n−m
2 (m − (1−2r 2)n)

4nr 2(1− r 2)
P (m,0)

(n−m)/2(1−2r 2)+
1
2 (n +m)(n −m)

4nr 2(1− r 2))
P (m,0)

(n−2−m)/2(1−2r 2)

)
= Rm

n (r )
m

r
− (−1)(n−m)/2r m ·(

(n −m)(m −n(1−2r 2)

2nr (1− r 2)
P (m,0)

(n−m)/2(1−2r 2)+ n2 −m2

2nr (1− r 2))
P (m,0)

(n−2−m)/2(1−2r 2)

)
= Rm

n (r )

(
m

r
− (n −m)(m −n(1−2r 2)

2nr (1− r 2)

)
−Rm

n−2(r )
n2 −m2

2nr (1− r 2))

= Rm
n (r )

(
n2 +m2 −2n2r 2

2nr (1− r 2)

)
−Rm

n−2(r )
n2 −m2

2nr (1− r 2))

Theorem 3.3.5. For the radial function of the Zernike polynomials the following relation holds.

d

dr
Rm

n (r ) = r 2(n +2)+m

r (1− r 2)
Rm

n (r )− n +m +2

1− r 2 Rm+1
n+1 (r ) (3.62)

Proof. Proof is similar to theorem 3.3.4 [10] 3.

Theorem 3.3.6. For the radial function of the Zernike polynomials the following relation holds.

Rm
n (r ) = 1

2(n +1)r

(
(n +m +2)Rm+1

n+1 + (n −m)Rm−1
n−1

)
(3.63)

Proof. Proof is similar to theorem 3.3.4 [10].
3And left as an exercise for the reader
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3.3.3. Laplacian
We have discussed in chapter 2 that we will a mathematical trick to quickly solve the Laplacian magic window
problem. This trick consists of 2 parts, first of all we need to find the Laplacian of the Zernike polynomials in
the same basis, and secondly we need orthogonality. The latter we have already found fortunately. This first
attempt to find the Laplacian is to differentiate the summation representation from equation 3.48 twice and
add the appropriate terms as via the proof of theorem 3.3.7. Since this is a polynomials we can easily find

4Rm
n (r ) =

(n−|m|)/2∑
s=0

(−1)s (n − s)!

s! ((n +|m|)/2− s)! ((n −|m|)/2− s)!
(n −2s)(n −2s −1)r n−2s−2 (3.64)

+ 1

r

(n−|m|)/2∑
s=0

(−1)s (n − s)!

s! ((n +|m|)/2− s)! ((n −|m|)/2− s)!
(n −2s)r n−2s−1 (3.65)

=
(n−|m|)/2∑

s=0
(−1)s (n − s)!

s! ((n +|m|)/2− s)! ((n −|m|)/2− s)!
(n −2s)2r n−2s−2 (3.66)

However, this is not in the same basis as we input in the Laplacian operator so we cannot use it for our pur-
pose. It can however be used to check whether other methods agree with this results to prevent mathematical
mistakes or programming errors. A results closer to our desired basis can be found in the following theorem.

Theorem 3.3.7. The Laplacian of the radial function of the Zernike polynomials is given by

4Rm
n (r ) = 1

r 2(1− r 2)2

[
Rm

n (r )(r 4(n +2)2 +2r 2(m(n +3)+n +2)+m2)

Rm+1
n+1 (r )r (n +m +2)(r 2(2n +6)+2m +2)

Rm+2
n+2 (r )r 2(n +m +2)(n +m +4)

]
:=A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )

Proof. First we invoke the definition of the Laplacian in polar coordinates

4 f (r ) =
(

d2

dr 2 + 1

r

d

dr

)
f (r ) (3.67)

Then theorem 3.62, a little 4 calculus and algebra yields the desired result.

It should be noted that this still is not in the desired basis as we still have terms with a r dependency
in front of the Rm

n terms. This is undesirable and the results section of this report will explain why that is.
Another way to find the the Laplacian of the Zernike polynomials was done by Janssen [8]. He found the
following expression

4Z m
n (r,θ) = ∑

s=|m|(2)(n−2)
(s +1)(n + s +2)(n − s)Z m

s (r,θ)

Where we introduce the notation
i ( j )k = i , i + j , i +2 j , ...,k − j ,k (3.68)

Also, the inverse relation was also found

4−1Z m
n (r,θ) = 1

4(n +1)(n +2)
Z m

n+2(r,θ)− 1

2n(n +2)
Z m

n (r,θ)+ 1

4n(n +1)
Z m

n−2(r,θ)

where it should be noted that 4Z m
n (r,θ) = 0 when n ≤ |m|. The implementation will be discussed further in

the results chapter.

4Actually it’s not a little but extremely much, and extremely tedious.



4
Application of Zernike polynomials

Last chapter constructed a mathematical basis with which we can start to solve the problem. Before before
that will be discussed, we focus on understanding the Zernike polynomials through more intuitive means.
This chapter aims to connect the abstract ideas to the physical problem described in chapter 2. First of all,
the relevance for optics will be discussed, followed by visualising the Zernike polynomials. The last part will
discuss computing the Zernike coefficients and numerical reliability.

4.1. Relevance for optics
In general a function f (r,θ) describing a wavefront in polar coordinates (r,θ) can be expanded as a sequence
of orthonormal polynomials P [9]:

f (r,θ) = ∑
n,m

C m
n P m

n (r,θ)

where C is a real coefficient. Zernike polynomials are special because they have three properties other or-
thogonal sets do not have [11].
First of all, they have simple rotational symmetry:

Z (r,θ) = R(r )Θ(θ)

whereΘ(θ) is continuous with period 2π and satisfies the requirement that rotating the coordinate system by
α does not change the form of the polynomial:

Θ(θ+α) =Θ(α)Θ(θ)

It is easy to check that the functionΘ(θ) = e(±i mθ) meets these requirements. The second property is that the
radial component R(r ) must be of degree 2n and contain no power of r less than m.
Thirdly, if m is odd, R(r ) must be odd, and if m is even, R(r ) must be even.

Combining these properties Z can be written as

Z m
n (r,θ) =

{
Rm

n (r )cosmθ m ≥ 0

Rm
n (r )sinmθ m < 0

(4.1)

Let us take a look at the radial part, since we can use the Jacobi polynomials here. Define the radial part as

Rm
n (r ) = (−1)(n−m)/2r mP (m,0)

(n−m)/2(1−2r 2)

The desired properties of the Zernike polynomials are present as one can easily check.

4.2. Visualising the Zernike polynomials
The next section aims to give an intuition for what the Zernike polynomials represent. We plot a few even and
odd parts of the radial function from table 4.1.

18



4.2. Visualising the Zernike polynomials 19

n m Rm
n (r )

1 1 r
2 0 2r 2 −1
3 1 3r 3 −2r
4 0 6r 4 −6r 2 +1

Table 4.1: Some of the radial functions of the Zernike polynomials. This set is not complete because for every n there can be n+1 values
of m: m =−n,−n +2, ...,n −2,n.

Figure 4.1: Some even parts of the radial Zernike functions. m = 0 is fixed and n is varied from 2 up to 8. We can clearly see the
normalisation Rm

n (1) = 1.

Figure 4.2: Some odd parts of the radial Zernike functions. m = 1 is fixed and n is varied from 1 up to 7. We can clearly see the normali-
sation Rm

n (1) = 1.

For completeness we also show the case n is fixed.
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Figure 4.3: Some parts of the radial Zernike functions. n = 7 is fixed and m is varied from 1 up to 7. Note that m can also take up negative
values, but the radial function is identical: that is Rm

n (r ) = R−m
n (r ). We can clearly see the normalisation Rm

n (1) = 1.

We can also visualise the Zernike polynomials in 3 dimensions.
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Figure 4.4: All Zernike polynomials up to n = 4. From top to bottom we have n = 0,1,2,3,4. From left to right we have m = −n,−n +
2, ...,n −2,n. The colour indicates the height of the polynomial. Note that the polynomials are rotated 45° around the z axis for clarity.

Another way of displaying the polynomials is from the top view.
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Figure 4.5: All Zernike polynomials up to n = 4. From top to bottom we have n = 0,1,2,3,4. From left to right we have m = −n,−n +
2, ...,n −2,n. The colour indicates the height of the polynomial. Note that the polynomials are not rotated

We observe a few things. First of all, for n = 0, the surface is flat. This is the average offset from the x, y
plane of a function f (x, y, z). The Zernike parts for n 6= 0, the average offset for the x, y plane is zero. For
different values of m, we recognise m periods on the boundaries. For higher value of m, the more steep the
derivative both in the r and θ direction becomes. That means that for smooth surfaces, only the first terms of
the Zernike polynomials are needed to describe it.

4.3. Finding expression for coefficients
We have found that the Zernike polynomials can describe 2D surfaces on a unit disc. We shall now describe
how to find the coefficients in equation 4.1 in order to describe the profile of a surface. Since we have a set of
complete eigenvectors, we can safely say

f (r,θ)~
∑

n,m
C m

n Z m
n (r,θ)

The symbol ~denotes convergence in the L2 norm. That means that the function f and its polynomial repre-
sentation can only differ on finitely many points with measure zero in the Lebesgue sense. When we assume
that f (r,θ) is smooth enough, we can replace ~with a = and have point wise convergence. This is a safe as-
sumption because we are dealing with lenses. If the surface becomes rougher than the critical angle of a
material, there is total reflection and our lens would not work anymore. We multiply the above equation with
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a eigenfunction and integrate over the relevant surface area1 and obtain∫
⊙ f (r,θ)Z m′

n′ (r,θ)r d a =
∫
⊙

∑
n,m

C m
n Z m

n (r,θ)Z m′
n′ (r,θ)r d a

= ∑
n,m

C m
n

∫
⊙ Z m

n (r,θ)Z m′
n′ (r,θ)r d a

= ∑
n,m

C m
n hm′

n′ δnn′δmm′

= hm′
n′ C m′

n′

Where we employed the linearity of the integral, orthogonality of the Zernike polynomials - where hm
n

denotes the orthogonality constant - and find an explicit expression for the coefficients.The
⊙

denotes the
unit disc - the area over which the Zernike polynomials are orthonormal.

C m′
n′ = 2(n +1)

(1+δm0)π

∫
⊙ f (r,θ)Z m′

n′ (r,θ)r d a (4.2)

Calculating coefficients
The expression involves an integral over the the lens. In general, one does not have continuous surface over
which the integral can be calculated nicely, but a finite amount of datapoints. For example the SMS method
described earlier gives us a finite set of points that are spaced apart, but also a lens or intensity distribution is
often given in ‘raw data’. Therefore, when calculating the integral directly via a numerical algorithm, like the
trapezoid method, this will result in large errors, especially when the distance between datapoints is large.
This can be detrimental since the higher order terms have more zeros, leading to over fitting and other nu-
merical shenanigans. Fortunately, we assumed that the original surface f was smooth, so we can use spline
interpolation. I will not go into the details of spline interpolation, but it suffices to know that it returns a
smooth (second order continuous derivative) piecewise polynomial. We use the lens found in the appendix
as an example to show the convergence of the spline interpolation.

Figure 4.6: Number of points used for interpolation versus the value of the coefficients plotted on a logarithmic scale.

We can clearly see the algorithm smoothly converges to certain values. As expected we see that the higher
order terms converge slower and that higher order terms have smaller values then lower order terms when
the number of interpolated terms is high enough. We see that we need at least 700 interpolation points for
this lens. Since we have an explicit expression for the coefficients, the computational costs for finding these

1This technique is known as Fourier’s trick since he did it with his Fourier series. This is commonly used in solving partial differential
equations, specifically the Poisson equation.
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coefficients is extremely low. That’s why it’s recommended to check the convergence of the coefficients with
a plot like above to check the validity. We can plot a mesh of the lens to see the results.

Figure 4.7: Mesh of the completed SMS method after fitting with the Zernike polynomials. The colormap is not displayed, but the height
changes with colour.

The figure we get is made by a linear combination of the Zernike polynomials with the coefficients as
weight. In the results section of this report we will look at more cases and see the strengths and weaknesses
of the fit more clearly.



5
Results

This chapter combines the ideas found in chapter 3 and 4 to solve the problem set out in chapter 2. The first
part of this chapter will develop solutions to the problem, whereas the second part will discuss the imple-
mentation of these solutions.

5.1. Semi-analytic solution to Laplacian magic window
We try to find a solution to the Laplacian magic window problem. For simplicity we regard the radially sym-
metric case first, so we work in cylinder coordinates and θ is constant. The z−axis is in the direction of the
optical axis and r denotes the radius of the wavefront. The intensity is, in short field approximation, then
given by:

I (z,r ) = 1

1+ (n −1)z 4h(r )

where h(r ) is the height of the surface of the lens in the z direction and n the refractive index of the material.
4 denotes the Laplacian operator. This can be linearised to

I (z,r ) = 1− (n −1)z 4h(r ) (5.1)

Under the assumption that we are in the short field. Because the method only works in the short field, this
approximation is reasonable. In section 5.4 the difference between these methods will be discussed more in
depth.

We take a look at the direct problem: we know the surface h, what is the intensity at z? Therefore we
calculate the Laplacian of h. Since the problem is radially symmetric we write h in Zernike polynomials.

h(r ) = ∑
n,m

C m
n Rm

n (r ) (5.2)

where C m
n are the Fourier (more accurately: Zernike) coefficients and Rm

n (r ) is the radial function of the
Zernike polynomials. Note that n walks from 0 to infinity and m from −n to n in steps of 2. The double
summation and limits make things untidy so we stick to the single sum notation, but remember this is actu-
ally a double sum with different limits. Since the Laplacian is a linear operator we can calculate the Laplacian
of a single radial function Rm

n (r ) without loss of generality. In chapter 3 we have done exactly that: in two
ways we have found Laplacian. The first attempt is by myself, and the second one is found in literature.

25
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5.1.1. Novel method
In chapter 3 the following expression was derived.

4Rm
n (r ) = 1

r 2(1− r 2)2

[
Rm

n (r )(r 4(n +2)2 +2r 2(m(n +3)+n +2)+m2)

Rm+1
n+1 (r )r (n +m +2)(r 2(2n +6)+2m +2)

Rm+2
n+2 (r )r 2(n +m +2)(n +m +4)

]
=A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )

where A(r ), B(r ), and D(r ) are elementary functions, but not polynomials. The next subsection will show
that we have indeed made no algebra errors. We return to the equation above and notice a problem. The
coefficients A, B , and C are a function of r . That means we cannot use Fourier’s trick directly to solve the
inverse problem. I shall show where this goes wrong. Let us return to expression 5.1, use equation 5.2 and fill
in the results we have just found.

I (z,r ) = 1− (n −1)z 4 ∑
n,m

C m
n Rm

n (r ) (5.3)

= 1− (n −1)z
∑

n,m
C m

n 4Rm
n (r ) (5.4)

= 1− (n −1)z
∑

n,m
C m

n

(
A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )
)

(5.5)

Now we write the intensity as a Zernike decomposition and use Fourier’s trick∑
n,m

E m
n (z)Rm

n (r ) = 1− (n −1)z
∑

n,m
C m

n

(
A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )
)

(5.6)

1∫
0

∑
n,m

E m
n (z)Rm

n (r )Rm′
n′ (r )r dr =

1∫
0

Rm′
n′ (r )r dr −

1∫
0

(n −1)z
∑

n,m
C m

n

(
A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )
)

Rm′
n′ (r )r dr

(5.7)

E m′
n′ (z) =

1∫
0

Rm′
n′ (r )r dr − (n −1)z

1∫
0

∑
n,m

C m
n

(
A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )
)

Rm′
n′ (r )r dr

(5.8)

=
1∫

0

Rm′
n′ (r )r dr − (n −1)z

∑
n,m

C m
n

1∫
0

(
A(r )Rm

n (r )+B(r )Rm+1
n+1 (r )+D(r )Rm+2

n+2 (r )
)

Rm′
n′ (r )r dr

(5.9)

This cannot be solved easily1. The next chapter will explain more carefully why this cannot be solved and will
discuss several attempts at solves this equation. In conclusion this means that my method meets a dead end
here. However, in literature a way has been found to circumvent this problem and this will be discussed next.

5.1.2. Janssen
We have found an expression of the Laplacian and inverse Laplacian of the Zernike polynomials. These can
be used to our advantage. First we try to solve the direct problem. We introduce the notation

i ( j )k = i , i + j , i +2 j , ...,k − j ,k (5.10)

1Integration by parts cannot be used easily since the functions are not polynomials
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where i , j and k are integers such that i −k ≡ 0 mod j . Let nr denote the refractive index to avoid confusion.
Let hm

n denote the orthogonality constant, then we deduce

I (z,r ) = 1− (n −1)z 4h(r )∑
n,m

C m
n (z)Z m

n (r,θ) = 1− (nr −1)z 4
( ∑

n,m
Dm

n Z m
n (r,θ)

)
∑

n,m
C m

n (z)Z m
n (r,θ) = 1− (nr −1)z

∑
n,m

Dm
n 4 (

Z m
n (r,θ)

)
∑

n,m
C m

n (z)Z m
n (r,θ) = 1− (nr −1)z

∑
n,m

Dm
n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)Z m
s (r,θ)∫

⊙
∑

n,m
C m

n (z)Z m
n (r,θ)Z m′

n′ (r,θ)r dτ=
∫
⊙ Z m′

n′ (r,θ)r dτ

−
∫
⊙ (nr −1)z

∑
n,m

Dm
n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)Z m
s (r,θ)Z m′

n′ (r,θ)r dτ

∑
n,m

C m
n (z)

∫
⊙ Z m

n (r,θ)Z m′
n′ (r,θ)r dτ=

∫
⊙ Z 0

0 (r,θ)Z m′
n′ (r,θ)r dτ

− (nr −1)z
∑

n,m
Dm

n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)
∫
⊙ Z m

s (r,θ)Z m′
n′ (r,θ)r dτ

C m′
n′ (z)hm′

n′ = h0
0δ0n′δ0m′ − (nr −1)z

∑
n,m

Dm
n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)hm′
n′ δsn′δmm′

C m′
n′ (z)hm′

n′ = h0
0δ0n′δ0m′ − (nr −1)z

∑
n

Dm′
n

∑
s=|m′|(2)(n−2)

(s +1)(n + s +2)(n − s)hm′
n′ δsn′

C m′
n′ (z) = δ0n′δ0m′ − 2(n′+1)(nr −1)z

(1+δm0)π

∑
n

Dm′
n

∑
s=|m′|(2)(n−2)

(s +1)(n + s +2)(n − s)hm′
n′ δsn′

C m′
n′ (z) = δ0n′δ0m′ − (nr −1)z

∑
n

T
n′∈|m′|(2)Dm′

n (n−2)
(s +1)(n + s +2)(n − s)

Where we define Tn′∈|m|(2)(n−2) to be equal to 1 if n′ ∈ |m|(2)(n − 2) and 0 otherwise. This means we have
found an explicit expression for Zernike coefficients of the intensity as a function of the Zernike coefficients
of the surface. Note that all sums become finite if the lens is given as a finite sum of Zernike coefficients. This
is exactly the expression we desire. Then we look at the inverse problem. We use the inverse Laplacian to
obtain.

1− (nr −1)z 4h(r ) = I (z,r )

4h(r ) = 1

(nr −1)z
I (z,r )− 1

(nr −1)z

h(r ) =4−1
(

1

(nr −1)z
I (z,r )− 1

(nr −1)z

)
h(r ) =4−1

(
1

(nr −1)z

∑
n,m

C m
n Z m

n (r,θ)

)
−4−1

(
1

(nr −1)z

)
h(r ) = 1

(nr −1)z

∑
n,m

C m
n 4−1 (Z m

n (r,θ))− 1

(nr −1)z
4−1 1

h(r ) = 1

(nr −1)z

∑
n,m

C m
n

(
1

4(n +1)(n +2)
Z m

n+2(r,θ)− 1

2n(n +2)
Z m

n (r,θ)+ 1

4n(n +1)
Z m

n−2(r,θ)

)
− 1

8(nr −1)z
Z 0

2 (r,θ)
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Here we have used that the inverse Laplacian is a linear operator. We present a proof in theorem 5.1.1 of the
more general case. The coefficients can then easily be found using Fourier’s trick again

∑
n,m

Dm
n (z)Z m

n (r,θ) = 1

(nr −1)z

∑
n,m

C m
n

(
1

4(n +1)(n +2)
Z m

n+2(r,θ)− 1

2n(n +2)
Z m

n (r,θ)+ 1

4n(nr +1)
Z m

n−2(r,θ)

)
− 1

8(nr −1)z
Z 0

2 (r,θ)

Dm′
n′ (z)hm′

n′ =
∫

1

(nr −1)z

∑
n,m

C m
n

(
1

4(n +1)(n +2)
Z m

n+2(r,θ)− 1

2n(n +2)
Z m

n (r,θ)

)
Z m′

n′ (r,θ)r d a

+
∫

1

(nr −1)z

∑
n,m

C m
n

1

4n(n +1)
Z m

n−2(r,θ)Z m′
n′ (r,θ)r d a −

∫
1

8(nr −1)z
Z 0

2 (r,θ)Z m′
n′ (r,θ)r d a

Dm′
n′ (z)hm′

n′ = 1

(nr −1)z

∑
n,m

C m
n

(
1

4(n +1)(n +2)
δ(n+2)n′δmm′hm′

n′ − 1

2n(n +2)
δnn′δmm′hm′

n′

)
+ 1

(nr −1)z

∑
n,m

C m
n

1

4n(n +1)
δ(n−2)n′δmm′hm′

n′ − 1

8(nr −1)z
hm′

n′ δ2n′δ0m′

Dm′
n′ (z)hm′

n′ = 1

(nr −1)z

(
C m′

n′+2

1

4(n′+3)(n′+4)
hm′

n′+2 −C m′
n′

1

2n′(n′+2)
hm′

n′ +C m′
n′−2

1

4(n′−1)(n′−2)
hm′

n′−2

)
− 1

8(nr −1)z
h0

2δ2n′δ0m′

Dm′
n′ (z) = 1

(nr −1)z

(
C m′

n′+2

1

4(n′+3)(n′+4)

n′+1

n′+3
−C m′

n′
1

2n′(n′+2)
+C m′

n′−2

1

4(n′−1)(n′−2)

n′+1

n′−1

)
− 1

8(nr −1)z
δ2n′δ0m′

Dm′
n′ (z) = 1

(nr −1)z

(
n′+1

4(n′+3)2(n′+4)
C m′

n′+2 −
1

2n′(n′+2)
C m′

n′ + n′+1

4(n′−1)2(n′−2)
C m′

n′−2 +
δ2n′δ0m′

8

)
A careful reader will notice that some coefficients will not be defined since a ‘divide by zero‘ will occur. Fur-
thermore we can have negative values of n in Z m

n . These problems can easily be solved by setting all of these
coefficients to zero since they don’t represent physical values.

Theorem 5.1.1. Let f : A → B be a linear function and g = f −1. Then, if g exists, g is a linear function.

Proof. Assume that g exists, then first all we prove that g (av) = ag (v) for all constants2 a ∈ R and v ∈ B .
Let x ∈ A such that f (x) = v . Then we find g (av) = g (a f (x)) = g ( f (ax)) = ax = ag (v). Secondly we prove
g (v +w) = g (v)+ g (w) for all v, w ∈ B . Let x, y ∈ B such that f (x) = v , f (y) = w . Then g (v +w) = g ( f (x)+
f (y)) = g ( f (x + y)) = x + y = g (v)+ g (w).

Since a linear operator is defined as a linear map between two vector spaces and we know that the inverse
operator is the inverse map, the inverse of the linear operator is again a linear operator. Since the Laplacian
is linear, then so must the inverse Laplacian be linear.

2It should be noted that the constant a is chosen to be a member of R because all constants used in this report are indeed real. In
principle this is an arbitrary choice, as the proof is easily generalised by choosing a constant from any ordered field F.
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A second way to find the surface is similar to the way my own method was supposed to work.

1− (n −1)z 4h(r ) = I (z,r )

4h(r ) = 1

(nr −1)z
I (z,r )− 1

(nr −1)z

4
( ∑

n,m
C m

n Z m
n (r,θ)

)
= 1

(nr −1)z

∑
n,m

Dm
n Z m

n (r,θ)− 1

(nr −1)z∑
n,m

C m
n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)Z m
s (r,θ)) = 1

(nr −1)z

∑
n,m

Dm
n Z m

n (r,θ)− 1

(n −1)z∫ ∑
n,m

C m
n

∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)Z m
s (r,θ))Z m′

n′ (r,θ))r dτ=
∫

1

(nr −1)z

∑
n,m

Dm
n Z m

n (r,θ)Z m′
n′ r dτ

−
∫

1

(nr −1)z
Z m′

n′ r dτ∑
s=|m|(2)(n−2)

(s +1)(n + s +2)(n − s)
∑

n,m
C m

n

∫
Z m

s (r,θ))Z m′
n′ (r,θ))r dτ= 1

(nr −1)z

∑
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Dm
n

∫
Z m

n (r,θ)Z m′
n′ r dτ

− 1

(nr −1)z

∫
Z 0
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∑
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C m
n

∑
s=|m|(2)(n−2)
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(nr −1)z

( ∑
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Dm
n hm′
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∑
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(s +1)(n + s +2)(n − s)hm′
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Dm′
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−δ0n′δ0m′

)
Where we define Tn′∈|m|(2)(n−2) to be equal to 1 if n′ ∈ |m|(2)(n − 2) and 0 otherwise. In principle it is now
possible to make a system of linear equations to find the coefficients C m

n . It should be noted that this indirect
method is not preferred since we already have a direct expression of the Zernike coefficients.

5.2. Zernike decomposition
A closer look will be taken at the convergence of the Zernike polynomials in this section. We will plot certain
surfaces in the next figure and discuss the results.
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Figure 5.1: Fit of different surfaces using Zernike polynomials. The radial axis is chosen dimensionless, and the vertical axis consists of
arbitrary units. The goodness of fit is discussed in the following section.
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Table 5.1: Table of the test function for every surface in figure 5.1. heavi(r ) denotes the heaviside step function.

Surface Test function

1 e−r 2/(2(0.3)2)

2 1
2 + 1

2 cos2πr

3 1
4 + 1

4 cos4πr +e−2r 2/(0.22)

4 3
4 − 1

2 heavi(r − 1
2 )

5 1
10 + 1

2 |cos(πr )|
6 1

4 + 1
2 sin(πr )

We can see from surface 1 that a function that is continuously differentiable, has low values around r = 1,
and has a radial derivative of 0 at r = 0 is ideal for the Zernike polynomials to fit. Surface 1 is a Gaussian
distribution, so it clearly meets these conditions. The first condition - continuously differentiable - is set
because the Zernike polynomials all have this property. The second property - low values around the edge
r = 1 - is because all the Zernike polynomials are normalised such that Rm

n (1) = 1. That means that in order
to fit the edges correctly, the higher order terms needs to go to zero rapidly and oscillate around 0. The third
condition - derivative w.r.t. r is zero at r = 0. A good example of the second property failing is at surface 2.
Around the edge, even an order 6 fit is failing to represent the surface properly. Surface 3 is included because
it is a relatively complex function, but can still be fitted properly if all 3 conditions are met sufficiently. The
property of continuously differentiable can be broken ‘further’ by allowing discontinuities such as in surface
4. The Zernike polynomials are absolutely not fit to describe these jumping functions. When we let go of
the property that a function must be continuously differentiable, but must obey the other 2 properties, we
have surface 5: it can fit it approximately, but an extreme amount of terms are needed and even these cannot
capture the sharpness around r = 0.5. The third property is counter intuitive. But we cannot have a contri-
bution of the radial differential operator because the final Zernike polynomial consist of a rotated version of
the radial function. That is why we would get a discontinuity when we differentiate the rotated version. An
example of such a failing fit is given in surface 6. It should be noted that numerical errors played no role in
this figures, and all coefficients converge to the values that are plotted in figure 5.1.

It should now be clear in which areas the Zernike polynomials shine and where they fail. The 3 properties
a surface should have to be fitted properly are 1. continuously differentiable 2. low values around r = 0 and
3. zero derivative at r = 0.

5.3. Expression of the Laplacian
We have found multiple expressions for the Laplacian of the Zernike polynomials. In this section we will eval-
uate whether these are correct and how they should be implemented. This section should act as a guideline
and check for implementation. In total we have found 4 expressions, which are summarised in the following
table
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Table 5.2: Different expressions for the Laplacian and inverse Laplacian of the Zernike polynomials discussed in this report. The numeric
approach is a finite difference method.

Direct approach 4Rm
n (r )

Summation
(n−|m|)/2∑

s=0
(−1)s (n−s)!

s!((n+|m|)/2−s)!((n−|m|)/2−s)! (n −2s)2r n−2s−2

Novel expression A(r )Rm
n (r )+B(r )Rm+1

n+1 (r )+D(r )Rm+2
n+2 (r )

Janssen
∑

s=|m|(2)(n−2)
(s +1)(n + s +2)(n − s)Rm

s (r,θ)

Numeric lim
dr→0

Rm
n (r+dr )−2Rm

n (r )+Rm
n (r−dr )

dr 2 + Rm
n (r+dr )−Rm

n (r )
dr

Inverse approach 4−1Rm
n (r )

Janssen 1
4(n+1)(n+2) Rm

n+2(r,θ)− 1
2n(n+2) Rm

n (r,θ)+ 1
4n(n+1) Rm

n−2(r,θ)

Figure 5.2: A surface[2] and the Laplacian of the surface for multiple expressions. In the upper left figure, the surface is calculated again
with the inverse Laplacian via the Janssen method. The radial axis is chosen dimensionless, and the vertical axis has arbitrary units.

In the above figure a surface based on [2] is plotted and compared to the expressions found in table 5.2.
First observation is that all four figures and their fits are very good as they coincide. For clarity only a few
points are plotted on top of the numeric result, because the fit is so close that it cannot be distinguished. This
is expected because we have found an analytic expression for them. Plotting these figures is a great tool to
make sure there are no bookkeeping errors in the mathematics or implementation errors in software. In the
upper left figure the inverse Laplacian is calculated by first using Janssen’s method to find the Laplacian of
the original surface, then calculating the inverse Laplacian via Janssen’s method. The surface was chosen to
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be a fit to the surface in the article of Berry[2]. This surface should be a good tool for checking because it has
around 30 non zero coefficients. Because the results are so similar, one is free to use any of these methods.
I recommend using the expression for Janssen. First of all these are the most general, because they also de-
scribe the whole - m 6= 0 - Zernike polynomials, and not only the radial part. Secondly they will be used in the
inverse problem, so it is good to already have them implemented.

A special mention should be given to the implementation of the method of Janssen. This is because the
summation indices and other shenanigans with the expression make it hard to implement. The following
table should act as a guideline to help check solutions.

Table 5.3: Several expression calculated via the Janssen method. Based on [8]

n m 4Z m
n 4−1Z m

n

0 0 0 1
8 Z 0

2

2 0 8Z 0
0 − 1

16 Z 0
2 + 1

48 Z 0
4

2 2 0 1
48 Z 2

4

5 3 80Z 3
3 − 1

70 Z 3
5 + 1

168 Z 3
7

6 0 120Z 0
4 +120Z 0

2 +48Z 0
0

1
168 Z 0

4 − 1
96 Z 0

6 + 1
224 Z 0

8

5.4. Direct problem
To solve the direct problem we have some options. We already know from figure 2.3 that we can use ray trac-
ing, and the Laplacian magic window via Zernike decomposition. First we use the Laplacian magic window
and calculate the intensity via the linear and non-linear expressions. We will compare this with a ray tracing
algorithm. We choose 3 surfaces to solve this problem, which should be general enough and provide enough
information to check solutions. These are summarised in the following table

Table 5.4: Surfaces used in the direct problem. h(r ) denotes the surface and N (µ,σ) denotes a Gaussian probability density distribution.

# h(r )

1 1
200 N (0, 3

10 )(r )

2 1
2000 cos4πr

3 Surface from figure 5.2 scaled down by factor 50
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Figure 5.3: Solutions of the Laplacian magic window of surface 1 from table 5.4. Bottom right plot shows the difference in intensity
between the linear and non-linear solution. All units on all axis are dimensionless or arbitrary.

Figure 5.4: Histogram of ray tracer solution of the problem 1. The counts are proportional to the intensity.

Qualitatively the results match, but there are problems with the scaling in absolute terms and with a
dependency on radius. Therefore we will not quantitatively compare the results, but discuss possible reasons
why the mismatches happen in the discussion section of this report. The next implemented examples show
similar behaviour.
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Figure 5.5: Solutions of the Laplacian magic window of surface 2 from table 5.4. Bottom right plot shows the difference in intensity
between the linear and non-linear solution. All units on all axis are dimensionless or arbitrary.

Figure 5.6: Histogram of ray tracer solution of the problem 2. The counts are proportional to the intensity.
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Figure 5.7: Solutions of the Laplacian magic window of surface 3 from table 5.4. Bottom right plot shows the difference in intensity
between the linear and non-linear solution. All units on all axis are dimensionless or arbitrary.

Figure 5.8: Histogram of ray tracer solution of the problem 2. The counts are proportional to the intensity.

5.5. Inverse problem: semi-analytic solution
For the inverse problem, 3 surfaces are calculated using equation 6.1. The surfaces should give an output that
is given in table 5.5
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Table 5.5: Surfaces used in the direct problem. N (µ,σ) denotes a Gaussian probability density distribution.

# I at z = 5

1 1+ 1
10 cos2πr

2 4
5 + 1

2
p

2π 1
5

N (0, 1
5 )

3 Intensity from figure 5.2

Figure 5.9: Solution to inverse problem 1. Top left figure shows the input intensity and Zernike fit at z = 5, which almost completely
overlap, in black and red respectively. Top right figure shows shows the lens as calculated via the inverse Laplacian magic window.
Bottom right figure shows linear and non-linear solutions calculated by the Laplacian magic window with input the lens surface from
the top right figure. Bottom right figure shows a histogram of the ray tracer solution.

The solutions again match qualitatively, but not quantitatively. This problem will again be discussed in
the discussion part of the report. A good check that the implementation is correct is that the intensity output
calculated from the lens by the linear Laplacian magic window method is identical to the input intensity. The
intended intensity and the linear method are therefore identical. These comments are also applicable to the
other surfaces calculated as can be seen in the next figures.
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Figure 5.10: Solution to inverse problem 2. Top left figure shows the input intensity and Zernike fit at z = 5, which almost completely
overlap, in black and red respectively. Top right figure shows shows the lens as calculated via the inverse Laplacian magic window.
Bottom right figure shows linear and non-linear solutions calculated by the Laplacian magic window with input the lens surface from
the top right figure. Bottom right figure shows a histogram of the ray tracer solution.
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Figure 5.11: Solution to inverse problem 3. Top left figure shows the input intensity and Zernike fit at z = 5, which almost completely
overlap, in black and red respectively. Top right figure shows shows the lens as calculated via the inverse Laplacian magic window.
Bottom right figure shows linear and non-linear solutions calculated by the Laplacian magic window with input the lens surface from
the top right figure. Bottom right figure shows a histogram of the ray tracer solution.
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Discussion

In this chapter the results will be discussed and suggestions for further research are proposed.

6.1. Novel approach
The novel solution I proposed met a dead end. First I will explain more carefully why this happens, and
secondly I suggest how to go forwards. To demonstrate that my solution cannot be solved further, take the
D(r ) term 1 of the integral of the right-hand side of expression 5.9.

1∫
0

D(r )Rm+2
n+2 (r )Rm′

n′ (r )r dr =
1∫

0

(n +m +2)(n +m +4)

(1− r 2)2 Rm+2
n+2 (r )Rm′

n′ (r )r dr (6.1)

Ideally it would have to be this in the form

1∫
0

Rm+2
n+2 (r )Rm′

n′ (r )r dr = F m
n δ(n+2)n′δ(m+2)m′ (6.2)

because this would reduce our infinite sum to a finite one and would give a finite, and explicit expression for
the inverse problem. Now we are left the mercy of numerically approximating the coefficients E m

n , and with-
out certainty that the solution converges. This defeats the whole point of a analytic solution, it would also
mean that a numerical Laplacian solver would be as fast, if not faster then first decomposing everything in
Zernike polynomials, and for each coefficient, approximate 3 infinite sums. I have a few suggestions to solve
this, but I cannot see how they will be fruitful.

1. Integration by parts
To solve the problem with integration by parts we need the integral expression of A, B , and D . The simplest
function is D : ∫

D(r )dr =
∫

1

(1− r 2)2 dr = 1

4

(
2r

1− r 2 − ln(1−x)+ ln(1+x)

)
This is not in any form to make the reach expression 6.2. The functions A and B are even less orderly.

2. Reduce terms.
In theorem 3.3.6 we have found

Rm
n (r ) = 1

2(n +1)r

(
(n +m +2)Rm+1

n+1 + (n −m)Rm−1
n−1

)
So we can write the Laplacian in 2 terms:

4Rm
n (r ) = A′(r )Rm

n (r )+D ′(r )Rm+2
n+2 (r )

1We take the D(r ) term because it is the simplest expression of the three.
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Where A′(r ) and D ′(r ) are even worse expressions than A and D , so reducing the three terms to two would
create the same problem as for solution 1.

3. No solution.
It could of course be that there is no analytic solution. That means my approach here meets a dead end.
However literature provides us with a solution. Janssen solved the problem [8] which suggests there might
be some way to solve this. For now however, it is not worth trying to solve this because no new ways to
solve it have presented themselves2, especially since Janssen already found another expression. Therefore it
is suggested to use the method of Janssen.

6.2. Direct and inverse problem
The solutions of the direct and inverse problem match the ray tracing algorithm qualitatively. This is expected
because the surfaces have been chosen with care. They had to meet the three conditions set out in section 5.2
in order to accurately fit the data. Secondly they seem to meet the criterion that only the short field applies
i.e. no caustics. The surfaces have been chosen to be very smooth in order to meet that as can be seen in
small coefficients in table 5.4 and 5.5. The ray tracer also shows that the rays do not cross. Thirdly, also the
surfaces obtained in the inverse problem are very small - order 10−4 - compared to the optical axis, which has
length 5. This means the inverse problem gives back a smooth surface as required.
The explanation that the results don’t match qualitatively can be explained by two factors. It is most likely that
either the ray tracing, or the Laplacian magic window is not perfect. The fault cannot be in the implemen-
tation of the Laplacian magic window, because solving the solution of the inverse problem with the linear
method of the Laplacian magic gives back the exact same intensity. It could be that the linear method does
not capture the non linearities accurately, but when using the non-linear expression to calculate the intensity
back, the problem that the ray tracer and Laplacian magic window don’t give the same result gets even worse.
Therefore it is likely that the problem lies with the ray tracer. It is unlikely that the implementation of the ray
tracer is incorrect, because it gives back the same qualitative results. If there were a problem with the imple-
mentation, it should other incorrect behaviour. It is most likely that the problem lies with the fact that the
ray tracer is implemented in Cartesian coordinates, while the Zernike representation is implemented in po-
lar/cylindrical coordinates. The way the tracer is implemented makes it hard to correct for this. Professional
software should easily be able to handle these problems, because they can take as input Zernike coefficients
as they are a standard in optics. This project is not able to use this software because of time constraints as it
would take a lot of time to get to know and understand new software, and it is not guaranteed that is will yield
better results.

6.3. Further research
In this section I will address the shortcomings of this report and discuss how they could be improved in the
future. First of all better ray tracing software can be used to check the validity of the results of the Laplacian
magic window. This should be not to hard a task for a senior optical engineer.
Secondly all of the examples used in this report are in two dimensions i.e. radially symmetric. Because this
report serves mostly as a proof of concept on how a semi-analytic solution can be obtained for the main
problem, it is not a big issue. Also all the mathematics is general enough to easily be expanded into three
dimensions i.e. taking into account asymmetric inputs in the problem. The expressions for the direct and
indirect problem are already explicitly solved for three dimensions, but implementing them was beyond the
scope of this project.
Thirdly, the solutions obtained with the semi-analytic method can be compared with a numerical Laplacian
solving. It would be interesting to see how they would compare in quality and computational time. It is my
hypothesis that especially in three dimensions, the computational time of the inverse Laplacian would be so
big, that this new approach proposed would be especially useful. This report presents a good proof of concept
in order to carry out this research.
Lastly, it could be considered to put more effort into solving the novel solution as it could give an easier, and
thus faster, expression than what Janssen obtained. This is no priority since already a working solution exists
and the chances of solving the novel solution are slim at the moment.

2I have contacted Janssen, who is an expert in this field, and he also sees no way to solve this.



7
Conclusion

In this report, a semi-analytic solution to the direct and inverse problem of the Laplacian magic window is
proposed and implemented in 2D. The solution works by fitting the target intensity and surface with Zernike
polynomials. The fitting works since the polynomials form a complete set, but precautions need to be made
for an accurate fit. In the report the relevant criteria for accurate fitting are discussed. The results of the
semi-analytic agree qualitatively with the numeric results and work for complex and diverse inputs. The
semi-analytic solution is preferred over a numeric solution since it greatly reduces computational time and
complexity. There is some discrepancy with the numerical results, but these can be explained by the short-
comings of the numerical methods in 2D. Therefore it is suggested that further efforts should be made to more
accurately compare the results obtained by the semi analytic solution. This can be done by implementing the
problem in 3D, which the semi-analytic solution proposed in this report is already able to solve.
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A
SMS2D Method

Simultaneous Multiple Surfaces
The Simultaneous Multiple Surfaces in 2 dimensions (SMS2D) method is a method to construct lenses. It
is an iterative method that uses geometrical optics to find the 2 surfaces of the lens at the same time. The
method described first is a method in 2 spacial dimensions. That means that the final (3-dimensional) lens
will be a rotated version of the end product of the SMS2D method.
The SMS2D method can be described in 4 steps[3]

1. Find starting points

2. Find starting normals

3. Initialise first rays

4. Continue SMS chain until symmetry axis is reached

After which points on the surface of the lens are found like in figure A.1

Figure A.1: A result of the SMS2D method. The entrance aperture NM and exit aperture XY can be seen as well as the emitter plane (E)
and receiver plane (R). The filled dots are found by the SMS method. The empty dots are found by symmetry of the SMS method.

1. Find starting points
It is assumed that the étendue U is a known parameter. This is possible because the étendue describes the
squeezing of the light. Therefore a small étendue corresponds with a small radius of the lens. Comparing
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the étendue from the emitter plane E1E2 to the entrance aperture N M and from the receiver plane R1R2 exit
aperture X Y gives:

U = 2([N ,E1]− [N ,E2]) = 2([X ,R1]− [X ,R2]) (A.1)

Where N , M , X ,Y and E1,E2,R1,R2 are defined in figure A.1 and [P1,P2] denotes the Euclidean distance
between P1 and P2. In equation A.1 a reader can recognise the definition of a hyperbola. These 2 hyperbolas
have foci E1,E2 and R1,R2 respectively. Because U is know, equation A.1 can be written as a parametrization[4]:

(x(φ), y(φ)) = P1 +
(U

2 )− [P1,P2]2

U −2[P1,P2]cosφ
(cosφ+α, sinφ+α). (A.2)

which represent a hyperbola when U < 2[P1,P2] and an ellipse otherwise. For this application, a hyper-
bola is required and P1,P2 are emitter endpoints E1,E2 or R1,R2. Let hE and hR denote this parabolas. This
means that the points N , X should be chosen such that they are on hE and hR respectively. An example can
be seen in figure A.2.

Figure A.2: First step of the SMS method. The parabolas hE and hR are plotted and starting points N and X .

2. Find starting normals
Let the first ray be emitted from E2, refracted at N and X respectively to R2 as shown in figure A.3. Calculating
the normal of the surface at N and X the surface is not a lot of work since the incoming and refracted rays are
known. Let vivivi and vr denote the normalised incoming and refracted rays respectively:

NNN : vivivi = NNN −E2E2E2

||NNN −E2E2E2||
, vrvrvr = XXX −NNN

||XXX −NNN || (A.3)

XXX : vivivi = XXX −NNN

||XXX −XXX || , vrvrvr = R2R2R2 −XXX

||R2R2R2 −XXX || (A.4)

(A.5)

Where ||xxx|| denotes the L2 norm of xxx. Then the normal vector at the surface is

nnn = ni vivivi −nr vrvrvr

||ni vivivi −nr vrvrvr ||
(A.6)



SMS2D Method 46

Figure A.3: Step 2 of the SMS method finds the normal vector at NNN and XXX

3. Initialise first rays
In order to find second point on the second surface -X1X1X1 -, a second ray is emitted from E1E1E1 to NNN . Because the
surface normal is known, the reflected ray can be calculated as follows:

v ′
rv ′
rv ′
r =

n1

n2
vivivi +

n1

n2
(vivivi •nnn)nnn −

√
1−

(
n1

n2

)2

(1− (vivivi •nnn)2)

nnn (A.7)

The derivation of equation A.7 can be found in at the end of the appendix. After normalising v ′
rv ′
rv ′
r we can

find vrvrvr .
Now that the direction of the outgoing ray is known, Fermat’s principle can be used: the optical path length S
between NNN and R1R1R1 must be the same when the path travels via XXX or X1X1X1. This can be precisely stated as

S = n[N , X ]+ [X ,R2] = n[N , X1]+ [X1,R2] (A.8)

Then X1X1X1 can be found as follows[3]

X1X1X1 =NNN +C1vrvrvr (A.9)

where

C1 =
C2 −

√
C3(1−n2)+C 2

2

n2 −1
(A.10)

C2 = nS + (NNN −R2R2R2)•vrvrvr (A.11)

C3 = S2 −||NNN −R2R2R2||2 (A.12)
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Figure A.4: Step 3 of the SMS method. A zoomed in version of this figure can be found in figure A.5

Zooming in on the relevant area around NNN and XXX gives

Figure A.5: Step 3 of the SMS method. The second ray r2 is emitted from E1E1E1 and will be refracted to R2R2R2.

Now we apply the same method for the third ray to find N1N1N1. This is done by emitting a ray from R1R1R1 via XXX
and N1N1N1 towards E2E2E2. The process is illustrated in figure A.6.
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Figure A.6: Step 3 of the SMS method. The third ray r3 is emitted from R1R1R1 and will be refracted to E2E2E2.

4. Continue SMS chain until symmetry axis is reached
The process of emitting a ray from E1E1E1 to the next point on the first surface and using Fermat’s principle to
find a new point on the second surface XiXiXi and the inverse process to find Ni is repeated until the optical axis
is reached. The second iteration of this method can be found in figure A.7.

Figure A.7: The second iteration of the SMS method. This iterations finds points X2X2X2 and N2N2N2.

A first sign of the validity of the found solution the that the lens at the optical axis is orthogonal to the
optical axis. This means that at least the rays from the middle of the emitter plane will be refracted to the
middle of the receiver plane. More sophisticated methods can be used to check the validity of the solution,
but we have already given a proof of concept, so no more attention is given to this problem.

Snell’s law in vector form
In this section, a general result will be derived for the direction of the refracted ray.
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nnn

vi ,⊥vi ,⊥vi ,⊥
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θi

θr

n1

n2

Figure A.8: Refraction of light.

First consider an incoming ray ri which is represented by a normalised vector vivivi which can be decoupled
into a part parallel and orthogonal part vi ,∥vi ,∥vi ,∥ and vi ,⊥vi ,⊥vi ,⊥ respectively. The ray will refract and follow the path of
rr , which can also be decoupled:{

vivivi = vi ,∥vi ,∥vi ,∥+vi ,⊥vi ,⊥vi ,⊥
vrvrvr = vr,∥vr,∥vr,∥+vr,⊥vr,⊥vr,⊥

Where (vi ,∥vi ,∥vi ,∥ • vi ,⊥vi ,⊥vi ,⊥) = (vr,∥vr,∥vr,∥ • vr,⊥vr,⊥vr,⊥) = 0. Now suppose vivivi is known and vrvrvr is to be found. Starting with Snell’s
law

n1 sinθi = n2 sinθr (A.13)

Since the norms of the of tangent parts are equals to the sine - |v∥v∥v∥| = |v|∥v|∥v|∥|
|vvv | = sinθ- , Snell’s law can be written

as
|vr,∥vr,∥vr,∥| =

n1

n2
|vi ,∥vi ,∥vi ,∥| (A.14)

When combining the fact that vi ,∥vi ,∥vi ,∥ and vr,∥vr,∥vr,∥ are parallel and are in the same orientation, and vi ,∥vi ,∥vi ,∥ = vivivi +cosθi nnn
it is found that

vr,∥vr,∥vr,∥ =
n1

n2
(vivivi +cosθi nnn) (A.15)

Using Pythagoras, an expression for the tangent part of the outgoing ray is found

vr,⊥vr,⊥vr,⊥ =−
√

1−|vr,∥vr,∥vr,∥|2nnn (A.16)

This gives

vrvrvr = n1

n2
(vivivi +cosθi nnn)−

√
1−|vr,∥vr,∥vr,∥|2nnn (A.17)

When recognising |vr,∥vr,∥vr,∥| = sinθr = n1
n2

sinθi , where the second equality uses Snell’s law again, the expression

for |vr,∥vr,∥vr,∥| is combined with sinθ2 +cosθ2 = 1 to get the expression for the outgoing ray in known parameters:

vrvrvr = n1

n2
vivivi +

n1

n2
cosθi nnn −

√
1−

(
n1

n2

)2

(1−cosθi
2)

nnn (A.18)

We can simplify cosθi by

cosθi =
|vi ,⊥vi ,⊥vi ,⊥|
|vivivi |

= |vi ,⊥vi ,⊥vi ,⊥| = (vivivi •nnn) (A.19)
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And obtain an expression for the outgoing ray in given parameters[5]

vrvrvr = n1

n2
vivivi +

n1

n2
(vivivi •nnn)nnn −

√
1−

(
n1

n2

)2

(1− (vivivi •nnn)2)

nnn (A.20)
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