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On the load-area relation in rough adhesive contacts 
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A B S T R A C T   

It is well established that, at small loads, a linear relation exists between contact area and reduced pressure for 
elastic bodies with non-adhesive rough surfaces. In the case of adhesive contacts, however, there is not yet a 
general consensus on whether or not linearity still holds. In this work evidence is provided, through numerical 
simulations, that the relation is non-linear. The simulations here presented can accurately describe contact be-
tween self-affine adhesive rough surfaces, since they rely on Green’s function molecular dynamics to describe 
elastic deformation and on coupled phenomenological traction-separation laws for the interfacial interactions. 
The analysis is performed for two-dimensional compressible and incompressible bodies under plane strain 
conditions. Interfaces with various roughness parameters and work of adhesion are considered.   

1. Introduction 

Our understanding of friction relies on Amonton’s law, which states 
that the friction force is directly proportional to the applied normal load. 
The common interpretation of this law is that the friction force increases 
linearly with contact area, which in turn increases linearly with the 
applied normal load. For non-adhesive elastic rough surface contacts, 
state-of-the-art numerical simulations [1–8] have confirmed that there is 
indeed a linear relation between relative contact area and reduced 
pressure: 

arel ¼ κ
�

p
gE�

�

; (1)  

where p is the load divided by an arbitrary but fixed reference area, E� is 
the effective contact modulus, and g is the root-mean-square gradient 
(RMSG) over the nominal contact area. The relationship holds true even 
for Hertzian indenters and for line contacts provided that the reduced 
pressure is defined as p�r :¼ p=ðgr E�Þ where gr is the RMSG over the real 
contact area, as demonstrated in Refs. [9,10]. Experiments performed on 
3D printed rough surfaces seem to confirm the linear relationship [11, 
12]. 

Very recently, Weber et al. [13] succeeded in the endeavour of 
visualizing in situ the increase in contact area during the indentation of a 
glass surface by means of two transparent rough materials: polystyrene 
and polymethyl-methacrylate. They found that contact area does not 

increase linearly with the applied normal load. The reasons for the 
non-linearity in the experiment can be manyfold. In the literature two 
main possible causes for non-linearity have been identified: the plastic 
behaviour of materials [14], and the adhesive interaction between 
contacting surfaces [15,16]. Interestingly, recent numerical studies on 
plasticity, although confined to metals, showed again linear area-to-load 
curves, albeit with a different slope than elasticity [17,18]. 

Regarding adhesive contacts, there is not yet a general consensus on 
the linearity between contact area and normal load. Carbone et al. [19] 
studied contact between adhesive rough surfaces via numerical calcu-
lations, employing a boundary element method (BEM), and analytically, 
using an extended version of Persson’s theory. They found that, even in 
the presence of adhesion, the contact area still linearly increases with 
the normal load. More recently, Rey et al. [20] obtained similar results 
using a fast Fourier transform based BEM algorithm. However, the re-
sults obtained by Pastewka and Robbins [15], using a Green’s function 
technique, and by Violano and Afferrante [16], employing the 
Derjaguin-Muller-Toporov (DMT) model, show a non-linear relation 
between contact area and normal load. The differences observed in these 
works in the load–area relationship, namely linearity or non-linearity, is 
unlikely caused by a difference in the employed methodology, but most 
probably a consequence of the specific selection of roughness parame-
ters and/or interfacial properties. To assess whether this hypothesis is 
correct, we will here perform a comprehensive study where roughness 
parameters, interfacial properties, and elastic properties are varied. 

To this end, Green’s function molecular dynamics (GFMD) 
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simulations are performed to model indentation of flat elastically 
deforming body indented by a rough rigid solid. The adhesive or fric-
tional interactions between the surfaces is described through trac-
tion–separation laws. New insights are provided into the role of 
roughness parameters (root-mean-square height, Hurst exponent and 
small wavelengths), interfacial properties, and material parameters on 
the relation between contact area and normal load. 

The strength of the simulations performed in the current work 
compared with previous studies lies in the way the interfacial in-
teractions are treated. Thanks to the coupling between normal and 
tangential traction–separation laws, it is possible to properly track the 
evolution of the contact deformation also for solids with generic Pois-
son’s ratio. Adhesion between surfaces implies that the lateral 
displacement of the deforming surface is partly constrained by tangen-
tial tractions. This constraint affects the way in which the contacting 
surfaces deform [21]. 

2. Problem definition and method of solution 

A 1þ1–D self-affine rough rigid body indents a flat elastic isotropic 
half-plane under plane strain conditions. The analysis is performed on 
an unit cell, periodic in x-direction (see Fig. 1). The interface is taken to 
be adhesive or non-adhesive. 

The simulation starts with the surfaces being fully out of contact, 
their closest points being at a distance δ0. This is necessary to capture the 
onset of contact between adhesive surfaces. A linearly increasing normal 
displacement Uz is then applied on the rigid indenter and the total 
tractions at the interface are calculated as a function of the penetration 
distance, defined as δ :¼ Uz � δ0. The elastic deformation of the elastic 
surface is calculated using the GFMD technique [7,21–24]. For each 
increment of the applied displacement, the equilibrium position of the 
surface nodes is calculated in reciprocal space using the damped energy 
minimization method [3] with the position St€ormer-Verlet algorithm 
[25]. Since in Fourier space the displacement modes decouple, the 
modes can be damped independently, leading to a fast converging so-
lution. The interactions between adhesive interfaces is controlled 
through cohesive-zone (CZ) constitutive laws that link the surface 
tractions Tcz;n and Tcz;t to the gap functions Δn and Δt, where the sub-
scripts n and t refer to normal and tangential components. Following 
[26], the CZ laws are expressed as 

Tcz;n ¼
φn

δn

�
Δn

δn

�

exp
�

�
Δn

δn

�

exp
�

�
Δ2

t

δ2
t

�

;

Tcz;t ¼ 2
φt

δt

�
Δt

δt

�

exp
�

�
Δn

δn

�

exp
�

�
Δ2

t

δ2
t

�

:

(2)  

Here, ðφn;φtÞ are the works of separation and ðδn; δtÞ are the charac-

teristic lengths. Notice that for (nearly) incompressible solids subjected 
to pure normal loading, the relative tangential displacement of the 
surface nodes is negligible (Δt � 0), as discussed in Ref. [22]. For those 
cases, Eq. (2) reduces to 

Tcz;n ¼
φn

δn

�
Δn

δn

�

exp
�

�
Δn

δn

�

: (3) 

In the case of non-adhesive contacts, where Tcz;t ¼ 0, the normal 
interfacial interaction is controlled by a hard-wall potential. 

When the work of adhesion is zero, the real area of contact is defined 
as the area connecting nodes that interact with each other through 
compressive tractions larger than zero. When the work of adhesion is 
positive, the true contact area is taken to include also the surface under 
tension, and is therefore defined as the area where the normal tractions 
are smaller than a specified tolerance, chosen to be e0:001 ​ ðφn =δnÞ. 

The surface of the rigid indenter is assumed to have a self-affine 
roughness with a Gaussian height distribution. The roughness is gener-
ated by means of the spectral method described in Ref. [27]. The power 
spectrum density function of the self-affine roughness CðqÞ, with q being 
the wave number, is given by 

CðqÞ ¼ CðqrÞ �

8
>>>>>>>>><

>>>>>>>>>:

1 for λr <
2π
q
� L ;

�
q
qr

�� ð1þ2HÞ

for λs;H <
2π
q
� λr;

0 for λs �
2π
q
� λs;H;

(4)  

where CðqrÞ is a scaling pre-factor and the fractal dimension is Df ¼ 2 �
H, with H being the Hurst exponent [19]. Here, λr is the roll-off wave-
length, L is the longest wavelength and equal to the width of the pe-
riodic unit cell, λs;H is the roll-on wavelength, and λs is the smallest 
wavelength. 

The RMSG over the real contact area gr is calculated numerically as 

gr ¼

ffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
g2

i

n

v
u
u
u
t

; (5)  

where n is the total number of contact points and g2
i is the local mean- 

square gradient at point i which is obtained as 

g2
i ¼

1
2

��
hi � hiþ1

l

�2

þ

�
hi � hi� 1

l

�2�

; (6)  

with hi being the height profile of the indenter at point i and l is the 
spacing between the surface nodes. 

2.1. Choice of parameters 

The deformable solid is elastic isotropic with elastic modulus 70 GPa 
and Poisson’s ratio ranging from ν ¼ 0:1 to 0.45. Compared to the solid, 
the indenter is rigid, with Ei ¼ 1000 ​ E. The dimensionless normal work 
of separation, φ�n ¼ φn=ðδnEÞ and tangential work of separation, φ�t ¼ φt=

ðδtEÞ are taken to range from 0.001 to 0.15, i.e. from weak adhesion as 
typical of metals, to strong adhesion as typical of bio-adhesives. The 
tangential-to-normal work of separation is c ¼ φ�t =φ�n. The effect of 
friction is studied by considering two values for the tangential-to-normal 
work of separation c ¼ φ�t =φ�n: c ¼ 0 for frictionless contacts and c ¼ 0:5 
for highly frictional contacts [22]. 

Simulations are carried out for Hurst exponents H ¼ 0:2;0:5; 0:8 and 
root-mean-square heights (RMSHs) hrms ¼ 10;15;30 nm. Convergence 
of the results is guaranteed by selecting εt ¼ λr=L ¼ 8� 1 [10,28] and 
εc ¼ λs=λs;H ¼ 32� 1. The fractal discretization, which defines the num-
ber of wavelengths used to describe the rough profile, is chosen to be 

Fig. 1. Sketch of the analysed 1 þ 1 – dimensional contact problem: a rigid 
body with self-affine rough profile indents a flat elastic body. The simulation 
starts when the surfaces are well out of contact and traction is negligible. 
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εf ¼ λs;H=λr ¼ 512� 1, and the role of the small wavelengths on the 
load-area relation is assessed for εf ¼ 128� 1 and 64� 1. This is performed 
by keeping λr constant and for λs;H ¼ 2:5;10;20 nm. 

To account for the random nature of the roughness, numerical cal-
culations are performed for 10 different randomly generated rough 
profiles for any combination of H, hrms, and εf . Thereafter, the average 
across realization is taken over the obtained numerical results. 

3. Non-adhesive contacts 

First, simulations are performed for non-adhesive contacts. Rigid 
rough indenters with Hurst exponents H ¼ 0:2; 0:8 and RMSH 
hrms ¼ 10;30 nm indent an elastic solid with elastic modulus E ¼ 70 GPa 
and Poisson’s ratio ν ¼ 0:45 and ν ¼ 0:1. 

The curves for relative contact area arel versus reduced pressure 
p�r :¼ p=ðgr E�Þ in Fig. 2 are independent of both the compressibility of 
the solid and the roughness parameters considered. Furthermore, Fig. 2 
confirms that arel increases linearly with p�r in all cases. We find the 
proportionality factor e1:75. This is in line with the findings in Ref. [10] 
for incompressible solids. In the following section, it is shown how 
adhesion affects the dependence of the relative contact area on the 
reduced pressure. 

4. Adhesive contacts 

In Fig. 3 the load-area response obtained in the previous section for 
non-adhesive contacts is contrasted with the response of adhesive con-
tacts with various normal works of separation φ�n. The deformable solid 
is here assumed to be nearly incompressible ν ¼ 0:45 and hence, the 
cohesive law has only normal components (see Eq. (3)). 

The contact area is defined as the sum of the portions of interface 
where there is an interaction between surfaces, i.e., repulsive and/or 
attractive normal tractions, within the specified tolerance. As expected, 
for the same load, the contact area of adhesive contacts is larger than 
that of non-adhesive contacts. More interesting is that, in adhesive 
contacts, the linearity between arel and p�r ¼ p=ðE�grÞ breaks down: at 
small loads contact area increases faster with adhesion, at larger loads 
the increase is less pronounced. Notice that the traction-separation law 
at the interface introduces a characteristic length in addition to the 
lengths that describe the surface roughness. Figure 3b is a zoom-in of 
Fig. 3a at small loads, which allows the reader to see that for adhesive 
contacts the contact area is larger than zero also for negative approach 

displacement. 
For a better understanding of the differences between adhesive and 

non-adhesive contacts, we present separately in Fig. 4 the increase of 
p=E�, arel, gr=g as a function of the penetration distance δ. 

Figure 4a shows that the difference in p� versus δ curves of adhesive 
(various φ�n) and non-adhesive contacts is negligible even at a very small 
contact pressure. At the onset of contact, the curves for more adhesive 
interfaces are slightly lower than those for less adhesive interfaces. With 
increasing the loading, the difference vanishes, because, apparently, the 
attractive tractions are compensated by additional repulsive tractions 
that generate during loading on the contacts. A large difference between 
adhesive and non-adhesive contacts is instead found in how the relative 
contact area arel increases with penetration distance (see Fig. 4b). As to 
be expected, the larger is adhesion, the more the surfaces conform. 

For non-adhesive contacts, normalizing p� with the RMSG calculated 
on the real contact area, gr, leads to a linear relationship between load 
and area [10]. For adhesive contacts, normalizing p� with gr will have no 
such effect, since gr is practically just a constant as can be evinced by 
looking at Fig. 4b. Here, gr is normalized on the constant g. Note that, 
while the normal work of separations varies, the ten realizations of the 
rough profile Fig. 4a–c have the same roughness and therefore g. For all 
adhesive contacts considered in this section, gr=g→1 at very small 
penetration distance. This also means that for adhesive contacts it is 
pointless to distinguish between gr and g for the roughnesses considered 
here. 

As demonstrated in Fig. 4b, the larger the adhesive forces, the better 
the deformable solids conforms to the rough rigid profile, even to the 
finer features of the roughness. This can be better seen in Fig. 5 which 
gives a snapshot, i.e. one out of the ten realizations, of the interface at 
δ ¼ 20 nm, for the cases shown in Fig. 4. With more adhesion, at the 
same penetration distance a larger number of roughness peaks gets into 
contact. Given that the small roughness differs locally quite significantly 
between realizations, the error bars become larger with adhesion, as one 
can see in Fig. 4b. 

In the subsequent sections we will focus on highlighting the effect of 
roughness parameters on adhesion. 

4.1. Effect of roughness parameters 

It is well known that for non-adhesive contacts the area-load rela-
tionship is not only linear but also independent of hrms and H if the 
pressure is normalized on the RMSG (g for surface contacts and gr for line 
contacts). Figure. 6 demonstrates that this is not the case for adhesive 
contacts. The simulations are performed for a solid with Poisson’s ratio 
ν ¼ 0:45, an adhesive surface with normal work of separation φ�n ¼ 0:15 
and contrasted with the line for non-adhesive contacts. The deviation of 
the adhesive curves from the line representing non-adhesion, gives the 
effect of adhesion. The following observations can be made: (1) when 
adhesive rough surfaces differ only by RMSH, (Fig. 6a), the smaller the 
hrms the larger the relative contact area at a given reduced pressure 
p�r ; (2) the smaller the hrms the ‘more pronounced’ is non-linearity. The 
effect of adhesion increases with decreasing RMSH. This is to be ex-
pected, since for smaller RMSH the gap decreases. The effect of Hurst 
exponent on adhesion presented in Fig. 6b, is less neat: it is weakest for 
the smallest Hurst exponents considered, where the RMSG is large, and 
therefore is more difficult to form large patches of contact. In our sim-
ulations, however, it is the surface with Hurst exponent H ¼ 0:5 that 
displays the strongest effect of adhesion while plotting arel � p�r . It is 
noteworthy that non-linearity increases with increasing Hurst exponent 
and that the spread of the simulations also increases with it, given that 
the number of contacts in a unit cell decreases with H. 

Next, we proceed to investigate how the contact behaviour depends 
on the finest roughness features. Simulations are performed for rough 
profiles with fractal discretizations εf ¼ 512� 1;128� 1, and 64� 1. The arel 
versus p�ð¼ p =EÞ curves are presented in Fig. 7a, for Hurst exponents 

Fig. 2. Non-adhesive contacts: relative contact area arel versus reduced pres-
sure p�r . The results are shown for Hurst exponent H ¼ 0:2 (squares) and H ¼
0:8 (circles), and Poisson’s ratio ν ¼ 0:45 (red) and ν ¼ 0:1 (blue). Closed and 
open symbols are for RMSG hrms ¼ 10 nm and hrms ¼ 30 nm, respectively. Note 
that error bars are smaller than the symbols. (For interpretation of the refer-
ences to colours in this figure, the reader is referred to the Web version of 
this article.) 
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H ¼ 0:8 and 0.2. 
For H ¼ 0:8, the arel � p� curve is independent of εf , in line with the 

work by Violano et al. [29]. On the contrary, for H ¼ 0:2, the contact 
behaviour becomes strongly dependent on the smaller wavelengths: the 

contact area increases with increasing εf . This is because when the 
surface does not contain the smaller wavelengths the surface becomes 
smoother and hence, adheres better to the substrate, as can be seen from 
the snapshots in Fig. 7b. 

Fig. 3. (a) Relative contact area arel versus reduced pressure p�r for various normal works of separation φ�n. Dashed black line with the slope e 1:75 corresponds to the 
non-adhesive contact. The roughness parameters H ¼ 0:8 and hrms ¼ 10 nm in all cases. For clarity only a selection of data points is shown. (b) A zoom-in of the figure 
at small loads. 

Fig. 4. (a) Normalized pressure p�, (b) relative contact area arel versus penetration distance δ, and (c) normalized root-mean-square gradient gr= g. The results are 
shown for various normal works of separation φ�n (the same considered in Fig. 3). The roughness parameters are H ¼ 0:8 and hrms ¼ 10 nm. 
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4.2. Effect of compressibility and friction 

Finally, the roles of compressibility and of friction on the load-area 
relation are studied. Here, friction is included through the tangential 
work of separation φ�t . The interface interactions are defined by the two 
cohesive laws in Eq. (2). 

Fig. 8 shows the results for Poisson’s ratio ν ranging from 0.1 to 0.45. 
This figure demonstrates that the arel � p� relation is negligibly affected 
by the compressibility of the solid and frictional properties of the 
interface. 

This is in line with the author’s findings in Ref. [22], where a solid 
was indented by an array of circular punches: when contacts were 
closely spaced the lateral displacement of the surface nodes were 
negligible, due to the interference of the displacement fields of the 
neighbouring punches. 

5. Concluding remarks 

The role of adhesion on the load-area relation in elastic contact 
problems is studied. Simulations are performed using the Green’s 
function molecular dynamics (GFMD) technique for the contact between 

Fig. 5. A snapshot of the interface at the penetration distance δ ¼ 20 nm. The 
results correspond to the cases shown in Fig. 4. The indenter is gray and the 
surface profiles of the adhesive (φ�n ¼ 0:15) and non-adhesive contacts are 
green and red, respectively. (For interpretation of the references to colours in 
this figure, the reader is referred to the Web version of this article.) 

Fig. 6. Relative contact area arel versus reduced pressure p�r for rough adhesive contacts with various values of (a) root-mean-square height hrms and (b) Hurst 
exponent H. The results are shown for the normal work of separation φ�n ¼ 0:15. 

Fig. 7. (a) Relative contact area arel versus normalized pressure p� for various values of fractal discretization εf and Hurst exponent H. (b) Snapshots of a part of the 
interface for rough profiles with εf ¼ 512� 1; 64� 1 and Hurst exponents H ¼ 0:8;0:2. In all cases, the root-mean-square height hrms ¼ 10 nm and the normal work of 
separation φ�n ¼ 0:15. 
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a self-affine rough rigid surface and an initially flat deformable solid. 
The interfacial interactions are modelled using coupled traction- 
separation laws. It is confirmed that the contact area of non-adhesive 
contacts linearly increases with reduced pressure, independently of 
Hurst exponent and root-mean-square height. 

In the presence of adhesion, some key features are observed, as listed 
below. 

� The load-area relation, arel � p�r , is non-linear. Deviation from line-
arity increases with the work of adhesion.  
� Increasing the work of adhesion of a rough surface has negligible 

effect on the total load acting on the interface at a given penetration 
distance, but leads to an increase in contact area.  
� The load-area relation, arel � p�r , depends on Hurst exponent and 

root-mean-square height.  
� Non-linearity is more pronounced for rough profiles with large Hurst 

exponent and/or small root-mean-square height.  
� The effect of adhesion is smaller for surfaces with large root-mean- 

square heights and/or small Hurst exponents.  
� For small Hurst exponents the load-area relation depends on the 

small wavelengths cut-off used to described the roughness. In this 
case, non-linearity increases with increasing the small wavelength 
cut-off.  
� Compressibility and friction can be neglected when investigating the 

load-area relation, since they affect it negligibly. This also entails 
that there is no need to use coupled cohesive-zone laws if one is only 
interested in the normal loading of rough surfaces: a traction- 
separation law in normal direction will suffice. 

We speculate that simulations in previous literature showing line-
arity between contact area and load for adhesive contacts focused on 
surfaces with small Hurst exponent and/or large root-mean-square 
height. This is why non-linearity might have appeared as marginal, as 
well as the effect of the small wavelength cut-off. 
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