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Introduction

In the first part of this report the use of a Kalman filter in the Real Time URBIS
model will be discussed. The Real Time URBIS model is a model which calculates
the concentration NO,, in a city or in an industrialized region. The concentration
NO,, is assumed to be equal to the sum of the concentrations NO and NOy. Nitrogen
oxides are formed by the burning of fossil fuels in traffic and industry, they will arise
if nitrogen from the air and from fuels reacts with oxygen. These nitrogen oxides
reacts under influence of sunlight to air pollution, like smog and acid rain. Nitrogen
oxides can also causes trouble for the eyes and lungs. Therefore the European com-
mission has set out limit values for the concentrations of NOy, thus it is important
to have a good view on the concentrations NO, and with that on the concentrations
NOa,. The limit values for the concentration NOg are given in Appendix 2 of *Wet
Milieubeheer’ [Cramer, 2007].

The Real Time URBIS model simulates the concentration NO,, by adding emissions
from different sources like traffic, residents, shipping and industry. In this report a
Kalman filter will be used to link the model simulations with a series of measure-
ments made on 9 different monitoring stations. With this link a better simulation
for the concentration NO,, can be given. Also a statistical uncertainty interval of the
concentration NO,, can be given.

In Chapter 2, a more detailed explanation of the Real Time URBIS model is given. In
Chapter 3, a statistical uncertainty analysis of the model is made, with this analysis
some ideas for the Kalman filter are constructed. In Chapter 4, the general use of a
Kalman filter is explained. In Chapter 5, the Kalman filter is applied on the back-
ground concentrations in the Real Time URBIS model. In Chapter 6, the Kalman
filter is applied on all the different emission sources. In the last part of Chapter 6,
the uncertainty intervals, calculated with the Kalman filter, will be connected with
the population to give a functional application of this method. The conclusions and
discussion are given in Chapter 7.
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Model and measurements

Real Time URBIS model

Real Time URBIS is a model to determine the concentration NO,, in a city or in an
industrialized region. The model calculates on each hour a concentration NO,, for the
whole region, based on factors like wind, temperature and time. This study focuses
on the Rijnmond area around Rotterdam; the domain of the study is shown in Figure
2.1.

The basis of the Real Time URBIS model is the URBIS model. The URBIS model
calculates 88 annual mean concentrations NO,. These 88 annual mean concentra-
tions are concentrations caused by 11 different emission sources for 4 different wind
directions and 2 different wind speeds. Further is this report, the 88 annual mean
concentrations are called standard concentration fields. Plots of all standard concen-
tration fields are included in Appendix B. Detailed information about the URBIS
model can be found in [Wesseling and Zandveld, 2003].

With the Real Time URBIS model, the annual mean concentrations are used to calcu-
late a hourly mean concentration. The state of the Real Time URBIS model consists
the NO,, concentrations in a large number of grid points in the domain. Mathemati-
cally, the state is described by a vector:

o @.1)

where k denotes the hour. In this study, the state vector is defined on about 94096
grid points covering the Rijnmond area, irregularly distributed over the grid. The
state is computed as a linear combination of standard concentration fields. This is
given in the state equation:

o, = My, 2.2)

where each column of the matrix M is one of the standard concentration fields. The
elements of vector uy represent the weights of each standard concentration field at
hour k. The weights depends on the meteorological conditions (wind direction, wind
speed, temperature) and the moment (month, day of the week, hour).

In Spaubek [2004] and [Kranenburg, 2009] a more detailed description of the Real
Time URBIS model can be found. Note that the Real Time URBIS model described
in those reports has an underlying URBIS model valid for the year 2000, while in this
report the underlying URBIS model is valid for the year 2006. This URBIS model
for 2006 has one large difference with the URBIS model for the year 2000. The
model for 2000 consists of 10 different source categories instead of 11 in 2006, since
an extra source in category traffic is added, namely the source *Zone card’. Further
is the source category 'Boundary’ renamed into ’Rest’.
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Measurements

In the Rijnmond area, there are also 11 monitoring stations, which monitores the con-
centrations NO and NO,. The sum of these two concentrations is called NO,. The
locations of these 11 monitoring stations are also shown in Figure 2.1. Locations 1-6
are stations operated by DCMR!, the locations 7-11 are stations operated by RIVM?2.
Monitoring stations 6 and 11 are located directly next to each other, thus in the Real
Time URBIS model both locations have the same coordinates. Only 9 of these lo-
cations are in the domain covered in this study, locations 7 (Schipluiden) and 10
(Westmaas) are just outside of the domain and will only be used as background sta-
tions. These stations monitores the concentration which is blown into the area from
the rest of the Netherlands. As will described in Chapter 3, the results of the mea-
surements on the 9 locations inside the area can be used to estimate the uncertainty
of the model, by comparing the model results with the results of the measurements.
Further in this report the results of the measurements will be called observations.

The DCMR domain with the locations of the monitoring stations

DCMR - Locations RIVM - Locations

1 Schiedam 7 Schipluiden

2 Hoogvliet 8 Schiedamse Vest
3 Maassluis 9 Vlaardingen

4 Overschie 10 Westmaas

5 Ridderkerk 11/6 Bentinckplein
6 | Bentinckplein

Figure 2.1: Domain of the working area for Real Time URBIS

IDCMR: Dienst Centraal Milieubeheer Rijnmond. www.demr.nl
Environmental protection agency for the Rijnmond area around Rotterdam
2RIVM: RijksInstituut voor Volksgezondheid en Milieu. www.rivm.nl

Dutch institute for public health and environment
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Statistical uncertainty of the Real Time URBIS model

Introduction

In [Kranenburg, 2009], a method is described to compute a bias correction for the
simulations made by the Real Time URBIS model, by comparing the model simu-
lations with the observations made on the 9 monitoring stations. After application
of the Real Time URBIS model, the simulation is adjusted with a value dependent
on the different meteorological conditions (wind direction, wind speed, temperature)
and the moment (month, day of the week, hour). This correction is typically an ex-
ample of post-processing; after applying the model, the model results are corrected
with the aid of the observations. In addition, with the dependencies on the meteoro-
logical conditions and the moment, the origin of the uncertainties in the Real Time
URBIS model can be found. In this chapter, the same method is applied on the Real
Time URBIS model with the underlying URBIS model for 2006. For the year 2006
all the differences between the observations and the model simulations are calcu-
lated. All these differences are used to make a correction on the results of the Real
Time URBIS model.

Log-normal distributions

For all 9 monitoring stations in the area, the observations are plotted in a histogram.
This is shown in the left panel of Figure 3.1. In the right panel of Figure 3.1, the
model simulations for the locations of this monitoring stations are plotted in a his-
togram. For each location, the model simulation is made by a weighted average of
the model simulations on the grid points within a fixed distance from that monitoring
station. The grid can be split into two parts: one grid with distance between two grid
points equal to 100 meters and one special grid with a high resolution on busy local
roads. Therefore the fixed distance to calculate the weighted average for each mon-
itoring station will be equal to 150 meters. All 4 neighboring grid points from the
first grid will then be involved in the weighted average. In Appendix A, the locations
of all the monitoring stations are shown together with the surrounding grid points,
which are involved in the weighted average.

It is important to notice that both the observations as well as the model simulations
have a log-normal distribution. For this reason all corrections should be done in
the log-domain. The main advantage of working in the log-domain is that, when
a correction is added to the state, this correction is made on the logarithm of the
concentration. After correction, the logarithm of the concentration could become
negative but the corresponding concentration itself can not. In fact, an additive cor-
rection on the logarithm of the concentration is the same as a fractional correction on
the absolute concentration:
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3.3.1

3.3.2

In(cg) — In(ep)+ A (3.1
= eln(ck) N eln(ck)+>\ — 6)\Ck (3.2)

where ¢y, is the concentration at time k and A is the correction term. Since the correc-
tion factor e is always positive, the concentrations will remain positive too. Detailed
information about corrections in the log-domain is given in [Kranenburg, 2009].

Observations Simulations

100 150 200 250 300 350 400

Concentration NO, [jug/m" ] Concentration NO, [y

Figure 3.1: Both the observations and the model simulations have a log-normal distribution.

Uncertainty of the Real Time URBIS model

The method from [Kranenburg, 2009] to describe the uncertainty of the model is
now applied on the Real Time URBIS model, with underlying URBIS model for
2006. For the year 2006 all logarithms of the observations made on the 9 monitoring
locations are compared with logarithms of the model simulations. In total there are
at most 9 stations x 8760 hours = 78840 of those differences. Due to some missing
measurements or meteorological data, for 2006 there are only 67080 differences.
With all these differences, the correction on the results of the Real Time URBIS
model is made.

Structural bias

First the differences between the model results and the observations did not have
mean zero, thus there is a systematical error in the model. This structural error causes
a constant correction (A = \.) of the logarithm of the model simulation, which
corresponds with a constant fractional correction of the absolute model simulation.

Wind direction dependency

The differences between logarithms of the observations and the logarithms of the
constant corrected simulations are plotted with respect to the wind direction. The
wind directions are given by 10 degrees accurate, thus in total 36 wind directions
are possible. For each wind direction, all differences which appears during that wind
direction are taken. In Figure 3.2 all the means A; per wind direction are plotted
as blue dots. The standard deviations o; of the differences per wind direction are
represented by the length of the error bars. The values for \; and o; are given by:
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n;

A= niz (In (yik) — In (%)) (3.3)
' k=1
o = ni i ((m (yik) — In <cz’fk>> - /\i)2 (3.4)
' k=1

where n; represents the number of differences that appears during wind direction
i, while y; represents the observations and ¢}"* the model simulations, during wind
direction <.

The green line in Figure 3.2 forms the correction which is added to the logarithms
of the model simulations. The correction on the model is now a function of the wind
direction ¢, thus A = A. + Ayaqir(¢). This green line is a composed sinus function,
that fits best on the differences between the model simulations and the observations.
This best fitting is made with the blue dots and the wind rose in Figure 3.3, the
weights for each blue dot are given in this wind rose. When a wind direction occurs
a lot, the weight must be larger in the calculation of the best fitting sinus.

15

e e Mean difference
—— Best fitting sinus

1.0F

b

Niipeee mHH] ‘ { B '~~~W{

Mean difference

—-0.5 - -

-1.0H

-1.3 NE E SE S SW W NW N
Wind direction

Figure 3.2: Mean differences between the logarithms of the observations and the logarithms
of the model simulations against the wind direction after constant correction.
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Wimdros?.e\I of 2006

Figure 3.3: Wind rose over 2006

Hour dependency

After the correction on the wind direction, all the differences are plotted with respect
to the hour of the day, this is shown in Figure 3.4. In this figure, the means of all
differences per hour of the day are plotted with a blue dot and the standard deviations
are represented by the widths of the error bars, computed similar to equations 3.3 and
3.4. The green line is again a composed sinus function, which fits best on the blue
dots. Because of missing measurements or meteorological data, not every hour has
the same contribution in calculating the best fitting sinus. This best fitting sinus
forms the correction added to the logarithms of the model simulations as a function
of the hour of the day. The total correction on the model is now built from three
parts: a constant part, a function dependent on the wind direction (¢) and a function
dependent on the hour of the day (h):

A= >\c + )\Wdir (¢) + )\hour (h) (35)

After this correction, the differences were plotted against the other input parameters
wind speed, temperature, month and day of the week. It was found that the differ-
ences are no longer dependent on one of these input parameters.
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Figure 3.4: Mean difference between the logarithms of the observations and the logarithms
of the model simulations against the hour of the day, after correction on the wind
direction

3.3.4  Standard deviation of the differences

The standard deviation of the differences was found to be a function of the wind
speed. This is shown in Figure 3.5. The blue dots represent the standard deviation
of all differences as a function of wind speed. This is done with an equation similar
to equation 3.4. The red line is the best fitting exponential function on the standard
deviations per wind speed. In the calculation of this best fitting exponential the
number of times that a wind speed occurs is also taken. When a wind speed occurs a
lot, the weight must be larger in the calculation of the best fitting exponential.

1.0

e e Standard deviations
—— Best fitting exponential

o
o

0.6

o
IS

Standard deviation of the differences

o
]

l:)'00 2 4 6 8 10 12 14 16
Windspeed [m/s]

Figure 3.5: The standard deviations of the differences between the logarithms of the obser-
vations and the logarithms of the model simulations against the wind speed, after
correction on the hour of the day
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Discussion

With the method described above, an uncertainty interval for the concentration NO,,
can be given. In Figure 3.6 the 1o uncertainty interval for the first week of 2006 is
given for the location of the monitoring station in Schiedam. The red dots represents
the available observations made on the station in Schiedam. The described method
gives a useful approximation of the uncertainty of the model, however the uncertainty
of the model is very large at some times.

The next object is to decrease the uncertainty of the model by an improvement of
the model. An indication for the largest inaccuracy of the model is given by the
uncertainty analysis above. The differences between the observations and the model
simulations are mainy dependent on the wind direction. For this reason it is assumed
that the standard concentration fields for the source ’Background’ are not accurate in
the URBIS model. The source ’Background’ corresponds with emission produced in
the rest of the country which is blown into the Rijnmond area. Of course this source
has a large dependency on the wind direction. In Chapter 5, a Kalman filter will be
used to get better estimates of the background concentrations per wind direction. The
advantage of using a Kalman filter is that also the uncertainty of the measurements
is involved in the estimation. First in Chapter 4 the working of a Kalman filter is
explained.

Schiedam
600 T
500 |
= a00f
g
=z
c 300
o
=3
o
=]
c
g
9 200+
(=]
Q
100 k : v e s sl M
" : ..' \\:J\/ ) . w"‘o’ * '.\ 'o’“’. ':w
] el N
0 Sun Mon Tue Wed Thu Fri Sat

First week of 2006

Figure 3.6: Uncertainty interval for the first week on location Schiedam
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Kalman filter

Introduction

A Kalman filter is mostly used to smooth random errors in the model of a dynamical
system. In Figure 4.1 a schematic representation of the working of a Kalman filter
is given. The simulations made by the model for time step k are corrected with the
aid of a measurement on time step k. In this correction, also the uncertainties of the
model and the measurements are taken into account. This application is very useful
in a real time application such as the Real Time URBIS model. Detailed information
about a Kalman filter can be found in [Heemink, 1996] and [Welch and Bishop,
2006].

noise

= Model

X
“kH

Filter K

k: i+

o
corrected resuft

Figure 4.1: Schematic representation of the Kalman filter

Algorithm of Kalman filtering

In this section the working of a Kalman filter is explained with a simple one di-
mensional example. The simulations made with the Real Time URBIS model, for
location Schiedam are compared with the observations on location Schiedam. This
is done for the year 2006, in this year the Real Time URBIS model gives for 7906 of
the 8760 hours a concentration NO,,. For the other hours, one of the meteo input data
is missing, thus the model cannot give a result. For 8603 of the 8760 hours there is
an observation, on the other hours, the measurement was incorrect or missing. When
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the model does not give a result, the Kalman filter cannot give a result on that time
step. When there is no measurement, the Kalman filter can give a result, which is
computed from the previous time step. In the figures in this chapter there will be
some "holes’, these are due to the missing model data.

Dynamical system

First of all it is important to have a well defined dynamical system. For the example
in Schiedam, this dynamical system is given by:

In(c) = In(cf) + (4.1)
Ver1 = oY+ Bewr  wp~ N(0,1) (4.2)

In this equations the value ¢y, is the concentration of NO,, on time step k on location
Schiedam. Every time step the Real Time URBIS model calculates a concentration
NO, on location Schiedam; these are called ¢j*. Because of the log-normal distribu-
tion of the concentration NO,, the dynamical system deals with the logarithms of the
concentration NO,.. More about this is discussed in Section 3.2 and in [Kranenburg,
2009]. The parameter ~; is an estimate for the difference between the logarithm of
the real concentration and the logarithm of the model result, also called the perturba-
tion on the model. With a Kalman filter these perturbations ; will be estimated.

This estimation does not lead to a computation of the optimal value for 7. Instead
the result after application of the Kalman filter is that the value of v can be found
in a Gaussian distribution with mean 4, and a variance pi. With this Gaussian dis-
tribution, the value for In (¢;) can be found in a Gaussian distribution with mean
(In (¢*) + 4%) and variance p3. This all leads to an uncertainty interval for the log-
arithm of the concentration NO, at every time step and with that, an uncertainty
interval for the absolute concentration NO,; .

For the perturbations, it is assumed that a perturbation at time & is correlated with
the perturbation on time k£ — 1, but that it also has a random component. A suitable
mathematical description is an ’AR1’ (auto-regressive 1) process, this is also called
"colored noise’. The temporal correlation is described by the parameter o, which
also appears in the formula for the amplitude of the random contribution:

Bkz = vV 1-— 0620k (43)

When a = 0, the perturbation only has the random process, thus only white noise
with standard deviation o.

When « is close to one, the temporal correlation is strong and the fluctuations per
time step are small. The value o is computed from:

a=e VT (4.4)

where 7 is a de-correlation scale. In this example the value of 7 is chosen equal to
12, such that the perturbation is practically independent of the perturbation 12 time
steps before.
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Kalman filter form

For application of the Kalman filter, the dynamical system has to be written in the
Kalman filter form:

Vo1 = vk + Brwi wi ~ N(0,1) 4.5)

In(yx) = HW()+v)+ve v ~N(0,77) (4.6)

In here y;, is the observation on time step k, and H is the system operator, which
projects the model state onto the observations. The observation error v, represents
the error of the measurement, combined the instrumental error and the representation
error, which is supposed to be Gaussian with zero mean and variance r,%.

For the example on location Schiedam, the system operator H is equal to 1, which
means that the observation is just the model plus some perturbation. The value of
T 18 assumed to be equal to 0.2. This means that the logarithms of the observations
have an uncertainty of 20%. Also the value oy is set to 0.2 too, which means that the
perturbation on the model also has an uncertainty of 20 %.

The Kalman filter process could be started with initial values 9 = 0, and p3 = 0;
this is equivalent to the assumption that the expected concentration at time 0 equals
the model result and the uncertainty is zero at this time.

Forecast step

In the first step of the Kalman filter, a forecasted mean ’y,]: of the perturbation is
calculated with the mean from the previous time step. This forecasted mean is the
expectation of v, :

;}’I{H = E[vk11]
= E oy + Brws]
oE [vk] + BiE [wi]
= aF [y]
= aY 4.7

where is used that E [wy] = 0. For the example of Schiedam the temporal correlation
is stated:

a=ec Y12 x50.92

Also a forecasted variance (p£ +1) is calculated with the variance from the time
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step before:

(he)” = VARGus)

= E[(s1 —Elws))?]

= E (mk + Brwr — Efov +Bkwk])2}

- E (o«m + Brwr — aE [yx]) }

= EBf(a(n~Ebw) + un)’]

= E[a? (3% — B [w])? + 208 (3% — B [w]) g + 57wf]

= o’B (% ~ Bl

= o’E [(% — B
= a’VAR () + 57
= o? (pk)2 + (1 — a2) O',% 4.8)

2} + 2aBkE [y — E [w]] E [wi] + BLE [wi]

)
7] + 8

where the independency of 7, and wy, is used, as well as E [wy,] = 0 and E [w?] =
VAR (wk) = 1.

Analysis step

In the second step, the Kalman filter analyzes the results of the forecast step with
an observation. A basic assumption in a Kalman filter is that the mean after the
analyzing step 7} is a linear combination of the forecasted mean and the difference
between the logarithm of the observation and the logarithm of the model simulation.
This results in an analyzed mean which is the forecasted mean plus a perturbation
relative to the difference between the observation and its related simulation:

i = A+ K () = H (0 () +500)) @9

. o . 2. .
The variance in this analyzing step (pz +1) is created by the variance from the fore-
cast step and the variance from the representation error of the measurements:
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(W) = VAR (i)
= E[(wn — Blwn))?]

= E :('YkJrl - ’AYJ?+1)2}

= E (’Yk—i—l - <“AY;J:+1 + Kgt1 (hl (Ykr1) — H (hl (i) + %{H))))Q}

= E (’Yk+1 - (’%fﬂ + K1 (H (In (6%1) + 1) + Vi)
m Y 2
—H (In () +3141))) (4.10a)
2
= E [((1 — Ky+1H) (’Yk+1 - 7}:“) - Kk+17/k:+1) }
2 NS

= E|(1-Ky1H) <7k+1 - ’Yk+1)

—2Kj41 (1 — Ky H) <%+1 - %f;rl) V1 + K;3+1V;3+1}
= (1-KpH)’E [(7k+1 —-E [’Yk+1])2]

+2Kp1 (1 — K1 H) E [(’Ykﬂ - ’AY;{HH E V1] + K E [ 44]

2

= (1- Ky H) <p£+1) + Ki 1T (4.10b)

where the independency of 5 and vy, is used, as well as E [v 1] = 0and E [}, | =
1. In line 4.10a, the Formula 4.6 is used.

After this analyzing step, the values for ;! and (pz)2 are the mean 4, and the variance
(pr)? for the state of the system on time k.

A common choice for K, is the minimum variance gain. For that gain, the value K,
is chosen such that the variance (pz)2 reaches a minimum. To obtain the minimum
variance, the solution for Ky of
2
a
9 (Piy1)

=0 4.11
0Ky 11 11

has to be found. This is done in the next formula:

2

9 (pZH) -0
0Kk
P
2Kpi1riyy — 2H (1 — Kpy1 H) <P£+1> =0
2K 41 (7"1?:+1 + H? <p£+1) ) = 20 (pk+1>
2
i (pl)
Kiut 4.12)

Because of the second derivative
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0? (Pk+1)2

2H2< / )2+2r2 >0
8K13+1 DPiy1 k+1

(4.13)

this extreme corresponds with a minimum.

If this minimal variance gain is used in the expression for the variance after the
analysis step, this expression can be simplified to:

2

(p%+1)2 = (1- Kp41H) <p£+1) (4.14)

Simple example of Kalman filtering

All steps of the Kalman filter are applied on location Schiedam for the first week
of 2006. Figure 4.2 shows for the first week of 2006 all the model simulations and
observations. At every hour the logarithm of the model result is shown together with
the logarithm of the observation.
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Figure 4.2: Logarithms of the model simulations and the observations for the first week of
2006 on the monitoring station in Schiedam

In Figure 4.3 all steps of the Kalman filter are applied on the model results and the
observations for the first week of 2006. The logarithm of the real concentration can
be found in a Gaussian distribution. The 1o interval is given by the blue lines, this
interval corresponds with:

[In (model result) + 4 — p, In (model result) + 4 + p] (4.15)

where 4 is the mean after the Kalman filter and p corresponds with the square root
of the variance after the Kalman filter. It is clear that in this case the uncertainty
interval is mostly between the model result and the observation. In Section 4.3, it
will be shown how this interval depends on the several input parameters 72, o and

o2,
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Figure 4.3: Kalman filter applied on the first week of 2006 on location Schiedam

In Figure 4.4, it is shown what happens when there is a certain period without obser-
vations. When there is no observation, only the forecast step of the Kalman filter is
used. The mean value 4 tends to the model results and the standard deviation p tends
to the standard deviation of the model.

In the left panel of Figure 4.4 there are no observations analyzed, thus the uncer-
tainty interval tends to be around the model and the width of the interval corresponds
with the standard deviation of the model. In the right panel there are no observations
analyzed between time step 15 and time step 90. Between those time steps the un-
certainty interval after the Kalman filter tends to the model. After time step 90, the
Kalman filter analyzes the observations again and the intervals are again between the
model results and the observations.

In Figure 4.5 this phenomenon is better visible. In this figure, the differences be-
tween the model result and the measurement outcomes are shown, with black dots.
The intervals in this figure are just the intervals [ — p,% + p]. When there are no
measurements in the analysis step, the mean of the interval tends to zero and the
width of the interval corresponds with the variance of the model. If the observations
are analyzed again the mean of the interval lies between zero and the black dots
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Figure 4.4: Kalman filter applied on the first week of 2006 on location Schiedam, In the left
panel there are no measurements in the analysis step. In the right panel there are

no measurements in the analysis step between time steps 15 and 90
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4.3

4.3.1

Residuals
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Figure 4.5: Uncertainty interval of the perturbations, the black dots are the differences be-
tween the outcomes of the measurements and the model. In the left panel there
are no measurements in the analysis step. In the right panel there are no mea-
surements in the analysis step between time steps 15 and 90

Sensitivity tests

In this example for Schiedam, some parameters can be changed to get a better view
on their influence. When some parameters are changed the behavior of the Kalman
filter is different.

Uncertainty of measurements (1)

The first parameter to change is the uncertainty of the measurements (r2). In Figure
4.6, it is shown what happens when there is respectively a small and a large uncer-
tainty. The left panel of Figure 4.6 shows that if the uncertainty is small, the interval
after the Kalman filter is close around the measurements. The width of this inter-
val is also small, due to the small uncertainty of the measurements. The right panel
in Figure 4.6 shows that, when the measurements have large uncertainty, the inter-
val after the Kalman filter is around the model results. The width of the interval is
approximately as large as the uncertainty of the model.
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Figure 4.6: Kalman filter applied on first week for location Schiedam with uncertainty of the
measurements assumed small v = 2% (left panel) and large v = 200% (right
panel)
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Temporal correlation parameter (o)

The second parameter to change is the temporal correlation parameter «.. In Figure
4.7, the intervals of the perturbations are shown. In the left figure 7 = 1, thus a =
e~ Y7 ~ 0.37, in the right figure 7 = 250, thus & = e~ '/7 ~ 1.00. The left panel of
Figure 4.7 shows that, when « is small, there is hardly any temporal correlation. It is
possible to get high fluctuations of the interval. If there are no observations analyzed
from time step 15 till time step 90, the mean of the perturbation will tend rapidly to
zero, the width of the interval will rapidly tend to the uncertainty of the model. The
right panel of Figure 4.7 shows that if « is large, the temporal correlation is large
and the interval does not make large fluctuations. For that reason the mean of the
interval will tend slowly to O when there are no measurements analyzed from time
step 15 till time step 90. Also the width of the interval will tend slowly to the width
corresponding with the uncertainty of the model.
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Figure 4.7: Uncertainty interval for the perturbation for location Schiedam for the first week
of 2006, with time correlation assumes small o == 0.37 in the left panel and large
a = 1.00 in the right panel.

Uncertainty of the model (o)

The last parameter to change is the uncertainty of the model 0. In Figure 4.8, it is
shown what happens when there is respectively a small and a large model uncertainty.
In the left panel of Figure 4.8, the Kalman filter is applied with relatively small model
uncertainty. The interval after the Kalman filter mostly follows the model and the
width of the interval is also small because of the small uncertainty of the model. The
right panel of Figure 4.8 shows the uncertainty interval when the model uncertainty
is relatively high. The interval is close around the observations, while the width of
the interval corresponds with the uncertainty of the measurements.
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4.4

4.4.1

4.4.2
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Figure 4.8: Kalman filter applied on the first week of 2006 for location Schiedam, with model
uncertainty assumed small o, = 2% in the left panel and large o, = 200% in
the right panel

Higher dimensional Kalman filtering

The algorithm described in Section 4.2 is an algorithm for a one dimensional prob-
lem. This algorithm can easily be extended to a higher dimensional problem. This
is also explained with an example of the Real Time URBIS model. In the Rijnmond
area there are 9 locations where the concentration NO, is measured. On each of
these 9 locations there is a real concentration NO,, called ¢,;, (vector of length 9).
Also the Real Time URBIS model gives for every hour a concentration NO,, on each
location, called ¢;". Again it is necessary to work in the log-domain, thus v, is the
perturbation on the model to estimate the real concentrations.

Dynamical system

The dynamical system of this problem:

In(g) = In(q') +7, (4.16)

Y1 = Ay twr  w~N(0,Qk) 4.17)

where In(c;,) stands for a vector with logarithms of the concentrations.

The dynamical system has become a matrix-vector equation, where matrix A re-
places « as time correlation parameter. In the example over all locations A is a
diagonal matrix with time correlations «; on the diagonal representing the temporal
correlations for each entry of I Q) 1s a covariance matrix, built from the temporal
correlation and the uncertainty of the model. The matrix () is diagonal with elements
g = (1-af) o},

Kalman filter form

The dynamical system has to be written in Kalman filter form:

V1 = Ay twr  wr~N(0,Qk) (4.18)
1“@;@) = H(ln(QkHlk)Jrzk v ~ N (0, Ry) (4.19)
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where Ry is a covariance matrix with uncertainty of the measurements. The matrix
Ry, is also a diagonal matrix with elements r , the uncertainty of each entry of the
vector with observations ln(gk), H is now a hlgher dimensional system operator,
which projects the model state onto the measurement outcomes.

The result after the Kalman filter is again that the vector 7, can be found in a Gaus-
sian distribution with mean jk and covariance matrix P.. With this Gaussian dis-
tribution, the logarithm of the concentration NO,, can be found in a Gaussian distri-
bution with mean (In(c}") + jk) and covariance matrix P;. The value for the mean
of v,, called ¥, is simply E[lk] Py, is a covariance matrix with covariances be-
tween the entries of state vector , . On the main diagonal of a covariance matrix are
variances. From this diagonal, the uncertainty interval for each entry of 7, can be
computed by taking the square root of these variance.

Forecast step

In the forecast step the mean ji +1 is computed with the mean ¥ k from the time step
before:

Vi = E [1k+1]
= B {Alk + Qk}
= AE [Zk] + E wy]
- ]

= A%

o (4.20)

where is used that E [w;| = 0.

The covariance matrix P,f 41 0fy . is as in one dimension a function of the covariance
matrix from the time step before:

Plg-&-l - C(?V (lkﬂ)
- B _<7k+1 -E [1k+1D (lk+1 -E [’YHJ)T}

= () - 5,) () - 1) |

- B[4(5-1) (- 3) 4 4 (1 -2) 4"
+A (lk - jk> wp + Mﬂ
= ACOV (7,) A" +E[w]B[ (7, - 4,)] A7

+AB [ (7, — 4, )| B [w] + COV (wy)
= APAT +Qy “.21)

where the independency of wy, and v, is used, as wellas E [w;,] = 0 and COV (wy,) =

Q-
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4.4.4

Analysis step

In the analysis step the results of the forecast step are analyzed with a series of
observations. The mean from the forecast step is analyzed with a linear Kalman gain
K, such that the mean after the analysis step is similar with the one dimensional

case:

Yoy = j£+1 + K <ln <Qk+1) —H (ln (cii1) +j£+1>> (4.22)

The covariance matrix after the analyzing step is as in the one dimensional case, a

function of the covariance matrix from the forecast step:

a
PkJrl

= oV (,,,)

- b |:<7k+1 - thD <lk+1 —B [VHJ)T]

= E[(lkﬂ - ﬁﬂ) (lml B jz+1>T]

= B Klkﬂ B <7k+1 + Ky (ln (yk‘+1) —A <ln (cia) + 7k+1))>)
T

(lkﬂ - (7k+1 + Kep (hl (yk+1) - H (m (ci1) +1£+1)))> }

E [<1k+1 7k+1 K1 (H (m (i) + lk+1> T Vi1
—-H <ln (QZ‘H) +j£+1>>)
(lkJrl ’yk-Jrl Kk"rl (H (hl (an-‘rl) + lkJrl) +Zk—i—l
m 2 f T
(e +5L)) ]
B[(( = Kin) (35, ~ 1) = Eniiin)
Af T
(U — Ky H) (lk+1 _lk+1) - Kk+12k+1> }
~f ~f T T
E [(I — Ki1H) <1k:+1 _lk+1) (lkﬂ _lk+1> (I = Ky+1H) ]
-E [(I — K41 H) <lk+1 - iﬁﬂ) ZE—HKI;F—H}
~ f T T
—-E [KkHVkH <1k+1 - 1k+1> (I — Ky+1H) }
+E Ky 1241 Vi1 Kji ]

- KB (s Ba]) (s Blrea]) ] - o
+ K1 [V Vi K

(I — Ky  H) COV ( ) (I = K1 H)' + K1 COV (v411) Ky

(I — Kypr H) Pl (I = Kyt H)T + Kpyt Ry Ky (4.23)

D1

where the independency of 7, and vy, as well as E [;] = 0 and COV (v,) = Ry.
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Also in this higher dimensional problem it is common use to take for K} the gain
that minimizes the variance P{ in [ norm. This gain is expressed similar to the one
dimensional case:

—1
Ky = P/HT (HP,;‘ HT + Rk) (4.24)

As in the one-dimensional case, the expression for the covariance matrix can be
simplified to:

P, = (I-KynH)P] (4.25)

k+1

More information about higher dimensional Kalman filtering can be found in [Segers,
2002]
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Kalman filter on background concentrations

Introduction

As described in Section 2.1, the mathematical description of the Real time URBIS
model is:

& o= ML (5.1)

The value ¢} is the concentration NO, calculated by the model, while each col-
umn of M corresponds with a standard concentration field, computed by the URBIS
model, shown in Appendix B. The vector p, represents the weight for every standard
concentration field on time k.

In Chapter 3, the comparison between the model simulations and the observations
shows that the model simulations have some inaccuracies. In that chapter, it was
shown that the differences between the model simulations and the observations de-
pends on the wind direction and the wind speed. This analysis is done for all stations,
thus it is assumed that the dependency on the wind direction is the same for the whole
area. It is possible that the dependency on the wind direction is caused by an inaccu-
rate local emission source, but it is not likely that an inaccurate local emission source
influences all stations.

The figures in Appendix B shows that the standard concentration fields for the emis-
sion source 'Background’ are the same for every wind direction and wind speed.
This is contradicting with the ideas of Chapter 3. Therefore the emission from source
’Background’ is marked as the inaccurate emission source. This source is typically
a source that has to be dependent of the wind direction and the wind speed.

It is likely that the wind dependency found in Chapter 3, is caused by the lack of
wind dependency in the source *'Background’ in the URBIS model. In this chapter
the standard concentration fields for this emission source will be corrected with a
Kalman filter. The idea is that the correction is dependent on the wind direction and
the wind speed.

Figure 3.2 gives an idea of how the standard concentration fields have to be corrected.
When the wind is from direction north-west the model simulation is too high, thus
the concentration fields from directions west and north have to be lower. When the
wind is from direction south-east, the model simulation is too low, thus the standard
concentration field from directions east and south has to be higher. Figure 3.5 gives
the idea is that when the wind speed is high, the concentration is lower because of a
larger dilution of the emission.

This application of the Kalman filter will also lead to an uncertainty interval of the
total concentration NO,, for every time and location in the Rijnmond area.
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5.2

521

Kalman filter

To make a correction on the standard concentration fields, every field gets a correc-
tion factor e7-* for each hour k. These factors are larger then zero, thus there is no
problem with negative concentrations. Adding these corrections to the model from
Equation 5.1 leads to the following equation for the corrected model:

38
o = D pieme™t (5.2)
i=1

In this equation vectors m,; are the columns of M, representing the standard con-
centration fields. In the log-normal distribution the expected concentration E [c;] is
given by:

88
Eley] = > pigmelo /P (5.3)
i=1
where 4; . is the median of «y; ,, and p; j, is the standard deviation of each entry of
Yi k-

Dynamical system

In Chapter 3, the idea is that the background concentrations are not accurate in the
model. The other fields were supposed to be good enough, thus the correction factor
on those fields are stated equal to one (y; = 0) for ¢ = 9..88. This leads to the
following expression:

8 88
> g+ e (5.4)
i=1 =9

The vectors m; for ¢ = 1..8 corresponds with the standard concentration fields for
the source: ’Background’, these fields have a correction e7+*. The second term of
Equation 5.4 is not dependent of any +;, thus a constant called g;:’d. This constant de-
scribes the model simulation for all sources, different from the source ’Background’:

88
gt = > (5.5)
=9

Because of the log-normal distribution of the model simulations, a transformation to
the logarithms of the simulations is required:

8

In(¢') = In (Z (1 pme+) +C?’d> (5.6)

i=1

This is a non-linear equation for 7, . The Kalman filter requires a linear model,
therefore a linearization of this equation is made around ~y =0
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8
! <Z (b mie™") CZLd) = In (g + )

=1
7=8
Mg kT
ol ma| L tO (1k 'jk>(5.7)

where gzn’b is the concentration calculated by the model for the source: ’Back-
ground’:

8
b
aqr = Z i k1Y (5.8)
i=1
In Equation 5.7, the quotient of two vectors is defined as the element wise quotient.

The dynamical system for the background concentration will then become the fol-
lowing:

j=8

Mg k1 5
In(c) = In (g’,f’b +QZL’d> + ﬁ Yy (5.9)
Vet Ay, +w,  w~N(0,Q) (5.10)

The first equation is the linearization of the equation for the logarithm of the con-

centration, the second equation is the auto-correlation process for the series of per-
k=n

turbations {yk}k , with n = 8760, the number of hours in a year. In the Kalman
Trf iy

filter, an estimate of the uncertainty interval of the vector , will be found. This

uncertainty interval of y X will then be used to get a better uncertainty interval for the

total concentration at time k.

The interpretation of the dynamical system is now that the logarithm of the real
concentration is the logarithm of the model simulation plus a correction on the back-
ground. The correction on the background is a temporal correlated process, the tem-
poral correlation is calculated in Section 5.4. The covariance matrix () is assumed to
be independent from time and this matrix is built from the temporal correlation and
the model uncertainty. Matrix () is a diagonal matrix with on the main diagonal ele-
ments qZ-Q. This is a colored noised process driven by a white noise process, assuming
that both the temporal correlation and the uncertainty of the model are independent

of time:
¢ = /1-alo; (5.11)

where o; corresponds with the overall uncertainty of the perturbations.
Kalman filter form

The dynamical system in Equation 5.9 and 5.10 has to be written in a Kalman filter
form. There are 9 series of observations y, which are made on the 9 monitoring
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stations in the domain. This series of observations have to be compared with the
model results.

This leads to the following system of equations in Kalman filter form:

Vit Ay, +wy (5.12)
In (Qk> = H (ln (g}?’b + g?’d>
j=8
Mg k15

Y | T ve~N(O,Rp)  (5.13)

j=1

m,b m,d
(&3 + Cr

Matrix H is the system operator which projects the model state onto the observations.
The covariance matrix R represents the uncertainty of the logarithms of the observa-
tions, combined the instrumental error and the representation error. This matrix R is
a diagonal matrix with diagonal elements riz, the values for r; will be estimated in
Section 5.3. To simplify notations, the system is rewritten to:

Yooy = Ayt (5.14)
g, = Hey,+vp v~ N(0,Ry) (5.15)

where vector y k and matrix H, are defined by:

j, = In (yk)len<g7]?’b+gkm’d> (5.16)
j=8
5 Mg k15
Hy, = H|—y— (5.17)
(T P

5.2.3  Forecast of background correction

On this Kalman filter form the algorithm for the Kalman filter can be applied. The
forecast step gives then the following formulas for the expected median j{ and the

variance P,{ of 7

~f o A
Yr = A% (5.18)
Pl = APAT1+Q (5.19)

5.2.4  Analysis of background correction

In the analyzing step, the filter makes a comparison with a series of observations, in
this case 9 observations per time step for the 9 monitoring stations in the domain.
This leads to the following formulas for the expected median 4} and variance Py’ of
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s
Yo = A+ Ko (Qkﬂ — Hi14] +1) (5.20)
- N T
P = <I— Kk+1Hk+1) (P,Ll) (I— KkHHkH)
+ K Re K (5.21)

where K11 is the Kalman gain that minimizes the variance P, ;. This Kalman gain
is given by:

~ ~ ~ —1
Ke = PLAT (HPLAT + Ry (5.22)

The values ja and P, are stated as the mean and the covariance matrix for -y on time
step k, and will be used as input for the next time step.

Uncertainty of the observations

The observation error (R in Equation 5.13) is an important parameter in the Kalman
filter. Section 4.3 shows the influence on the solution when parameter 2 is changed.
Because of R is built from all 72, the observation errors of each entry of the observa-
tion, the influence of covariance matrix R is also large.

The uncertainty of the measurements is assumed to be the square of a percentage
(rgrac) of the outcome of the measurement:

2 2
Rii,k = rfracyi,k
where g, Will contain both the instrumental error and the representation error.

At location Bentinckplein in Rotterdam, two monitoring stations are located directly
next to each other, one station from DCMR and one from RIVM. With the two series
of observations made on these two stations, an indication of the instrumental error
can be found. In Figure 5.1, the logarithms of the observations made on these two
stations are shown in a scatter plot. An assumption for the logarithm of the real
concentration at this location is the mean of the logarithms of the two observations:

In (yx) + In (24)
2

where y; is the real concentration at time k and yy, z;, are respectively the observa-
tions on the DCMR and the RIVM station.

In (yz)

(5.23)

In Figure 5.2, a histogram with differences between the logarithms of the observa-
tions at the DCMR station and the assumed logarithms of the real concentrations is
shown. The red line is the probability density function of the normal distribution
with mean O and standard deviation 0.08, this standard deviation is the same as the
standard deviation of the differences plotted in the histogram.

The peak of the histogram is not located on zero, which means that the annual mean
concentration is not the same on both stations. The annual mean on the RIVM station
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is larger than the annual mean on the DCMR station. Although the normal distribu-
tion did not fit very well with the histogram, the assumption that the differences are
normal distributed with standard deviation 0.08 is at least a good approximation.
This corresponds with an uncertainty of the logarithm of the measurements of 8 %.
This will be used as an estimate for the instrumental error in r¢.,., a random noise on
the observation. The histogram for the RIVM station is the same as for the DCMR
station, but then the negative version so that the histogram is mirrored in the y-axis.

The contribution of the representation error is not easy to calculate, this will be done
by a method of trial and error. The Kalman filter will be applied with different values
for rg,c > 0.08 to obtain the optimal value for 7.

The last assumption is that the observation error is the same for all stations, and not
correlated between the stations. The matrix R is then a diagonal matrix with on the
main diagonal elements rfracyjz.

Logarithms of concentrations NO, [ug/m® ] at Bentinckplein
7.0 . . . . : . .

6.5} .
6.0 i
5.5}

5.0F

RIVM-station

4.5F

4.0

3.5F

i I I I I I I
3'%.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
DCMR-station

Figure 5.1: The logarithms of the observations of the two monitoring stations at location
Bentinckplein
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Bentinckplein-DCMR

90.6 -0.4 -0.2 0.0 0.2 0.4 0.6

In{observation at DCMR station) - assumed In(real concentration)

Figure 5.2: Histogram of the differences between the logarithms of the observations and the
assumed logarithm of the real concentration at location Bentinckplein. The red
line is the probability density function of the normal distribution with mean zero
and standard deviation 0.08.

Temporal correlation parameter

Another important parameter is the temporal correlation. In the dynamical system
given by Equation 5.9 and 5.10, the matrix A contains the temporal correlation pa-
rameters c; j for the perturbation on the logarithm of the several background con-
centrations. The monitoring stations in Schipluiden and Westmaas, numbers 7 and
10 in Figure 2.1, are two stations which are located far away from industry sources
or main roads. These locations are chosen to obtain estimates of the background
concentrations. With the observations made on this stations, it is possible to get an
estimate for the temporal correlation parameters.

In general, the correlation (p) between two series of measurements {y; };jand {z;}"
could be computed with the following formula:

ol (s —2)
p = n; o - (5.24)

z

where g, Z are the mean of the series {y; };- ;and {z;},,, and oy, o, are the standard
deviations of the series {y;};— and {z;}]_;.

Assumed is that there is no correlation between the perturbations from different wind
directions and wind speeds. The matrix A will then be a diagonal matrix with on the
main diagonal elements a;. An estimate for a; is made with Equation 5.24 from two
series of measurements {z };_ ;" and {z;},_, , where z is the difference between
the logarithm of the observation and the logarithm of the model simulation at time
step k on location Schipluiden:

zr = In(yg) —In(c}") (5.25)
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Another estimate for «; is made with the differences on location Westmaas. For both
locations this is done for m € [0, 60].

Both locations Westmaas and Schipluiden are outside the model domain, thus there
is no model simulation. Because of both stations are assumed to be background
stations, the concentration is caused mainly by the background. This background
is assumed constant, therefore the calculation of the correlation could be done with

2k = In (yg).

For every period, the correlation is calculated for the perturbation on time k£ com-
pared with the perturbation on time k+m. In Figure 5.3 these correlations are plotted
with respect to the period m. This figure shows some peaks at period 24 hours, and
period 48 hours. This means that the correlation has a daily pattern. This is a rea-
sonable idea, because it is expected that the emission in Schipluiden and Westmaas
is mostly produced by people living in Schipluiden and Westmaas.

A reasonable assumption is that the concentration on time step k£ does not depend on
the concentration on time £ —m when m is large. Therefore the correlation between
the perturbation on time & and the perturbation on time &+ m should go to zero when
m — o0o. Mathematically there is a correlation between the concentration on time
step k and time step k-+m, this can be understood by the time patterns in the emission
and diurnal cycles in meteorological parameters. For example the concentration on
Monday at 08:00 in the morning is roughly the same as the concentration at Tuesday
08:00 in the morning. Mathematically this gives a high temporal correlation for
At = 24, but physically this concentrations are not related. For that reason it is only
important to look at the temporal correlation for a few hours.

In Figure 5.3, a fitting exponential function is drawn for the first few periods. In this
case the formula for this function is o (At) = e~®¥/12, The de-correlation parameter
7 = 12 gives the idea that the concentration on time k£ + 12 is not dependent on the
concentration at time k.

Finally this de-correlation parameter 7 = 12 must be seen as an estimate. This
estimate is obtained with varying wind speeds and wind directions. When the wind
is with constant speed from the same direction, the correlation is perhaps different.
In the application an optimal value for each «; will be found by testing the Kalman
filter with different values for each «;.
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Figure 5.3: The temporal correlation for background stations Schipluiden and Westmaas.
The black line corresponds with correlation o (At) = e=A/12

Kalman filter runs

The application of the Kalman filter, assuming the model uncertainty o equal to 0.4,
leads to a calculation of ¥ & the expected median of vector y k and Py the covariance
matrix of vector 7, at every time step k. In this application the vector ~ represents
the perturbations on the logarithms of the background concentration for four different
wind directions and two different wind speeds.

For the first week of 2006, the 1o intervals of these eight perturbations are given in
Figure 5.4. On every time step the weight y; ;. for a standard concentration field is
different, the values for y; ;, are also given in Figure 5.4. When the contribution of
a standard concentration field is high, the change in the correction factor ~; is also
high. If for a longer period a standard concentration field has no contribution, the
mean of the correction factor ; tends to zero.

An interesting aspect of this result is that the values for ~y; are relatively high for
some time steps, this means that the background concentration receives a relatively
high correction factor for that time step. This is due to the fact that in this application
it is assumed that the difference between the observation and the model simulation is
completely depending on the background concentration. A better assumption is that
when the difference between the observation and the model simulation is large, that
there are some other errors in the model.

Another aspect is that the linearization of the dynamical system around v = 0 has
accuracy O (1 . 1), when 7 become large the accuracy of the linearization decreases
quadratically. For those reasons a screening process is implemented in the Kalman
filter. When the difference between the observation and the model simulation is too
large, the analysis step will not (or partly) be executed. The result is that the values
for ~y; are limited. This screening process is explained in Section 5.6.

In Figure 5.5, the problems with large values for v; are shown. In this figure, at every
time step the concentrations are calculated with the values for ~; and with Equation
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5.2 and 5.4. In each figure the yellow line represents the largest contribution on the
correction of the background max (u; r.e”*) for every times step k. In these figures
it is clear that the concentrations after applying the Kalman filter are not accurate in

the regions where the values for ~; become large.
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each standard concentration field, for the first week of 2006
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Figure 5.5: Concentrations for the first week of 2006 after application of the Kalman filter
on the background concentrations, for locations Schiedam and Overschie.

Screening process

As mentioned in Section 5.5, for some time steps the difference between the observa-
tion and the model simulation can not only be explained by inaccuracies of the back-
ground concentrations. For that reason, a screening process is implemented in the
Kalman filter. If the difference between the observation and the forecasted concen-
tration is too high, the difference between the observation and the model simulation
is not only caused by the inaccurate background, but also by some other sources or
incidental occasions. If this situation occurs, the analysis step will only be executed
on the observations which are close to the forecasted mean, such that the values for
~; will stay small. The result is that the background concentrations will not get large
correction factors and the linearization still have good accuracy. It is also important
to have a view on which observations are screened, this could give an idea of other
inaccuracies in the model. For example, if many observations are screened in the
weekend, the model have large uncertainty in the weekend. More information about
a screening process in a Kalman filter can be found in [de Haan et al., 1999].

To implement a screening process, a criterion has to be made, whether a difference
between an observation and a model simulation is too high. For the Kalman filter on
the background concentration the assumption is the following:

8
fo41/(pf )2 ,d
Y, — mei,kev“ﬁ /2Pie)” 4 e ~ N (0, Popsre + Raps,k)
i=1
(5.26)
In here, Pyps 1 and Ryps 1 represents the variance for respectively the model simula-
tions and the observations. The variance for the model is not known explicitely, due
to the log-normal distribution. Therefore this variance is assumed to be equal to the
square of the difference between the upper band and the median of the 1o interval of
the concentration. The variance of the observations corresponds with the uncertainty
of the measurements, 7 .. > 0.08. Thus Py, and R, i are calculated as follows:
8 f 8 f f ’
j d ! +p! d
Pasi = | > mgmie™s + g — (> myp; et Pix 4
i=1 i=1
(5.27)
2
Rabs,k = (Tfracyk) (528)
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where plf ;. 1s the standard deviation of ’yif i~ With the assumption from Equation 5.26

a criterion is chosen whether an observation is good’ enough:

8 2
fo 4 1/o(pd )2 d
<yk - (Z mp g P )) < B*(Pabsx + Ravs,i)

1=1
(5.29)

The parameter 5 defines the screening criterion. If the square of a difference is more
than 3? times the variance of model simulation plus the variance of the observations,
the observation does not fit on the assumption that the difference is only caused by
the inaccuracy of the background. In that case the observation is not involved in the
analysis step. This is a vector inequality, which means that if for an entry of both
vectors this inequality holds, the observation corresponding with that entry is not
involved in the analysis step.

This screening process is implemented in the Kalman filter with parameter § =
2, this means that the square of a difference may not be larger than 4 times the
sum of variations. The value 5 = 2 is chosen because in the normal distribution
approximately 95% of the data lies in the 2¢ interval.

The application of the Kalman filter with this screening process results in concentra-
tions for Schiedam and Overschie for the first week of 2006, as shown in Figure 5.6.
The largest correction max (1; ye”** ) become much smaller, and the concentrations
have less extremes. In these figures, it is also shown that a lot of observations are not
taken into account during the analysis step. About 68% of the observations are not
taken into the analysis step.

A possibility is that the temporal correlation is too large, a large temporal correlation
in the Kalman filter leads to a result without large fluctuations in the concentration.
When the observations have large fluctuations, it is possible that many observations
will be screened. If the temporal correlation is set with de-correlation parameter
7 = 1, there are still 66% of the observations, which are not taken into account
during the analysis step. So it is not expected that the large number of screened
observations is caused by a large temporal correlation.

Another idea is that the differences are not completely caused by the inaccuracy of
the background concentrations. In Chapter 6, the Kalman filter is applied on all
the different emission sources, to get a better estimate of all the different concentra-
tion fields of the URBIS model. The idea is that the large differences between the
observations and the simulations are caused by inaccuracies of one of the standard
concentration fields.
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Figure 5.6: Concentrations for the first week of 2006 after application of the Kalman filter on
the background concentrations, with a screening process, at locations Schiedam
and Overschie

Discussion

The ideas from Chapter 3 were that the differences between the model simulations
and the observations are caused by inaccuracies of the source *Background’. In this
chapter, it is shown that this assumption does not hold for most of the differences.
A correction on this source is not sufficient to eliminate the most of the differences
between the model simulations and the observations made on the 9 monitoring sta-
tions.

With the corrections made on the background, it is possible to create better standard
concentration fields. Because of the large number of measurements which are not
involved in the Kalman filter process, it is not expected that the new standard concen-
tration fields for the background will be very accurate. For that reason, the Kalman
filter will be applied to all different emission sources to get a "better’ standard con-
centration field for every source. This application will be explained in Chapter 6,
together with the different runs to obtain the optimal values for each «;, o and R.
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Kalman filter on all emission sources

Introduction

In Chapter 5, it is shown that a correction on the background concentrations leads
to a better estimate of the real concentrations for only a small number of time steps.
For the other time steps, the Kalman filter do not give a correction on the background
because the difference between the observation and the model simulation is not only
caused by the inaccurate background.

Therefore an additional analysis on the differences between the observations and the
model simulations is made. In Figure 6.1, it is shown in which cases the differences
between the observations and the model simulations on location Schiedam are rela-
tively large. The red bar give the percentage of the situations where the observation
is more than two times the model simulation. The blue bar give the total number
of differences that occurs for every input parameter (wind direction, wind speed,
temperature, hour of the day, day of the week and month of the year).

For the wind direction, a high percentage of the differences is relatively large when
the wind is from the south-east, but the total number of wind directions from the
south-east is not very high. Thus it is assumed that the contribution to the total
inaccuracy is not very large. For the wind speed, a high percentage of the differences
is relatively large when the wind speed is below 2 m/s. Also the total number of
times that the wind speed is below 2 m/s, is relatively large. This suggests that the
inaccuracies in the model when the wind speed is low, have a large contribution to
the total inaccuracy.

Another notable parameter is the hour of the day, in the morning and the end of
the evening there are relatively many large differences. This is an indication that
there are some inaccuracies in the sources which are time dependent (traffic and
residents). The last interesting parameter is the month of the year. In the autumn
and the winter are relatively many large differences. This is also an indication that
the time dependent sources have inaccuracies. In Section 2.2 of [Kranenburg, 2009],
it was already mentioned that the sources industry and shipping do not have a time
dependency in the Real Time URBIS model and that this could be a shortcoming of
the model. Thus also the sources shipping and industry may have inaccuracies.

The idea in this chapter is that the uncertainty of the model is caused by several differ-
ent emission sources, therefore the Kalman filter will be applied on all the different
sources. With this application, all the standard concentration fields for all emission
sources will be estimated. These estimates are again calculated by multiplying each
field with a correction factor, which leads to a corrected state equation:

88
G = D pigme 6.1)
=1

In this chapter it is no longer assumed that some of the entries of 7 are equal to zero.
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6.2

The Kalman filter process will estimate all values of by a comparison of the model
with the observations.

An advantage of this application is that the uncertainty intervals for the total concen-
tration is a combination of uncertainty intervals for the different emission sources.
This leads to an uncertainty interval which is different for every location. For exam-
ple, on locations where the concentration is mostly caused by emission from traffic,
the uncertainty interval is approximately equal to the uncertainty interval of the con-
centration from traffic sources. If the uncertainty for the source traffic can be reduced,
the uncertainty on all locations with high traffic emission will be reduced.

Schiedam Schiedam

2
2

Percentage y>2¢"
Percentage y >2¢"

10

o

Total number of differences
w 9 ©
g & 8
o & 3 8

=
&

1200

Total number of differences

S SW 6 8 10
Wind direction Wind speed [m/s]

SE

50 50
A 40 2 a0
@ @
2 2 30
= =
g g 20
9 9
& &
» »
g g
§ 400 5
L £
T 300 3
5 5
£200 2
G G
Z 100 z
£ £
5 5
<3 <3

o 10

Schiedam Schiedam

N
o]
«

15 20
Temperature [* C] Hour

Schiedam Schiedam

Percentage y>2¢"

Total number of differences
N &2 2
s & 8
o & 3 8

Percentage y>2¢"

600

Total number of differences

o

Jul Aug Sep Oct Nov Dec
nth

Jan  Feb Mar Apr May Jun
Mo

Figure 6.1: Bar plots of relatively large differences between observations and model simula-
tions at location Schiedam. In the lower graphs is the total number of differences
plotted for each input parameter, in the upper graphs is the percentage given
when the observation is more than two times the model simulation.

Kalman filter

The application of the Kalman filter is nearly the same as in the application for the
background concentrations. Every standard concentration fields gets a correction
factor. So for each of the entries of v a temporal correlation parameter has to be
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found. For some sources this will be difficult because there is no good series of
measurements to calculate the correlation. In Section 6.4 the different values for o
will be calculated.

Not all the values for o can be computed exactly and also the uncertainty of the
model o and the uncertainty of the observations (R), estimated in Section 5.3, are
not known exactly. Therefore some sensitivity runs are done to find the optimal
values for «, 0 and R, this will be explained in Section 6.5

Dynamical system

To create a dynamical system for -, it is again necessary to make a switch to the
logarithms of the concentrations. This is done in the next formula:

88
In(¢) = In (Zﬂi,kmieyi’k> 6.2)
i=1

This equation is non-linear for 7, , therefore a linearization is made around , = 0:

88 j=88
, m I k1T
In (§ :m,kmiew) — W)+ [Jcmf] 2+ 0 (3,,) 63
i=1 =k j=1

where ¢ is the total concentration, calculated by the model. The dynamical system
will then become:

m [ T j=88
In(e) = In(g) + []cmj] U (6.4)
Cr j=1
Vg1 Ay, +wp  w,~N(0,Q) (6.5)

Matrix A contains the temporal correlation parameters, these are calculated in Sec-
tion 6.4. Covariance matrix ( is again a diagonal matrix, with diagonal elements ¢?.
This is a colored noise process, driven by a white noise process, like in the applica-
tion for the background. Furthermore it is assumed that both the temporal correlation
and the model uncertainty are independent of time:

¢ = y/1—alo? (6.6)

where o; corresponds with the model uncertainty for each entry of .
Kalman filter form

The dynamical system has to be written in Kalman filter form, for the implementation
of the Kalman filter. There are still 9 series of measurements available, these series
will be compared with the model simulations to get a better estimate of the NO,
concentration. The dynamical system in Kalman filter form is defined as follows:
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6.2.3

6.2.4

Vot Ay, twp  wp~N(0,Q) 6.7)
Hj 1L =88
ln(yk> = H|InG)+ |~ m v, | vk zp~ N(0,Ry) (6.8)

In these equations matrix H is the system operator which projects the model state
onto the observations. Covariance matrix R corresponds to the uncertainty of the
logarithms of the observations, the instrumental error combined with the represen-
tation error. Matrix R will be a diagonal matrix, the elements on the diagonal are
estimated in Section 5.3.

To simplify the notations from Equation 6.7 and 6.8, the Kalman filter equations are
written as follows:

V1 = Ay twr  w~N(0,Q) (6.9)
g, = Hy, +v, v~ N0, Ry) (6.10)

where vector g and matrix H are defined as follows:

j, = In (Qk)—Hln(g’,y) 6.11)

) o 1i=88

0 = H[“J’j:’”] 6.12)
G 1=

Forecast step

In the forecast step, a prediction is made for the values of 7, . with information
from the time step before. The expected median and variance of 7, g are given by:

iiﬂ = 45, (6.13)
Pl = APRAT+Q (6.14)

Analysis step

In the analysis step the forecasted concentrations are compared with the observations.
Like in the application for the background concentrations, it is not expected that the
values for  will become very large. Also the linearization around v = 0 is of order
O(7 - ), thus large values for ~; will cause stability problems. For those reasons
a screening process as described in Section 5.6 is implemented. In Section 6.3 the
screening process for this application will be explained. The analysis step is the same
as in the application for the background:

Veyr = l£+1 + Ky (Qkﬂ - ﬁk+1j£+l) (6.15)

~ ~ T
Pe = (1= Kipifl ) Bl (1= Ko fin)
+ KpaRe Ky (6.16)
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where K1 18 again the minimal variance gain, the gain that minimizes P, ,defined

as follows:

Kpyn = P

7T 7 f T -1
o8y (Hi PL T + Rea ) (6.17)

Screening process

If the difference between the observation y and the model simulation ¢ is large,
the Kalman filter will produce a large correction factor for one or more standard
concentration fields. This is not wanted, because it is likely that a large difference is
caused by another inaccuracy in the model or by an incidental occasion. For example
when a road is blocked, the traffic pattern is different and thus the emissions are
different from the expectations calculated by the model. Like in the application for
the background in Chapter 5, a criterion has to be made whether a measurement is
good enough.

After the forecast step, it is possible to make an uncertainty interval of the forecasted
concentration. Further an uncertainty interval for the observation can be calculated
with the uncertainty of the measurements (). When both intervals have an empty
intersection, the difference between the simulation and the observation is too large.
If for both intervals the 20 uncertainty interval is taken, the screening criterion cor-
responds with the screening criterion in Section 5.6:

88 88
¢ gt ¢ gt
D mipti e PN g e P O [y = Bricacti, Yk + Brivacyi] 7 0

i=0 1=0
(6.18)

The value for rg,. is optimized in Section 6.5 and equal to 0.34. The application of
the Kalman filter with this screening process with § = 2, results in a concentration
for the first week of 2006 for locations Schiedam and Overschie as shown in Figure
6.2. Contradicting to Figure 5.6, only 12% of the observations are not executed in
the analysis step of the Kalman filter. This means that the inaccuracies in the model
could be well described by inaccuracies of the several standard concentration fields.
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Figure 6.2: Concentrations for the first week of 2006 after application of the Kalman filter on
all the sources, with a screening process, at locations Schiedam and Overschie
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6.4

6.4.1

6.4.2

Correlation parameters o

In Section 5.4, an estimate value for the parameters «; corresponding with the source
background is calculated. In this section the same procedure will be done to obtain
estimated values for the other parameters a;. The temporal correlation for the source
"Rest’ is not possible to calculate with a series of measurements, therefore some runs
of the Kalman filter has to be applied to get the optimal values for a; corresponding
with the source ’Rest’, this will be done in Section 6.5.

Traffic sources

The temporal correlation for the traffic sources will be obtained by looking at the
observations from the monitoring stations in Overschie and Ridderkerk. The sta-
tion in Overschie is located close to main road A20. In Ridderkerk the station is
located close to main roads Al5 and A16, therefore both stations will give a good
approximation of the emission from traffic sources.

In Figure 6.3, the temporal correlation is given for both stations, this is done with
the same method as for the background sources, described in Section 5.4. The best
fitting exponential function has de-correlation parameter 7 = 10, thus an estimated

value for each «; corresponding with a traffic source is equal to e~ /10

The high peaks at 24 and 48 can be explained by the fixed traffic pattern. Each day
the amount of traffic is roughly the same, thus there is a high mathematical temporal
correlation for periods of one day.
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Figure 6.3: The temporal correlation for traffic stations Overschie and Ridderkerk. The
black line corresponds with the de-correlation parameter 1, = 10

Industry source

The temporal correlation for the source *Industry’ is not easy to determine. There
is no monitoring station, which is placed on a location with a dominating industry
emission. The monitoring station in Vlaardingen is the best station to calculate the
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correlation. This only results in an estimated correlation which is not very accurate.
In Figure 6.4, the temporal correlation on location Vlaardingen is given. The best
fitting exponential has de-correlation parameter 7 = 10, thus an estimated value for
«; corresponding with the source *Industry’ is equal to e /10,
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Figure 6.4: The temporal correlation for station Vlaardingen, the station which matches best
with the source industry. The black line has de-correlation parameter T;, = 10.

Shipping sources

Also for the temporal correlation of the shipping sources, it is not easy to determine
an estimate value for ;. The monitoring station Maassluis is the best to calculate
the correlation, the temporal correlation at Maassluis is given in Figure 6.5. In here
the same holds as for the industry, the de-correlation parameter 7 = 8 is only an
inaccurate estimate. This leads to an estimated value for a; corresponding with the
shipping sources which is equal to e /8.
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Figure 6.5: The temporal correlation for station Maassluis, the station which corresponds
best with the emission from shipping. The black line corresponds with de-
correlation parameter 75, = 8.

Rest source

It is clear that the temporal correlation for the source 'Rest’ is not easy to declare.
The only idea of this temporal correlation is that the de-correlation parameter 7,
will be around the values for the de-correlation parameters 7y4, T4y, Tin and 7p,. The
de-correlation parameter 7, is estimated equal to 10, thus «; corresponding with

source 'Rest’ is estimated equal to e /10

Sensitivity runs

In Section 5.4 and 6.4, all the parameters c; ; for the matrix A are not computed
exactly. Also the parameter o for the uncertainty of the model and the uncertainty of
the measurements 7y, are not known exactly. Therefore the Kalman filter is applied
for different values of 74, T4, Tsh, Tin, Tre and different values of o and 7 ac.

In Section 5.4, it has been shown that an estimated value for 73, is equal to 12. In
Section 6.4 the estimated values for 74,, 7sp, i and 7, were found. The uncertainty
of the model is assumed between 10% and 30%. The instrumental error in the ob-
servations calculated in Section 5.3 is equal to 8%, but the representation error may
be larger, due to a grid with a low resolution. A trial and error process leads to the
conclusion that the Kalman filter gives an optimal result with total uncertainty of the
measurements between 20% and 40%. This will lead to applications of the Kalman
filter with the following values:
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Tog ~ 12
T ~ 10
Tsh ~ 8

Tin ~ 10

Tre ~ 10
o € [0.10,0.20]
Tfrac € [0.20,0.40] (6.19)

To obtain which combination of values for 7y4, T4y, Tsh, Tin, 0 and 7.4 is the best,
there are three criteria which have to be optimized: The Root Mean Squared Error
(RMSE), the mean of the differences between the Kalman filter results and the
observations (M ean) and finally the standard deviation of these differences (Std).

In the analysis to find the optimal values for the input parameters, the monitoring
stations in Overschie and Ridderkerk are not involved. At those two locations the
differences between the observations and the simulations are very large. This could
lead to inaccuracies in the calculation of the optimal values for the Kalman filter
parameters.

Root Mean Squared Error (RMSE)

The first criterion is to minimize the value for RM SE':

n 7
2
RMSE = > (y k= ) (6.20)
k=1 1=1
where cK " is the concentration after the application of the Kalman filter. The number

of time steps corresponds with the value of n, which is equal to 8760 for a whole year.
The summation over ¢ is up to 7, the number of monitoring stations. The value for the
RMSE is a measure for the absolute difference between the results after application
of the Kalman filter and the observations. When this is minimized the Kalman filter
results have the smallest distance the observations.

Mean

Another criterion is the mean of the differences between the Kalman filter results and
the observations:

n

7
> (Wi — 6.21)

k=1 1i=1

1
M = —
ean -

The value for this mean is in the optimal situation equal to 0. In that case the Kalman
filter results have the same mean as the observations.
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6.5.3 Standard deviation

The final criterion is the standard deviation of the differences between the Kalman
filter results and the observations:

Std = \/1771 kznjz ((yzk - C{ko) — Mean>2 (6.22)

=11:=1

In the optimal situation the value for the standard deviation is equal to 1.
6.5.4  Optimal results for RMSE, Mean and Standard deviation

If the Kalman filter is applied with different values for each parameter, the numbers
RMSE, Std and Mean determine the optimal value for each parameter. In the left
upper panel of Figure 6.6 the influence of parameter 7, is shown. It can be seen that
the RM SFE is nearly independent of this parameter, the value for Mean is close to
zero for 7,, = 2 and the value for Std is close to 1 for 7, = 10. Therefore the
optimal value for the parameter 7,4, according to this sensitivity run will be equal to
6, which is the average between 2 and 10.

In the right upper panel of Figure 6.6, the influence of parameter 7, is shown. This
figure shows that an optimal value for 7, will be equal to 4. The lower left panel
and the lower right panel shows the influence of parameters o and 7¢,.. The same
analysis as for the temporal correlation parameters leads to optimal values o = 0.19
and rgae = 0.34.

The parameters, 7, 7;, and 7,. does not have a large impact on the three criteria.
Therefore they will be chosen equal to the estimated values from Section 6.4.

In Table 6.1, all the information about the input parameters is given: the second
column contains the estimated values for these parameters and the third column con-
tains the optimal values according to some sensitivity runs. Finally, the last column
shows the input parameters which are used in the rest of this report. These values are
determined by the estimate and by the optimal values from the sensitivity runs.

Table 6.1: Input parameters for the Kalman filter. In the final column are the values which
are involved in the Kalman filter.

’ Parameter \ Estimate \ Calculation by sensitivity runs \ Value implemented in the Kalman filter

Ttrac 0.20-0.40 0.34 0.34
o 0.10-0.30 0.19 0.19
Thg 12 6 10
Tir 10 4 8
Tsh 8 — 8
Tin 10 — 10
Tre 10 — 10
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Figure 6.6: Sensitivity of the three criteria against the Kalman filter parameters. Upper left:
Tog, Upper right: Ty, lower left: o, lower right: rac

Connection with population

After application of the Kalman filter, it is possible to calculate an uncertainty inter-
val for the concentration NO,, for each grid point in the area of interest. The next
objective is to connect the interval on a certain grid point with the number of people
living nearby that grid point.

Population density

A map of the population of the area is given in Figure 6.7. This figure represents the
density of postal zip codes per grid point instead of the number of people per grid
point. The total number of zip codes in this area is equal to 595.396. According data
from CBS !, the total number of residents in this region is equal to 1.186.306 on the
first of January of 2006. Thus the average number of people per zip code is equal to
1.99. Further in this report it is assumed that the number of people per zip code is
equal, thus the number of residents per grid point is 1.99 xthe number of zip codes
per grid point.

pop; = 1.99 x #of zip codes (6.23)

ICBS: Centraal Bureau voor de Statistiek. www.cbs.nl
Dutch organization for statistics
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6.6.2

Density of postal zip codes in the area
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Figure 6.7: Density of postal zip codes in the DCMR area

Absolute uncertainty connected with population density

For every grid point, on every hour an uncertainty interval is calculated by the
Kalman filter application. The width of these intervals is a measure for the uncer-
tainty of the concentration NO,, if the width of the interval is small, the estimate of
the concentration NO,;, is accurate, thus little uncertainty. The idea is now to have
small intervals on locations where the population density is high, in that case there
is a good estimate of the exposure of the population to the concentration NO,. The
width of an uncertainty interval in grid point j on time & is the upper bound of the
1o interval minus the lower bound of the 1o interval:

88 88

abs _ ik tDik i,k —Dik

ujy = g i e geT TP — E i ey e TR TPk (6.24)
i=1 i=1

where m; ; is the standard concentration of emission source ¢ in grid point j. Further
the width of an uncertainty interval is called the absolute uncertainty.

8760
In Figure 6.8, the annual mean ﬁ;‘bs of {u?l}j }k . is plotted for each grid point:

1
0§ = (6.25)

In this figure, it can be seen that relatively many grid points have an annual mean of
absolute uncertainty above 40. This large uncertainty mostly occurs on main roads

and industrial regions. So there are not that many people that lives nearby grid points

with a large uncertainty. This is shown in Figure 6.9, where the annual mean a;?bs

is compared with the population. On the z-axis are the values of %%, on the y-

axis are the number of people living nearby a grid point with that annual mean. For

agbs € [u?bs, ufffl] , the number of people for that width range of u%%* is equal to:
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Nge

> POP; L o cust usty ]} (6.26)
j=1

where 7,4 is the number of grid points and Z is the indicator function. In this figure, it
can be seen that unless a lot of grid points have a large uncertainty, there are not many
people living nearby those grid cells. The histogram is centered around ﬂ?bs = 14,
which means that most of the people lives nearby a grid point with annual mean of
the absolute uncertainty around 14.

Annual mean of the widths of the uncertainty intervals for the concentration NOx [ug/m” ]

Figure 6.8: The values for ﬂ‘}bs over the whole area of interest.
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Figure 6.9: Histogram of the number of people against the annual means of the absolute

—abs

uncertainties 1°"*. On the x-axis are the ranges of U, on the y-axis are the
number of people living nearby a grid point with a;bs in that range.
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6.6.3

Relative uncertainty connected with the population density

Furthermore it is interesting to look at the relative uncertainty in the whole region.
On each grid point the absolute uncertainty could be divided by the expected con-
centration. This is a measure for the relative uncertainty:

u‘ﬂf

rel _ )

Uik = CKF 6.27)
Jik

where c]KkF is the expected concentration on grid point j at time k after the application

of the Kalman filter:

88

KF o 1/ap?

K=" i g e TP (6.28)
=1

The expected concentration is calculated with the expectation of the log-normal dis-
tribution, therefore the term 1/ 2p22 ;. 1s taken into the exponential.

8760
In Figure 6.10 the annual mean fa;ez of {ugeé }kzl is plotted for each grid point in the

domain. It is clear that the relative uncertainty has the smallest values on the main
roads and around the ’Nieuwe Waterweg’ the harbor entry of Rotterdam. At the 9
monitoring stations, the contribution from the shipping and traffic sources is large.
Therefore the Kalman filter produces a smaller relative uncertainty of these sources.

In Figure 6.11, the relative uncertainty is connected with the population. On the
x—axis are the annual means of the relative uncertainty, on the y—axis the number of
people living nearby a grid cell with that relative uncertainty. Most of the population
have almost the same relative uncertainty. This is because, the main roads have the
smallest relative uncertainty, but this does not a have large impact on the population.

L .
0.28 0.30 0.32 0.34 0.36
Annual mean of the relative uncertainty

Figure 6.10: The values for ﬂ;el over the whole area of interest
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Figure 6.11: Histogram of the number of people against the annual mean of the relative

uncertainties ﬂ;el. On the x-axis are the ranges of a;el, on the y-axis are the

number of people living nearby a grid cell with ﬁ;el in that range.
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Conclusions and discussion

The present application of the Real Time URBIS model causes some problems like
the possible occurrence of negative concentrations. These problems are caused by
some inaccuracies of the model. In Chapter 3, it is shown that the inaccuracies of
the model are depends on the wind direction, the wind speed and the hour of the day.
For that reason a Kalman filter is applied on the standard concentration fields from
the URBIS model to eliminate these inaccuracies. With the Kalman filter the model
simulations are connected with a series of measurements. This connection leads to a
corrected simulation of the concentration NO,,, together with an uncertainty interval
for this concentration.

In Chapter 5, the Kalman filter was only applied on the correction factors for the
background concentrations, this was not sufficient to eliminate all inaccuracies. There-
fore in Chapter 6, the Kalman filter is applied on all emission sources. The corrected
model simulations fits better on the observations, thus the Kalman filter is a good
instrument to make a real time correction of the Real Time URBIS model.

The application of the Kalman filter results in an uncertainty interval for each cor-
rection factor, with these uncertainty intervals it is possible to calculate an uncer-
tainty interval for the concentration NO, on the whole domain covered by DCMR.
The widths of the uncertainty intervals depends on the contribution of each emission
source to the total emission.

The uncertainty interval has a large width on the main roads and in the industry
region around Pernis. On this locations the concentration is relatively large, thus
also the absolute uncertainty will be large. The application of the Kalman filter
reduces the relative uncertainty, this mainly happened on the main roads and around
the *Nieuwe Waterweg’. This is because the concentrations on the 9 monitoring
stations have large contributions from the traffic and the shipping sources, thus the
relative uncertainty of these sources is decreased.

The connection between the uncertainty intervals and the population density leads to
some extensions of the Kalman filter. The extensions will be discussed in the next
part of this report.
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Part 11

Extended applications of the
Kalman filter to reduce the
uncertainty
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Introduction

In the first part of this report, the theory and the results of the use of a Kalman filter
in the Real Time URBIS model is given. The basic idea of a Kalman filter is to
produce a Gaussian distribution for a certain unknown variable. In the Real time
URBIS model the unknown variable is the vector with correction factors for each
standard concentration field from the URBIS model. With the Gaussian distribution
for the correction factor, an uncertainty interval for the concentration NO,, is found.

In this part some methods are described to reduce the uncertainty, the main idea is
that the uncertainty should be as small as possible on locations with high popula-
tion density. In Chapter 9, some extra monitoring stations are added to the present
monitoring system. If these stations are placed on well chosen locations, the total
uncertainty connected with the population can be minimized. In this chapter also a
method is described to create an optimal setting of monitoring stations. In Chapter
10, the Kalman filter is applied on some different time scales. Using this, it is pos-
sible to add monitoring stations, which measures the concentration on different time
scales. This will lead to a description of an optimal placement of extra monitoring
stations with different time scales. In Chapter 11, another extension of the Kalman
filter will be described. In that chapter the correction factors, calculated as in the first
part, will be analyzed. This analysis leads to some other ideas of inaccuracies in the
Real Time URBIS model. With this ideas the model could be improved, such that the
uncertainty will decrease. Finally in Chapter 12, the conclusions of the extensions of
the Kalman filter are given.
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Extra monitoring stations

Introduction

The aim is to reduce the width of the uncertainty intervals. The idea is that a reduc-
tion of the uncertainty can be done by a reduction of the uncertainty of one of the
emission sources. To reduce the uncertainty of an emission source, it is possible to
add a monitoring station. If this station is located nearby a grid point with a dominat-
ing emission from one of the sources, the idea is that the uncertainty of that source
will be reduced. This will then lead to a reduction of the total uncertainty.

To have an optimal reduction of the total uncertainty, it seems obvious to reduce the
uncertainty of the important emission sources. In Section 9.2, the exposure on the
population is shown for each of the 11 emission sources. This leads to an insight into
the importance of each emission source. The sources with the largest contribution
to the exposure causes the largest uncertainty, thus a reduction in the uncertainty of
those sources will cause an effective reduction in the total uncertainty in relation with
the population.

Further it is important to look at the influence of a monitoring station on the un-
certainty, therefore in Section 9.3, a simulation is made without any measurements
involved in the Kalman filter. The uncertainty of the model (the uncertainty p of the
correction factors y were stated equal to 19 %) will be used to get the uncertainty
intervals for each grid point for each hour. After that in Section 9.4, the present sta-
tions will be added to the Kalman filter to see the influence of a monitoring station
on the uncertainty.

If the influence of the different stations on the uncertainty and the importance of
each emission source are known, some virtual monitoring stations will be added to
the system in Section 9.6.1. The locations of these virtual monitoring stations will be
determined by the analysis of the influences of the other stations and by the analysis
of the importance of each emission source.

Exposure per emission source

In this section the exposure to the concentration caused by each emission source is
determined. The exposure per emission source can be used to determine the im-
portance of each source. When the exposure of the population on the concentration
NO, caused by a specific emission source is small, it is not useful to decrease the
uncertainty of that specific emission source. A reduction of the emission from that
source will not lead to a large reduction of the total uncertainty connected with the
population.

To determine the emission per source, a simulation is made for the whole year for
each emission source separately. A measure for the exposure to each emission source
can be given by the number Ej:
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9.3

Nge
E, = ZEW X pop;
i=1
where ¢, ; is the annual mean of the concentration caused by source s on grid point
J. The number of people living nearby grid point j corresponds with pop;. In Table
9.1, the numbers F; are given for each emission source, as well as the contribution
to the total exposure. This table shows that the sources ’Zone card’, ’Background’
and ’Ships sea’ have the largest contribution to the exposure. The source *Zone
card’ is an emission sources which covers the emission of highway traffic, the source
"Background’ covers the emission which is blown into the area from the rest of the
Netherlands and the source ’Ships sea’ covers the emission from sea ships in the
harbor of Rotterdam. The figures in Appendix B shows the standard concentration
fields of each of the emission sources.

(CAY

Table 9.1: Exposure caused by each of the different emission sources

Source Exposure B Percentage on total
%106 contribution

Abroad 0 0
Background 53 21.0 %
Zone card 5.0 20.0 %
CAR 1.5 6.0 %
Roads nearby 24 9.6 %
Roads far 1.5 6.0 %
Industry 0.92 3.7 %
Domestic 1.3 52 %
Ships inland 0.016 0.1 %
Ships sea 4.4 17.9 %
Rest 2.6 10.5 %
] Total 249 \ 100.0 %

Annual mean of the uncertainty without a Kalman filter

For the year 2006, the concentration is simulated without the Kalman filter. The
uncertainty of the model forms the basis of the annual mean of the uncertainty on
each grid point. The annual means of the absolute uncertainties are shown for each
grid point in the left panel of Figure 9.1. The absolute uncertainty in grid point j at
time k, is simply the width of the uncertainty interval of the total concentration NO,,
as in Equation 6.24:

88 88
abs _ ikt Pi,k i,k —Di,k
udhe =Y i g€ P =N " e e P 9.2)
i=1 i=1

There is also a relative uncertainty as in Equation 6.27, this is the absolute uncertainty
divided by the expected concentration NO,:

9.3)
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Here cJKkF represents the expected concentration NO,, in grid point j at time & after
the application of the Kalman filter, this expected concentration is again calculated
from the expectation of the log-normal distribution:

88

KF Lk 2p2
T =" i g€ TP 9.4
=1

The annual mean of the relative uncertainty for only the model simulation is given
in the right panel of Figure 9.1. Because there are no measurements involved in the
Kalman filter, the the parameters y and p are known and equal to v = 0 and p = 0.19.

Both the absolute and the relative uncertainty can be connected with the population
in the area to get an idea of the influence of this uncertainty on the population. In
Figure 9.2 these connections are shown. In the left panel the connection with the
absolute uncertainty is shown, for each annual mean of the absolute uncertainty the
number of people that lives nearby a grid point with that annual mean is given in the
histogram.

The total absolute uncertainty on the population could also be expressed as a single
number. This number U%* is the sum over all grid points of the annual mean of
the absolute uncertainty per grid point multiplied with the number of people living
nearby that grid point:

Ngp

Uebs — Zagbs X pop; 9.5)
j=1

Here ng, is the number of grid points and agbs is the annual mean of the absolute

uncertainty on grid point j. The variable pop; is the number of people living nearby
grid point j. The idea is to minimize this number U?**. When the uncertainty is large
in a sparsely populated grid point, this number will not get large. For the simulation
without any measurements taken into the Kalman filter application this number is
equal to 19.0 x 106.

The connection between the relative uncertainty and the population is shown in the
right panel of Figure 9.2. For each annual mean of the relative uncertainty, the num-
ber of people that lives nearby a grid point with that relative uncertainty is given
in the histogram. Because the relative uncertainty is only determined by the model
uncertainty(y = 0, p = 0.19), the relative uncertainty is constant on the whole do-
main and equal tot 0.38. Therefore the histogram has only one peak, all the people
lives on a location with relative uncertainty equal to 0.38.

The total relative uncertainty on the population could also be expressed as a single
number, this single number U™ is given by:

Ngp

U =Y " a’f x pop; 9.6)
j=1

where ﬂgel is the annual mean of the relative uncertainty in grid point j. For the
model simulation without any measurements involved in the Kalman filter, this num-
ber U is equal to 445 x 103.



727120

9.4

.30 032 034 0.
Annual mean of the absolute uncertainty [ug/m’ ] Annual mean of the relative uncertainty

Figure 9.1: Annual mean of the uncertainties for only the model simulation without any mea-
surements involved in the Kalman filter. Left panel: absolute uncertainty. Right
panel: relative uncertainty.
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Figure 9.2: Histograms of the number of people living nearby a grid point per range of un-
certainty. Left panel: absolute uncertainty. Right panel: relative uncertainty.

Influence of original stations on the absolute and relative un-
certainty

In this section the influence on the uncertainty of the measurements made on the cur-
rent monitoring stations is determined. In the current situation there are 4 locations
with a dominating emission from the traffic sources. These locations are Ridderkerk,
Overschie and the two stations at Bentinckplein. The monitoring station in Maassluis
have a dominating shipping source. The other stations have more than 1 significant
contribution of the several emission sources, these stations are so called combined
stations.

In Section 9.4.1, the influence of the traffic sources will be determined. The idea is
that the uncertainty of the traffic sources will decrease, such that the uncertainty on
each point in the domain with dominating traffic emission will decrease. In Section
9.4.2, the influence of the shipping station in Maassluis will be determined. The
influence of the combined stations will be determined in Section 9.4.3. Finally in
Section 9.4.4, some combinations of stations will be analyzed.
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Traffic stations

The stations in the domain with a dominating traffic source are located in Overschie,
Ridderkerk and Bentinckplein. In Overschie and Ridderkerk the emission from high-
way traffic dominates the total emission. The stations on Bentinckplein have dom-
inating emission from local traffic. Now the Kalman filter is applied on the model
with the series of measurements made on one of these stations. Per station the influ-
ence on the uncertainty is measured by the number U%** defined in Equation 9.5, and
by the number U"¢ defined in Equation 9.6. According to the theory about a Kalman
filter, the relative uncertainty will always decrease in /2-norm, after the application
of the Kalman filter, while the absolute uncertainty could both increase and decrease.
More about this is explained in Section 9.5.

Overschie

At location Overschie the traffic sources have a total contribution about 51 %, the
largest contribution is from the highway traffic which has a contribution about 43
% on the total emission. The station in Overschie is located next to main road A13
not far from the junction of the main roads A13 and A20 (Kleinpolderplein). The
problem with this monitoring station is that the observations on this location are
much higher than the model simulations. The annual mean of all the observations
is equal to 88.4 ig/m3, while the annual mean of the model simulations is equal to
54.8 p1g/m3. The observations are 62 % higher than the simulations. Unless this
large difference, only 4 % of the available observations is thrown out the analysis
step of the Kalman filter by the screening criterion.

For the absolute uncertainty the number U*** becomes equal to 19.5 x 10® which is
an addition of 3.2 %. In Section 9.5, an explanation of this increase of uncertainty
will be given.

For the relative uncertainty, the number U becomes 425 X 102, this is a reduction
of 4.4 %. The idea is that this reduction is mainly caused by a reduction of the
uncertainty of the traffic sources. This idea is confirmed by the fact that the relative
uncertainty is most decreased on the main roads. This is shown in Figure 9.3, the
left panel shows a reduction of the relative uncertainty for the main roads. Further
the uncertainty in the rest of the area also decreased a little, this is caused by the
other sources which have small contribution on the total emission in Overschie. The
connection with the population is shown in the right panel of Figure 9.3, the first
peak corresponds with the people that lives not far from the main roads, the other
peak corresponds with the rest of the people.
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Figure 9.3: Left panel: The annual mean of the relative uncertainty, with the measurements
from Overschie in the Kalman filter, in the right panel these annual means are
connected with the population.

Ridderkerk

At location Ridderkerk the emission from highway traffic also dominates the total
emission, about 85 % of the total emission is caused by highway traffic. The total
contribution of all the traffic sources is about 91 %. The location Ridderkerk is
located next to the main roads A15 and A16, not far from the junction Ridderster.

At this location, a similar problem exists as in Overschie. There is a large difference
between the model simulations and the observations, at this locations the observa-
tions are much lower than the model simulations. The annual mean of the model
simulations is equal to 203.9 pg/m?, while the annual mean of the observations is
equal to 94.6 ;1g/m3. The simulations are 116 % higher than the observations.

In this situation the screening criterion throws 38 % of the observations out of the
analysis step of the Kalman filter. The absolute uncertainty gets an extra reduction,
because the expected concentration is lower than the model simulation. An expla-
nation for this will be given in Section 9.5. The number U%* becomes equal to
18.0 x 109, which is a reduction of 5.0 %.

For the relative uncertainty, the number U has become equal to 434 x 103 which is
areduction of 2.4 % with respect to the situation without any observations involved in
the Kalman filter. Also for this station the reduction is mainly caused by a reduction
of the uncertainty of the traffic sources. Figure 9.4 shows the decrease of the relative
uncertainty and the influence on the population of this reduction. Because of the
large contribution from the traffic sources, the uncertainty on locations with small
traffic emission is not decreased. Therefore, the uncertainty is little decreased for a
lot of people, also the small number of observations which are used by the Kalman
filter causes this small reduction.
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Figure 9.4: Left panel: The annual mean of the relative uncertainty, with the measurements
from Ridderkerk in the Kalman filter, in the right panel these annual means are
connected with the population.

Bentinckplein

The monitoring stations at Bentinckplein are located directly next to a busy local
road in the center of Rotterdam. Therefore the emission from local traffic dominates
the total emission, in the model the emission from local traffic is determined by two
different sources ’CAR’ and ’Roads nearby’. The total contribution of these two
sources is 59 % of the total emission.

The annual mean of the model simulations is equal to 92.8 ug/m3 for the DCMR
station and 104.9 11g/m? for the RIVM station. Those two annual means should be
the same, but only the model values with a corresponding observation are taken into
these means. Because of some missing measurements the annual means of the con-
centrations for both stations are not taken for the same series of model simulations.

The annual mean of the observations made by DCMR is equal to 80.3 y1g/m?, which
means that the simulations are 16 % higher than the observations. The annual mean
of the observations made by RIVM is equal to 96.9 j.g/m?, which means that the
observations are 8 % higher than the simulations. The screening criterion throws out
5 % of the observations made on the DCMR station and also 5 % of the observations
made on the RIVM station.

For the relative uncertainty, the number U becomes equal to 433 x 10> for the
DCMR station and 436 x 103 for the RIVM station, this are reductions of 2.7 %
and 2.0 %. Both these reductions are theoretically nearly independent of the ob-
servations, thus they must be nearly the same. This is not the case, the difference
between those reductions could be caused by the difference in the number of obser-
vations taken into the analyzing step of the Kalman filter (7431 against 5818). This
is explained in mor detail in Section 9.5.

The reductions are mainly caused by the reduction in the local traffic sources. Be-
cause these sources do not have large contributions on the total emission on the whole
domain (see Section 9.2), the decrease in the relative uncertainty will not be very
large. Further the decrease will be nearly the same in the whole area, as shown in
Figure 9.5. The reason for this is that the contribution of the local traffic sources is
nearly the constant on the whole area. Therefore the connection with the popula-
tion shows that all people lives nearby grid points which have nearly the same (little
reduced) relative uncertainty.

For the absolute uncertainty the number %’ becomes equal to 17.9 x 10° for the
DCMR station, this is a reduction of 5.3 % with respect to the situation without any
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measurements. For the RIVM station, the number U%* is equal to 18.2 x 109, a
reduction of about 4.0 %.
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Figure 9.5: Left panel: The annual means of the relative uncertainty, with the measurements
from Bentinckplein (DCMR upper and RIVM lower) in the Kalman filter, in the
right panel these annual means are connected with the population.

Shipping stations

Only the station in Maassluis has a large contribution from the emission sources in
category shipping. At location Maassluis, the source *Ships sea’ has a contribution
about 44 % of the total emission. This source represents the emission from sea ships.
The monitoring station is located in a quiet residential area in Maassluis not far from
the *Nieuwe Waterweg’, the harbor entry of Rotterdam. Therefore the emission from
maritime ships is large with respect to the other sources.

The annual mean concentration calculated by the model is equal to 42.2 pg/m3,
while the annual mean of the observations equals 51.6 11g/m?. Therefore the Kalman
filter causes a little increase in the calculated concentration.

The number U%* has become equal to 18.4 x 10%, which is a reduction of 3.0 %
with respect to the situation without any measurements. The number U™ is now
equal to 421 x 103, a reduction of 5.4 %. These large reductions are caused by the
large contribution from the sea ships to the total emission and by the large number of
observations which are involved in the analysis step of the Kalman filter. The relative
uncertainty is mostly decreased in the region with a large emission from the shipping
sources, this is shown in Figure 9.6. This figure shows also the connection with the
population, because the emission from shipping sources has a large influence on the
exposure, the uncertainty is decreased for a lot of people.
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Figure 9.6: Left panel: The annual mean of the relative uncertainty, with the measurements
from Maassluis in the Kalman filter, in the right panel these annual means are
connected with the population.

Combined stations

There are several stations which have not one dominating emission source, these
stations are Schiedam, Hoogvliet, Schiedamsevest and Vlaardingen. When one of
these stations is added to the Kalman filter, the uncertainty of some different sources
will be reduced.

Vlaardingen

One of the stations with no dominating source is Vlaardingen. The contribution
from the maritime ships is 24 % but also the sources local traffic (20 %), background
(16 %), highway traffic (14 %) and 'Rest’ (14%) have significant contributions on
the total emission. If the series of measurements from the monitoring station in
Vlaardingen is added to the Kalman filter, the relative uncertainty of all these sources
will decrease a little.

The annual mean of the observations at this location is equal to 57.2 pg/m?3, while
the annual mean of the model simulation is equal to 54.1 j1g/m?>. The observations
are a little higher than the simulations. The number U/*** has become equal to 18.1 x
10%, which is a reduction of 4.6 %, while the number U"¢ becomes equal to 429 x
103, a reduction of 3.5 % with respect to the situation without measurements involved
in the Kalman filter. Because there is no dominating source, the relative uncertainty
decreases on almost all locations with the same rate. Only the uncertainty in the
region around the 'Nieuwe Waterweg’ is a little more reduced. Together with the
connection with the population this is shown in Figure 9.7.
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Figure 9.7: Left panel: The annual mean of the relative uncertainty, with the measurements
from Viaardingen in the Kalman filter, in the right panel these annual means are
connected with the population.

Other stations and combinations of stations

For the other stations in the area, the same sources, highway traffic, maritime ship-
ping and local traffic dominates. In Table 9.2, the reductions of the numbers U
and U"¢! are shown for each station in the Kalman filter. Also some combinations on
the nine monitoring stations are shown in this table.

The reduction of the relative uncertainty when the station Overschie is added is equal
to 4.4 %, and for the station in Ridderkerk this reduction is 2.4 %. Combining these
two reductions should lead to 0.956 x 0.976 = 0.933, a reduction of 6.7 %. The ac-
tual reduction when both stations Overschie and Ridderkerk are added to the Kalman
filter is 6.0 %. This shows that the efficiency for each extra station becomes smaller.

In Figure 9.8, it is shown what happens if one series of measurements is added several
times. For the station in Hoogvliet the reduction of number U is equal to 4.4
%, if this series of measurements is added twice (two series of measurements with
the same values on the same location), the reduction of the number U"® is 5.3 %.
If this series of measurements is added more times, the extra reduction of number
U7 becomes smaller. This gives the idea that an addition of stations with the same
contributions from each source is ineffective.

Therefore an idea is that an extra monitoring station should be on a location with a
domination source, which does not dominate on other monitoring stations.

If all the stations are involved in the Kalman filter the maximal reduction of the
relative uncertainty should be 0.960 x 0.956 x 0.946 x 0.956 x 0.976 x 0.973 X
0.971 x 0.965 x 0.980 = 0.724, a reduction of 27.6 %. The actual reduction is equal
to 16.1 %.
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Table 9.2: Reductions of the number U®** and the number U™ by application of the Kalman
filter on different monitoring stations

Number of series of measurements

Monitoring . Reduction with Reduction with
o Dominating rel
stations involved Number respect to the Number U™¢ respect to the
source(s) at the b 5 3
in the Kalman o . U*”®x10 situation without x 10 situation without
monitoring station
Filter Kalman filter Kalman filter
No Stations — 19.0 — 445 —
Zone card (22 %)
Schiedam Ships sea (19 %) 17.8 6.2 % 427 4.0 %
Background (15 %)
Zone card (21 %)
Hoogvliet Ships sea (21 %) 18.2 4.1 % 426 4.4 %
Background (16 %)
Maassluis Ships sea (44 %) 18.4 3.0 % 421 5.4 %
Overschie Zone card (43 %) 19.5 -3.2 % 425 4.4 %
Ridderkerk Zone card (85 %) 18.0 5.0 % 434 2.4 %
Bentinckplein Roads nearby (35 %)
17.9 53 % 433 2.7 %
(DCMR) CAR (24 %)
Roads nearby (25 %)
Schiedamsevest Background (16 %) 18.0 5.1% 432 2.9 %
Ships sea (14 %)
Ships sea (24 %)
Background (16 %)
Vlaardingen Zone card (14 %) 18.1 4.6 % 429 35%
Rest (14 %)
CAR (14 %)
Bentinckplein Road nearby (35 %)
18.2 4.0 % 436 2.0 %
(RIVM) CAR (24 %)
All stations — 16.2 14.5 % 373 16.1 %
Overschie +
— 18.8 0.5 % 418 6.0 %
Ridderkerk
Bentinckplein
— 17.8 6.1 % 431 32%
(2X)
8 T T T T T T
7 . 4
6 . 4
15t 1
s
G af ]
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o
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Figure 9.8: Reduction of the number U™ for several times the monitoring station in

Hoogvliet involved in the Kalman filter.
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9.5

9.5.1

9.5.2

Influence of measurements on uncertainties

The results in Table 9.2 show that the relative uncertainty decreases if a series of
measurements is added to the Kalman filter application. The absolute uncertainty
could both decrease and increase when a series of measurements is added to the
Kalman filter. This are results of Kalman filtering theory, which will be explained in
this section.

Absolute uncertainty

The absolute uncertainty on grid point j at time k is defined as in Equation 9.2:

IS

88 88
abs _ ik TDi ik —Dik
85 = D pagmi g€ P =N o P .7

i=1 i=1

Because of the minimal variance gain in the Kalman filter, the covariance matrix
P® will always be smaller in lo-norm than the initial covariance matrix P/ from the
model simulation:

1Py = |- K P!
- Pf—KHPfH2
< ||P], + lxmer],
< PfH2 9.8)

On the main diagonal of P are the values for p?,.

When the observations at time step k are larger than the model simulations, the cor-
rection factors ;  will become positive. Therefore it is possible that the absolute
uncertainty increases. For the monitoring station in Overschie the observations are
much higher than the simulations, but only a small number of this large observa-
tions is thrown out by the screening criterion. The values of p; ;. have decreased by
the Kalman filter, but the correction factor v; 5, became large enough to increase the
absolute uncertainty.

At location Ridderkerk the observations are much lower than the model simulations,
therefore the correction factor ; , became negative, and the reduction of the absolute
uncertainty will be strengthened.

When the difference between the observations and the simulations is very large, the
total reduction of the absolute uncertainty could be inaccurate. In that case it is useful
to improve the model or the representation of the measurements, such that the model
fits better on the observations.

Relative uncertainty

The relative uncertainty in grid point j at time k is defined as in Equation 9.3:

abs

us
ui = 22 9.9)
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where chF is the expected concentration on grid point j at time k from equation 9.4.

Thus for the whole domain:

Ml,kﬂ1e%’k(6pl’k _ e_pl,k) + -4 M88’km886788,k (epss,k _ e—pss,k)

’U,ZEZ _
u = > 2
Ml,kmlevl’k60.5pl,k + o+ M88,km886’\/88'k60’5p88'k
LS e (e — )
yel — Zimi Mikm 9.10)

2
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dividing this by p; 1;m;e”"* leads to:

eptk_e ka)

up = Z (9.11)
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Pl + Z] 1 ];éz
where the tail 7; ; is equal to:
. e Vik @0-5P% i
T, = W% 9.12)
Iu/imie%\k
The values for T; ; are all positive thus equation 9.11 becomes:
88 s
rel epl,k —e Dik
et <y — o 9.13)
i=1

In Figure 9.9, the formula £ is plotted with respect to x, this figure shows that
the relative uncertainty will decrease if p; ;. decreases and p; ), < 1.2.

The Kalman filter is built with the minimal variance gain such that P* decreases in
lo-norm, this is shown in Equation 9.8. The values for pz ;. are on the main diagonal of
P2, so the values for pz ;. Will also decrease. Further the assumed value for p; , from
the model simulation is 0.19, as shown in Section 6.5. Thus the relative uncertainty
will decrease if a series of measurements is added to the system.
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14f
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Figure 9.9: The relative uncertainty will decrease if p decreases and p is below 1.2
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9.5.3

Influence of the measurements on the uncertainties

Independent of the values of the observations, the relative uncertainty will decrease
if a series of observations is added to the system. The rate of this decrease is still
unknown and possibly dependent of the values of the observations.

First it is shown in Table 9.2, that the reduction of the relative uncertainty is small
for the station in Ridderkerk. At this station 38 % of the observations is screened,
thus the Kalman filter did not have many possibilities to decrease the uncertainty.
Therefore the first conclusion is that, if the difference between the model simulations
and the observations is large, the screening criterion throws out a lot of observations
and the relative uncertainty will not have a large reduction.

For the situation that the observations and the simulations does not differ a lot, the
rate of decrease of the relative uncertainty is possibly dependent of the observations.
As shown in Section 9.5.2, the relative uncertainty is dependent of the values for p.
These values are calculated in the analysis step of the Kalman filter, the values for p
are equal to the variances on the main diagonal of covariance matrix P. The matrix
P is calculated as follows:

P=(—-KH)P/ (9.14)

where K is the minimal variance gain:

-1
K = prHT (HPf HT R) (9.15)

Because of the matrix R is dependent of the observations, the relative uncertainty
depends also of the observations. The influence of this dependency is shown by a
special application of the two stations at Bentinckplein. In this application only the
observations are involved on the time steps that both of the stations have a valid
observation. This leads to 6062 observations for both stations. The annual mean of
the model simulations on this 6062 time steps is equal to 104.8, the annual mean of
the observations made on the DCMR station is 92.3 and for the RIVM station the
annual mean of the observations is 97.0 At the DCMR station the screening process
throws out 289 observations, this is 4.8 %. At the RIVM station 312 observations are
thrown out by the screening process, which is 5.1 %.

The numbers U"¢ becomes equal to 436 x 103 for both the DCMR station and the
RIVM station, the difference between these two numbers is a measure for the in-
fluence of the values of the observations. The difference between these numbers is
significant equal to 0, which means that the relative uncertainty is nearly indepen-
dent of the measurements. This conclusion only holds if the difference between the
observations and the model simulations is small.

This application is also done without the screening process, which also leads to num-
bers U™ = 436 x 10° for both the DCMR station and the RIVM station. The dif-
ference between these two numbers is also significant equal to zero, thus the relative
uncertainty is again nearly independent of the measurements.

This leads to the following conclusion: If the model simulations do not differ a lot
from the observations, the rate of decrease of the relative uncertainty is nearly inde-
pendent of the values of the observations. If the difference between the simulations
and observations is large, the screening criterion throws out a lot of observations and
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the rate of decrease is smaller. This is also an indication that the model must be
improved to get a more accurate simulation.

Setting an optimal placement of monitoring stations

Reduce uncertainty of important sources

In this section the theory about adding virtual monitoring stations will be explained.
The idea is to add a virtual monitoring station on a well-chosen location. This lo-
cation is chosen such that the uncertainty of one of the important sources will be
decreased. This will lead to a large decrease of the total uncertainty. In Section 9.2
and 9.4, some ideas are found for the placement of such virtual monitoring stations.

In Section 9.2, it is shown that the emission from highway traffic, sea ships and
background have the largest contribution on the exposure of the population to the
concentration NO,. Therefore the virtual monitoring stations have to be located,
such that the uncertainty of these three sources will decrease.

Some virtual monitoring stations are added to the system on locations with dominat-
ing emission from respectively highway traffic, background and maritime shipping.
With this virtual monitoring stations, the influence on the uncertainty can be calcu-
lated.

If a virtual monitoring station will be added to the Kalman filter, it is important to
have a deliberate choice for the simulated series of measurements. Section 9.5 shows
that the absolute uncertainty depends on the measurements, also the relative uncer-
tainty depends a little on the measurements. Therefore the series of measurements is
simulated around the model simulation. This means that the difference between the
observations and the simulations is small, thus the reduction in absolute uncertainty
will be accurate. The relative uncertainty is nearly independent of the measurement,
thus the reduction in this uncertainty will also be accurate.

Traffic station

The emission from highway traffic has the largest contribution to the exposure as
shown in Section 9.2. A reduction in the uncertainty of this source leads to an effi-
cient reduction of the total uncertainty. In the present system of monitoring stations,
there are already two stations which cover the emission from highway traffic, these
stations are located in Overschie and Ridderkerk. As shown in Section 9.4.1, the
screening process throws out a lot of observations, especially for the station in Rid-
derkerk. This is an indication that the model is not accurate at those two stations,
therefore the model could be improved to solve this problem and to reduce the un-
certainty.

Another method to reduce the uncertainty of the emission from highway traffic is
to add another station which cover the emission from this source. At the Harmsen
bridge, on the junction of the main road A15 and local road N57, according to the
model, the contribution from this source is 93 %. This is the largest contribution in
the whole area. If a monitoring station is placed near this bridge the uncertainty of the
emission from highway traffic will have a large reduction. Now a virtual monitoring
system will be added to the system to have a look at the reduction of the uncertainty.
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In the right panel of Figure 9.10, the relative uncertainty is shown for the whole area.
This relative uncertainty is calculated as an average of 5 different series of virtual
measurements for the virtual station near the Harmsen bridge. The figure shows the
relative uncertainty for one of these five simulations, the other 4 have nearly the same
pattern. In the left panel, the relative uncertainty is shown for the present situation
with only the 9 present monitoring stations. It is obvious that the uncertainty is
mainly decreased around the main roads.

The numbers U%* and U™, calculated as the average of the 5 different simulations,
become equal to respectively 15.7 x 103 and 359 x 103. This are reductions of 3.9 %
with respect to the present situation with 9 monitoring stations in the area (row 11,
all stations, in Table 9.2). The reductions with respect to the situation without any
measurements in the Kalman filter (row 1, no stations, in Table 9.2) are 17.8 % for
the absolute uncertainty and 19.4 % for the relative uncertainty.

Figure 9.10: Relative uncertainty for the whole domain. Left panel: The Kalman filter ap-
plied on the present stations. Right panel: The Kalman filter applied on the
present stations plus an extra monitoring station near the Harmsen bridge.

Background station

The emission from source background have a large influence on the exposure of the
population to the concentration NO,. Table 9.1, shows that the contribution of this
source to the total exposure is equal to 21 %. Because none of the present monitoring
stations is dominated by this source, a good idea will be to add an extra station on
a location where the background dominates the total emission. At the zeedijk in
Bernisse, south west of Rotterdam, the contribution from this source is about 55 %
of the total emission, this is the largest contribution in the whole area. The rest of
the emission at this location is mainly caused by the shipping sources (19 %) and by
source rest (13 %).

In the right panel of Figure 9.11, the relative uncertainty is shown when an extra
station is added in Bernisse. The left panel shows the relative uncertainty if only the
present monitoring stations are involved in the Kalman filter. The region with the
largest contribution of source 'Background’ has the largest reduction of the uncer-
tainty. These regions are mainly located south west of Rotterdam.

The numbers U and U are again calculated as an average of five different series
of simulated measurements for the Zeedijk in Bernisse. The average of this numbers
are U%% = 14.9 x 10% and U™ = 346 x 10°, this are reductions of respectively 8.0
% and 7.2 %, with respect to the situation with only the present monitoring stations.
The reductions with respect to the situation without measurements are respectively
21.3 % and 22.2 %.
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Figure 9.11: Relative uncertainty for the whole domain. Left panel: The Kalman filter ap-
plied on the present stations. Right panel: The Kalman filter applied on the
present stations plus an extra virtual monitoring station in Bernisse.

Shipping station

Another source with a large contribution to the exposure is the source ’Ships sea’.
This source covers the emission from maritime ships. In the present situation, only
the station in Maassluis has a significant contribution from this source. Therefore
an extra station on a location with a large contribution from the shipping sources
would be a good choice to reduce the uncertainty. The location with the largest
contribution is the Missouriweg nearby Hoek van Holland. On this location 57 %
of the emission is from maritime ships, the rest of the emission is mainly caused by
source background (14 %) and source rest (24 %).

In the right panel of Figure 9.12, the relative uncertainty is shown for the situa-
tion with an extra station at the Missouriweg nearby Hoek van Holland. In the left
panel the relative uncertainty is shown for the situation without extra monitoring sta-
tions. The figure shows that the relative uncertainty is mostly decreased in the region
around the ’Nieuwe Waterweg’, the harbor entry of Rotterdam.

Also for this virtual monitoring station, the numbers U* and U are calculated
from the average of 5 runs of the Kalman filter, with each a different series of virtual
measurements. These number became equal to U* = 15.8 x 105 and U™ =
363 x 103, reductions of 3.0 % and 2.5 % with respect to the present situation and
reductions of 15.8 % and 17.7 % with respect to the model simulation without any
measurement in the Kalman filter.

0.28 0.30 0.3

2 3. . 0.28 0.30
Annual mean of the relative uncertainty

. .32 .
Annual mean of the relative uncertainty

0.36

Figure 9.12: Relative uncertainty for the whole domain. Left panel: The Kalman filter ap-
plied on the present stations: Right panel: The Kalman filter applied on the
present stations plus an extra virtual monitoring station at the Missouriweg
nearby Hoek van Holland
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9.6.2

9.7

Create an optimal setting of monitoring stations

The results from Section 9.6.1 shows that the total uncertainty can be reduced by the
addition of monitoring stations which covers the important sources. Now, a method
will be described to create an optimal setting of monitoring stations in a (new) area.

Suppose a city wants a monitoring system for the concentration NO,, which can
be connected with the Real Time URBIS model. The two main questions are: how
many stations are necessary? and where should those stations be located to have
an uncertainty which is smaller than the required uncertainty? The use of virtual
monitoring stations can give an idea of the placement of the stations.

The process start with one monitoring station at a random place. If this (virtual)
station is replaced to another place in the area, the total uncertainty will change.
With an optimization algorithm it is possible to find the location for this station such
that the total uncertainty is minimal. A possible method for this optimization is the
gradient method, with this method the stations is moved in the direction, such that the
uncertainty had the largest decrease. After the translation in that direction, the station
is again translated in the direction with the largest reduction of the uncertainty.

If the station is located on a (local) optimal place the process, there criterion for
acceptable uncertainty must be checked. If this criterion is not fullfilled, the op-
timization process can be restarted with two randomly placed monitoring stations.
The gradient method can still be applied to find the (local) optimal combination of
these two monitoring stations. At the end of each optimization process, it must be
checked if the uncertainty is smaller than the required uncertainty. When the tar-
get is reached, the setting of the stations will then be the optimal placement of the
monitoring stations.

This method also causes some troubles. The gradient method finds a local optimum,
which is not necessary the same as the global optimum. This can be avoided by sev-
eral runs of the process. If the same optimum is found several times, it is reasonable
that this optimum is the global optimum. Another way to avoid the problems with lo-
cal optima is to use a global optimization algorithm. More about global optimization
algorithms is described in Weise [1988].

Conclusion

The relative uncertainty decreases if an extra monitoring station is added to the sys-
tem. In Section 9.4 and 9.6, it is shown that the uncertainty decreases most if the
uncertainty of an important source is decreased. An important source is defined as a
source with a large contribution to the exposure of the population.

In Section 9.4, it is also shown that the efficiency of the reduction decreases if more
stations with the same dominating sources are added to the system. This leads to the
conclusion that an optimal setting of the monitoring stations is such that each of the
important sources is covered by at least one station. If more stations cover the same
source, the reduction will be less efficient. In Section 9.4.4, it is shown that more
stations for the same source will result in a diminishing return of extra reduction of
the uncertainty.

For the Rijnmond area covered in this study, the important sources are highway
traffic, maritime shipping and background. The present stations covers mainly the
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sources highway traffic and maritime shipping. The other important source back-
ground is not covered by one of the monitoring stations. In Section 9.6.1, it is shown
that an extra station which covers the source background will lead to a significant
reduction of uncertainty. Also an extra location which cover the emission from mar-
itime ships will lead to a useful reduction.

Another station which cover the emission from highway traffic will also have an
efficient reduction of the uncertainty, this is because many observations are screened
in the two present traffic stations Overschie and Ridderkerk. More stations for the
highway traffic are not expected to be very efficient, also stations which cover the less
important sources will not have a very efficient reduction of the relative uncertainty.

The absolute uncertainty will have an accurate reduction if the model simulations
does not differ too much from the observations. If the model simulations are lower
than the observations, the absolute uncertainty will be overestimated. Otherwise
the absolute uncertainty will be underestimated if the model simulation are larger
than the observations. If this situation occurs it will be more efficient to change the
model such that the model fits better on the observations. Therefore a critical view
on the differences between the observations and the simulations is necessary to say
something about the reduction in the absolute uncertainty.



88/120



10

10.1

10.1.1

89/120

Other time resolutions

The exposure of the population is mostly determined with annual mean concentra-
tions. In the previous chapters the annual mean of the uncertainty is determined by
the average of the hourly mean uncertainties. It could be useful to look at some dif-
ferent time scales. It is trivial that the uncertainty is smaller if the time scale is larger,
the hourly mean concentrations fluctuates a lot and will have some extreme values. If
the time scale is larger, the extremes will be averaged thus the uncertainty is smaller.
The idea is that the annual mean of the uncertainty is smaller by this calculations,
therefore the limit values for the annual mean concentrations stated in Appendix 2 of
"Wet Milieubeheer’ [Cramer, 2007] can be checked more accurate. The limit values
for the hourly mean concentrations can not be checked more accurate with measure-
ments of daily, weekly or monthly mean concentrations.

In Section 10.1, the annual mean of the uncertainty will be determined by the average
of daily mean uncertainties, in Section 10.2 with weekly mean uncertainties and in
Section 10.3 with monthly mean uncertainties.

If the time scale is larger, the number of available observations in a year will be
smaller. With 9 monitoring stations in the area, there are a maximum of 9x8760
= 78840 hourly mean concentrations available. For the daily mean concentrations,
a maximum of 9x365 = 3285 observations are available. For the weekly mean, a
maximum of 9x52 = 468 observations are available. For the monthly mean concen-
trations, the number of observations became equal to 9 x 12 = 108. In the previous
chapter, it is already shown that less number of observations results in smaller reduc-
tion of the uncertainty.

Daily mean concentrations

If the Kalman filter is applied for the daily mean concentrations, the maximum avail-
able number of observations is still 3285. Therefore the application of the Kalman
filter will still be useful to calculate the annual mean of the uncertainty. The annual
mean of the uncertainty is now determined by the average of daily mean uncertain-
ties. In Section 10.1.2, the annual mean of the uncertainties are determined. First in
Section 10.1.1, the Kalman filter equations for this application are constructed.

Dynamical system and Kalman filter form

The Kalman filter equations have to be changed such that those equations fits the
daily mean concentrations. The dynamical system for the logarithm of the concen-
tration NO,, at day k becomes the following:

88
In(¢;) =1n (Z ﬂivkmie%’“> (10.1)
i=1
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10.1.2

The correction factor -; 4, is the correction factor on the standard concentration field
¢ at day k, m,; is the standard concentration field i. The total number of standard
concentration fields is still equal to 88. The value fi; . is the average of all weight
factors p; 5, at day k:

1 24
ik = 55 Z; i s (10.2)
J:

in here the parameter y; j, is calculated for each hour j of day k. This parameter is
calculated with the wind speed, the wind direction, the temperature, the hour of the
day, the day of the week and the month of the year.

The dynamical system 10.1 is again non-linear, therefore a linearization is made:

88 fi; 19—
In (Z ﬁi7kmie%’“) = In(c)+ [Jcmj] 7, +0 (lk -lk)(los)
i=1 ko dj=1

the model concentration (also daily mean) at day k is denoted by ¢;*. The dynamical
system then becomes the following:

0 LI+ 7=88
(e = i)+ [, (104
Cr j=1
Tit1 Ay, +wy wy, ~ N (0,Q) (10.5)

where matrix A contains the temporal correlation parameters. The covariance matrix
Q is a diagonal matrix, with the model uncertainties, both A and () are assumed to
be independent of time.

To implement this dynamical system in the Kalman filter, it has to be written in
Kalman filter form:

Y1 = Ay twr  wpr~N(0,Q) (10.6)
g, = Hy, +uv. vy~ N0 Ry (10.7)

where Ry, represents the uncertainty of the measurements. Furthermore y, and H are
defined as follows:

j, = In (yk>—Hln(gZL) (10.8)

i o 1j=88

a o= H[“J’j:%] (10.9)
Qk‘ j=1

where y, are the daily mean observations on day k.

Uncertainties after Kalman filtering

When the Kalman filter is applied on the daily mean concentrations with the Kalman
filter equations from Section 10.1.1, it appears that the uncertainties are smaller. The
extreme hourly mean values are averaged out and the daily mean concentrations have
less uncertainty.
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Input parameters for the Kalman filter

To obtain the temporal correlation parameters for the traffic sources and for the ship-
ping sources, the temporal correlations of the daily mean concentrations are calcu-
lated for the monitoring stations Overschie and Ridderkerk (traffic) and for Maassluis
(shipping). This is done similar to the method in Section 6.4. In Figure 10.1, the tem-
poral correlations are shown, in the left panel for monitoring stations Overschie and
Ridderkerk and in the right panel for Maassluis. This figures shows that the daily
mean concentrations are nearly uncorrelated, the parameters 74, and 75, seems to
be close to 2. Calculating the correlation on the other monitoring stations leads to
parameters 7,4, Ti,, and 7. all equal to 2.

The input parameters ¢, and o are still unknown, therefore the Kalman filter will
be applied for different values of these parameters and for the temporal correlation
parameters close to 2. Similar to Section 6.5, the values for the Mean, Std and
RM SE have to be optimized to find the optimal values for all input parameters.

Also for the daily mean concentrations, the differences between the observations and
the simulations are very large at the monitoring stations Overschie and Ridderkerk.
Therefore the optimal values for r¢ac, 0, Thg, Tir, Tin, Tsh and 7, are calculated with
only the observations from the other 7 monitoring stations. This leads to the follow-
ing series of parameters: 7, = 0.26, 0 = 0.13 and 7y = T4 = Ty, = Tin = Tre =
2.

— Ridderkerk — Maassluis

— Overschie ~at/2
10 — ¢
—atf2

5 10 20 25 3 . 5 10 20 25 3

15 15
At [days] At [days]

Figure 10.1: Temporal correlation for the daily mean concentrations at monitoring stations
Overschie and Ridderkerk in the left panel and for Maassluis in the right panel

Uncertainty of the model

For the model uncertainty the parameter ¢ is important. The optimal value for this
parameter was determined to be equal to 0.15. With this parameter the absolute and
relative uncertainty of the model simulation could be calculated for each day on each
point in the domain. The annual mean of all those daily mean uncertainties are shown
in Figure 10.2. In the left panel the absolute uncertainty is shown, in the right panel
the relative uncertainty is shown.

As a result of the smaller uncertainty of the daily mean concentrations, both the
absolute and the relative uncertainty are smaller than for the applications with hourly
means as in Figure 9.1. The absolute uncertainty is still very large on the main roads
and in the industrial region around Pernis, the relative uncertainty is (as assumed)
constant on the whole area.

Also for this application it is possible to calculate the number U** and U™, for the
model simulation. These values are equal to U** = 13.1x10% and U™ = 306x103.
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These numbers are about 31 % smaller than these numbers for the model simulations
with hourly mean concentrations from Section 9.3.
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Figure 10.2: Annual mean of the absolute and the relative model uncertainty calculated as
an average of daily mean uncertainties.

Uncertainty after Kalman filter application

In Figure 10.3, the absolute and relative uncertainty are shown for the whole area
with all 9 monitoring stations involved in the Kalman filter. The absolute uncertainty
is somewhat decreased on the main roads and the industrial region around Pernis.

The relative uncertainty is mostly decreased on the main roads and in the region
around the ’Nieuwe Waterweg’. This is due to the monitoring stations which covers
mostly the emission from traffic and shipping sources. The number U%* become
equal to 12.0 x 10 and the number U"® became equal to 280 x 103, these are
reductions of 8.3 % and 8.6 % with respect to the model simulations.

These reductions are useful, but smaller than the same reductions for the application
with hourly mean concentrations. The row ’All stations’ from Table 9.2, shows that
these reductions were equal to 14.5 % and 16.1 %. The application with daily mean
concentrations has less observations, thus less possibilities to reduce the uncertain-
ties.

In Table 10.1, the reductions of the numbers U%* and U are given for all the
different monitoring stations involved in the Kalman filter application for the daily
mean concentrations. Comparing this table with Table 9.2 shows that the uncertain-
ties are smaller due to the smaller uncertainty for the daily mean concentrations. The
reductions with respect to the model simulations are also smaller, this is due to the
smaller number of observations which are involved in the Kalman filter.
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Figure 10.3: Annual mean of the absolute and the relative uncertainty calculated as an av-
erage of daily mean uncertainties. All nine monitoring stations are involved in
the Kalman filter application.

Table 10.1: Reductions of the numbers U** and U for the daily mean concentrations in
the Kalman filter application.

Monitoring Reduction with Reduction with
Dominating b .
stations involved Number U *”® respect to the Number U"¢ respect to the
. source(s) at the s o . 5 o .
in the Kalman o . x 10 situation without x 10 situation without
monitoring station
Filter Kalman filter Kalman filter
No Stations — 13.1 — 306 —
Zone card (22 %)
Schiedam Ships sea (19 %) 12.7 3.1 % 301 1.8 %
Background (15 %)
Zone card (21 %)
Hoogvliet Ships sea (21 %) 12.9 1.5 % 300 2.0 %
Background (16 %)
Maassluis Ships sea (44 %) 12.9 1.6 % 298 2.8 %
Overschie Zone card (43 %) 13.3 -1.4 % 301 1.6 %
Ridderkerk Zone card (85 %) 12.8 24 % 304 0.8 %
Bentinckplein Roads nearby (35 %)
12.7 2.6 % 303 0.9 %
(DCMR) CAR (24 %)
Roads nearby (25 %)
Schiedamsevest Background (16 %) 12.8 2.4 % 302 1.3 %
Ships sea (14 %)
Ships sea (24 %)
Background (16 %)
Vlaardingen Zone card (14 %) 12.8 1.8 % 301 1.8%
Rest (14 %)
CAR (14 %)
Bentinckplein Road nearby (35 %)
12.8 22 % 303 1.1 %
(RIVM) CAR (24 %)
All stations — 12.0 8.3 % 280 8.6 %
Overschie +
— 12.9 1.0 % 299 23 %
Ridderkerk
Bentinckplein
— 12.6 33% 302 1.5%
(2x)

Weekly mean concentrations

If the measurements and the model simulations covers the weekly mean concentra-
tions, it is trivial that the uncertainty is smaller than the daily mean concentrations.
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The Kalman filter equations are the same as the equations in Section 10.1.1. Of
course the averages are now taken over a whole week instead of a day. Analysis of
the values for Mean, Std and RM SFE as in Section 10.1.2 leads to input parameters
Ttrac = 0.19, 0 = 0.105 and 7y = T4p = Tsp = Tin = Tpe = 2.

If the Kalman filter is applied with this input parameter, the number U’ becomes
equal to 10.5 x 100 for the situation without any observations involved. The number
U7 becomes equal to 248 x 103, this are reductions about 44 % with respect to the
application with hourly mean concentrations. The absolute and the relative uncer-
tainty are shown for the whole domain in Figure 10.4. The uncertainties are smaller
but they have the same patterns as the uncertainties calculated with the daily mean
or the hourly mean concentrations.

A disadvantage of this application is that the number of observations which is avail-
able for the Kalman filter is only 9x52 = 468. Therefore the Kalman filter cannot
reduce this uncertainty very much. In Figure 10.5, the relative and the absolute uncer-
tainty are shown for all the measurements made on the 9 monitoring stations involved
in the Kalman filter. The numbers U and U"® become equal to 0.98 x 10 and
233 x 103. This are reductions of 5.4 % and 6.1 %, these reductions are smaller than
the reductions in the applications with hourly mean or daily mean concentrations,
but they still have nearly the same pattern. Finally in Table 10.2 all reductions are
shown for each different monitoring station.
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Figure 10.4: Annual mean of the absolute and the relative model uncertainty calculated as
an average of weekly mean uncertainties.
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Figure 10.5: Annual mean of the absolute and the relative uncertainty calculated as an av-
erage of weekly mean uncertainties. All nine monitoring stations are involved
in the Kalman filter application.
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Table 10.2: Reductions of the numbers U and U™ for the weekly mean concentrations in
the Kalman filter application.

Monitoring . Reduction with Reduction with
o Dominating bs rel
stations involved Number U *”® respect to the Number U™¢ respect to the
source(s) at the
in the Kalman o . %108 situation without x10° situation without
monitoring station
Filter Kalman filter Kalman filter
No Stations — 10.5 — 248 —
Zone card (22 %)
Schiedam Ships sea (19 %) 10.1 2.7 % 245 1.4 %
Background (15 %)
Zone card (21 %)
Hoogvliet Ships sea (21 %) 10.4 0.9 % 245 1.1%
Background (16 %)
Maassluis Ships sea (44 %) 10.4 0.3 % 243 22 %
Overschie Zone card (43 %) 10.7 2.1 % 245 1.0 %
Ridderkerk Zone card (85 %) 10.3 1.4 % 247 0.3 %
Bentinckplein Roads nearby (35 %)
10.2 23 % 246 0.6 %
(DCMR) CAR (24 %)
Roads nearby (25 %)
Schiedamsevest Background (16 %) 10.1 3.1 % 245 1.2 %
Ships sea (14 %)
Ships sea (24 %)
Background (16 %)
Vlaardingen Zone card (14 %) 10.4 0.8 % 244 1.5 %
Rest (14 %)
CAR (14 %)
Bentinckplein Road nearby (35 %)
10.3 1.2 % 246 0.9 %
(RIVM) CAR (24 %)
All stations — 0.98 54 % 233 6.1 %
Overschie +
— 10.5 -0.5 % 245 1.3 %
Ridderkerk
Bentinckplein
— 10.3 1.8 % 245 1.1 %
(2X)

Monthly mean concentrations

When the time resolution is changed into monthly mean concentrations, the uncer-
tainty becomes again smaller than with weekly or daily mean concentrations. A
disadvantage of monthly mean concentrations is that the maximum number of mea-
surements in a year is equal to 9 x 12 = 108. Therefore the Kalman filter do not
have much possibilities to reduce the uncertainty. Analysis of the values for RM SE,
Mean and Std, leads to input parameters 7,y = T4 = Tin = Top = Tre = 2,
o = 0.07 and 7 = 0.165.

If the Kalman filter is applied with this input parameters on the monthly mean con-
centrations, then the number U* becomes equal to 6.9 x 10 and U™ becomes
equal to 166 x 103, this holds when no observations are involved in the Kalman
filter.

If all the observations from the 9 monitoring stations are involved the following un-
certainties are found: U%* = 6.7 x 103 and U™ = 160 x 10%. This equals with
reductions of respectively 2.9 % and 3.1 %, again smaller reductions than in the ap-
plication with hourly, daily or weekly mean concentrations. In Figures 10.6 and 10.7,
the absolute and relative uncertainties are shown for both the situation without any
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measurements and the situation with all measurements involved. In Table 10.3, all
the reductions of the absolute and relative uncertainty are shown.
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Figure 10.6: Annual mean of the absolute and the relative model uncertainty calculated as
an average of monthly mean uncertainties.
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Figure 10.7: Annual mean of the absolute and the relative uncertainty calculated as an av-
erage of monthly mean uncertainties. All nine monitoring stations are involved
in the Kalman filter application.
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Table 10.3: Reductions of the numbers U and U™ for the monthly mean concentrations
in the Kalman filter application.

Monitoring . Reduction with Reduction with
o Dominating bs rel
stations involved Number U *”® respect to the Number U™¢ respect to the
source(s) at the
in the Kalman o . %108 situation without x10° situation without
monitoring station
Filter Kalman filter Kalman filter
No Stations — 6.9 — 166 —
Zone card (22 %)
Schiedam Ships sea (19 %) 6.8 1.9 % 164 0.8 %
Background (15 %)
Zone card (21 %)
Hoogvliet Ships sea (21 %) 6.9 1.2 % 165 0.5 %
Background (16 %)
Maassluis Ships sea (44 %) 7.0 -0.9 % 163 1.3 %
Overschie Zone card (43 %) 7.0 -1.6 % 165 0.2 %
Ridderkerk Zone card (85 %) 6.9 0.2 % 166 0.0 %
Bentinckplein Roads nearby (35 %)
6.8 22 % 165 0.4 %
(DCMR) CAR (24 %)
Roads nearby (25 %)
Schiedamsevest Background (16 %) 6.8 2.2 % 165 0.6 %
Ships sea (14 %)
Ships sea (24 %)
Background (16 %)
Vlaardingen Zone card (14 %) 6.9 0.3 % 164 0.9 %
Rest (14 %)
CAR (14 %)
Bentinckplein Road nearby (35 %)
6.9 0.5 % 165 0.5 %
(RIVM) CAR (24 %)
All stations — 6.7 29 % 161 31%
Overschie +
— 7.0 -1.6 % 165 0.2 %
Ridderkerk
Bentinckplein
— 6.8 2.1 % 165 0.7 %
(2x)

Combining various time resolutions

In the previous sections, it is shown that the efficiency of the Kalman filter application
reduces if the time resolution becomes larger. On the other hand, the automatic moni-
toring system to create hourly mean concentrations is relatively expensive. Therefore
a cheap alternative is to extend the present system with 9 monitoring stations with
hourly mean concentrations with a system of monitoring stations with monthly mean
concentrations. To imply this in the Kalman filter application, the state equation and
also the Kalman filter equations must be changed.

Kalman filter equations for combined time scaled

In the situation with hourly mean and monthly mean observations, the state equa-
tion must contain all the hourly mean concentrations from the past month. At the
end of the month all concentrations from the past month will be corrected with the
information from the monthly mean observations. The state equation becomes the
following:
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Ck

Cr__
& = | ! (10.10)

Ck—1719

The vectors ¢, contains two different parts, ¢, ,, and ¢, ;. The vector ¢, ;, corre-
sponds with the hourly mean concentrations on time & on locations with hourly mean
measurements. The vector ¢, ;, corresponds with the hourly mean concentrations on
locations with monthly mean measurements. In the present situation the vector with
hourly mean concentrations is of length 9. The length of vector ¢, ;. depends on the
number of (new) stations which covers monthly mean concentrations.

88 .

|k = i a7 10.11

& = _ 88 i (10.11)
Cmk = Zz‘:l i oMy €75

where my, ; and m,,, ; are the standard concentrations of source 7 on the locations
with respectively hourly and monthly mean measurements.

For the hourly mean concentration on time k, the same state equation as in Equation
5.2 still holds:

88
& = Zﬂi,kmie%’k (10.12)
i=1

This leads to a total state ¢; with state equation:

Z?i1 ui,kmifﬂ’“k
& = : (10.13)

88 i k719
Zi:l Mz’,k—719mi€%’k e

The total vector with unknowns is:

T
v = (10.14)
Jg—719
Further there have to be a vector with observations:
y
Yy, = =hik (10.15)
ym,k
in here y,  is the hourly mean concentration on time k. The vector Yy, , compares

with theinfonthly mean concentration from time step £ — 719 to time step % (the mean
concentration over the past 30 days).

These observations have to be connected with the concentrations c;,. Because the
observations have a log-normal distribution, the following equation holds:
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Chk
Cm k
(| Y I B 0 e 0 0 "
Yo, - 0 Yr0l, --- O 17201, :

' Ch k—719

| Cm k—719

+ [ Eh.k } (10.16)
Zm,k

in here I, is the identity matrix with size as large as the number of stations with
hourly mean measurements, I,,, is the identity matrix with size as large as the number
of stations with monthly mean measurements.

These equations are again not linear in the variable 7, therefore a linearization is
made around 7 = 0. This leads to the following system of equations:

ik | = {5+ [ Ehok ] (10.17)
Qm,k o Zm,k
with:
Yy = I (QM) —In (cx) (10.18)
~ 1
B = 10 (g) <o <720 (e +c%,k_ng)> (10.19)
~ [ema] ™5y 0
H =h, =1

i, kM, Hik—719T,, ;

= 7=88 =88
[%(cmﬁ-.-wz;,km)]i_l [T;(](c::t,k+-~-+c::1,km)]i_l

Finally the temporal correlation matrix A between the vectors kbl and 7, and the
matrix @), corresponding with the uncertainty of the model, must be determined. The
matrix A will have the following form:

A = ) ) (10.20)

I 0
where the matrix Aj, size 88 x 88, corresponds with the temporal correlation matrix
between vectors Vit and Vpo this must be the same matrix as in Section 6.2. The

identity matrices have also size 88 <88, these matrices shifts the vectorsy,  through
the large vector 7.

The matrix () corresponds with the uncertainty of the state vector at time & thus this
matrix is:

Q= . (10.21)

with @)1, size 88 x 88, as in Section 6.2.
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10.4.2

Results of the Kalman filter with different time scales

If the Kalman filter is applied with the Kalman filter equations as described in the
Section 10.4.1, two important results occurs. At the end of each month the uncer-
tainty of all correction factors will decrease, because of the presence of the monthly
mean observations. Further, at each time step the uncertainty of the correction fac-
tors from the 720 time steps before are decreased. The reason for this reduction is the
structure of the covariance matrix PP. The covariance between the correction factors
on time k and the correction factors on time £ — 1,k — 2...k — 719 are not equal to
0. Therefore the minimum variance gain minimizes the variances of the correction
factors of the previous 719 time steps.

The rate of reduction of the uncertainty from the previous time steps is therefore de-
pendent on the temporal correlation. If the temporal correlation is large, the Kalman
filter will cause a large reduction of the uncertainty from the previous time steps. The
idea behind this reductions is that a small uncertainty of a correction factor on time k
must lead to a small uncertainty of the same correction factor on the next time step.

The results of this application is very difficult to determine because the state vector
is a vector of length 88 x 720 = 63360. Therefore the matrices A,Q and P are of
size 63360 x 63360, the present computer systems can not (yet) handle this large
matrices.

Therefore the application is not done with hourly mean concentrations but with the
average concentration over 3 hours. In that case the state vector has length 88 x 3 =
264, which can be handled by the present computers. The patterns of the reductions
are again the same as for the situation with only hourly mean concentrations. Thus
the reduction of the uncertainty by adding stations with monthly mean concentrations
is a reasonable idea.

From now on it is again possible to create an optimization algorithm such that the
total uncertainty connected with the population will be minimized. This algorithm
must build in the same way as in Section 9.6.2.
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Structural inaccuracies of the Real Time URBIS model

Correction factors per standard concentration field

In the first part of this report, the Kalman filter is applied to the Real Time URBIS
model. The result of this application is a correction factor for each hour for each
standard concentration field. It is now possible to calculate an annual mean of these
correction factors. The annual mean of the correction factors for standard concentra-
tion field ¢ is given by the following expression:

| 8760
— ek 11.1
8760 (1.1
k=1
If the annual mean of a certain correction factor is significantly different from 1, it
is possible that the corresponding standard concentration field have some structural

inaccuracies.

In Table 11.1, the annual means of all correction factors are given for each standard
concentration field. The results in this table shows that the correction factors for the
source 'Background’ are little larger than 1, while the correction factors for the traffic
sources are little smaller than 1. This could give an indication that the emissions from
traffic and the background concentration should be better estimated by the model.

Another interesting fact is that the correction factors for the wind directions east and
south are mostly larger than the correction factors for the wind direction north and
west. This can also be caused by some inaccuracies in the model. If the wind is
from the east or the south, there is mostly not much turbulence in the air (stable
weather). This little turbulence causes less dispersion of the air pollution, thus larger
concentrations NO,,. In the model, there is no distinction between stable and unstable
weather. The larger correction factors for the wind directions east and south indicates
that the model should make a difference between stable and unstable weather.

Table 11.1: Mean of the correction factors for each standard concentration field.

Wind speed 1.5 m/s 5.5m/s
Source\ Wind Direction | N \ E \ S \ w N \ E \ S \ W
Abroad (*) 1.00 | 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 1.00 | 1.00
Background 1.01 | 1.03 | 1.04 | 1.01 || 0.99 | 1.02 | 1.07 | 1.01
Zone card 097 | 0.99 | 1.00 | 0.98 || 0.97 | 0.99 | 0.98 | 0.96
CAR 0.98 | 1.00 | 1.00 | 0.99 || 0.95 | 0.98 | 0.96 | 0.94
Roads nearby 095 | 1.02 | 098 | 096 || 0.94 | 0.99 | 0.94 | 0.96
Roads far 0.99 | 1.02 | 1.01 | 1.00 || 1.00 | 1.00 | 1.00 | 1.00
Industry 1.00 | 1.01 | 1.01 | 1.00 || 1.00 | 1.01 | 1.01 | 1.00
Domestic 1.00 | 1.02 | 1.01 | 1.00 || 1.00 | 1.00 | 1.00 | 1.00
Ships inland (*) 1.00 | 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 1.00 | 1.00
Ships sea 098 | 1.04 | 1.04 | 0.98 || 0.99 | 1.01 | 1.01 | 0.99
Rest 099 | 1.02 | 1.01 | 1.00 || 0.99 | 1.01 | 1.00 | 0.99

(*) The sources Abroad and Ships sea only have a very small contribution to the total con-
centration, therefore the correction factor for these sources is equal to 1.
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11.2

Correction factors per emission source

Another application of the Kalman filter in the Real Time URBIS model is that the
original model only gets 11 correction factors, each of the sources gets a correction
factor instead of 8 per source. The corrected concentration (c;°™) is given by the

following formula:
8
(Z Ha‘@k””bji) v

=1

11

D

Jj=1

QiOI‘I" —

(11.2)
where p5; 1. is the weight for the standard concentration field on time & of source j
and wind combination ¢. The vector m ;is the standard concentration field of source

j and wind combination ¢. The correction factor on time & for source j is given by
Vi
evik,

The result of this application is that each emission source gets a correction factor on
each hour. The annual means for 2006 of this correction factors are given in Table
11.2. In this table also the annual means of the correction factors are calculated as
an average of correction factors with other time scales. The correction factors for the
other time scales are calculated with Equation 11.2 with % as time step day, week or
month.

In this table, the correction factors for the source *Background’ are little larger than
1, while the correction factors for the traffic sources are little smaller than 1. This
leads to the same ideas as in Section 11.1, the emissions from the traffic sources and
the background concentrations have possible inaccuracies.

Table 11.2: Mean of the correction factors per emission source

] Source | Hourly | Daily | Weekly Monthly
Abroad (*) 1.00 1.00 1.00 1.00
Background 1.05 1.05 1.03 1.02

Zone card 0.96 0.98 1.01 1.03
CAR 0.95 0.95 0.98 0.99
Roads nearby 0.94 0.94 0.93 0.88
Roads far 1.00 1.00 0.98 0.96
Industry 1.01 1.01 1.00 0.99
Domestic 1.01 1.00 0.99 0.97
Ships inland (*) 1.00 1.00 1.00 1.00
Ships sea 1.00 1.01 1.02 1.10
Rest 1.00 0.99 0.98 0.97

(*) The sources Abroad and Ships sea only have a very small contribution to the total con-
centration, therefore the correction factor for these sources is equal to 1.
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Conclusions and discussion

In this part, three extensions of the Kalman filter in the Real Time URBIS model are
described. With these three extensions it is possible to reduce the uncertainty of the
estimated concentration NO,,.

In the first extension, a method is described to add some extra monitoring stations.
The main conclusion is that the total uncertainty connected with the population will
be minimized if the extra monitoring station are located such that the emission from
the important sources is covered. In the Rijnmond area are the sources ’Background’,
’Ships sea’ and *Zone card’ stated as important sources. Therefore some possible
locations for extra monitoring stations are: The Zeedijk in Bernisse, the Harmsen
Bridge on the junction of the A15 and the N57 and the Missouriweg in Hoek van
Holland.

The second extension on the Kalman filter is the application of the Kalman filter
with different time scales. The uncertainty of the model simulation is smaller if the
model covers daily, weekly or monthly concentrations. This is because the extremes
which can occur in hourly mean calculations are averaged out. On the other hand,
the Kalman filter has less information from measurements to reduce the uncertainty.
The patterns of the uncertainty are nearly the same for each time scale, therefore it is
possible to add some monitoring stations to the system with different time scales. In
a Kalman filter, it is possible to combine different time scales. With this combination
it is again possible to find an optimal setting of extra monitoring stations with another
time scale.

Finally the correction factors, calculated in the first part of this report are analyzed. If
the annual mean of a correction factor is significantly different from 1, this is possibly
caused by an inaccuracy of the comparing standard concentration field. One of the
possibilities is that the emission from a certain source is not accurate in the model, but
this is not necessary. It is also possible that other assumptions in the model causes an
inaccuracy, or the representativity of some measurements is not sufficient. Therefore
the correction factors only leads to some ideas of the origin of the inaccuracies.

In total the Kalman filter is a good instrument to reduce the uncertainty of the model
simulation. One method is: extra monitoring stations which corrects the model sim-
ulation. The other method is: analyze the information about the inaccuracies of the
model and use this information to improve the model.
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Locations of the monitoring stations

The locations of the 9 monitoring stations, in the domain covered by DCMR. The
two stations at Bentinckplein are located in the same building, given in Figure A.2b.
The blue diamonds represents the locations of the grid points, while the red squares
are the monitoring stations.

(¢) Maassluis (d) Overschie

Figure A.1
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(¢) Schiedamsevest (d) Vlaardingen

Figure A.2
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Standard concentration fields

Standard concentration fields for the 11 different sources in the URBIS model, each
source has 8 standard concentration fields valid for 4 different wind directions (N, E,
S, W) and 2 different wind speeds (1.5 m/s and 5.5 m/s).

Figure B.1: Emission source: Abroad
Figure B.2: Emission source: Background
Figure B.3: Emission source: Zone card
Figure B.4: Emission source: CAR

Figure B.5: Emission source: Roads nearby
Figure B.6: Emission source: Roads far
Figure B.7: Emission source: Industry
Figure B.8: Emission source: Domestic
Figure B.9: Emission source: Ships inland
Figure B.10: Emission source: Ships sea

Figure B.11: Emission source: Rest
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Source: Abroad Wind speed: 1.5 m/s Wind direction: N Source: Abroad Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Abroad Wind speed: 1.5 m/s Wind direction: S Source: Abroad Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Abroad Wind speed: 5.5 m/s Wind direction: N Source: Abroad Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m’ Concentration NO, [jg/m* ]
Source: Abroad Wind speed: 5.5 m/s Wind direction: S Source: Abroad Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.1: Emission Source: Abroad
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Source: Background Wind speed: 1.5 m/s Wind direction: N Source: Background Wind speed: 1.5 m/s Wind direction: E

°
~
IS
)

10 12 14 16 18 20 8 10 12 14 16 18 20
Concentration NO, [g/m" ] Concentration NO, [jig/m* ]

°
~
IS
o

Source: Background Wind speed: 1.5 m/s Wind direction: S Source: Background Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Background Wind speed: 5.5 m/s Wind direction: N Source: Background Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Background Wind speed: 5.5 m/s Wind direction: S Source: Background Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.2: Emission Source: Background
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Source: Zone card Wind speed: 1.5 m/s Wind direction: N Source: Zone card Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Zone card Wind speed: 1.5 m/s Wind direction: S Source: Zone card Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Zone card Wind speed: 5.5 m/s Wind direction: N Source: Zone card Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Zone card Wind speed: 5.5 m/s Wind direction: S Source: Zone card Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.3: Emission Source: Zone Cards
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Source: CAR Wind speed: 1.5 m/s Wind direction: N Source: CAR Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: CAR Wind speed: 1.5 m/s Wind direction: S Source: CAR Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: CAR Wind speed: 5.5 m/s Wind direction: N Source: CAR Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m’ Concentration NO, [jg/m* ]
Source: CAR Wind speed: 5.5 m/s Wind direction: S Source: CAR Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.4: Emission Source: CAR
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Source: Roads nearby Wind speed: 1.5 m/s Wind direction: N Source: Roads nearby Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Roads nearby Wind speed: 1.5 m/s Wind direction: S Source: Roads nearby Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Roads nearby Wind speed: 5.5 m/s Wind direction: N Source: Roads nearby Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Roads nearby Wind speed: 5.5 m/s Wind direction: S Source: Roads nearby Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.5: Emission Source: Road nearby
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Source: Roads far Wind speed: 1.5 m/s Wind direction: N Source: Roads far Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Roads far Wind speed: 1.5 m/s Wind direction: S Source: Roads far Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [ug/m*] Concentration NO, [g/m’ ]
Source: Roads far Wind speed: 5.5 m/s Wind direction: N Source: Roads far Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Roads far Wind speed: 5.5 m/s Wind direction: S Source: Roads far Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.6: Emission Source: Road far
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Source: Industry Wind speed: 1.5 m/s Wind direction: N Source: Industry Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Industry Wind speed: 1.5 m/s Wind direction: S Source: Industry Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [g/m’ ]
Source: Industry Wind speed: 5.5 m/s Wind direction: N Source: Industry Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Industry Wind speed: 5.5 m/s Wind direction: S Source: Industry Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.7: Emission Source: Industry



1177120

Source: Domestic Wind speed: 1.5 m/s Wind direction: N Source: Domestic Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Domestic Wind speed: 1.5 m/s Wind direction: S Source: Domestic Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [ug/m® ] Concentration NO, [pg/m* ]
Source: Domestic Wind speed: 5.5 m/s Wind direction: N Source: Domestic Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Domestic Wind speed: 5.5 m/s Wind direction: S Source: Domestic Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.8: Emission Source: Domestic Rijnmond
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Source: Ships inland Wind speed: 1.5 m/s Wind direction: N Source: Ships inland Wind speed: 1.5 m/s Wind direction: E

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Ships inland Wind speed: 1.5 m/s Wind direction: S Source: Ships inland Wind speed: 1.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Ships inland Wind speed: 5.5 m/s Wind direction: N Source: Ships inland Wind speed: 5.5 m/s Wind direction: E

9 2 4 6 8 10 12 14 16 18 20 0 2 a 6 8 10 12 14 16 18 20
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Ships inland Wind speed: 5.5 m/s Wind direction: S Source: Ships inland Wind speed: 5.5 m/s Wind direction: W

9 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.9: Emission Source: Ships inland
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Source: Ships sea Wind speed: 1.5 m/s Wind direction: N Source: Ships sea Wind speed: 1.5 m/s Wind direction: E

0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Ships sea Wind speed: 1.5 m/s Wind direction: S Source: Ships sea Wind speed: 1.5 m/s Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Ships sea Wind speed: 5.5 m/s Wind direction: N Source: Ships sea Wind speed: 5.5 m/s Wind direction: E

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Ships sea Wind speed: 5.5 m/s Wind direction: S Source: Ships sea Wind speed: 5.5 m/s Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.10: Emission Source: Ships sea
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Source: Rest Wind speed: 1.5 m/s Wind direction: N Source: Rest Wind speed: 1.5 m/s Wind direction: E

0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: Rest Wind speed: 1.5 m/s Wind direction: S Source: Rest Wind speed: 1.5 m/s Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: Rest Wind speed: 5.5 m/s Wind direction: N Source: Rest Wind speed: 5.5 m/s Wind direction: E

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: Rest Wind speed: 5.5 m/s Wind direction: S Source: Rest Wind speed: 5.5 m/s Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure B.11: Emission Source: Rest



