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Abstract

Figure 1: Schematic overview of an hydrostatic thrust bearing. (I) Recess area, (II) Bearing land, (III) Flow restrictor, (IV) Fluid supply,
(V) Fluid film gap and (VI) Counter surface (Track)

Hydrostatic bearings, as shown in figure 1, are superior in terms of performance to contact based bearings.
They work on the principle of a small film layer between the bearing and the counter surface which is sup-
plied by an external pressure supply. The load capacity of the hydrostatic bearing is dependent on the height
of this film layer and the effective surface area of the hydrostatic bearing where a small film layer results in
a high load capacity. To maintain high load capacities, the orientation between bearing and counter sur-
face should remain parallel. This results in the need of a deformable hydrostatic bearing when moving over
non-constant curvature counter surfaces. Generally, hydrostatic bearing are made very stiff to maintain load
bearing capacity. This means that the bearing is not able to deform and maintain a parallel position with
the counter surface. This results in a dilemma, a high stiffness is desired to maintain large loading capacities
while a low stiffness is required to allow for deformations to maintain a parallel position with the track. Since
conventional hydrostatic bearings are made very stiff, they are not considered an option for the use on non-
constant curvature counter surfaces, thus limiting the applicational use of hydrostatic bearings.

Figure 2: Schematic overview of a whiffletree support system.

The objective of this thesis is to allow deformability for hydrostatic bearings. This is achieved by coupling
multiple hydrostatic bearing pads, also called slippers, together with a so-called whiffletree support system
as shown in figure 2. The whiffletree allows for rotations of the slippers maintaining a parallel orientation
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vi Abstract

with the track. Furthermore, the whiffletree allows for smaller slipper lengths where a quadratic relation is
found between the slipper length and slipper required compression. Meaning that the decrease in slipper
size results in a quadratic decrease of required compression of the slipper and thus the bearing.

The whiffletree support consists of multiple linkages connected by joints. The joints used can not be com-
mon contact joints since this would re-introduce the negative properties of wear, friction and stick-slip into
the system. Compliant joints could solve these drawbacks, providing the same motion as conventional con-
tact joints without the negative properties. The main requirements for the compliant joints are a high axial
stiffness to maintain load bearing capacity while having a low rotational stiffness with a large range of motion
to allow for the rotations in the support. Conventional compliant joints do not possess all of these properties
[1]. So to design a new joint the range of motion of each joint, the normal and shear forces acting on each
joint and the rotational stiffness of each joint is required. In other words, the systems kinematics and kineto-
statics should be obtained.

The range of motion is obtained by using a rigid body model of a 2D whiffletree support and finding the cor-
responding kinematics. The normal forces, shear forces and moments acting on the joints are obtained by
decomposing the force acting on each individual slipper and adding the corresponding forces of each slipper
acting on each joint. With the forces and moments known, the normal, shear and rotational stiffness is de-
termined of each joint in the system.

Overall, the objective of this thesis has been successfully achieved by the addition of a whiffletree support
system. The whiffletree support allows for the slippers to rotate maintaining a parallel position with the
track. Furthermore, the slipper length can be decrease without the loss of load capacity which results in a
smaller required deformation of each slipper. Thus allowing the hydrostatic bearing to follow non-constant
curvature counter surfaces.
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1
Introduction

1.1. Background
Humans are in a continuous pursuit to design and improve machines to exceed the limitations of their human
strength. Instead of improving each machine on its own, one could look into a key part that is used in almost
every machine. One of these key components are bearings. Bearings are used to constraint a certain motion,
while allowing motion in the desired direction. Furthermore, bearings tend to decrease the friction between
the moving parts, allowing easier movement of the load in the desired direction. A great example of this
principle dates back to the ancient Romans. A ball bearing was found that was used in a rotating table on one
of their two Nemi ships [2]. A more recent bearing applications is the use of bearings by Leonardo da Vinci
around the year 1500. Drawings where found using ball bearings in his design of a helicopter [3]. As of today,
bearings can be found in almost every machine that has moving parts. They can be found in transportation
devices, medical equipment, factory robots and many more. The most commonly used bearings are plain,
ball or roller bearings. These bearings are subjected to stick slip and wear down after each iteration reducing
the lifetime of the bearing. For applications that require high accuracy and precision, stick slip is a huge
drawback. So, a different type of bearing is needed that eliminates stick slip while maintaining high load
capacities. If a lubricant is allowed in the system, hydrostatic bearings could provide a solution.
Hydrostatic bearings work on the principle of a small fluid layer between bearing and counter surface pre-
venting solid to solid contact. Due to the prevention of solid to solid contact, little to no wear occurs during
operation. This increases the lifetime of the bearing significantly. A second advantage of hydrostatic bear-
ings is the fluid layer between the bearing and counter surface. Due to this fluid layer, viscose friction occurs
instead of dry friction, which lowers the friction coefficient by approximately two orders of magnitude [4]. Fi-
nally, hydrostatic bearings are able to maintain high load capacities making them great to use in applications
that are subjected to large forces like lock gates, milling machines and large telescopes [5–7]. Conventional
hydrostatic bearings are modelled infinitely stiff to prevent failure under these high loads. This prevents hy-
drostatic bearings for the use in applications where the bearing is required to deform during operation. In
other words, conventional hydrostatic bearings can not be used in applications that have a non-constant
curvature counter surface.
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2 1. Introduction

1.2. Hydrostatic Bearing

Figure 1.1: Schematic overview of an hydrostatic thrust bearing. (I) Recess area, (II) Bearing land, (III) Flow restrictor, (IV) Fluid supply,
(V) Fluid film gap and (VI) Counter surface (Track)

A conventional hydrostatic thrust bearing, figure 1.1, consists of a recess area (I), bearing land (II), flow restric-
tor (III) and fluid supply (IV). Fluid is pumped from the fluid supply into the recess area to create a uniform
pressure profile. The pressure in the recess area is used to lift the bearing from the counter surface (VI) cre-
ating small fluid film gaps (V) for the fluid to escape. This creates a small fluid layer between the bearing and
counter surface preventing solid to solid contact, also called full film lubrication.

1.3. Problem Definition
To maintain full film lubrication, the bearing and counter surface should remain parallel to each other at all
times. For traditional hydrostatic bearings the counter surface must consist of a constant curvature to main-
tain a parallel orientation between bearing and counter surface. This is required since traditional hydrostatic
bearings are modelled infinitely stiff to maintain high load capacity without failure. For a hydrostatic bear-
ing to follow non-constant curvatures, the bearing must be modelled with a definite stiffness to allow for
deformations required to maintain a parallel position between bearing and counter surface. The stiffness is
reversely proportional to the deformation required. Meaning a larger required deformation results in a lower
required stiffness. However, a lower stiffness results in a lower maximum load capacity which is undesired.
Therefore, the problem definition of this thesis is stated as followed:

"To design a large deformable hydrostatic bearing able to follow non-constant curvatures."

1.4. Thesis Layout
In this thesis, the model fundamentals of a large deforming hydrostatic bearing are shown in chapter 2. The
body of this thesis is build around the paper "Kinematics of a 2D Whiffletree Based Large Deforming Hydro-
static Bearing" presented in chapter 3 and can be read as an independent work. The paper gives a design
model to obtain the kinematics and kinetostatics of a whiffletree based large deforming hydrostatic bearing
where the scripts used in the model are shown in appendix A.4. In chapter 4, a further explanation is given
on the moments required to rotate the joints. Chapter 5 provides extra insight on the use of a coupled multi-
slipper hydrostatic bearing. Following, the FEM analysis is further explained in chapter 6. In chapter 7 a
discussion is given regarding the research in this work. To conclude, a conclusion and recommendations for
further research are given in chapter 8 and chapter 9 respectively where some elaboration on further research
and the design of a rapid demonstrator is given in appendix B and C respectively.
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1.5. State of the Art
To find the state of the art, a look in literature on the subject of deformable hydrostatic bearings is given.
Three researches where found that used an elastic support structure to counter for surface waviness or to
maintain load capacity.

The Hydro Support: R.A.J. van Ostayen et al. [8][6] introduced a new type of navigation lock-gate support
as seen in figure 1.2, the hydro support. The hydro support consists of a hydrostatic bearing that slides over
an elastic polymer track and is elastically supported to the lock gate by a rubber hinge to compensate for
tilting of the gate lock with respect to the guiding surface.

Figure 1.2: Hydrostatic pad with rubber support structure used in the prince Willem-Alexander lock gates. Adopted from [6]

Elastic Support Surface: A. van Beek and L. Lepic [9] introduced an analytical and numerical solution for
the calculation of an elastic support surface shown in figure 1.3. The bearing also consists of two rigid plates
with a rubber body in between. Calculations show that the bearing surface will converge to a convex surface
due to the difference in hydrostatic pressure and pressure of the bearing generated by the mass.

Figure 1.3: Cross section of bearing system (left) and boundary con-
ditions with concentric loading (right). Adopted from [9]

Figure 1.4: Rigid bearing system (left) and elastic bearing support
(right). Adopted from [10]

Rubber Supported Hydrostatic Pad: A. van Beek and A. Segal [10] introduced rubber supported hydrostatic
thrust bearings with rigid bearing surface. Due to the addition of a rubber body, an elastic bearing support is
realized which creates a more parallel hydrostatic film shown in figure 1.4. This increases the pressure distri-
bution under the bearing and therefore results in a higher load capacity.

One can conclude that a gap in literature is found on the subject of large deformable hydrostatic bearings.
Furthermore, from the research that has been conducted the conclusion can be drawn that most elasto-
hydrostatic research is conducted to compensate tilt instead of to follow non-constant curvatures.





2
Background

To improve the deformability of the hydrostatic bearing, the stiffness of the bearing should decrease. How-
ever, a decrease in bearing stiffness could lead to failure of the bearing when it is subjected to high loads. So,
it would be beneficial if a high stiffness is maintained and a solution is found to decrease the required defor-
mation. It is expected that the required deformation of the hydrostatic bearing is reduced if the hydrostatic
bearing is placed parallel with the counter surface at the center of the hydrostatic bearing. Furthermore, it
is expected that the required deformation scales with the length of the hydrostatic bearing. If the scaling is
non-linear, a decrease in hydrostatic bearing length could result in a relative larger decrease in required de-
formation. However, a decrease in hydrostatic bearing length also results in a decrease in load capacity. A
solution could be to couple multiple hydrostatic bearings, from now on called slippers, together by the use of
a support structure. This will decrease the deformation required of each slipper while maintaining load ca-
pacity. To design the new hydrostatic bearing, a look is given in three different sections, the track, the slipper
and the support as shown in figure 2.1. The track is defined as the counter surface of the hydrostatic bearing
and is used to obtain the required deformation of the hydrostatic bearing. The slipper is used as a bridge be-
tween the counter surface and the support and provides the pressure profile and load capacity of the bearing
using EHL and the Reynolds equation. The support is used to couple multiple slippers together to maintain
load capacity while allowing the slippers to rotate. A rigid body model will be made to find the maximum
rotational angles in the joints of the system and their corresponding stiffness’s.

Figure 2.1: Three important sections of the hydrostatic bearing, the track, the slipper and the support.
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6 2. Background

2.1. Track
The track is defined as the counter surface of the large deforming hydrostatic bearing. In literature, two state-
ments can be found that define large deformable hydrostatic bearings [11]. These are that, large deformable
hydrostatic bearings are able to deform to ≥ 10% of the height of the bearing in its undeformed configuration
and large deformable hydrostatic bearings are able to deform ≥ 100 times the average film height of the fluid
film.

With the definition of a large deforming hydrostatic bearing given, a counter surface needs to be chosen.
Since all surfaces are different, a generalized surface is needed to give a good representation of most surfaces.
This way, the results obtained for this specific surface are more generalized and could be applied for many
different counter surfaces.

2.1.1. Surface
When looking at literature, many surfaces have been modelled as a single or double sine wave [12][13][14][6].
Sine waves have the characteristic of containing all three Gaussian curvatures and could, therefore, represent
most surfaces [15]. Furthermore, sine waves are relatively easy to use in mathematical expressions compared
to high order polynomials. Therefore, a sine wave is chosen to represent the surface over which the hydro-
static bearing moves. A representation of the surface can be seen in figure 2.2.

Figure 2.2: Single sine wave used as a model to represent the counter surface (track) with amplitude A and wavelength λ.

2.1.2. Surface decomposition

Figure 2.3: Single deforming slipper (left) and single tilted deforming slipper (right). L is the length of the slipper, h is the height of the
slipper and d is the maximum axial deformation.

When looking at a sine wave, it is expected that the compression needed for a rectangular shaped object to
follow the wave is smaller when the object is placed under an angle (tilted) compared to a horizontal orienta-
tion, see figure 2.3. If this is true, the height of the object can decrease if it is allowed to tilt while maintaining
equal compression relatively. To validate this expectation a toy model is made shown in figure 2.4. In the fig-
ure, a horizontal and tilted line, starting at y = 2.25 are plotted against half a sine wave with an amplitude A
and wavelength λ of 1m shifted by a quarter wavelength. The average and maximum perpendicular distance
from both lines to the sine wave are given in table 2.1.2.



2.2. Slipper 7

Figure 2.4: Mathematical model result of a tilted (angle at 75 degrees) and horizontal pad and their counter surface.

Tilted [m] Horizontal [m]
Average distance 0.0820 1.250

Maximum distance 0.1465 2.250

The results show a large decrease in distance from the line to the sine wave if the line is allowed to tilt. So, it
can be concluded that the expectation that the required deformation of the bearing decreases if the bearing is
able to rotate is indeed true. Meaning that the deformation required of the slipper can be reduced by adding
a joint on the slipper which allows for rotations of the slipper.

2.2. Slipper
The slipper is the bridge between the track and the support structure. It is provided with a certain curvature
of the track and a desired flight height and gives a force exerted on the support. The curvature of the track and
the Reynolds equation provide the total pressure profile under the slipper. In this section, a small elaboration
is given into the Reynolds equations and into the principle of elasto-hydrostatic lubrication. Figure 2.5 gives
a small representation of the slipper and shows the mechanics used on each part of the slipper.

Figure 2.5: Elasto-hydrostatic bearing which is compressed due to a pressure profile generated by the Reynolds equation running over a
specific track.
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2.2.1. Reynolds Equation
The Reynolds equation is an expression of the conservation of mass in a fluid continuum [16]. The pressure
in the fluid film can be described using basic flow equations like the conservation of mass, energy or impulse.
The computing power required to solve these equations numerically is very large. So, a variety of assumptions
is used to obtain the Reynolds equation to describe the pressure in a fluid film. The Reynolds equations is
derived, in this work, with the use of the conservation of mass. The two-dimensional conservation of mass is
defined by:

∂qx

∂x
+ ∂qy

∂y
= 0 (2.1)

where (qx ) and (qy ) are the mass flows in, respectively, x and y direction through a medium. With the use of
the thin film assumptions, the mass flows can be derived. The five main thin film assumptions are stated as
followed:

1. The flow is laminar

2. The flow is stationary

3. The viscosity and density are constant

4. The pressure is constant

5. There are no body forces acting on the fluid

Using all assumptions regarding the Reynolds equation, the mass flow in a film can be defined by:

qx =− h3

12η

∂ph

∂x
+ ρ(Ua +Ub)h

2
qy =− h3

12η

∂ph

∂y
+ ρ(Uc +Ud )h

2
(2.2)

where (ph) is the fluid pressure, (h) the film height, (η) the fluid viscosity, (ρ) the density and (Ua , Ub , Uc and
Ud ) the surface velocities of the surface in x- and y-direction. Substituting equation (2.2) in equation (2.1)
and holding the basic assumptions, the full Reynolds equation is defined by:

∂

∂x
(− h3

12η

∂ph

∂x
+ ρ(Ua +Ub)h

2
)+ ∂

∂y
(− h3

12η

∂ph

∂y
+ ρ(Uc +Ud )h

2
) = 0 (2.3)

For hydrostatic bearings, it can be assumed that the velocities of the wall remain zero. Applying this in equa-
tion (2.3) gives the following equation:

∂

∂x
(− h3

12η

∂ph

∂x
)+ ∂

∂y
(− h3

12η

∂ph

∂y
) = 0 (2.4)

To conclude, the Reynolds equation describes the flow between two surfaces by means of pressure, viscosity,
velocity and geometry and is valid for both rough and smooth surfaces. Bear in mind that surface roughness
could disturb the flow in the fluid film. Nonetheless, the surface roughness is not included in the design of
this hydrostatic bearing and the assumption of a smooth surface is made.

2.2.2. Elasto-hydrostatic Lubrication
Elasto-hydrostatic lubrication works on the principle of elasto-hydrodynamic lubrication. Elasto-hydrodynamic
lubrication mostly occurs in a rolling motion between two elements. Since the roller and inner race have an
opposite curvature, the contact is seen as a point contact. Due to this point contact, a very high-contact
pressure occurs which slightly deforms the roller. This deformation is necessary to maintain a continuous
hydrodynamic film. When looking at this principle in hydrostatic lubrication, the pressure generated by the
pomp in the bearing results in deformation of the bearing. This is, in most cases, not the problem, since most
hydrostatic bearings are modelled infinitely stiff and a huge pressure is needed to make a small deformation.
However, since the hydrostatic bearing in this research should deform, it is not modelled as infinitely stiff but
has a certain stiffness. This means that the hydrostatic bearing can deform due to the pressure generated by
the full film lubrication. This deformation has two resulting behaviors. Firstly, due to the deformation of the
bearing, the pressure profile will change as shown in figure 2.6.
Since the gradient under the bearing changes, the pressure profile shapes into a parabolic form compared to
the triangular form for a hydrostatic bearing with no recess area. This has a profitable effect in increasing the
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Figure 2.6: Pressure profile change due to the effects of elasto-hydrostatic lubrication.

total pressure under the bearing, and thus the load capacity. This shows a coupling effect between the elasto-
hydrostatic lubrication and the Reynolds equation on the slipper. Secondly, due to the change in pressure
profile, larger stresses will be present in the bearing which could result to failure of the system. A design
approach for such deformable slippers is given in [11].

2.3. Support
The support is one of the key parts of the system. It allows the slippers to rotate to maintain a more profitable
position with the gradient of the track reducing the required compression of each slipper as shown in section
2.1.2. Furthermore, load capacity can be maintained by coupling multiple slippers together allowing each
slipper to be smaller in length. So, the system needs a suitable support structure that allows the end effector
to rotate while being able to transfer the load capacity through the support without any complications.

2.3.1. State of the art
To see which support structure suits this design best, a literature search is conducted on the subject of support
structures. The main criteria are: the allowance of rotation in the end effector and the ability to easily transfer
the load capacity. In this section, a brief summary of the 5 most promising support systems found in literature
is given which is concluded by the choice of the support for this design.

Rocker Bogie: The rocker bogie was developed for NASA in 1988 [17] and has since been NASA’s favorite
suspension design for rovers [18]. An example of the use of a rocker bogie is the Mars Exploration Rover [19].
The rocker bogie consists of a bogie, which can also be found in trains and crane supports, and a rocker. The
rocker is the fundamental part of the rocker bogie and is an additional arm on which the body and a third
wheel is connected as shown in figure 2.7. Due to this design, the rocker bogie can stabilize its center of
gravity while following a rough surface [20][21].

Figure 2.7: Rocker bogie mechanism used as suspension for the Mars Explorer Rover. Adapted from [20]
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Zero Potential Energy System: Zero potential energy systems use the theory of zero potential energy to
remain stationary in every configuration [22]. Figure 2.8 shows a zero potential energy system. Here cylinders
are wrapped in an elastic cord which is pre-stressed. Since the length of the cable remains the same in each
orientation of the cylinders, the total potential energy in the system remains the same [23]. The drawback of
the system is the requirement of zero friction between the rollers and a fixed external load.

Figure 2.8: Zero potential energy system in 3 configurations. A convex ring wit a stressing cable touching the discs from outside (left), a
stressing cable around each coil (middle) and a concave ring with a stressing cable around each coil (right). Adapted from [23]

Parallel Manipulator: Parallel manipulators, shown in figure 2.9, are active systems that compensate for
the roughness of the track by actuators and a controller making it an active system [24]. The mechanisms
mostly consist of 6 linkages divided in three groups of two which are allowed to rotate and translate up and
down. This way, the end effector can be placed in each orientation in the allowable operation box of the
system. Some examples of systems that use parallel manipulators are pick and place robots, 3D printers,
gangways for ships and many more.

Figure 2.9: Representation fo a parallel manipulator. Adapted from [25]

Body Guidance System: Body guidance synthesis is the task of seeking a mechanism which simultaneously
generates a desired path of a fixed point to a link and a desired orientation variation of the link. This is one of
the most complicated synthesis available. A good example is the four bar linkage mechanism [26]. However,
as explained before, this synthesis is quite complicated and provides a single motion which could limit the
applicational use of the system to that single motion.

Whiffletree: The whiffletree, as seen in figure 2.10, has been used for many years in agriculture. It was
used to divide the load of a plow between two draught animals using the concept of a lever. The draught
animals where attached to the end of the whiffletree beam and the plow was placed in between the draught
animals. This shows that the whiffletree can be used as a force distributor. A nice fundamental concept of the
whiffletree is that multiple beams can be connected together creating a whole system of whiffletrees to divide
the load over multiple end points. Besides the use in agriculture, whiffletree’s are also found in windshield
wipers, the support of telescopes and other high precision applications. Some examples are a test setup for
wind turbine blades [27], the Thirty Meter telescope (TMT) [28] and the E-ELT optical telescope [29] [30].
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The whiffletree is a simple solution to provide a force distribution support system in either two- or three-
dimensions.

Figure 2.10: Equal distribution of forces by a simple whiffletree system.

2.3.2. Support Selection
As stated before, a suitable support has the ability to rotate the end effector and could easily transfer the load
capacity through the system. Furthermore, it is desired if the support system is simplistic in design. Suitable
systems could be the rocker bogie, parallel manipulator and the whiffletree. The parallel manipulator is a
good choice but has the drawback of being an active system. For this design a passive system is desired to
prevent the use of complicated controllers. Thus leaving the choice between the rocker bogie and the whiffle-
tree. In essence, the rocker bogie and whiffletree work on the same fundamental principals. They both work
as a force distributing system which allows the end effectors to rotate. The main difference is the deviation
in distance between the end effectors during operations. Looking at the rocker bogie, the distance between
the end effectors deviates largely during motion. This means that, if the slippers are coupled together by an
elastic material, this piece will be subjected to large stresses due to deformations. These large stresses are
a critical part in the system and must be reduced to a minimum. Looking at the whiffletree, the change in
distance of the end effectors during operation is significantly smaller. Thus the stresses on the coupling parts
will be reduced. Therefore, a whiffletree is chosen as a suitable support to connect the slippers together in
the hydrostatic bearing.

2.4. Summary
This section provides a summary of chapter 2. The large deforming hydrostatic bearing consists of multiple
slippers and joints connected by a whiffletree support system to follow a counter surface as shown in figure
2.2. The whiffletree support is used to reduce the required deformation of each slipper by allowing the slip-
pers to rotate to obtain a parallel orientation with the counter surface. The counter surface is represented
by a sine wave with amplitude A and wavelength λ. And can be used to model multiple different counter
surfaces. The pressure profile and load capacity of the bearing is obtained by using the principle of EHL
and the Reynolds equation. The model is used to find the maximum angular rotation of each joint and their
corresponding stiffness’s.
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Hydrostatic bearings are superior in terms of performance
to contact based bearings, but non-usable in applications
with non-constant curvature counter surfaces. A solution
to this would be the introduction of deformable hydrostatic
bearings components to cope with these required deforma-
tions. To reduce the required deformation of a bearing pad,
multiple pads are connected through a so-called whiffletree
support system. In this work, the design approach for such
a whiffletree based hydrostatic bearing system is introduced.
The approach includes determining the load capacity of all
individual slippers. Design considerations are given regard-
ing the joint rotational-, normal- and shear stiffness of each
individual joint.

1 Introduction
Hydrostatic bearings have the properties of obtaining a

high load capacity while maintaining low friction. This is
due to the small fluid film between bearing and counter sur-
face. Compared to conventional slider and roller bearings in
terms of friction, wear and load capacity, hydrostatic bear-
ings remain the preferred option. However, conventional hy-
drostatic bearings are limited to applications that have an ex-
ternal pressure source and constant or zero curvature counter
surfaces [1]. To eliminate the second limitation, compliant
hydrostatic bearings could provide a solution. Compliant
hydrostatic bearings offer the ability to deform, following
the counter surface while maintaining its film height. One
approach to design compliant hydrostatic bearings, is to de-
sign the support to be elastic. This has been used to counter
waviness of the counter surface [2, 3], to maintain load ca-
pacity when the bearing is tilted [4] or to function as an
elastic pivot [5]. However, these type of supports are lim-
ited to small deformations in the order of the bearing film
height [2, 6]. This results in an absence of hydrostatic slider
bearings used in applications with non-constant curvature
counter surfaces. Examples of such potential applications
can be found in motors and pumps, in civil structures like
lock gates and in sliding rooftops of stadiums [3,7,8]. Thus,

a wide variety of potential applications could benefit from
the improved functionality. This work will focus on the de-
sign of a large deforming hydrostatic bearing able to follow a
non-constant curvature counter surface. Two statements can
be found in [1] that define large deformable hydrostatic bear-
ings. These are as follows: Large deformable hydrostatic
bearings are able to deform ≥ 10% of the height of the bear-
ing in its undeformed configuration, and large deformable
hydrostatic bearings are able to deform ≥ 100 times the av-
erage film height of the fluid film.

For hydrostatic bearings it is fundamental that the bear-
ing and the counter surface remain close to parallel [9]. This
means that, for a non-constant curvature counter surface, the
bearing needs to deform to maintain a parallel orientation
with respect to the counter surface. It is expected that the
required deformation of the bearing, in order to maintain a
parallel orientation to the counter surface, decreases as the
length decreases. This is expected, as the curvature of the
counter surface becomes close to linear if the length of the
curvature decreases. However, a decrease in bearing length
results in a decrease in load capacity which is undesirable. A
solution could be to connect multiple smaller bearing pads,
also called slipper, together by the use of a support struc-
ture [10]. This way, the deformation required from each slip-
per to maintain a close to parallel orientation with the counter
surface, is reduced while load capacity is maintained. A suit-
able support system is the whiffletree [11]. Examples of ap-
plications that use a whiffletree as support are testing setups
for wind turbines and telescopes [11–14]. It is important that
conventional joints are not used in the support system of the
hydrostatic bearing since they would re-introduce wear, fric-
tion and backlash into the system. Compliant joints could
solve these drawbacks, providing the same motion as con-
ventional contact joints without the negative properties, in
general at the cost of load bearing capacity [15]. The main
requirements for the compliant joints are a high axial stiff-
ness to maintain load capacity while having a low rotation
stiffness with a large range of motion to allow for the rota-
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tions in the support and decrease the tilt of each individual
slipper. Conventional compliant joints do not possess all of
these properties. They generally have either a high normal
stiffness with a high rotation stiffness or a low rotation stiff-
ness with a low normal stiffness [16]. So, a new type of com-
pliant joint is required which possess these properties. To
design such joints and systems, knowledge is needed about
the kinematics and kinetostatics of the system.

In this paper, a general method to obtain the kinematics
and kinetostatics of a 2D whiffletree based large deformable
hydrostatic bearing system are provided. First, the relation
between the required slipper compression and slipper length
is determined. Following, a model is presented to determine
the footprint of the bearing system. Then, rigid body me-
chanics are used to determine the kinematics, used to de-
termine the angular rotation of the individual joints. Next,
design steps are provided to determine load capacity and
pressure profiles of such whiffletree based bearing systems.
Finally, an elaboration on the joint normal-, rotational- and
shear stiffness desired for such systems is provided. It should
be noted that certain aspects regarding the kinematics and
kinetostatics of a 2D whiffletree based large deformable hy-
drostatic bearing system can be modelled in different ways.
The models provided in this work are used to give a general
solution while other modelling approaches could be used to
find more detailed results.

Figure 1: Schematic overview of the whiffletree based large de-
forming hydrostatic bearing.

2 Methods
The 2D whiffletree based large deforming hydrostatic

bearing consists of multiple hydrostatic slippers connected
by a whiffletree support system where the whiffletree is made
of multiple rigid linkages connected by joints as shown in Fig
1. The whiffletree support is used to reduce the required slip-
per deformation by allowing each slipper to rotate to obtain a
better orientation with the counter surface. In this work, the
counter surface or track of the system will be represented by
a sine wave with wavelength λ and amplitude A [3, 17–19].
The focus of this section is to obtain the kinematics and kine-
tostatics of such a whiffletree support system.

Figure 2: Single slipper compressed to remain parallel to the track
with the corresponding parameters.

2.1 Bearing Topology
2.1.1 Bearing Deformation

The bearing deformation, as function of its length, can
be expressed as the slipper compression required to main-
tain a parallel orientation with the track. Figure 2 shows
a slipper in its deformed configuration while maintaining a
parallel position with the gradient of the track. To obtain
the slipper compression, the minimum and maximum y posi-
tions of the part of the track under the slipper, further called
specific track section, in the slippers reference frame, are re-
quired. The specific track section is obtained by finding the
x position of each edge of the slipper xmin/max described by:

xmin/max = xs±
1
2

Ls cos(θ) (1)

where xs is the x position of the slipper center, Ls is the slip-
per length and θ is the angle of the slipper center point with
respect to the horizontal. The specific track section U is now
defined by:

U =

[
x
y

]
=

[
x

Asin( 2πx
λ )

]
for xmin ≤ x≤ xmax (2)

where A is the amplitude of the track and λ is the wavelength
of the track. The specific track section is placed at the origin
defined by:

Utranslated =U−T (3)

where T is the translation matrix defined by:

T =

[
xs

Asin( 2πxs
λ )

]
(4)

Following, the specific track section is rotated such that the
gradient of the track at position xs is orientated parallel to the
horizontal defined by:

Ufinal = R ·Utranslated =

[
x′

y′

]
(5)
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where R is the rotation matrix described by:

R =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(6)

Finally, the compression c of the slipper to remain parallel
with its track is described by:

c = y′max− y′min (7)

where y′min and y′max are respectively the minimum and max-
imum y values of the rotated specific track section. The slip-
pers maximum required compression over the whole track
is obtained by following the previous steps for each xs posi-
tion on the track. Figure 3 shows the maximum compression
required as a function of the slipper length for a track am-
plitude of 5%, 10% and 15% of the wavelength respectively.
It can be seen that the relation between the compression and
slipper length is approximately quadratic. This means that a
decrease in slipper length of factor s will result in a decrease
in compression of factor s2.

Figure 3: Compression required of a single slipper, as function of
the slipper length for a counter track with an amplitude of 5%, 10%
and 15% of the wavelength respectively.

2.1.2 Bearing Footprint
With the compression as function of the slipper length

defined, the total footprint of the bearing is obtained. The
total footprint of the bearing consists of the bearing height
and length. The bearing height is built up out of the slipper
height and the total joint height in the system as shown in
Fig. 4. Assuming that the height of the joint on the slipper is
equal to half the slipper length and assuming that the height
of each joint in a layer is twice the length of the joint one
layer below, the length of each joint Lj is defined by:

Lj =
2n−k+1

2
Ls (8)

Figure 4: Total baring height of a triple layer whiffletree consisting
of the slipper height and the joint height of each individual layer.

where Ls is the slipper length and k is the layer in which the
joint is located counted from top to bottom, n being the total
number of whiffletree layers and k being n+ 1 for the layer
containing the slippers. The total height of the joints hjtotal is
defined by:

hjtotal =
k

∑
k=0

uLj(k) (9)

where n is the number of layers in the whiffletree and u is
the joint height to length ratio. The total slipper height is
dependent on the maximum allowed compression. The total
slipper height hs is defined by:

hs =
1
e

cmax (10)

where cmax is the maximum required compression and e is
the maximum allowable compression of the slippers mate-
rial. The total height of the bearing hb is defined by:

hb = hs +hjtotal (11)

Substituting Eqn. (9) and (10) in (11) results in the total
bearing height defined by:

hb =
1
e

cmax +
n

∑
k=0

uLj(k) (12)

2.2 Bearing Kinematics
A whiffletree based support fundamentally consists of

multiple layers. Each layer contains a number of cells, equal
to the layer number where the layer number is shown in Fig.
5a. Each cell, except for the bottom layer, has 3 joints con-
nected by a rigid link as shown in Fig. 5b. The cells of the
lowest layer consist of a slipper connected with a rigid link
to a joint which is shown in Fig. 5c. In this paper, the index-
ation is used as shown in Fig. 5a. As shown, parts in the top
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(a) Layout of a triple layer whiffletree support system with the corresponding layer and joint numbers.

(b) Whiffletree layer cell configuration consisting of 3 joints con-
nected by a rigid linkage.

(c) Bottom layer cell configuration consisting of a slipper connected
to a single joint by a rigid linkage.

Figure 5: Layout of a 2D whiffletree support system.

layer of the cell are noted with an i, and parts in the bottom
layer of the cell are noted with (i,1) for the left part and (i,2)
for the right part or (i, j) if both parts are defined. The whif-
fletree kinematics are described by the linkage dimensions,
the joint angles with respect to the horizontal and the joints
x and y positions. In this work, all angles with respect to the
horizontal are described by θ and all pivot angles of the joints
are described by φ as shown in Fig. 6. The x and y position
of each joint xi, j and yi, j, as shown in Fig. 5b, are defined by:

xi, j = xi±
1
2

Li cos(θi)+
1
2
(hi +hi, j)sin(θi) (13)

yi, j = yi±
1
2

Li sin(θi)−
1
2
(hi +hi, j)cos(θi) (14)

Figure 6: The angle of each linkage with the horizontal θ and the
angle with respect to the linkage one layer above φ.

where Li is the length of the linkage, hi and hi, j are the joint
heights, θi is the joint angle and xi and yi are the respective
joint x and y position, one layer above. As seen in Eqn. (13)
and (14), the position of each joint in a layer is described
by the joints position in the ascending layer. The x and y
position of the joint connected to a slipper xi and yi, as shown
in Fig. 5c, are defined by:

xi = xs−
1
2

hi sin(θi) (15)

yi = ys +
1
2

hi cos(θi) (16)

where xs and ys are respectively the x and y position of the
center of the slipper, hi is the joint height and θi is the joint
angle. This gives the x and y position of the slipper as func-
tion of the slipper angle with respect to the horizontal. As-
suming that the slipper remains parallel with the gradient of
the track at position xs, the angle θi is defined by:

θi = arctan(2πAcos(2πxs)) (17)

where A is the amplitude of the track. Furthermore, the y
position of the center of the slipper is described by:

ys = Asin(2πxs) (18)
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When setting Eqn. (17) and (18) equal to zero, so that they
can be solved, the following set of equations is obtained:

arctan(2πAcos(2πxs))−θm = 0 (19)
Asin(2πxs)− ys = 0 (20)

If the joint in the top layer is assumed to have a prescribed x
position and a variable y position, the set of equations con-
sisting of Eqn. (19) and (20) can be obtained for each slipper.
If the assumption holds that the slippers remain parallel with
the gradient of the track, the system is fully constrained fol-
lowing Greubler’s Equation resulting in a solvable system of
equations [20]. If the system of equations is solved, the pivot
angle φ of each individual joint is then defined by:

φi, j = θi, j−θi (21)

where θi,j is the corresponding joint angle with respect to the
vertical and θi is the joint angle with respect to the vertical
one layer above.

2.3 Bearing Kinetostatics
With the bearing topology and kinematics known, the

bearing kinetostatics are obtained in terms of load capacity
and joint stiffness. In this section, the load capacity is ob-
tained by the pressure profile under each slipper. Further-
more, the rotational, normal and shear stiffness of each joint
is defined.

2.3.1 Load Capacity
The load capacity of the bearing is defined by the pres-

sure profile and surface area under the slipper. For a single
inlet slipper without a recess area and equal film height, the
pressure profile, used in this work, is shown in Fig. 7a. Note
that different types of pressure profiles can be used depend-
ing on the type of hydrostatic bearing pad. The pressure pro-
file comprises a triangular shape with its peak in line with the
inlet of the slipper. The load capacity of a bearing consisting
of a single slipper and that of a bearing consisting of multi-
ple slippers with the same total length and inlet pressure are
equal. The pressure profile under a slipper is directly related
to the flow of the lubricant film under the slipper. The flow
Q in any part of the lubricant film is defined by:

Q =
∫

qxdx (22)

where qx is the volumetric flux given by the Reynolds equa-
tion defined by:

qx =−
h3

12η
dP
dx

(23)

where h is the film height, dP
dx is the gradient in x-direction

of the pressure distribution and η is the fluids dynamic vis-
cosity. If an incompressible fluid is used, the volumetric flow

(a) Slipper with a single inlet and its corresponding pressure
profile.

(b) Tilted slipper with a single inlet and its corresponding pres-
sure profile.

Figure 7: Single slipper hydrostatic bearing with their correspond-
ing pressure profiles.

in any point of the lubricant film is constant. The total flow
under the slipper must be equal to the flow through the inlet
Qs and is defined by:

Qs = QR−QL (24)

where QR and QL are the flows through the right and left
section of the slipper respectively. The flow of the inlet is
determined by a linear restrictor and is defined by:

Qs = Gs(Ps−Pr) (25)

where Gs is the hydraulic resistance of the restrictor, Ps the
supply pressure and Pr the pressure under the bearing at the
inlet. Note that this is the definition of a linear restrictor
while other restrictors can also be used. In this work, the
linear capillary restrictor is used and defined by:

Gs =
πd4

r

128ηlr
(26)

where dr is the restrictor diameter, η the dynamic viscosity
of the fluid and lr the restrictor length. The load capacity per
unit length W of each slipper is then defined by:

W =
∫

Pdx (27)
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Figure 8: Normal-, shear- and rotational stiffness acting on each
individual joint in the whiffletree.

where P is the pressure profile. Finally, the total load capac-
ity of the bearing Wtot is obtained by taking the sum of the
load capacity of each slipper defined by:

Wtot =
n

∑
k=1

Wk (28)

where n is the total number of slippers in the system.
If the slipper is placed under an angle, the pressure pro-

file from Fig. 7a changes into an asymmetrical shape as
shown in Fig. 7b. This means that a deviation in load capac-
ity under the left and right side of the slipper occurs, creating
a moment acting on the slipper. This moment is defined by:

M =
∫

xPdx (29)

2.3.2 Joint Stiffness
The performance of the bearing is directly related to

the stiffness of each individual joint. The requirements of
the joints are a high normal- and shear stiffness to maintain
load bearing capacity while having a low rotational stiffness
to allow for the rotations in the system. The directions of
the rotational-, normal- and shear stiffness of each joint are
shown in Fig. 8. The rotational stiffness of the joint kr is
defined by:

kr =
M
φ

(30)

where M is the moment acting on the joint and φ is the pivot
angle of the joint. The normal stiffness of the joint kn is
defined by:

kn =
Fn

δn
(31)

where Fn is the normal component of the force acting on the
joint and δn is the normal displacement of the joint. Finally,
the shear stiffness of the joint kt is defined by:

kt =
Ft

δt
(32)

where Ft is the tangential component of the force acting on
the joint and δt is the tangential displacement of the joint.

As shown, the stiffness is dependent on the moments
and forces acting on each joint. The forces acting on each
slipper are decomposed to correspond to the fixed x and y
frame connected to the upper section of the whiffletree. The
forces in x and y direction acting on each slipper Fx and Fy
are defined by:

Fx =−W sin(θ) (33)
Fy =W cos(θ) (34)

where W is the load capacity of the slipper and θ is the angle
of the slipper with respect to the horizontal. The forces acting
on each joint Fx(i) and Fy(i) are then defined by:

Fx(i) = Fx(i,1)+Fx(i,2) (35)

Fy(i) = Fy(i,1)+Fy(i,2) (36)

To obtain the normal- and shear force acting on each joint,
a second decomposition is used. The normal force Fn acting
on each joint is defined by:

Fn = Fy cos(θ)−Fx sin(θ) (37)

where θ is the angle of the joint with respect to the horizontal.
The shear force Ft acting on each joint is defined by:

Ft = Fy sin(θ)+Fx cos(θ) (38)

The moment Mi acting on each joint, except for the joints
connected to a slipper, is defined by:

Mi = Fa(i)
Li

2
+Fb(i)

(hi +hi, j)

2
+Mi,1 +Mi,2 (39)

where hi and hi, j are the joint heights and Li is the linkage
length as shown in Fig. 5b and Fa(i) and Fb(i) are defined by:

Fa(i) = Fy(i,1) cos(θi)−Fx(i,2) sin(θi) (40)

Fb(i) = Fy(i,1) sin(θi)−Fx(i,2) cos(θi) (41)

where θi is the angle of the joint with the horizontal. The
moment acting on the joints connected to the slipper is de-
fined by Eqn. (29). The rotational stiffness of each individ-
ual joint can now be obtained. Furthermore, the normal- and
shear stiffness of each individual joint is given as a function
of the maximum allowable displacement in the normal and
tangential direction.

With the rotational stiffness of each individual joint
known, the relation between the tilt stiffness of each slip-
per and their corresponding bottom layer joint is found. The
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tilt stiffness of the slipper krs is defined by:

krs =
Ms

φs
(42)

where Ms is the moment acting on the slipper and θs is the
slipper angle with respect to the gradient of the track at posi-
tion xs. The tilt stiffness of the slipper is modelled as a hinge
joint between the slipper and the bottom layer joint as seen
in Fig. 9. The maximum tilt stiffness of the slipper is re-
lated to the maximum pivot angle of the slipper φsmax which
is defined by:

φsmax = arcsin(
2hmax

Ls
) (43)

where hmax is the maximum allowable deviation in the film
height and Ls is the slipper length. The maximum allowable
angle of the slipper prevents solid to solid contact between
the slipper and track due to tilting of the slipper. However, it
is desired that the influence of the tilt stiffness of the slipper
into the system is negligibly small. Meaning the hinge joint
between the slipper and bottom layer joint in Fig. 9 can be
seen as a rigid connection. To assure this, a high tilt stiff-
ness of the slipper is required with respect to the rotational
stiffness of the bottom layer joint. This relation is dependent
on the angle of the slipper and the angle of the bottom layer
joint which is defined by:

krs =
krjφj

φs
(44)

where φj is the bottom layer joint pivot angle and krj is the
bottom layer joint rotational stiffness.

To position the whiffletree in each configuration re-
quired to follow the track, a difference in load capacity on
each slipper is required. The difference in load capacity on
the slippers generates a moment acting on each joint, result-
ing in a rotation of the joint. The difference in load capacity
is obtained by changing the film height under each slipper.

Figure 9: Representation of a slipper with a hinge joint connecting
the slipper and bottom layer joint together and the corresponding
parameters.

The relation between the load capacity and film height can
be found with Eqn. (23) and is defined by:

W ∝
1
h3 (45)

The relations show that a decrease in film height results in
a cubic increase in load capacity. The total change in film
height of each slipper is dependent on the joints that are re-
lated to the slipper and the rotational direction of these joints.
For a joint to rotate counter clockwise (ccw), the correspond-
ing slippers right of the joint should have a higher load capac-
ity compared to the corresponding slippers left of the joint.
For a joint to rotate clockwise (cw), the corresponding slip-
pers left of the joint should have a higher load capacity com-
pared to the corresponding slippers right of the joint. As an
example, looking at Fig. 5a, for joint 11 to make a ccw rota-
tion, slipper 3 and 4 need a decrease in film height while slip-
per 1 and 2 remain an equal or have an increase in film height.
It is important that the total change in film height should not
exceed the minimum film height under each slipper in the un-
deformed configuration, since this would re-introduce solid
to solid contact.

2.4 Design Rules
To design such a whiffletree supported large deforming

hydrostatic bearing, the following rules of thumb, based on
the previous models, should be followed:

1. Minimize the slipper length given the maximum slipper
compression, number of whiffletree layers and bearing
length.

2. Increase the number of whiffletree layers given an in-
crease in bearing length.

3. Minimize the joint rotational stiffness.
4. Maximize the joint normal- and shear stiffness.
5. Maximize the ratio between slipper tilt stiffness and bot-

tom layer joint rotational stiffness.

3 Model Validation
To validate the design, obtain the difference between a

single, double and triple layer whiffletree and find the rela-
tion between the translation of the top joint with respect to
the track, a case study is presented where the parametric val-
ues used are shown in Tab. 1. A typical application for this
case study could be a hydraulic motor or pump that has four
followers on a rotating cam which comprises a sinusoidal
track. First, the footprint of the bearing is determined using
a maximum allowable compression of 10% and a joint height
to length ratio of two over five [2, 16, 21]. The amplitude of
the wave is chosen to be 10% of the wavelength where the
wavelength is set at 1m. The resulting bearing height of a sin-
gle slipper, single layer whiffletree, double layer whiffletree
and triple layer whiffletree are shown in Fig. 10. The results
show that a single layer whiffletree has the lowest height for
a bearing length up to 5.4% of the wavelength. Between a
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Description Parameter Value Unit

wavelength λ 1 m

amplitude A 0.1 m

bearing length Lb 0.25 m

joint height factor u 0.4 -

maximum compression e 0.1 -

load capacity slipper W 200 N

slipper length (single) Ls 0.125 m

slipper length (double) Ls 0.0625 m

slipper length (triple) Ls 0.3125 m

film height factor (layer 1) hf1 0.2 -

film height factor (layer 2) hf2 0.1 -

film height factor (layer 3) hf3 0.05 -

film height factor (bottom) hfB 0.025 -

Table 1: Parametric values used in the case study.

bearing length of 5.4% and 10.9% of the wavelength, a dou-
ble layer whiffletree performs best. For a bearing length of
10.9% of the wavelength or higher, a triple layer whiffletree
is the preferred option in regards to the total bearing height.
The total bearing length is set at 25% of the wavelength, re-
sulting in a triple layer whiffletree as the desired configura-
tion regarding the total bearing footprint.

To analyze the rigid body model from Sec. 2.2, it is
compared with a Finite Element Model (FEM) using Comsol
Multiphysics. In the FEM, the multibody dynamics toolbox
is used to model the bearing. The linkages are modelled as
rigid beams, using the rigid domain function and the joints
are modelled as hinge joints. The top joint has a prescribed
x position, a variable y position and is constrained in rota-

Figure 10: Total bearing height as function of bearing length
for a single, double and triple whiffletree and a single slipper
bearing.

Description Parameter Layer Value Unit

rotational stiffness kr

Top 105.6

Nm/rad
1 20.19

2 3.810

3 1.928

normal force Fn

Top 2689

N
1 1718

2 958.3

3 506.0

shear force Fs

Top 174.9

N
1 26.54

2 4.033

3 0

Table 2: Minimum rotational stiffness and maximum normal and
shear force acting on each individual joint in their corresponding
layer.

tion. The slippers have a prescribed ys position and angle θ
as function of its xs position, which are given by Eqn. (17)
and (18). In the simulation, the top joint travels for a full
wavelength. Figure 11a shows the results of the simulation
run with FEM and run with the analytical model for a triple
layer whiffletree. Only the leftmost joint angle of each layer
is shown since the remaining joints in the same layer show
equal behavior with the difference of a phase shift.

The obtained kinematics are used to find the rotational
stiffness, maximum normal force and maximum shear force
acting on each individual joint. The load capacity acting on
each slipper in the undeformed configuration for this case
study is set at 200N. The difference in load capacity is ob-
tained by defining the total flight height for each slipper to fa-
cilitate the correct rotational directions for their correspond-
ing joints. For each layer a maximum percentage of change
in film height is allowed as shown in Tab. 1. For each slipper
it is determined if the film height should decrease to supply
the required force difference to rotate the corresponding joint
for each layer. The total change in film height for each indi-
vidual layer is then obtained by taking the sum of the defined
change in film height for each layer. This is done for each
whiffletree position on the track and the maximum normal-
and shear force acting on the joint and the minimum rota-
tional stiffness required for each joint in the corresponding
layer is given in Tab. 2.

The slipper angle, as shown in Fig. 9, of the first slipper
is obtained using a relation between slipper tilt stiffness and
bottom joint rotational stiffness of one, two and three orders
of magnitude where the results are shown in Fig. 11b.

To find the influence of the number of whiffletree layers
on the joint maximum pivot angles, the joint pivot angles of a
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(a) Joint pivot angles of the FEM and analytical model compared
for a triple layer whiffletree.

(b) Slipper pivot angle of a triple layer whiffletree with a rotational
stiffness ratio of 10, 100 and 1000.

(c) Joint pivot angles of a single, double and triple layer whiffle-
tree compared.

(d) Peak to peak ratio between the vertical translation of the top
joint with respect to the amplitude of the track.

Figure 11: Results obtained using the use case presented in Sec. 3. Showing the comparison between the joint angles of a triple layer
whiffletree using the FEM and analytical model (a), the first slipper angle (b), joint angles for a single, double and triple layer whiffletree
(c) and the peak to peak ratio between top joint vertical displacement and the track (d).

single, double and triple layer whiffletree are compared using
the parametric values from Tab. 1. The results are presented
in Fig. 11c.

Finally, the ratio between the vertical translation of the
top joint with respect to the amplitude of the track as function
of the total bearing length is given in Fig. 11d for a single,
double and triple layer whiffletree configuration. This ratio
is determined by dividing the peak to peak value of the top
joint with the peak to peak value of the track.

4 Discussion
4.1 Design Model

The design model provides a method to design a 2D
whiffletree supported large deforming hydrostatic bearing.
There are a few limitations to this design. Firstly, conven-
tional hinge joints are used to model the joints in the sys-

tem compared to the preferred compliant joints. This is done
since rigid body mechanics can be used in combination with
the conventional hinge joints. Since the scope of this project
is to find a general solution regarding the kinematics and
kinetostatics, this simplification is valid. Secondly, the to-
tal perimeter of the bearing increases when multiple smaller
slippers are connected together compared to a single slipper
of equal length and width. The increase in bearing perimeter
results in an increase in fluid losses of the bearing. Thirdly,
the total joint length is restricted by the total linkage length.
This is shown in the assumption that the bottom layer joint
has a length of half the slipper length and each ascending
joint is twice the length of the joint one layer below, result-
ing in the maximum allowable bearing length on each link-
age. Finally, the slippers are placed directly next to each
other. When the bearing moves into a concave configuration,
the slippers need to pass through each other which results in

9
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jamming. This can be solved by adding a small gap between
the slippers large enough such that the slipper can pass with-
out contact.

4.2 Model Validation
A case study is given in the model validation. Look-

ing at the total bearing height shown in Fig. 10 it can be
seen that an increase in whiffletree layers is advantageous if
the total bearing length increases. It is also noted that the
total bearing height of the use case is within 10% of the am-
plitude of the wavelength. Furthermore, the amplitude of
the wavelength is approximately 1000 times the average film
height of the fluid film. Thus, considering the statements
given in [1], the bearing and counter surface used in the use
case are defined as large deforming. Figure 11a shows the
joint pivot angles for the FEM and analytical model. The
obtained results for the FEM and analytical model have no
noticeable difference, thus validating the design model pre-
sented in Sec. 2.2. Furthermore, an asymmetry in the joint
angles while moving over the track is noted. This means that
the whiffletree behaves differently when moving through the
concave and convex configurations of the track. Looking at
the joint pivot angles shown in Fig. 11c, it is shown that the
addition of whiffletree layers has a negligible small impact
of the joint pivot angles of the ascending layers. This can be
explained by looking at the angle of the corresponding link-
age with the horizontal. The angle of the linkage with the
horizontal is almost equal to the angle of the gradient of the
track at the same position. An increase in whiffletree layers
does not change this orientation. Thus, no significant change
in joint pivot angle is noted due to an increase in whiffletree
angles. Looking at the top joint pivot angle, it can be seen
that the maximum required angle is equal to the maximum
angle of the gradient of the track. Meaning that the top joint
is required to rotate the total system so it remains on aver-
age parallel to the track. Furthermore, it is shown that an
increase in whiffletree layers results in a decrease in slipper
length, and thus a decrease in required compression of each
slipper. The slipper pivot angle is shown in Fig. 11b for a ro-
tational stiffness ratio between slipper and bottom layer joint
of one, two and three orders of magnitude. It is shown that
for a ratio of three orders of magnitude, no noticeable change
in slipper pivot angle is noted. Meaning that a rotational stiff-
ness ratio between slipper and bottom layer joint of at least
three orders of magnitude is desired. The vertical translation
ratio of the top joint with respect to the track is given in Fig.
11d. It is shown that this ratio decreases when the bearing
length increases as a percentage of the wavelength. Thus,
a small bearing length as a percentage of the wavelength is
required if an identical path should be followed between the
top joint and the track. Finally, looking at the resulting stiff-
ness and forces acting on each individual joint shown in Tab.
2, it is shown that the normal force acting on each joint is
significantly larger compared to the shear force. This means
that the shear stiffness of the joint could be lower compared
to the normal stiffness of the joint if the same displacement
is allowed. Looking at the ratio’s of the rotational stiffness,

normal force and shear force between each ascending layer,
a pattern is found for the normal and shear force ratio of ap-
proximately 1.7 and 6.65 respectively. However, looking at
the rotational stiffness of each joint, no real pattern is ob-
tained.

5 Conclusion
This work showed the potential of a whiffletree support

system to increase the deformability of 2D compliant hydro-
static bearings to follow non-constant curvature counter sur-
faces. The whiffletree support is used to connect multiple
slippers together allowing each slipper to maintain a paral-
lel position with the counter surface. A quadratic relation is
found between the slipper compression and length resulting
in a desired decrease in slipper length to reduce the required
slipper compression. It is shown that an increase in whif-
fletree layers does not affect the joint pivot angles of the as-
cending layers. However, the addition of extra layers in the
whiffletree does lower each individual slipper length, reduc-
ing the required compression of the slipper. It is shown that
a ratio of at least three orders of magnitude between the slip-
per tilt stiffness and bottom layer joint is required to show no
noticeable influence caused by tilting of the slipper. To con-
clude, the whiffletree can be used to rotate smaller slippers
reducing its required compression while maintaining load ca-
pacity. This can be used to transfer applications that require
high loading capacities over counter surfaces that have a non-
constant surface like a sine wave while eliminating the effect
of stick-slip and reducing the effect of friction and wear com-
pared to conventional slider bearings.
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4
Joint Moment

Figure 4.1: Fluid film layer between hydrostatic bearing and counter surface and the influence of surface roughness.

In this chapter, further explanation regarding the moments required to rotate the joints is given. The mo-
ments acting on the joints are obtained by a change in load capacity of each individual slipper. This change
in load capacity can be achieved by a difference in the height of the fluid film layer between slipper and
counter surface. The relation between fluid film height and load capacity is defined by:

W ∝ 1

h3 (4.1)

where W is the load capacity and h is the fluid film height under each slipper. To prevent solid-to-solid con-
tact between the slipper and its counter surface, the total change in fluid film height can not exceed the fluid
film height present under the bearing in its undeformed configuration. Taking into account surface rough-
ness, as shown in figure 4.1, and other unexpected perturbations in the fluid film height, the total change in
film height used to generate the moments acting on each joint should be large enough to supply the required
moment, but small enough to prevent solid to solid contact.
The change in fluid film height under each layer is dependent on the required moment of each joint that is
dependent on that specific slipper. To specify, a joint is dependent on a slipper if a line can be drawn through
linkages from the slipper to the joint where the line can not go downwards.
Figure 4.2 shows an example of the dependency of each individual slipper on the joints in the system. In the
top half of the figure, a whiffletree is shown where the rotational directions of each joint is given to follow a
concave counter surface. The bottom half of the figure provides a scheme which shows if the flight height of
the corresponding part of the slipper should be changed to supply the required moment for the dependent
joint in that specific layer. Note that for each slipper the right and left part are shown in the scheme. This is to
show which part of the slipper should have an increased load capacity to rotate the joint directly connected
to the slipper.
Looking at the relation between the rotational stiffness of the joints between layers, it is desired if the maxi-
mum required rotational stiffness increases for ascending layers. This would result in an equal ratio between
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Figure 4.2: (Top) Rotational directions of the joints in a triple layer whiffletree that moves over a concave track. (Bottom)
Influence scheme which shows for each slipper if load capacity should be increased to rotate the corresponding joint in
each layer. To rotate the joint connected to each slipper it is shown which side of the slipper should have an increased
load capacity.

normal and rotational stiffness for each joint since the normal force, and thus normal stiffness, of the joints
in ascending layers increases. To obtain a larger rotational stiffness for joints in ascending layers, an increase
in moment is required.

Figure 4.3: Linkage of a whiffletree with the corresponding parameters.

The moment acting on each joint Mi , as shown in figure 4.3, is defined by:

Mi = Fa(i )
Li

2
+Fb(i )

(hi +hi , j )

2
+Mi ,1 +Mi ,2 (4.2)

where hi and hi , j are the joint heights of the previous and current layer respectively, Li is the linkage length
and Fa(i ) and Fb(i ) are defined by:

Fa(i ) = Fy(i ,1) cos(θi )−Fx(i ,2) sin(θi ) (4.3)

Fb(i ) = Fy(i ,1) sin(θi )−Fx(i ,2) cos(θi ) (4.4)

where θi is the angle of the joint with the horizontal and Fx(i , j ) and Fy(i , j ) are the forces acting on the joint
one layer below in x and y direction respectively. In equation (4.2) it is shown that the moment acting on a
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joint is dependent on the moment acting on the joints one layer below. This could result in a reduction in
total moment for a joint in an ascending layer if the sum of the moments of the two joints one layer below
is in the opposite direction. To prevent this, the percentage of allowed change in total fluid film height to
obtain a change in load capacity is unequally divided for each layer where this number should increase for
each ascending layer. In example, the total change in film height to rotate the top layer joint should be larger
compared to the change in film height to rotate a joint in one of the descending layers.
With the percentage of change in film height known for each layer, the total moment acting on each joint can
be obtained. The rotational stiffness is then defined by:

kr = M

φ
(4.5)

where M is the moment acting on the joint and φ the rotational angle of the joint. Te rotational stiffness is
then obtained for each joint in the system for each configuration of the whiffletree on the counter surface.
The maximum rotational stiffness of each joint in a layer is then defined as the minimum required rotational
stiffness for the joints in the same layer.





5
Coupled Multi-Slipper Hydrostatic Bearing

(a) Pressure profile of a single slipper and inlet bearing. (b) Pressure profile of a multi-slipper and inlet bearing.

Figure 5.1: Pressure profile of a single and multi-slipper bearing.

In the paper, multiple slippers are connected by the use of a whiffletree support system. This allowed for an
increase in deformability of the bearing at the cost of an increase in fluid losses. To prevent the increase of
fluid losses in the bearing, the slippers could be made out of one continues elastic material which is discretely
supported. Since the perimeter of the coupled multi-slipper bearing is equal to the perimeter of a single
slipper with equal length and width, the fluid losses remain equal. Furthermore, the pressure profile also
changes due to the coupling of the slipper. Figure 5.1a shows the pressure profile of a single slipper bearing
with one inlet and no recess area and figure 5.1b shows the pressure profile of a coupled multi-slipper bearing
with multiple inlets and no recess area. It is shown that the coupled multi-slipper bearing pressure profile
area is larger compared to the single slipper bearing pressure profile area of equal dimensions which results in
an increase in load capacity of the bearing. To obtain the pressure profile of a coupled multi-slipper bearing,
a design model is given. The design model is used to determine the slipper length and momentary rotation
point of each slipper to assure a zero moment and equal load capacity on each slipper in the bearing. This
is desired since this allows for equal joint requirements in each layer of the whiffletree support. Then, a case
study is presented to show an example of the model given in this section.

5.1. Design Model
To obtain the pressure profile of the coupled multi-slipper bearing, multiple additions are made to the design
model given in section 2 of the paper. Figure 5.2 represents a pressure profile obtained while using the method
described in this section where, due to symmetry in the pressure profile, only the left part of the profile is
shown. The slipper lengths and the corresponding pressure profile is located in the top of the figure. The
fluid flow chart and their connecting points, also called nodes, are given in the bottom, with the flow going
from node to node. The flow Q in any part of the lubricant film is defined by:

Q =
∫

qx d x (5.1)
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Figure 5.2: In the top, the left side of a linear pressure profile for an asymmetric slipper configuration is given. In the
bottom, the corresponding flow chart is given. The tips of the arrows represent nodes, the dotted lines represent the
inlets of the slippers, the dashed lines show the edges of the slippers and the left and right sections of the slippers are
indicated with an A (left) or B (Right).

where qx is the volumetric flux given by the Reynolds equation defined by:

qx =− h3

12η
P,x (5.2)

where h is the film height, P,x is the gradient in x-direction of the pressure distribution and η is the fluids
dynamic viscosity. If an incompressible fluid is used, the volumetric flow rate in any point of the lubricant
film must remain constant. Thus, the flow under two adjacent slippers must be equal defined by:

Qn =Qn+1 (5.3)

where Qn is the flow of the first slipper and Qn+1 is the flow of the second slipper. Furthermore, the total flow
after the inlet must remain the same as the flow before the inlet and the flow of the inlet combined defined
by:

QA =Qs +QB (5.4)

where QA is the flow under the slipper after the inlet, QB is the flow under the slipper before the inlet and Qs

is the flow of the corresponding inlet. The flow rate of the inlet is determined by a restrictor and is defined by:

Qs =Gs(Ps −Pp) (5.5)

where Gs is the hydraulic resistance of the restrictor, Ps the supply pressure and Pp the pressure under the
bearing at the inlet. For this model, a linear capillary restrictor is used defined by:

Gs =
πd 4

r

128ηlr
(5.6)

where dr is the restrictor diameter, η the dynamic viscosity of the fluid and lr the restrictor length. Substituting
Eqn. (5.2) in Eqn. (5.3), Eqn. (5.2) and (5.5) in Eqn. (5.4) and solving them for each node gives the total
pressure profile. The load capacity per unit length W length is now defined by:

W =
∫

Pd x (5.7)

where P is the pressure profile. For a linear pressure profile, the load capacity per unit length between two
nodes under the slipper is defined by:

W = 1

2
(Pi+1 +Pi )L (5.8)
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where Pi+1 and Pi are respectively the pressures at each node and L is the length between the nodes. To
assure equal load capacity on the slippers, the following equation must hold for each slipper:

Ws(n) =Ws(n+1) (5.9)

where Ws is the load capacity of the slipper. To find the momentary rotation point of a slipper, the moment
acting on each side of the rotation point must be equal defined by:

MA = MB (5.10)

where MA is the moment acting on the left side of the slipper and MB is the moment acting on the right side
of the slipper. Both moments are defined by:

M =
∫

xPd x (5.11)

5.2. Example

Description Parameter Value Unit
Supply Pressure Ps 0.5E5 Pa

Ambient Pressure P0 0 Pa
Restrictor Diameter dr 1E-3 m

Restrictor Length lr hj m
Dynamic Viscosity η 8.9E-4 Pas

Wavelength λ 1 m
Amplitude A 0.1 m

Film Height h 1E-4 m
Bearing Length Lb 0.25 m

Table 5.1: Parametric values used to obtain the pressure profile of coupled multi-slipper whiffletree configurations config-
urations.

To provide an example of the design method described in section 5.1 a use case is made. The parametric val-
ues used are shown in table 5.1. The joint height is chosen as half the shortest slipper length and is increased
by a factor two for each ascending layer. The obtained slipper lengths, bottom layer joint height and load
capacity on each slipper per unit length are given in table 5.2 for a single layer whiffletree configuration, in
table 5.3 for a double layer whiffletree configuration and in table 5.4 for a triple layer whiffletree configura-
tion. With the obtained joint height and slipper lengths for the three different configurations, the joint pivot
angles are given as shown in figure 5.3a. Finally, figure 5.3b shows a comparison for the triple layer whiffletree
configuration between the joint pivot angles of the non-coupled bearing configuration as given in the paper
and the coupled bearing configuration obtained with this example. Note that equal initial values are used for
both configurations.

Description Parameter Value Unit

Length Slipper 1
L1A 0.0732 m
L1B 0.0518 m

Joint Height hj 0.0250 m
Load Capacity W 1025 N/m

Table 5.2: Slipper lengths, joint height and load capacity of a coupled multi-slipper single layer whiffletree configuration,
where the slipper length left of the momentary rotation point is noted with an A and the slipper length right of the mo-
mentary rotation point is noted with a B.
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Description Parameter Value Unit

Length Slipper 1
L1A 0.0472 m
L1B 0.0320 m

Length Slipper 2
L2A 0.0232 m
L2B 0.0226 m

Joint Height hj 0.0092 m
Load Capacity W 985 N/m

Table 5.3: Slipper lengths, joint height and load capacity of a coupled multi-slipper double layer whiffletree configura-
tion, where the slipper length left of the momentary rotation point is noted with an A and the slipper length right of the
momentary rotation point is noted with a B.

Description Parameter Value Unit

Length Slipper 1
L1A 0.0284 m
L1B 0.0192 m

Length Slipper 2
L2A 0.0138 m
L2B 0.0134 m

Length Slipper 3
L3A 0.0127 m
L3B 0.0126 m

Length Slipper 4
L4A 0.0124 m
L4B 0.0124 m

Joint Height hj 0.0050 m
Load Capacity W 615 N/m

Table 5.4: Slipper lengths, joint height and load capacity of a coupled multi-slipper triple layer whiffletree configuration,
where the slipper length left of the momentary rotation point is noted with an A and the slipper length right of the mo-
mentary rotation point is noted with a B.

(a) Joint pivot angles for a single, double and triple layer
whiffletree compared.

(b) Joint pivot angles for the non-coupled multi-slipper
bearing and coupled multi-slipper bearing for a triple layer
whiffletree configuration.

Figure 5.3: Joint pivot angles of the case study. The leftmost joint pivot angle is shown for each layer which is denoted by
the layer number.
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5.3. Film Thickness
The influence of the film height on the pressure profile, and thus load capacity, of the coupled multi-slipper
bearing differs from the non-coupled multi-slipper bearing as presented in the paper in section 2 and chapter
4 of this thesis. As explained in section 5.1, the pressure profile of the bearing is directly related to the flow rate
under the bearing. If an incompressible fluid is used, an equal flow rate under each part of the bearing must
be maintained. So, the flow after each inlet should be equal to the flow before the inlet and the flow of the inlet
combined. Since the slippers are attached to each other in the coupled multi-slipper hydrostatic bearing,
the flow under each segment should also remain the same. To maintain an equal flow under each slipper
segment, the pressure drop should change if a change in film height occurs. As seen in figure 5.2 the pressure
drop of each segment is dependent on the pressure drop of its adjacent segments. This means that a change in
film height in one segment could lead to a change in pressure drop in each other segments changing the total
pressure profile. In other words, the pressure drop under a specific segment of the bearing is dependent on
the flight height of each individual segment of the bearing. This means that the matrix showing the relation
between the film height and load capacity of each slipper is non-diagonal. So, the difference in load capacity
on each slipper to rotate each joint in the system can not be easily obtained by changing the flight height of
the corresponding slipper. Instead, the total change in film height under the whole bearing should be taken
into account for each configuration of the system on the track. This can introduce new problems since the
slippers lengths obtained in section 5.1 could require a larger change in film height of the slippers to generate
a large enough moment to rotate each joint in the system.
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Finite Element Model

In order to validate the kinematics of the whiffletree obtained in section 2.2 of the paper, a finite element anal-
ysis using COMSOL Multiphysics has been done. To analyze rigid- and flexible-body assemblies, the multi-
body dynamics module is used. The multibody dynamics module allows to create a combination of rigid and
flexible rigid bodies, where the bodies can be subjected to large rotational and transnational displacements.
A library of predefined joints is used to define the relation between different bodies or components in the
system. A joint connects two bodies with attachments. This way, one component is constraint to follow a
particular motion while the other component can move independently in space. The multibody dynamics
module allows to combine flexible and rigid bodies in the system, allowing for an integration between com-
pliant and rigid structures. Furthermore, the multibody dynamics module can be combined with the non-
linear structural materials module or the geomechanics module, to implement nonlinear material properties.

Figure 6.1: Rigid body model obtained using COMSOL Multiphysics.

For the validation of the kinematics obtained in the paper, the multibody dynamics module is used in com-
bination with a time dependent study. The time dependent study is used to iterate over the time to move the
bearing over the counter surface and obtain the angles of each steady state configuration. To model the whif-
fletree, a rigid body model is used as shown if figure 6.1. The system is build up out of a number of slippers
which is defined by:

#Slippers = 2#Layers (6.1)

The slippers are connected to the linkage cells as explained in the paper, by hinge joints. Each component in
the system is then made rigid using the rigid domain function. The density and center of rotation are then
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Figure 6.2: Single slipper with its corresponding parameters.

defined where the density of structured steel is used. The density will not influence the final results of the
FEM validation but is required for the system to run. The slipper center of rotation is placed at position xs

and ys as shown in figure 6.2. In the FEM analysis, the ys position is prescribed and dependent on its xs

position as defined by:

ys = A sin(2πxs) (6.2)

where A is the amplitude of the track. To maintain a parallel position between the slipper and the gradient of
the track at position xs, a prescribed rotation θm to the slipper is given by:

θm = arctan(2πA cos(2πxs)) (6.3)

To define the position of the total system on the track, the top joint is connected to a rigid vertical beam
which has a prescribed xtop position, a variable ytop position and is constrained in rotation. The xtop position
of this beam is placed on each discrete x position in the domain of the counter surface defined by:

0 < xtop <λ (6.4)

where λ is the wavelength of the counter surface and the step size between each discrete xtop position is 0.01.
Hinge joints are used to model the joints in the system since they allow a free rotation while restricting the
movement in the x and y direction for a two dimensional system. The center of the joint is placed at the
center of the connection between the two rigid parts. If desired, stiffness and damping can be added to
the system and the moments and forces acting on each joint can be obtained using weak constraints or the
penalty method.

Figure 6.3: Finite element model with a representation of the counter surface given.

The system is placed in its undeformed configuration on a flat counter surface as initial position as shown
in figure 6.3. This reduces the computational times and possible errors that can occur by finding the correct
initial configuration of the system. The system is then moved over one and a half sine wave. To obtain the
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Description Parameter Value Unit
wavelength λ 1 m
amplitude A 0.1 m

bearing length Lb 0.25 m
joint height factor u 0.4 -

slipper length Ls 0.3125 m

Table 6.1: Parametric values used in the case study.

corresponding angles of the counter surface used in the paper, only the angles in the domain between xstart

and xend should be considered where xstart and xend are defined by:

xstart = 1

4
λ+xoffset (6.5)

xend = 1
1

4
λ+xoffset (6.6)

where λ is the wavelength used in the paper and xoffset is the flat surface used to place the system in its
undeformed configuration as initial position. The resulting pivot angles of the FEM analysis and analytical
model, where the same parametric values are used as in the case study of the paper shown in table 6.1, are
shown in figure 6.4. It can be noted that no noticeable difference is shown between the FEM and analytical
model.

Figure 6.4: Joint pivot angles for a triple layer whiffletree obtained by the analytical and finite element model.





7
Discussion

The objective of this study is to improve the deformability of hydrostatic bearings by introducing a support
system which allows for rotations of each slipper. This chapter will discuss the main results of this study.
First, the results obtained in the background are evaluated. Then, the design and modelling of a 2D whif-
fletree based large deforming hydrostatic bearing is discussed. Following, the coupled multi-pad bearing is
discussed. Finally, the FEM model used in this work is discussed.

7.1. Background
In chapter 1 and 2, the relevant literature and background on deformable hydrostatic bearings is provided.
The literature found shows the use of an elastic support on the bearing [6, 8–10]. This support is used to
allow for small rotations or tilting of the bearing to maintain a more parallel position between the bearing
and counter surface. It is shown that these types of supports are limited to small deformations in the order
of its film height. This shows that little to no research is done on the subject of large deforming hydrostatic
bearings. The only result found on this topic shows a design method to design compliant hydrostatic slippers
to follow large deformable non-constant counter surfaces. This research also provided the definition of large
deforming non-constant counter surfaces as given in section 2.1. The results shown in section 2.1.2 shows
that the required deformation, measured in its compression, of a tilted slipper is reduced compared to a
slipper that remains parallel with the horizontal.

7.2. Paper
In chapter 3, a paper is provided that gives a design model to obtain the kinematics and kinetostatics of a 2D
whiffletree support system used to connect multiple slippers to create a large deformable hydrostatic bear-
ing. The design model is obtained using a two dimensional rigid body model where the joints are modelled
as hinge joints. To make a more realistic model, elasticity of the parts should be taken into account. With
elasticity implemented in the model, the dimensions of and stresses acting on the linkages can be obtained.
Furthermore, contact joints should not be used into the elastic model since this would re-introduce the nega-
tive properties of wear, friction and backlash into the system. A solution to this would be the use of compliant
joints as stated in the paper. However, the influence of compliance joints should be thoroughly evaluated.
Critical parts would be the stresses in the joint and the displacement of the center of rotation during op-
eration. To validate the assumption that the slippers remain parallel with the track, deformable slipper are
required. The effect of these slippers, in terms of stresses, deformability and change in load capacity to rotate
each joint, should also be thoroughly evaluated since this is one of the critical parts in the system. In [11] a
design method is presented for such slippers. To enlarge the number of useful applications, the design model
should be expanded to a three dimensional model. In appendix B and C a quick insight is given in the geo-
metric layout of the slippers for a three dimensional whiffletree supported hydrostatic bearing. Finally, the
design model is obtained by looking at each whiffletree configuration in its static equilibrium. In reality, the
bearing will dynamically move over its counter surface. The dynamic behavior of the bearing is not evaluated
and should therefore be further researched.
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7.3. Coupled Multi-Slipper Hydrostatic Bearing
Chapter 5 provides a new insight in the coupling of the slippers to create a coupled multi-slipper hydrostatic
bearing. The coupling of the slippers is required to reduce the fluid losses of the system. The advantage found
was an increase in pressure profile area and thus an increase in load capacity of the bearing. The resulting
slipper lengths and load capacities, obtained in the case study in section 5.2, show an increase in total load
capacity if the number of whiffletree layers increases. This is due to the increased number of inlets which
allows the pressure profile to be more of a parabolic shape. Looking at the joint pivot angles for a single,
double and triple layer whiffletree in figure 5.3a only a negligible small change in pivot angles is noted. A
more interesting result are the joint pivot angles of a triple layer whiffletree for the non-coupled, as shown in
the paper, and coupled configuration compared as shown in figure 5.3b. This shows a decrease in the joint
pivot angles for the coupled configuration. The decrease in pivot angles is most likely related to the decrease
in total bearing height.

7.4. Finite Element Model
In chapter 6, the finite element model (FEM) analysis is described. The FEM analysis is used to validate the
analytical model described in section 2 of the paper. The multibody dynamics module is used to model the
whiffletree as a rigid body. To validate the analytical model, a difference in method or design approach is
needed. The main difference between both methods is the position of each individual joint in the system.
In the analytical model,the position and angle of each joint and slipper is obtained by a pre-defined set of
equations and is dependent on the x position of the top joint. In the FEM analysis, the joints and slippers
are allowed to move free where only the top joint has a prescribed x position. Furthermore, only the slipper
y position and angle are pre-defined by a set of equations which are dependent on the slipper x position
which is not pre-described. So the main difference is the method to otbain the position, and thus angle,
of each individual joint. For the analytical model, everything is pre-defined and related to the top joint x
position while the FEM analysis only has a pre-defined top joint x position where the remaining positions are
obtained by the FEM program itself.



8
Conclusion

The main focus of this research was to increase deformability of hydrostatic bearings such that they can follow
large deforming non-constant curvature counter surfaces. This goal is successfully accomplished by using
the whiffletree support system to increase deformability of the total system while maintaining a low required
deformation of the slippers. To design such systems, a design model is presented in the paper in chapter 3
where it is shown that a hydrostatic bearing to follow large deforming non-constant curvatures, as defined by
[11], can indeed be obtained. Following, the most important conclusions of this work are summarized.

• A decrease in slipper length results in an approximate quadratic decrease in required slipper compres-
sion.

• The increase of whiffletree layers has a negligible small influence of the joint pivot angles of the higher
layers.

• An increase in whiffletree layers is desired if the total bearing length increases in order to reduce the
total bearing height.

• The ratio between slipper tilt stiffness and bottom joint rotational stiffness should be at least three
orders of magnitude in order to maintain a close to parallel film under each slipper.

• The load carrying capacity of the coupled multi-slipper bearing is larger than the uncoupled multi-
slipper bearing of the same dimensions.

• In the coupled multi slipper bearing, the flight height of each slipper is dependent on the flight height
of each other slipper in the system.
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Recommendations

This chapter provides several recommendations for further research. The use of a whiffletree support to
increase the deformability of a large deformable hydrostatic bearing shows great potential. To continue the
research in the design of large deformable hydrostatic bearings, a list of recommendations is given.

1. Elastic model: Analyze the effect of elasticity in the rigid body model.

2. Compliant joints: Add compliant joints in the system to remove the drawbacks from contact joints.

3. Elastic slipper: Add elastic slippers in the system, where the design model given in [11] could prove
useful, and look at the behavior of the film layer under these new conditions.

4. Coupled multi-slipper bearing: Design, model and analyze the coupled multi-slipper bearing pad.

5. Experimental setup: Design an experimental setup to further validate the work in this and further re-
search.

6. 3D model: Expand the research to a 3D model.

7. Dynamic behavior: Research the performance of the bearing under dynamic behavior.
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A
Analytical Model

This appendix gives an elaboration of the Matlab files used to obtain the analytical models. Each file used in
this work is presented with a brief explanation so it can be ran, used and altered for further research.

A.1. Tilting Pad Effect
The results shown in figure 2.3 are obtained using the following script. In the script, three lines are plotted
and simple mathematics are used to obtain the shortest length from the horizontal and tilted line to the sine
wave. The maximum and average obtained values are given as a result in the model.

1 clear all
2 close all
3 clc
4

5 %% Parameters
6 alpha = 75; %Angle between pad and horizontal [deg]
7 b = 2.25; %Starting heigth reference line [m]
8 a = tand(alpha)*1; %Gradient of reference line [-]
9 n = 101; %Numbet of data points

10

11 x = linspace(0,0.5,n); %Array that represents all x data points
12

13 q = sin(x*2*pi+0.5*pi)+1; %Half of a sinewave shifted by pi/2 in the x direction and ...
1 in the y direction

14 p = -a*x+b; %First reference line under angle alpha
15 g = ones(1,n)*b; %Second reference line parallel to the horizontal
16

17 h = p-q;
18 difference_tilted = cosd(alpha)*h;
19 difference_horizontal = g-q;
20

21 Maximum_distance_tilted = max(difference_tilted)
22 Maximum_distance_horizontal = max(difference_horizontal)
23 Average_distance_tilted = mean(difference_tilted)
24 Average_distance_horizontal = mean(difference_horizontal)
25

26 %% Figures
27 figure(1)
28 hold on
29 plot(x,q)
30 plot(x,p)
31 plot(x,g)
32 legend('Sine wave', 'Tilted line', 'Horizontal line')
33 xlabel('X-axis [m]')
34 ylabel('Y-axis [m]')
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A.2. Required Slipper Compression

Figure A.1: Representation of the specific track during each step of
obtaining the required slipper compression. Figure A.2: Compression required of a single slipper, as function of

the slipper length for a counter track with an amplitude of 5%, 10%
and 15% of the wavelength respectively.

The required slipper compression, explained in section 2.1.1 of the paper, is obtained using the following
script. In the script, a for loop is used to obtain the results for a single, double and triple layer configuration
where the slipper compression is evaluated between a slipper length of 1% to 50% of the wavelength of 1m.
The loop calls the function Rel ati ve_compr essi on_ f uncti on which has as inputs the amplitude of the
wave A, the scale factor of the length of the slipper r , the number of data points n and the starting length of
the slipper Sl i pper _leng th. The function follows the steps explained in section 2.1.1 of the paper where first
the specific track is located. Then the specific track is translated an rotated to be placed at the origin as shown
in figure A.1. Finally, the minimum and maximum y values are obtained to determine the compression. This
is then repeated for each xs position of the slipper to obtain the maximum compression for that specific
slipper length. The results are shown in figure A.2.

1 clear all
2 close all
3 clc
4

5 %% Parameters
6 Amplitude = 0.05; % Amplitude as percentage of the wave
7 Wavelength = 1;
8 n = 1000; % Number of data points
9 N = 490; % Final scaling factor will be 1 + N/10

10 Slipper_length = 0.01; % Length of slipper [m]
11

12 %% Loop
13 for q = 1:3
14 A = Amplitude*q*Wavelength;
15 for o = 1:N
16 r = 1 + o / 10;
17 [factor Mean_value] = Relative_compression_function(A,r,n, Slipper_length);
18 Mean_value_array(o) = Mean_value;
19 Compression(q,o) = factor(2,4);
20 R_array(q,o) = r;
21 end
22 end
23

24 %%
25 R_array_scaled = R_array;
26 R_array_scaled_percentage = R_array*0.01;
27 Mean_value_array_scaled = Mean_value_array;
28
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29 %% Figures
30 figure(1)
31 hold on
32 q1 = plot(R_array_scaled_percentage(1,:)*100,Compression(1,:)*100, 'r-','LineWidth',3);
33 q2 = plot(R_array_scaled_percentage(2,:)*100,Compression(2,:)*100, 'k-.','LineWidth',3);
34 q3 = plot(R_array_scaled_percentage(3,:)*100,Compression(3,:)*100, 'b:','LineWidth',3);
35 title('Maximum compression')
36 xlabel('Bearing length (L_s) as % of wavelength')
37 ylabel('Maximum compression (c) as % of wavelength')
38 grid on
39 axis([0,50,0,10])
40 legend([q1 q2 q3], ('A = 5% of wavelength'), ('A = 10% of wavelength'), ('A = 15% of ...

wavelength'), 'location', 'southeast')

1 function [factor, Mean_scaling_factor] = Relative_compression_function(Amplitude, r, ...
n, Slipper_Length)

2

3 t = linspace(0, 1, n); % Array of t values from 0 to 2 pi
4 A = Amplitude;
5 p = 1;
6 v = 0;
7 factor = ones(4,p);
8 Master_file = zeros(2*length(t),n);
9 y_diff = zeros(1,length(t));

10 y_diff_max = zeros(1,length(t));
11 t_decomposed = zeros(4,length(t));
12

13 while v ≤ 1
14 Length_slipper = Slipper_Length*r^(p-1); % Length of the slipper can ...

range between 0 and 1 [m]
15 L = Length_slipper;
16

17 for i = 1:length(t)
18 angle = atan(A*cos(t(i)*2*pi)*2*pi);
19 t_tot = cos(angle) * L;
20 t_decomposed(1,i) = t(i);
21 t_decomposed(2,i) = t(i) - t_tot / 2;
22 t_decomposed(3,i) = t(i) + t_tot / 2;
23 t_decomposed(4,i) = angle;
24 end
25

26

27 for j = 1:length(t_decomposed(1,:))
28 t_new = linspace(t_decomposed(2,j), t_decomposed(3,j), n);
29 P = [t_new; A*sin(t_new*2*pi)]; ...

...
% X and Y coordinates of sine wave corresponding to slipper

30 T = [t_decomposed(1,j); A*sin(t_decomposed(1,j)*2*pi)]; ...
% ...

Translation Matrix to get to the origin
31 R = [cos(t_decomposed(4,j)) sin(t_decomposed(4,j)); ...

-sin(t_decomposed(4,j)) cos(t_decomposed(4,j))]; % Rotation ...
matrix clockwise around z axis

32 P_final = R*(P-T); ...
...

% Translate and Rotate array P
33 Master_file((j-1)*2+1,:) = P_final(1,:);
34 Master_file(j*2,:) = P_final(2,:);
35 end
36

37 for k = 1:length(t)
38 x_values = Master_file((k*2)-1,:);
39 y_values = Master_file((k*2),:);
40 y_diff_max(k) = abs(max(y_values)-min(y_values));
41 end
42

43

44 y_diff_max_max(p) = max(y_diff_max);
45
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46 if p ≤1
47 factor(p,1) = 0;
48 factor(p,2) = r;
49 factor(p,3) = 0.05*r^(p-1);
50 factor(p,4) = y_diff_max_max(p);
51 else
52 factor(p,1) = y_diff_max_max(p)/y_diff_max_max(p-1);
53 factor(p,2) = r;
54 factor(p,3) = 0.05*r^(p-1);
55 factor(p,4) = y_diff_max_max(p);
56 end
57

58 v = factor(p,3);
59

60 p = p + 1;
61 end
62

63 Mean_scaling_factor = mean(factor(2:(end-1),1));
64 end

A.3. Bearing Footprint
The bearing footprint, as explained in section 2.1.2 of the paper, is used to find the maximum dimensions of a
single, double and triple layer whiffletree configuration with equal slipper length. The script to obtain the to-
tal height of the bearing as function of its length is given in this section. The total height is obtained using the
equations found in the paper in section 2.1.2. The script is written such that it is valid for multiple layer config-
urations and thus is not limited to a single, double and triple whiffletree configuration. The height is obtained
by finding the compression required of the slipper following using the function compr essi on_ f uncti on
which is almost the same as the script of appendix A.2. The total slipper height is obtained by dividing the
compression by the maximum allowable strain. The joint height is obtained by finding the joint length in each
layer and multiplying it with the corresponding joint height factor. Figure A.3 shows the results obtained from
the script for a single, double and triple layer whiffletree configuration.



A.3. Bearing Footprint 49

Figure A.3: Total bearing height as function of the bearing length for a single, double and triple layer whiffletree and a single slipper
bearing. The corresponding track amplitude is 10% of the wavelength.
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1 clear all
2 close all
3 clc
4

5 %% Parameters
6 max_strain = 0.1; % Maximum strain to assume linear behaviour ...

in rubber (%)
7 Amplitude = 0.1; % Amplitude of the surface [m]
8 Wavelength = 1; % Wavelength of the surface [m]
9 n = 4; % Total number of layers to evaluate

10 Total_layers = n;
11 Hscale = 2/5; % Ratio between the height and the length of ...

the joint
12 Lscale = 1; % Scale factor of the joint length depending ...

on the slipper length (0 to 1)
13 nscale = 2; % Scale factor of which the length of the ...

joint increases for each ascending layer (bottom to top)
14

15 data_size_slipper = 500; % Number of iteratations to obtain slipper ...
length, max slipper length is determined by data_size_slipper/(2*data_size_slipper)

16 data_size = 1000; % Number of datapoints to obtain the ...
compression for each slipper

17

18 %% Initial Matrices
19 Ls = zeros(1,data_size_slipper);
20 c = zeros(Total_layers, data_size_slipper);
21 hj = zeros(Total_layers+2, data_size_slipper);
22 hb = zeros(Total_layers, data_size_slipper);
23

24 Length_slipper_joint = zeros(1,data_size_slipper);
25 c_joint = zeros(1,data_size_slipper);
26 h_joint = zeros(1,data_size_slipper);
27

28 Length_slipper_no_joint = zeros(1,data_size_slipper);
29 c_no_joint = zeros(1,data_size_slipper);
30 h_no_joint = zeros(1,data_size_slipper);
31

32 %% Loop
33 for p = 1:n
34 for q = 1:data_size_slipper
35 Ls(q) = q/(2*data_size_slipper*2^p);
36 for k = 1:p+1
37 hj(k+1,q) = hj(k,q)+nscale^(k-1)*Ls(q)*Lscale*Hscale/2;
38 end
39 c(p,q) = Compression_function(Ls(q), Amplitude, data_size, Wavelength);
40 hb(p,q) = c(p,q)/max_strain+hj(p+2,q);
41 hj = zeros(p+3,data_size_slipper);
42 k = 0;
43 end
44 end
45

46 for o = 1:data_size_slipper
47 Length_slipper_joint(o) = o/(2 * data_size_slipper);
48 c_joint(o) = Compression_function(Length_slipper_joint(o), Amplitude, data_size, ...

Wavelength);
49 h_joint(o) = c_joint(o) / max_strain + Length_slipper_joint(o)*Hscale*Lscale;
50 time = (o + Total_layers * data_size_slipper) / (data_size_slipper * ...

(Total_layers + 2))
51 end
52

53 %% Figures
54 figure(5)
55 grid on
56 hold on
57

58 q1 = plot(Length_slipper_joint*100, h_joint*100, 'k:');
59 q3 = plot(Length_slipper_joint*100, hb(1,:)*100, 'b--');
60 q4 = plot(Length_slipper_joint*100, hb(2,:)*100, 'r-.');
61 q5 = plot(Length_slipper_joint*100, hb(3,:)*100, 'k-');
62 q6 = plot(Length_slipper_joint*100, hb(4,:)*100, 'g-');



A.3. Bearing Footprint 51

63

64 legend([q3 q4 q5 q6 q1], 'Single Layer', 'Double Layer', 'Triple Layer', 'Quadro ...
Layer', 'Single Slipper', 'Location','northwest')

65 title(['Total height of bearing'])
66 xlabel('Lenght of bearing as % of wavelength')
67 ylabel('Minimum height of bearing as % of wavelength')
68 axis([0,25,0,10])

1 function [y_diff_max] = Compression_function(Length_slipper, Amplitude, n, wavelength)
2 % Parameter
3 x = linspace(0, wavelength, n); % Array of t values from 0 to 2 pi
4 x_decomposed = zeros(4,n); % Array of decomposed t values
5 Master_file = zeros(2*n,n); % Array of all final x and y components
6 L = Length_slipper*wavelength;
7 A = Amplitude;
8 y_diff = zeros(1,n);
9

10 % Loop to calculate begin and end points of slipper with corresponding angle
11 for i = 1:n
12 angle = atan(A*cos(x(i)*2*pi)*2*pi);
13 x_tot = cos(angle) * L;
14 x_decomposed(1,i) = x(i);
15 x_decomposed(2,i) = x(i) - x_tot / 2;
16 x_decomposed(3,i) = x(i) + x_tot / 2;
17 x_decomposed(4,i) = angle;
18 end
19

20 for j = 1:n
21 x_new = linspace(x_decomposed(2,j), x_decomposed(3,j), n);
22 P = [x_new; A*sin(x_new*2*pi)]; ...

...
% X and Y coordinates of sine wave corresponding to slipper

23 T = [x_decomposed(1,j); A*sin(x_decomposed(1,j)*2*pi)]; ...
% Translation Matrix to ...

get to the origin
24 R = [cos(x_decomposed(4,j)) sin(x_decomposed(4,j)); -sin(x_decomposed(4,j)) ...

cos(x_decomposed(4,j))]; % Rotation matrix clockwise around z axis
25 P_final = R*(P-T); ...

...
% Translate and Rotate array P

26 Master_file((j-1)*2+1,:) = P_final(1,:);
27 Master_file(j*2,:) = P_final(2,:);
28 end
29

30 for k = 1:n
31 y_values = Master_file((k*2),:);
32 y_diff(k) = abs(max(y_values)-min(y_values));
33 end
34

35 y_diff_max = max(y_diff);
36 end
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A.4. Bearing Kinematics

(a) Joint pivot angles of a single, double and triple layer
whiffletree compared using the parametric values of the
asymmetric whiffletree configuration.

(b) Joint pivot angles of a single, double and triple layer
whiffletree compared using the parametric values of the
symmetric whiffletree configuration.

(c) Joint pivot angles of the FEM and analytical model
compared for a triple layer whiffletree.

(d) Joint pivot angles of a symmetric and asymmetric triple
layer whiffletree configuration.

Figure A.4: Leftmost joint pivot angles of a whiffletree. The line with the highest amplitude corresponds to the top joint
noted with Top. Each subsequent line in descending maximum amplitude order, corresponds to the joint one layer below
noted with 1, 2 or 3 respectively.

The joint angles in the bearing are obtained using the bearing kinematics described in section 2.2 of the pa-
per. The scrips used to obtain the angles are given in this section. First the main script is given that uses
the 3 functions Layer 1_ang l es, Layer 2_ang l es and Layer 3_ang l es to obtain the angles of each joint with
the horizontal. Then, the pivot angles of each joint is determined. Following, the data obtained from the
FEM analysis using Comsol Multiphysics is imported to create 7 different figures. The first figure shows the
behavior of the leftmost angle of each layer for a single, double and triple layer whiffletree. The results are
obtained for the symmetric slipper configuration, shown in figure A.4b, and the asymmetric slipper config-
uration, shown in figure A.4a. The next three figures show the comparison between the angles obtained for
a single, double and triple layer whiffletree respectively using the analytical model and the finite element
model where the comparison of the triple layer whiffletree is shown in figure A.4c. The fifth figure shows the
comparison of the joint angles between a triple layer symmetric and asymmetric slipper configuration shown
in figure A.4d. The final two plots show the slipper angle using the three different stiffness ratios explained in
section 2.3 of the paper. To remake the model, only the script till line 126 is required. The plots obtained from
line 196 to 220 and 285 to 308 can be obtained using only the analytical model. For the remaining plots, the
results of the finite element model are required.
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1 clear all
2 close all
3 clc
4

5 options=optimset('MaxFunEvals',10000, 'MaxIter', 10000);
6 %% Variables
7 data_size = 100;
8 wavelength_factor = 3/4; %bearing length as function of wavelength
9 Wavelength = 1;

10 A = 0.1*Wavelength;
11

12 %% 1 Layer
13 % Initial values
14 theta10 = [0,0,0,0];
15 L10 = [1,1]*wavelength_factor*Wavelength/(4);
16 %L10 = [0.073223304703362 0.051776695296638];
17 J01 = (L10(1)+L10(2))*1/5;
18 J10 = [J01, 2*J01];
19

20 % Solver
21 for i = 1:data_size
22 x(i) = i/data_size;
23 fun = @(theta10)Layer1_angles(x(i), theta10, L10, J10, A);
24 psi1(i,:) = fsolve(fun,theta10,options);
25 end
26

27 % Top Joint y position
28 y1 = psi1(:,4);
29 y1_translated = y1-(max(y1)-min(y1))/2-min(y1);
30

31 % Joint Angles
32 theta1(:,3) = psi1(:,3);
33 theta1(:,2) = psi1(:,2)-psi1(:,3);
34 theta1(:,1) = psi1(:,1)-psi1(:,3);
35 theta_rotated1 = theta1'*180/pi;
36

37 %% 2 Layers
38 % Initial values
39 theta20 = [0,0,0,0,0,0,0,0];
40 L20 = [1,1,1,1]*wavelength_factor*Wavelength/(8);
41 %L20 = [0.047219468937932 0.031984928889458 0.023189480593374 0.022606121579236];
42 J02 = (L20(3)+L20(4))*1/5;
43 J20 = [J02, 2*J02, 4*J02];
44

45 % Solver
46 for i = 1:data_size
47 x(i) = i/data_size;
48 fun = @(theta20)Layer2_angles(x(i), theta20, L20, J20, A);
49 psi2(i,:) = fsolve(fun,theta20,options);
50 end
51 % Top Joint y position
52 y2 = psi2(:,8);
53 y2_translated = y2-(max(y2)-min(y2))/2-min(y2);
54

55 % Joint Angles
56 theta2(:,7) = psi2(:,7);
57 theta2(:,6) = psi2(:,6)-psi2(:,7);
58 theta2(:,5) = psi2(:,5)-psi2(:,7);
59 theta2(:,4) = psi2(:,4)-psi2(:,6);
60 theta2(:,3) = psi2(:,3)-psi2(:,6);
61 theta2(:,2) = psi2(:,2)-psi2(:,5);
62 theta2(:,1) = psi2(:,1)-psi2(:,5);
63 theta_rotated2 = theta2'*180/pi;
64

65 %% 3 Layers
66 % Initial values
67 theta30 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
68 %L30 = [0.028399775767225 0.019210925665594 0.013818521584328 0.013364669060691 ...

0.012720668426789 0.012610317072069 0.012449198010836 0.012425924412468];
69 L30 = [1,1,1,1,1,1,1,1]*wavelength_factor*Wavelength/(16);
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70 J03 = (L30(7)+L30(8))*1/5;
71 J30 = [J03, 2*J03, 4*J03, 8*J03];
72

73 % Solver
74 for i = 1:data_size
75 x(i) = i/data_size;
76 fun = @(theta30)Layer3_angles(x(i), theta30, L30, J30, A);
77 psi3(i,:) = fsolve(fun,theta30);
78 end
79

80 % Top Joint y position
81 y3 = psi3(:,16);
82 y3_translated = y3-(max(y3)-min(y3))/2-min(y3);
83

84 % Joint Angles
85 theta3(:,15) = psi3(:,15);
86 theta3(:,14) = psi3(:,14)-psi3(:,15);
87 theta3(:,13) = psi3(:,13)-psi3(:,15);
88 theta3(:,12) = psi3(:,12)-psi3(:,14);
89 theta3(:,11) = psi3(:,11)-psi3(:,14);
90 theta3(:,10) = psi3(:,10)-psi3(:,13);
91 theta3(:,9) = psi3(:,9)-psi3(:,13);
92 theta3(:,8) = psi3(:,8)-psi3(:,12);
93 theta3(:,7) = psi3(:,7)-psi3(:,12);
94 theta3(:,6) = psi3(:,6)-psi3(:,11);
95 theta3(:,5) = psi3(:,5)-psi3(:,11);
96 theta3(:,4) = psi3(:,4)-psi3(:,10);
97 theta3(:,3) = psi3(:,3)-psi3(:,10);
98 theta3(:,2) = psi3(:,2)-psi3(:,9);
99 theta3(:,1) = psi3(:,1)-psi3(:,9);

100 theta_rotated3 = theta3'*180/pi;
101

102 %% 3 Layers assymetric slipper length
103 % Initial values
104 theta31 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
105 L31 = [0.028399775767225 0.019210925665594 0.013818521584328 0.013364669060691 ...

0.012720668426789 0.012610317072069 0.012449198010836 0.012425924412468];
106 J031 = (L31(7)+L31(8))*1/5;
107 J31 = [J031, 2*J031, 4*J031, 8*J031];
108

109 % Solver
110 for i = 1:data_size
111 x(i) = i/data_size;
112 fun = @(theta31)Layer3_angles(x(i), theta31, L31, J31, A);
113 psi31(i,:) = fsolve(fun,theta31);
114 end
115

116 % Data
117 theta311(:,15) = psi31(:,15);
118 theta311(:,14) = psi31(:,14)-psi31(:,15);
119 theta311(:,13) = psi31(:,13)-psi31(:,15);
120 theta311(:,12) = psi31(:,12)-psi31(:,14);
121 theta311(:,11) = psi31(:,11)-psi31(:,14);
122 theta311(:,10) = psi31(:,10)-psi31(:,13);
123 theta311(:,9) = psi31(:,9)-psi31(:,13);
124 theta311(:,8) = psi31(:,8)-psi31(:,12);
125 theta311(:,7) = psi31(:,7)-psi31(:,12);
126 theta311(:,6) = psi31(:,6)-psi31(:,11);
127 theta311(:,5) = psi31(:,5)-psi31(:,11);
128 theta311(:,4) = psi31(:,4)-psi31(:,10);
129 theta311(:,3) = psi31(:,3)-psi31(:,10);
130 theta311(:,2) = psi31(:,2)-psi31(:,9);
131 theta311(:,1) = psi31(:,1)-psi31(:,9);
132 theta_rotated31 = theta311'*180/pi;
133

134

135 %% Array of x values
136 x_values = x;
137 %% Comsol Data
138 % Comsol Data 3 layer stiffness slipper
139 M_3_layer_s_1_10_slip = dlmread('Slip_1_3_layer_s_Comsol_10.txt')';
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140 Comsol_Slip_3_layer_s_1_10_slip = M_3_layer_s_1_10_slip(2,:)*-1;
141 M_3_layer_s_1_100_slip = dlmread('Slip_1_3_layer_s_Comsol_100.txt')';
142 Comsol_Slip_3_layer_s_1_100_slip = M_3_layer_s_1_100_slip(2,:)*-1;
143 M_3_layer_s_1_1000_slip = dlmread('Slip_1_3_layer_s_Comsol_1000.txt')';
144 Comsol_Slip_3_layer_s_1_1000_slip = M_3_layer_s_1_1000_slip(2,:)*-1;
145

146 % Comsol Data 3 layer stiffness slipper
147 M_3_layer_s_1_10_slips = dlmread('Slip_1_3_layer_s_Comsol_10_sym.txt')';
148 Comsol_Slip_3_layer_s_1_10_slips = M_3_layer_s_1_10_slips(2,:)*-1;
149 M_3_layer_s_1_100_slips = dlmread('Slip_1_3_layer_s_Comsol_100_sym.txt')';
150 Comsol_Slip_3_layer_s_1_100_slips = M_3_layer_s_1_100_slips(2,:)*-1;
151 M_3_layer_s_1_1000_slips = dlmread('Slip_1_3_layer_s_Comsol_1000_sym.txt')';
152 Comsol_Slip_3_layer_s_1_1000_slips = M_3_layer_s_1_1000_slips(2,:)*-1;
153

154 % Comsol Data 3 layer stiffness
155 M_3_layer_j_1_15 = dlmread('Joint_1_3_layer_s_Comsol_15.txt')';
156 Comsol_joint_3_layer_s_1_15 = M_3_layer_j_1_15(2,:)*-1;
157 M_3_layer_j_11_15 = dlmread('Joint_11_3_layer_s_Comsol_15.txt')';
158 Comsol_joint_3_layer_s_11_15 = M_3_layer_j_11_15(2,:)*-1;
159 M_3_layer_j_21_15 = dlmread('Joint_21_3_layer_s_Comsol_15.txt')';
160 Comsol_joint_3_layer_s_21_15 = M_3_layer_j_21_15(2,:)*-1;
161 M_3_layer_j_31_15 = dlmread('Joint_31_3_layer_s_Comsol_15.txt')';
162 Comsol_joint_3_layer_s_31_15 = M_3_layer_j_31_15(2,:)*-1;
163

164 M_3_layer_j_1_100 = dlmread('Joint_1_3_layer_s_Comsol_100.txt')';
165 Comsol_joint_3_layer_s_1_100 = M_3_layer_j_1_100(2,:)*-1;
166 M_3_layer_j_11_100 = dlmread('Joint_11_3_layer_s_Comsol_100.txt')';
167 Comsol_joint_3_layer_s_11_100 = M_3_layer_j_11_100(2,:)*-1;
168 M_3_layer_j_21_100 = dlmread('Joint_21_3_layer_s_Comsol_100.txt')';
169 Comsol_joint_3_layer_s_21_100 = M_3_layer_j_21_100(2,:)*-1;
170 M_3_layer_j_31_100 = dlmread('Joint_31_3_layer_s_Comsol_100.txt')';
171 Comsol_joint_3_layer_s_31_100 = M_3_layer_j_31_100(2,:)*-1;
172

173 M_3_layer_j_1_1000 = dlmread('Joint_1_3_layer_s_Comsol_1000.txt')';
174 Comsol_joint_3_layer_s_1_1000 = M_3_layer_j_1_1000(2,:)*-1;
175 M_3_layer_j_11_1000 = dlmread('Joint_11_3_layer_s_Comsol_1000.txt')';
176 Comsol_joint_3_layer_s_11_1000 = M_3_layer_j_11_1000(2,:)*-1;
177 M_3_layer_j_21_1000 = dlmread('Joint_21_3_layer_s_Comsol_1000.txt')';
178 Comsol_joint_3_layer_s_21_1000 = M_3_layer_j_21_1000(2,:)*-1;
179 M_3_layer_j_31_1000 = dlmread('Joint_31_3_layer_s_Comsol_1000.txt')';
180 Comsol_joint_3_layer_s_31_1000 = M_3_layer_j_31_1000(2,:)*-1;
181

182 % Comsol Data 3 layer
183 M_3_layer_1 = dlmread('Joint_1_3_layer_Comsol.txt')';
184 Comsol_Joint_3_layer_1 = M_3_layer_1(2,:)*-1;
185 M_3_layer_11 = dlmread('Joint_11_3_layer_Comsol.txt')';
186 Comsol_Joint_3_layer_11 = M_3_layer_11(2,:)*-1;
187 M_3_layer_21 = dlmread('Joint_21_3_layer_Comsol.txt')';
188 Comsol_Joint_3_layer_21 = M_3_layer_21(2,:)*-1;
189 M_3_layer_31 = dlmread('Joint_31_3_layer_Comsol.txt')';
190 Comsol_Joint_3_layer_31 = M_3_layer_31(2,:)*-1;
191

192 % Comsol Data 2 layer
193 M_2_layer_1 = dlmread('Joint_1_2_layer_Comsol.txt')';
194 Comsol_Joint_2_layer_1 = M_2_layer_1(2,:)*-1;
195 M_2_layer_11 = dlmread('Joint_11_2_layer_Comsol.txt')';
196 Comsol_Joint_2_layer_11 = M_2_layer_11(2,:)*-1;
197 M_2_layer_21 = dlmread('Joint_21_2_layer_Comsol.txt')';
198 Comsol_Joint_2_layer_21 = M_2_layer_21(2,:)*-1;
199

200 % Comsol Data 1 layer
201 M_1_layer_1 = dlmread('Joint_1_1_layer_Comsol.txt')';
202 Comsol_Joint_1_layer_1 = M_1_layer_1(2,:)*-1;
203 M_1_layer_11 = dlmread('Joint_11_1_layer_Comsol.txt')';
204 Comsol_Joint_1_layer_11 = M_1_layer_11(2,:)*-1;
205

206 %% Plot Matlab all layers
207 figure(1)
208 hold on
209 grid on
210 p11 = plot(x_values,theta_rotated1(3,:),'b--','LineWidth',3);
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211 p13 = plot(x_values,theta_rotated1(1,:),'b--','LineWidth',3);
212

213 p21 = plot(x_values,theta_rotated2(7,:),'r-.','LineWidth',3);
214 p23 = plot(x_values,theta_rotated2(5,:),'r-.','LineWidth',3);
215 p27 = plot(x_values,theta_rotated2(1,:),'r-.','LineWidth',3);
216

217 p31 = plot(x_values,theta_rotated3(15,:),'k-','LineWidth',3);
218 p33 = plot(x_values,theta_rotated3(13,:),'k-','LineWidth',3);
219 p37 = plot(x_values,theta_rotated3(9,:),'k-','LineWidth',3);
220 p38 = plot(x_values,theta_rotated3(1,:),'k-','LineWidth',3);
221

222 legend([p11 p21 p31],'Single Layer', 'Double Layer', 'Triple Layer', 'Location', ...
'southwest')

223 title(['Angles of Joints (1 to 3 Layer Whiffletree)'])
224 xlabel('Position of top joint on the track [m]')
225 ylabel('Joint Angle [deg]')
226 axis([0,1,-33,33])
227 text(0.16,20,'Top')
228 text(0.25,13.5,'1')
229 text(0.275,8,'2')
230 text(0.325,1.5,'3')
231

232 %% Plot Comsol vs Matlab 1 Layer
233 figure(2)
234 hold on
235 grid on
236 q11 = plot(x_values,theta_rotated1(3,:),'k-');
237 q13 = plot(x_values,theta_rotated1(1,:),'k-');
238

239 q111 = plot(x_values,Comsol_Joint_1_layer_11,'r--');
240 q113 = plot(x_values,Comsol_Joint_1_layer_1,'r--');
241

242 title(['Angles of Whiffletree Joints (Single Layer Whiffletree)'])
243 xlabel('Position of top joint on the track [m]')
244 ylabel('Joint Angle [deg]')
245 axis([0,1,-33,33])
246 legend([q11 q111],'Analytic', 'FEM', 'Location', 'southwest')
247 text(0.16,20,'Top')
248 text(0.25,16,'1')
249

250 %% Plot Comsol vs Matlab 2 Layer
251 figure(3)
252 hold on
253 grid on
254 q21 = plot(x_values,theta_rotated2(7,:),'k-');
255 q23 = plot(x_values,theta_rotated2(5,:),'k-');
256 q27 = plot(x_values,theta_rotated2(1,:),'k-');
257

258 q211 = plot(x_values,Comsol_Joint_2_layer_21,'r--');
259 q213 = plot(x_values,Comsol_Joint_2_layer_11,'r--');
260 q217 = plot(x_values,Comsol_Joint_2_layer_1,'r--');
261

262 title(['Angles of Whiffletree Joints (Double Layer Whiffletree)'])
263 xlabel('Position of top joint on the track [m]')
264 ylabel('Joint Angle [deg]')
265 axis([0,1,-33,33])
266 legend([q21 q211],'Analytic', 'FEM', 'Location', 'southwest')
267 text(0.16,20,'Top')
268 text(0.25,15,'1')
269 text(0.275,9,'2')
270

271 %% Plot Comsol vs Matlab 3 Layer
272 figure(4)
273 hold on
274 grid on
275 q31 = plot(x_values,theta_rotated3(15,:),'k-');
276 q33 = plot(x_values,theta_rotated3(13,:),'k-');
277 q37 = plot(x_values,theta_rotated3(9,:),'k-');
278 q315 = plot(x_values,theta_rotated3(1,:),'k-');
279

280 q321 = plot(x_values,Comsol_Joint_3_layer_31,'r--');
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281 q323 = plot(x_values,Comsol_Joint_3_layer_21,'r--');
282 q327 = plot(x_values,Comsol_Joint_3_layer_11,'r--');
283 q3215 = plot(x_values,Comsol_Joint_3_layer_1,'r--');
284

285 title(['Angles of Whiffletree Joints (Triple Layer Whiffletree)'])
286 xlabel('Position of top joint on the track [m]')
287 ylabel('Joint Angle [deg]')
288 axis([0,1,-33,33])
289 legend([q31 q321],'Analytic', 'FEM', 'Location', 'southwest')
290 text(0.16,20,'Top')
291 text(0.25,15,'1')
292 text(0.275,9,'2')
293 text(0.325,1.5,'3')
294

295 %% Plot 3 layer symmetric and asymmetric slipper length
296 figure(5)
297 hold on
298 grid on
299 q41 = plot(x_values,theta_rotated3(15,:),'k-');
300 q42 = plot(x_values,theta_rotated3(13,:),'k-');
301 q43 = plot(x_values,theta_rotated3(9,:),'k-');
302 q44 = plot(x_values,theta_rotated3(1,:),'k-');
303

304 q51 = plot(x_values,theta_rotated31(15,:),'r--');
305 q52 = plot(x_values,theta_rotated31(13,:),'r--');
306 q53 = plot(x_values,theta_rotated31(9,:),'r--');
307 q54 = plot(x_values,theta_rotated31(1,:),'r--');
308

309 title(['Angles of Whiffletree Joints (Triple Layer Whiffletree)'])
310 xlabel('Position of top joint on the track [m]')
311 ylabel('Joint Angle [deg]')
312 axis([0,1,-33,33])
313 legend([q41 q51],'Non-coupled Config.', 'Coupled Config.', 'Location', 'southwest')
314 text(0.16,20,'Top')
315 text(0.25,15,'1')
316 text(0.275,9,'2')
317 text(0.325,1.5,'3')
318

319 %% Plot 3 layer whiffletree with stiffness slippers symmetric
320 figure(6)
321 hold on
322 grid on
323 q81 = plot(x_values,Comsol_Slip_3_layer_s_1_10_slip,'k-');
324 q82 = plot(x_values,Comsol_Slip_3_layer_s_1_100_slip,'r--');
325 q83 = plot(x_values,Comsol_Slip_3_layer_s_1_1000_slip,'b-.');
326

327 title(['Angle of Slipper (Triple Layer Whiffletree)'])
328 xlabel('Position of top joint on the track [m]')
329 ylabel('Slipper Angle [deg]')
330 axis([0,1,-0.5,0.5])
331 legend([q81 q82 q83],'k_s = 10k_j', 'k_s = 100k_j', 'k_s = 1000k_j', 'Location', ...

'northeast')
332

333 %% Plot 3 layer whiffletree with stiffness slippers asymmetric
334 figure(7)
335 hold on
336 grid on
337 q101 = plot(x_values,Comsol_Slip_3_layer_s_1_10_slips,'k-');
338 q102 = plot(x_values,Comsol_Slip_3_layer_s_1_100_slips,'r--');
339 q103 = plot(x_values,Comsol_Slip_3_layer_s_1_1000_slips,'b-.');
340

341 title(['Angle of Slipper (Asymmetric Slipper Conf.)'])
342 xlabel('Position of top joint on the track [m]')
343 ylabel('Slipper Angle [deg]')
344 axis([0,1,-0.5,0.5])
345 legend([q101 q102 q103],'k_s = 10k_j', 'k_s = 100k_j', 'k_s = 1000k_j', 'Location', ...

'northeast')
346

347 %% Plot 3 layer all anggles
348 figure(8)
349 hold on
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350 grid on
351 f1 = plot(x_values,theta_rotated31(1,:),'k-');
352 f2 = plot(x_values,theta_rotated31(2,:),'k--');
353 f3 = plot(x_values,theta_rotated31(3,:),'k-');
354 f4 = plot(x_values,theta_rotated31(4,:),'k--');
355 f5 = plot(x_values,theta_rotated31(5,:),'k-');
356 f6 = plot(x_values,theta_rotated31(6,:),'k--');
357 f7 = plot(x_values,theta_rotated31(7,:),'k-');
358 f8 = plot(x_values,theta_rotated31(8,:),'k--');
359 f9 = plot(x_values,theta_rotated31(9,:),'b-');
360 f10 = plot(x_values,theta_rotated31(10,:),'b--');
361 f11 = plot(x_values,theta_rotated31(11,:),'b-');
362 f12 = plot(x_values,theta_rotated31(12,:),'b--');
363 f13 = plot(x_values,theta_rotated31(13,:),'r-');
364 f14 = plot(x_values,theta_rotated31(14,:),'r--');
365 f15 = plot(x_values,theta_rotated31(15,:),'g-');
366

367

368

369

370 legend([f1, f9, f13, f15],'Layer 1', 'Layer 2', 'Layer 3', 'Layer Top', 'Location', ...
'southwest')

371 title(['Angles of Joints (Triple Layer Whiffletree)'])
372 xlabel('Position of top joint on the track [m]')
373 ylabel('Joint Angle [deg]')
374 axis([0,1,-33,33])
375

376 %% Plot 3 layer Path top joint
377 figure(9)
378 hold on
379 grid on
380 top1 = plot(x_values,y1_translated, 'b--');
381 top2 = plot(x_values,y2_translated, 'r-.');
382 top3 = plot(x_values,y3_translated, 'k-');
383 top4 = plot(x_values,A*sin(x_values*2*pi), 'g-');
384

385 legend([top1 top2 top3 top4], 'Single Layer', 'Double Layer', 'Tripple Layer', ...
'Track', 'Location', 'southwest')

386 title(['Top Joint Position'])
387 xlabel('x-position of top joint [m]')
388 ylabel('y-position of top joint [m]')
389 axis([0,1,-0.18,0.18])
390

391 %% Plot 3 layer Path top joint 2
392 figure(10)
393 hold on
394 grid on
395 top1 = plot(x_values,y1-y1(1)+A*sin(0.01*2*pi), 'b--');
396 top2 = plot(x_values,y2-y2(1)+A*sin(0.01*2*pi), 'r-.');
397 top3 = plot(x_values,y3-y3(1)+A*sin(0.01*2*pi), 'k-');
398 top4 = plot(x_values,A*sin(x_values*2*pi), 'g-');
399

400 legend([top1 top2 top3 top4], 'Single Layer', 'Double Layer', 'Tripple Layer', ...
'Track', 'Location', 'southwest')

401 title(['Top Joint Position'])
402 xlabel('x-position of top joint [m]')
403 ylabel('y-position of top joint [m]')
404 axis([0,1,-0.18,0.18])
405

406 %% Plot 3 layer Path top joint 3
407 figure(11)
408 hold on
409 grid on
410 top1 = plot(x_values,y1, 'b--');
411 top2 = plot(x_values,y2, 'r-.');
412 top3 = plot(x_values,y3, 'k-');
413 top4 = plot(x_values,A*sin(x_values*2*pi), 'g-');
414

415 legend([top1 top2 top3 top4], 'Single Layer', 'Double Layer', 'Tripple Layer', ...
'Track', 'Location', 'southwest')

416 title(['Top Joint Position'])
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417 xlabel('x-position of top joint [m]')
418 ylabel('y-position of top joint [m]')
419 axis([0,1,-0.18,0.18])

The functional scrips Layer 1_ang l es, Layer 2_ang l es and Layer 3_ang l es are, respectively, given by:

1 function F = Layer1_angles(x_start, theta, L, J, A)
2 % Slipper Lengths (L) and Joint Heights (J)
3 L1A = L(1);
4 L1B = L(2);
5 L2A = L(2);
6 L2B = L(1);
7

8 J1 = J(1)/2;
9 J2 = J(2)/2;

10

11 % Linkage lengths (d)
12 d1 = L1B + L2A;
13

14 %% Geometry
15

16 x11 = x_start;
17 y11 = theta(4);
18

19 x1 = x11+(J2+J1)*sin(theta(3))-1/2*d1*cos(theta(3));
20 y1 = y11-(J2+J1)*cos(theta(3))-1/2*d1*sin(theta(3));
21 x2 = x11+(J2+J1)*sin(theta(3))+1/2*d1*cos(theta(3));
22 y2 = y11-(J2+J1)*cos(theta(3))+1/2*d1*sin(theta(3));
23

24 xp1 = x1+J1*sin(theta(1));
25 yp1 = y1-J1*cos(theta(1));
26

27 xp2 = x2+J1*sin(theta(2));
28 yp2 = y2-J1*cos(theta(2));
29

30 %% Functions
31 F(1) = A*sin(2*pi*xp1)-yp1;
32 F(2) = atan(A*2*pi*cos(2*pi*xp1))-theta(1);
33 F(3) = A*sin(2*pi*xp2)-yp2;
34 F(4) = atan(A*2*pi*cos(2*pi*xp2))-theta(2);

1 function F = Layer2_angles(x_start,theta, L, J, A)
2 % Slipper Lengths (L) and Joint Heights (J)
3 L1A = L(1);
4 L1B = L(2);
5 L2A = L(3);
6 L2B = L(4);
7 L3A = L(4);
8 L3B = L(3);
9 L4A = L(2);

10 L4B = L(1);
11

12 J1 = J(1)/2;
13 J2 = J(2)/2;
14 J3 = J(3)/2;
15

16 % Linkage lengths (d)
17 d11 = L1B + L2A;
18 d12 = L3B + L4A;
19 d2 = L2B+L3A+(d11+d12)/2;
20

21 %% Geometry
22 x21 = x_start;
23

24 x11 = x21-1/2*d2*cos(theta(7))+(J2+J3)*sin(theta(7));
25 x12 = x21+1/2*d2*cos(theta(7))+(J2+J3)*sin(theta(7));
26

27 x1 = x11-1/2*d11*cos(theta(5))+(J2+J1)*sin(theta(5));
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28 x2 = x11+1/2*d11*cos(theta(5))+(J2+J1)*sin(theta(5));
29 x3 = x12-1/2*d12*cos(theta(6))+(J2+J1)*sin(theta(6));
30 x4 = x12+1/2*d12*cos(theta(6))+(J2+J1)*sin(theta(6));
31

32 xp1 = x1+J1*sin(theta(1));
33 xp2 = x2+J1*sin(theta(2));
34 xp3 = x3+J1*sin(theta(3));
35 xp4 = x4+J1*sin(theta(4));
36

37

38 y21 = theta(8);
39

40 y11 = y21-1/2*d2*sin(theta(7))-(J2+J3)*cos(theta(7));
41 y12 = y21+1/2*d2*sin(theta(7))-(J2+J3)*cos(theta(7));
42

43 y1 = y11-1/2*d11*sin(theta(5))-(J2+J1)*cos(theta(5));
44 y2 = y11+1/2*d11*sin(theta(5))-(J2+J1)*cos(theta(5));
45 y3 = y12-1/2*d12*sin(theta(6))-(J2+J1)*cos(theta(6));
46 y4 = y12+1/2*d12*sin(theta(6))-(J2+J1)*cos(theta(6));
47

48 yp1 = y1-J1*cos(theta(1));
49 yp2 = y2-J1*cos(theta(2));
50 yp3 = y3-J1*cos(theta(3));
51 yp4 = y4-J1*cos(theta(4));
52

53 %% Functions
54 F(1) = A*sin(xp1*2*pi)-yp1;
55 F(2) = atan(A*2*pi*cos(2*pi*xp1))-theta(1);
56 F(3) = A*sin(xp2*2*pi)-yp2;
57 F(4) = atan(A*2*pi*cos(2*pi*xp2))-theta(2);
58 F(5) = A*sin(xp3*2*pi)-yp3;
59 F(6) = atan(A*2*pi*cos(2*pi*xp3))-theta(3);
60 F(7) = A*sin(xp4*2*pi)-yp4;
61 F(8) = atan(A*2*pi*cos(2*pi*xp4))-theta(4);
62

63 end

1 function F = Layer3_angles(x_start,theta, L, J, A)
2 % Slipper Lengths (L) and Joint Heights (J)
3 L1A = L(1);
4 L1B = L(2);
5 L2A = L(3);
6 L2B = L(4);
7 L3A = L(5);
8 L3B = L(6);
9 L4A = L(7);

10 L4B = L(8);
11 L5A = L(8);
12 L5B = L(7);
13 L6A = L(6);
14 L6B = L(5);
15 L7A = L(4);
16 L7B = L(3);
17 L8A = L(2);
18 L8B = L(1);
19

20 J1 = J(1)/2;
21 J2 = J(2)/2;
22 J3 = J(3)/2;
23 J4 = J(4)/2;
24

25 % Linkage lengths (d)
26 d11 = L1B + L2A;
27 d12 = L3B + L4A;
28 d13 = L5B + L6A;
29 d14 = L7B + L8A;
30 d21 = L2B+L3A+(d11+d12)/2;
31 d22 = L2B+L3A+(d11+d12)/2;
32 d3 = (L4B+d12/2+d21/2)*2;
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33

34

35 %% Geometry
36 x31 = x_start;
37

38 x21 = x31-1/2*d3*cos(theta(15))+(J3+J4)*sin(theta(15));
39 x22 = x31+1/2*d3*cos(theta(15))+(J3+J4)*sin(theta(15));
40

41 x11 = x21-1/2*d21*cos(theta(13))+(J2+J3)*sin(theta(13));
42 x12 = x21+1/2*d21*cos(theta(13))+(J2+J3)*sin(theta(13));
43 x13 = x22-1/2*d22*cos(theta(14))+(J2+J3)*sin(theta(14));
44 x14 = x22+1/2*d22*cos(theta(14))+(J2+J3)*sin(theta(14));
45

46 x1 = x11-1/2*d11*cos(theta(9))+(J2+J1)*sin(theta(9));
47 x2 = x11+1/2*d11*cos(theta(9))+(J2+J1)*sin(theta(9));
48 x3 = x12-1/2*d12*cos(theta(10))+(J2+J1)*sin(theta(10));
49 x4 = x12+1/2*d12*cos(theta(10))+(J2+J1)*sin(theta(10));
50 x5 = x13-1/2*d13*cos(theta(11))+(J2+J1)*sin(theta(11));
51 x6 = x13+1/2*d13*cos(theta(11))+(J2+J1)*sin(theta(11));
52 x7 = x14-1/2*d14*cos(theta(12))+(J2+J1)*sin(theta(12));
53 x8 = x14+1/2*d14*cos(theta(12))+(J2+J1)*sin(theta(12));
54

55 xp1 = x1+J1*sin(theta(1));
56 xp2 = x2+J1*sin(theta(2));
57 xp3 = x3+J1*sin(theta(3));
58 xp4 = x4+J1*sin(theta(4));
59 xp5 = x5+J1*sin(theta(5));
60 xp6 = x6+J1*sin(theta(6));
61 xp7 = x7+J1*sin(theta(7));
62 xp8 = x8+J1*sin(theta(8));
63

64 y31 = theta(16);
65

66 y21 = y31-1/2*d3*sin(theta(15))-(J3+J4)*cos(theta(15));
67 y22 = y31+1/2*d3*sin(theta(15))-(J3+J4)*cos(theta(15));
68

69 y11 = y21-1/2*d21*sin(theta(13))-(J2+J3)*cos(theta(13));
70 y12 = y21+1/2*d21*sin(theta(13))-(J2+J3)*cos(theta(13));
71 y13 = y22-1/2*d22*sin(theta(14))-(J2+J3)*cos(theta(14));
72 y14 = y22+1/2*d22*sin(theta(14))-(J2+J3)*cos(theta(14));
73

74 y1 = y11-1/2*d11*sin(theta(9))-(J2+J1)*cos(theta(9));
75 y2 = y11+1/2*d11*sin(theta(9))-(J2+J1)*cos(theta(9));
76 y3 = y12-1/2*d12*sin(theta(10))-(J2+J1)*cos(theta(10));
77 y4 = y12+1/2*d12*sin(theta(10))-(J2+J1)*cos(theta(10));
78 y5 = y13-1/2*d13*sin(theta(11))-(J2+J1)*cos(theta(11));
79 y6 = y13+1/2*d13*sin(theta(11))-(J2+J1)*cos(theta(11));
80 y7 = y14-1/2*d14*sin(theta(12))-(J2+J1)*cos(theta(12));
81 y8 = y14+1/2*d14*sin(theta(12))-(J2+J1)*cos(theta(12));
82

83 yp1 = y1-J1*cos(theta(1));
84 yp2 = y2-J1*cos(theta(2));
85 yp3 = y3-J1*cos(theta(3));
86 yp4 = y4-J1*cos(theta(4));
87 yp5 = y5-J1*cos(theta(5));
88 yp6 = y6-J1*cos(theta(6));
89 yp7 = y7-J1*cos(theta(7));
90 yp8 = y8-J1*cos(theta(8));
91

92 %% Functions
93 F(1) = A*sin(2*pi*xp1)-yp1;
94 F(2) = atan(A*2*pi*cos(2*pi*xp1))-theta(1);
95 F(3) = A*sin(2*pi*xp2)-yp2;
96 F(4) = atan(A*2*pi*cos(2*pi*xp2))-theta(2);
97 F(5) = A*sin(2*pi*xp3)-yp3;
98 F(6) = atan(A*2*pi*cos(2*pi*xp3))-theta(3);
99 F(7) = A*sin(2*pi*xp4)-yp4;

100 F(8) = atan(A*2*pi*cos(2*pi*xp4))-theta(4);
101 F(9) = A*sin(2*pi*xp5)-yp5;
102 F(10) = atan(A*2*pi*cos(2*pi*xp5))-theta(5);
103 F(11) = A*sin(2*pi*xp6)-yp6;
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104 F(12) = atan(A*2*pi*cos(2*pi*xp6))-theta(6);
105 F(13) = A*sin(2*pi*xp7)-yp7;
106 F(14) = atan(A*2*pi*cos(2*pi*xp7))-theta(7);
107 F(15) = A*sin(2*pi*xp8)-yp8;
108 F(16) = atan(A*2*pi*cos(2*pi*xp8))-theta(8);
109 end



A.5. Load Capacity 63

A.5. Load Capacity
The load capacity is obtained following the equations of section 2.3.1 from the paper. To obtain the pressure
profile, load capacity and momentary rotation points 2 scripts are provided. The first script is used to ob-
tain the slipper lengths while the second script can be used to evaluate perturbations in the film height. To
solve the system of equations, a numerical solver is used to prevent long calculation times compared to an
analytical solving approach.
The first script to obtain the slipper lengths is given by:

1 clear all
2 close all
3 clc
4

5 options=optimset('MaxFunEvals',1000000, 'MaxIter', 1000000, 'TolFun', 1e-8);
6 %% Parameters
7 Ps = 0.5*10^5;
8 P0 = 0*10^5;
9 hfactor = 2/5;

10 dr = 1*10^(-3);
11 eta = 8.9*10^(-4);
12 Wavelength = 1;
13 Ltot = Wavelength/8;
14

15 h = [1,1,1,1]*100*10^(-6);
16

17 %% 3 Layers
18 x = ...

[10^5,10^5,10^5,10^5,10^5,10^5,10^5,0.0156,0.0156,0.0156,0.0156,0.0156,0.0156,0.0156,0.0156];
19

20 fun = @(x)Layer3_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor);
21 Results3 = fsolve(fun,x,options);
22

23 % Results Solver
24 P3 = Results3(1:7);
25 Lslip3 = Results3(8:15);
26 Lcum = [sum(Results3(8)), sum(Results3(8:9)), sum(Results3(8:10)), ...

sum(Results3(8:11)), sum(Results3(8:12)), sum(Results3(8:13)), ...
sum(Results3(8:14)), sum(Results3(8:15))];

27

28 % Load capacity
29 LC3(1) = 1/2*(P3(1)+P0)*Lslip3(1);
30 LC3(2) = 1/2*(P3(2)+P3(1))*Lslip3(2);
31 LC3(3) = 1/2*(P3(3)+P3(2))*Lslip3(3);
32 LC3(4) = 1/2*(P3(4)+P3(3))*Lslip3(4);
33 LC3(5) = 1/2*(P3(5)+P3(4))*Lslip3(5);
34 LC3(6) = 1/2*(P3(6)+P3(5))*Lslip3(6);
35 LC3(7) = 1/2*(P3(7)+P3(6))*Lslip3(7);
36 LC3(8) = 1/2*(P3(7)+P3(7))*Lslip3(8);
37

38 M3(1) = LC3(1)*Lslip3(1);
39 M3(2) = LC3(2)*Lslip3(2);
40 M3(3) = LC3(3)*Lslip3(3);
41 M3(4) = LC3(4)*Lslip3(4);
42 M3(5) = LC3(5)*Lslip3(5);
43 M3(6) = LC3(6)*Lslip3(6);
44 M3(7) = LC3(7)*Lslip3(7);
45 M3(8) = LC3(8)*Lslip3(8);
46

47 %% 2 Layers
48 x = [10^5,10^5,10^5,0.0156,0.0156,0.0156,0.0156];
49

50 fun = @(x)Layer2_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor);
51 Results2 = fsolve(fun,x,options);
52

53 % Results Solver
54 P2 = Results2(1:3);
55 Lslip2 = Results2(4:7);
56

57 % Load capacity
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58 LC2(1) = 1/2*(P2(1)+P0)*Lslip2(1);
59 LC2(2) = 1/2*(P2(2)+P2(1))*Lslip2(2);
60 LC2(3) = 1/2*(P2(3)+P2(2))*Lslip2(3);
61 LC2(4) = 1/2*(P2(3)+P2(3))*Lslip2(4);
62

63 M2(1) = LC2(1)*Lslip2(1);
64 M2(2) = LC2(2)*Lslip2(2);
65 M2(3) = LC2(3)*Lslip2(3);
66 M2(4) = LC2(4)*Lslip2(4);
67

68 %% 1 Layer
69 x = [10^5,0.0156,0.0156];
70

71 fun = @(x)Layer1_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor);
72 Results1 = fsolve(fun,x,options);
73

74 % Results Solver
75 P1 = Results1(1);
76 Lslip1 = Results1(2:3);
77

78 % Load capacity
79 LC1(1) = 1/2*(P1(1)+P0)*Lslip1(1);
80 LC1(2) = 1/2*(P1(1)+P1(1))*Lslip1(2);
81

82 M1(1) = LC1(1)*Lslip1(1);
83 M1(2) = LC1(2)*Lslip1(2);
84

85 %% Figures
86 figure(1)
87 hold on
88 grid on
89 q31 = plot([0, Lslip3(1)], [P0,P3(1)],'k-');
90 q32 = plot([Lcum(1), Lcum(2)], [P3(1),P3(2)],'k-');
91 q33 = plot([Lcum(2), Lcum(3)], [P3(2),P3(3)],'k-');
92 q34 = plot([Lcum(3), Lcum(4)], [P3(3),P3(4)],'k-');
93 q35 = plot([Lcum(4), Lcum(5)], [P3(4),P3(5)],'k-');
94 q36 = plot([Lcum(5), Lcum(6)], [P3(5),P3(6)],'k-');
95 q37 = plot([Lcum(6), Lcum(7)], [P3(6),P3(7)],'k-');
96 q38 = plot([Lcum(7), Lcum(8)], [P3(7),P3(7)],'k-');
97

98 title(['Pressure Profile of 3 Layer Whiffletree'])
99 xlabel('Position on bearing [m]')

100 ylabel('Pressure [Pa]')
101 axis([0,Lcum(end)+0.005,P0,P3(end)+0.5*10^4])
102 legend([q31],'Analytic', 'Location', 'southeast')

With the function Layer 3_pr essur e_pr o f i l e_numer i c, Layer 2_pr essur e_pr o f i l e_numer i c and
Layer 1_pr essur e_pr o f i l e_numer i c given as, respectively:

1 function F = Layer3_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor)
2

3 P(1) = x(1);
4 P(2) = x(2);
5 P(3) = x(3);
6 P(4) = x(4);
7 P(5) = x(5);
8 P(6) = x(6);
9 P(7) = x(7);

10

11 L(1) = x(8);
12 L(2) = x(9);
13 L(3) = x(10);
14 L(4) = x(11);
15 L(5) = x(12);
16 L(6) = x(13);
17 L(7) = x(14);
18 L(8) = x(15);
19

20 Lr = (L(7)+L(8))*hfactor*0.5;
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21

22 Gs = pi*dr^4/(Lr*128*eta);
23

24 Q(1) = h(1)^3/(12*eta)*(P(1)-P0)/(L(1));
25 Q(2) = h(1)^3/(12*eta)*(P(2)-P(1))/(L(2));
26 Q(3) = h(2)^3/(12*eta)*(P(3)-P(2))/(L(3));
27 Q(4) = h(2)^3/(12*eta)*(P(4)-P(3))/(L(4));
28 Q(5) = h(3)^3/(12*eta)*(P(5)-P(4))/(L(5));
29 Q(6) = h(3)^3/(12*eta)*(P(6)-P(5))/(L(6));
30 Q(7) = h(4)^3/(12*eta)*(P(7)-P(6))/(L(7));
31

32 Q_inlet(1) = Gs*(Ps-P(1));
33 Q_inlet(2) = Gs*(Ps-P(3));
34 Q_inlet(3) = Gs*(Ps-P(5));
35 Q_inlet(4) = Gs*(Ps-P(7));
36

37 LC(1) = 1/2*(P(1)+P0)*L(1);
38 LC(2) = 1/2*(P(2)+P(1))*L(2);
39 LC(3) = 1/2*(P(3)+P(2))*L(3);
40 LC(4) = 1/2*(P(4)+P(3))*L(4);
41 LC(5) = 1/2*(P(5)+P(4))*L(5);
42 LC(6) = 1/2*(P(6)+P(5))*L(6);
43 LC(7) = 1/2*(P(7)+P(6))*L(7);
44 LC(8) = 1/2*(P(7)+P(7))*L(8);
45

46

47 M(1) = LC(1)*L(1)/2;
48 M(2) = LC(2)*L(2)/2;
49 M(3) = LC(3)*L(3)/2;
50 M(4) = LC(4)*L(4)/2;
51 M(5) = LC(5)*L(5)/2;
52 M(6) = LC(6)*L(6)/2;
53 M(7) = LC(7)*L(7)/2;
54 M(8) = LC(8)*L(8)/2;
55

56 F(1) = Q(7)-Q_inlet(4);
57 F(2) = Q(5)-Q(6)-Q_inlet(3);
58 F(3) = Q(3)-Q(4)-Q_inlet(2);
59 F(4) = Q(1)-Q(2)-Q_inlet(1);
60 F(5) = Q(3)-Q(2);
61 F(6) = Q(5)-Q(4);
62 F(7) = Q(7)-Q(6);
63 F(8) = M(1)-M(2);
64 F(9) = M(3)-M(4);
65 F(10) = M(5)-M(6);
66 F(11) = M(7)-M(8);
67 F(12) = LC(1)+LC(2)-LC(3)-LC(4);
68 F(13) = LC(3)+LC(4)-LC(5)-LC(6);
69 F(14) = LC(5)+LC(6)-LC(7)-LC(8);
70 F(15) = L(1)+L(2)+L(3)+L(4)+L(5)+L(6)+L(7)+L(8)-Ltot;
71 end

1 function F = Layer2_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor)
2

3 P(1) = x(1);
4 P(2) = x(2);
5 P(3) = x(3);
6

7 L(1) = x(4);
8 L(2) = x(5);
9 L(3) = x(6);

10 L(4) = x(7);
11

12

13 Lr = (L(3)+L(4))*hfactor*0.5;
14

15 Gs = pi*dr^4/(Lr*128*eta);
16

17 Q(1) = h(1)^3/(12*eta)*(P(1)-P0)/(L(1));
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18 Q(2) = h(1)^3/(12*eta)*(P(2)-P(1))/(L(2));
19 Q(3) = h(2)^3/(12*eta)*(P(3)-P(2))/(L(3));
20

21

22

23 Q_inlet(1) = Gs*(Ps-P(1));
24 Q_inlet(2) = Gs*(Ps-P(3));
25

26

27 LC(1) = 1/2*(P(1)+P0)*L(1);
28 LC(2) = 1/2*(P(2)+P(1))*L(2);
29 LC(3) = 1/2*(P(3)+P(2))*L(3);
30 LC(4) = 1/2*(P(3)+P(3))*L(4);
31

32

33 M(1) = LC(1)*L(1)/2;
34 M(2) = LC(2)*L(2)/2;
35 M(3) = LC(3)*L(3)/2;
36 M(4) = LC(4)*L(4)/2;
37

38

39 F(1) = Q(3)-Q_inlet(2);
40 F(2) = Q(1)-Q(2)-Q_inlet(1);
41 F(3) = Q(3)-Q(2);
42 F(4) = M(1)-M(2);
43 F(5) = M(3)-M(4);
44 F(6) = LC(1)+LC(2)-LC(3)-LC(4);
45 F(7) = L(1)+L(2)+L(3)+L(4)-Ltot;
46 end

1 function F = Layer1_pressure_profile_numeric(Ps, P0, dr, eta, h, x, Ltot, hfactor)
2

3 P(1) = x(1);
4 L(1) = x(2);
5 L(2) = x(3);
6

7 Lr = (L(1)+L(2))*hfactor*0.5;
8

9 Gs = pi*dr^4/(Lr*128*eta);
10

11 Q(1) = h(1)^3/(12*eta)*(P(1)-P0)/(L(1));
12

13 Q_inlet(1) = Gs*(Ps-P(1));
14

15 LC(1) = 1/2*(P(1)+P0)*L(1);
16 LC(2) = 1/2*(P(1)+P(1))*L(2);
17

18 M(1) = LC(1)*L(1)/2;
19 M(2) = LC(2)*L(2)/2;
20

21 F(1) = Q(1)-Q_inlet(1);
22 F(2) = M(1)-M(2);
23 F(3) = L(1)+L(2)-Ltot;
24 end
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The second script is given by:

1 clear all
2 close all
3 clc
4

5 options=optimset('MaxFunEvals',1000000, 'MaxIter', 1000000, 'TolFun', 1e-20);
6

7

8 %% Variables
9 Ps = 0.5*10^5;

10 P0 = 0;
11 dr = 0.5*10^(-3);
12 hfactor = 2/5;
13 eta = 8.9*10^(-4);
14

15 %% Triple Layer
16 P_initial = [0.5,1,0.5,1,0.5,1,1]*10^5;
17 Lslip = [0.028399775767225 0.019210925665594 0.013818521584328 ...

0.013364669060691 0.012720668426789 0.012610317072069 0.012449198010836 ...
0.012425924412468];

18 h = [0.5,1,1,0.5,1,0.5,0.5,1]*100*10^(-6);
19

20 fun = @(P_initial)Layer3_pressure_profile(Ps, P0, h, dr, eta, Lslip, P_initial, hfactor);
21 P = fsolve(fun,P_initial,options);
22

23

24 LC(1) = 1/2*(P(1)+P0)*Lslip(1);
25 LC(2) = 1/2*(P(2)+P(1))*Lslip(2);
26 LC(3) = 1/2*(P(3)+P(2))*Lslip(3);
27 LC(4) = 1/2*(P(4)+P(3))*Lslip(4);
28 LC(5) = 1/2*(P(5)+P(4))*Lslip(5);
29 LC(6) = 1/2*(P(6)+P(5))*Lslip(6);
30 LC(7) = 1/2*(P(7)+P(6))*Lslip(7);
31 LC(8) = 1/2*(P(7)+P(7))*Lslip(8);
32

33 Load_Capacity(1) = LC(1)+LC(2);
34 Load_Capacity(2) = LC(3)+LC(4);
35 Load_Capacity(3) = LC(5)+LC(6);
36 Load_Capacity(4) = LC(7)+LC(8);
37

38

39 M(1) = LC(1)*Lslip(1)-LC(2)*Lslip(2);
40 M(2) = LC(3)*Lslip(3)-LC(4)*Lslip(4);
41 M(3) = LC(5)*Lslip(5)-LC(6)*Lslip(6);
42 M(4) = LC(7)*Lslip(7)-LC(8)*Lslip(8);
43

44

45 L(1) = Lslip(1) + Lslip(2);
46 L(2) = Lslip(3) + Lslip(4);
47 L(3) = Lslip(5) + Lslip(6);
48 L(4) = Lslip(7) + Lslip(8);
49

50 %% Double Layer
51

52 %% Results
53 P
54 LC
55 M
56 L
57 Ltot= sum(L)
58 J = L(4)*2/5*0.5
59 %% End effector stiffness

With the function Layer 3_pr essur e_pr o f i l e given as:

1 function F = Layer3_pressure_profile(Ps, P0, h, dr, eta, L, P, hfactor)
2 Q(1) = h(1)^3/(12*eta)*(P(1)-P0)/(L(1));
3 Q(2) = h(2)^3/(12*eta)*(P(2)-P(1))/(L(2));
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4 Q(3) = h(3)^3/(12*eta)*(P(3)-P(2))/(L(3));
5 Q(4) = h(4)^3/(12*eta)*(P(4)-P(3))/(L(4));
6 Q(5) = h(5)^3/(12*eta)*(P(5)-P(4))/(L(5));
7 Q(6) = h(6)^3/(12*eta)*(P(6)-P(5))/(L(6));
8 Q(7) = h(7)^3/(12*eta)*(P(7)-P(6))/(L(7));
9

10 Lr = (L(7)+L(8))*hfactor*0.5;
11

12 Gs = pi*dr^4/(Lr*128*eta);
13

14 Q_inlet(1) = Gs*(Ps-P(1));
15 Q_inlet(2) = Gs*(Ps-P(3));
16 Q_inlet(3) = Gs*(Ps-P(5));
17 Q_inlet(4) = Gs*(Ps-P(7));
18

19 F(1) = Q(7)-Q_inlet(4);
20 F(2) = Q(5)-Q(6)-Q_inlet(3);
21 F(3) = Q(3)-Q(4)-Q_inlet(2);
22 F(4) = Q(1)-Q(2)-Q_inlet(1);
23 F(5) = Q(3)-Q(2);
24 F(6) = Q(5)-Q(4);
25 F(7) = Q(7)-Q(6);
26 end

A.6. Joint Stiffness
The joint stiffness is obtained by following the equations of section 2.3.2 from the paper. First, the joint
angles are obtained using the same function as described in appendix A.4. Following, the total film height
under the left and right side of each slipper is determined regarding the joint angles that correspond to each
specific slipper. Then, the dimensions of each linkage and joint are obtained which are later used to obtain
the moment acting on each individual joint. Next, the load capacity acting on each slipper is decomposed
into the fixed x and y frame. For each joint in each layer the total force in x and y direction is obtained by
adding the corresponding forces of the connecting joints one layer below. These forces are then decomposed
into the normal and tangential orientation of the joint to obtain the normal and shear force acting on that
specific joint. The moment acting on each joint is obtained using equation 39 of the paper and is finally used
to obtain the rotational stiffness of each joint. The script to obtain the joint stiffness is given as:

1 close all
2 clear all
3 clc
4

5 %% Variables
6 data_size = 100;
7 Load_Capacity = 100; %acting on each side of the slipper
8 ct = 0.2; %percentage of film height used to rotate the top joint
9 c1 = 0.1; %percentage of film height used to rotate the first layer joint

10 c2 = 0.05; %percentage of film height used to rotate the second layer joint
11 c3 = 0.025; %percentage of film height used to rotate the third layer joint
12 L = ones(8,1)/32;
13

14 %% Initial arrays
15 LC = ones(16,data_size);
16 h = ones(data_size,16);
17 A = 0.1;
18

19 %% Angles
20 % Initial values
21 theta0 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
22 J0 = (L(7)+L(8))*1/10;
23 J = [J0, 2*J0, 4*J0, 8*J0];
24

25 % Solver
26 for i = 1:data_size
27 x(i) = i/data_size;
28 fun = @(theta0)Layer3_angles_stiffness(x(i), theta0, L, J, A);
29 theta(i,:) = fsolve(fun,theta0);
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30 end
31

32 % Data
33 psi(:,15) = theta(:,15);
34 psi(:,14) = theta(:,14)-theta(:,15);
35 psi(:,13) = theta(:,13)-theta(:,15);
36 psi(:,12) = theta(:,12)-theta(:,14);
37 psi(:,11) = theta(:,11)-theta(:,14);
38 psi(:,10) = theta(:,10)-theta(:,13);
39 psi(:,9) = theta(:,9)-theta(:,13);
40 psi(:,8) = theta(:,8)-theta(:,12);
41 psi(:,7) = theta(:,7)-theta(:,12);
42 psi(:,6) = theta(:,6)-theta(:,11);
43 psi(:,5) = theta(:,5)-theta(:,11);
44 psi(:,4) = theta(:,4)-theta(:,10);
45 psi(:,3) = theta(:,3)-theta(:,10);
46 psi(:,2) = theta(:,2)-theta(:,9);
47 psi(:,1) = theta(:,1)-theta(:,9);
48 psi_rotated = psi'*180/pi;
49

50 %% Film Height
51 for n = 1:data_size
52 for p = 1:8
53 if psi(n,p) > 0
54 h(n,p*2) = h(n,p*2) + c3;
55 else
56 h(n,p*2-1) = h(n,p*2-1) + c3;
57 end
58 end
59

60 for q = 1:4
61 if psi(n,q+8) > 0
62 h(n,q*4-1) = h(n,q*4-1) + c2;
63 h(n,q*4) = h(n,q*4) + c2;
64 else
65 h(n,q*4-3) = h(n,q*4-3) + c2;
66 h(n,q*4-2) = h(n,q*4-2) + c2;
67 end
68 end
69 %
70 for r = 1:2
71 if psi(n,r+12) > 0
72 h(n,r*8-3) = h(n,r*8-3) + c1;
73 h(n,r*8-2) = h(n,r*8-2) + c1;
74 h(n,r*8-1) = h(n,r*8-1) + c1;
75 h(n,r*8) = h(n,r*8) + c1;
76 else
77 h(n,r*8-7) = h(n,r*8-7) + c1;
78 h(n,r*8-6) = h(n,r*8-6) + c1;
79 h(n,r*8-5) = h(n,r*8-5) + c1;
80 h(n,r*8-4) = h(n,r*8-4) + c1;
81 end
82 end
83 if psi(n,15) > 0
84 h(n,9) = h(n,9) + ct;
85 h(n,10) = h(n,10) + ct;
86 h(n,11) = h(n,11) + ct;
87 h(n,12) = h(n,12) + ct;
88 h(n,13) = h(n,13) + ct;
89 h(n,14) = h(n,14) + ct;
90 h(n,15) = h(n,15) + ct;
91 h(n,16) = h(n,16) + ct;
92 else
93 h(n,1) = h(n,1) + ct;
94 h(n,2) = h(n,2) + ct;
95 h(n,3) = h(n,3) + ct;
96 h(n,4) = h(n,4) + ct;
97 h(n,5) = h(n,5) + ct;
98 h(n,6) = h(n,6) + ct;
99 h(n,7) = h(n,7) + ct;

100 h(n,8) = h(n,8) + ct;
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101 end
102 end
103 h = h';
104 factor = h.^3;
105 %% Load Capacity
106 for i = 1:data_size
107 LC(1,i) = Load_Capacity*factor(1,i);
108 LC(2,i) = Load_Capacity*factor(2,i);
109 LC(3,i) = Load_Capacity*factor(3,i);
110 LC(4,i) = Load_Capacity*factor(4,i);
111 LC(5,i) = Load_Capacity*factor(5,i);
112 LC(6,i) = Load_Capacity*factor(6,i);
113 LC(7,i) = Load_Capacity*factor(7,i);
114 LC(8,i) = Load_Capacity*factor(8,i);
115 LC(9,i) = Load_Capacity*factor(9,i);
116 LC(10,i) = Load_Capacity*factor(10,i);
117 LC(11,i) = Load_Capacity*factor(11,i);
118 LC(12,i) = Load_Capacity*factor(12,i);
119 LC(13,i) = Load_Capacity*factor(13,i);
120 LC(14,i) = Load_Capacity*factor(14,i);
121 LC(15,i) = Load_Capacity*factor(15,i);
122 LC(16,i) = Load_Capacity*factor(16,i);
123 end
124

125 %% Distance between joints
126 J3 = J(1)/2;
127 J2 = (J(2)+J(1))/2;
128 J1 = (J(3)+J(2))/2;
129 Jt = (J(4)+J(3))/2;
130

131 L2(1) = (L(2)+L(3))/4;
132 L2(2) = (L(2)+L(3))/4;
133 L2(3) = (L(6)+L(7))/4;
134 L2(4) = (L(6)+L(7))/4;
135 L2(5) = (L(6)+L(7))/4;
136 L2(6) = (L(6)+L(7))/4;
137 L2(7) = (L(2)+L(3))/4;
138 L2(8) = (L(2)+L(3))/4;
139

140 L1(1) = (L(2)+L(3)+L(4)+L(5)+L(6)+L(7)-L2(1)-L2(4))/4;
141 L1(2) = (L(2)+L(3)+L(4)+L(5)+L(6)+L(7)-L2(1)-L2(4))/4;
142 L1(3) = (L(2)+L(3)+L(4)+L(5)+L(6)+L(7)-L2(1)-L2(4))/4;
143 L1(4) = (L(2)+L(3)+L(4)+L(5)+L(6)+L(7)-L2(1)-L2(4))/4;
144

145 Lt(1) = (sum(L)-L(1)-L2(1)-L1(1))/2;
146 Lt(2) = (sum(L)-L(1)-L2(1)-L1(1))/2;
147

148 %% Forces and Moments slippers
149 Fxs(1,:) = -(LC(1,:)+LC(2,:)).*sin(theta(:,1)');
150 Fxs(2,:) = -(LC(3,:)+LC(4,:)).*sin(theta(:,2)');
151 Fxs(3,:) = -(LC(5,:)+LC(6,:)).*sin(theta(:,3)');
152 Fxs(4,:) = -(LC(7,:)+LC(8,:)).*sin(theta(:,4)');
153 Fxs(5,:) = -(LC(9,:)+LC(10,:)).*sin(theta(:,5)');
154 Fxs(6,:) = -(LC(11,:)+LC(12,:)).*sin(theta(:,6)');
155 Fxs(7,:) = -(LC(13,:)+LC(14,:)).*sin(theta(:,7)');
156 Fxs(8,:) = -(LC(15,:)+LC(16,:)).*sin(theta(:,8)');
157

158 Fys(1,:) = (LC(1,:)+LC(2,:)).*cos(theta(:,1)');
159 Fys(2,:) = (LC(3,:)+LC(4,:)).*cos(theta(:,2)');
160 Fys(3,:) = (LC(5,:)+LC(6,:)).*cos(theta(:,3)');
161 Fys(4,:) = (LC(7,:)+LC(8,:)).*cos(theta(:,4)');
162 Fys(5,:) = (LC(9,:)+LC(10,:)).*cos(theta(:,5)');
163 Fys(6,:) = (LC(11,:)+LC(12,:)).*cos(theta(:,6)');
164 Fys(7,:) = (LC(13,:)+LC(14,:)).*cos(theta(:,7)');
165 Fys(8,:) = (LC(15,:)+LC(16,:)).*cos(theta(:,8)');
166

167 Fns(1,:) = LC(1,:)+LC(2,:);
168 Fns(2,:) = LC(3,:)+LC(4,:);
169 Fns(3,:) = LC(5,:)+LC(6,:);
170 Fns(4,:) = LC(7,:)+LC(8,:);
171 Fns(5,:) = LC(9,:)+LC(10,:);
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172 Fns(6,:) = LC(11,:)+LC(12,:);
173 Fns(7,:) = LC(13,:)+LC(14,:);
174 Fns(8,:) = LC(15,:)+LC(16,:);
175

176 Ms(1,:) = (LC(2,:)*L(2)-LC(1,:)*L(1))/2;
177 Ms(2,:) = (LC(4,:)*L(4)-LC(3,:)*L(3))/2;
178 Ms(3,:) = (LC(6,:)*L(6)-LC(5,:)*L(5))/2;
179 Ms(4,:) = (LC(8,:)*L(8)-LC(7,:)*L(7))/2;
180 Ms(5,:) = (LC(10,:)*L(7)-LC(9,:)*L(8))/2;
181 Ms(6,:) = (LC(12,:)*L(5)-LC(11,:)*L(6))/2;
182 Ms(7,:) = (LC(14,:)*L(3)-LC(13,:)*L(4))/2;
183 Ms(8,:) = (LC(16,:)*L(1)-LC(15,:)*L(2))/2;
184

185 ks(1,:) = Ms(1,:)./psi(:,1)';
186 ks(2,:) = Ms(2,:)./psi(:,2)';
187 ks(3,:) = Ms(3,:)./psi(:,3)';
188 ks(4,:) = Ms(4,:)./psi(:,4)';
189 ks(5,:) = Ms(5,:)./psi(:,5)';
190 ks(6,:) = Ms(6,:)./psi(:,6)';
191 ks(7,:) = Ms(7,:)./psi(:,7)';
192 ks(8,:) = Ms(8,:)./psi(:,8)';
193

194 %% Force and Moment Joint Layer 3
195 Fx3 = Fxs;
196 Fy3 = Fys;
197 Fn3 = Fns;
198 M3 = Ms;
199

200 %% Force and Moment Joint Layer 2
201 Fx2(1,:) = Fx3(1,:)+Fx3(2,:);
202 Fx2(2,:) = Fx3(3,:)+Fx3(4,:);
203 Fx2(3,:) = Fx3(5,:)+Fx3(6,:);
204 Fx2(4,:) = Fx3(7,:)+Fx3(8,:);
205

206 Fy2(1,:) = Fy3(1,:)+Fy3(2,:);
207 Fy2(2,:) = Fy3(3,:)+Fy3(4,:);
208 Fy2(3,:) = Fy3(5,:)+Fy3(6,:);
209 Fy2(4,:) = Fy3(7,:)+Fy3(8,:);
210

211 Fn2(1,:) = -Fx2(1,:).*sin(theta(:,9)')+Fy2(1,:).*cos(theta(:,9)');
212 Fn2(2,:) = -Fx2(2,:).*sin(theta(:,10)')+Fy2(2,:).*cos(theta(:,10)');
213 Fn2(3,:) = -Fx2(3,:).*sin(theta(:,11)')+Fy2(3,:).*cos(theta(:,11)');
214 Fn2(4,:) = -Fx2(4,:).*sin(theta(:,12)')+Fy2(4,:).*cos(theta(:,12)');
215

216 Fs2(1,:) = Fx2(1,:).*cos(theta(:,9)')+Fy2(1,:).*sin(theta(:,9)');
217 Fs2(2,:) = Fx2(2,:).*cos(theta(:,10)')+Fy2(2,:).*sin(theta(:,10)');
218 Fs2(3,:) = Fx2(3,:).*cos(theta(:,11)')+Fy2(3,:).*sin(theta(:,11)');
219 Fs2(4,:) = Fx2(4,:).*cos(theta(:,12)')+Fy2(4,:).*sin(theta(:,12)');
220

221 M2(1,:) = (-Fx3(2,:).*sin(theta(:,9)')+Fy3(2,:).*cos(theta(:,9)'))*L2(2) - ...
(-Fx3(1,:).*sin(theta(:,9)')+Fy3(1,:).*cos(theta(:,9)'))*L2(1) + ...
(Fx3(2,:).*cos(theta(:,9)')+Fy3(2,:).*sin(theta(:,9)'))*J2 + ...
(Fx3(1,:).*cos(theta(:,9)')+Fy3(1,:).*sin(theta(:,9)'))*J2 + M3(1,:);% + M3(2,:);

222 M2(2,:) = (-Fx3(4,:).*sin(theta(:,10)')+Fy3(4,:).*cos(theta(:,10)'))*L2(4) - ...
(-Fx3(3,:).*sin(theta(:,10)')+Fy3(3,:).*cos(theta(:,10)'))*L2(3) + ...
(Fx3(4,:).*cos(theta(:,10)')+Fy3(4,:).*sin(theta(:,10)'))*J2 + ...
(Fx3(3,:).*cos(theta(:,10)')+Fy3(3,:).*sin(theta(:,10)'))*J2;% + M3(3,:) + M3(4,:);

223 M2(3,:) = (-Fx3(6,:).*sin(theta(:,11)')+Fy3(6,:).*cos(theta(:,11)'))*L2(6) - ...
(-Fx3(5,:).*sin(theta(:,11)')+Fy3(5,:).*cos(theta(:,11)'))*L2(5) + ...
(Fx3(6,:).*cos(theta(:,11)')+Fy3(6,:).*sin(theta(:,11)'))*J2 + ...
(Fx3(5,:).*cos(theta(:,11)')+Fy3(5,:).*sin(theta(:,11)'))*J2;% + M3(5,:) + M3(6,:);

224 M2(4,:) = (-Fx3(8,:).*sin(theta(:,12)')+Fy3(8,:).*cos(theta(:,12)'))*L2(8) - ...
(-Fx3(7,:).*sin(theta(:,12)')+Fy3(7,:).*cos(theta(:,12)'))*L2(7) + ...
(Fx3(8,:).*cos(theta(:,12)')+Fy3(8,:).*sin(theta(:,12)'))*J2 + ...
(Fx3(7,:).*cos(theta(:,12)')+Fy3(7,:).*sin(theta(:,12)'))*J2;% + M3(7,:) + M3(8,:);

225

226 k2(1,:) = M2(1,:)./psi(:,9)';
227 k2(2,:) = M2(2,:)./psi(:,10)';
228 k2(3,:) = M2(3,:)./psi(:,11)';
229 k2(4,:) = M2(4,:)./psi(:,12)';
230
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231 %% Force and Moment Joint Layer 1
232 Fx1(1,:) = Fx2(1,:)+Fx2(2,:);
233 Fx1(2,:) = Fx2(3,:)+Fx2(4,:);
234

235 Fy1(1,:) = Fy2(1,:)+Fy2(2,:);
236 Fy1(2,:) = Fy2(3,:)+Fy2(4,:);
237

238 Fn1(1,:) = -Fx1(1,:).*sin(theta(:,13)')+Fy1(1,:).*cos(theta(:,13)');
239 Fn1(2,:) = -Fx1(2,:).*sin(theta(:,14)')+Fy1(2,:).*cos(theta(:,14)');
240

241 Fs1(1,:) = Fx1(1,:).*cos(theta(:,13)')+Fy1(1,:).*sin(theta(:,13)');
242 Fs1(2,:) = Fx1(2,:).*cos(theta(:,14)')+Fy1(2,:).*sin(theta(:,14)');
243

244 M1(1,:) = (-Fx2(2,:).*sin(theta(:,13)')+Fy2(2,:).*cos(theta(:,13)'))*L1(2) - ...
(-Fx2(1,:).*sin(theta(:,13)')+Fy2(1,:).*cos(theta(:,13)'))*L1(1) + ...
(Fx2(2,:).*cos(theta(:,13)')+Fy2(2,:).*sin(theta(:,13)'))*J1 + ...
(Fx2(1,:).*cos(theta(:,13)')+Fy2(1,:).*sin(theta(:,13)'))*J1;% + M2(1,:) + M2(2,:);

245 M1(2,:) = (-Fx2(4,:).*sin(theta(:,14)')+Fy2(4,:).*cos(theta(:,14)'))*L1(4) - ...
(-Fx2(3,:).*sin(theta(:,14)')+Fy2(3,:).*cos(theta(:,14)'))*L1(3) + ...
(Fx2(4,:).*cos(theta(:,14)')+Fy2(4,:).*sin(theta(:,14)'))*J1 + ...
(Fx2(3,:).*cos(theta(:,14)')+Fy2(3,:).*sin(theta(:,14)'))*J1;% + M2(3,:) + M2(4,:);

246

247 k1(1,:) = M1(1,:)./psi(:,13)';
248 k1(2,:) = M1(2,:)./psi(:,14)';
249

250 %% Force and Moment Top Joint
251 Fxt(1,:) = Fx1(1,:)+Fx1(2,:);
252

253 Fyt(1,:) = Fy1(1,:)+Fy1(2,:);
254

255 Fnt(1,:) = Fxt(1,:).*sin(theta(:,15)')+Fyt(1,:).*cos(theta(:,15)');
256

257 Fst(1,:) = Fxt(1,:).*cos(theta(:,15)')+Fyt(1,:).*sin(theta(:,15)');
258

259 Mt(1,:) = (-Fx1(2,:).*sin(theta(:,15)')+Fy1(2,:).*cos(theta(:,15)'))*Lt(2) - ...
(-Fx1(1,:).*sin(theta(:,15)')+Fy1(1,:).*cos(theta(:,15)'))*Lt(1) + ...
(Fx1(2,:).*cos(theta(:,15)')+Fy1(2,:).*sin(theta(:,15)'))*Jt + ...
(Fx1(1,:).*cos(theta(:,15)')+Fy1(1,:).*sin(theta(:,15)'))*Jt;% + + M1(1,:) + ...
M1(2,:);

260

261 kt(1,:) = Mt(1,:)./psi(:,15)';
262

263 %% Results
264 min_kt = min(min(kt))
265 min_k1 = min(min(k1))
266 min_k2 = min(min(k2))
267 min_k3 = min(min(ks))
268

269 max_Fn = [max(max(Fnt)) max(max(Fn1)) max(max(Fn2)) max(max(Fn3))]
270 max_Fs = [max(max(abs(Fst))) max(max(abs(Fs1))) max(max(abs(Fs2))) 0]

Where the function Layer 3_ang l es_st i f f ness is given as:

1 function F = Layer3_angles_stiffness(x_start,theta, L, J, A)
2 % Slipper Lengths (L) and Joint Heights (J)
3 L1A = L(1)/2;
4 L1B = L(1)/2;
5 L2A = L(2)/2;
6 L2B = L(2)/2;
7 L3A = L(3)/2;
8 L3B = L(3)/2;
9 L4A = L(4)/2;

10 L4B = L(4)/2;
11 L5A = L(5)/2;
12 L5B = L(5)/2;
13 L6A = L(6)/2;
14 L6B = L(6)/2;
15 L7A = L(7)/2;
16 L7B = L(7)/2;
17 L8A = L(8)/2;
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18 L8B = L(8)/2;
19

20 J1 = J(1)/2;
21 J2 = J(2)/2;
22 J3 = J(3)/2;
23 J4 = J(4)/2;
24

25 % Linkage lengths (d)
26 d11 = L1B + L2A;
27 d12 = L3B + L4A;
28 d13 = L5B + L6A;
29 d14 = L7B + L8A;
30 d21 = L2B+L3A+(d11+d12)/2;
31 d22 = L2B+L3A+(d11+d12)/2;
32 d3 = (L4B+d12/2+d21/2)*2;
33

34

35 %% Geometry
36 x31 = x_start;
37

38 x21 = x31-1/2*d3*cos(theta(15))+(J3+J4)*sin(theta(15));
39 x22 = x31+1/2*d3*cos(theta(15))+(J3+J4)*sin(theta(15));
40

41 x11 = x21-1/2*d21*cos(theta(13))+(J2+J3)*sin(theta(13));
42 x12 = x21+1/2*d21*cos(theta(13))+(J2+J3)*sin(theta(13));
43 x13 = x22-1/2*d22*cos(theta(14))+(J2+J3)*sin(theta(14));
44 x14 = x22+1/2*d22*cos(theta(14))+(J2+J3)*sin(theta(14));
45

46 x1 = x11-1/2*d11*cos(theta(9))+(J2+J1)*sin(theta(9));
47 x2 = x11+1/2*d11*cos(theta(9))+(J2+J1)*sin(theta(9));
48 x3 = x12-1/2*d12*cos(theta(10))+(J2+J1)*sin(theta(10));
49 x4 = x12+1/2*d12*cos(theta(10))+(J2+J1)*sin(theta(10));
50 x5 = x13-1/2*d13*cos(theta(11))+(J2+J1)*sin(theta(11));
51 x6 = x13+1/2*d13*cos(theta(11))+(J2+J1)*sin(theta(11));
52 x7 = x14-1/2*d14*cos(theta(12))+(J2+J1)*sin(theta(12));
53 x8 = x14+1/2*d14*cos(theta(12))+(J2+J1)*sin(theta(12));
54

55 xp1 = x1+J1*sin(theta(1));
56 xp2 = x2+J1*sin(theta(2));
57 xp3 = x3+J1*sin(theta(3));
58 xp4 = x4+J1*sin(theta(4));
59 xp5 = x5+J1*sin(theta(5));
60 xp6 = x6+J1*sin(theta(6));
61 xp7 = x7+J1*sin(theta(7));
62 xp8 = x8+J1*sin(theta(8));
63

64 y31 = theta(16);
65

66 y21 = y31-1/2*d3*sin(theta(15))-(J3+J4)*cos(theta(15));
67 y22 = y31+1/2*d3*sin(theta(15))-(J3+J4)*cos(theta(15));
68

69 y11 = y21-1/2*d21*sin(theta(13))-(J2+J3)*cos(theta(13));
70 y12 = y21+1/2*d21*sin(theta(13))-(J2+J3)*cos(theta(13));
71 y13 = y22-1/2*d22*sin(theta(14))-(J2+J3)*cos(theta(14));
72 y14 = y22+1/2*d22*sin(theta(14))-(J2+J3)*cos(theta(14));
73

74 y1 = y11-1/2*d11*sin(theta(9))-(J2+J1)*cos(theta(9));
75 y2 = y11+1/2*d11*sin(theta(9))-(J2+J1)*cos(theta(9));
76 y3 = y12-1/2*d12*sin(theta(10))-(J2+J1)*cos(theta(10));
77 y4 = y12+1/2*d12*sin(theta(10))-(J2+J1)*cos(theta(10));
78 y5 = y13-1/2*d13*sin(theta(11))-(J2+J1)*cos(theta(11));
79 y6 = y13+1/2*d13*sin(theta(11))-(J2+J1)*cos(theta(11));
80 y7 = y14-1/2*d14*sin(theta(12))-(J2+J1)*cos(theta(12));
81 y8 = y14+1/2*d14*sin(theta(12))-(J2+J1)*cos(theta(12));
82

83 yp1 = y1-J1*cos(theta(1));
84 yp2 = y2-J1*cos(theta(2));
85 yp3 = y3-J1*cos(theta(3));
86 yp4 = y4-J1*cos(theta(4));
87 yp5 = y5-J1*cos(theta(5));
88 yp6 = y6-J1*cos(theta(6));
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89 yp7 = y7-J1*cos(theta(7));
90 yp8 = y8-J1*cos(theta(8));
91

92 %% Functions
93 F(1) = A*sin(2*pi*xp1)-yp1;
94 F(2) = atan(A*2*pi*cos(2*pi*xp1))-theta(1);
95 F(3) = A*sin(2*pi*xp2)-yp2;
96 F(4) = atan(A*2*pi*cos(2*pi*xp2))-theta(2);
97 F(5) = A*sin(2*pi*xp3)-yp3;
98 F(6) = atan(A*2*pi*cos(2*pi*xp3))-theta(3);
99 F(7) = A*sin(2*pi*xp4)-yp4;

100 F(8) = atan(A*2*pi*cos(2*pi*xp4))-theta(4);
101 F(9) = A*sin(2*pi*xp5)-yp5;
102 F(10) = atan(A*2*pi*cos(2*pi*xp5))-theta(5);
103 F(11) = A*sin(2*pi*xp6)-yp6;
104 F(12) = atan(A*2*pi*cos(2*pi*xp6))-theta(6);
105 F(13) = A*sin(2*pi*xp7)-yp7;
106 F(14) = atan(A*2*pi*cos(2*pi*xp7))-theta(7);
107 F(15) = A*sin(2*pi*xp8)-yp8;
108 F(16) = atan(A*2*pi*cos(2*pi*xp8))-theta(8);
109 end

A.7. Top Joint Peak to Peak Ratio
The ratio between the top joint vertical peak to peak value and the counter surface peak to peak value is
obtained by finding the minimum and maximum values of the top joint y position and the amplitude of
the track. Following, the script is displayed to obtain these values where the functions Layer 1_ang l es,
Layer 2_ang l es and Layer 3_ang l es are given in appendix A.4.

1 clear all
2 close all
3 clc
4

5 options=optimset('MaxFunEvals',10000, 'MaxIter', 10000);
6 %% Variables
7 data_size = 100;
8 wavelength_factor = 3/4; %bearing length as function of wavelength
9 Wavelength = 1;

10 A = 0.1*Wavelength;
11 max_bearing_length = 1; %maximum bearing length as a percentage of the wavelength
12 data_size_bearing_length = 100;
13

14 %% Starting matrices
15 max_range_y1 = zeros(data_size_bearing_length,1);
16 max_range_y2 = zeros(data_size_bearing_length,1);
17 max_range_y3 = zeros(data_size_bearing_length,1);
18 bearing_length = zeros(data_size_bearing_length,1);
19

20 %% 1 Layer
21 for j = 1:data_size_bearing_length
22 wavelength_factor = max_bearing_length*j/(data_size_bearing_length);
23 theta10 = [0,0,0,0];
24 L10 = [1,1]*wavelength_factor*Wavelength/(4);
25 J01 = (L10(1)+L10(2))*1/5;
26 J10 = [J01, 2*J01];
27

28 % Solver
29 for i = 1:data_size
30 x(i) = i/data_size;
31 fun = @(theta10)Layer1_angles(x(i), theta10, L10, J10, A);
32 psi1(i,:) = fsolve(fun,theta10,options);
33 end
34

35 max_range_y1(j) = max(psi1(:,4))-min(psi1(:,4));
36 bearing_length(j) = wavelength_factor;
37 end
38
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39 %% 2 Layers
40 for j = 1:data_size_bearing_length
41 wavelength_factor = max_bearing_length*j/(data_size_bearing_length);
42 theta20 = [0,0,0,0,0,0,0,0];
43 L20 = [1,1,1,1]*wavelength_factor/(8);
44 J02 = (L20(3)+L20(4))*1/5;
45 J20 = [J02, 2*J02, 4*J02];
46

47 % Solver
48 for i = 1:data_size
49 x(i) = i/data_size;
50 fun = @(theta20)Layer2_angles(x(i), theta20, L20, J20, A);
51 psi2(i,:) = fsolve(fun,theta20,options);
52 end
53

54 max_range_y2(j) = max(psi2(:,8))-min(psi2(:,8));
55 end
56

57 %% 3 Layers
58 for j = 1:data_size_bearing_length
59 wavelength_factor = max_bearing_length*j/(data_size_bearing_length);
60 theta30 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
61 L30 = [1,1,1,1,1,1,1,1]*wavelength_factor/(16);
62 J03 = (L30(7)+L30(8))*1/5;
63 J30 = [J03, 2*J03, 4*J03, 8*J03];
64

65 % Solver
66 for i = 1:data_size
67 x(i) = i/data_size;
68 fun = @(theta30)Layer3_angles(x(i), theta30, L30, J30, A);
69 psi3(i,:) = fsolve(fun,theta30);
70 end
71

72 max_range_y3(j) = max(psi3(:,16))-min(psi3(:,16));
73 end
74

75 %% Amplitude Ratio
76 ratio_1_layer = max_range_y1/(2*A);
77 ratio_2_layer = max_range_y2/(2*A);
78 ratio_3_layer = max_range_y3/(2*A);
79

80 %% Plots
81 figure (1)
82 hold on
83 grid on
84 top1 = plot(bearing_length*100,ratio_1_layer, 'b--');
85 top2 = plot(bearing_length*100,ratio_2_layer, 'r-.');
86 top3 = plot(bearing_length*100,ratio_3_layer, 'k-');
87

88 legend([top1 top2 top3], 'Single Layer', 'Double Layer', 'Tripple Layer', 'Location', ...
'northeast')

89 title(['Vertical Translation Ratio of Top Joint'])
90 xlabel('Bearing lenght as % of the wavelength')
91 ylabel('Peak to peak ratio')
92 axis([0,100,0,1])





B
Bearing Pad Geometry

The geometry of the slipper has an effect on the load capacity of the bearing, and the ability to deform into
a concave convex or saddle point orientation. For hydrostatic bearings, the optimum shape for the highest
load capacity is a circle due to its large surface to perimeter value. However, when connecting the slippers,
a circular shape would provide problems. Therefore, a shape that could easily be connected to each other
while still having a large surface to perimeter value is needed. Furthermore, a shape that can be repeated to
fill a surface would ease the design process. Therefore, a look into tiling is made. Tiling is a method to fill a
flat surface with repeating smaller shapes. Some of the basic tiling shapes are a triangle, square or hexagonal
shown in figure B.1.

Figure B.1: Common tiling shapes.

A search in literature is made to determine if these shapes could fill a spherical surface instead of a flat surface.
One of the results is the design of a large reflector with flat facets [31]. This design was made to provide a
spherical reflector for a satellite that consisted out of flat facets. It shows that each of the 3 basic geometries
could form a spherical shape with a certain RMS error with respect to the real sphere. This means that each of
the shapes geometries could be chosen to follow the provided surface. Now that it is shown that each shape
could be used to fill a sphere, a look into the highest area vs perimeter value is made. Table B.1 shows for
each shape the area, perimeter and area to perimeter value. Since a comparison is done, each shape is made
to have the same area of 1 m2. It can be seen that a hexagon has the highest area to perimeter value and is
therefore the best option to choose as slipper geometry.

Triangle Square Hexagon Circle
Area [m2] 1.00 1.00 1.00 1.00

Perimeter [m] 4.56 4.00 3.72 3.55
Area/Perimeter [m] 0.22 0.25 0.27 0.28

Table B.1: Area to perimeter value of a triangle, square, hexagon and circle

To design the elasto-hydrostatic bearing, a total of 9 hexagonal pads is needed to obtain each Gaussian cur-
vature. When combining 3 hexagonal pads, a concave and configuration can be obtained which provides a
positive Gaussian curvature. When connecting a convex and concave configuration to each other, a negative
Gaussian curvature is formed. Finally due to the attachment of 9 hexagonal pads to each other, a Gaussian
curvature of 0 can be obtained. This means that all Gaussian curvatures are covered when connecting 9
hexagonal pads.
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C
Rapid Demonstrator

A rapid demonstrator is made to give an insight if a 3D hydrostatic bearing consisting of 9 hexagonal pads
can indeed deform in the used configuration, as shown in figure C.1. The demonstrator is completely 3D
printed using ball bearings as joints. The stiff hexagonal pads are enclosed by a silicon layer connecting all
the pads together creating one large pad. The top of a spherical structure is printed on which the bearing
is pressed to show the deforming behavior of the bearing. Figure C.2 gives an example of the demonstrator
pressed on the spherical surface showing small deformations of the bearing. This shows that the system
can deform into a concave configuration. Figure C.3 shows the bearing pressed on the side of the spherical
surface creating a saddle point. It is shown that the bearing follows the counter surface meaning that the
system can indeed deform over saddle points. To check if the bearing can deform in a convex configuration,
the bearing is pushed into a bowl, as shown in figure C.4. It is shown that the bearing deforms towards the
convex configuration validating that the system can form into convex configurations.

Figure C.1: Rapid demonstrator consisting of 9 hexagonal pads enclosed by a silicon layer and connected by linkages using ball joints.
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(a) Rapid demonstrator with no load applied on a con-
cave surface.

(b) Rapid demonstrator with load applied on a concave
surface.

Figure C.2: Rapid demonstrator on a concave surface.

(a) Rapid demonstrator with no load applied on a sad-
dle point surface.

(b) Rapid demonstrator with load applied on a saddle
point surface.

Figure C.3: Rapid demonstrator on a saddle point surface.

(a) Rapid demonstrator with no load applied on a con-
vex surface.

(b) Rapid demonstrator with load applied on a convex
surface.

Figure C.4: Rapid demonstrator on a convex surface.
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