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Preface
Dear reader,

Before you lies my thesis, written to obtain my MSc degree in Aerospace Engineering. Over the
past year, I have researched Focus of Expansion estimation using an event camera on a drone. The
final product consists of two parts: a scientific paper and a literature study. As you may notice, the
subject of the literature study and of the paper differ, as unfortunately the different elements required
for the original plan for my thesis were not as expected.

Admittedly, I have not always enjoyed the process of writing my thesis. At times, weeks have gone
by without measurable progress, which have not done wonders for my motivation. Working on such a
large project, working with software and programming languages barely used before, was overwhelm-
ing at first. This led me to approach the problems I had in a non-scientific way, but rather ’trying
something and see what happens’. In hindsight, this has cost me a lot of time and I am glad my super-
visor at some point reminded me that I need to look into why something is not working before trying to
fix it. I think this is the most important thing I have learned during my graduation and something I will
remember the rest of my career.

Via this way I would like to thank everyone that supported me in completing my studies. First of all,
my supervisor Guido de Croon, for his guidance and help, especially in the last few months when my
previous supervisor left the university. Next, all my peers and friends, whose mental support I could
not have done without. Last, but certainly not least, my parents, who have supported me for my whole
studies and tried to keepme as comfortable as possible, even when they had a lot going on themselves.

Looking back, I have been at the faculty of Aerospace Engineering for a bit more than 8 years.
Whereas this is long, I think it was completely worth it. Next to my studies, I have held different side
jobs, which have allowed me to really feel part of the university and get to know a lot of staff which
I otherwise wouldn’t have. Next to that, extracurricular activities at the VSV and FSC taught me a
great set of skills, varying from public speaking and writing formal letters to graphic design and event
organisation. I encourage everyone to spend time on such activities as the skills you pick up you will
carry with you the rest of your life, while also you will meet some of your best friends.

Lastly, I would like to make a point regarding mental health. I have seen everyone from students
and supporting staff to PhD’s and fulltime teaching staff reach their limits. It seems to me that people
only focus on results and not on how they got there. I believe no one will enjoy graduating cum laude or
publishing their best paper if it has (permanently) damaged their mental health. Partly this is due to high
expectations from work or studies, but I feel a large part is also due from people constantly themselves
to others, with social media as the great catalyst. I hope, even though not a lot of people will read this,
that I can encourage you to set your own goals and prioritise your well-being when necessary. Even
though it may be hard to take a step back sometimes, I think in the long run, you will look back happier
than you would otherwise.

For now, please enjoy reading my thesis. Even though I, as I wrote before, did not always like it, I
am happy with the results and learned a lot in the process. I hope my work will contribute to the faculty’s
research and perhaps some day maybe make the world a slightly better place.

S.J.F. Knoops
Delft, October 2022
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Verification & Validation of Focus of Expansion
estimation employing event-based optic flow

Author: Stefan Knoops; Supervisors: Guido de Croon, Julien Dupeyroux
Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands

Abstract—Event based vision has recently attracted a lot of
attention. High data rates and robustness to lighting variations
make it a valid option for indoor navigation. The previously
developed FAITH algorithm calculates a possible Focus of Ex-
pansion area based on negative half-planes generated by optic
flow and by employing a RANSAC search, a fast and reliable
Focus of Expansion estimation can be performed. This paper
builds upon this algorithm by verifying and validating the
algorithm, improving the derotation capabilities and optimising
for computational efficiency. Compared to earlier work, a higher
accuracy and an increased robustness are realised by improving
the data handling. Simulator results show accuracies in the range
of 2 to 5 degrees. Online testing on a drone shows accuracies
of up to 5 degrees while obtaining calculation times of only
2 · 10−3s and rates of 140Hz. Comparing the method to an
alternative shows higher accuracy and better suitability to normal
flow. Further research may contribute to more stable results and
explore different hardware solutions.

Index Terms—Event-based, optic flow, Focus of Expansion,
heading estimation, planefitting,

I. INTRODUCTION

In recent years, event cameras, with their high dynamic range,
low weight and efficient and fast method of data collection,
have shown much promise in several applications. One of
which is in autonomous indoor navigation, where the high
frequency of data collection enables quick decision-making in
cluttered environments. In contrast to classic cameras, which
are bound to a relatively low framerate and suffer from
inefficient data collection as they transfer the same information
several times.

Indoors, fast obstacle detection and avoidance are critical to
autonomous flight. In outdoor environments, this often can be
done while employing different types of sensors (e.g. sonar)
and more freedom in the flight envelope. Indoors there is little
margin to avoid objects and not all sensors are suited due to
reflections and cluttering. This leads to a wish to develop an
algorithm using input from an event camera to avoid objects.

The FAITH (FAst ITerative Half-plane focus of expansion
estimation) algorithm [1] makes use of event-based optic flow
to determine the focus of expansion in the field of view
using a random search for computational efficiency. This is
subsequently used to determine whether a collision is bound
to happen by estimating the time to contact to an obstacle
using the Focus of Expansion (FoE). Initial results showed an
80% success rate, however validation was lacking, derotation
was not working and the computational performance needed
improvement.

This paper describes the verification and validation of the
FAITH algorithm. The algorithm is rewritten from scratch in
native C++ for computational efficiency and has improved
robustness and flexibility, as well as two-dimensional output to
allow for 3D heading estimation. It is tested both in simulation
and onboard a computer suitable for onboard flying and is
compared to an alternative algorithm.

First, the backgrounds of event-cameras, optic flow and
FoE estimation are explained in section II. Subsequently, the
FAITH algorithm and this paper’s contributions are elaborated
upon in section III. Afterward, in section V and section VI, re-
sults of the focus of expansion estimation for simulated events
as well as onboard estimations will be presented and discussed.
Lastly, the algorithm’s current limitations and recommenda-
tions for improving these are discussed in section VII.

II. BACKGROUND

Over the past years, bio-inspired approaches have become
more prominent in presence. Whereas classic research tends
to formulate a mathematical solution for problems, more and
more problems are solved by training neural networks. The
bio-inspired approach is also used in other sectors, such as
materials that try to mimic organic matter [2] or processors
that are designed to mimic neurons [3]. Another bio-inspired
hardware solution is an event camera, or neuromorphic cam-
era, which mimics how the retina perceives images. The first
electronic representations of the retina were already developed
in the 70’s [4]. Years later, an image of a cat captured by
a silicon retina [5]. More recently, low latency and high-
resolution cameras have been developed [6]–[9].

An event camera simulates the retina in that instead of
capturing a frame, the change in intensity per pixel is provided.
A pixel monitors the light intensity and checks whether the
difference between the last stored intensity and the current
intensity exceeds a threshold. When the difference exceeds the
threshold, an event is created, including the timestamp t, the
pixel’s (x, y) position, and the polarity p. Events are created
asynchronously and independently. This allows the data to be
provided per pixel instead of per frame. This has two main
advantages: the first is that pixel independence allows for
efficient data transfer, as no irrelevant data is sent. This differs
from frame-based cameras, which publish the information of
all pixels at the same time, even when the information is
identical to the previous. Secondly, the asynchronous nature
of the camera allows for low latencies: readout rates can be
up to 1200 MHz [10]. A typical rate of data transfer is 300
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Figure 1: Illustration of the planefitting process. Over time, events at
different times and pixel locations approximate a plane. This plane
can then be used to describe a 2D motion in time. Illustration adopted
from [14].

to 3000 Hz per pixel, depending on the brightness [6]. Other
advantages of event-cameras include high dynamic ranges (due
to pixel independence) and low power use.

The events generated can subsequently be used to determine
the optic flow in the image. Optic flow is the movement
of a feature over an image plane over time. This feature
is often an edge or corner, as these are well-defined in an
image and provide a contrast. In [11] and [12], overviews of
event-based optical flow methods are presented. [12] compares
several algorithms with large differences in processing time.
Local plane fits are found among the faster performers, such
as the one presented in [13], whereas Lukas-Kanade-inspired
algorithms performed slower. This work utilizes a planefitting
approach.

Local plane fits are designed to fit a plane to a stream of
events, where the plane can be described as

ax+ by + ct+ d = 0 (1)

Events along an edge can be modeled as a 3D plane with time
as the third dimension, allowing one to model the movement
over time. In the simplest form, the optic flow can be described
as [

u
v

]
= −c

[
1/a
1/b

]
(2)

In Figure 1, the planefit is illustrated. Over time, different
events and locations are measured, indicating the movement of
an edge. A plane can be fitted to these events in x, y, t space.
Describing this plane by Equation 1 provides the parameters
needed to find the normal flow.

It is important to note that by tracking the movement of a
plane and not of a corner feature, only the movement normal
to the plane can be determined. Therefore, it is vital to realize
that all flow determined by the planefitting algorithm is normal
to the edge causing the flow [14].

In the past, Focus of Expansion (FoE) estimation has
shown to be an effective method of heading estimation in a
wide range of applications [15]–[18], given that the actual
rotational rates are known. Apart from [1], no applications
include implementation on a real-time application using a
neuromorphic camera.

The FoE can be described as the place in an image without
translational flow. When a camera moves straight towards the
center of its field of view, there is no flow in that exact location,
illustrated in Figure 2B. The FoE changes position according
to the observer’s motion: if the straight motion in Figure 2
would go to the left, the FoE would also move to the left of the
image. When the camera intrinsics are known, the FoE pixel
coordinates can be translated to the heading of the camera.

In 6-dimensional flight, the FoE is not trivial to estimate, as
illustrated in Figure 2A. The FoE appears to be on the right-
hand side of the image. However, when decomposing the flow
into translational and rotational flow in respectively Figure 2B
and C, one can observe that the FoE is actually in the center.
Decomposing the optic flow in its translational and rotational
components is described in [19]. Given sufficient information
on the rotational velocities, the flow can be ’derotated’, leaving
only the translational flow, which allows for more trivial
heading estimation.

Heading estimation in indoor environments is challenging
as a vehicle cannot rely on global navigation systems and
integrating measurements of the Inertial Measurement Unit
(IMU) is prone to drift. Heading estimation via a camera is not
subject to drift and does not require outside connectivity. The
use of event-cameras in particular also makes the estimation
robust to light conditions. Using the event stream for optic
flow estimation allows us to estimate the optic flow vectors
sparsely. This allows us to quickly estimate optic flow in a
cluttered environment, even when there are many events due
to the abundance of textures.

The FAITH algorithm has been developed by Dinaux,
Wessendorp, Dupeyroux, et al. [1] as part of the Comp4Drones
project. FAITH uses a RANSAC (Random sample consensus)
scheme to quickly find a possible FoE area based on limiting
the area by the negative half-planes (see subsection III-C)
defined by the normal flow vectors. The algorithm builds on
earlier work [20] while optimizing for efficiency. [1] cites an
accuracy of 10.06 ± 2.88 degrees with a computational time
of 0.05± 0.02s. However, the trajectories are mostly straight
flight, and accuracy is only measured on the x-axis of the
frame. This led to the wish to evaluate the FoE estimation’s
performance in different flight envelopes and further develop
its capabilities.

III. METHOD

This section elaborates on the end-to-end methodology of
FoE estimation. Three main calculation steps take place from
the event stream to the FoE estimation, each of which is
discussed.

A. Planefitting

Events measured by the camera are first processed using a
planefitting algorithm. The algorithm is based on [21], which
is an adaptation of the algorithm presented in [13].

The planefitting algorithm is based on the theory that
events along an edge can be considered a plane in space-time
representation. Estimating this plane and, subsequently, its
gradient allows for estimating the normal flow in this position.
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Figure 2: Illustration of optic flow including a rotational component. The FoE in illustration (A) seems to be on the right. However, after
decomposing the flow in its translational and rotational components, it becomes clear that the FoE is actually in the center and the camera
is under the influence of a yawing rotation.

Among the adaptions in [21], several improve performance on
less powerful devices, such as onboard computers. These adap-
tations concern parameter reduction to decrease complexity
and the implementation of a time buffer to maintain real-time
performance.

Before calculating the optic flow, the event stream pixel
coordinates need to be undistorted to consider camera in-
trinsics. The x and y pixel coordinates of the events are
transformed into a calibrated coordinate, which is found in
a lookup table. This allows for representing flow estimation in
s−1 instead of pixels · s−1, favourable for derotating the flow
as no transformation to pixels is necessary. The lookup table
is generated performing Matlab’s undistortPoints and
estimateCameraParameters routines on event data,
generated by flashing a checkerboard pattern. When using sim-
ulated events, a camera object can be generated in Matlab by
hand-creating a cameraIntrinsics object and performing
the undistortPoints subsequently.

B. Derotation

Before the FoE can be estimated, the flow needs to be
derotated. In the case of regular optic flow, this can be done
by subtracting the flow due to rotation in both components. In
the case of normal flow, the component of the flow along
the vector needs to be removed. Removing the optic flow
generated by rotation will, in this case, not change the direction
of the flow, as it remains normal to the edge. The flow may be
canceled if only rotational flow is present or the flow direction
may reverse.

As described in [19], optic flow can be expressed mathe-
matically in terms of ego-motion. The rotational flow in x and
y, (urot, vrot), can be written as

urot = −q + r · ynor + p · xnor · ynor − q · xnor · xnor (3)

and

vrot = p− r · xnor − q · xnor · ynor + p · ynor · ynor (4)

where p, q and r are respectively the rotational velocities
in rad/s around the camera x−, y−, z−axes and xnor and
ynor are the normalised pixel coordinates, taken from the same
undistortion table as the planefitting algorithm.

In order to derotate the flow, the argument (the angle
between positive x-axis and vector) of both the normal flow
vector v⃗n and the rotational flow vector v⃗rot are taken and
subtracted from each other, providing the angle α the vectors
make:

α = arg(v⃗n)− arg(v⃗rot) (5)

which allows us to calculate the magnitude of the rotational
flow along the normal flow axis using:

|v⃗rot,proj | = cosα · |v⃗rot| (6)

with |v⃗rot,proj | being the magnitude of the projection of the
flow due to rotation on the normal vector. This projection is
then used to calculate the derotated normal flow according to[

uderot

vderot

]
=

[
cos arg(v⃗)
sin arg(v⃗)

]
· (|v⃗| − |v⃗rot,proj |) (7)

which returns the magnitude decomposed in its u and v
components.

A more elaborate proof of this method is presented in
section A.

C. FoE estimation

The FoE estimation is based on the FAITH algorithm
proposed in [1]. The FAITH algorithm estimates the most
probable FoE as the center of an area bound by negative half-
planes formed by the normal flow vectors. The algorithm is
described as pseudocode in Algorithm 1 and in the next few
paragraphs, the algorithm will be explained.

Initially, the FoE area is delimited by the edges of the
frame. As described in section II, the flow vectors move away
from the FoE, placing the FoE in the negative half-plane of
each vector. A half-plane is the plane defined by the normal
to the vector, away from the vector direction. Whereas [20]
determines a probability map of all vectors and decides on
the most probable location, a RANSAC search is employed
in this work. While searching, a random vector gets selected,
for which it is checked whether it contributes to making the
FoE area smaller or not. A vector contributes when its normal
provides intersections with the previous bounds of the possible
FoE area and the vector lies within the area. In Figure 3, a
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Figure 3: Illustration of the FoE estimation, adopted from [1]. The
green vectors contribute to the current hull, whereas selecting the
red vector would not futher limit the potential area. If the red vector
would have been chosen first, no other vectors would have been able
to contribute and the search would stop. The score would equal 2 as
the FoE lies in the negative half plane of both the red vector as the
bottom vector.

schematic example is given. In this example, the red vector
is not able to contribute to a smaller area and the maximum
score attainable is 3.

If the vector contributes, redundant intersections and hull
lines are removed and a new vector is selected. This is repeated
until a new vector does not contribute to making the hull
smaller. Then, the FoE is calculated as the average x and y
coordinate of all the hull intersections. The estimation is then
scored according to the number of half-planes the estimated
FoE lies in. This process is repeated N times, where N can
be defined by the user, after which the highest-scoring FoE
estimation is selected.

Some adaptations are made to improve efficiency and
accuracy in this work. First of all, a moving average is
implemented. As shown in section V, the estimations them-
selves tend to fluctuate around the actual value as there are
(nvectors!) different combinations, with nvectors being the
number of flow vectors available. A moving average allows
for a smoother estimation curve that decreases the absolute
error if the imposed time delay is sufficiently short.

In estimations where only a tiny amount of optic flow
vectors is available, several solutions lead to the maximum
amount of inliers. In order to find the most accurate estimation,
the solution that used the most information as input is chosen,
i.e. the solution that used the most vectors and therefore tends
to be the smallest area.

Lastly, the publishing of FoE estimations is adapted only
to publish when the RANSAC search found a new FoE,
thus when it found at least one contributing vector. This has
some influence on the publishing rate, however considered
worthwhile, as empty estimations do not influence the moving
average.

Algorithm 1 The FAITH algorithm with the amount of input
vectors N and amount of RANSAC iterations A
Require: N ≥ 1

MaxScore ← 0
BestHull ← Frame
for n ≤ A do

Hull ← Frame
while searching do

select random vector ṽ
determine x̄ where x̄ ⊥ ṽ
if x̄ contributes to Hull then

Hull ← x̄
remove redundant vectors from Hull

else
stop searching

end if
end while
determine Score
if Score > MaxScore then

BestHull = Hull
end if
n++

end for
return FoE

IV. VERIFICATION & VALIDATION

An integral part of this research is the verification &
validation procedure. As written before, the FAITH algorithm
had yet to be adequately verified. Here, every aspect of the
algorithm is evaluated to ensure later presented results are
valid and do not depend on flukes or limited flight envelopes.

A. Simulator setup
A simulator is used to validate the algorithm. eSim [22] is

a simulator specifically developed for event cameras, which
has as advantage that a ground truth can be established and
experiments can be repeated, in contrast to actual flight, where
each test is different from a previous run.

The simulator camera has a diagonal field of view of 73.48◦

and a 240 by 180 pixels resolution. IMU measurements are
provided by eSim, containing information on accelerations and
rotations at a rate of 1000 Hz, corrupted with noise and bias
if required. Different trajectories are used to validate and test
performance in varying circumstances. In particular, optic flow
and its derotation are tested in simple trajectories such as
straight flight or sole rotations.

First, the optic flow and derotation are tested in subsec-
tion IV-B. Qualitatively, it is checked whether the optic flow
generated by the planefitting algorithm confirms to the expec-
tations. Derotation can be tested quantitatively by applying
pure rotational motion to the camera, which after derotation
should indicate zero translational flow. After that, the actual
FoE estimation will be evaluated in subsection IV-C.

B. Optic Flow & Derotation
The optic flow is evaluated qualitatively. It is straightforward

what type of flow to expect in certain trajectories, e.g., in a
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(a) Derotated flow field in straight flight forward. One can see that there is no
rotational flow and thus there is no derotation. Hence the unprocessed flow
and derotated flow are identical.
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(b) Derotated flow field in straight flight, including a yawing motion. One can
see that there is rotational flow along the horizontal axis and the flow gets
derotated along its own axis, leaving only the flow due to translation

Figure 4: Optic flow derotation in straight flight and straight flight
with added yaw rotation. Figure 4a shows the optic flow in straight
flight, Figure 4b shows the optic flow when a yawing motion is added.

straight trajectory, the flow is expected to point outwards, with
the flow increasing in magnitude away from the FoE. We can
fly at an angle to check whether the FoE moves and thus
whether the axis system is implemented correctly.

Figure 4a and Figure 4b show optic flow fields of straight
flight and a yawing motion, respectively. It is visible in the
first figure that the optic flow moves away from the center of
the image while still complying with the edges that are present
in the scene. In the second figure, a large yawing motion is
present. The optic flow shown in black is normal to the edge,
whereas the rotational component is not. The optic flow shows
a direction that complies with the rotation. Analogously, these
observations can be made for other rotations, yielding similar
results, and validating the axis system’s correct orientation.

When performing the derotation procedure described in

170 180 190 200 210 220 230 240 250
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70
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Figure 5: Section of derotated optic flow (not to scale) when the
camera is subject to pure pitching motion. One can observe that
the derotated flow, shown in blue, is not perfectly zero due to
imperfections in the Optic Flow.

section III, one can observe that for pure rotational move-
ments and no translations in space, the derotated flow should
equal zero. One can observe small residuals by inspecting
the flow as shown in Figure 5. These residuals are due to
the planefitting algorithm, which does not determine perfect
normal flow. Also, the included IMU noise leads to small
differences in the actual and the expected optic flow generated
by rotation. To evaluate the magnitude of this error ϵ, defined
by ϵ = v⃗rot,perfect − v⃗rot,estimated is reviewed. In these four
cases, pure rotational movements are exhibited by the camera.
As there is pure rotation, the total flow equals the rotational
flow and the derotated flow is equal to the error, which should
be zero. Table I shows that the absolute errors approach zero
and are relatively small in magnitude compared to the optic
flow vector magnitude. Important to note that the mean errors
for u and v components are in the order of 10−3 and are
centered around ϵ = 0, indicating that there is no significant
bias.

This inaccuracy can cause small amounts of translational
flow to wrongly switch signs, as the error might be larger than
the translational flow. In the case of Figure 2, one can observe
that such cases happen near the FoE itself. This implies that
the possible FoE area may be larger. However, most likely
still centered around the FoE as the flow further from the FoE
does not suffer this issue. It is therefore assumed that this
imprecision does not cause significant issues.

C. Focus of Expansion estimation

In order to verify the workings of the FAITH algorithm, we
fly simple trajectories and subsequently investigate the output.
In more detail, the following properties are verified:

1) Vectors are interpreted correctly.
2) The half-planes are used correctly; the FoE can only be

placed on the negative half-plane.
3) The conditions for a vector to qualify as improving the

search are implemented correctly.
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Manoeuvre µ|v⃗| σ|v⃗| µ|ϵ| σ|ϵ|
Pure pitch 0.016077 0.30225 0.00023575 0.049364
Pure yaw 0.2208 0.1407 0.0237 0.0571
Pure roll 0.0060527 0.12227 0.00046476 0.023414
3D rotation 0.10145 0.7465 0.00065173 0.11086

Table I: Results of the derotation in one-dimensional and three-
dimensional rotations using the living room environment portrayed in
Figure 6b. However, a small error remains after derotation, deemed
insignificant compared to the total flow magnitude. In flight, where
translational flow is present, this offset will not likely produce
significant results.

Parameter Value
Iterations in RANSAC search 100
Minimal amount of vectors required 10
Length FoE buffer 5
Maximum estimation frequency 1 100

Table II: Standard parameters used in FoE estimation

4) The RANSAC search and the scoring mechanism work
as expected.

Items 1, 2 and 3 are verified by inspecting the logs of the
algorithm and by visualising the vectors, hull and FoE per
estimation. To check whether the RANSAC search performs as
expected, the log output is studied using limiting the incoming
vectors to trivially perform the estimation by hand and check
whether the outcome is similar. Here it is found that, as
required, vectors are rejected when they do not contribute to a
smaller hull and the highest-scoring hull is kept. Equal-scoring
hulls are selected when more vectors are contributing to the
hull. When no FoE is found, no signal containing the FoE
is published from the ROS node, so no other programs or
algorithms will receive the information.

V. RESULTS

This section presents the results of the algorithm. The
first subsection elaborates upon the estimation accuracy us-
ing eSim. Next, the algorithm will be compared to another
algorithm to evaluate the difference in performance. After-
ward, estimation accuracy and runtime performance onboard
a drone will be discussed, for both FAITH and the alternative
algorithm.

Unless stated otherwise, the program runs with parameters
described in Table II. These parameters are chosen as they
give good results; however other combinations are also shown
to work. The number of iterations is the amount of iterations n
performed in the RANSAC search. Fewer iterations improve
computational performance, but accuracy might decrease as
there is a lower chance of finding an optimal solution. The
minimal amount of vectors required is relevant for situations
with little flow, at the risk of higher latencies. The FoE buffer
length denotes the length of the moving average buffer of
the FoE and the frequency is the desired frequency of the
estimation. The frequency sets a minimum period after which
a new estimation is started; the estimation will therefore run
at max on the set frequency.

(a) Random shapes-filled plane used
in planar renderer

(b) Living room environment used in
3D renderer

Figure 6: Illustrations of testing environments

A. Simulator results

Performance is tested using a series of 3D trajectories, in-
cluding non-corresponding rotations, both in a planar renderer,
portraying a series of figures shown in Figure 6a, as well as
in a 3D model of a living room, displayed in Figure 6b. The
trajectories in the planar renderer take 5 seconds in 1ms−1

motion towards the plane, starting at 6m. The living room
environment allows for a 10s flight in which 20m is flown.
Both trajectories are supplemented with lateral and vertical
motions and rotations around all axes. Reference trajectories
can be found in section B.

Table III demonstrates the results for five different trajecto-
ries in both renderers. In the planar renderer, the error is gen-
erally smaller and of similar value in both x and y direction. In
the 3D renderer, the y component performs significantly better,
with a lower average error and a lower standard deviation. This
is believed to be because there is a larger amount of horizontal
edges in the room environment, causing the vertical flow to be
dominant compared to the horizontal flow. This is confirmed
when looking at the distribution of arg(v⃗), shown in Figure 7.
A lack of horizontal flow makes it more difficult to estimate
the x-coordinate of the FoE, as the FoE area will be larger in
the horizontal direction. In the planar renderer, the objects are
evenly distributed over the plane, and the image is repeated at
its edges.

In Figure 8, the results of a representative run in the 3D
environment are presented over time. One can see that even
though there is a significant amount of noise, the FoE is
estimated well over time, especially in the vertical direction.
The error distribution is displayed in Figure 10. Here it is
visible that the error is close to normally distributed. Other
trajectories show similar results.

Lengthening the averaging period of the FoE estimation will
lead to more stable results at the cost of a slower response. In
Table IV, one can observe that the results are not unanimously
better when using 50 estimations in the averaging process.
In the 3D environment, the results generally improve with
higher averaging. Using the planar renderer, overall results are
worse. This difference can be attributed to the introduced delay
introducing a more significant error than the less stable results
did. In the 3D renderer, the stable predictions outweigh the
delay and overall provide a better estimation. To support this
hypothesis, a visualization of the results in the 3D environment
using 50 estimations as average is shown in Figure 11.
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Figure 7: Distribution of flow vector argument in a flight through
the living room environment in the 3D renderer. One can observe a
significant representation of (near-)vertical vectors. This is considered
the reason for the increased performance in the vertical axis of the
FoE estimation.

B. Vector intersections

To put the performance into perspective, this section com-
pares the algorithm to an algorithm based on the Vector In-
tersections method as described in [23]. First, the algorithm is
explained and afterward, the performance is briefly elaborated
upon.

The Vector Intersections method is designed to filter out
outliers in an optical flow estimation. A RANSAC scheme
finds the intersection between two vectors and subsequently
checks how many vectors share that intersection, correcting
for pixel discretization. In the end, the intersection with the
most inliers is kept and vectors that do not share this FoE are
classified as outliers.

It is important to note that the outlier classification is not
applicable to normal flow. Normal flow vectors do not share a
single FoE; subsequently, outlier classification does not apply
to this. The RANSAC scheme still helps find the FoE with
the most inliers, loosening the discretization constraint and
counting all vectors that diverge from the estimated FoE as
inliers.

Evaluating the accuracy, the results in Table III are found.
Comparing this to the FAITH algorithm, one can see that the
method is less accurate than FAITH, having both a higher error
and a more significant standard deviation of this error. Again,
the method is more accurate in the y-direction, performing
consistently better.

C. Onboard results

Computational performance is tested on an UPboard. This
small processing board consists of an Inter Atom processor
with four 1.9GHz cores paired with 4 GB of memory. The
UPboard is low-weight and has limited power use, making it
suitable for use on a vehicle. The camera has a FOV of 44.2◦

horizontally and 33.8◦ vertically. The flying environment is
displayed in Figure 12.

For the onboard experiments, the amount of iterations is
changed to n = 50 to allow for higher rates. Calculation
times of ±2 · 10−3 are found. Over nine runs, the average
calculation times and standard deviations are found in Ta-
ble VI, which are found by finding the time between the
start of the estimation procedure and the final estimation. The
estimations are published from the ROS node at ±140Hz.
A discrepancy is found between the calculation time and the
publishing rate, as 1/140 > 2 · 10−3, which is attributed
to the planefitting algorithm limiting the frequency at which
information is gathered.

Looking at Figure 13, a number of observations can be
made. First, the ground truth generated by Optitrack mea-
surements is especially in the beginning noisy. However, one
can observe that the general trend in the FoE is captured,
especially in x direction. In y direction, the accuracy is less.
This is expected to be due to that mostly vertical edges being
present, which do not contribute to accuracy in the y direction.
The accuracy improves in time due to a highly textured object
at the end of the trajectory, which creates clearer edges when
one gets near.

Table V demonstrates the accuracy of the algorithm in
the CyberZoo (using the standard settings). One can clearly
observe that FAITH performs worse than the simulator, as both
accuracy and precision are worse.

Large errors can be found in the first and last seconds of
flight, as seen in Figure 13, with the FoE being far outside
of the FOV as one flies near vertically. This flight part is left

Environment Trajectory µ|ϵx| µ|ϵx| σϵx σϵx µ|ϵy| µ|ϵy| σϵy σϵy

FAITH Vec.Inters. FAITH Vec.Inters. FAITH Vec.Inters. FAITH Vec.Inters.
Planar renderer 1 1.9684 3.0876 3.6331 4.9604 1.6402 2.5879 2.4043 3.5581

2 2.6653 3.4137 4.0175 4.5675 2.3276 3.0337 3.2119 4.0301
3 2.6189 3.7957 5.1956 6.3362 2.1169 2.5017 2.5908 3.1306
4 1.9106 3.314 2.4158 4.1809 1.9933 3.5641 2.6812 4.128
5 3.7565 4.9106 6.2908 7.8378 2.5026 4.0701 3.47 5.3207

3D renderer 1 5.6484 5.697 7.2668 7.6779 2.3731 2.3806 2.9407 3.0421
2 4.5979 7.7479 5.6583 8.8797 2.6898 4.0232 3.4849 4.9641
3 6.2671 8.8237 8.2254 11.4621 3.9173 3.7585 5.0626 5.0932
4 4.5301 10.2845 6.0509 12.8287 2.4734 3.9137 3.56 5.5131
5 4.5314 6.3417 5.9836 7.6693 3.2533 3.9988 4.3897 5.1596

Table III: Results of FoE estimation using FAITH and the adaptation of the Vector Intersections [23] method (see subsection V-B). The
better value for each statistic is written in bold. A low mean absolute error implies that the predictions center around the actual value and a
low standard deviation means that the spread is low.
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Figure 8: FoE estimation over time in the 3D renderer, in x and y positions. The y position performs better, exhibiting less noise and closely
tracking the ground-truth FoE. Also, compared to Figure 9, a larger amount of noise is visible.
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Figure 9: FoE estimation over time in the planar renderer, in x and y positions. After a bad initial estimate, assumed to be due to many
events upon initialization, the FoE in both directions is estimated well. At t = 2, the true FoE is on the edge of the camera FOV in y
direction, which results in a slight loss of accuracy.



9

-40 -20 0 20 40
0x

0

200

400

n

-10 -5 0 5 10 15
0y

0

200

400

n

Figure 10: Error distribution of the FoE estimation shown in Figure 8.
Both coordinates show approximately normally distributed errors.
The x coordinate has a wider spread, as expected from the results in
Table III

out of the average error as it gives a skewed representation of
in-flight results. In section VII, recommendations are made to
improve performance in such flight conditions.

VI. DISCUSSION

As seen in the previous section, FAITH is able to predict
the FoE with high accuracy. A significant difference is found
between the performance of the planar renderer and the 3D
renderer. This difference is attributed to the fact that the
planar renderer has a more even spread of events with various
orientations on which flow can be projected. In contrast, the

Environment Trajectory µ|ϵx| σϵx µ|ϵy| σϵy

Planar renderer 1 2.3601 4.8934 2.9784 3.7422
2 3.0022 3.9102 2.1725 3.1902
3 3.7593 6.483 3.4948 4.6839
4 2.9304 3.3568 2.6836 3.508
5 5.7024 8.7231 2.3831 3.2925

3D renderer 1 4.6888 5.8278 1.7815 2.2127
2 3.9185 4.5297 1.6923 2.359
3 4.7751 6.3981 3.0016 3.9568
4 4.5352 5.6992 2.0657 3.0745
5 3.5862 4.4874 3.3329 4.3428

Table IV: Results of the FAITH algorithm in the simulator using 50
measurements as averaging time

Trajectory µ|ϵx| σϵx µ|ϵy| σϵy

1 5.1326 6.4252 9.2959 11.734
2 3.9573 5.3139 8.1744 9.5683
3 6.0057 5.9839 15.1602 19.1843
4 4.6097 5.4128 12.1011 13.0314
5 9.5908 11.7604 9.7102 11.4615
6 6.0898 8.2949 10.0329 12.4999
7 5.3549 9.7411 7.9964 10.6406
8 6.6294 6.4786 7.602 9.4992
9 12.4487 20.4562 14.191 23.8649

Table V: Results in the CyberZoo with standard settings. One can
observe a large spread and a large absolute error.

Run µ(T ) · 10−3 σ2(T ) · 10−4

1 2.0992 0.74945
2 2.0506 0.78337
3 2.1443 0.78013
4 2.0687 0.73057
5 2.1547 0.81207
6 2.0320 0.63452
7 2.1201 0.71303
8 2.3095 1.2308
9 2.1495 1.0607

Table VI: Calculation times for the two algorithms.

living room render has more vertical and horizontal lines and
flow is less evenly spread over the pixel area.

When only 5 measurements of averaging is applied, the
residual in both renderers is in the order of ±5 degrees.
The amount of averaging should depend on the attainable
frequency and the delay that is allowed; at high estimation
frequencies, it is acceptable to use larger amounts of data
points as the time delay will not cause more significant errors.
Using too many data points at relatively low frequencies leads
to fast behavior being filtered and significant time delays.

The number of iterations in the RANSAC search N has
not been adapted in the research. There is currently no incen-
tive to increase the computational performance, considering
performance at this moment is dictated by the optic flow
estimation. Furthermore, considering the number of unique
iterations equals n!, with n being the number of vectors present
per estimation, the amount of iterations quickly becomes
insignificant, especially considering the requirement of at least
10 vectors per estimation.

In order to perform accurate estimations, it is essential
to ensure that flow is evenly spread across the image. A
limitation of this approach is that accuracy depends on the
amount of flow close to the FoE. If flow is only present on the
edges of the image plane, it is hard to estimate the FoE with
high accuracy due to the estimated FoE area being extensive.
Similarly, it was shown that the FoE estimation’s accuracy
depends on the flow’s direction.

A comparison to the adapted Vector Intersections method
indicates that our method is more suitable for FoE estimation
than methods originally devised for regular optical flow. The
use of half-planes recursively to accurately estimate the FoE
works better than the Vector Intersections method as the flow
does not share an FoE. This is however expected behavior and
does not degrade the Vector Intersections method as a whole.
However, it does affirm the need for new algorithms when
dealing with event-based optic flow.

The onboard performance highlights the shortcomings re-
garding the flight envelope. Only headings within the FOV
can be accurately estimated, which can be a limitation. Also,
estimation accuracy in the y-axis is significantly lower com-
pared to the x-axis. This is partly attributed to lower resolution
on the y-axis, which limits the accuracy. The periodic behavior
of the error is thought to be due to the pitching motion that
stems from the forward velocity control; this could however
not be verified.

Computational performance of ±140Hz suffices for online
obstacle avoidance. A more lightweight planefitting process
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Figure 11: FoE estimation over time, in x and y positions, with increased averaging. One can see a decrease in noise, especially in the
x-direction, compared to Figure 8. In the y-direction, one can observe a slight delay, especially near t = 9 seconds.

Figure 12: Image of the test setup in the CyberZoo. Notice that most
objects consist of mostly vertical edges and the background has no
texture.

may attain higher rates.

VII. RECOMMENDATIONS

This section will elaborate on the recommendations to
improve this work or to use this work in other applications.

One of the main points of attention should be the noise
removal from the estimations. One of the methods to achieve
this is to treat the incoming flow differently by, for example,
keeping a short temporal history in memory. Another method
would be to employ a different filtering method than the
simple moving average. A median filter, low-pass filter or
an exponential weighted average might provide a different
trade-off between latency and accuracy. Also, implementing

a time buffer in the estimations could be more robust toward
performance fluctuations.

Where in a controlled environment, a variety of textures can
be guaranteed, environments such as a hallway, forest or street
might prove not ideal. This behavior should be investigated
and, if necessary, improved. A suggestion for applications in
environments with low flow amounts might be to include the
flow magnitude in the estimation.

The main problems to overcome regarding onboard perfor-
mance are the unstable predictions and the small FOV. Getting
more stable estimations, especially vertically, and the ability
to cover a broader range of flight paths, increases performance
significantly. Another recommendation regarding the onboard
processing is to look into improvements of or alternatives to
the planefitting algorithm, as that currently limits performance.

Lastly, as shown in the work of [1], FoE estimation can
be used in obstacle avoidance. This research has focused on
improving and validating the estimation itself, leaving obstacle
avoidance out of scope. Object avoidance should be rewritten
and re-tested considering the improved computational perfor-
mance and derotation capabilities. Faster calculations increase
speed and precision, allowing unmanned aerial vehicles to
move through cluttered environments faster than previously
possible autonomously.

VIII. CONCLUSION

It is shown that FoE estimation using event-based optic
flow can be a reliable source of heading information. It is
shown that using the FAITH algorithm, one can determine the
FoE with high precision and accuracy. The FoE estimation is
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Figure 13: FoE estimation in the Cyberzoo using the UPSquared board on a drone.

however very dependent on the environment, which is required
to have textures at different angles spread throughout the frame
in order to provide accurate estimations. If textures are present
in only a part of the frame, this may cause the estimation to
include a bias. It is recommended to explore workarounds to
increase robustness.

In flight, the computational load of the algorithm is low,
attaining frequencies of 140Hz. In simulation, higher accuracy
is attained compared to a representable alternative due to its
simple functions and excellent compatibility with normal flow.
It is recommended to explore the limits of computational
performance with a faster optic flow estimation algorithm and
test different hardware, to further improve accuracy in flight.

APPENDIX A
PROOF OF NORMAL FLOW DEROTATION

Set a flow vector v⃗, rising from a 2D surface which
indicated as a line on a 2D plane. Introduce a local axis system,
of which the origin coincides with the vector’s origin and the
x-axis coincides with the 2D plane. This leads to the y-axis
always being normal to the surface. The optic flow vector −→v
can be split into translational and rotational components [19],
according to:

−→v =

[
vx
vy

]
=

[
vx,T
vy,T

]
+

[
vx,R
vy,R

]
(8)

where the subscripts T and R denote the translational and
rotational components of the flow and x and y denote the
components in the local axis system, respectively. In the case

of ’regular’ optic flow which is not normal to the surface, the
rotational component can be subtracted from the total, leaving[

vx,derot
vy,derot

]
=

[
vx
vy

]
−

[
vx,R
vy,R

]
=

[
vx,T
vy,T

]
(9)

In the case of normal flow, the component of the flow
perpendicular to the surface is estimated. Flow perpendicular
to the surface coincides with the y-axis, due to both of them
being orthogonal to the surface. Therefore, the normal part of
the optic flow can be described as

−→vn =

[
0

vn,y

]
=

[
0
1

]
· −→v (10)

where n denotes a normal flow vector. This can be expanded
to

−→vn =

[
0
1

]
·
([

vx,T
vy,T

]
+

[
vx,R
vy,R

])
(11)

implying that the normal flow too is the sum of it’s respective
translational and rotational components:

−→vn = −→v n,T +−→v n,R (12)

If the derotated normal flow vector is then written as
−→v n,derot =

−→v n,T = −→v n −−→v n,R (13)

this can be expressed as

−→v n,derot =
−→v n −

[
0
1

]
· −→v R (14)

If we let α be the angle between the original flow vector
and the local y-axis, this can be written as

−→v n,derot =
−→v n − cosα · −→v R (15)
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which equals the normal flow minus the component of
the rotational flow along this axis. In Figure 14, one can
observe how the different components interact, visually. From
this figure it becomes clear that the different components all
correspond to their respective components along the normal.

Regular optic flow vector
Translational component
Rotational component
Normal flow vector
Translational component normal flow
Rotational component normal flow

Figure 14: Visualization of both normal flow and regular optic flow,
separated in its components. One can observe that the rotational and
translational components correspond in the normal direction.

APPENDIX B
EXAMPLE TRAJECTORIES

This section provides examples (Figure 15, Figure 16,
Figure 17) of the trajectories used in the different renderers
and the CyberZoo. Other trajectories are the same in forward
distance, however excursions to the side differ. Please note that
for clarity all trajectories have been depicted with z as the
forward direction, however in reality different settings have
different axis systems.
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Figure 15: Example of a trajectory in the 2D planar renderer with
the shapes background. The plane with shapes repeats itself laterally.
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Figure 16: Example of a trajectory in the 3D renderer in the living
room environment. During the trajectory, several furniture items are
flown by.
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Figure 17: Example of a trajectory in the CyberZoo. In the CyberZoo,
some poles and other obstacles were placed to provide more texture.
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Executive summary
Recently, a lot of new developments have been taking place in the field of autonomous vehicles. Au
tonomous vehicles are more common these days, even being allowed on public roads. Also on small
drones, autonomy is within reach due to the decrease in size and power use of components. One of the
possible applications is to perform Search&Rescue missions, sending small drones to search for e.g.
survivors of a building fire. This scenario however poses a problem, as navigation algorithms generally
rely on clear, welllit areas, which is often not the case. In order to be able to navigate in such harsh
environments, a navigation solution using a radar and eventbased camera will be developed.

There aremany different ways to detect obstacles. Sensors can be divided into twomain categories:
visionbased and telematic methods. Vision based methods depend on the light that is incoming. A
regular, framebased camera is most common, however suffers from needing quite specific illumination
circumstances. An eventcamera is a novel type of camera with interesting properties such as high
frequency, high dynamic range and being very energy efficient whilst performing better in lowlight
circumstances. An RGBD camera is a framebased camera extended with a system that emits infrared
light, the reflection of which can be studied to perceive depth information.

Among telematic methods are LiDAR, radar and sonar. LiDAR works similar to RGBD, however
sending out laser beams instead of patterns, being more accurate but only able to register one point at
a time. Radar sends out radio waves, penetrating smoke or dust and not requiring any illumination. A
set of receivers is able to detect both bearing and distance to an obstruction. Sonar sends out audio
waves that are reflected by objects. Sonar however is unable to determine bearing and performance
rapidly degrades under influence of smoke and dust.

An eventcamera and a radar together make for an accurate and robust solution that works well in
both illuminated and pitch black scenario’s. The radar is able to penetrate smoke or dust while in clear
scenario’s, the eventcamera provides very accurate and fast information about the environment.

After information is received, some form of coupling is required in order to combine the information.
This can be done either fusionbased or optimisation based. Fusion based is less computationally
expensive and examples are the Kalman Filter or Particle Filter. Optimisation based generally has
higher accuracy, however at cost of computational power required to minimise a cost function.

Sensor fusion approaches are tightly bound to the context of their development. No general solu
tions exist and solutions are highly tailored to their purpose and hardware.

Before flight is enabled, an avoidance scheme needs to be implemented. Two main methods are
discussed: the Artificial Potential Field and Velocity Obstacles. The Artificial Potential Field generates
virtual potential fields around the goal and obstacles. Summing these fields and taking the gradient
finds a route around obstacles towards the objective. Velocity Obstacles defines nofly zones in terms
of velocity and bearing vectors by analysing egomotion and motion of obstacles. A velocity vector
should be chosen outside the set that Velocity Obstacles generates in order to avoid collision. The fact
that Velocity Obstacles works with velocities and also has the capability to handle dynamic obstacles,
makes it favourite for this research topic.

Next step in this research will be development of the system, implement all aforementioned ele
ments. The research question

”How can a radar system and and event camera system be fused adequately to run on a small
autonomous drone in order to achieve a robust object avoidance solution?”

will be answered. A drone able to autonomously avoid obstacles will be the goal of the thesis.
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1
Introduction

The field of unmanned vehicles is one that is rapidly evolving. Whereas fully autonomous vehicles
were perceived as a danger by the public not too long ago, nowadays a (supervised) selfdriving car is
generally accepted and can be found on the road in most countries. This shift comes hand in hand with
technologies that push the limit on autonomy every day. New and improved types of sensors, faster
and more efficient processors and bioinspired algorithms have, among other factors, a large impact
on the capabilities of these vehicles.

One of the main consequences of the development of autonomous technology is the fact that it al
lows humans to access places that where otherwise impossible, while mitigating human error or faulty
communications. A swarm of small robots is able to quickly explore large areas without requiring an
operator for each drone. Taking the human (partly) out of the loop may also help to prevent e.g. fatigue
or error which could lead to reduced accidents. Whereas autonomous drones are not yet perfect and
their applications currently are limited, they do show great potential.

Among the earlier mentioned new and improved sensors are radar chips and neuromorphic cameras.
Radar systems, commonly known by the grand public as large apparatus that span several meters,
has been around for decades but recently shrunk in size to chips only weighing a few grams. This
technology can now also be applied in smaller applications, sensing an indoor environment instead of
an aircraft and mounted on a MAV instead of a battleship.

Neuromorphic cameras are cameras that more closely mimic the biological eye, allowing for very
fast and accurate gathering of information. First developed in the ’80s, these sensors behave com
pletely different than regular cameras and outperform the latter on several fields.

This research is done in the context of Search&Rescue (S&R) missions. In Search&Rescue operations
often view is worsened as for example smoke hangs in buildings and/or electricity is down. This proves
for a difficult environment as human eyes are not able see through smoke or even in the dark. Also,
S&R operations tend to take place in dangerous environments where it may not always be desirable
to blindly send in more people. In those cases, where humans either perform badly or might risk their
lives, autonomous drones might be the answer.

Where a regular drone would already answer some of those problems with a solution, an au
tonomous drone has as advantage that it has the potential to significantly reduce manpower required.
Where an operator can only fly (or drive, for that matter) one or maybe a few drones at the time, co
ordinating a larger workforce of autonomous drones is relatively simple. Also, an autonomous drone
does not require to always be in contact with the operator and thus can more easily penetrate dense
areas.

A major difficulty of an autonomous system however, perhaps especially in the case of flying robots
due to the large impact a collision may have, is navigation. Autopilots have been quite thoroughly
researched and developed and are usually not the issue. Sensing and avoiding obstacles however is a
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2 1. Introduction

major challenge still, as the detection and tracking of objects depends on a lot of (noisy) measurements
and requires quite some computational power.

The innovations listed above and the potential of autonomous drones being able to reachwhere humans
can not, makes it interesting for S&R operations. However, the problems that navigation can bring yet
need to be solved in order to be able to rely on such systems for S&R operations.

This research will address the difficulties as described in the above. A senseandavoid system will be
designed that is robust regardless the illumination circumstances.

The study builds on research done previously by two peers, Nikhil Wessendorp and Raoul Dinaux.
They have investigated the application of a radar and a neuromorphic camera on a small UAV. Both
systems have pros and cons, but this research will show that ideally, the two systems would work in
parallel and complement each other. As will later be shown, this has the potential to provide a solution
to navigation problems in a great variety of circumstances, including low illumination or obscured flight.

The end goal of this literature study is to provide the reader with arguments on the relevance of
these sensors and their combined qualities. Different types of sensors will be described and traded off.
Next to that, the methods that one can use to couple sensors are outlined. Concluding will be a review
of avoidance strategies. This will provide a complete overview of a sense and avoid algorithm in harsh
environments and serve as base for the thesis that follows this literature study.

First, in chapter 2, different sensing methods will be elaborated upon and some recent work using those
sensors will be shortly presented. Also, the previous work will be further detailed. In the end of the
chapter, the choice of a neuromorphic camera and radar will be validated at hand of the findings of
the chapter. In chapter 3 we will discuss how these sensors can possible be fused by reviewing the
principle of sensor fusion. Lastly, in chapter 4, the avoidance strategy will be discussed at hand of two
main methods of avoiding objects. Lastly, in chapter 5, the literature study will be concluded and the
next steps of this research will shortly be discussed.



2
Object detection

This chapter will outline the current state of object detection and odometry and describe the pros and
cons of different approaches. First, different types of vision based methods will be discussed. Vision
based methods are very common in odometry and avoidance applications. There are many different
approaches, but all consist of three main choices one can make: the approach to extract key infor
mation, the camera type and the camera pose. In this section, three different camera types, a regular
framebased camera(section 2.1), a neuromorphic camera (section 2.2) and a RGBD camera (sec
tion 2.3), will be discussed. Other types may include e.g. fisheye lens cameras or thermal cameras.
Next to that, the approach to extracting key information will be discussed.

After that, methods that rely on telematics will be discussed in section 2.4, section 2.5 and sec
tion 2.6. These methods do not rely on images as we might know them. As will be discussed, LiDAR
has a lot in common with the RGBD cameras discussed in section 2.3 and operates in the grey area
between visionbased and telematic methods. After that, radar and sonar will be discussed, both of
which do not operate with (near) visible light but with radio and audio waves, respectfully.

Finally, section 2.7 will briefly summarise the most important findings and motivate the decision to
continue the research of peers.

2.1. Framebased camera
A framebased camera is a camera howmost of the population knows it. ’Framebased’ refers to the fact
that the camera provides the information per frame. Initially, one may think that there is no other way,
however, the next section will describe a different, not framebased approach. Framebased cameras
have been around for decades, with the first mechanical cameras being developed in the early 1900’s.
Since the 1980’s, digital video cameras are common and since the beginning of this century, almost
everyone walks around with one or several video camera options in their pockets. The fact that they
are used everyday is vital in the decrease in size, which makes it interesting for small drones as they
can only carry limited mass.

2.1.1. Extracting information
In order to extract key information from an array of images, several methods exist. Firstly, the image
itself can be compared to a previous one to estimate the optical flow. Also known as the direct method,
pixel intensity in the frames is used to determine the change between them. This results in a 2D
displacement vector per pixel that is used to estimate motion. This can be done either densely using
all available pixels, using for example the HornShunck algorithm [19], or sparsely, where only some
pixels on the image are used, using for example LucasKanade [28].

An illustration of optic flow estimation on a moving vehicle is seen in Figure 2.1.

Another approach is to perform feature detection. Here, instead of determining the flow at pixel level,
interesting points are determined to subsequently be tracked. These points, often edges or corners,
are easy to track as they contain wellnoticeable changes in brightness due to their 3Dgeometry. This
makes this approach more robust, as the direct approach described above is sensitive to inconsistent
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4 2. Object detection

Figure 2.1: Illustration of optic flow estimation on a moving vehicle. By tracking the edges over multiple frames, one can use the
displacement to estimate egomotion. In this example, taken from [37], the green arrows are used.

Figure 2.2: General pipeline of a feature detector. Adopted from [34]

brightness. This comes however at a computational cost that is proportional to the amount of features
being extracted. Therefore, only a small amount of features can be maintained on systems with low
computational capacities, discarding large amounts of information. The general pipeline of a feature
detector is illustrated in Figure 2.2.

Typical feature extractors are the Harris detector [18], SIFT [26], SURF [2], FAST [39] and ORB
[40]. These are all based on corner detection, as corners provide two dimensional intensity changes
compared to only one for edges. An example of an edge detector is the Canny edgy detector [4].

Lastly, hybrid approaches are possible. These combine the traits of both direct and feature based
approaches. In hybrid approaches, one can use the pros of feature detection based algorithms, but
with the added option to fall back on direct approaches when for example no features can be detected.

2.1.2. Camera setups
Different setups exist to solve odometryrelated problems using a framebased camera. Most notable
for this application is the decision whether to use monocular or stereo vision. Using a single camera,
the velocity can only be calculated on a relative scale. This problem can be partly overcome by use of
other sensors such as an IMU for egomotion estimation, however still monocular vision suffers from
issues in not knowing the scale of objects around and under/overestimate the distance to these objects.

Using two cameras in a stereo setup with a fixed and known distance between them, allows for
the difference in measurements by the two cameras to provide information about the actual absolute
environment. Stereo vision however suffers from regular need of recalibration due to vibrations in the
vehicle and requires having a fixed baseline distance. If this baseline distance is short, objects far away
will have almost identical optical flow estimates, whereas when the baseline distance is large, objects
close by cannot be detected. Depending on research context, stereo vision might therefore not always
be the answer.

The absolute scale is however not always a requirement. Depending on the end goal, one may
consider whether it is required to know if something is close (which can be derived from optic flow
on a monocular camera) or how far something exactly is. In a cluttered environment where precise
navigation is required, or when a secondary sensor provides absolute measurements, one may opt for
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absolute measurements from the camera.

2.1.3. Performance under bad illumination
No matter the exact approach taken, framebased camera related approaches all depend on the avail
ability of information in the images that is inherently connected with illumination as this information is
encoded in the incoming light. In dim or even dark conditions, incoming information is very low, rapidly
degrading the accuracy of the vision system. More noise is introduced and the amount of trackable
features degrades. In environments with obscured eyesight by i.e. fog or smoke particles, cameras
are not able to detect anything beyond the obscuration. Visible light is hindered by particles and not
penetrate.

Starr and Lattimer [48] evaluate the performance of several sensors in a fire smoke environment. By
counting the edges that they were able to detect, they quantified the performance when smoke entered.
They demonstrate that a framebased camera performs very badly in fire smoke environment, only
being able to detect edges when visibility is higher than 1𝑚 when tested in controlled environments.
When visibility drops to 4 meters, performance starts degrading heavily. Also in a second, large scale
experiment which represents reallife conditions where smoke is less uniform, targets at only 3 or 4.9
meters were completely invisible to the cameras.

2.1.4. Previous work
Arguably most work on avoidance or mapping systems using small drones is done using cameras as
they are lightweight and not computationally expensive.

Zingg et al. [59] propose a wall collision avoidance algorithm based on a depth map generated by
optical flow from a fisheye lens camera. Important to note is that computations are done externally,
however hardware has made significant progression in the last decade. The algorithm is implemented
to navigate corridors by estimating the distance based on the optical flow and the velocity as derived
from IMU measurements. Optic flow is a product of the distance and velocity of an object at a certain
angle and from there, the distance can be derived.

On the other side of the computational performance spectrum, heavy processors are used in an in
door navigation case[32]. A stereovision system is used to generate a local map of the surroundings in
order to aid in navigation. A local map in this case is a map that only contains that what is in sight at that
moment. This decreases computational cost without decreasing the performance. The experiments
have been conducted in a large warehouse, providing a relatively large but cluttered environment.

Cigla et al. have implemented stereovision in leader/follower tracking tasks [7]. Here they search
the received image for typical patterns that resemble drones. These are then tracked in order for the
drone to follow its leader. The developed algorithm is more robust than others with high accuracy, low
offsets and the ability to reacquire the target in case of loss. Especially the last item may be significant
for the current research as in cluttered environments, objects may move in front of each other which
would result in the loss of tracking targets.

Another approach is seen in [25] where a static algorithm is extended to create a senseandavoid
system with moving objects in 3D. From the stereo cameras, a depth map is constructed defining object
bounding boxes in 3D. Based on several frames the velocity of the object is estimated and the pose in
the next frames is predicted. This is then used to determine a safe route to travel. The implemented
model is able to navigate a confined lab space with two walking human beings without problems.

[33] demonstrates an efficient optical flow algorithm for velocity and depth estimation on an ex
tremely small drone. A novel optical flow algorithm is developed that is able to run on very low com
putational power. Using a simple finite state machine, autonomous navigation on a tiny drone is made
possible.

2.2. Neuromorphic cameras
A neuromorphic camera, also called an event camera, is a bioinspired camera system resembling
the retina, first designed by Caltech graduate student Misha Mahowald and Caltech professor Carver
Mead. A neuromorphic camera mimics the neural architecture from a real eye which utilises different
methods to observe and subsequently analyse the surroundings.

Table 2.1 outlines some of the main differences between framebased cameras and neuromorphic
cameras. The first two differences, dense/sparse and synchronous/asynchronous, are a result of third
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Figure 2.3: Illustration of the continuous property of an eventcamera, adopted from [12]. The event camera shows a continuous
change in brightness per pixel, red and blue denoting either increase or decrease. The standard camera only shows intermittently
the current position of the dot.

Framebased camera Neuromorphic camera
Dense information Sparse information

Synchronous Asynchronous
Responds to incoming light Responds to changes in incoming light
Near unlimited framerate Framerate usually limited to 30 − 60𝐻𝑧

Table 2.1: Table outlining the main differences between framebased and neuromorphic cameras

main difference, being that a signal is sent when the light intensity changes. This means that:
• A signal will only be sent when a change in intensity changes in that pixel (asynchronous)
• A signal will only be sent in the pixels that experience a change in intensity, others will be silent
(sparse)

In more detail, the workflow of a pixel is as follows: a pixel continuously monitors the perceived
brightness. When the brightness deviates by a predetermined amount from a set value, an event is
sent out. The brightness at time of the event is then saved and will define the threshold for future
events. The event contains the 𝑥 and 𝑦 location of the pixel, the event time 𝑡 and the polarity 𝑝 of the
brightness change (increase or decrease). These events are sent to the periphery of the sensor and
subsequently out of the camera, where they are read.

An illustration of the continuous property of a neuromorphic camera is seen in Figure 2.3. The
standard camera shows the current position of the rotating black dot at a fixed rate, whereas the event
camera shows the change of position continuously.

As stated above, a neuromorphic camera responds to changes in light intensity, not to light directly.
At constant lighting, changes in intensity are the result of egomotion or of moving objects.

Important to note is also the inherent framerate of a neuromorphic camera, which is very high. A
framebased camera usually has framerates between 30 − 60𝐻𝑧. In sense and avoid applications, a
high framerate increases accuracy and improves the sensitivity towards fastmoving objects.

2.2.1. Performance under bad illumination
To investigate the application in lowlight conditions, one may look at the dynamic range of the sensor.
The dynamic range is defined as the ratio between the largest and smallest observable values of light
in one frame. This can artificially be increase by using High Dynamic Range (HDR) imaging. An
illustration of HDR imaging is seen in Figure 2.4. This figure also illustrates the effect that tunnels or
other sudden light changes can have on cameras: when a part of the image suddenly becomes bright,
the camera can not display this part properly as its current lighting range is set to darker environments.

An eventbased camera usually has a very high dynamic range of over 120𝑑𝐵, being onpar with
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Figure 2.4: Illustration of HDR imaging. One can see that when the dynamic range is increased (pictures on the right), objects
or scenes that where too bright or dark before, become clearly visible. Image adopted from [11]
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human eyes, whereas highquality framebased cameras have a dynamic range of 60𝑑𝐵. This makes
the cameras excellent for both low light conditions as very bright conditions, simultaneously. Some
light will always be required though, as in completely dark situations, the camera will not pick up any
changes in lighting either.

Dust or smoke will prevent an eventcamera from working well, as light can not penetrate well
through those mediums and they actually scatter light in a way that will feed a lot of useless information
to the camera.

2.2.2. Extracting key information
Just as with the framebased camera, key information needs to be extracted from the incoming signals.
However, due to the key differences between a framebased camera and a neuromorphic camera,
classic algorithms do not work.

In [17] the main challenges of feature detection and tracking are listed as the fact that the bright
ness change is dependent on the motion direction. Next to that, sensor noise may disrupt accurate
estimations. In the same work, the issues that come up with optical flow estimation are described.
Here, the same issue occurs: change in intensity on itself does not tell anything about the optical flow.
In practice, this is solved by treating the eventdata similar to regular frames.

2.2.3. Previous work
Falanga et al. [12] use eventbased vision in both a mono and stereosetup to detect and avoid incom
ing projectiles. The motivation behind this work is that a large amount of drone crashes is due to e.g.
birds or objects thrown at the vehicle. Therefore, there exists a wish for a very lowlatency avoidance
scheme. The authors describe that a stateoftheart system using framebased cameras has too high
of a latency to accurately track fast moving objects. Therefore, an approach is taken where IMU data is
used for egomotion compensation. They do not optimise the egomotion estimation, which drastically
lowers computational cost. Detected events are then clustered and tracked. The avoidance part of
the research will be elaborately discussed in chapter 4. Their algorithm is able to achieve latencies of
only 3.5𝑚𝑠, close to 5 times faster as would be theoretically possible using a 60𝐻𝑧 camera. This is
largely due to the lack of optimisation in the egomotion estimation. This does however result in a loss
of accuracy. The authors argue however that the very fast response to a perceived object does make
up for the reduced accuracy.

A completely different approach compared to the previous mentioned is that of [42]. Here, Sanket
et al. use a series of neural networks to detect and avoid obstacles. The nets are divided in two: first,
a net for deblurring, followed by a net for segmentation of objects. This is then followed by a control
policy for avoidance. The nets are trained in a simulation and subsequently transferred to a realworld
scenario without alterations. Unfortunately, the authors do not compare performance to nonneural
approaches. They do however mention a 70% success ratio in lowlight experiments.

2.2.4. Prior work by peer
In Dinaux et al.(2021)[9], a novel method for obstacle detection and avoidance using a neuromorphic
camera is developed. The novel method introduced is called FAITH: an algorithm determining the
course of the MAV by finding the focus of expansion (FOE). The FOE is a property of the optic flow,
being a singular point from which the optic flow expands in a static scene where the observer only
translates and rotation is zero.

Figure 2.5 illustrates the FOE estimation of the FAITH method. Edges produce optic flow vectors,
normal to the edge. The FOE is bound by three halfplanes that lead to the smallest area. In this case,
vector (4) does not reduce the area and is therefore rejected.

Normally, the FOE estimation is challenging and computationally expensive. The newly proposed
method however determines the FOE based on optic flow halfplanes. When compared to other
schemes, it outperforms on both computational time and accuracy. This is done by improving the work
of [8] by applying a RANSACbased scheme in order to decrease the amount of calculations required.
Dinaux et al. describes no loss of accuracy while drastically decreasing computational power. Next
to that, the computational power in the improved algorithm is at user’s choice by defining thresholds.
When required, accuracy and power can that way be traded off against one another.
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Figure 2.5: Illustration of the FAITH method from Dinaux et al. [9]. Coloured arrows represent the estimated optic flow vectors
whereas the grey arrows represent the actual optic flow.

2.3. RGBD cameras
RGBD cameras are extended camera systems that next to the regular image as in section 2.1, obtain
a depth map, a frame that contains information on the distance to the sensor for every pixel. A depth
map can be generated using several methods, all including some form of light emission, often infrared,
the reflection of which is then analysed.

One of those methods is to perceive depth by emitting structured light. Structured light is light that is
emitted in a known pattern, often in infrared frequencies so that the RGB image remains undisturbed.
Upon reflection, the patterns are disturbed and subsequently reflected towards the sensor, that can
then determine the distance to the object.

Another way is to use a so called timeofflight camera. This camera sends out the light and mea
sures the time it takes to get back to the lens. Later LiDAR will be discussed which works according to
the same principle. However, this type of system is able to perceive a whole frame at once.

RGBD cameras are a recent development andmade popular and readily available by the Kinect™sensor.
Since the Kinect™sensor became available, a lot of research has been done using that sensor.

2.3.1. Performance under bad illumination
As RGBD cameras send out their own illumination in the form of infrared light, they are able to perform
well in dark environment. In [55] it is shown that using a Kinect™sensor, it is possible to construct a
3D image of a dark room using the IR sensor. They do however state that the self provided illumina
tion is not enough to allow distant objects to be detected accurately. One can intuitively realise that
light scattered over a larger area will reflect less intense. The RGB camera is not functional in those
circumstances, only depth can be perceived.

In [48], the Kinect™sensor is tested. Both the regular and the depth sensor are tested separately.
The depth sensor however was not able to perceive anything beyond the smoke and was found not
useful. Especially as the smoke tested originated from a flame, the depth image was disturbed.

Interestingly, when operated outdoors, sunlight interferes with the RGBD sensor as it provides
a large amount of infrared light. This makes it one of the few sensors that perform better with bad
illumination compared to very bright outdoor illumination. The RGB sensor however will still perform
well in outdoor conditions, whereas that sensor will perform badly with a lack of illumination.



10 2. Object detection

2.3.2. Previous work
Francis et al. [15] uses an RGBD camera for flow estimation and obstacle avoidance under dim con
ditions. The RGBD provides the depth information that is then used to reconstruct a 3D flow field.
Results show that the robot is able to detect a tripod effectively in order to avoid it. Unfortunately, no
direct comparison with a stateoftheart framebased camera is made.

Hua et al. [20] has developed an avoidance algorithm on a road robot, specifically for smaller ob
stacles. According to the authors, smaller obstacles tend to be overlooked by existing solutions that
focus on larger objects. A two stage network is used to segment objects and mark them as obstacles
on the path. Next to that, the ground plane is segmented from large obstacles and e.g. buildings next
to the road. A method called Artificial Potential Field navigation, which will be described later, is then
used for path planning.

2.4. LiDAR
As mentioned before, LiDAR is based on the same principles as a RGBD camera, with a few key
differences.

A LiDAR system emits laser beams that are reflected after which the time of flight can be calculated.
Only one point can be determined at the same time, in contrast to the full images of the RGBD sensors.
This requires the LiDAR to rotate in a plane or in 3D in order to perceive a full image. Modern sensors
can routinely scan larger areas or multiple LiDAR sensors can be employed to get a more broad view
of the environment.

Next to the position and bearing, the Doppler shift can be used to estimate the velocity of an obstacle.
In order to accurately estimate this on a moving object, one needs to know its own velocity. However,
the same principle can also be used to estimate selfmotion by measuring the Doppler shift towards
e.g. a wall.

2.4.1. Performance under bad illumination
Under bad illumination, LiDAR works very similar to RGBD cameras. The sensor sends out its own
pulse of light and measures the returning signal. A main difference however is that due to the beam
nature, LiDAR is less sensitive to sunlight. Still though, attenuation of signals may be problematic in
large environments. Also, dust particles may scatter the light or reflect a significant amount, disturbing
measurements.

2.4.2. Previous work
Wang et al. [52] uses 2D LiDAR to navigate a complex environment. The authors focused on a low
computational impact in order to be able to detect obstacles online. The algorithm approximates ev
erything as a circular shape, decreasing complexity while being able to avoid the ’circle’. The objects
are tracked using a Kalman filter and GNN fitting. In [51], the same method is used to avoid obstacles
in piloted flight. Here, the pilot commands a path and when the LiDAR detects an obstacle in the way,
deviates from this path.

In [31] research is done on autonomous navigation in cave corridors. These present narrow, dark
and highly irregular wall patterns, with the occasional rock sticking out. A 2D LiDAR system is imple
mented in a Nonlinear Model Predictive Controller to detect and navigate around obstacles. The paper
focuses on the controller, however do show that at no point the LiDAR failed and demonstrate the ability
to safely navigate a subterranean environment.

Sakthivel [41] uses a LiDAR sensor only to estimate the distance to an object. When the object is
at 1.5 meters, they use the pinhole projection principle to estimate the size of the object from a camera
image. Subsequently, the object can be avoided. This gets rid of a lot of the complications of tracking
objects in space in order to avoid in 3D, but rather perform some more extensive measurements only
once and react accordingly.

2.5. Radar
Even though radar has been around for decades, only recently the shift towards small vehicles has
taken place, due to the rapid decline in size.

Generally, two types of radar exist: pulse radar and continuous wave (CW) radar. Pulse radar oper
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Figure 2.6: Illustration of radar scan information compared to the same scene perceived by a monocular camera. The colours
correspond for different objects. Adopted from [56].

ates by sending out pulses and using the received information to extract features. CW radar operates
according to the same principle, however, with as main difference the fact that it sends out radar waves
all the time, as the name suggests. This allows CW radar to achieve much higher resolutions.

What makes radar especially interesting is that it is not dependent on the illumination and atmo
spheric conditions around it. Radar waves penetrate dust, fog or smoke and also work with low textured
areas as it is not dependent on reflected brightness.

Radar works by sending out an electromagnetic signal and studying its reflection. Using the Doppler
effect, the range of the reflection can be determined. Combining this with the measured angle of
incidence using multiple receivers, one can define a 2D range map, determining the range of objects
at a certain angle. This then allows for feature extraction and subsequent processing which could
include tracking or in this case, determining whether this object needs to be avoided or not. Figure 2.6
demonstrates an example of radar scan information. The image also contains the same scene as
perceived by a monocular camera.

2.5.1. Performance under bad illumination
As stated above, radar does not require any illumination, as it does not contain a camera. It provides
its own ’illumination’ in the form of radar waves, penetrating any particles in the way. This makes it a
great alternative to cameras in situations with bad or even no lighting.

[27] studies the application of radar in smoke environments. A selfdeveloped algorithm milliMap
is used for mapping in a smoke environment. Initially, without smoke, the LiDAR that accompanies the
radar outperforms the radar. However, when smoke is added, the radar performance remains constant
whereas the LiDAR quickly degrades. This is illustrated in Figure 2.7. One of the challenges described
by the author is ’ghost points’ generated by radar. These are points of reflection, measured by the
radar, that are the result of multipath and imperfect beams. These points then have the potential to
define walls that are not there in reality. Another challenge is the sparsity of radar measurements. The
LiDAR that is used has over 100 times more scan points. Sparsity might pose a problem in cluttered
environments as smaller object may fall between scanning points.

2.5.2. Previous work
Only recently radar systems have evolved to the small scale required for UAV navigation. Object
avoidance is scarce as most research is carried out regarding odometry in GPSdenied environments.
Some of the most notable work is done by Scannapieco et al., exploring the limits of UAV navigation.
In [44] and [45], the authors investigate path tracking using radar and compare it to the GPS track that
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Figure 2.7: Comparison of LiDAR and radar data in smoke environments. Adopted from [27]

was considered truth. In [46], outlier rejection is added which leads to loosened constraints and results
in more accuracy.

In [23] a radar avoidance system for large UAV’s is developed using radar. Using a statemachine
with three different modes, ’search’, ’awareness’ and ’avoidance’, the radar system is able to move the
UAV out the way of objects even when the approach speed is 1000 km/h. This is some of the earliest
work on radar application on UAV’s and is very concise. The statemachine is an interesting trait
which might save computational power and thus battery power over long flights, however in cluttered
environment this might not be ideal as the ’search’ mode will be largely redundant.

Yu et al. has researched radar as extension of visionbased object detection in [56]. A monocular
camera uses ORBfeature detection to detect points of interest. Then an EKF algorithm is implemented
to match the features to the radar output. In this case, the radar processing is not elaborated on further
than stating the output is the centre point of an object. Matching allows the true 3D coordinates of an
object to be known instead of the relative position in the FOV of the camera as described in section 2.1.
This allows very efficient 3D path planning as the exact position is stable over time due to filtering.
While not primarily relying on radar, this does show a good application of the nonrelative detection that
radar provides.

2.5.3. Previous work by peer
Wessendorp et al. (2021) [53] has created an algorithm that uses radar measurements to detect objects
in the way. A 24 GHz radar is used that is able to detect objects at 75 cm apart. Objects are detected,
filtered and track for as long as they remain in the FOV.

As the data is quite noisy, data association and tracking are employed. This is done in two steps, the
first being a a Global Nearest Neighbourhood optimisation in order to associate the data to an object.
Then, a Kalman filter is used for tracking and subsequently validating object detections.

2.6. Sonar
Sonar is similar to radar and LiDAR, however instead of invisible radio waves, ultrasonic audio waves
are used. The phenomenon is widely known as the method of navigation of e.g. bats and dolphins.
The sonic waves bounce back on, in this case, walls, objects or beings. Then again, the time of flight
and Doppler shift can be used in order to detect the position and perhaps velocity of obstacles.

Sonar works by emitting ultrasound waves that are reflected on surfaces. Much like radar and
LiDAR, both the time of flight and the Doppler shift can bemeasured in order to acquiremore information
on an object. Similar as to LiDAR, sonar is unidirectional. Sonar is unable to receive the bearing of an
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object by only 1 measurement.

2.6.1. Performance under bad illumination
Sonar does not suffer under illumination conditions as light is not required for operation. However,
under conditions with highly varying atmospheric conditions, such as a fire, accuracy is lost. This is
due to the speed of sound being very sensitive to the density and temperature of the gasses it passes
through. Next to that, dust and smoke particles may scatter and attenuate sound waves at a faster
rate.

2.6.2. Previous work
As far as this research could find, no research has been done on using the sonar on drones to avoid
objects. Instead, sonar is often used for altimeter and landing purposes. A ground plane gives the
sonar a sturdy, flat object that reflects sound waves nicely at a relatively close range.

2.7. Summary
This chapter has discussed a wide variety of sensors and showcased some research that has been
done using these. Every sensor has been concisely presented and its performance evaluated.

As one can read, there is significantly more work done on framebased vision compared to event
based vision. The novel RGBD sensor has a relative large amount of research done, compared to
its short lifetime. Research does however quite evidently show that in lowlight conditions, frame
based cameras are the definite underperformer. Table 2.2 summarises the performance of the different
camera types.

Considering the system needs mounting on a drone, mass and size are relevant. Current RGBD
systems are quite heavy and bulky, exceeding the mass budget currently envisioned.

More research is required to develop the possibilities with neuromorphic and RGBD cameras to
the standards that nowadays exist in framebased vision. For example the ultralight solution described
in [33] is something that has not been matched using such cameras. Complete autonomous navigation
in general is still open to a lot of research.

When objects are incoming instead of when the robot is navigating itself, it has been shown in
[12] and in [42] that eventbased cameras are very well suited to avoid incoming objects. The main
challenge in using event cameras is to be able to computationally efficient separate egomotion and
external motion cue in order to effectively navigate dynamic environment. Application of neuromorphic
cameras in e.g. [25] would certainly spike interest.

Sonar is not up to standards for our research. Sonar does not have the ability to detect bearing
of objects without an extensive setup that a drone does not support. This makes navigating indoor
environments impossible and therefore the sonar will not be considered, as this is crucial.

LiDAR and radar have similar features in their method of detection. However, radar in this analysis
quite clearly comes out the better option:

• Using two receivers, both bearing and distance can be determined in a wide range

• Radar is able to penetrate dust and smoke

• Radar is not influenced by external light sources and is able to fly in pitchblack conditions

This validates the decision to continue the work as presented by Wessendorp et al.. A radar sensor
is an excellent addition to a system that is meant for flight in difficult environments. The sensor will be
paired with a neuromorphic camera, implemented with the FAITH as in the work of Dinaux et al., in
order to provide allround, robust object detection.
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Framebased cam
era

RGBD camera Neuromorphic cam
era

Performance in low
light conditions

Little to no input Only depth sensor is
functional

Very good

Performance in
conditions with ob
scured vision by e.g.
dust, fog or smoke

Very bad, visibility
in smoke degrades
rapidly [48]

Very bad Very bad

Computational
power required

Requires novel
methods of pro
cessing but is
computationally
more efficient

Framerate Maximum several
100𝐻𝑧

Similar to framerate Infinite/up to hun
dreds of 𝑀𝐻𝑧 when
processed

Mass, cost, etc. Mass produced at
low cost. Can be
very small

Novel, heavy and
bulky

Novelty and rel
atively expensive
compared to frame
based cameras.
Can be very small

Table 2.2: Overview of different camera options
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Sensor fusion

With the preferred method of object detection installed, next we will address what to do with the infor
mation that is found.

The information needs to be processed in order to output potential objects that might be hazardous.
The raw data contains noise and considering the sensors in question, of completely different format.
In section 3.1 different methods of processing will be discussed.

After the data is made useful and in a workable format, in section 3.2 the method of coupling the
data will be studied. Here, the data will be processed into a format that actually outputs (the lack of)
obstacles in our way.

3.1. Processing data
This section will elaborate upon the data that is provided by the sensors and how this can be used
subsequently.

3.1.1. Neuromorphic camera data
As described in chapter 2, the neuromorphic camera is asynchronous and delivers information sparsely.
As CPU’s work at a fixed rate, this already poses the first problem.

The asynchronous delivery of information can be solved by transforming the stream into a regular
computer vision representation, in a frame at a fixed rate. This however comes at the cost of one of
the key features of a neuromorphic camera, being that there are no frames to look at and that data in
between frames might be lost. However, the fact that is measures a change in brightness instead of a
direct pixel intensity, remains.

Alternatively, one might decide to implement a neuromorphic processor. This allows for asyn
chronous processing using Spiking Neural Networks (SNN), to which neuromorphic processors are
better suited. However, neuromorphic processors are very novel and the implementation of an event
camera and a neuromorphic processor on a drone is a research topic in itself.

As mentioned earlier, the data gathered by the camera has information on the change in brightness,
if present. Upon registering such an event, they send out data packs containing the time, 1 bit polarity
(increase or decrease) and the x and y location. The camera does thus not elaborate on the amount
of change it registers. The event can be described as

𝑒𝑘 ⩦ (x𝑘 , 𝑝𝑘 , 𝑡𝑘)

with 𝑒𝑘 the event 𝑘 at time 𝑡 at location x = (𝑥, 𝑦).
Depending on the system used, a range of different methods of representation in the backend is

possible. A broad division in two main groups is possible:

• Methods that operate on an eventbyevent basis: these methods allow the system to change
upon arrival of a single event. These are often used in SNN’s as those are wellable to use single
events.

15
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Figure 3.1: Overview of eventbased visualisations, adopted from [17].

• Methods that operate on groups of events: these methods introduce some latency as the system
gains information over a period of time. After grouping events, latency is the same.

Events over time can be visualised in a range of ways. Visualisations often are implemented in order
to have a frame with the information gathered from the camera in a similar format as a framebased
camera in order to make it easier to process in a more regular setting. Some of the methods applicable
are listed below, adopted from [17]:

• Events in space time: this method shows all events per timestamp. A 3D plot can be generated
in order to visualised the events over time.

• 2D histogram: this method is able to count events or accumulate polarity in order to generate
an image. By doing this, one may observe e.g. depth or relative velocity as intensity can be
observed.

• Time surface: Here, all events get plotted on a grayscale map, which fades over time. This way
some sort of path can be observed.

• Interpolated voxel grid: This is a different type of histogram that better preserves the temporal
information by keeping track of movements per predefined time ’bin’.

• Motion compensated eventimage: This method uses both events as an hypothesis on the
motion to attempt to align edges of motion in order to produce a sharp edge. This representation
looks familiar when observed and is often used for feature tracking purposes.

• Reconstructed images: This uses the brightness information to reconstruct the image in grayscale.

The methods described below are visualised in order in Figure 3.1. The 2D methods are compatible
with classical computer vision methods as those are designed for 2D inputs as well. For the 3Dbased
methods such as the 2Dhistogram, novel approaches are required.

After the image information is collected and processed in a way of our liking, some sort of calcu
lations can be done. In this research, of interest are optical flow estimations, odometry and/or feature
tracking. First, the next section will discuss how radar data is processed. After that, sensor fusion will
be studied to investigate how the data of both sensors can be used to achieve the final processing
steps.

3.1.2. Radar data
Radar measures the bearing and distance to reflective surface. In his work, Scannapieco et al. [44]
describes radar aided navigation on a UAV. A transmitting antenna sends out radar waves that are
subsequently received by receiving antennas. When a signal is reflected on a surface, the distance
of that object determines the reflected frequency. Then, upon receiving the reflection, the range to an
object can be determined.

Using multiple radar receivers, the difference in range can be used to also find the bearing 𝜃 using
the following formula from Wessendorp et al. [53]:

𝜃(𝑓𝑅 , 𝑁) = 𝑎𝑟𝑐𝑠𝑖𝑛 (
Δ𝜔
𝜋 ) (3.1)

with Δ𝜔 denoting the phase difference.
A reader may observe that the workings of radar are described much more concise than those of

the eventcamera. However, it is important to note that radar depends on a fairly simple principle that
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Figure 3.2: Illustration of 2D Fast Fourier Transform of radar data. Horizontal axis in grid denotes single frame, vertical axis
denotes frames over time.

works and where raw measurements and final calculations do not differ a lot. An eventcamera is not
only fairly new, but also requires much more processing in order to provide meaningful information.
The raw measurements on itself are worth less than those of the radar.

Next to range and bearing, a radar system is able to determine the velocity of objects. By deter
mining the FFT over multiple frames, the frequency shift over multiple timestamps can be determined
which tells the observer about the velocity of an object. By FFT’ing over more than two frames, both
range and bearing velocity can be determined [53]. This is illustrated in Figure 3.2.

3.2. Sensor fusion
The previous section has dealt with some of the preprocessing steps required to make sense of the
incoming data. To recap: the following inputs are gathered:

• Eventdata gathered by the camera. This contains location, timestamp and polarity of events.

• Radar data in the form of distance, bearing and optionally velocity

• IMU data on accelerations and rotations

The incoming data needs to be filtered and fused in order to remove noise and combine measure
ments to increase accuracy. In this section, some sensor fusion methods will be elaborated upon. Not
only will we look at the specific combination of sensors that we use, but also other combinations will be
reviewed if their coupling is interesting.

3.2.1. The principles of sensor fusion
In their literature review [1], Alatise and Hancke review the state of the art of sensor fusion on au
tonomous robots. They discuss various sensors in applications such as odometry and object recog
nition, followed by sensor fusion algorithms and a classification thereof. Three fundamental ways of
combining sensor data are listed:

1. Competitive: Here different sensors measure the same quantity in order to allow fusion or to
switch between sensors if required. This method works well with heterogenous data sources.

2. Complementary: Here sensors do not depend on each other but rather complement each other
with measurements in order to resolve incompleteness of sensor data. An example is comple
menting a monocular camera with an IMU to derotate the images or using multiple cameras to
achieve a broader field of view.
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Figure 3.3: The Kalman Cycle. In the top, predicted state is displayed. This is then combined with measurements to achieve a
next best prediction in the bottom.1

3. Cooperative: This method uses the information of two sensors to obtain data that would not be
available from a single sensor. An example is using stereoscopic vision to achieve a 3D image
of the environment. These type of sensor fusion methods are arguably the most difficult as high
accuracy is required in all participating sensors.

Sensor fusion approaches are then categorised in two main categories: State Estimation Methods
and Decision Fusion Methods. Here we will focus on State Estimation methods.

Two major methods are the Kalman Filter and the Particle Filter. The Kalman filter is perhaps
the most popular sensor fusion method in existence. In short it calculates the current state using the
previous state and current measurements. Being very easy to implement, the equations for the basic
Kalman Filter are as follows:

̂𝑥𝑘 = 𝐹𝑘 ̂𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 (3.2)

𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘𝑇 + 𝑄𝑘 (3.3)

Where ̂𝑥𝑘 is the estimated state of system 𝑥𝑘. 𝑃𝑘 is the predicted covariance matrix, 𝐹 is the matrix
that denotes system dynamics, 𝐵 is the control matrix and 𝑄 is the noise covariance.

The estimates are updated using another stage of equations, given as:

̂𝑥𝑘′ = ̂𝑥𝑘 + 𝐾′(𝑧𝑘 − 𝐻𝑘 ̂𝑥𝑘) (3.4)

and
𝑃′𝑘 = 𝑃𝑘 − 𝑘′𝐻𝑘𝑃𝑘 (3.5)

with 𝑧𝑘 the measurements, 𝐻 the transformation matrix, 𝑅 the covariance matrix of the measurement
noise and 𝑘 the time interval. 𝐾 is the Kalman gain which denotes the amount of update needed. An
illustration of the Kalman filter cycle is given in Figure 3.3.

It is important to note that the Kalman filter is linear, where a lot of reallife problems are not. For
that purpose, the Extended Kalman Filter is designed. This is a Kalman filter that includes linearisation
for estimations. Another general approach called the Unscented Kalman Filter exists which is able to
better predict highly nonlinear systems by sampling close to the mean.

Another approach to filtering is the Particle Filter. This is a filtering approach that is able to approx
imate PDFs of any form. In this method, a probability density function is build using random samples
called particles. These are propagated over time and rejected when required in order to gain confi
dence in the PDF. PF’s are used in for example tracking applications, allowing an accurate and stable
method of tracking targets.
1Source: https://www.codeproject.com/Articles/865935/ObjectTrackingKalmanFilterwithEase
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Figure 3.4: Illustration of the 5 steps of a particle filter. Adopted from [35]

Figure 3.4 illustrates the five steps of the particle filter. First, the initial weights of the particles get
defined. From there, the particles get resampled according to their weights. A new PDF is determined
according to the updated samples and finally, the weights are determined again.

But why do we implement sensor fusion? Alatise and Hancke cite the following benefits of sensor
fusion techniques:

• Reduction in uncertainty: Multisensor data reduces the uncertainty by combining measure
ments and gaining confidence in the combination of those.

• Increase in accuracy and reliability: In the case of partial failure, the system is able to provide
information as it does not rely on one sensor only.

• Extended Spatial and temporal coverage: In for example the combination of an accelerometer
and a camera, the camera is able to gather acceleration information from a large area whereas
the accelerometer only gather information from the route it takes.

• Improved resolution: Multiple independent measurements increase the resolution of the value

• Reduce system complexity: Sensor fusion can standardise output, therefore making later com
putation steps less complex and improving ease of operation.

A different type of classification is shortly described in [34]. In his work, Mohamed et al. specifically
discusses VisualInertial Odometry approaches. Combining an IMU and a camera can be done in
different ways and fall in two categories:

• Tightly coupled approaches

• Loosely coupled approaches

and

• Fusionbased methods

• Optimisationbased methods

The different coupling approaches denote the moment in time that the information is coupled, being
either delayed or nondelayed. Loosely coupled methods combine the information in a later stage,
allowing for lower computational complexity. Tightly coupled approaches instead fuse the information
in early stages, allowing for generally better performance at the cost of higher computational complexity.
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Figure 3.5: Illustration of the system as presented in Yu et al.[56].

Loosely coupled approaches are filter based and use for example the Kalman filter for coupling.
Tightly coupled approaches can be either fusionbased or optimisation based.

Fusionbased approaches generally consist of a prediction step and an update step, as the Kalman
filter explained earlier. Optimisationbased approaches estimate the pose by optimising the information
extracted from sensors. They generally outperform filterbased approaches. However, the optimisation
requires minimising an error function iteratively, requiring more computational resources.

3.2.2. Applications of sensor fusion
In [10], a particle filter is implemented to cope with GPSdenied areas on an airfield. In this case, the
aircraft is provided with a map of the environment. The particle filter is used to determine the probability
density function of the Markov localisation process.

In [56], a framebased camera is coupled with a millimetre wave radar. Here, the coupling exists of
the radar data with ORB features points that are already extracted from the images. The radar already
grouped the measurements and outputs the centre points and corresponding velocities of obstacles.
The system is illustrated in Figure 3.5.

The radar and camera data come in two different formats, respectively in rangebearing and in pixel
coordinate systems. First, the radar measurements are projected on the pixel plane. Then, an EKF
is implemented to combine the outline information of the camera with the range, bearing and velocity
data of the radar. This method allows for obtaining the true 3D locations of obstacles instead of the
relative positions only.

In [54], a set of relatively cheap sensors is fused in order to achieve object avoidance. An IMU,
camera and LiDAR are fused using an errorstate Kalman Filter (ESKF). The ESKF has as advantages
that the error variables usually are small and nearzero, decreasing the chance of e.g. gimbal lock
compared to regular Kalman filters. Next to that, numerical stability is guaranteed. In an ESKF the true
state is considered a sum of the nominal state and the error state.

Papachristos et al. [36] use an EKF for fusion of a thermal camera, a stereo framecamera and
an IMU for navigation through obscurants. The EKF is used in conjunction with the open source Ro
bust Visual Inertial Odometry (ROVIO) [3] that couples the tracking of image patches with the EKF to
constrain the Kalman filter computational requirements.

Scannapieco et al. [47] uses the radar as a support system for a monocular camera in a odometry
estimation algorithm. The solution he proposes, relies mainly on the camera. However, the radar is
used for estimating the true scale. Whereas normally visual odometry would suffer from the lack of a
true scale, the radar is able to provide real life measurements without the drift that e.g. an IMU would
carry.

A similar approach is taken in [41]. Where again not completely fusing the sensors, in this case
LiDAR is used to provide true scale for a camera. Here use is made of the pinhole projection principle
that cameras have. In order to get a sense of the true height, the distance to an object has to be
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known, something a camera normally can not provide. However, the LiDAR sensor that the MAV is
also equipped with is able to provide exactly that information.

In [29], the authors argue that in literature there is an abundance of sensor fusion methods, however
all tightly bound to a specific purpose. In their paper, they propose a generic framework for multi
sensor fusion, allowing a theoretically unlimited amount of sensors to be included, regardless of scale,
absolute/relative measurements or delay. Their proposed architecture is called MultiSensor Fusion
EKF (MSFEKF). Next to fusing, their proposal also includes calibration, relinearization of constraints
and efficient tracking of covariance terms. A C++ based algorithm allows everyone to implement this
system to their sensor fusion approach.

3.2.3. Sensor fusion of an eventcamera
Eventcameras have been fused with several sensors, including RGBcameras and IMU’s, but also
with audio sensors and physiological sensors. A lot of these works are done in other field than the
autonomous drone field. However, these novel methods may be used to draw inspiration from, as the
interesting properties of a neuromorphic camera make it an interesting option for several solutions that
may not spring to mind very quickly.

One of the more out of context works considering the topic at hand is [49]. This work fuses an event
camera with a electromyography (EMG) sensor, used for ’listening’ to human body signals, in order to
get a very low latency solution that can be implemented in e.g. prosthetic limbs. The low latency in
that case provides a safety factor. The EMG signals are transformed to spikes that, together with the
spikes from the camera, are fed into a neural network that serves as fusion layer.

In [43], event cameras are used as the first step in a Voice Activity Detection system. Then, a neural
network is sparsely activated through a neural network in order to achieve a lowcomputational cost
system as the cameras allow for sparse activation and work as a gate in the sense that they can very
accurately and efficiently determine when lips are moving, as opposed to either listening the whole time
or using a higher power consuming regular camera.

Another way to fuse an event camera is to fuse it in the form of stereo vision. This is done for
example in [57]. Here, two neuromorphic cameras are used in conjunction and fused through an op
timisation function in order to get depth estimation. By introducing and subsequently minimising an
energy function that denotes consistency as function of depth, a 3D reconstruction of a scene can be
made.

A work that describes fusion of an event camera with other sensors on a drone is [50], where an
eventcamera, framebased camera and IMU are fused in order to achieve a robust odometry solution.
[50] uses the three sensors in order to find an optimal estimate on the current speed and orientation.
The sensors each deliver their own estimates on the current state of the UAV. Then an optimiser is
used to optimise the state estimation.

IMU’s are generally used in the fusion with eventcameras to derotate the flow. For example in [12],
the IMU is used to estimate the angular velocity of the UAV in order to compensate for that in the motion
estimation done by the event camera. Without this compensation, an eventcamera can not determine
whether a motion is due to egomotion or external factors.

Here a clear research gap is identified: sensor fusion with a eventbased camera, not having odom
etry as the end goal. This research gap fits well within the research thus far.

3.3. Summary
This section has discussed the principle of sensor fusion and discussed some examples of sensor
fusion in similar research. A wide variety of methods is available and one can tailor the exact solution
to the needs of the solution.

The solution that fits best is dependent on the way information is put out and on computational
power available. High accuracy is possible through optimisations, however, this comes at a huge
expense regarding computational power. Filtering has less accurate results, however does allow for
faster computations.

A research gap was identified regarding the fusion of the eventcamera and radar. Eventcameras
are often used by itself fused only with an IMU, and sometimes with a regular camera. This research
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Figure 3.6: Proposed highlevel system to be developed during thesis phase

has found no evidence of fusion with different types of sensor such as radar or LiDAR.
The main challenge of the remainder of this research will therefore be to develop an efficient fusion

algorithm in order to best cope with the data that is gathered by the sensors and that fits the to be
chosen avoidance strategy well.

An illustration of the to be designed fusion layer is projected in Figure 3.6. Here, a rough pipeline
of the system is portrayed and indicated what information will be fed into the fusion layer and what the
ideal output will look like.



4
Avoidance

In the previous chapter, object detection was discussed. Already it was found that a lot of research
unifies the detection and avoidance. This makes sense, as the way something is detected  early or
late, accurate or inaccurate  will largely influence how one will avoid something. A slow avoidance
system will not work on a system that only detects objects when they are very close.

Where possible and relevant, the avoidance strategies mentioned in chapter 2 will be discussed.
Also, new strategies will be introduced. Concluding this chapter will be a discussion on the approach
this research will take.

This research will focus on shortterm avoidance and replanning. This implies that no extensive
algorithms that reconsider the complete navigation will be discussed. The algorithms should have as
end goal to avoid an object and continue on the path that was initially planned.

More specifically, this study will discuss avoidance of objects that pop up suddenly. These can be
either static or dynamic. Avoidance will be local and no global navigation will be discussed.

4.1. Overview of algorithms
This section will discuss two families of algorithms that are highly applicable in our situation. The drone
in question is required to navigate in a straight line where possible and avoid obstacles if required. In
order to do that, we only want to consider a very short term planning, reacting on the environment.

4.1.1. Artificial Potential Field methods
A common algorithm for object avoidance is the Artificial Potential Field (APF). First described in 1985
by Khatib [22], it has been well tested in a variety of environments. Recently, as quadrotors have
become popular and their computational capabilities increased, they’ve also acquired the ability to use
APF for navigation purposes.

APFs, as the name might suggest, create a potential field that sums attractive and repulsive forces
in the field. Repulsive forces are exerted by objects whereas attractive forces are generated by the
robot itself and the goal. It is therefore possible to choose a path with the highest potential in order to
move towards the goal. Moving past objectives will automatically allow the robot to move towards the
objective again as the potential is higher in a direct path towards it.

The potential field can be described as follows: let 𝑈𝐴 and 𝑈𝑅 be respectively the attractive and
repulsive potential field, then the Artificial Potential Field 𝑈𝐴𝑃𝐹 can be described as

𝑈𝐴𝑃𝐹 = 𝑈𝐴 + 𝑈𝑅

which allows us to determine the gradient 𝐹 by taking

𝐹 = −𝑔𝑟𝑎𝑑(𝑈𝐴) − 𝑔𝑟𝑎𝑑(𝑈𝑅)

which tells us the most ideal way to travel.
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Figure 4.1: Illustration of a potential field adopted from [13]. Object 𝑂1 repels the robot, making the potential gradient go around
the object.
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In Figure 4.1, a schematic 2D representation [13] is presented. One can see that when the attractive
and the repulsive fields are added, the gradient goes around the obstacle. It is important to note that
the arrows in this image are not the potential field, but the gradient.

Recently, [30] has implemented a modified algorithm on a quadrotor that overcomes two flaws in the
original algorithm. The socalled Local Minima and GNRON problems are solved by implementation of
a virtual force. This allows the APF to overcome the extremities caused by local minima and GNRON.

Another proposal on a novel method based on the APF algorithm is done in [5]. Here, Chen et al.
add the control of the UAV in finding the optimal route. This is done by adding the control force and
slightly editing the APF principle into an optimisation problem where the most optimal route is found.

In [58] an adaption of the APF algorithm is proposed that includes avoidance of random and dynamic
obstacles. It includes physical constraints of the MAV to ensure the avoidance solution lies within the
physical limitations that the craft has.

4.1.2. Velocity Obstacles
Another method that has survived the test of time is Velocity Obstacles by Fiorini and Shiller [14]. Also
implemented on Wessendorp et al. [53], Velocity Obstacles is a is fairly simple but effective algorithm
that finds collision free paths when an obstacle, static or dynamic, is detected.

The principle of Velocity Obstacles is to use vector calculations to avoid collisions. An illustration
of the method is seen in Figure 4.2. A collision between object 𝐴 and 𝐵 is predicted when the velocity
vector

V𝐴𝐵 = V𝐴 − V𝐵
lies within the cone originating in object 𝐴 and limited by the circle defined by 𝑟𝐴 + 𝑟𝐵 that has its origin
in 𝐵.

In order to avoid an object, the velocity vector of either 𝐴 or 𝐵 can be changed. Assuming 𝐴 is the
controlled object, the velocity or bearing can be changed. In case of the illustration in Figure 4.2, the
following options exist:

• Increase velocity, A goes in front of B

• Decrease velocity, B goes in front of A

• Adjust bearing to the left, A goes in front of B

• Adjust bearing to the right, B goes in front of A

Depending on the control strategy employed, one can consider not all options possible. In the case
of Figure 4.2 one might observe that an incredible acceleration is required from 𝐴 to achieve the velocity
required. This brings us to the solution space that is bound by the control strategy of the drone and
further limited by the cone(s) formed by the drone and any obstacles near.

Fiorini and Shiller also propose both an on and offline search for path planning. Here only the online
approach will be discussed. The authors propose an incremental trajectory generation that chooses
the best next step based on the perceived obstacles and avoidance strategy set, which can be to follow
a line as straight as possible, a maximum velocity strategy or a very safe strategy.

Interesting about this approach that it focuses on the velocity vectors of objects and not on the
position. It plans velocity changes for avoidance instead of static waypoints. This makes it excellent
for avoiding dynamic obstacles and also well suited to incorporate in autonomous robots.

What makes it suitable for our research is that it can be implemented very well with our global path
planning. The global path planning gives a direction of motion required and the Velocity Obstacles can
determine whether that is possible or give a next best alternative.

Fuad et al. uses an adaptation called Hybrid Velocity Obstacles to avoid objects and also takes into
account nonlinear trajectories. This is done by merging different versions of Velocity Obstacles, being
for static and dynamic obstacles and accumulating the sets of ’free’ velocities that are put out. From
this accumulated set, the velocity that takes into account all objects is chosen.

In [6], Velocity Obstacles is implemented on a microUAV with very limited sensing capabilities. The
only measurement that the UAVmakes is the distance to an object. Then, using some assumptions and
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Figure 4.2: Velocity Obstacles, adopted from Wessendorp et al.(2021)[53]. In this image, the relative cone defined by the radii
and velocity vectors well illustrates the principle. Vector 𝑉𝐴,𝐵 needs to be outside of collision cone 𝐶𝐶𝐴,𝐵

iterative computing, ranges for the radius, bearing and velocity of an obstacle are defined. Then a large
range of Velocity Obstacles is determined. It can be guaranteed that the new heading chosen is not a
part of the ’true’ Velocity Obstaclesgenerated headings as the actual collision courses are within the
union of all probable courses. In Figure 4.3 one can see all the possible collisions that are generated.
The authors stress that this method is no 100% foolproof as there are some exceptional cases where
an object can not be avoided in time. However, considering the limitations in sensor availability, the
method shows great innovative thinking and produces interesting results.

4.1.3. Optimisationbased avoidance methods
Next to aforementioned methods, a large group of algorithms exist that iteratively search for the most
optimal path. These methods consider a longer path than Velocity Obstacles and allow more options
than the Artificial Potential Field, to find an optimum. This section will shortly elaborate on a few varia
tions.

Genetic Algorithm
A Genetic Algorithm is, in this context, a search algorithm based on an evolutional model. Different
solutions, evolve over time and are selected or ’bred’ according to the fitness score, which can be a
function of e.g. distance to the objective and time to get there. The path can be planned ahead as far
one wants, allowing the user to have some freedom in the computational cost.

In [24], a genetic algorithm is used for navigation in a dynamic environment. In every step, the
algorithm checks whether a potentially new object is detected on the path. If so, the path is reconsidered
and the robot follows the new path.

MultiStep LookAhead Policy (MSLAP)
The MSLAP algorithm works similar to a genetic algorithm in a sense that it considers multiple paths
and chooses the optimal one. However, MSLAP is not based on evolution and chooses its policy from
a set of discretised actions. By considering a predefined amount of timesteps, the algorithm can decide
which option in the long term will be most suitable.
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Figure 4.3: Projection of all possible collisions as calculated through the probabilistic Velocity Obstacles approach in [6]. The
true collision course(s) in blue are part of the set of probable collision courses in green. A course outside of this set needs to be
chosen in order to avoid collision.
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Velocity Obstacles Artificial Potential Field
Plans velocity Plans points in space

Binary fly or nofly zones Relative indication safety
Does not define a grid Defines a grid

Table 4.1: Concise overview of some key differences in Velocity Obstacles and Artificial Potential Field

MixedInteger Linear Programming (MILP)
The last method discussed is MILP. MILP is a wellknown tool for finding solutions to linear problems.
Many different solvers exist, where some provide optimal solutions and others also give nonoptimal
solutions. Generally, MILP approaches minimise a cost function representing the energy or distance
required.

An example of MILP in drone applications is found in [21]. Here, communication constraints and
terrain limitations are used in a MILP model. It is found that even under a large number of constraints,
an optimal solution is found. Unfortunately, no online and dynamic constraints are used.

Many other approaches exist (e.g. A*, Reinforcement Learning, FloydWarshall), however, as the
next section will elaborate upon, these often require lots of computational resources and will therefore
not be elaborately discussed. For a complete overview, Radmanesh et al. (2018)[38] is recommended
literature.

4.2. Discussion
In [38], a larger overview of obstacle avoiding and pathplanning algorithms is given. Here, also the
computational requirements for several scenario’s are discussed. Potential Field methods, just as
MSLAP, Genetic Algorithms and MILP are among the fastest methods and moreover, do not exponen
tially grow when a larger space is considered. Errors, defined as a percentage of the extra distance
travelled compared to the optimal solution, are nonzero for APF, MSLAP and Genetic Algorithms. MILP
is able to find the optimal solution in relatively short time, however MILP has as requirement that the
problem is welldefined, which is not always the case. Furthermore, APF is cited as poor in dynamics
and, as stated before, prone to get stuck in local minima.

Considering that Velocity Obstacles plans the velocity and the bearing instead of path points, and
that Velocity Obstacles does not require a complete grid definition that may be computationally ineffi
cient, the research will continue using Velocity Obstacles as implementation. It is believed that this fits
the research framework very well.

The next steps to be taken are to develop a (variation of) Velocity Obstacles solution and implement
it in the drone. Then, the output from the eventcamera and the radar needs to be altered to allow
Velocity Obstacles to change course when required.
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Conclusion & Next steps

This report has outlined the state of the art in object avoidance and indicated what three main parts
of the algorithm consist of: determining the presence of obstacles, fusing the information and acting
upon a possible collision. The end goal of this research is to develop an algorithm that can be installed
on a small drone, that allows the drone to efficiently and autonomously detect and avoid obstacles,
under harsh environments. This is done in the context of Search & Rescue operations, where a drone
autonomously searches an area that may be dark and/or filled with e.g. smoke or dust.

Previous research on this subject at this faculty has focused on a radar solution and an event
camera solution. This research will be continued in the form of fusion of these systems.

An eventcamera and a radar together give an allround vision system that performs relatively well
in all circumstances. Both high and low lighting circumstances as well as obscured sight due to smoke
or dust fall within the operational conditions of those sensors. They scan complete planes instead of
points and are able to detect both bearing and distance.

Methods for object detection are already developed for both systems. For the eventcamera, the
novel FAITH method has been developed. This novel method uses negative halfplanes in order to
estimate the focusofexpansion that is used to estimate Time To Contact and thus detect a collision.
The radarbased method detects, clusters and tracks obstacles, in order to avoid them.

For fusion, a wide range of options exist. Fusion algorithms usually are tailored to the exact purpose
of the research, standardised methods are usually suboptimal or neglecting certain aspects. During
the design process, one can decide upon a fusion strategy that best fits the exact hardware and software
already included. This can be done by e.g. Kalman filtering or a variation thereof, implementation of a
neural network or adding an optimisation scheme.

Velocity Obstacles is an avoidance scheme that is very well suited for this research. Velocity Ob
stacles gives a velocity or bearing command in order to avoid obstacles, which is relatively easy to
integrate and is very well suited to the tracking and avoiding of dynamic obstacles.

Integration of these parts will provide a complete solution for object avoidance that is able to work
in near all circumstances.

This brings us to the definition of the main research question that will be answered during the thesis:

How can a radar system and and eventcamera system be fused adequately to run on a small
autonomous drone in order to achieve a robust object avoidance solution?

This can be divided into the following subquestions:
1. How can a fusion system effectively be implemented to fuse the radar implementation and the

FAITH algorithm?
(a) What fusion algorithm provides an optimal balance in accuracy, computational time and

robustness?
(b) How can the different outputs be effectively fused while requiring as little preprocessing as

possible in order to achieve low latencies?

29



30 5. Conclusion & Next steps

2. How can Velocity Obstacles be implemented in the system effectively, minimizing the extra pro
cessing required?
(a) How can noise be efficiently handled and rejected if required?
(b) How can the output of Velocity Obstacles be translated to a navigation command?

The end product of the thesis will be a drone flying autonomously, using aforementioned system. It
is required to avoid obstacles robustly without human intervention.
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