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Level and eigenfunction statistics in billiards with surface disorder

Ya. M. Blanter,1,2 A. D. Mirlin, 3,4,* and B. A. Muzykantskii5
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Statistical properties of billiards with diffusive boundary scattering are investigated by means of the super-
symmetric s model in a formulation appropriate for chaotic ballistic systems. We study level statistics,
parametric level statistics, and properties of electron wave functions. In the universal regime, our results
reproduce conclusions of the random matrix theory, while beyond this regime we obtain a variety of system-
specific results determined by the classical dynamics in the billiard. Most notably, we find that level correla-
tions do not vanish at arbitrary separation between energy levels, or if measured at arbitrarily large difference
of magnetic fields. Saturation of the level number variance indicates strong rigidity of the spectrum. To study
spatial correlations of wave-function amplitudes, we reanalyze and refine derivation of the ballistic version of
the s model. This allows us to obtain a proper matching of universal short-scale correlations with system-
specific ones.
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I. INTRODUCTION

Chaotic cavities, commonly understood as quantum s
tems whose classical analogs exhibit chaotic dynamics, h
become a common object of research in condensed m
physics. Experimentally, features of chaotic motion appe
among others, in quantum dots,1 microwave cavities,2 and
small metallic clusters.3 For definiteness, we talk below
about electrons in quantum dots~billiards!.

On the theoretical side, properties of chaotic cavities
subdivided into universal and nonuniversal. Byuniversalwe
mean physical quantities that only depend on the global s
metry of the system~such as the time reversibility! and pos-
sibly trivially scale with the size of the system, but are n
influenced by any cavity-specific details of dynamics of t
electron motion. At the same time, these quantities differ
systems with chaotic and integrable classical analogs,
are therefore conceptually important when one discusses
natures of chaotic behavior in quantum systems. Example
universal effects include low-frequency level statistics,
well as leading-order conductance and shot noise. Th
properties are by now well understood and described by v
ous types of random matrix theory~Gaussian ensembles o
Hamiltonians for closed or almost closed systems or circu
ensembles of scattering matrices for open systems!.

On the other hand,nonuniversalquantities, such as leve
correlation function for high-energy separation or eigenfu
tion correlations at large distances, are determined
sample-specific details of electron motion. These nonuniv
sal quantities thus discriminate between the behavior of
dividual billiards.

A standard tool for treating fluctuations of the density
states~DOS! in chaotic systems is the real space path integ
approach. Within this method, the DOS correlation funct
is given by Gutzwiller’s trace formula,4,5 which has a form
of a sum over periodic orbits of a specific billiard. To eval
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ate the formula explicitly in the nonuniversal regime, one h
to resort to numerical treatment.

In this paper we will use an alternative approach that
attracted considerable interest recently: the ballistics model.
It generalizes the supersymmetrics model, which proved to
be very successful for disordered metals6,7, to ballistic disor-
dered systems.8,9 In the framework of this approach, all non
universal quantities are expressed through eigenvalues
eigenfunctions of the Liouville operator, which introduc
nonuniversality. It has also been conjectured that the sams
model in the limit of vanishing disorder describes statisti
properties of the spectra of individual classically chaotic s
tems. This conjecture was further developed in Refs. 10
where thes model was obtained by means of energy av
aging, and the Liouville operator was replaced by
regularization—the Perron-Frobenius operator. The prog
along this direction is complicated by the fact that the eig
values of the Perron-Frobenius operator for many syste
are unknown, while its eigenfunctions can be extremely s
gular.

We thus conclude that it is highly desirable to have
example of a chaotic system that is analytically solvable.
would expect that universal properties of such an exam
will conform with the predictions of the random matri
theory~RMT!, whereas explicit expressions for nonunivers
quantities would improve our understanding of properties
chaotic cavities.

Currently, we are unaware of such an example with c
otic dynamics. However, one can instead treat systems
surface disorder, which leads to diffusive scattering at
boundary of a billiard. This model mimics the behavior of
system in the hard chaos regime: as a result of surface
order any two arbitrary close trajectories spread apart a
the first collision with the surface. This must be contras
with a slightly distorted integrable billiard with the typica
spatial scale of this distortion being of the same order as
©2001 The American Physical Society15-1
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size of the system.13–16Those systems, termed by the autho
rough billiards, exhibit slow diffusion over angular momen
tum. Systems with surface disorder are also different fr
integrable systems withbulk disorder in the ballistic
regime.17–19

Studies of level and eigenfunction statistics20,21 have
shown that, indeed, universal properties of a billiard w
diffusive surface scattering agree with the RMT predictio
At the same time, nonuniversal features have been fo
which reflect the classical ballistic dynamics in the billiar
Subsequently, analytical results for persistent currents22 and
transport properties23 of chaotic cavities have been obtaine
in the same model. Numerically, billiards with surface dis
der have been studied in connection with the level24,25 and
eigenfunction24,26 statistics and magnetoconductance.27 To
this end, Refs. 24–27 consider a lattice model with
boundary sites having random energies. A treatment of R
28, which models surface disorder by cutting off the boun
ary sites by confining potential and eventually proceeds w
numerical evaluation of persistent currents, seems to desc
a similar physical situation.

In this article, we perform a systematic analytical study
a circular billiard with boundary disorder, based on t
s-model approach. The paper is organized as follows. S
tion II presents thes model for a circular billiard with dif-
fusive boundary scattering. We subsequently use this
proach to derive the results for level statistics~Sec. III!,
parametric level statistics describing variation of individu
energy levels with applied magnetic field~Sec. IV!, and
eigenfunction correlations~Sec. V!. In Sec. VI we generalize
the problem, imposing the mixed boundary condition,
stead of the purely diffusive reflection. This boundary co
dition enables us to model a broader class of chaotic syste
where the lowest Lyapunov exponent is parametrically d
ferent form the inverse time of flight. The obtained resu
are summarized in Sec. VII, where we also present a dis
sion of some open problems. A brief account of the result
Secs. III and V has been previously given in Ref. 21;
level statistics~Sec. III! were independently studied in Re
20.

II. CIRCULAR BILLIARD WITH DIFFUSIVE BOUNDARY
SCATTERING: s-MODEL APPROACH

A. General considerations

We consider a two-dimensional~2D! circular billiard of a
radiusR, which is clean~ballistic! inside, and contains som
disorder~to be specified below! at the boundary. Our startin
point is thes model for ballistic disordered systems.8,9 The
effective action for this model has the form

F@g~r,n!#52
pn

2 E dr StrF ivL^g~r!&2
1

2t~r!
^g~r!&2

22vF^LT21n•“T&G . ~1!

Here the semiclassical Green’s functiong(r,n) integrated
over energies is a 434 supermatrix that depends on the c
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ordinater and direction of the momentumn. To simplify the
presentation we consider the case when the time-reve
symmetry is broken in the quantum problem but is preser
in the classical one, which can be achieved e.g., by apply
a weak magnetic field.~See the discussion in Sec. IV C!. The
angular brackets denote averaging overn, ^O(n)&
5*dn O(n) with the normalization*dn51, and the super-
trace is defined as the trace of a boson-boson block minus
trace of a fermion-fermion block. The matrixg is constrained
by the conditiong(r,n)251, and generally can be repre
sented asg5TLT21, with the matrix L5diag(1,1,21,
21) discriminating between retarded-advanced compon
of the Green’s function. As usual,vF andn5m/(2p) denote
the Fermi velocity and the density of states at the Fe
surface, respectively;t(r) is the~position-dependent! elastic
scattering time, which originates from the disorder. We u
the units with\51 in the rest of the paper.

When all the disorder is at the boundary the scatter
time t(r) must be chosen in a way that it is infinite ever
where except for a thin layer around the boundary. In
consideration below this term only modifies the bounda
condition.

The action~1! differs from that in thes model for diffu-
sive systems6 in two respects: First, the Green’s functiong is
defined in phase space; second, Eq.~1! is linear in gradients,
whereas its diffusive counterpart is of second order in spa
derivatives. Despite this difference, methods developed
the calculation of level and eigenfunction statistics in diff
sive systems can be applied here. Indeed, these propertie
governed by the structure of the action in the vicinity of t
homogeneous configuration of theg field,29 g(r,n)5L ~see
Refs. 6 and 7 for review!. In this case the action may b
considerably simplified. WritingT512W/21•••, we find
the action to leading order inW,

F0@W#5
pn

2 E dr dn Str@W21~K̂2 iv!W12#, ~2!

where the indices 1 and 2 refer to the advanced and reta
decomposition ofW, andK̂[vFn¹ is the Liouville operator.
This ‘‘linearized’’ action now has the same form as that o
diffusive system, with the diffusion operator2D¹2 replaced
by the Liouville operator. Thus, all the results derived pre
ously from the linearized action for diffusive systems can
directly used for our model, provided the eigenvalues a
eigenfunctions of the diffusion operator are replaced
those of the operatorK̂.

Since disorder is only present in the close vicinity of t
boundary, we model it by supplementing the Liouville o
erator K̂ by a boundary condition. Generally, the bounda
condition for an eigenfunctionw(r,n) relates its values for
outgoing and incoming particles at a point on the surface

w~r,n!5S E
(N•n8

D .0~N•n8!B~n,n8!dn821

3E
(N•n8).0

~N•n8!B~n,n8!w~r,n8!dn8,

~N"n!,0 ~3!
5-2
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with some kernelB. Here the pointr is taken at the surface
ur u5R, and N is an outward normal to the boundary. Th
form ~3! ensures that no current flows through the bound
of the billiard.

The scattering kernelB was intensively studied in the
context of the boundary condition for the distribution fun
tion ~for review, see Ref. 30! and found to be model depen
dent. Realistic models of short-range surface randomn
~such as a boundary narrow layer of impurities or a ballis
orifice in a disordered medium! lead to general boundar
conditions of the type~3!, where the kernelB is a parameter-
less function of order one.

Following Refs. 31–33, we approximate the above, rat
complicated, boundary condition by a simpler one, where
electron reflects diffusively with probabilitya and specularly
with probability 12a (0<a<1),

w~r,n!5paE
(N•n8).0

~N•n8!w~r,n8!dn8

1~12a!w~r,n9!, ~N"n!,0 ~4!

where the vectorn2prime is chosen so that the reflectio
from n9 to n is purely specular. Although Eq.~4! does not
correspond to any particular known microscopic model
disorder, it is commonly believed to provide a good quali
tive description of surface scattering interpolating betwe
purely diffusive (a51) and purely specular (a50) reflec-
tion.

With the exception of Sec. VI, we consider below pure
diffusive reflection@Eq. ~4! with a51]. Physically, it de-
scribes quantum scattering due to short-range disorder~cor-
related at the scale of the order of the wavelength 2p/pF).
Alternatively, the diffusive boundary condition of this typ
may result from the purely classical scattering off a stron
corrugated surface. As noted in the Introduction, atom
scale disorder has the feature that an electron loses me
about the direction of previous motion after the first collisi
with the boundary. The system is thus described bytwo char-
acteristic energies, which are the mean level spacingD and
the inverse time of flight through the billiardvF /R. This is a
special type of a billiard, analogous to ‘‘hard chaos’’ beha
ior of genuinely chaotic systems.

Section VI is devoted to the general situationa,1. A
new regime appears fora!1 when the timeR/(vFa) during
which an electron remembers its initial direction of moti
differs parametrically from the time of flightR/vF . In this
regime the system is described bythree distinct energy
scales.

B. Eigenvalues of the Liouville operator for diffusive
scattering

As we have mentioned, the level statistics of our billia
are entirely determined by the eigenvalues of the Liouv
operatorK̂. Due to the boundary condition~4! the evolution
becomes irreversible, the eigenvalues ofK̂ have a positive
23531
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real part, and no regularization, like that discussed in R
11 and 12, is needed. Below we review properties of eig
valuesl of the operatorK̂,

vFn•“wl~r,n!5lwl~r,n!, ~5!

supplemented by the boundary condition

w~r,n!5pE
(N•n8).0

~N•n8!w~r,n8!dn, ~N•n!,0. ~6!

The constant energy surface can be parametrized by
three real numbers (u,u8,x), where the angleu (u8) corre-
sponds to the point where the straight line passing thro
r5(r ,q) in the directionn (2n) crosses the boundary, an
x is the distance from the boundary tor along this straight
line ~see Fig. 1!. To cover the whole energy surface the p
rameters must change in the region 0,u,u8,2p; 0,x
,2R sinu(u2u8)/2u. Equation~5! then expresses the eigen
function w at anyx through the eigenfunction atx50, i.e.,
through the function describing particles scattered from
boundary. In particular, the eigenfunction for the partic
arriving to the boundary is

wlS u,u8,x52R sinUu2u8

2 U D
5wl~u,u8,x50!expS 2Rl

vF
sinUu2u8

2 U D . ~7!

Now the boundary condition~6! is used to find a closed
integral equation forwl(u,u8,x50) which is simplified by
the ansatzwl(u,u8,x50)5w̃(u2u8)exp(ilu8), l having the
meaning of the angular momentum,

w̃~u!e2 i l u5
1

2E0

p

dũ ~sinũ !e2j sin ũw̃~2ũ !, ~8!

with the notationj[Rl/vF . Since the right-hand side~rhs!
of Eq. ~8! does not depend onu, the solutions may only have
the formw̃(u)}eil u. Substituting this in Eq.~8!, we find that
the eigenvaluesj obey the following equation:

J̃l~j![211
1

2E0

p

du ~sinu!exp@2i l u12j sinu#50.

~9!

FIG. 1. Natural parametrization of the constant energy shel
terms of positionr5(r ,q) and direction of motionn and its rela-
tion to the alternative parametrization by the coordinatesu,u8,x
introduced in the text.
5-3
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The eigenvalue equation~9! cannot be solved analyticall
in a closed form; however, the combinations of eigenval
that enter level statistics can be expressed through the f
tion J̃l . Below we list some properties of these eigenvalu

For each value ofl 50,61,62, . . . Eq.~9! has a set of
solutionsj lk with j lk5j2 l ,k5j l ,2k* , which can be labeled
with k50,61,62, . . . ~evenl ) or k561/2,63/2, . . . ~odd
l ). Thus, the eigenvalues form a two-parameter set. Fl
5k50 we havej0050, corresponding to the zero mod
w(r,n)5const. All other eigenvalues have a positive re
part Rej lk.0 and govern the relaxation of the correspon
ing classical system to the homogeneous distribution in
phase space.

The asymptotic form of the solutions of Eq.~9! for large
uku and/oru l u is given by the saddle-point method:

jkl'H 0.66l 10.14 lnl 10.55p ik, 0<k! l

~ ln k!/41p i ~k11/8!, 0< l !k.
~10!

Note that fork50 all eigenvalues are real, while for hig
values ofk they lie close to the imaginary axis and do n
depend onl. Figure 2 shows a plot of the first 11311 eigen-
values of the operatorK̂, as found from a numerical solutio
of Eq. ~9!.

C. Green’s function of the Liouville operator

The Green’s function of the Liouville operato
D(r1 ,n1 ;r2 ,n2) is the time-integrated probability to find th
particle at the point of the phase space (r1 ,n1) if it started
the motion at (r2 ,n2). This function obeys the equation

K̂D~r1 ,n1 ;r2 ,n2!5
1

pn Fd~r12r2!d~n12n2!2
1

VG ,
~11!

whereV5pR2 is the area of the billiard, and the operatorK̂
acts on the variablesr1 andn1. The Green’s function is re
lated to the correlation of the wave functions~Sec. V!. It is

FIG. 2. The first 11311 (0<k,l ,11) eigenvalues of the Liou

ville operatorK̂ in units of vF /R, as given by roots of Eq.~9!.
23531
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also used in the alternative derivation of the low-energy le
correlation function; see Sec. III B.

1. Green’s function integrated over momenta

In this subsection we calculate the Green’s function in
grated over momenta:

PB~r1 ,r2!5E dn1dn2D~r1 ,n1 ;r2 ,n2!, ~12!

which describes the probability to find an electron atr1 after
it has been found atr2, and is important for the wavefunctio
correlation. Integrating Eq.~11! over dn2, we obtain

vFn1•
]h

]r1
5

1

pn Fd~r12r2!2
1

VG , ~13!

whereh(r1 ,n1 ;r2)5*dn2D. To solve Eq.~13!, we use the
same strategy as with Eq.~5! and replace the coordinate
(r1 ,n1) by the variablesu1 ,u18 ,x1,

h~u1 ,u18 ,x1 ;r2!5h~u1 ,u18 ,x150;r2!

1
2

pF
E

0

x1
dx19Fd„r~u1 ,u18 ,x19!2r2…2

1

VG .
~14!

The functionh(u1 ,u18 ,x150;r2), which describes the par
ticles leaving the boundary at the point (R,u1), does not
depend onu18 . Using the boundary condition for the operat

K̂, we obtain the equation for this function@below the irrel-
evant arguments are dropped and the function is denote
h(u1 ;r2)],

h~u1 ;r2!5
1

4E0

2p

du9 sin
u9

2
h~u11u9;r2!

1
1

2pF
E

0

2p

du9E
0

2R sin(uu12u9u/2)
dx19 sin

u9

2

3Fd~r~u9,u1 ,x19!2r2!2
1

VG . ~15!

Calculating the second term in the rhs, we obtain

h~u1 ;r2!5
1

4E0

2p

du9 sin
u9

2
h~u11u9;r2!

1
1

pF
FF~r 2 ,u12q2!2

1

VE r̃ 2dr̃2dq̃2

3F~ r̃ 2 ,u12q̃2!G . ~16!

Here we have introduced the function
5-4
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F~r ,u!5
R2r cosu

R21r 222Rr cosu
,

and used polar coordinates (r k ,qk) for the pointrk , k51,2.
Equation ~16! is solved by expanding the functio

h(u1 ;r2) in a Fourier series; in this way we find all th
Fourier componentshk except fork50. The componenth0
is not determined by Eq.~16! and must be fixed by the con
ditions thatPB(r1 ,r2) is symmetric and its integral overdr1
equals zero~the conservation of the number of particles!.
Restoring subsequently the functionh in the bulk of the bil-
liard from h(u1 ;r2) by means of Eq.~14! and integrating it
over dn1, we obtain the Green’s function of the Liouvill
operator integrated over momenta,

PB~r1 ,r2!5 f 0~r1 ,r2!1 f 1~r1 ,r2!, ~17!
23531
f 0~r1 ,r2!5
1

ppF
H 1

ur12r2u
2

1

VE dr̃1

1

u r̃12r2u

2
1

VE dr̃2

1

ur12 r̃2u
1

1

V2E dr̃1dr̃2

1

u r̃12 r̃2uJ ,

f 1~r1 ,r2!5
1

4ppFR (
k51

`
4k221

4k2 S r 1r 2

R2 D k

cosk~q12q2!.

It can be actually traced in the course of the calculation t
the termf 0 in Eq. ~17! describes the propagation of an ele
tron from r2 to r1 along the straight line~no collisions with
the surface!. Likewise, the termf 1 describes the processe
that involve at least one collision; furthermore, in the fac
4k221 in f 1 the term 4k2 originates from the trajectorie
with one collision, whereas21 is related to the double an
multiple collisions.
lue

n

e

nction
2. Full Green’s function

Analogously to the previous subsection the value of the functionD in the bulk of the sample is expressed through its va
on the boundary. Instead of Eq.~14! we now have

D~u1 ,u18 ,x1 ;r2 ,n2!5D~u1 ,u18 ,x150;r2 ,n2!1
2

pF
E

0

x1
dx19Fd„r~u1 ,u18 ,x19!2r2…d~n12n2!2

1

VG . ~18!

Due to the boundary condition, the functionD(u1 ;r2 ,n2)[D(u1 ,u18 ,x150;r2 ,n2) does not depend onu18 and obeys the
equation

D~u1 ;r2 ,n2!5
1

4E0

2p

du9 sin
u9

2
D~u11u9;r2 ,n2!1

1

2pF
E

0

2p

du9E
0

2R sin(uu12u9u/2)
dx19 sin

u9

2

3Fd~r~u9,u1 ,x19!2r2!d~n~u9,u1!2n2!2
1

VG . ~19!

The integral ofd function in rhs is only nonzero ifu15u28 ; integrating it with respect tou1 and making use of the Jacobia
of transformation from the polar coordinates (r ,q,n) to the coordinates (x,u,u8) ~Fig. 1!,

]~x,u,u8!

]~r ,q,n!
5

2r

R

1

sinUu2u8

2 U ,

we find that the second term in the rhs equals (2p/pFR)@d(u12u28)21/2p#, whereu28 is the polar angle corresponding to th
point at the boundary to which the vectorn2 points fromr2. For definiteness, we restrict all the anglesu1 ,u18 ,u2 ,u28 to the
interval @0,2p#. Continuing in the same way as in the previous section, we find the final expression for the Green’s fu
of the Liouville operator,

D~r1 ,n1 ;r2 ,n2!5D01D11D2 ,

D05
1

ppF
H dS r12r2

ur12r2u
2n1D d~n12n2!

ur12r2u
2

1

VE dr̃1dS r̃12r2

u r̃12r2u
2n1D d~n12n2!

u r̃12r2u
2

1

VE dr̃2dS r12 r̃2

ur12 r̃2u
2n1D d~n12n2!

ur12 r̃2u

1
1

V2E dr̃1dr̃2dS r̃12 r̃2

u r̃ 12 r̃2u
2n1D d~n12n2!

u r̃12 r̃2u J ,

~20!

D15
2p

RpF
Fd~u12u28!2

1

2pG , D252
1

24RpF
@3~u12u28!226puu12u28u12p2#.
5-5
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It is straightforward to check that the integration of Eq.~20!
over dn1dn2 gives Eq.~17!. The Green’s function~20! pos-
sesses obvious properties

D~r1 ,n1 ;r2 ,n2!5D~r2 ,2n2 ;r1 ,2n1!

and

E dr1dn1D~r1 ,n1 ;r2 ,n2!5*dr2dn2D~r1 ,n1 ;r2 ,n2!50.

Actually, D0 is a solution of Eq.~11! in the infinite space
and thus represents propagation processes that do not in
any collisions with the boundary. This kind of propagation
only possible ifn1 coincides withn2 and both are directed
along r12r2. Furthermore,D1 is responsible for the propa
gation from r2 to r1 with only one intermediate collision
which necessarily requiresu15u28 . Finally, the termD2 de-
scribes propagation that involves two or more intermed
collisions.

III. SPECTRAL STATISTICS

In this section we discuss the level correlation functi
and level number variance of the circular billiard with th
boundary condition~6!. As we have mentioned in the Intro
duction, the results for the level statistics follow readily fro
general formulas derived for the diffusive conductors7 where
the eigenvalues of the diffusion operator are replaced
those of the Liouville operator.

A. Low frequencies

We define the level correlation function in a standa
way,

R2~v!5~VD!2^n~e1v!n~e!&21,

where n(e) is the ~fluctuating! density of states andD
5(Vn)21 is the mean level spacing. In the range of re
tively low frequencies~which in our case meansv!vF /R,
see below! the functionR2(v) quite generally has the form34

(s5v/D)

R2~s!5d~s!2
sin2ps

~ps!2 1
A

p2gb
2

sin2ps,

~21!

gb5
vF

RD
5

pFR

2
.

The first two terms are universal and actually correspond
the random matrix theory result. They are associated with
contribution of the mode with zero eigenvalue of the Lio
ville operator.6 The last term represents the nonuniversal c
rection; the information about the operatorK̂ enters through
the dimensionless constantA5(8jkl

22 , where the prime in-
dicates that the eigenvaluej0050 is excluded. The value o
A, as well as the high-frequency behavior ofR2(s) ~see be-
low!, can be extracted from the spectral function35
23531
lve

e

y

-

to
e

-

S~v!5(
l

Sl~v!, Sl~v![(
k

~lkl2 iv!22. ~22!

According to the Cauchy theorem,Sl can be represented a
an integral in the complex plane,

Sl~v!5S R

vF
D 2 1

2p i RC

1

~z2 ivR/vF!2

J̃l8~z!

J̃l~z!
dz, ~23!

where the contourC encloses all zeros of the functionJ̃l(z).
Evaluating the residue atz5 ivR/vF , we find

Sl~v!52~R/vF!2
d2

dz2U
z5 ivR/vF

ln J̃l~z!. ~24!

Considering the limitv→0 and subtracting the contributio
of l0050, after lengthy but elementary algebra, we obtai

A5S vF

R D 2

S~0!

5219/272175p2/1152164/~9p2!'21.48. ~25!

In contrast to the diffusive case,34 this constant is negative
the level repulsion isenhancedwith respect to the result fo
the RMT. We recollect that in the diffusive case the lev
repulsion issuppressedas compared to RMT, and this sup
pression has a plausible physical explanation. Indeed,
nonuniversal correction in diffusive case is proportional
gd

22 , wheregd5Ec /D@1 is the dimensionless conductan
andEc is the Thouless energy. In disordered conductors,
parametergd is responsible for the metal-insulator transitio
crossover. This nonuniversal term thus reflects a tendenc
localization in level statistics34 and would become of the
order of unity for gd;1, when the system approaches t
insulating regime@with uncorrelated levels,R2(s)5d(s)].

In contrast, the last term of Eq.~21! describes different
physics. For ballistic systems, the limitgb;1 does not mean
the insulating regime, but rather a quantum-mechanical s
tem far from the semiclassical regime. Energy levels in th
systems may be strongly correlated, even more strongly t
in RMT; hence the tendency to enhancement of the le
repulsion observable from Eq.~21!. We will see that this
tendency is even more pronounced in the high-energy be
ior of the level correlation function.

The last point we make is the following. Equation~21! is
valid as long as the correction is small compared to the R
result, i.e., providedv is below the inverse time of flight
vF /R. Thus, the inverse time of flight serves as a Thoul
energy for this ballistic billiard, withgb playing the role of
the dimensionless conductance. Note thatgb is related to the
numberN of levels below the Fermi energy asgb5N1/2.

B. Low frequencies: Alternative derivation

The constantA can also be found in another way, usin
the Green’s function of the Liouville operator. Indeed, t
quantityS(0) can be written in the following form,
5-6
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S~0!5~pn!2E dr1dr2dn1dn2D~r1 ,n1 ;r2 ,n2!

3D~r2 ,n2 ;r1 ,n1!, ~26!

where the functionD is given by Eq.~20!. Equation~26! is
directly verified by expanding the Green’s function in t
eigenfunctions of the operatorK̂. Now we calculate the in-
tegral in Eq.~26! directly. It is instructive to split the resul
into three terms,

S~0!5SA1SB1SC ,

SA5E D0D05S R

vF
D 2S 211

64

9p2D , ~27!

SB5E ~D0D11D1D01D1D1!5S R

vF
D 2S 2

8

3
1

p2

8 D ,

SC5E ~D0D21D2D01D1D21D2D11D2D2!

5S R

vF
D 2S 2

80

27
2

2p2

9
2

p2

16
1

2p2

128D ,

which reproduces Eq.~25!. In our notation,SA is given by
the processes that involve no collisions with the bounda
SB is a contribution of trajectories with only one collision
andSC takes into account all other processes. We see tha
these contributions are of the same order and cannot be
regarded.

C. High frequencies

In the rangev@D the level correlation function can b
decomposed into the smooth@Altshuler-Shklovskii ~AS!#
part,35

R2
AS~v!5~D2/2p2!ReS~v!, ~28!

and the partR2
osc, which oscillates on the scale of the lev

spacing.36 We consider below the high-frequency regimev
@vF /R.

1. Smooth part

For high frequencies, the integral in the definition~9! of
the functionsJ̃l is small, and thusJ̃l is close to21. Expand-
ing the logarithm in Eq.~24! up to second order inJ̃l11 and
using the Poisson formula,

(
l

e2i l u5p (
n52`

`

d~u2pn!, ~29!

to sum overl, we obtain forv@vF /R

R2
AS~v!5

1

gb
2 S vF

2pvRD 1/2

cosS 4
vR

vF
2

p

4 D . ~30!
23531
y,

all
is-

Thus, the smooth part of the level correlation function
an oscillating function of frequency, with the period o
pvF/2R and a slowly decaying amplitude. To clarify th
connection with the periodic orbit theory, we note that a
closed sequence of chords joined at vertices is a ‘‘perio
orbit’’ in our model. The above period corresponds to t
‘‘periodic orbit’’ that traverses twice the diameter of the b
liard ~the longest ‘‘periodic orbit’’ with two vertices!. The
amplitude of the oscillations is proportional togb

22 . This is
very different from the diffusive regime, where the smoo
part of the level correlation function does not exhibit a
oscillations. Furthermore, in the 2D case the AS contribut
vanishes, and the leading behavior is provided by weak
calization effects.37

2. Oscillating part

The oscillating part of the level correlation functio
R2

osc(s) for frequenciesv@D is given by36 ~see also Ref. 63!

R2
osc~s!5~1/2p2!cos~2ps!D~s!, ~31!

whereD(s) is the spectral determinant,

D~s!5s22 )
klÞ(00)

~12 isD/lkl!
21~11 isD/lkl!

21.

~32!

SinceD22]2 ln D(s)/]s2522 ReS(v), the spectral deter-
minant can be recovered from Eq.~24!,

D~s!5S p

2 D 6 ec11c2s

gb
2 )

l

1

J̃l~ is/gb!J̃l~2 is/gb!
, ~33!

wherec1 andc2 are arbitrary constants that are fixed by t
requirement that Eq.~31! in the rangeD!v!vF /R repro-
duces the low-frequency behavior~21!. Expanding lnD in
s/gb!1 and comparing it with the low-frequency expressi

ln D~s!5
1

s2
2

A

gb
2

,

which follows from Eq.~21!, we obtainc15c250. Finally,
for s@1 (v@vF /R) Eq. ~33! yields for the oscillating part
of the level correlation function,

R2
osc~v!5

p4

128gb
2

cosS 2pv

D D . ~34!

It is remarkable that the amplitude of the oscillating p
does not depend on frequency. This is in contrast with
diffusive case, where in the AS regime (v above the Thou-
less energy! the oscillating partR2

osc(v) is exponentially
small.36 Such a behavior indicates a strong rigidity of a lev
system and is reminiscent of a 1D harmonic oscillator.

D. Spectral form factor

To illustrate the nature of the oscillating terms in the a
ymptotes~30! and ~34! we compute numerically the form
factor K(t)5*dv eivtR2(v) of the two-level correlation
5-7
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function for gb55. The result is shown on Fig. 3. The no
zero limit atv→` of the oscillating partR2

osc(v) gives rise
to a d-function contribution of the form (p5/128gb

2)d(t
22p/D) ~shown as a vertical spike in Fig. 3!.38 The ‘‘peri-
odic orbit’’ that traverses the billiard twice along the diam
eter and has the periodT254R/vF manifests itself as a set o
power-law singularities inK(t) at t5T2 and t52p/D
6T2. Near these singularities the form factor diverges l
1/AT22t and 1/AT26(2p/D2t), respectively. The peak to
the right of the first singularity is the contribution from th
‘‘equilateral triangle’’ periodic orbit with the periodT3

53A3R/vF . The same orbit causes small peaks att
52p/D6T3.

E. Level number variance

In practice, the description of level statistics by the mea
of the level correlation function is not always convenie
Indeed, for low frequenciesv!vF /R nonuniversal effects
are manifested only as small corrections to RMT. For h
frequencies, the entire behavior is nonuniversal, but in
range the level correlation function is proportional togb

22

and small. Therefore, in order to study nonuniversal effe
in level statistics, experimentally or by means of compu
simulations, it is instructive to consider a quantity more s
sitive to these effects.

A well-known way to emphasize the high-energy beha
ior of the level correlation function is to study the variance
the number of levels in an energy interval of widthE5sD,

S2~s!5E
2s

s

~s2us̃u!R2~ s̃!ds̃. ~35!

Direct calculation gives fors!gb (E!vF /R)

p2S2~s!511g1 ln~2ps!1
As2

2gb
2

~36!

and fors@gb (E@vF /R)

FIG. 3. Form factor for the two-point correlation functio
K(t)5*dv eivtR2(v) for gb55. The d function att52p/D is
shown as a vertical spike. It arises because of the nondeca
oscillations~34!. The 1/AT22t singularity atT254R/vF is related
to the ‘‘periodic orbit,’’ which has periodT2 and traverses twice the
diameter of the billiard. The same orbit gives rise to singularities
t52p/D6T2.
23531
s
.

h
is

ts
r
-

-
f

p2S2~s!511g1 ln
16gb

p2
2

p2

16 S 2gb

ps D 1/2

cosS 4s

gb
2

p

4 D .

~37!

Here g'0.577 is Euler’s constant, andA is defined by Eq.
~25!. The first three terms at the rhs of Eq.~36! represent the
RMT contribution, which is logarithmic in energy.39 It is
remarkable that the actual level number variance is alw
smaller than that given by RMT.

As seen from Fig. 4, the two asymptotes~36! and ~37!
perfectly match in the intermediate regime,s;gb (E
;vF /R). Taken together, they provide a complete descr
tion of S2(s). According to Eq.~37!, the level number vari-
ance saturates at the value

S2
(0)5p22@11g1 ln~16gb /p2!#@1. ~38!

This saturation again confirms the conclusion that we h
already made from analyzing the low-energy behavior of
level correlation function—the system of levels of our b
liard is quite rigid, more rigid than that in RMT. We als
note that a saturation ofS2(s) at the level S2

(0)

; ln(1/DTmin), with Tmin being the period of the shortes
periodic orbit, as well as its oscillations on the scale set
Tmin , was predicted by Berry for a generic chaot
billiard.4,40 In our case, the orbits with the smallest numb
~two! of collisions with the boundary have periods;R/vF

~corresponding tos;gb), and thus Eq.~38! fully agrees with
Berry’s prediction.41 This behavior is also in agreement wit
the results forS2(s) found numerically for a tight-binding
model with moderately strong disorder on bounda
sites.24,25,42

At the same time, we note that the behavior ofS2(s) is
quite different from that in other reference systems. Inde
for both diffusive systems35 and systems with bulk disorde
in ballistic regime17–19 the level number variance isgreater
than RMT. The energy at whichS2 is expected to saturat
depends on the type of disorder. For short-range impuri

ng

t FIG. 4. Level number varianceS2(E) as a function of energy;
s5E/D. Curve 1 shows the RMT result, while curves 2 and
correspond to asymptotic regimes of low~36! and high~37! fre-
quencies. The saturation valueS2

(0) is given by Eq.~38!.
5-8
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~white noise random potential! arbitrarily short periodic or-
bits exist, and thus no saturation up tov;EF is expected.
For a diffusive system and smooth random potential the
fusive dynamics lead to a linear increase of the level num
variance,S2(s);s/gd , for s@gd;nvFl tr , while the short-
est orbits have lengths of the order of the transport mean
path l tr , causing the saturation ofS2(s) at a parametrically
larger values;vF /( l trD). Similarly, in ‘‘rough billiards’’
~slightly distorted integrable billiards14,16! the level number
variance is higher than that in RMT and does not satu
until a values;vF /RD parametrically exceeding the effec
tive Thouless energy, since the system is diffusive in
angular momentum space.

IV. PARAMETRIC LEVEL STATISTICS

A. Introduction

In this section, we study the parametric statistics of
ergy levels of our system. Specifically, we assume that
billiard is placed in a magnetic field, which plays the role
an external parameter.

Already a considerable amount is known on the sub
~see Ref. 43 for review!. In this paper we are interested in th
parametric level correlation function

RF~v,B!5211~VD!2^n~E1v/2,B̄1B/2!

3n~E2v/2,B̄2B/2!&, ~39!

where the mean magnetic fieldB̄ is introduced in order to
break time-reversal symmetry. The correlation function~39!
has been previously investigated in the diagramm
expansion,44 the s-model approach,45,36 the random matrix
theory ~by means of Dyson’s Brownian motion model!,46,47

and by semiclassical methods.48,49 The most remarkable ob
servation of these works is that when the perturbation
weakand the frequencyv is low, the parametric correlation
function is universal, i.e., it does not depend on the type
the perturbation, provided it is properly rescaled, nor on a
details of the system.

Below we studynonuniversalbehavior of the parametric
level correlation function~39!. We use thes-model formu-
lation of parametric statistics developed in Ref. 45 to der
an analog of Altshuler-Shklovskii formula for this functio
and evaluate it explicitly for our model.

B. Eigenvalues of the Liouville operator in a magnetic field

The correlation function~39! may be obtained from the
supersymmetrics model with the effective action~1! pro-
vided the operator“ is replaced by the ‘‘gauge-invariant’
combination“2( ie/2c)LA, whereA is the vector potentia
that corresponds to the fieldB: B5“3A. Repeating the
steps leading to Eq.~2! we find that in the effective action
the Liouville operatorK̂ is replaced by its gauge-invarian
form in the magnetic field,

K̂F5vFn•S“2
ie

c
AD . ~40!
23531
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Prior to the investigation of statistical properties of t
energy levels, we find the eigenvalues of the operatorK̂F .
Choosing the symmetric gaugeA5B3r/2 we obtain, instead
of Eq. ~9!, the equation

Jl
f~j![211

1

2E0

p

du sinu exp@2i l u12j sinu1 if sin 2u#

50, ~41!

which determines the dependence of the eigenvaluel l
5jvF /R on the magnetic field. We have introduced the
mensionless parameterf5F/F0, whereF5pBR2 is the
magnetic flux through the billiard andF052p\c/e is the
flux quantum.

Equation~41! defines a two-parameter set of eigenvalu
jkl . It stays invariant under the simultaneous transformati
l→2 l , j→j* , andf→2f, which means that ifl(B) is an
eigenvalue of the operatorK̂F then l* (2B) is also an ei-
genvalue.

For sufficiently low frequencies and magnetic fields t
parametric correlation function~39! is dominated by the zero
model 5k50 ~see below!. To find the evolution of the cor-
responding eigenvaluej00, we setl 50 and take a variation
of Eq. ~41! with respect tof!1,

E
0

p

du sinuF2j00sinu1 if sin 2u2
f2

2
sin2 2uG50,

which givesj0058f2/(15p).

C. Parametric level correlation function

The parametric correlation functionRF ~39! is expressed
in terms of the retardedGR and advancedGA Green’s func-
tions in the following way:

RF~v,B!5
1

2
@T~v,B!1T~2v,2B!#,

~42!

T~v,B![
1

2~pn!2
^Tr GR~E1v/2,B̄1B/2!

3Tr GA~E2v/2,B̄2B/2!&c ,

where ^AB&c[^AB&2^A&^B& denotes the irreducible par
~cumulant!.

For low frequenciesandmagnetic fields~the precise con-
dition is specified below! the functionRF is nonperturbative
and can be found using the random matrix theory. This
gime was previously investigated in Ref. 45. Here we foc
instead on the case of higher frequencies and/or fields, w
the smooth part of the parametric correlation functi
RF

AS(v,B) is correctly described by perturbation theor
From Eq.~42! we obtain
5-9
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RF
AS~v,B!5

D2

4p2
Re(

kl
H 1

@2 iv1lkl~B!#2

1
1

@ iv1lkl~2B!#2J
5

D2

2p2
Re(

kl

1

@2 iv1lkl~B!#2
. ~43!

To identify relevant parameters, we considerRF
AS at zero

frequency. For low fields, the sum in Eq.~43! is dominated
by the lowest eigenmode, which as we have seen is quad
in field, l00;vFf2/R. The perturbation theory does not a
ply for l00&D, which corresponds to the fieldsf&gb

21/2,
where as beforegb5vF /(RD). Generally, a nonperturbativ
calculation is needed whenv&D andf&gb

21/2 ~region 1 in
Fig. 5!. Everywhere outside this regime, the perturbative
pression~43! applies.

For higher fields, the zero mode still dominates untilf
;1. At f;1 other modes become important, and, in ad
tion, the zero-mode eigenvalue cannot be taken quadrat
field any more. Thus, the pointf;1 plays for parametric
correlations the same role asv;vF /R for the usual~non-
parametric! level correlation function. Generally, forf!1
and v!vF /R we are in the regime when everything is d
termined by the zero-mode approximation. For higher fie
f@1 or frequenciesv@vF /R, the system crosses over
the Altshuler-Shklovskii regime~region 3 in Fig. 5!, when all
the modes are important.

To end our qualitative discussion, we determine
strength of the magnetic field needed to strongly affect
classical dynamics. The cyclotron radius of an electron
jectory in the magnetic field isr c5mvFc/(eB). The mag-
netic field strongly affects the dynamics providedr c&R,
which givesf*gb . Our theory is thus valid forf!gb ,
which still leaves a large window for the regimef@1.

1. Perturbative zero-mode regime (region 2 in Fig. 5)

Using the result for the zero-mode eigenvalue, we fi
from Eq. ~43!

FIG. 5. Different parameter regions~in the frequency-magnetic
field plane! for the parametric level statistics: 1, nonperturbati
~RMT! region; 2, zero-mode region; 3, Altshuler-Shklovskii regio
23531
tic

-

-
in

s

e
e
-

d

RF
AS~s,f!5

225

2

64gb
2f42225p2s2

~64gb
2f41225p2s2!2

, ~44!

where, as previously,s5v/D. The result~44! applies when
bothf!1 ands!gb , but eitherf@gb

21/2 or s@1. Without
the magnetic field,f50 and we reproduceRF

AS(s,0)5
2(2p2s2)21, which is a smooth version of the RMT resu
~21!. For s50, we obtain

RF
AS~0,f!5

225

128gb
2f4

.

2. Altshuler-Shklovskii regime (region 3 in Fig. 5)

For f@1 or s@gb we generalize Eq.~24! to the case of
parametric statistics,

RF
AS~s,f!52

1

2p2gb
2

Re(
l

d2

dz2U
z5 is/gb

ln Jl
f~z!, ~45!

and use the fact thatJl
f.21. Expanding lnJl

f(z) in Jl
f11

up to the second order, we obtain

RF
AS~s,f!52

1

2p2gb
2

Re(
l

H 22E
0

p

du sinu

3exp~2i l u12z sinu1 if sin 2u!

2
1

8

d2

dz2E0

p

du1du2 sinu1 sinu2

3exp@2i l ~u11u2!12z~sinu11sinu2!

1 if~sin 2u11sin 2u2!#J U
z5 is/gb

. ~46!

Now we employ the Poisson formula~29!. The first inte-
gral in Eq. ~46! vanishes identically, and in the second o
we haveu11u25p. Under this condition, the integraldoes
not dependon the magnetic field. We thus have

RF
AS~s,f!5

1

pgb
2

ReE
0

p

du sin4u exp~4is sinu/gb!

'H ~8gb
2!21~3220s2/gb

2!, s!gb

~2psgb
3!21/2 cos~4s/gb2p/4!, s@gb

~47!

The asymptotes in the regimes@gb are identical to Eq.~30!.
The result that the parametric level correlation functi

does not decay with magnetic field is very different from t
diffusive case36 and is actually quite surprising. It means th
the density of states at the same energy retains the mem
even at very large fields, after the levels underwent ma
avoided crossings. The field dependence of the correl
5-10
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appears if we keep higher orders of the expansion of
logarithm in Eq. ~45!, but it is only manifested as sma
corrections to the result~47!.

D. Parametric level number variance

The high-frequency behavior of the nonparametric le
correlation functionR2(s) is best seen in the level numbe
varianceS2(s); see Sec. III. Similarly, it is instructive to
introduce theparametric level number variance48 ~PLNV!,

U~E,B!5^@N~E,B̄!2N~E,B̄1B!#2&, ~48!

whereN(E,B) is the full number of levels in the energy str
E in the magnetic fieldB. In zero field PLNV vanishes~in
low fields it is generally linear in field; see Ref. 45!. If the
values ofN(E,B) andN(E,B̄1B) are uncorrelated in high
fields ~which is not the case in our situation, since the le
correlation function does not decay in high fields!, PLNV
saturates,U(E,B→`)→2S2(E).

PLNV can be easily expressed through the level corre
tion function @analogously to Eq.~35!#,

U~s,f!52E
2s

s

~s2us̃u!@R2~ s̃!2RF~ s̃,f!#ds̃, ~49!

where s5E/D. Below we concentrate on the perturbati
regimef@gb

21/2, when
co

23531
e

l

l

-

E
2s

s

~s2us̃u!RF~ s̃,f!ds̃

'
1

p2
Re(

l
@ ln Jl

f~ is/gb!2 ln Jl
f~0!#. ~50!

A direct calculation gives forgb
21/2!f!1

U~s,f!55
2

p2
(ln 2ps111g)2

225

128

s2

gb
2f4 , 1!s!gbf2

2

p2 F ln
8gbf2

15
111gG , gbf2!s!gb

2

p2 F ln
32gbf2

15
111gG2A8, s@gb ,

~51!

whereg is again Euler’s constant, and

A852
2

p2 (
l 51

`

lnS 12
1

4l 221
D '0.115.

In higher fieldsf@1 we have
U~s,f!55
2

p2
~ ln 2ps111g!1

s2

gb
2 S A

p2
2

3

2D , 1!s!gb

2

p2 F ln
16gb

p2
111gG2

1

8
, s@gb,

~52!
e

2
pec-
ied
where the constantA is given by Eq.~25!. A comparison of
Eq. ~52! with Eqs. ~36! and ~37! shows that in the limitf
→` PLNV differs from 2S2(s). This difference originates
from the fact that the correlation functionRF does not vanish
at largef @see Eq.~47!#.

V. CORRELATIONS OF EIGENFUNCTIONS

According to Berry’s conjecture,50 a wave function in a
2D chaotic system shows Gaussian fluctuations with the
relation functionV^c* (r)c(r8)&5J0(pFr ) ~see Ref. 51 for a
recent generalization of this conjecture!. The supersymmetry
method allows one to derive this result~which is equivalent
to the zero-mode approximation for thes model! and to
calculate system-specific corrections.52–55,7

Let us consider the two-point correlation function

C~r1 ,r2!5DK (
a

uca
2~r1!ca

2~r2!ud~e2ea!L . ~53!
r-

In the standard diffusives model,7 the correlation function
~53! can be written in the form of the integral over th
s-model fieldQ(r),

C~r1 ,r2!5 lim
h→0

hD

p
^G11~r1 ,r1!G22~r2 ,r2!

1G12~r1 ,r2!G21~r2 ,r1!&S[Q] , ~54!

where h52 iv/2.0 is the level broadening,G is the
Green’s function in the fieldQ, and the subscripts 1 and
refer to the advanced and retarded decomposition, res
tively, the boson-boson components being always impl
~we drop the corresponding indices!. Equation~54! yields the
following result:54

V2C~r1 ,r2!.11PD~r1 ,r2!1kq~r12r2!

1PDS r11r2

2
,
r11r2

2 D kq~r12r2!, ~55!
5-11
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wherePD is the diffusion propagator,kq(r )5J0
2(pFr )e2r / l ,

and l is the mean free path. In the framework of the ballis
s model the diffusive propagatorPD(r1 ,r2) is replaced by
its ballistic counterpartPB(r1 ,r2) given in our model by Eq.
~17!. At this point we seem to encounter a problem. Inde
at short distancesr 5ur12r2u the classical propagato
PB(r1 ,r2) is dominated by the contribution of the dire
path,

PB~r1 ,r2!. f 0~r1 ,r2!5
1

ppFur12r2u
. ~56!

This contribution, which becomes of order unity atr;lF ,
would imply strong deviations from the universal Gauss
statistics. However, it is not difficult to realize that this co
tribution is nothing else but a classical ‘‘copy’’ of the ter
kq(r12r2). Therefore, we encounter a problem of the dou
counting: one and the same contribution is taken into acco
twice, classically and quantum-mechanically. In the case
the diffusives model this problem does not appear beca
of the scale separation: the classical propagatorPD is re-
stricted to low momentaq, l 21, while the short-scale (r
, l ) physics corresponding to high momenta (q. l 21) is
treated quantum-mechanically.

The situation is different in ballistic case. The semiclas
cal description extends now to all momentaq&pF . There-
fore, there is no separation in momentum space between
slow modes~treated within the semiclassical approximatio!
and the fast modes~treated exactly, i.e., quantum
mechanically!, and a careful treatment is required in order
23531
,

n

e
nt
f

e

i-

he

avoid the double counting. For this purpose, we find it
structive to consider a problem with an additional smoo
random potentialU(r) in the bulk, characterized by a corre
lation function V(r2r8)5^U(r)U(r8)& with a correlation
lengthd@lF and inducing a small-angle scattering. Spec
cally, we will assume that the corresponding transport sc
tering ratet tr

21 is negligible, i.e., the transport mean free pa
l tr5vFt tr is large,l tr@R, so that the bulk scattering has e
sentially no effect on the classical dynamics. On the ot
hand, the single-particle mean free pathl 5vFt ~correspond-
ing to the total relaxation ratet21) will be assumed to sat
isfy lF!d! l !R and will play a role similar to that ofl tr for
the diffusives model, separating the regions of classical a
quantum treatment. The conditiond! l ensures that the sca
tering on this random potential is of quantum-mechani
~rather than classical! nature and is correctly treated withi
the Born approximation.

We first ignore the boundary scattering and will return
it at the end of the calculation. Averaging over the realiz
tions of the smooth random potentialU(r), one can derive
the s model following Refs. 56,62.~This derivation is out-
lined in the Appendix.!

To calculate deviations of the eigenfunction statist
from universality, we write7,34,53,54@see Eq.~A4!#

T~r,n!5T0@12W~r,n!/2#, ~57!

and then integrate out perturbatively nonzero modes
scribed byW(r,n). The part of action~A5!, which is qua-
dratic inW, has the following form in the momentum spac
.

F05
1

2
StrE dn1dn2~dq!W21~2q,n1!W12~q,n2! S 2

1

2E ~dp!w~n1 ,n!w~n,n2!GR~p1!GA~p2!1pnw~n1 ,n2! D
[

1

2
StrE dn1dn2~dq!W21~2q,n1!W12~q,n2!@2A~q;n1 ,n2!1B~n1 ,n2!#, ~58!

wherep65p6q/2. In the last line of Eq.~58! we introduced the definitionsA andB for the two terms of the quadratic form
Equation~58! induces the contraction rules for integrals over nonzero modesW ~cf. Ref. 57!,

^Str@W~2q,n1!P#Str@W~q,n2!R#&52D~q;n2 ,n1!StrP
12L

2
R

11L

2
12D~2q;n1 ,n2!StrP

11L

2
R

12L

2
, ~59!

^StrW~2q,n1!PW~q,n2!R&52D~q;n2 ,n1!StrP
11L

2
StrR

12L

2
12D~2q;n1 ,n2!StrP

12L

2
StrR

11L

2
,

whereP andR are arbitrary matrices and the propagatorD is given by the series

D5~2A1B!215B211B21AB211•••. ~60!

We are now ready to evaluate the ballistic counterpart of Eq.~54! @with the s-model field beingQ(r,n)]. The Green’s
function G there is given by

G5S E2H02
i

2E dn8Q~r,n8!w~n,n8! D 21

. ~61!

Expanding the term̂G11G22& in Eq. ~54! up to quadratic order inW and switching to the momentum space, we get
5-12
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E d~r12r2!^G11~r1 ,r1!G22~r2 ,r2!&eiq•(r12r2)52
1

4E ~dp1!dn18w~n1 ,n18!~dp2!dn28w~n2 ,n28!

3^@G0~p12!Q1~2q,n18!G0~p11!#11@G0~p21!Q1~q,n28!G0~p22!#22&,

~62!

where G05 i (Im GR)Q01ReGR , Q05T0LT0
21, and Q1(q,n)5T0LW(q,n)T0

21. Applying the contraction rules~59! and
then performing the zero-mode integration, we reduce the rhs of Eq.~62! to the form

D

4phE ~dp1!dn18w~n1 ,n18!~dp2!dn28w~n2 ,n28!GR~p11!GA~p12!GR~p21!GA~p22!D~q;n28 ,n18!

5
D

phw0
2E dn19dn18dn29dn28A~q;n29 ,n28!D~q;n28 ,n18!A~q;n18 ,n19!. ~63!
ve
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Note that in order to simplify this expression, we ha
used time-reversal invariance of the classical moti
D(2q;n,n8)5D(q;2n8,2n). Substituting Eq.~63! in Eq.
~54!, we find the contribution of thêG11G22& term to the
wave-function correlator,

V2C~r1 ,r2!u^G11G22&
21

5
1

~pn!2w0
2E dn1dn2^n1uADAun2&

5
1

~pn!2w0
2E dn1dn2

3^n1uAB21A1AB21AB21A1¯un2&. ~64!

The rhs of Eq.~64! is the sum of the ladder diagrams~cor-
responding to 1,2,3, . . . intermediate scattering processe!
yielding precisely the classical propagatorPB(r1 ,r2). We
see, however, that the first term in this sum~corresponding to
a motion without intermediate scattering! is absent. This
term is equal to

1

~pn!2w0
2E dn1dn2A~n1 ,n2!

5
1

2~pn!2E ~dp!GR~p1!GA~p2!,

or, in coordinate space,

1

2~pn!2 GR~r12r2!GA~r22r1!5
e2ur12r2u/ l

ppFur12r2u
[ f 0~ ur12r2u!.

Including now the leading contribution of the^G12G21& term
in Eq. ~54!, we get the wave-function correlator up to th
terms linear in the classical propagatorf 0(ur12r2u) or in the
quantum propagatorkq(r12r2)5J0

2(pFur12r2u)e2ur12r2u/ l ,

V2C~r1 ,r2!.11 f 1~r1 ,r2!1kq~r12r2!, ~65!

where f 15PB2 f 0. We see that the double-counting pro
lem does not exist anymore. The quantum (kq) and the clas-
23531
,
sical (f 1) contributions perfectly complement each other, d
scribing the motion before and after the first collisio
respectively.

Until now, we did not consider the ballistic version of th
last term in Eq.~55!. Such a term originates from the firs
order ~in D) correction to^G12G21&. For ur12r2u@lF the
corresponding contribution to the wave-function correlato
much smaller than the term coming from̂G11G22& @second
term in Eq.~65!#, which is of order ofPB , and thus can be
neglected. However, this contribution becomes importan
ur12r2u;lF . In particular, forr15r2, the order-D contribu-
tion from ^G12G21& is found to be equal to that from
^G11G22&, yielding

V2C~r,r!.212 f 1~r,r!. ~66!

After integration overr Eq. ~66! determines the nonuniversa
correction to the average inverse participation ratio

VK E druc~r!u4L 521
1

8pgb
@ ln gb1O~1!#. ~67!

In the discussion above we did not take into account
boundary scattering, which determines the classical propa
tor PB(r1 ,r2) on the scale of the system sizeR but is irrel-
evant for the matching of the classical and quantum con
butions on the short scalel !R. In principle, one could avoid
introducing the additional smooth potential and consider
boundary randomness only. In analogy with the consid
ation above, we expect that in this case the classical pro
gator f 1 entering Eq.~65! will describe the motion starting
from the first collision with the boundary.

VI. GENERALIZATION TO THE MIXED BOUNDARY
CONDITION

In the case of the mixed boundary condition~4! the trace
of the resolvent Tr(K̂2 iv)21 acquires cuts in addition to
simple poles that were present for purely diffusive scatteri
a51 ~see the discussion below!. For this reason, we canno
write the spectral functionS(v) in the Altshuler-Shklovskii
form ~22! but have to use a more general representation
5-13
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S~v!5
]2

]v2 Tr ln~K̂2 iv!

5
]

]~ iv!
E

0

`

dt eivt Tr e2K̂t

5
]

]~ iv!
E

0

`

dt eivtE drdng~r,n;r,n;t !, ~68!

whereg(r1 ,n1 ;r2 ,n2 ;t) is thetime-dependentGreen’s func-
tion of the operatorK̂ characterizing the probability o
propagation from the point (r2 ,n2) of the phase space to th
point (r1 ,n1) in a time t.

Further transformations are straightforward though som
what lengthy. The trace of the Green’s function in Eq.~68!
can be written as a sum of the terms withn52,3, . . . bound-
ary scattering events. Changing the variables from (r,n) to
(u,u8,x) ~see Sec. II B! and performing the integration ove
x, we can present the result in the form

Tr~K̂2 iv!215
2R

vF
E dudu8Usin

u2u8

2 U
3 (

n52

`

F̂n21~u,u8;u,u8!, ~69!

whereF̂ is the integral operator,

@F̂ f #~u1 ,u18!5E
0

2p

du2du28F~u1 ,u18 ;u2 ,u28! f ~u2 ,u28!,

with the kernel

F~u1 ,u18 ;u2 ,u28!5d~u12u28!expH 2ivR

vF
Usin

u22u28

2
UJ

3H ~12a!d~u12u182u21u28!

1
a

4
Usin

u22u28

2
UJ . ~70!

Physically,F̂ characterizes the probability of the scatteri
process when a particle moving along the segmentu2

→u28) is reflected into the segment (u1→u18). Resumming
the series~69! and using that, according to Eq.~70!,

]F~u1 ,u18 ;u2 ,u28!

]~ iv!
5

2R

vF
Usin

u22u28

2
UF~u1 ,u18 ;u2 ,u28!,

~71!

we rewrite Eq.~69! in a compact form

Tr ln~K̂2 iv!5Tr ln~12F̂!, ~72!

up to an irrelevant additive constant~which we drop below!.

Eigenfunctions ofF̂ have the form

f ~u,u8!5eil u8g~u2u8!, ~73!
23531
-

so we can write

Tr ln~K̂2 iv!5(
l

Tr ln~12F̂ l !, ~74!

where F̂ l is obtained by restricting the operatorF̂ to the
space spanned by functions~73! with a particularl. The ker-

nel of F̂ l is given by

F l~u,u8!5expH i l u812i
vR

vF
usin~u8/2!uJ

3H ~12a!d~u2u8!1
a

4
usin~u8/2!uJ , ~75!

whereu5u12u18 , u85u22u28 . We further representF l as
a sum of the contributions corresponding to the two terms
the curly brackets in Eq.~75!,

F l~u,u8!5F l
spec~u8!d~u2u8!1F l

diff~u8!. ~76!

Here F l
spec is associated with the processes of specular

flection, while F l
diff corresponds to the diffusive scatterin

processes. Using Eq.~76!, we expand Tr ln(12F̂l) in powers
of F l

diff and then resum the series, using the structure of
two terms in Eq.~76! @the first one is proportional tod(u
2u8), while the second one independent ofu8] to get

Tr ln~12F̂ l !5E
0

2p

du ln„12F l
spec~u!…

1 lnF11E
0

2p

du„12F l
spec~u!…21F l

diff~u!G .
~77!

Combining Eqs.~74!, ~75!, and ~77!, we finally obtain the
following representation for the spectral determinant of
Liouville operator:

Tr ln~K̂2 iv!

5(
l

H E
0

p

du ln@12~12a!e2i (vR/vF)sin u12i l u#

1 lnF12
a

2E0

p

du
sinu

e22i (vR/vF)sin u22i l u211a
G J .

~78!

The first term in Eq.~78! originates from the first term in
the rhs of Eq.~77! and is determined only byF l

specand not
by F l

diff . It thus knows only about the motion in a clea
system ~without boundary scattering! and about the tota
probability a to be scattered away, but not about the diffe
ential scattering probability. In other words, this term wou
describe the correlations of the density of states if the e
trons simply disappear~get absorbed! at the boundary with
probability a, otherwise being reflected specularly. It cha
acterizes thus the spectrum of a clean circle~with energy
levels broadened due to the absorbing boundary!. Due to
5-14
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these correlations, thedisorder averageddensity of states
^n(e)& at given energye fluctuates. These fluctuations a
not of interest here; one can get rid of them by subtract
the ~energy-dependent! disconnected part of the level corre
lation function, thus modifying the definition ofR2(v),

R2
d~v!5~VD!2@^n~e1v!n~e!&2^n~e1v!&^n~e!&#,

~79!

~see Ref. 18 for an extensive discussion!. We mention also
that, in fact, the first term in Eq.~78! does not yield these
correlations fully correctly, since thes model is not appro-
priate for the description of integrable systems. Agam a
Fishman19 used the Berry-Tabor trace formula to calcula
the analogous contribution of trajectories not scattered
impurities in an integrable system with bulk disorder. We
not enter a more detailed discussion here since we are
interested in this contribution anyway.

The second term in Eq.~78! describes the disorder
induced correlations. Before turning to the calculation of
level correlation function, we analyze the structure of sing
larities of the resolvent Tr(K̂2 iv)21. As in thea51 case, it
has simple poles lying in the half-plane Imv,0 which po-
sitionsj5 ivR/vF of which are determined by the equatio

a

2E0

p

du
sinu

e22i l u22j sin u2~12a!
51. ~80!

However, in contrast to thea51 case, the resolvent add
tionally now has branch cuts induced by zero values of
denominator in Eq.~80!. These branch cuts can be para
etrized as

j5
1

2 sinu F ln
1

12a
12p ik22i l uG , ~81!

where l and k are integers, andu runs from 0 top. Physi-
cally, these additional singularities correspond to mot
along periodic orbits of the underlying integrable syste
~circle!, with the real part Rej.0 characterizing the tota
scattering rate out of the orbit.

To calculate the level correlation functionR2
d(v), we use

the formulas of Sec. III, with the spectral functionS(v)
obtained by substituting the second term of Eq.~78! in Eq.
~68!,

S~v!5(
l

Sl~v!,

Sl~v!52S R

vF
D 2 ]2

]z2 ln J̃l~z!uz5 ivR/vF
,

J̃l~z!5211
a

2E0

p

du
sinu

e22i l u22z sin u2~12a!
. ~82!

In particular, the low-frequency behavior has the form~21!
with the coefficientA given ata!1 by
23531
g

d

y

ot

e
-

e
-

n

A5F 256

9p2 26G 1

a2 .2
3.12

a2 . ~83!

As previously, this result is valid until the last term (1/gb
correction! in Eq. ~21! becomes of order unity. This happen
at a frequency that plays the role of the Thouless energy.
a!1 this energy scale isEc;avF /R, which is the inverse
of the characteristic relaxation time ata!1. The s model
only applies when the Thouless energy is much larger t
the mean level spacing, i.e., fora@gb

21 . For even lower
values ofa the system exhibits integrable behavior.

As usual, at frequencies above the effective Thouless
ergyEc the level statistics are totally different from the RM
predictions. To demonstrate this, we calculate the smo
part of the level correlation function for intermediate fr
quenciesEc!v!vF /R using Altshuler-Shklovskii formula
~28!. We first notice that the contributions of allSl with l
Þ0 are suppressed by the small factorvR/vF as compared
to the termS0, and thus can be neglected. Evaluating t
integral in Eq.~82! at l 50 and extracting the leading-orde
term, we find

R2
d~v!52

3a2

4p2gb
2 S vF

vRD 4F lnS vR

avF
D1O~1!G . ~84!

The result~84! matches Eqs.~21!,~83! at v;Ec5avF /R
and drops sharply for higher frequencies.

VII. SUMMARY AND DISCUSSION

In this paper we have used the ballistics-model approach
to investigate statistical properties of energy levels a
eigenfunctions of a circular billiard with diffusive surfac
scattering. For this simple model of a chaotic system
calculated explicitly nonuniversal deviations of the statisti
properties from the random matrix theory. These nonuniv
sal properties are determined by the classical dynamics
turn out to be very different from the two examples availab
in the literature: diffusive systems and ballistic systems w
bulk d-function-correlated disorder. We believe that our r
sults are not specific for a particular model considered
rather reflect nonuniversal features of generic chaotic s
tems and their qualitative difference from the correspond
properties of systems with bulk shot-range impurities. Bel
we summarize our main findings.

The spectral statistics~Sec. III! deviate from its RMT
form on a frequency scale set by the inverse flight tim
~playing the role of the Thouless energy!. At higher energies,
the level number variance saturates and oscillates in ag
ment with predictions4 for a generic chaotic system. Surpri
ingly, the two-level correlation function shows nondecayi
~though weak! oscillations with the period of the mean lev
spacing at high frequencies, producing ad-function-like
spike in the spectral form factor at the Heisenberg time.
Sec. VI the analysis of the spectral statistics is generalize
the case of a mixed boundary condition when the ‘‘Thoule
energy’’ is parametrically smaller than the inverse time
flight.
5-15
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In Sec. IV we presented a thorough study of the param
ric level statistics, with magnetic field playing the role of th
external parameter. We identified all relevant regions in
frequency–magnetic-field plane and calculated the param
ric two-level correlation function and the parametric lev
number variance in all of them. In particular, a surprisi
result was obtained in the region of high magnetic fiel
where the parametric correlation function was found to
independent of the magnetic field. In other words, the den
of states retain finite memory even in the limit of very lar
fields after levels have undergone arbitrary many avoi
crossings.

In Sec. V we analyzed spatial correlations of eigenfu
tion intensities. Since naive application of the ballistics
model led us to the problem of double counting~with one
and the same contribution appearing twice—classically
quantum-mechanically!, we had to reanalyze thes-model
derivation. For this purpose we introduced a smooth rand
potential and obtained thes model from averaging over it
following Refs. 56,62~see the Appendix!. We have found
that while in the limitt/t tr→0 ~with t21 andt tr

21 being total
and transport scattering rates, respectively! the obtained ac-
tion takes the conventional form~A6! of the ballistic s
model, the behavior of the propagator is different at sh
distances. This affects the wave-function correlations at s
spatial scalesr &vFt. The final result has a form~65! with
the quantum (kq) and classical (f 1) terms corresponding to
the motion before and after the first collision respectively

In the present context of a system with diffuse bound
scattering, introduction of an additional smooth random
tential satisfyingd! l !R! l tr can be considered as a tec
nical trick allowing to obtain thes model in the conven-
tional form ~1!. In principle, it should be possible to deriv
the s model directly by averaging over the boundary dis
der, but in this case the action will be more complicat
since the system size will essentially play the role ofvFt.
Let us stress that the additional random potential does
affect the results for the energy level statistics and for
smoothedeigenfunction correlations. On the other hand,
corresponding mean free pathl 5vFt manifests itself explic-
itly in Eq. ~65! for the eigenfunction correlations by settin
the scale at which the Friedel-type oscillations get smea

We believe that averaging over an additional smo
quantum random potential is of conceptual importance
the problem of nonuniversal features in the level and eig
function statistics of a conventional chaotic billiard~without
boundary scattering!. Indeed, a consensus seems to ha
been reached by now that the energy averaging by itse
insufficient, and one has to average over some class of
tems ~with the same classical dynamics! in order to derive
the s model.58 Furthermore, without such an averaging o
cannot detect nonuniversal features, since the statistics
not sufficient.59 A smooth quantum random potential wit
parameters chosen in such a way thatvFt tr /R}\2a with a
.0 and vFt/R}\b with 0,b,1 is exactly the required
type of ensemble averaging. With this averaging, the balli
s model can be rigorously derived. Let us emphasize that
ballistic action obtained in this way will have the conve
tional ~obtained by gradient expansion! form ~1! only at
23531
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length scales exceedingl 5vFt. If one is interested in eigen
function correlations at shorter scales, one should avoid
gradient expansion and use the more general form~A5! and
~A8!, as explained in Sec. V and in the Appendix.

An additional smooth random potential discussed here
sembles the one introduced by Aleiner and Larkin in Re
60 and 57 where the problem of weak localization in ballis
chaotic systems was considered. There is, however, a
ceptual difference: while Aleiner and Larkin introduced fi
titious disorder in order to mimic diffraction on boundarie
of the billiard, we consider a real random potential, i.e.,
ensemble of systems, averaging over which allows one
derive thes model, as explained above.

We close the article by mentioning two open issues.
~i! The problem of repetitions5 ~which appear not to be

counted properly in thes-model approach! still awaits reso-
lution. For the model considered in the present article t
problem does not apply since in view of the diffusive natu
of boundary scattering, all directions of motion after a sc
tering event are allowed so that the repetitions are irrelev

~ii ! We used the boundary condition for diffusive scatte
ing in a linear form, i.e., we supplemented the Liouville o
erator determining the quadratic form of the action by t
boundary condition. This was sufficient for the problem
considered in the present article, when the relevants-model
correlation functions are determined by the structure of
action in the vicinity of spatially homogeneous configur
tions and therefore the results are governed by the eigenf
tions and eigenvalues of the Liouville operator. However,
general, this is not sufficient, and a boundary condition
theg(r,n) field is needed. In particular, one would need su
a general boundary condition to calculate ‘‘tails’’ of variou
distribution functions~of relaxation times, eigenfunction am
plitudes, local density of states, inverse participation ra
etc.!, analogously to how it has been done for diffusi
systems.61,7
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APPENDIX: BALLISTIC s MODEL FROM
SMALL-ANGLE SCATTERING

Here we outline derivation of thes model based on av
eraging over a smooth random potentialU(r) ~see Sec. V!,
following Refs. 56,62. After the averaging and the Hubba
Stratonovich decoupling by a supermatrix fieldQ(r,r8) one
finds the action
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F@Q#5Str lnFE1 i
v

2
L2Ĥ02Q~r,r8!V~r2r8!G

1
1

2
StrE drdr8Q~r,r8!V~r2r8!Q~r8,r!,

~A1!

whereĤ05p̂2/2m is the free Hamiltonian. The correspon
ing saddle-point equation has the form of the self-consis
Born approximation~SCBA! and possesses a set of trans
tionally invariant solutionsQ(r,r8)5Q(r2r8), which can be
most conveniently written down in the momentum space

Q~p!5ReGR~p!1 iTLT21 Im GR~p!. ~A2!

HereGR(p) is the retarded Green’s function in SCBA,

GR~p!5S E2H0~p!1
i

2tp
D 21

,

1

2tp
52E ~dp1!V~p2p1! Im GR~p1!, ~A3!

and the matricesT belong to the super coset spa
U(2u1,1)/U(1u1)3U(1u1). Allowing for slow variation of
T with the spatial coordinater15(r1r8)/2 and with the di-
rectionn of the momentump yields the soft modes,

Q~r1 ,n!5T~r1 ,n!LT21~r1 ,n! ~A4!

with Q2(r1 ,n)51. The action for these soft modes has t
form ~we setv50)

F5Str lnS E2Ĥ02
i

2E dn8Q~r,n8!w~n,n8! D
2

pn

4 E drdndn8 StrQ~r,n!w~n,n8!Q~r,n8!,

~A5!

where w(n,n8)52pnV(pFun2n8u) is the scattering cros
section. Performing now the gradient expansion of Eq.~A5!
and usingt tr@t, one gets62 the action of the ballistics
model @generalizing Eq.~1! to the case of a nonisotropi
disorder scattering#,

F̃5pnvFE dr dn StrLT21~r,n!n•“T~r,n!

1
pn

4 E dr dn dn8 StrQ~r,n!w~n,n8!Q~r,n8!.

~A6!

Let us emphasize that the action~A5! takes the form~A6!
only in the limit t/t tr→0. While for most purposes the dif
23531
nt
-

ference between these two formulas is irrelevant, it is
crucial importance for settling the double-counting proble
considered in Sec. V, since it is related to the short-sc
behavior of thes-model propagator. For this reason we u
there the action in the form~A5! @and not the approximation
~A6!#.

To illustrate the connection and the difference betwe
the actions~A5! and ~A6!, it is instructive to write down
their quadratic forms at low momenta. We writeT(r,n)51
2W(r,n)/2 and introduce the angular harmonics of theW
field, Wm(r)5*dn exp(2imfn)W(r,n), and of the scattering
cross section,wm5*(df/2p)eimfw(f). The result for the
quadratic form of the action~A5! then reads56,62

F05
1

2E ~dq!StrW2m,12~2q!Gmm8~q!Wm8,21~q!,

~A7!

where

Gmm8~q!.pnFwm

w0
~w02wm!dmm81

vF
2

2w0
q2dm0dm80

2
ivF

2

wmwm8

w0
2 ~ q̄dm,m8211q̄* dm,m811!G ,

~A8!

whereq̄5qx1 iqy . On the other hand, the quadratic terms
the action~A6! are given by Eq.~A7! with the kernelG
replaced by

G̃mm8~q!5pnF ~w02wm!dmm8

2
ivF

2
~ q̄dm,m8211q̄* dm,m811!G . ~A9!

Inverting Eqs.~A8! and ~A9! at smallq, one finds that the

corresponding propagatorsD5G21 and D̃5G̃21 are identi-
cal, up to a constant term,

Dmm8~q!2D̃mm8~q!5
1

pnwm
dmm8 . ~A10!

The physical meaning of this difference becomes clear fr
the calculation in Sec. V~avoiding the momentum expan
sion!. Specifically, the propagator for the actionF is given
by a series of ladder diagrams, beginning from the te
‘‘with 21 scattering’’@the termB21 in Eq. ~60!#, while that
for the actionF̃ starts from the term with zero collisions~free
motion!, i.e., from the second term on the rhs of Eq.~60!. As
a result,D̃5D2B21, which reproduces exactly Eq.~A10!.
5-17
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