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Level and eigenfunction statistics in billiards with surface disorder
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Statistical properties of billiards with diffusive boundary scattering are investigated by means of the super-
symmetric o model in a formulation appropriate for chaotic ballistic systems. We study level statistics,
parametric level statistics, and properties of electron wave functions. In the universal regime, our results
reproduce conclusions of the random matrix theory, while beyond this regime we obtain a variety of system-
specific results determined by the classical dynamics in the billiard. Most notably, we find that level correla-
tions do not vanish at arbitrary separation between energy levels, or if measured at arbitrarily large difference
of magnetic fields. Saturation of the level number variance indicates strong rigidity of the spectrum. To study
spatial correlations of wave-function amplitudes, we reanalyze and refine derivation of the ballistic version of
the o model. This allows us to obtain a proper matching of universal short-scale correlations with system-
specific ones.
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[. INTRODUCTION ate the formula explicitly in the nonuniversal regime, one has
to resort to numerical treatment.

Chaotic cavities, commonly understood as quantum sys- In this paper we will use an alternative approach that has
tems whose classical analogs exhibit chaotic dynamics, hawegtracted considerable interest recently: the ballistrmodel.
become a common object of research in condensed mattédrgeneralizes the supersymmetricmodel, which proved to
physics. Experimentally, features of chaotic motion appearbe very successful for disordered metd)go ballistic disor-
among others, in quantum ddtsnicrowave cavitied,and ~ dered system&? In the framework of this approach, all non-
small metallic clusterd. For definiteness, we talk below universal quantities are expressed through eigenvalues and
about electrons in quantum ddtsilliards). eigenfunctions of the Liouville operator, which introduces

On the theoretical side, properties of chaotic cavities ar@onuniversality. It has also been conjectured that the same
subdivided into universal and nonuniversal. @yiversalwe  model in the limit of vanishing disorder describes statistical
mean physical quantities that only depend on the global symproperties of the spectra of individual classically chaotic sys-
metry of the systenisuch as the time reversibiliand pos-  tems. This conjecture was further developed in Refs. 10-12
sibly trivially scale with the size of the system, but are notwhere theo model was obtained by means of energy aver-
influenced by any cavity-specific details of dynamics of theaging, and the Liouville operator was replaced by its
electron motion. At the same time, these quantities differ foregularization—the Perron-Frobenius operator. The progress
systems with chaotic and integrable classical analogs, analong this direction is complicated by the fact that the eigen-
are therefore conceptually important when one discusses sigalues of the Perron-Frobenius operator for many systems
natures of chaotic behavior in quantum systems. Examples @fre unknown, while its eigenfunctions can be extremely sin-
universal effects include low-frequency level statistics, agular.
well as leading-order conductance and shot noise. These We thus conclude that it is highly desirable to have an
properties are by now well understood and described by variexample of a chaotic system that is analytically solvable. We
ous types of random matrix theoffzaussian ensembles of would expect that universal properties of such an example
Hamiltonians for closed or almost closed systems or circulawill conform with the predictions of the random matrix
ensembles of scattering matrices for open systems theory(RMT), whereas explicit expressions for nonuniversal

On the other handhonuniversalquantities, such as level quantities would improve our understanding of properties of
correlation function for high-energy separation or eigenfunc-chaotic cavities.
tion correlations at large distances, are determined by Currently, we are unaware of such an example with cha-
sample-specific details of electron motion. These nonuniveretic dynamics. However, one can instead treat systems with
sal quantities thus discriminate between the behavior of insurface disorder, which leads to diffusive scattering at the
dividual billiards. boundary of a billiard. This model mimics the behavior of a

A standard tool for treating fluctuations of the density of system in the hard chaos regime: as a result of surface dis-
statedDOY) in chaotic systems is the real space path integrabrder any two arbitrary close trajectories spread apart after
approach. Within this method, the DOS correlation functionthe first collision with the surface. This must be contrasted
is given by Gutzwiller's trace formuld® which has a form  with a slightly distorted integrable billiard with the typical
of a sum over periodic orbits of a specific billiard. To evalu- spatial scale of this distortion being of the same order as the
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size of the systen '°Those systems, termed by the authorsordinater and direction of the momentum To simplify the
rough billiards, exhibit slow diffusion over angular momen- presentation we consider the case when the time-reversal
tum. Systems with surface disorder are also different fromsymmetry is broken in the quantum problem but is preserved
integrable systems withbulk disorder in the ballistic in the classical one, which can be achieved e.g., by applying
regimel’~1° a weak magnetic fieldSee the discussion in Sec. I\J.OThe
Studies of level and eigenfunction statistts have angular brackets denote averaging ove; (O(n))
shown that, indeed, universal properties of a billiard with=Jdn O(n) with the normalizationfdn=1, and the super-
diffusive surface scattering agree with the RMT predictionstrace is defined as the trace of a boson-boson block minus the
At the same time, nonuniversal features have been fountiace of a fermion-fermion block. The matigds constrained
which reflect the classical ballistic dynamics in the billiard. by the conditiong(r,n)?=1, and generally can be repre-
Subsequently, analytical results for persistent curfasd ~ sented asg=TAT !, with the matrix A=diag(1,1-1,
transport propertiés of chaotic cavities have been obtained —1) discriminating between retarded-advanced components
in the same model. Numerically, billiards with surface disor-of the Green’s function. As usualg andv=m/(2) denote
der have been studied in connection with the I&¥&land the Fermi velocity and the density of states at the Fermi
eigenfunctio*?® statistics and magnetoconductafitelo  surface, respectively:(r) is the (position-dependeptlastic
this end, Refs. 24—27 consider a lattice model with thescattering time, which originates from the disorder. We use
boundary sites having random energies. A treatment of Rethe units withzZ =1 in the rest of the paper.
28, which models surface disorder by cutting off the bound- When all the disorder is at the boundary the scattering
ary sites by confining potential and eventually proceeds wittiime 7(r) must be chosen in a way that it is infinite every-
numerical evaluation of persistent currents, seems to describvehere except for a thin layer around the boundary. In the
a similar physical situation. consideration below this term only modifies the boundary
In this article, we perform a systematic analytical study ofcondition.
a circular billiard with boundary disorder, based on the The action(1) differs from that in thes model for diffu-
o-model approach. The paper is organized as follows. Secsive systenfsin two respects: First, the Green’s functigiis
tion Il presents ther model for a circular billiard with dif- defined in phase space; second, 89,.is linear in gradients,
fusive boundary scattering. We subsequently use this apwvhereas its diffusive counterpart is of second order in spatial
proach to derive the results for level statisti&ec. IlI), derivatives. Despite this difference, methods developed for
parametric level statistics describing variation of individualthe calculation of level and eigenfunction statistics in diffu-
energy levels with applied magnetic fiel@ec. I1\), and  sive systems can be applied here. Indeed, these properties are
eigenfunction correlation&Sec. V). In Sec. VI we generalize governed by the structure of the action in the vicinity of the
the problem, imposing the mixed boundary condition, in-homogeneous configuration of tiefield?® g(r,n)=A (see
stead of the purely diffusive reflection. This boundary con-Refs. 6 and 7 for reviey In this case the action may be
dition enables us to model a broader class of chaotic systemepnsiderably simplified. Writingi =1—W/2+ - - -, we find
where the lowest Lyapunov exponent is parametrically dif-the action to leading order i,
ferent form the inverse time of flight. The obtained results )
are summarized in Sec. VII, where we also present a discus- _ _J N
sion of some open problems. A brief account of the results of Fol W 2 dr dn St{Wo,(K=10) W], @

Secs. lll and V has been previously given in Ref. 21; theyhere the indices 1 and 2 refer to the advanced and retarded

Izealel statistics(Sec. Il) were independently studied in Ref. decomposition ofV, andK =v£nV is the Liouville operator.

This “linearized” action now has the same form as that of a
diffusive system, with the diffusion operaterD V? replaced

Il. CIRCULAR BILLIARD WITH DIFFUSIVE BOUNDARY by the Liouville operator. Thus, all the results derived previ-
SCATTERING: o-MODEL APPROACH ously from the linearized action for diffusive systems can be
A. General considerations directly used for our model, provided the eigenvalues and

eigenfunctions of the diffusion operator are replaced by

We consider a two-dimension&D) circular billiard of a those of the operatdi.

radiusR, which is clean(ballistic) inside, and contains some . - . . .
disorder(to be specified beloyat the boundary. Our starting Since disorder is only present in the close vicinity of the

point is thes model for ballistic disordered systefi8The boundzilry, we model it by su.p.plementmg the Liouville op-
effective action for this model has the form eratorK by a boundary condition. Generally, the boundary

condition for an eigenfunctiorp(r,n) relates its values for
outgoing and incoming particles at a point on the surface,

TV ) 1
Flom-- 2 | drSt{leg(r»—m@(r»z

o(r,n)= f )>O(N-n’)B(n,n’)dn’l
(N-n’
—2UF<AT1n-VT>} (1)
XJ . (N-n")B(n,n")e(r,n")dn’,
Here the semiclassical Green’s functigfr,n) integrated (N-n)>0
over energies is a¥4 supermatrix that depends on the co- (N-n)<0 (3)
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with some kerneB. Here the point is taken at the surface,
[r|=R, andN is an outward normal to the boundary. The
form (3) ensures that no current flows through the boundary

of the billiard.

The scattering kerneB was intensively studied in the
context of the boundary condition for the distribution func-
tion (for review, see Ref. 30and found to be model depen-
dent. Realistic models of short-range surface randomness
(such as a boundary narrow layer of impurities or a ballistic /
orifice in a disordered mediunlead to general boundary 0
conditions of the typ&€3), where the kerndB is a parameter-
less function of order one.

Following Refs. 31-33, we approximate the above, rather
complicated, boundary condition by a simpler one, where a
electron reflects diffusively with probability and specularly
with probability 1- « (0=a=<1),

FIG. 1. Natural parametrization of the constant energy shell in
erms of positionr=(r,d) and direction of motiom and its rela-
tion to the alternative parametrization by the coordinaigg’,x
introduced in the text.

real part, and no regularization, like that discussed in Refs.

_ N.1 N’ 11 and 12, is needed. Below we review properties of eigen-
¢(r,n)=ma (N,n,)>0( ) e(r,n’)dn values\ of the operatoK,
+(l_a)(p(r!n”)v (N.n)<0 (4) an'V(P)\(r'n):)\(P)\(rln)l (5)

supplemented by the boundary condition

where the vecton2prime is chosen so that the reflection
from n” to n is purely specular. Although Eq4) does not go(r,n)=7'rf . (N-n")g(r,n")dn, (N-n)<0. (6)
correspond to any particular known microscopic model of (N-n")>0
disorder, it is commonly believed to provide a good qualita- The constant energy surface can be parametrized by the
tive description of surface scattering interpolating betweerihree real numbersé(6’,x), where the angle (6') corre-
purely diffusive @=1) and purely speculara(=0) reflec- Sponds to the point where the straight line passing through
tion. r=(r,9) in the directionn (—n) crosses the boundary, and
With the exception of Sec. VI, we consider below purely X is the distance from the boundary tcalong this straight
diffusive reflection[Eq. (4) with a=1]. Physically, it de- ~line (see Fig. 1. To cover the whole energy surface the pa-
scribes quantum scattering due to short-range disqmer ~ fameters must change in the regior<6,6” <2 0<x
related at the scale of the order of the wavelength ). <2Rsin|(6—6')/2]. Equation(5) then expresses the eigen-
Alternatively, the diffusive boundary condition of this type fUNCtion ¢ at anyx through the eigenfunction at=0, i.e.,

. . hrough the function describing particles scattered from the
may result from the purely classical scattering off a Stronglytboungary. In particular, the e?ggnfunction for the particles

corrugated surface. As noted in the Introduction, atomic-, . . ,
scale disorder has the feature that an electron loses memo‘?{/rIVIng o the boundary is
about the direction of previous motion after the first collision ] 0’
with the boundary. The system is thus describedwaychar- <P>\< 6,6, x=2Rsin )
acteristic energies, which are the mean level spadirend

the inverse time of flight through the billiakgd- /R. This is a , 2R\ |6—0'
special type of a billiard, analogous to “hard chaos” behav- =¢r(0,0",x=0)ex e N2 ) ™
Ioré);(g[?onnw\r}?l?/sC(;]ea\?(;[lc(é;f)tethmes .general situatiar<c1l. A .NOW the bour_ldary conditilonie) is “S‘?d to fi_nd q_closed
new regime appears far<1 when the timéR/(vg«a) during integral equation f°‘°x(9"9~’><:°) which is S|mpllf|ed by
which an electron remembers its initial direction of motion the ansatap,(6,6",x=0)=¢(6— 6")exp(l #'), | having the
differs parametrically from the time of flighR/v. In this ~ Meaning of the angular momentum,

2

regime the system is described bigree distinct energy _ 1w _ e
scales. ¢(6)e"'0=§f0 dé(sing)e?¢sn¥p(20), 8
with the notationé=RA/v. Since the right-hand sidehs)
B. Eigenvalues of the Liouville operator for diffusive of Eq. (8) does not depend ofy, the solutions may only have
scattering the forme(6) e . Substituting this in Eq(8), we find that
As we have mentioned, the level statistics of our billiardthe eigenvalueg obey the following equation:
are entirely determined by the eigenvalues of the Liouville 1 (n
operatork. Due to the boundary conditioi) the evolution Ji(§)=—-1+ Efo dé (sing)exf 2il 6+2&sing]=0.
becomes irreversible, the eigenvalueskohave a positive 9)
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40.0 - - ' also used in the alternative derivation of the low-energy level
correlation function; see Sec. Il B.

300 |
1. Green’s function integrated over momenta

In this subsection we calculate the Green’s function inte-

' 200 |
- grated over momenta:

100 | &

HB(rl,rz):f dnldnzp(rl,nl;rz,nz), (12)

8.0

which describes the probability to find an electrom aafter
it has been found at, and is important for the wavefunction

FIG. 2. The first 1X 11 (0<k,I<11) ei I f the Liou- . . .
o s ( ) eigenvalues of the Liou correlation. Integrating Eq11) overdn,, we obtain

ville operatorK in units ofv /R, as given by roots of Eq9).

dh

The eigenvalue equatig®) cannot be solved analytically Ve o=
1 TV

in a closed form; however, the combinations of eigenvalues

that enter level statistics can be expressed through the func-

tionJ, . Below we list some properties of these eigenvaluesN€'€N(r1.n1:r2) =fdn,D. To solve Eq.(13), we use the
I - prop 9 same strategy as with E@5) and replace the coordinates

For each value of=0,+1,+2,... Eq.(9) has a set of (r,.ny) by the variablesd, , &/ x

solutions & with &,=¢_, =&, which can be labeled *'!'"* y SRR

with k=0,=1,+2, ... (evenl) ork==*=1/2+3/2, ... (odd

). Thus, the eigenvalues form a two-parameter set. IFor N(01,61.X1:r2)=h(61,61,X;=0;r2)

=k=0 we have{y=0, corresponding to the zero mode

1
S(ri—ry)— V}’ (13

: e 2 1
¢(r,n)=const. All other eigenvalues have a positive real +—J’dexg S(r(6,601,X])—r)— /.
part Re, >0 and govern the relaxation of the correspond- PrJo v
ing classical system to the homogeneous distribution in the (14)

phase space.
The asymptotic form of the solutions of E@) for large

POt - The functionh(#6,,67,x,=0;r,), which describes the par-
|k| and/or|l| is given by the saddle-point method:

ticles leaving the boundary at the poinR,@,), does not
depend or9; . Using the boundary condition for the operator

0.6 +0.14 Inl +0.557ik, O=<k<I K, we obtain the equation for this functigbelow the irrel-
~ . 1 ion i
Eul (INK)/4+ i (k+ 1/8), 0=l <k. (10 ﬁ\(/zn.tra)r]guments are dropped and the function is denoted by
1:12)1

/"

Note that fork=0 all eigenvalues are real, while for high 1 f2m
values ofk they lie close to the imaginary axis and do not h(6,;ry)= ZJ d6”sin?h(el+ 0";r5)
depend on. Figure 2 shows a plot of the first X111 eigen- 0

values of the operatdf, as found from a numerical solution 1 (2w (2Rsin(o,-0"112)  , . 0"
of Eq. (9). +—2pF . de fo 1sm7
. . . 1
C. Green's function of the Liouville operator X[ 8(r(6",6,,x])—ry)— vik (15

The Green’s function of the Liouville operator
D(rl,nl;rz,nz) is the time-integl’ated probablhty to find the Ca'cu'ating the second term in the rhS, we obtain
particle at the point of the phase space,f,) if it started
the motion at (,,n,). This function obeys the equation

1 2 ) 0//
h(01;r2):Z d0”sm7h(0l+ 0";r,)
0
N 1
KD(r{,ny;rp,no)=—18(r{—ry)d(ny—ny) — =1, 1 1(~ ~ -
TY \% - — i
a1 +PF F(ry,0,—95) Vf rodr,dd,

XF(ry,0,— ) |. (16)

whereV= 7R? is the area of the billiard, and the operator
acts on the variables, andn,. The Green’s function is re-
lated to the correlation of the wave functio(®ec. V). It is Here we have introduced the function
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F(r.0) R—r cosé o ) 1 1j G 1
r,0)= , r,ro)=—{ ———o| dri=——
R%+r2—2Rr cosf O ampe | [r=ral V) TR =y
~ l 1
and used polar coordinates,( ) for the pointr,, k=1,2. - vf dr2—|r SRRV dfldfz|r il
Equation (16) is solved by expanding the function 12 12
h(6.;r,) in a Fourier series; in this way we find all the -

Fourier componenth, except fork=0. The component

is not determined by Ed16) and must be fixed by the con-
ditions thatlIg(rq,r,) is symmetric and its integral oveir,
equa|5 Zerdthe conservation of the number of parti(j[es It can be actually traced in the course of the calculation that
Restoring subsequently the functibrin the bulk of the bil-  the termf, in Eq. (17) describes the propagation of an elec-
liard from h(6;;r,) by means of Eq(14) and integrating it  tron fromr; to r; along the straight linéno collisions with

over dn;, we obtain the Green’s function of the Liouville the surfacg Likewise, the termf, describes the processes
operator integrated over momenta, that involve at least one collision; furthermore, in the factor

4k?—1 in f, the term 4?2 originates from the trajectories
with one collision, whereas-1 is related to the double and
g(ry,rp)="fo(ry,ry)+f1(rqe,rp), (170 multiple collisions.

4k2_l I’ll’z k
fi(ry,rp)= (

A7peR 24 Ak ?) cosk( 9 —I5).

2. Full Green’s function

Analogously to the previous subsection the value of the fundiian the bulk of the sample is expressed through its value
on the boundary. Instead of E(L4) we now have

2 (%1
D(0y,07,%1;72,n2)=D(6q,07,%X,= Or2,n2)+pr dxi| 8(r(6y,67,X7)—r)8(ng—ny)— o

vik (18

Due to the boundary condition, the functid(6;;r,,n,)=D(6,,0;,X,=0;r,,n,) does not depend of; and obeys the
equation

/" !

1 (2n . . 2m [ 2Rsin(o;-0"112)
1)(61;r2,n2)=4—1 . de sm?D(eﬁa ;r2,n2)+2—pF . de . XmsIFI?

1
X|8(r(6",6,,x] —r2)5(n(0”,91)—n2)—v}. (19

The integral ofs function in rhs is only nonzero i, = 65 ; integrating it with respect t@, and making use of the Jacobian
of transformation from the polar coordinates{,n) to the coordinatesx#,6’) (Fig. 1),

J(x,0,0") 2r 1

ar,on) R __|6-6'"
SIN 2

we find that the second term in the rhs equale{2-R)[ 5( 6, — 6;) — 1/27], where#, is the polar angle corresponding to the
point at the boundary to which the vectoy points fromr,. For definiteness, we restrict all the anglgs 61, 6,,05 to the
interval[ 0,27]. Continuing in the same way as in the previous section, we find the final expression for the Green’s function
of the Liouville operator,

D(rq,nq;r5,N5)=Dy+ D1+ Dy,
1 r—r S(ni—ny) 1 ~ [Tr—r Sni—ny) 1 - [ r—r S(n;—ny)
Dy= 5( - 2—nl) (N 2)——fdr15 — 2—nl) (~1 2——fdr25 L2 —nl) (1~2
7PF [ri=ro] n=rl VvV [ry—ry| [ri—r| V ry—ry| ry—ry]
1( -~ -~ [T S8(n;—n
+_2f drldl’25( ~l ~2 _nl) (~l ~ 2)],
\ Iri=rol [ri—ry]

2925 '129—130 5)2— 6| 6,— 05+ 27
T (6,— 02)_2’ = 24Rp[(1 | 01— 03] +277].

(20
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It is straightforward to check that the integration of E20) o,
overdn,dn, gives Eq.(17). The Green's functiori20) pos- S(w)=2 Si(w), S(w)E; A—io)™ % (22
sesses obvious properties
) B ) According to the Cauchy theorer§, can be represented as
D(r1,nyr2,n2) =D(rz, —Ng;ry, —Ny) an integral in the complex plane,
and

(z

(RpLg LT,
Si(w)= ve) 2@ Je (z—iwRlvg)? J,(2) -

where the contou€ encloses all zeros of the functidi(z).
gé/aluating the residue a=iwR/vg, we find

(23
J‘ drldnlp(rl,nl;rz,nz) =fdl’2dn2D(r1,n1;rz,n2)=0.

Actually, Dy is a solution of Eq(11) in the infinite space
and thus represents propagation processes that do not invol
any collisions with the boundary. This kind of propagation is
only possible ifn; coincides withn, and both are directed
alongr,—r,. FurthermoreD; is responsible for the propa-
gation fromr, to r; with only one intermediate collision,

which necessarily requires; = 0, . Finally, the termD, de-  Considering the limiw—0 and subtracting the contribution

scribes propagation that involves two or more intermediatef ) ,,=0, after lengthy but elementary algebra, we obtain
collisions.

d2

e InJ,(2).

z=iwR/vg

Si(@)=—(Rlve)? (24)

2
UF
lll. SPECTRAL STATISTICS A:(E) S(0)
In this section we discuss the level correlation function
and level number variance of the circular billiard with the
boundary conditior{6). As we have mentioned in the Intro- In contrast to the diffusive cas8this constant is negative:
duction, the results for the level statistics follow readily from the level repulsion inhancedvith respect to the result for
general formulas derived for the diffusive conductorhiere  the RMT. We recollect that in the diffusive case the level
the eigenvalues of the diffusion operator are replaced byepulsion issuppresseds compared to RMT, and this sup-
those of the Liouville operator. pression has a plausible physical explanation. Indeed, the
nonuniversal correction in diffusive case is proportional to
ggz, wheregy=E./A>1 is the dimensionless conductance
dand E. is the Thouless energy. In disordered conductors, the
parametegy is responsible for the metal-insulator transition/
crossover. This nonuniversal term thus reflects a tendency to
localization in level statistic4 and would become of the
order of unity forgq~1, when the system approaches the
insulating regimdwith uncorrelated levelR,(s) = 5(s)].
In contrast, the last term of Eq21) describes different
physics. For ballistic systems, the lingig~1 does not mean
the insulating regime, but rather a quantum-mechanical sys-

= —19/27-17572/1152+ 64/ 97?)~ — 1.48. (25)

A. Low frequencies

We define the level correlation function in a standar
way,

Ro(w)=(VA)*(v(e+w)v(e))—1,

where v(e€) is the (fluctuating density of states and\
=(Vv) ! is the mean level spacing. In the range of rela-
tively low frequenciegwhich in our case means<vg /R,
see belowthe functionR,(w) quite generally has the forth

(s=wl/A) tem far from the semiclassical regime. Energy levels in these
systems may be strongly correlated, even more strongly than
sifrs A in RMT; hence the tendency to enhancement of the level
Ra(s)=4(s) — (77—5)2+Tsm21-rs, repulsion observable from Eq21). We will see that this
79 tendency is even more pronounced in the high-energy behav-
(21)  ior of the level correlation function.

R The last point we make is the following. Equati(®1) is

gb:é_z — p% valid as long as the correction is small compared to the RMT

The first two terms are universal and actually correspond t
the random matrix theory result. They are associated with th
contribution of the mode with zero eigenvalue of the Liou-
ville operator® The last term represents the nonuniversal cor-

rection; the information about the operafbrenters through
the dimensionless constaAt=3'¢,%, where the prime in-

dicates that the eigenvalug,=0 is excluded. The value of

A, as well as the high-frequency behaviorRf(s) (see be-
low), can be extracted from the spectral funcfion

result, i.e., providedo is below the inverse time of flight,

gF/R- Thus, the inverse time of flight serves as a Thouless

nergy for this ballistic billiard, withg,, playing the role of
e dimensionless conductance. Note tigais related to the
numberN of levels below the Fermi energy ag=N2

B. Low frequencies: Alternative derivation

The constan® can also be found in another way, using

the Green’s function of the Liouville operator. Indeed, the
quantity S(0) can be written in the following form,
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Thus, the smooth part of the level correlation function is

S(O)Z(WV)zf dradradn,dnyD(ry,ng;r,Nz) an oscillating function of frequency, with the period of
7muel2R and a slowly decaying amplitude. To clarify the

XD(ry,ny;ry,Ny), (26)  connection with the periodic orbit theory, we note that any

. L . _ closed sequence of chords joined at vertices is a “periodic
where the functiorD is given by Eq.(20). Equation(26) is ot i our model. The above period corresponds to the

directly verified by expanding the Green’s function in the.,ariggic orbit” that traverses twice the diameter of the bil-
eigenfunctions of the operatét. Now we calculate the in-  |iard (the longest “periodic orbit” with two verticés The
tegral in Eq.(26) directly. It is instructive to split the result amplitude of the oscillations is proportional ¢g 2. This is
into three terms, very different from the diffusive regime, where the smooth
part of the level correlation function does not exhibit any
S(0)=Sa+Sg+Sc, oscillations. Furthermore, in the 2D case the AS contribution

, vanishes, and the leading behavior is provided by weak lo-
R
5 DODOI(E) (‘“ﬁ)’ @0

calization effects’
R\?2( 8 =2
SB: j (DOD1+D1D0+D1Dl): (U_) ( - =+ —=
F

2. Oscillating part

The oscillating part of the level correlation function
: RS°{s) for frequencies»> A is given by® (see also Ref. 63

R3*(s)=(1/2m?)cog 27s)D(s), (31
Sc= j (DoDy+D;Do+ D1 Dy + DDy +D,Dy) whereD(s) is the spectral determinant,

_(R)2< 80 27° =? 2772>

T D(s)=s2 1—isA/N ) " H(1+isA/N) L
277 9 16 128 (s) Il « W) X <)

Ve KI%{00
(32)

which reproduces Eg25). In our notation,S, is given by

the processes that involve no collisions with the boundary, SinceA™?#%InD(s)/ds’=—2ReS(w), the spectral deter-

Sg is a contribution of trajectories with only one collision, minant can be recovered from EQ4),

andS; takes into account all other processes. We see that all

these contributions are of the same order and cannot be dis-

regarded.

T 6ecl+czs 1

D(S)Z(E

(33

g8 1 J(is/gp)di(—is/gy)’

wherec, andc, are arbitrary constants that are fixed by the
requirement that Eq.31) in the rangeA <w<uv¢ /R repro-

In the rangew> A the level correlation function can be duces the low-frequency behavi@®1). Expanding IrD in
decomposed into the smoofhltshuler-Shklovskii (AS)] /g, <1 and comparing it with the low-frequency expression
part;

C. High frequencies

1 A
Ré\s(w)=(A2/2W2)ReS(w), (28 In D(S)Z?_;,
b

and the parR3> which oscillates on the scale of the level hich follows from Eq(21), we obtainc,=c,=0. Finally,
spacing®® We consider below the high-frequency regime for s>1 (w>ve/R) Eq. (33) yields for the oscillating part

>ve/R. of the level correlation function,
1. Smooth part a4 27w
. . . . - RY*{w)= ——co§ —— (34
For high frequencies, the integral in the definiti®) of 12335) A

the functions), is small, and thu$ is close to— 1. Expand-

ing the logarithm in Eq(24) up to second order ié+1 and
using the Poisson formula,

It is remarkable that the amplitude of the oscillating part
does not depend on frequency. This is in contrast with the
diffusive case, where in the AS regime @bove the Thou-
o less energy the oscillating partR3*{w) is exponentially
E Q20— o 2 80— mn), (29) small® Such a beh_ayior indicates a strong rigidity of a level

[ n=—o system and is reminiscent of a 1D harmonic oscillator.

to sum ovet, we obtain foro>vg/R D. Spectral form factor

ve |12 oR To illustrate the nature of the oscillating terms in the as-
R/;S(w): =3 R) os( 4— — Z)' (30  ymptotes(30) and (34) we compute numerically the form
Op |\ cT® UF factor K(7)=[dw €'“"R,(w) of the two-level correlation
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X Ta5z0(r — 2m/A) z,(s)
X
b '—\/\/3\_
2 -
1 " A *
4R 2 CoT
vF A
FIG. 3. Form factor for the two-point correlation function
K(7)=[dw e'"“"Ry(w) for g,=5. The & function at7=2x/A is
shown as a vertical spike. It arises because of the nondecaying
oscillations(34). The 1A'T,— 7 singularity atT,=4R/v is related 1 2 8 % sig,

to the “periodic orbit,” which has period, and traverses twice the

diameter of the billiard. The same orbit gives rise to singularities at  F|G. 4. Level number variancE,(E) as a function of energy;

7=2m/A%T,. s=E/A. Curve 1 shows the RMT result, while curves 2 and 3
correspond to asymptotic regimes of Iq&6) and high(37) fre-

function forg,=5. The result is shown on Fig. 3. The non- quencies. The saturation valid” is given by Eq.(38).

zero limit atw— o of the oscillating parR3*{w) gives rise

to a &-function contribution of the form £%128y2) 8(+ ) 16g, 2[(20p\Y2 [4s =

—2m/A) (shown as a vertical spike in Fig).% The “peri- mES) =14yt '”7 - TB(%) cos(a - Z) :

odic orbit” that traverses the billiard twice along the diam- 37)

eter and has the peridd,=4R/v manifests itself as a set of ) _ _

power-law singularities inK(7) at =T, and r=2m/A Here y%O._577 is Euler's constant, amilis defined by Eq.

+T,. Near these singularities the form factor diverges like(29- The first three terms at the rhs of E§6) represent the

1\T,— 7 and 14T, = (27/A — 7), respectively. The peak to RMT contribution, which is logarithmic in e_nergi’;“?..lt is
the right of the first singularity is the contribution from the "€markable that the actual level number variance is always

“equilateral triangle” periodic orbit with the periodrl, smallerthanfthat given bthMT- g
=3\3R/vg. The same orbit causes small peaks mt As seen from Fig. 4, the two asymptote6) and (37)
=2m/A+Ts. perfectly match in the intermediate regimer~g, (E

~ve/R). Taken together, they provide a complete descrip-

tion of X ,(s). According to Eq.37), the level number vari-

ance saturates at the value

In practice, the description of level statistics by the means _

of thé) level correlation ?unction is not always ():lonvenient. S0 1+ y+In(16gy/77) > 1. (38)

Indeed, for low frequenciem<uvg/R nonuniversal effects This saturation again confirms the conclusion that we have

are manifested only as small corrections to RMT. For highalready made from analyzing the low-energy behavior of the

frequencies, the entire behavior is nonuniversal, but in thigsevel correlation function—the system of levels of our bil-

range the level correlation function is proportionaldp? liard is quite rigid, more rigid than that in RMT. We also

and small. Therefore, in order to study nonuniversal effectqiote that a saturation of2,(s) at the level 2(20)

in level statistics, experimentally or by means of computer~|n(1/AT,,;,), with T, being the period of the shortest

simulations, it is instructive to consider a quantity more senperiodic orbit, as well as its oscillations on the scale set by

sitive to these effects. Tmin, Was predicted by Berry for a generic chaotic
A well-known way to emphasize the high-energy behav-pilliard.*° In our case, the orbits with the smallest number

ior of the level correlation function is to study the variance of (two) of collisions with the boundary have periodsR/vg

the number of levels in an energy interval of widfsA, (corresponding ts~g,), and thus Eq(38) fully agrees with

Berry’s prediction*! This behavior is also in agreement with

E. Level number variance

s . . . .
_ Iz P the results for2,(s) found numerically for a tight-binding
S)= s—|s|)Rxy(s)ds. 35 2
2209 f—s( [shR(s) 39 model with moderately strong disorder on boundary
sites?25:42
Direct calculation gives fos<g, (E<vg/R) At the same time, we note that the behaviorSaf(s) is
P quite different from that in other reference systems. Indeed,
A o ; i
725,(8) =1+ y+In(27s) + i (36) for both diffusive systen?s and systems with bulk disorder

29,

and fors>g, (E>vg/R)

in ballistic regimé’~*°the level number variance ireater
than RMT. The energy at whick, is expected to saturate
depends on the type of disorder. For short-range impurities
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(white noise random potentjaarbitrarily short periodic or- Prior to the investigation of statistical properties of the

bits exist, and thus no saturation up do~ Eg is expected. energy levels, we find the eigenva|ues of the oper&@[

For a diffusive system and smooth random potential the difChoosing the symmetric gaude= B r/2 we obtain, instead
fusive dynamics lead to a linear increase of the level numbegf Eq. (9), the equation

variance,X ,(s) ~sl/gy, for s>gq~vvgly, while the short-

est orbits have lengths of the order of the transport mean free 1 (n

pathl,, , causing the saturation &,(s) at a parametrically Jfl’(g)z —1+ —f dosindexd 2il 0+2&sind+i ¢ sin 20]
larger values~vg/(l,A). Similarly, in “rough billiards” 2Jo

(slightly distorted integrable billiard$'9 the level number ~0 (41)
variance is higher than that in RMT and does not saturate '

until a values~v/RA parametrically exceeding the effec- which determines the dependence of the eigenvalye

tive Thouless energy, since the system is diffusive in the_ £ve IR on the magnetic field. We have introduced the di-
angular momentum space.

mensionless parametef=®/®d,, where®==7BR? is the
magnetic flux through the billiard an®d,=2=#%c/e is the
IV. PARAMETRIC LEVEL STATISTICS flux quantum.
A. Introduction Equation(41) defines a two-parameter set of eigenvalues
. . . o & - It stays invariant under the simultaneous transformations
In this section, we study the parametric statistics of eny_, _| ¢ &% andé— — ¢, which means that ik (B) is an
ergy levels of our system. Specifically, we assume that th%i env'alue of' the o eratcf(, then \* (—B) is also an ei-
billiard is placed in a magnetic field, which plays the role of gnv | P @
an external parameter. genvaiue.

Already a considerable amount is known on the subject For su_fficiently I.OW freqqencie_s and _magnetic fields the
(see Ref. 43 for reviewIn this paper we are interested in the parametric correlation functiof89) is dominated by the zero

parametric level correlation function model =k=0 (see below. To find the evolution of the cor-
responding eigenvalu&,,, we setl=0 and take a variation
Re(@,B)= — 1+ (VA)(»(E+ w/2B+BI2) of Eq. (41) with respect top<1,

2

>< P __
v(E-wl2B-B/2)), (39 %mwm+mgnm—%aW2a=a

J désing
0

where the mean magnetic fiell is introduced in order to
break time-reversal symmetry. The correlation functi®®) . . Y
has been previously investigated in the diagrrclmmaticwhICh giveséoo=867/(15m).
expansiorf? the o-model approacf>° the random matrix _ _ _
theory (by means of Dyson’s Brownian motion moﬁé‘i"ﬂ C. Parametric level correlation function
and by semiclassical methotfs’® The most remarkable ob- The parametric correlation functidRy, (39) is expressed
servation of these works is that when the perturbation isn terms of the retarde®R and advance&” Green’s func-
weakandthe frequencyw is low, the parametric correlation tions in the following way:
function is universal, i.e., it does not depend on the type of
the perturbation, provided it is properly rescaled, nor on any 1
details of the system. Re(w,B)==[T(w,B)+T(—w,—B)],
Below we studynonuniversalbehavior of the parametric 2
level correlation functior(39). We use thes-model formu- (42)
lation of parametric statistics developed in Ref. 45 to derive
an analog of Altshuler-Shklovskii formula for this function
and evaluate it explicitly for our model. T(w,B)=

x V(HGWE+wQE¥BQ)
mv

B. Eigenvalues of the Liouville operator in a magnetic field A —
. ] . XTrGYE—-w/2B—B/2)).,
The correlation functio39) may be obtained from the

supersymmetriar model with the effective actiofil) pro- where (AB).=(AB)—(A)(B) denotes the irreducible part
vided the operatoWV is replaced by the “gauge-invariant” (cumulan.
combinationV — (ie/2c) AA, whereA is the vector potential For low frequenciesind magnetic fieldgthe precise con-

that corresponds to the fielB: B=VXA. Repeating the gition is specified belowthe functionRy, is nonperturbative
steps leading to E¢2) we find that in the effective action and can be found using the random matrix theory. This re-
the Liouville operatorK is replaced by its gauge-invariant gime was previously investigated in Ref. 45. Here we focus
form in the magnetic field, instead on the case of higher frequencies and/or fields, when
_ th/?s smooth part of the parametric correlation function
- e Ry (w,B) is correctly described by perturbation theory.
K¢—an~(V— ?A)' 40 From Eq.(42 we obtain
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¢ 225 64g2¢*— 2257282
Rgs(5,¢)=7 492b 7 NL (44)
3 (6492 %+ 225m25?)
where, as previoushs= w/A. The result(44) applies when
both <1 ands<gy, but either¢>g, 2 or s> 1. Without
172 the magnetic field, =0 and we reproduceR}>(s,0)=

8, —(27%s%) 71, which is a smooth version of the RMT result
(21). Fors=0, we obtain
vp/R ©
FIG. 5. Different parameter regiorig the frequency-magnetic Rés(oxb): ﬂ
field plane for the parametric level statistics: 1, nonperturbative lZ&gj%q&“

(RMT) region; 2, zero-mode region; 3, Altshuler-Shklovskii region.
2. Altshuler-Shklovskii regime (region 3 in Fig. 5)

A2 1 For ¢>1 or s>g, we generalize Eq(24) to the case of
R3S(w,B)= —ZReZ — parametric statistics,
4 ki [—Iw+)\k|(B)]
N L } 1 G
: a2 R33(s, )= — Re> — InJf(z), (45
2 1 b
_ A e 43y  and use the fact thal’~—1. Expanding Id/(2) in J/+1
2m® W [~iw+Ng(B)]? up to the second order, we obtain
- . RAS(s. )= — ———ReS | —2 [ dosing
To identify relevant parameters, we consnﬂ%S at zero oA 272g2 ] o
frequency. For low fields, the sum in E@L3) is dominated b
by the lowest eigenmode, which as we have seen is quadratic Xexp(2il 0+2zsin6+i¢ sin 26)
in field, Ao~ v %/ R. The perturbation theory does not ap- )
ply for Agy<A, which corresponds to the fields<g, *?, 1d (= . .
! —=—| d#;df,sinb;sinb,
where as beforg,=v/(RA). Generally, a nonperturbative 8 dA2Jo
calculation is needed whan=<A and ¢=<g,, *? (region 1 in _ _ _
Fig. 5. Everywhere outside this regime, the perturbative ex- X exd 2il (6;+ 6,) +2z(sin 6, +sin 6;)
pression(43) applies.
For higher fields, the zero mode_still dominates _unﬂtil _ +i(sin 26, +sin 26,)] (46)
~1. At ¢~1 other modes become important, and, in addi-

. . .. z=is/
tion, the zero-mode eigenvalue cannot be taken quadratic in %

field any more. Thus, the poinp~1 plays for parametric Now we employ the Poisson formu(&9). The first inte-
correlations the same role as~vg/R for the usual(non-  gral in Eq.(46) vanishes identically, and in the second one
parametri¢ level correlation function. Generally, fap<1  \ye haveg, + 6,= . Under this condition, the integraloes

and o<ve /R we are in the regime when everything is de- not depencbn the magnetic field. We thus have
termined by the zero-mode approximation. For higher fields

¢>1 or frequenciesw>v /R, the system crosses over to 1 w
the Altshuler-Shklovskii regim&egion 3 in Fig. 3, when all Re(s, )= —Re f d@sin'6 exp(4is sin6/gy)
the modes are important. 9o 0

To end our qualita;ive_ discussion, we determine the (ggg)—l(g_z()sz/gg), s<g,
strength of the magnetic field needed to strongly affect the ~ R
classical dynamics. The cyclotron radius of an electron tra- (2msg,) < cog4s/gy—ml4), s>,

jectory in the magnetic field is;=muvgc/(eB). The mag- (47)

netic field strongly affects the dynamics provideg=R, . ] ) ]

which gives ¢=g,. Our theory is thus valid fop<gy, The asymptotes in the reginse-g, are identical tq Eq(30). '

which still leaves a large window for the reginge> 1. The result that_ the paramet_nc It_avel corr_elat|0n function

does not decay with magnetic field is very different from the

diffusive casé® and is actually quite surprising. It means that

the density of states at the same energy retains the memory
Using the result for the zero-mode eigenvalue, we findeven at very large fields, after the levels underwent many

from Eq. (43 avoided crossings. The field dependence of the correlator

1. Perturbative zero-mode regime (region 2 in Fig. 5)
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logarithm in Eq.(45), but it is only manifested as small (s—[s))Ry(s,¢)ds

corrections to the resu(@7).

appears if we keep higher orders of the expansion of the fs

1
D. Parametric level number variance ~ —ZReEI‘, [In Jf‘s(islgb)— In Jf’S(O)]. (50
o

The high-frequency behavior of the nonparametric level
correlation functionR,(s) is best seen in the level number A girect calculation gives fog, Y?<p<1

varianceX ,(s); see Sec. lll. Similarly, it is instructive to
introduce theparametric level number varian&(PLNV), ¢ o5 &
S
JR— J— [R— —_—— < < 2
U(E,B)=([N(E,B)~N(E,B+B)]?), (49 L2 IN2mst 1Y) —og gar 1<5<0nd
whereN(E,B) is the full number of levels in the energy strip 2 8gy >
E in the magnetic fieldB. In zero field PLNV vanishesin U(s,¢)={ —Z[In 15 +1+7y|, gyp’<s<g,
low fields it is generally linear in field; see Ref. 45f the ™
values ofN(E,B) andN(E,B+ B) are uncorrelated in high 2 329,42
fields (which is not the case in our situation, since the level —|In 15 +1+y|—A', s>gp,
correlation function does not decay in high figldBLNV \ 7 (51)
saturatesy (E,B—x©)—23,(E).
PLNV can be easily expressed through the level correla- : : ,
tion function[analogously to Eq(35)], &where y is again Euler's constant, and
s _ - - - 2 *°
Uis91=2 [ (= RIIRS) - RuE.0)1d5 (49 A=-23 [ 1-—2 | ~ous.
-s m? =1 41%—
wheres=E/A. Below we concentrate on the perturbative
regime ¢>g, *2, when In higher fields¢>1 we have
2 In27s+1+ +S2 ALS l<s<
;(n TS Y) g—g;—zy S<gp
U(s,¢)= 2 16 1 (52)
b
—|In——+1+y|—5, s>0,
2 2 Y73 9o

where the constark is given by Eq.(25). A comparison of In the standard diffusiver model! the correlation function

Eqg. (52 with Egs.(36) and (37) shows that in the limitp (53) can be written in the form of the integral over the

—oo PLNV differs from 2%,(s). This difference originates o-model fieldQ(r),

from the fact that the correlation functidty, does not vanish

at large¢ [see Eq.(47)]. . nA

C(ry,rp)=1lim 7<Gll(r1ar1)622(r21r2)
7]~>O

+G1aAr1,12)Gaa(r2,11)) 591 » (54)

According to Berry’s conjectur®. a wave function in a
2D chaotic system shows Gaussian fluctuations with the cowhere »=—iw/2>0 is the level broadeningG is the
relation functionV{ * (r):(r'))=Jo(per) (see Ref. 51 fora Green's function in the field, and the subscripts 1 and 2
recent generalization of this conjectur&he supersymmetry refer to the advanced and retarded decomposition, respec-
method allows one to derive this resqlthich is equivalent tively, the boson-boson components being always implied
to the zero-mode approximation for the mode) and to  (we drop the corresponding indige&quation(54) yields the
calculate system-specific correctiois>>’ following result>*

Let us consider the two-point correlation function

V. CORRELATIONS OF EIGENFUNCTIONS

Vzc(rlarZ):1+HD(rlyr2)+kq(r1_r2)

ri+rp ri+r;
2 2

C(ry,r)=A{ X |¢i<rl>¢i<rz>|5<e—ea>>. (53 +1p

Kg(ri=r2), (59
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wherell, is the diffusion propagatokq(r):JS(pFr)e*”', avoid the double counting. For this purpose, we find it in-
andl is the mean free path. In the framework of the ballisticstructive to consider a problem with an additional smooth
o model the diffusive propagatdi(ry,r,) is replaced by random potential(r) in the bulk, characterized by a corre-
its ballistic counterparklg(ry,r,) given in our model by Eq. lation function V(r—r")=(U(r)U(r")) with a correlation
(17). At this point we seem to encounter a problem. Indeed|engthd>\¢ and inducing a small-angle scattering. Specifi-
at short distancesr=|r,—r,| the classical propagator cally, we will assume that the corresponding transport scat-
Ig(ry,r,) is dominated by the contribution of the direct tering rate7-tj1 is negligible, i.e., the transport mean free path
path, l.=veTy IS large,l >R, so that the bulk scattering has es-

sentially no effect on the classical dynamics. On the other
(56) hand, the single-particle mean free pathv 7 (correspond-
TPe|r1— 1o ing to the total relaxation rate 1) will be assumed to sat-
This contribution, which becomes of order unityrat \g, Isty )‘.F<d.<| <Rand wil play_a role simi_lar ek df".for

the diffusivec model, separating the regions of classical and

would imply strong deviations from the universal Gaussian L
statistics. However, it is not difficult to realize that this con- dUantum treatment. The conditiori< ensures that the scat-

tribution is nothing else but a classical “copy” of the term tering on this random potential is of quantum-mechanical

ky(r1—1,). Therefore, we encounter a problem of the double(rather than clas.sm)a'hature and is correctly treated within
a - L . the Born approximation.
counting: one and the same contribution is taken into accoun T . .
. . . We first ignore the boundary scattering and will return to
twice, classically and quantum-mechanically. In the case of

i . it at the end of the calculation. Averaging over the realiza-

the diffusive o model this problem does not appear because. . .
o : : ions of the smooth random potentidi(r), one can derive

of the scale separation: the classical propagalgris re-

stricted to low momentaj<l~*, while the short-scaler( ;[.heg_mor(]:iel foIIow(|jr)g Refs. 56,6This derivation is out-
<l) physics corresponding to high momenta>(1 1) is ined in the Appen ')?' . . . -

. To calculate deviations of the eigenfunction statistics
treated quantum-mechanically.

. . ++7.34,53 54
The situation is different in ballistic case. The semiclassi-from universality, we writé [see Eq(Ad)]

cal descripFion extends now to all moment& pe. There- T(r,n)=To[1—W(r,n)/2], (57)
fore, there is no separation in momentum space between the

slow modegtreated within the semiclassical approximagion and then integrate out perturbatively nonzero modes de-
and the fast modes(treated exactly, i.e., quantum- scribed byW(r,n). The part of action/A5), which is qua-
mechanically, and a careful treatment is required in order todratic in W, has the following form in the momentum space:

Hg(ry,rp)=fo(ry,ry)=

1 1
FOZESUJ dnydn,(dg)Waq(—q,n1)Wix(q,Ny) ( - Ef (dp)w(ny,nw(Nn,nz)Gr(p4)Ga(p-)+ mrw(ng,ny)

1
= ESUJ dnydny(dg)Waoy(—0,n1)Wix(d,no)[ —A(Q;nq,ny) +B(nq,ny) T, (59)

wherep. =p=*g/2. In the last line of Eq(58) we introduced the definition& andB for the two terms of the quadratic form.
Equation(58) induces the contraction rules for integrals over nonzero mdésf. Ref. 57,

1-A _1+A 1+A _1-A
(Str[W(—q,n,)P]Str[W(g,n,)R])=2D(q;n,,n,)StrP 5 RT+2D(—q;nl,n2)StrP 5 RT’ (59
1+A 1-A 1-A 1+A
(StrW(—q,nl)PW(q,nz)R>=2D(q;n2,n1)8trPTStrRT+2D(—q;n1,n2)8trPTStrRT,
whereP andR are arbitrary matrices and the propagéafors given by the series
D=(—-A+B) =B '+B!AB 1+.... (60)

We are now ready to evaluate the ballistic counterpart of (&4). [with the o-model field beingQ(r,n)]. The Green’'s
function G there is given by
i -1
G=(E—HO—EJ dn’Q(r,n")w(n,n")| . (61

Expanding the tern{G,,G,,) in Eq. (54) up to quadratic order i/ and switching to the momentum space, we get
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) 1
f d(rl_r2)<G11(r1vrl)Gzz(rz1r2)>elq'(rl_rz): - Zf (dpy)dniw(ng,np)(dp,)dnaw(ng,ny)

X{[Go(p1-)Q1(—a,n1)Go(P1+) 111l Go(P2+)Q1(AN2) Go(p2-)122),
(62)
where Gy=i(Im Gr)Qq+ ReGg, Q0=T0AT51, and Ql(q,n)=T0AW(q,n)T51. Applying the contraction rule¢59) and

then performing the zero-mode integration, we reduce the rhs of@2gto the form
A
mf (dpy)dniw(ny,n;)(dp,)dnyw(n,,ny) Gr(pr+ ) Ga(Pr-) Gr(P2+ ) GalP2-)D(0;N5,N7)

A
W

jdn{dnidngdnéA(q;ng,né)D(q;né,ni)A(q;ni,n’l’ . (63

Note that in order to simplify this expression, we havesical (f;) contributions perfectly complement each other, de-
used time-reversal invariance of the classical motionscribing the motion before and after the first collision,
D(—q;n,n")=D(g;—n’,—n). Substituting Eq(63) in Eq.  respectively.

(54), we find the contribution of théG,,G,,) term to the Until now, we did not consider the ballistic version of the
wave-function correlator, last term in Eq.(55). Such a term originates from the first
order (in D) correction t0{G1,Gy1). For [r;—r,/>\g the
VZC(fl,fz)|<GnGzz>— 1 corresponding contribution to the wave-function correlator is
much smaller than the term coming frof®,,G,,) [second
_ 12 zf dnydny(ny|ADA|ny) term in Eq.(65)], which js of orQer prB, and thu's can be
(mv) Wy neglected. However, this contribution becomes important at

[ri—ro|~X\g. In particular, forr,=r,, the orderd contribu-

_ 1 fdn dn tion from (G,,G,;) is found to be equal to that from
(mv)2wg) T (G11G2, yielding
X(n|/AB"*A+AB'AB A+ -:[ny). (64 V2C(r,r)=2+2f,(r,r). (66)

The rhs of Eq.(64) is the sum of the ladder diagranisor-  After integration over Eq. (66) determines the nonuniversal
responding to 1,2,3.. intermediate scattering processes correction to the average inverse participation ratio
yielding precisely the classical propagatdi(rq,r,). We

see, however, that the first term in this s@@orresponding to 4 1

a motion without intermediate scatterings absent. This v fdr|¢(r)| :2+87rgb[|n 9o+ O(1)].  (67)
term is equal to

In the discussion above we did not take into account the
1 J dnydn,A(ny 0y boundary scattering, which determines the classical propaga-
(mv)°WZ R tor ITg(ry,r,) on the scale of the system si®but is irrel-
evant for the matching of the classical and quantum contri-
butions on the short scaleR. In principle, one could avoid
introducing the additional smooth potential and consider the
boundary randomness only. In analogy with the consider-

1
:WJ (dp)Ggr(p+)Gal(p-),

or, in coordinate space, ation above, we expect that in this case the classical propa-
ool gator f; entering Eq.(65) will describe the motion starting
Gg(r1—15)Ga(ry— ) =————=f,(|r,—r,]).  from the first collision with the boundary.
2002 R(F—T2)Ga(ra—r1 pe T o([r1—r2]
Including now the leading contribution of tH&,,G,;) term VI. GENERALIZATION TO THE MIXED BOUNDARY
in Eq. (54), we get the wave-function correlator up to the CONDITION

terms linear in the classical propagafg(|r,—r,|) or in the

5 Py In the case of the mixed boundary conditi@h the trace
quantum propagatdt,(r;—ry) =Jg(pg|ri—ryf)e "2,

of the resolvent Trlﬁ—icu)‘1 acquires cuts in addition to
V2C(ry 1) =1+ f4(ry 1) +Ka(r1—1.), 65 simple poles that were present for purely diffusive scattering,
(r1.r2) (11 12) Tkg(r1=r2) €9 a=1 (see the discussion belowFor this reason, we cannot
where f;=IIg—f,. We see that the double-counting prob- write the spectral functioi®(w) in the Altshuler-Shklovskii
lem does not exist anymore. The quantukg)(and the clas-  form (22) but have to use a more general representation,
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92 . SO we can write
S(w)= mTI"ﬂ(K—iw)
; Trin(K—iw)=>, Trin(1—d)), (74)
o X [
:mj dte"”tTre_Kt . .
0 where @, is obtained by restricting the operatdr to the
space spanned by functiofig3) with a particulad. The ker-

J * )
:3(iw)j0 dte"“tJ drdng(r,n;r,n;t), (68 g of &, is given by

whereg(rq,nq;r,,n,;t) is thetime-dependenGreen’s func-

tion of the operatorK characterizing the probability of

propagation from the pointr§,n,) of the phase space to the

point (r{,n;) in a timet. X
Further transformations are straightforward though some-

what lengthy. The trace of the Green’s function in E88)  \\here p= 6,— 0,, 6'=6,— 6,. We further represenb, as

can be written as a sum of the terms wity 2,3, . . . bound- 5 gm of the contributions corresponding to the two terms in
ary scattering events. Changing the variables fram)(to 1o curly brackets in Eq75)

(6,0',x) (see Sec. Il Band performing the integration over _
X, we can present the result in the form D(6,0)=DF(0")5(0—0)+DM(9").  (76)

. coR
CI),(H,B’)zexp[ ilg" +2i v—|sm(0’/2)|]
F

(1—a)8(6—0')+ %|sin(0’/2)|], (75)

!

Here ®P*°is associated with the processes of specular re-
flection, while @™ corresponds to the diffusive scattering

" processes. Using EG76), we expand TrIn(%&n) in powers
~ diff . .
% d"1(0.0':0.0"), 69 of @, and. then resum the. series, using the structure of the
ngZ (6.6:6.6) ©9) two terms in Eq.(76) [the first one is proportional t&(6
—0'), while the second one independent] to get

2

sin

. 2R
Tr(K—iw)’1=—f dede’
UF

whered is the integral operator,

~ 2
A o Trin(1—d))= doIn(1— 0 0))
(11020 = | 0.050(01,04:0,0)1(0,,0)), 0

1+ [T do—oweq 0)- 109 )|

with the kernel +In o
B0:.0): 0.0 = 561 0yexpl 2 sin 2% 77
(61,013 62,62)=0(01~ 0z)ex Ve S5 Combining Eqs.(74), (75), and (77), we finally obtain the
following representation for the spectral determinant of the
% { (1— ) 8(0,— 0,— 0,+ 0}) Liouville operator:
Trin(K—iw)
al 0,0,
+—|sin : (70 -
4 2 =3 f dOIN[1— (1— o) (@RIvRSNG+2il 6]
T 0

Physically,® characterizes the probability of the scattering
process when a particle moving along the segmet (
— 0,) is reflected into the segment{— 6;). Resumming +1n
the seried69) and using that, according to E(.0),

afm siné
=3 0 dae—Zi(wR/vF)sin0—2il0_1+a

|

(78)
dD(6,,01;0,,0;) 2R 0,— 0, , . - . .
- = —|sin D(0,,01;0,,05), The first term in Eq(78) originates from the first term in
d(iw) UF 2 1) the rhs of Eq(77) and is determined only b **°and not
by ®% It thus knows only about the motion in a clean
we rewrite EQ.(69) in a compact form system (without boundary scatteringand about the total
. R probability @ to be scattered away, but not about the differ-
Trin(K—iw)=Trin(1—®), (72 ential scattering probability. In other words, this term would

describe the correlations of the density of states if the elec-

up to an irrelevant additive constathich we drop below .o simply disappealget absorbedat the boundary with

Eigenfunctions ofb have the form probability «, otherwise being reflected specularly. It char-
- acterizes thus the spectrum of a clean circléth energy
f(0,0)=¢€""g(6—0"), (73)  levels broadened due to the absorbing boundabue to
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these correlations, thdisorder averageddensity of states 256 1 3.12
(v(€)) at given energye fluctuates. These fluctuations are A= W_G 22 (83

not of interest here; one can get rid of them by subtracting
the (energy-dependentisconnected part of the level corre- As previously, this result is valid until the last term ¢3/

lation function, thus modifying the definition &,(w), correction in Eq. (21) becomes of order unity. This happens
at a frequency that plays the role of the Thouless energy. For
RI(w)= (VA [(v(e+ w)v(e))—(v(e+w))(v(e))], a<1 this energy scale iE.~ avg /R, which is the inverse

(79 of the characteristic relaxation time at<1. The ¢ model
only applies when the Thouless energy is much larger than
the mean level spacing, i.e., fw>ggl. For even lower
values ofa the system exhibits integrable behavior.

As usual, at frequencies above the effective Thouless en-
gy E. the level statistics are totally different from the RMT

(see Ref. 18 for an extensive discusgiowe mention also
that, in fact, the first term in E(.78) does not yield these
correlations fully correctly, since the model is not appro-
priate for the description of integrable systems. Agam ander
Fishma® used the Berry-Tabor trace formula to CaICUIatepredic:tions To demonstrate this, we calculate the smooth
the analogous contribution of trajectories not scattered b¥)art of the. level correlation func’tion for intermediate fre-

impurities in an integra_ble system \{vith bulk di.sorder. We do enciesE, <<y /R using Altshuler-Shklovskii formula
not enter a more detailed discussion here since we are n 8). We first notice that the contributions of & with |

interested in this contribution anyway. R

The second term in Eq(78) describes the disorder- #0 are suppressed by the small facR/ve as compfared
. . . : to the termS,, and thus can be neglected. Evaluating the
induced correlations. Before turning to the calculation of the

level correlation function, we analyze the structure of :singu-'meQral in Eq.(82) at1=0 and extracting the leading-order

o N~ ) .27 term, we find
larities of the resolvent TK —iw) 1. Asin thea=1 case, it
has simple poles lying in the half-plane <0 which po-

sitions é=iwR/vg of which are determined by the equation 3a? [ve\? oR
RY(w)=——— —) In(— +0(1)]. (84
a7 sing _
Efo daefzilafzgsin I_(1—a) =1. (80) The result(84) matches Eqs(21),(83) at w~E.=avg/R

and drops sharply for higher frequencies.
However, in contrast to the=1 case, the resolvent addi-

tionally_ now has branch cuts induced by zero values of the VII. SUMMARY AND DISCUSSION
denominator in Eq(80). These branch cuts can be param-
etrized as In this paper we have used the ballistiemodel approach

to investigate statistical properties of energy levels and

eigenfunctions of a circular billiard with diffusive surface
+2mik—2il 6|, (81)  scattering. For this simple model of a chaotic system we

calculated explicitly nonuniversal deviations of the statistical
wherel andk are integers, and runs from 0 towr. Physi- properties from the rando_m matrix theory. These nonu_niver-
cally, these additional singularities correspond to motionS&l Properties are determined by the classical dynamics and
along periodic orbits of the underlying integrable systemtUrn out to be very different from the two examples available
(circle), with the real part Ré>0 characterizing the total the Ilteratgre: diffusive sy;tems and ball|§t|c systems with
scattering rate out of the orbit. bulk s-function-correlated disorder. We believe that our re-

To calculate the level correlation functicRg(w) we use Sults are not specific for a particular model considered but
’ rather reflect nonuniversal features of generic chaotic sys-

1

~ 2sing In

3

1-a

the formulas of Sec. Ill, with the spectral functi®{w) . o . .
obtained by substituting the second term of E£B) in Eq. tems and their quahtatlv_e difference from the corr_espondmg
69) properties of systems with bulk shot-range impurities. Below

we summarize our main findings.
The spectral statisticéSec. Il) deviate from its RMT
s(w)=2 S(w), form on a frequency scale set by the inverse flight time
! (playing the role of the Thouless enejgst higher energies,
the level number variance saturates and oscillates in agree-
R\20% . ment with predictionfor a generic chaotic system. Surpris-
S(w)=— (U—) 2 n 31D =i wriv s ingly, the two-level correlation function shows nondecaying
F (though weak oscillations with the period of the mean level
, spacing at high frequencies, producing safunction-like
Ji(2)= — Zf” sin¢ spike in the spectral form factor at the Heisenberg time. In
(2)=—1+ do— . . (82 . T :
2o ealom2zsing_ (1 q) Sec. VI the analysis of the spectral statistics is generalized to
the case of a mixed boundary condition when the “Thouless
In particular, the low-frequency behavior has the fof2d) energy” is parametrically smaller than the inverse time of
with the coefficientA given atae<<1 by flight.
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In Sec. IV we presented a thorough study of the parametiength scales exceedirig- v 7. If one is interested in eigen-
ric level statistics, with magnetic field playing the role of the function correlations at shorter scales, one should avoid the
external parameter. We identified all relevant regions in thegradient expansion and use the more general f@8&) and
frequency—magnetic-field plane and calculated the parametA8), as explained in Sec. V and in the Appendix.
ric two-level correlation function and the parametric level An additional smooth random potential discussed here re-
number variance in all of them. In particular, a surprisingsembles the one introduced by Aleiner and Larkin in Refs.
result was obtained in the region of high magnetic fields,60 and 57 where the problem of weak localization in ballistic
where the parametric correlation function was found to bechaotic systems was considered. There is, however, a con-
independent of the magnetic field. In other words, the densitgeptual difference: while Aleiner and Larkin introduced fic-
of states retain finite memory even in the limit of very largetitious disorder in order to mimic diffraction on boundaries
fields after levels have undergone arbitrary many avoidedf the billiard, we consider a real random potential, i.e., an

crossings. ensemble of systems, averaging over which allows one to
In Sec. V we analyzed spatial correlations of eigenfunc-derive theo model, as explained above.

tion intensities. Since naive application of the ballistic We close the article by mentioning two open issues.

model led us to the problem of double countifwith one (i) The problem of repetitiois(which appear not to be

and the same contribution appearing twice—classically andounted properly in the-model approachstill awaits reso-
guantum-mechanically we had to reanalyze the-model lution. For the model considered in the present article this
derivation. For this purpose we introduced a smooth randormproblem does not apply since in view of the diffusive nature
potential and obtained the model from averaging over it, of boundary scattering, all directions of motion after a scat-
following Refs. 56,62(see the Appendjx We have found tering event are allowed so that the repetitions are irrelevant.
that while in the limitr/ 7,—0 (with 7~* andr; * being total (i) We used the boundary condition for diffusive scatter-
and transport scattering rates, respectivéiie obtained ac- ing in a linear form, i.e., we supplemented the Liouville op-
tion takes the conventional forrA6) of the ballistic erator determining the quadratic form of the action by the
model, the behavior of the propagator is different at shorboundary condition. This was sufficient for the problems
distances. This affects the wave-function correlations at shogonsidered in the present article, when the relevantodel
spatial scales <v 7. The final result has a forr65) with correlation functions are determined by the structure of the
the quantumK,) and classical ;) terms corresponding to action in the vicinity of spatially homogeneous configura-
the motion before and after the first collision respectively. tions and therefore the results are governed by the eigenfunc-
In the present context of a system with diffuse boundarytions and eigenvalues of the Liouville operator. However, in
scattering, introduction of an additional smooth random po-general, this is not sufficient, and a boundary condition on
tential satisfyingd<l|<R<l,, can be considered as a tech- theg(r,n) field is needed. In particular, one would need such
nical trick allowing to obtain thesr model in the conven- @ general boundary condition to calculate “tails” of various
tional form (1). In principle, it should be possible to derive distribution functiongof relaxation times, eigenfunction am-
the o model directly by averaging over the boundary disor-plitudes, local density of states, inverse participation ratio,
der, but in this case the action will be more complicatedtc), analogously to how it has been done for diffusive
since the system size will essentially play the rolevgfr. ~ Systems.”
Let us stress that the additional random potential does not
affect the results for the energy level statistics and for the
smootheckigenfunction correlations. On the other hand, the ACKNOWLEDGMENTS
corresponding mean free pdth v 7 manifests itself explic-

o i . i . Useful discussions with I.L. Aleiner are gratefully ac-
itly in Eq. (65) for the eigenfunction correlations by setting nowledged. This work was supported by the Swiss National
the scale at which the Friedel-type oscillations get smearecl;
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We believe that averaging over an add_ltlonal SmoomForschungsgemeinschaﬂ\.D.M.), and the INTAS Grant
quantum random pot(_antlal Is of congeptual Importance foRo, 97-1342(A.D.M.). We also acknowledge the hospitality

the p.roblem.of' nonuniversal fgatures n the Igyel a_md €I9€M5¢ the Lorentz Center, LeidenY.M.B. and A.D.M), the
function statistics of a conventional chaotic billiafgithout \,+ _bianck-Institut fa Physik Komplexer Systeme, Dres-
boundary scattering Indeed, a consensus seems to hav en (Y.M.B. and A.D.M), University of GenevaA D M

been reached by now that the energy averaging by itself i§4 g A M), and Forschungszentrum Karlsrubé.M.B.)
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tems (with the same classical dynamjcis order to derive
the o model®® Furthermore, without such an averaging one
cannot thectgnonunlversal features, since the statistics are APPENDIX: BALLISTIC o MODEL FROM

not sufficient® A smooth guantum random pcztent_lal with SMALL-ANGLE SCATTERING

parameters chosen in such a way that,, /Re«7 2 with a

>0 andvpr/RxAP with 0<b<1 is exactly the required Here we outline derivation of thee model based on av-
type of ensemble averaging. With this averaging, the ballistieraging over a smooth random potentifr) (see Sec. Y,

o model can be rigorously derived. Let us emphasize that théollowing Refs. 56,62. After the averaging and the Hubbard-
ballistic action obtained in this way will have the conven- Stratonovich decoupling by a supermatrix figB{r,r') one
tional (obtained by gradient expansijofiorm (1) only at finds the action
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® . ference between these two formulas is irrelevant, it is of
E+iZA—=Ho=Qr,r)V(r—r’) crucial importance for settling the double-counting problem
considered in Sec. V, since it is related to the short-scale
1 behavior of theo-model propagator. For this reason we use
+ ESUJ drdr’ Q(r,r")V(r—r")Q(r’,r), there the action in the forA5) [and not the approximation
(A6)].

(A1) To illustrate the connection and the difference between
the actions(A5) and (A6), it is instructive to write down
nttheir quadratic forms at low momenta. We wril¢r,n)=1
—W(r,n)/2 and introduce the angular harmonics of the
field, W,,(r) = fdn exp(~im¢,)W(r,n), and of the scattering
cross sectionw,,= [ (d¢/27)e™Pw( ). The result for the
quadratic form of the actiofA5) then read¥%?

F[Q]=StrIn

whereHy=p?/2m is the free Hamiltonian. The correspond-
ing saddle-point equation has the form of the self-consiste
Born approximationfSCBA) and possesses a set of transla-
tionally invariant solution®(r,r’') = Q(r—r"), which can be
most conveniently written down in the momentum space,

Q(p)=ReGg(p)+iTAT Im Gg(p). (A2)

1
Here Gg(p) is the retarded Green’s function in SCBA, FO:EJ (da) StrW_ i 10 = DI mpy (o) Wiy 24(0),
o (A7)
Gr(p)= E_Ho(p)+2_Tp) ' where
! fm W(p—py) IMGe(py),  (A3) ;
5—=—| (dpy)V(p—py) Im Gg(py), i :

and the matricesT belong to the super coset space

U(2]1,1)/U(1|1)xU(1|1). Allowing for slow variation of iVE WoWyy — _
T with the spatial coordinate, = (r+r’)/2 and with the di- B —(A%mm -1+ A" dmmr +1) |5
rectionn of the momentunp yields the soft modes, Wo
(A8)
Q(ry ,m=T(ry ,NAT *(ry ,n) (A4)

_ 5 ) wherea= dx+igy. On the other hand, the quadratic terms in
with Q“(r,.,n)=1. The action for these soft modes has thethe action(A6) are given by Eq(A7) with the kernell’
form (we setw=0) rep|aced by

. i
F:Strln(E—Ho— Ef dn’Q(r,n")w(n,n") fmm’(q):WV (Wo—W,1) Sy

_mr ’ ' ' ive — _
7 fdrdndn StrQ(r,n)w(n,n")Q(r,n"), _TF(qém’m,_leq* Smmi1) |- (A9)

(A5)

where w(n,n’")=2mvV(pg|n—n’'|) is the scattering cross
section. Performing now the gradient expansion of @¢)
and usingr,>r, one get® the action of the ballistiar
model [generalizing Eq.(1) to the case of a nonisotropic
disorder scattering

Inverting Egs.(A8) and (A9) at smallg, one finds that the

corresponding propagatoB=T"1 andD=T "1 are identi-
cal, up to a constant term,

’Dmm’(Q)_,‘Z")mm’(c])= Smny - (A10)

TVWp,
F= T”’UFJ drdnStrAT (r,n)n- VT(r,n) The physical meaning of this difference becomes clear from
the calculation in Sec. \(avoiding the momentum expan-
i sion). Specifically, the propagator for the actifnis given
+TJ drdndn’ StrQ(r,n)w(n,n")Q(r,n"). by a series of ladder diagrams, beginning from the term
“with — 1 scattering”[the termB~! in Eq. (60)], while that
(AB)  for the actionF starts from the term with zero collisiofifsee

Let us emphasize that the acti6A5) takes the form(A6) ~ motion), i.e., from the second term on the rhs of E60). As
only in the limit 7/ ,— 0. While for most purposes the dif- a result,D=D—B"1, which reproduces exactly E¢A10).
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