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Ultrasonic Imaging Through Aberrating
Layers Using Covariance Matching

Pim van der Meulen , Mario Coutiño , Member, IEEE, Johannes G. Bosch , Member, IEEE, Pieter Kruizinga ,
and Geert Leus , Fellow, IEEE

Abstract—We consider the scenario of finding the transfer func-
tion of an aberrating layer in front of a receiving ultrasound (US)
array, assuming a separate non-aberrated transmit source. We pro-
pose a method for blindly estimating this transfer function without
exact knowledge of the ultrasound sources or acoustic contrast
image, and without directly measuring the transfer function using
a separate controlled calibration experiment. Instead, the measure-
ment data of many unknown random images is collected, such as
from blood flow, and its second-order statistics are exploited. A
measurement model is formulated that explicitly defines the layer’s
transfer function. A covariance domain problem is then defined
to eliminate the image variable, and it is solved for the layer’s
transfer function using manifold-based optimization. The proposed
approach and calibration algorithm are evaluated on a range of
challenging and realistic simulations using the k-Wave toolbox. Our
results show that, given a sufficiently efficient parameterization of
the layer’s transfer function, and by jointly estimating the transfer
function at multiple frequencies, the proposed algorithm is able
to obtain an accurate estimate. Subsequent simulated imaging ex-
periments using the obtained transfer function also show increased
imaging performance in various aberrating layers, including a skull
layer.

Index Terms—Aberration correction, blind calibration,
covariance matching, projection algorithms, ultrasonic imaging.

I. INTRODUCTION

U LTRASOUND imaging is one of the most widely used
medical imaging techniques due to its affordability, porta-

bility, its capability of imaging at very high frame rates (more
than 1,000 Hz), and its real-time feedback for a clinician. Addi-
tionally, it does not utilize ionizing radiation or strong magnetic
fields, and as such does not create potential adverse health
effects for patients. However, it suffers from an inherent trade-off
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between resolution and penetration depth. Moreover, imaging
through certain layers in the human body, such as human skull
bone tissue or fat and muscle layers, cause aberrations in the
ultrasonic pulse-echo wavefields, resulting in imaging artifacts
and loss of resolution [1], [2]. These wavefield aberrations are a
result of both non-linear distortions (due to absorption) as well as
linear distortions (due to echo time-of-arrival shifts, scattering
within the layer, etc.). In this article we intend to address the
linear distortions by estimating the Green’s functions through an
aberrating layer in front of an ultrasound array, and assume that
the source is capable of transmitting the same (aberrated or not)
pulse to each pixel. This limitation needs to ensure the math-
ematical tractability of solving the proposed blind calibration
problem (discussed in more detail in footnote 1 in Sec. II). One-
way aberrations are relevant for e.g. photo-acoustic imaging, and
have potential when combined with, e.g., a moderately invasive
ultrasound transmitter probe inserted beyond the aberrating layer
(which needs to be only of a small size as it does not necessarily
require a full array, but only a single point-like transmitter).
If, even after aberration, the same pulse is transmitted to each
pixel, our proposed method would also be applicable, and be
non-invasive.

Most imaging techniques rely on the Born approximation [3],
[4], which approximates a pulse-echo scenario by modeling
transmitted waves as travelling throughout the region of interest
(ROI), such as human tissue, uninterruptedly (as if there was a
homogeneous background medium). Small inhomogeneities in
human tissue cause small reflections of this forward field, which
are also assumed to propagate to a receiving sensor without being
altered. Hence, multiple scattering is ignored, and the model
consists of an independent wave model for the propagation
path from a transmitter to a scatterer, and from a scatterer to
each receiver. More importantly, the unknown ultrasound image
becomes linear w.r.t. the ultrasonic measurements, simplifying
the imaging problem greatly. One of the conditions underlying
the Born approximation is that scatterers do not scatter very
strongly, so that the transmit field is indeed nearly unaltered
by scatterers, and so that second-order (and higher) scattering
is negligible. The Born approximation is implicitly assumed
by most ultrasound beamforming algorithms, and the resulting
beamforming algorithms are successful in scenarios with no
aberrating layers and where the image mostly consists of weakly
scattering contrasts.

Traditional approaches, however, are not effective when there
are strongly aberrating layers placed between the sensor array
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and the ROI, even if scattering outside these layers is still linear,
since it is not known how echoes propagate through this layer to
the array of receiving sensors. To image correctly, we would
have to know how the acoustic field propagates through the
aberrating layer, which would require one to e.g. remove part of
the skull, and thus violates the purpose of non-invasive imaging.
Hence, we propose a method for blindly estimating an aberrating
layer’s transfer function. That is, to characterize it without an a
priori known calibration image. Instead, we propose to measure
many images of which only the second-order statistics need
to be known, a condition which is much less demanding than
prior knowledge of the true contrast image. We then use the
second-order statistics of the set of measured echo signals in
combination with the assumed known covariance of the images,
to estimate the layer’s transfer function.

An interesting layer in the context of this article is the hu-
man skull. As mentioned earlier, it is known to cause strong
aberrations, and prohibits imaging of the brain, as well as
non-invasive ablation of (malignant) tissue using high intensity
focused ultrasound (HIFU) [1]. This is highly relevant for recent
advances in ultrasound such as functional ultrasound imaging
(fUS) [5], [6], [7]. Functional US imaging allows for inferring
brain activity based on changes in the local haemodynamics that
cause measureable changes in the ultrasound Doppler signal.
Compared to fMRI, fUS allows for a more affordable, portable,
and precise way of imaging brain activity [8]. It helps us to
better understand the human brain, and it is a promising tool for
surgeons to more accurately distinguish between healthy and
malignant tissue when removing a brain tumor, preventing a
surgeon from accidentally damaging healthy tissue, which could
have disastrous results for the patient [9]. All of these examples
urge us to investigate more advanced imaging techniques to deal
with the distortions caused by the aforementioned layers.

Most studies address this problem by applying a time shift to
each measured signal in the array (i.e., it is assumed aberrations
are modeled using a phase screen directly in front of the array),
based on a variety of goodness of fit criteria. Some examples
from many are the studies of [10], [11], [12], [13], [14], [15].
However, these approaches often need to estimate a different
phase screen for each imaging direction (direction into the ROI
w.r.t. to ultrasound array), since a single phase screen would
not be able to model more complex layers for all directions
simultaneously. Moreover, one could argue such models are
not accurate for more complicated layers where e.g. internal
multiple scattering takes place. In such cases, the echo from
a reflector as measured on different array elements could be
different not only by a time shift, but also by the shape of
pulse-echo signal. In addition, this makes it hard to use the
methods above, as they rely on delay-and-sum beamforming,
which requires signals to be in-phase after aberration correction
and delaying before summing. A more holistic approach would
view the US field in a single sensor on the array-side of the layer
to be a linear combination of the entire ‘input’ field on the other
side (Fig. 1).

In [16], [17], the authors address this issue by modeling
aberration as a phase screen positioned some distance away
from the aperture. Thus, an incident wave is first aberrated by
the phase screen, followed by propagation to the sensor array.

Fig. 1. Aberration layer distorts incident wavefields, leading to incorrect
estimation of the acoustic contrast image. We are interested in estimating the
transfer function from each point on the virtual array just before the aberration
layer, to each point on the real array.

As a result, measurements on the array are linear combinations
of the incident field just after the phase screen aberration oc-
curred. Although such a model is appropriate for e.g. the human
abdominal wall, we don’t expect it to be capable of modeling
more complicated layers such as the human skull, where it is not
obvious how the porous bone would be modeled as a (collection
of) phase screen(s).

Another large body of research is specifically focused on
imaging through the human skull. In [18], time-reversal tech-
niques are used to focus waves on transmit inside the brain. This
is useful for acoustic therapy, but less so for directly imaging
the brain. In [19], a similar goal is achieved by the design of a
spatio-temporal filter. However, both of these techniques require
one to first measure the transmitted ultrasound waves inside
the brain to characterize the joint effect of the imaging setup
and the skull, prohibiting non-invasive procedures. Recently,
trans-cranial brain vasculature imaging was demonstrated us-
ing localization microscopy utilizing micro-bubbles inserted
into the brain vasculature [20]. Their work exploits the use
of micro-bubbles, which can be isolated in the back scattered
echo signals (reflectors are spaced sufficiently apart in the brain
vessels to do so), to analyze aberration profiles and model them
using a phase-screen for regions in the ROI where bubbles were
estimated to have roughly similar aberration profiles.

Another approach was proposed in [21], where two opposing
ultrasound arrays are placed on the skull. The effect of the
two skull layers on each side has to be estimated. To simplify
matters, the authors assume that the skull wall on one side can
be approximated as a thin phase layer, allowing for a more
complex formulation and estimation of the effect of the other
skull wall. However, a thin phase screen is arguably not an
accurate approximation of the skull wall and consequently, it
is possible that the estimated skull wall’s transfer functions are
sub-optimal. The technique proposed in our article only involves
a single skull wall’s transfer function, and it does not rely on
approximations using thin phase screens.
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A more recent approach ignores the Born approximation
entirely, and tries to solve the acoustic wave equations using gra-
dient descent optimization techniques [22], known as full wave-
form inversion (FWI). Their method relies on a sufficient initial
estimate of the skull wall, and requires a measurement setup
where sensors are distributed across the entire skull, instead of
using only an array. Moreover, the technique is currently very
computationally intensive, and requires many hours to obtain a
single (3D) frame. This currently makes it entirely unsuitable
for Doppler or fUS imaging, where hundreds to thousands of
frames need to be imaged to obtain a single Doppler or fUS
image.

Finally, we have already proposed an SVD-based technique
to blindly estimate the effect of the aberrating layer from random
images or source signals in the ROI. However, it relies on struc-
tural requirements of the aberration layer’s transfer functions,
and on the setup of the imaging scenario [23]. In the techniques
we will discuss in this article, in contrast to existing studies, we
will propose a more flexible and general method, where many
kinds of layers can be characterized blindly, and without the
need for two sensor arrays.

The method we propose in this new contribution heavily relies
on model-based imaging techniques. Such techniques take into
account the entire wave propagation model when forming an
image, and try to find an image that, based on a model that relates
the image to measured echo signals, best explains the observed
echoes. Such techniques have been used before (see e.g., [24],
[25], to just name a few), but are especially relevant to scenarios
where traditional imaging techniques like delay-and-sum cannot
be utilized. We have particularly shown this in [26], [27], where
we intentionally distort transmitted fields using an aberration
layer, and show that this allows 3D imaging using just a single
sensor. In [26], [27], we carefully characterize the aberrating
layer in order to incorporate it into the wave propagation model,
after which an image is formed from echo signals based on this
model. Hence, even heavily distorted signals where the echo of a
single reflector is different on each sensor, and strongly smeared
across time could be resolved, as long as it is known how the
distortion takes place.

In this contribution we will show how to explicitly incorporate
an extra variable representing the layer’s transfer function into
our echo signal model, an approach which has partly been
introduced before in [21], but has not seen much use in literature.
Specifically, we use the concept of a transfer function from an
imaginary (virtual) array just in front of the aberrating layer,
to the true sensor after the layer (Fig. 1). Next, we will show
how to get rid of the contrast image variable, which we assume
is unknown. This is done by collecting many measurements,
and looking at their second-order statistics, instead of the raw
measurements directly. As a result, the contrast image variable
is integrated out of the signal model equations, after which the
layer’s transfer function is the only unknown. Unfortunately,
this is only mathematically feasible if it is assumed that waves
travel through the aberrating layer once (as explained in the
next section). This limits the applicability of our model to
photo-acoustic imaging and the use of e.g. a moderately invasive
point-like source inserted beyond the aberrating layer. If the

source aberration is such that the same (although aberrated)
waveform is transmitted to each pixel, our method would also
still be applicable (as this pulse waveform would be trivially
incorporated into H), and be fully non-invasive. Finally, we
propose a method based on covariance matching [28], using
a manifold optimization technique, to obtain an estimate of
the layer’s transfer function. Other work in ultrasound imaging
exploiting second-order statistics can be found in [29], [30],
where the cross-correlations of the measured signals are used.
However, these papers are still focused on time delays or assume
that the aberrating layer acts identically on each point of the
layer. More general layer transfer functions with interaction
between channels are not included.

Using covariance measurements to find the array gain and
phase has been studied in signal processing literature before,
most notably by Friedlander and Weiss [31]. Covariance match-
ing for array calibration has also been applied before to antenna
arrays for radio astronomy imaging [32], and to acoustic vector
sensor arrays [33]. However, only phase and gain changes per an-
tenna are considered (instead of linear combinations of inputs),
similar to [11], [12], [15] in ultrasonic imaging, instead of more
complicated transfer functions. They thus assume a specific
structure for the layer’s transfer function, and can thus be seen
as a special case of our approach. The authors use alternating
descent and semidefinite programming methods, which are not
directly applicable to the mathematical problem we discuss
in this article. As far as we know, there has been no prior
work where the estimation of general transfer functions using
covariance matching is considered.

Notation: We willrepresent a vector x in lower-case bold, and
a matrix X in upper-case bold. The operator E{.} represents
the statistical expectation operator, ‖X‖F the Frobenius norm
of X, and ‖x‖2 the l2-norm of x. The notation X† represents
the Moore-Penrose pseudo-inverse of X. The matrix transpose
and conjugate transpose are denoted using (.)T and (.)H, respec-
tively. Finally, the ⊗ symbol represents the Kronecker product.

II. SIGNAL MODEL AND PROBLEM FORMULATION

In the case of a homogeneous medium with an acoustic con-
trast image, and using the Born approximation, we can assume
the following linear measurement model for anM element array,
and a single temporal frequency l:

yl = Alx+ nl, (1)

where yl ∈ CM groups the array pressure measurements for
frequency l, x ∈ RN represents the scattering coefficients for
N pixels, and Al ∈ CM×N is a known model that relates the
measurements in yl to the image x, and thus contains the
expected reflected signals at frequency l received by the array
for all pixels of interest. Finally, nl represents additive measure-
ment noise. The matrix Al is well known when no aberration
layer is present, and the Born approximation holds. It is easily
generated since the Green’s functions for the pulse propagation
paths (from transmitter, to each pixel, to each receiver) and the
speed of sound are known. In that case, the received echo signal
for each such path is straightforwardly found by delaying the
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transmitted pulse based on the total path length. Under the Born
approximation, the scattering intensity of each pixel depends
only on the difference in speed of sound and density between the
pixel and the background speed of sound (contrast image), and is
thus real-valued and frequency-independent. With no aberration
layer present, image reconstruction boils down to estimating
x from yl, knowing Al, using the entire available bandwidth
instead of a single frequency.

In the case of an abberation layer, we assume there is a linear
transfer function from each point on the virtual array in Fig. 1 to
each element in the real array. That is, there exists a Green’s
function hi,j(t) that represents the impulse response for the
linear time-invariant channel from point i on the virtual array to
sensor j on the real array. The measurement on any given sensor
j is then the superposition of all the convolved channel responses
from each virtual sensor i to j. In the frequency domain, that
means the problem can be approached on a per-frequency basis,
and we have the following new measurement model:

yl = HlAlx+ nl, (2)

where Al ∈ CM×N is now related to the virtual array, and
Hl ∈ CM×M contains the frequency domain transfer function
coefficients for frequency l, from each point on the virtual array
to each point on the true array (note that in (2) it is assumed that
waves travel through the aberrating layer only once,1 forcing us
to use a transmitter that is not impeded by the aberrating layer).
Since Hl represents the transfer function of an aberrating layer,
it is unknown, and it is not possible to estimate x.

When considering multiple frequencies, the Al matrices of
the corresponding L frequencies can be stacked vertically into

1In (2) and (4), A contains the pulse-echo signal received across the virtual
array from each pixel. This implicitly relies on the known Green’s functions in a
homogeneous medium from transmitter to pixel to each point on the virtual array.
Note that it is thus assumed that there is a separate transmitter from which a pulse
propagates into the imaging medium, which reflects of contrast inhomogeneities
in the ROI towards the virtual and true array. After all, if the array is used for
transmission, we would not know the field that is transmitted into the ROI. In that
case, (4) would contain the variableH twice (as pulses would propagate through
the aberration layer both on transmit and receive), and (4) would become y =
HAdiag(x)ATHTs (where s ∈ CML would contain the transmitted pulses
on the array, and A now represents the one-way propagation in a linear medium
from a pixel to a point on the virtual array). This would make it much harder
to estimate H from y, since y would be quadratic w.r.t. H (and (9) would be
bi-quartic w.r.t. H), and the techniques described in the next section are not
trivially applicable to this equation. Hence, it is assumed that a small transmitter
is inserted into the medium. When the aberration layer consists of human tissue,
this would mean that the calibration procedure would be much less invasive,
since only a small device has to be inserted (as opposed to an opening large
enough to fit an array). We also point out that, if the source is aberrated but still
sends the same waveform to each pixel, the waveform is trivially incorporated
by scaling each Hl with the corresponding waveform DFT coefficients. These
coefficients are then calibrated ‘for free’, and the calibration would be fully
non-invasive. As a result, only one layer’s transfer function has to be estimated,
instead of two (like in [21]), and we do not have to estimate one of the layers
using e.g. a thin phase mask (sometimes an insufficient approximation), thus
retaining the validity of our model (4). Photoacoustic scenarios would also be
covered under the formulation in (4), since in that case all pixels in the optic
transmit view would be excited simultaneously, and start transmitting a pulse
towards the array at the same time.

a bigger matrix A ∈ CML×N ,

A =

⎡
⎢⎢⎢⎢⎣

A1

A2

...

AL

⎤
⎥⎥⎥⎥⎦
. (3)

Defining y ∈ CML and n ∈ CML in a similar way, we have a
new multi-frequency measurement equation

y = HAx+ n. (4)

Since convolution in the time domain becomes a product in the
frequency domain, H ∈ CML×ML will have a block diagonal
structure and mostly contains zeros,

H =

⎡
⎢⎢⎢⎢⎢⎣

H1 0 . . . 0

0 H2

...
...

. . .

0 . . . HL

⎤
⎥⎥⎥⎥⎥⎦
. (5)

Note that the measurement (2) is simply a special case of (4) with
L = 1. Furthermore, we point out that the usage ofHgeneralizes
all linear aberration layers. For example, if the aberrating layer
is modelled as a phase screen, H will be a diagonal matrix, and
is thus a special case of the formulation (4). Another example
would be laterally invariant layers (i.e., layers that vary in the
z-dimension, but not in the x-dimension), which would have a
strictly Toeplitz structure.

In a blind calibration scenario, we wish to estimate H from
(4), without knowing x. Estimating both H and x jointly would
result in a bi-linear measurement equation, which is typically
challenging to solve. Instead, we consider removing x from
our measurement equation by using covariance measurements,
where x would be integrated out of the measurement equation,
and only the covariance matrix of x would have to be known.

Therefore, we will interpret x as a realization of a random
process for which multiple realizations are obtained. Consider
for example a liquid medium with moving micro-bubbles or
contrast agents, so that each pulse-echo measurement has a
different contrast imagex due to the displacement of the bubbles
between measurements. Instead of bubbles, one could consider
the flow of blood inside a patient. If stationary reflections are
removed prior to calibration (using e.g. a high-pass filter in
each pixel across the frame-dimension), one is left with only
the signals originating from moving particles inside the blood
stream. Assuming the measurement noisen is uncorrelated with
the contrast image x, and defining the covariance matrices,
Cn = E{nnH}, Cy = E{yyH}, and Cx = E{xxH}, we have
the following measurement equation in the covariance domain:

Cy = E{HAxxTAHHH}+ E{nnH} (6)

= HACxA
HHH +Cn. (7)

Interestingly, the image variable x has been integrated out of
the original measurement (4), and we now only need to know
the second-order statistics of x. This is a much less demanding
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requirement. For example, if the ROI primarily consists of blood
flow, and many pulse-echo measurements of that ROI are taken
with sufficient time in between, it can be safely assumed that
the corresponding x-vectors are uncorrelated, and thus Cx = I.
Correlated measurements due to non-moving ‘background’ tis-
sue can be easily removed from measurements using clutter
filtering, as is common in US Doppler imaging. The covariance
data of the measurement noise Cn can be obtained by taking
measurements with no ultrasound transmission, and Cy can
be estimated by taking P measurements, and then using the
estimate

Ĉy =
1

P

P∑
p=1

y(p)y(p)H −Cn, (8)

where the known noise covariance matrix has already been
subtracted for convenience in our derivations. We are interested,
then, in estimating H from Ĉy, knowing Cx and A. This is a
covariance matching problem [28], where we want to minimize
the following cost function:

Ĥ = argmin
H

‖Ĉy −HACxA
HHH‖2F . (9)

This is not a trivial problem to solve since H is quartic w.r.t.
Ĉy. In the next section we will provide methods for solving this
optimization problem.

III. CALIBRATION ALGORITHMS

A. Alternating Minimization

DefiningB � ACxA
H, one solution to estimateH fromCy,

assuming it’s perfectly known for now, is given by

Ĥ = C
1
2
yB

− 1
2 . (10)

Here, we define the square root of a matrix C as any matrix

C
1
2 such that C

1
2C

H

2 = C. However, there is a larger set of
solutions, which can be described by

Ĥ = C
1
2
yQB− 1

2 . (11)

where Q is any orthogonal matrix, resulting in a non-unique
solution.

To further narrow down the solution space, we assume that H
can be parameterized by fewer parameters than the total number
of entries in H. These parameters will be represented by θ, and
the related matrix is then denoted as H(θ). Hence, to estimate
H, we would like to find the correct Q and θ by solving the
following problem instead of (9):

{θ̂, Q̂} = argmin
θ,Q

‖C 1
2
yQB− 1

2 −H(θ)‖2F , s.t. Q ∈ Q, (12)

where Q represents the set of orthogonal ML×ML matrices.
In other words, we try to find a solution that will give a zero cost
function for (9) (any orthogonal Q), while also penalizing the
distance to the set of parameterized matrices H(θ). Using this
formulation the cost function is no longer quartic w.r.t. H. How-
ever, even if H(θ) is linearly parameterized, the problem above
is not a convex problem, due to the orthogonality constraint.

In order to arrive at a solution for this problem, we propose to
alternatingly optimize for θ and Q, as outlined in Algorithm 1.
WhenQ is fixed, θ can be found by solving a linear least squares
problem. We assume that H can be linearly parameterized by θ
with parameterization matrix2 G, such that vec(H(θ)) = Gθ.
This way, solving for this step admits a unique global minimum
which can be found either iteratively or analytically. When θ is
fixed, (12) becomes a weighted orthogonal Procrustes problem
(WOPP). The latter is hard to solve, since it does not allow
an analytical solution, the cost function contains multiple local
minima, and iterative methods are not guaranteed to find the
global minimizer (see [34] and the references therein). These two
problems are solved alternatingly until the algorithm converges,
or a maximum amount of iterations has been completed. In
the next subsection we propose an improved version of this
algorithm that addresses the problems mentioned above.

When jointly calibrating for multiple frequencies, the block-
diagonal structure of H in (5) is enforced by G, while addition-
ally imposing a parameterization for the blocks on the diagonal
representing each Hl. Due to the block-diagonal structure of
H, the number of unknowns increases linearly with each added
frequency, whereas the number of new covariance measurements
increases quadratically. This is of course limited by the echo
signal bandwidth and the Nyquist rate in both space and time.
Moreover, space-frequency samples in Cy tend to decorrelate
for large frequency and space differences between entries. The
additional information in Cy consists of the cross-correlations
between temporal frequencies, which now also have to be
matched by the covariance-matching algorithm. Hence, we ex-
pect the probability of finding a unique solution forH to increase
as the bandwidth L increases.

The above procedure, summarized in Algorithm 1, is an
alternating projection algorithm, where θ and Q are alternat-
ingly projected onto a linear subspace, and the Stiefel manifold,
respectively. We have not been able to find a similar problem
or algorithm in literature, and are not aware of any analyses
concerning convergence and global and local minima. However,
given the non-convex constraint imposed by the Stiefel mani-
fold, it is likely that there are multiple local minima. Moreover,
there are at least two global minima, because the solutions
{θ̂, Q̂} and {−θ̂,−Q̂} should have the same cost function value
in (12).

In [35], cyclical algorithms are proposed, which use a similar
alternating minimization problem, although the authors in [35]
are not necessarily looking for a unique solution, since any
solution in the feasible set should suffice. In our work, however,
we are looking for a specific solution: the one that is as close
as possible to the true H. The work does not analyse local and
global minima. However, similar to [35], we can point out that
(9) is zero if and only if (12) is also zero. Moreover, if the global
minimum of (9) is small, then (12) should be small as well. It is
then argued that the two cost functions are ‘nearly’ equivalent

2A basis G can be found by simulating the layer of interest in an accurate
simulator such was k-Wave, and studying the structure in H. For the sake of
simplicity, we used a 2D Fourier basis in our experiments, removing the high
frequencies from the basis. Finding proper bases is a topic of future research.
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Algorithm 1: Alternating Optimization Algorithm.

1: Input: Nit, C
1
2
y , B− 1

2 , G.
2: Initialize: random orthogonal matrix Q̂, n = 0.
3: repeat

4: θ̂ = G†vec
(
C

1
2
y Q̂B− 1

2

)

5: Ĥ = unvec(Gθ̂)

6: Solve the WOPP Q̂ = argminQ ‖C 1
2
yQB− 1

2 − Ĥ‖2F
7: n = n+ 1
8: until n = Nit

in the sense that if the global minimizer of (9) is sufficiently
small, that the sequences minimizing both cost functions can be
expected to lead to similar results. However, the cost functions
are not equivalent, and will have different local minima and
minimization sequences in general.

B. Alternating Optimization for Ill-Conditioned B
1
2 and

Low-Rank Cy
1
2

Algorithm 1 has several drawbacks that we intend to address
in this subsection. Most importantly, a WOPP has to be solved in
Algorithm 1, which requires iterative methods with no guarantee
of obtaining a global minimizer. The altered cost function pro-
posed in this subsection will lead to a formulation where only an
unweighted orthogonal Procrustes problem needs to be solved,
for which an analytical solution is available. Another issue is that

whenH is low-rank,C
1
2
y is low rank as well. Consequently, there

will be no unique solution to the weighted orthogonal Procrustes
problem in Algorithm 1. Moreover, the matrix A is typically ill-
conditioned in the case of (multi-frequency) imaging problems,

making the inversion of B
1
2 problematic, and also causing C

1
2
y

to be ill-conditioned. The issue of ill-conditioning is the one we
encountered in our experiments, and thus of most importance.
For the sake of completeness, we also show how to deal with a
low-rank Cy.

To address these issues, we start by observing that instead of
solving (9), we can also take the matrix square root of the terms
in (9), similar to the work in [35], to obtain a solution using the
following minimization problem:

θ̂ = argmin
θ

‖C 1
2
y −H(θ)AC

1
2
x ‖2F (13)

= argmin
θ

‖C 1
2
y −H(θ)B

1
2 ‖2F . (14)

Of course, this is only one of many solutions, and similar to the
previous subsection, multiplication by an orthogonal matrix Q
of the left term will also provide a solution to the original cost
function (9). Incorporating this term into the new cost function
leads to:

{θ̂, Q̂} = argmin
θ,Q

‖C 1
2
yQ−H(θ)B

1
2 ‖2F , s.t. Q ∈ Q. (15)

When θ is fixed, solving for Q now has become an OPP instead
of a WOPP, and the global optimum for the OPP in the current
iteration can be found analytically. The solution for θ when Q

Algorithm 2: Alternating Optimization for Ill-Conditioned
B

1
2 and Low-Rank Cy

1
2 .

1: Input: Nit, B
1
2 , G, U, Σ.

2: Initialize: random matrix P ∈ Qk×ML, n = 0.
3: repeat

4: θ̂ = argminθ ‖C
1
2
y −H(θ)B

1
2 ‖2F + λ‖θ‖22

5: Ĥ = unvec(Gθ̂)

6: Decompose: Σ
H
2 UHĤB

1
2 = ŨΣ̃ṼH

7: P̂ = ŨṼH

8: n = n+ 1
9: until n = Nit

is fixed is found by solving a (linear) least squares problem. In
case of an ill-conditioned B

1
2 , one can use any regularization

technique when solving for θ, such as Tikhonov regularization.
As discussed in the previous subsection, the local minima and
minimization sequences of (9) and (15) are not equivalent in
general, although they should have similar behaviour for small
enough values of the cost functions, and (9) can only be zero if
(15) is also zero.

Next, we rewrite the problem to only solve for the column

space of C
1
2
y as follows. First, we define the economy size

SVD of Cy: Cy = UΣUH, and use C
1
2
y = UΣ

1
2UH. Here

U ∈ CML×k, where k = rank(Cy), and Σ ∈ Ck×k. Next, we
rewrite the cost function in (15) by left-multiplying the terms in
(15) by UH, leading to the problem

{θ̂, Q̂} = argmin
θ,Q

‖Σ 1
2UHQ−UHH(θ)B

1
2 ‖2F , s.t. Q ∈ Q,

(16)

or equivalently,

{θ̂, P̂}=argmin
θ,P

‖Σ 1
2P−UHH(θ)B

1
2 ‖2F , s.t. P ∈ Qk×ML,

(17)

where P = UHQ, and Qk×ML represents the set of k ×ML
matrices with unit-norm orthogonal rows. The solution to (17)
for Q (an OPP) is given by [34]:

P̂ = ŨṼH, (18)

where Ũ and Ṽ collect the k most significant left and right sin-
gular vectors of Z = Σ

H
2 UHH(θ)B

1
2 ∈ Ck×ML, respectively.

Although we have changed the cost function, it is now more
easily solved for Q if θ is fixed: instead of a WOPP, we only
have to solve an OPP, for which a global minimum can be found
analytically. Moreover, it avoids computing the inverse of B

1
2 ,

and ensures there is a unique solution to the OPP when Cy

is rank-deficient, by only solving for the column space of Cy.
We will use cost function (17) throughout this article to avoid
the aforementioned issues. The updated algorithm is shown in
Algorithm 2.
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C. Manifold Gradient Descent

From Algorithm 1, line 4, we can directly substitute the
solution for θ into (12), resulting in the following simpler cost
function where Q is the only optimization variable:

Q̂ = arg min
Q∈Q

∥∥∥vec
(
C

1
2
yQB− 1

2

)
−GG†vec

(
C

1
2
yQB− 1

2

)∥∥∥
2

2
,

= arg min
Q∈Q

‖Fvec(Q)‖22, (19)

where F = (I−GG†)
(
B− T

2 ⊗C
1
2
y

)
. Given a Q, the operator

F first computes the corresponding estimate of H, (B− T

2 ⊗
C

1
2
y )vec(Q), and then projects it onto the nullspace of G.

Toolboxes such as ManOpt [36] can be used to find a solution to
(19), which uses a Riemannian based gradient descent method.

In a similar fashion, (17) can be rewritten as

P̂ = arg min
P∈Qk×ML

∥∥∥vec
(
Σ

1
2P

)
−
(
B

T
2 ⊗UH

)
Gθ

∥∥∥
2

2
(20)

= arg min
P∈Qk×ML

∥∥∥vec
(
Σ

1
2P

)
− G̃G̃†vec

(
Σ

1
2P

)∥∥∥
2

2
,

(21)

where G̃ =
(
B

T
2 ⊗UH

)
G. Defining F̃ = (I−GG†)(I⊗

Σ
1
2 ), we end up with

P̂ = arg min
P∈Qk×ML

‖F̃vec(P)‖22. (22)

Our initial investigations showed that, although both algorithms
converge to the same solution, Algorithm 2 converges faster with
faster iterations, so we do not consider these gradient descent
methods in the Results section. On the other hand, they show
what kind of problem is being solved in a more compact manner.

IV. NUMERICAL AND SIMULATION RESULTS

We will evaluate the proposed algorithm using various simu-
lated aberration layers, in increasing complexity and difficulty.
Our main approach will be as follows.

1) Obtain the true H from a k-Wave simulation containing
only the aberrating layer. This will acts as a ground truth.

2) Generate calibration data synthetically from (4), using the
true H from step 1 and P random x(p)-vectors, resulting
in P y-vectors.

3) Estimate the covariance matrix Ry from the obtained y-
vectors, using (8).

4) Estimate H from the estimated Ry using Algorithm 2.
5) Evaluate imaging performance by simulating the echo RF

signal of the aberration layer with a verification image
(different from the data in step 2) in k-Wave, and attempt
to image it with the calibrated model.

These steps are also presented in Fig. 2, and explained in more
detail below.

1) Ground Truth of H: first, we will design the layer of
interest in the k-Wave toolbox [37]. To avoid lengthy simulation
times, and to have a reference ground truth, we directly measure
the Hl matrices in k-Wave, from which we can form H. To do

so, we transmit the excitation pulse (the same one that we would
transmit from our transmit transducer) from one point on the
virtual array, and measure the entire response on the receiving
array. This single simulation is then repeated for each virtual
array point. Thus, only the aberration layer, and no acoustic
contrast image was present in these simulations. This H will act
as our ground truth throughout most of the experiments, and will
also be used to efficiently generate many measurements.

2) Generate Calibration Measurements From Many Random
Contrast Images: since H is now known, we can generate syn-
thetic calibration measurements using (4) for many random x.
To this end, we generate P realizations of a spatially white zero
mean i.i.d. Gaussian image, with Cx = I. The contrast images
are zero mean, because we assume that the speed of sound of
the inhomogeneties (consider e.g. various moving particles in a
blood stream) can be either higher or lower than the background
medium speed of sound. This results inP y-vectors, from which
an estimated covariance matrix R̂y is obtained using (8). To
every measurement we add a different realization of spatially
and temporally white zero mean i.i.d. Gaussian measurement
noise, using Cn = σ2

nI.
3) Estimation of the Covariance MatrixRy: from these syn-

thesized measurements, we use the estimated covariance matrix
as defined in (8), usingCn = σ2

nI, to estimateH. We assume the
noise covariance is known, since it could be measured, e.g., by
measuring on the used ultrasound transducer without any echo
signals.

4) Calibration: We use Algorithm 2 based on the alternative
cost function described in Section III-B for all the results,
using k = LM (i.e., we don’t use a low-rank approximation).
We found it unnecessary to use regularization as described by
Algorithm 2.

5) Imaging Performance: since the measured H acts as a
ground truth, we can compare our estimated H with the true
one. We will use the normalized correlation coefficient

ρ = vec(H)Hvec(Ĥ)/(‖H‖F ‖Ĥ‖F ) (23)

to do so. However, how well H describes the true propagation
throughout the aberrating layer depends on (a) whether the
assumption of linear propagation holds, and (b) whether the
virtual array samples the incident ultrasound field sufficiently
well. Since we will generate measurement data for estimating
Cy using an assumed true H as described above, these assump-
tions are automatically satisfied. However, we will verify if we
can truly obtain better imaging performance, by performing a
separate imaging experiment using the calibrated model (i.e.,
estimating x from a single measurement y). The measurement
is obtained using a k-Wave simulation containing both the aber-
rating layer and the acoustic contrast image. Since the k-Wave
toolbox iteratively evaluates the acoustic wave equations, and no
model assumptions such as the Born approximation are made,
the entire signal model and imaging performance is tested in a
realistic way.

Best apodized phase screen approximation: We also compare
the imaging performance of the proposed calibration method to
that of the phase screen that comes closest to the true H-matrix.
Since phase screens only apply local phase changes, they are
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Fig. 2. Signal processing and imaging performance evaluation flow for the Results section. From left to right; first, images from random images are synthetically
generated using (4). From these measurements, the covariance matrix of y can be estimated (second step). Next, we use our proposed calibration algorithm to
obtain an estimate of H (third step). Finally, we use an independent k-Wave simulation with a test image and aberration layer to generate a single test measurement.
We use the estimated H to estimate an image from this measurement and evaluate performance (right-hand side).

represented using purely diagonalH-matrices. The best possible
apodized phase screen is then defined as taking only the diagonal
values of the true H (both phase and amplitude). Consequently,
any method that estimates a apodized phase screen to model
aberrations, and takes it into account for imaging, cannot do
better than this approximation. Here, the adjective ‘apodized’
is used since the amplitude is taken, in addition to the complex
phase.

PSF analysis: for a quantitative measure of the imaging
performance, we also generate the PSF for a single pixel in
the ROI, and compute its full-width at half maximum (FWHM)
measure, the integrated sidelobe level (ISL), and the distance of
the PSF peak to the true pixel position. The FWHM is defined
as the −3 dB cutoff point relative to the PSF peak. The ISL is
obtained by averaging all the sidelobe levels, and are reported
in dB using 10 log10 (i.e., we don’t use the power of the image).

Parameterization of H: Throughout this section, we use 2
different parameterizations of H. For laterally invariant layers,
such as in Section IV-A and IV-D, H is easily parameterized
using its Toeplitz structure. This results in 2M − 1 parameters
per frequency Since there was no such obvious representation
for the other, more complicated, aberration layers (we have tried

several popular transforms, such as the 2D DCT, wavelet, and
wave atom bases), we decided to use a very general representa-
tion using the 2D FFT of the transfer function matrix Hl of each
frequency, removing only the higher spatial frequencies, result-
ing in approx. 350 (out of M2 = 400) unknowns per frequency.
The rationale behind this approach is that the 2D FFT is generally
applicable, and we are thus testing our calibration algorithm
using a sub-optimal parameterization, resulting in pessimistic
results. Consequently, we expect improved results when using
layer-specific H-matrix parameterizations, as discussed in the
Discussion section.

To choose these 350 coefficients, we took the 2D FFT of the
H for each temporal frequency, and selected the basis vectors of
the largest coefficients. The selected vectors of all frequencies
were then joined together, resulting in a single, basis that could
be used regardless of which frequency is calibrated (and is not
specifically tailored for each frequency specifically).

Other physical parameters: the matrix A is generated as-
suming wave propagation from a known source location, to
each pixel, towards the virtual array. For this, we assume a
homogeneous background medium with a speed of sound of
1490 m/s, and a density of 1000 kg/m3 (similar to human
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TABLE I
SIMULATION PARAMETERS FOR THE VARIOUS CALIBRATION EXPERIMENTS IN SECTION IV

tissue). For the sake of simplicity, all pixels act as independent
sources, omni-directionally transmitting a Gaussian pulse cen-
tered around 5 MHz, unless otherwise specified. Note that this
does not invalidate our model assumptions, since the Born ap-
proximation ignores multiple scattering, implying each acoustic
contrast acts as an independent source. In the final experiment of
Section IV-D, we will forego these assumptions, and use a full
k-Wave simulation for each of the P calibration measurements
using full contrast-based scattering.

All simulations were done using relatively small arrays, in
order to keep most matrices and computations small. The pa-
rameter P was chosen relatively large but realistic for most
experiments so that a good approximate of Ry is obtained. We
think this is a reasonable assumption due to the high frame-rates
in US imaging. Finally, the choice of the number of frequencies
L being jointly calibrated was chosen using trial-and-error.
Generally speaking, experiments were done in the bandwidth
2–8 MHz, which we evenly divided into L equally-spaced
frequency bins. Here, we tried to keep L as small as possible,
and increased it until our algorithms were able to converge to a
sensible solution, using trial-and-error.

Some of the important calibration data parameters have been
summarized in Table I.

A. Triple-Layered Aberration Layer

First, we investigate the aberration layer in Fig. 3. It consists of
a water-layer ‘sandwiched’ in between two homogeneous bone
layers. It is important to realize that this layer is laterally space-
invariant, so that the spatial transfer function also becomes
space-invariant (i.e., it is only dependent on the lateral distance
between the virtual and true array element). Consequently, each
Hl will have a Toeplitz structure, which was also confirmed
by inspecting the Hl matrices obtained from k-Wave simula-
tions. Using this Toeplitz structure, G only requires 2M − 1
basis vectors per frequency, resulting in less unknowns. We use
random scatterers in a ROI of 10 mm width by 8 mm depth
for calibration. The calibration is performed for each temporal
frequency independently (L = 1), and using P = 500 frames.
Both the true and virtual array have M = 20 point-like sensors,
placed at 175 μm intervals.

In Fig. 3, we show the calibration performance for various
SNRs and temporal frequencies. Since the signal power is fre-
quency dependent, we adjust the noise power accordingly to
obtain the same SNR for each frequency. In the case of joint
multi-frequency calibration in subsequent subsections we don’t
do this, so that the SNR will vary per frequency. The transfer
functions in H are Toeplitz for all frequencies, and thus the
calibration performance depends only on SNR. Each calibration
finished within less than a second per frequency.

Finally, the bottom half of Fig. 3 shows the imaging results
using our calibration method for a single point and a small
collection of points. After estimatingH for all temporal frequen-
cies, all frequencies are combined when estimating the contrast
image x. All measurement data y is obtained from k-Wave
simulation experiments. All images are reconstructed using the
LSQR algorithm [38] to solve (2) for x, which is regularized by
limiting the amount of LSQR iterations. As can be seen from
the single point, the uncalibrated PSF deteriorates in the axial
direction due to the multiple reflections in the aberration layer,
which are mistaken as echoes from separate sources when no
calibration is utilized. This becomes even more clear in Fig. 3,
bottom right, where the calibrated model is able to resolve most
scatterers, in contrast to the uncalibrated model. The calibrated
model gives much better reconstruction results, on par with the
perfectly calibrated model. The best phase screen approximation
is also able to correct for the depth offset delay of the aberrating
layer, but is not able to account for multiple bouncing inside the
layer. Consequently, it looks similar to the uncalibrated image,
shifted in depth, exhibiting the same lack of resolution. These
observations are also visible in the FWHM and ISL results in
Table II.

We also attempted to obtain a good image by only tweaking
the speed of sound inA (andH = I). However, we were not able
to obtain a reasonable image reconstruction using this approach,
since the multitude of layers reverberate, which is probably the
main limiting factor for imaging through this layer.

B. Joint Multi-Frequency Calibration: Smoothly Varying
Layer

In the previous subsection we showed that calibration is pos-
sible using a single frequency if Hl has a Toeplitz structure, i.e.,
when the aberration layer is space-invariant in the x-dimension.
However, we have encountered significant difficulty calibrating
for a single frequency for non-Toeplitz matrices. In such cases,
we typically are able to find many solutions with a near-zero
cost function.

In this subsection, we resolve this issue by using the multi-
frequency approach to still obtain a good estimate of H. We
simulate a homogeneous, smoothly shaped layer as shown in
Fig. 4. For the parameterization θ, we use the fact that the
measured Hl-matrices in k-Wave have a clear and smooth
structure (Fig. 4, top right). Although probably not optimal, for
now the parameterization matrix G will consist of a 2D FFT
representation, omitting some of the higher spatial frequencies,
as described in the introduction to this section. The random
images are located in a ROI of 10 mm in width by 5 mm in
depth. Both the virtual and true array contain M = 20 elements,
spaced at 100 μm intervals.
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Fig. 3. Result for the simulations in Section IV-A. Top left: Laterally space-invariant aberration layer. Top right: Calibration performance per frequency and
SNR. Bottom left: Imaging PSF performance comparison with/without calibration, for P = 500, and an SNR of 25 dB. Bottom right: Test image reconstruction
performance comparison with/without calibration for reflectors at various inter-distances, for P = 500, and an SNR of 25 dB.

TABLE II
FWHM AND ISL FIGURES FOR ALL METHODS FOR THE RESULT OF IMAGING THROUGH A SKULL-LIKE LAYER IN SECTION IV-A

We calibrate jointly for equidistantly spaced temporal fre-
quencies between 1 and 7.5 MHz using L = 36. We form G
as mentioned before, using the 355 largest 2D FFT coefficients
(out of 400). Using P = 10, 000 and an SNR of 30 dB, we
obtain an absolute normalized correlation coefficient of 0.94
after 30,000 iterations. When using an SNR of 20 dB, we obtain
an absolute normalized correlation coefficient of 0.91. The used
parameterization is very general and could possibly be used for
a variety of aberration layers. Tighter parameterizations could

lead to improved estimation results and are a topic of future
research, although it is encouraging that the proposed method is
able to correctly calibrate using many unknowns.

In the bottom left of Fig. 4 we show the corresponding cost
function. Interestingly, although we used the modified cost func-
tion of Section III-B, both the alternative cost function and the
original covariance matching error decrease in a similar manner,
suggesting that cost function (17) is a good surrogate for the
original covariance matching cost function (9). Moreover, we
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Fig. 4. Top left: Simulated smooth aberration layer used for the simulations in Section IV-B. Top right: H-matrix for the aberration layer, for a frequency of
4.4 MHz. Bottom left: Various cost functions per iteration for the results of Section IV-B: proposed cost function (17), absolute normalized correlation coefficient (23),
covariance matching error (9). Bottom right: Test image reconstruction performance comparison with/without calibration for reflectors at various inter-distances,
for P = 500, and an SNR of 25 dB.

observe that even when the optimized cost function is decreasing
slowly (after approx. 3,000 iterations), the actual error between
the true solution and the estimated transfer function matrix is
still increasing (here expressed using the normalized correlation
coefficient). We hypothesize this is due to the fact that AAT has
eigenvalues that are relatively low w.r.t. to the highest eigenval-
ues. Consequently, a small change in Ry can result in a large
change in H. The calibration took approximately 20 minutes
(using our non-optimized code), which we expect to strongly
improve by better H-matrix parameterization (as discussed in
the Discussion section), and by optimizing code efficiency.

In the bottom right of Fig. 4, we show an image recon-
struction for a phantom generated using k-wave. All image
reconstructions are obtained using the LSQR algorithm with
limited iterations. A number of observations can be made.
Firstly, none of the reconstructions are of particularly high
quality. This can be attributed to the fact that the Hl matrices for
this aberration layer have relatively low singular values. That
is, one is not be able to reconstruct (using e.g. a least-squares
approach) the ‘input’ field to the layer from the ‘output’ field,
since H is low rank or ill-conditioned. Thus, given the general
model equation y = HAx, information about x is lost due to
the conditioning and/or rank of H. Secondly, we observe that
knowledge of H strongly improves the image reconstruction,
making it apparent that a cross-like image is present. Finally,
both the image result using the estimated H, as well as imaging

using a phase screen approximation, come close to the perfect
calibration case, with slightly worse background artefacts due to
sidelobes etc. Note that sidelobes and other imaging artifacts do
not have the same constitution as in imaging scenarios without an
aberrating layer, where traditional imaging techniques, and their
corresponding analysis, are applicable. In Table III, we see that
calibration using a full H matrix mostly improves positioning
errors.

C. Joint Multi-Frequency Calibration: Skull Layer

As a more clinically relevant example, we calibrate a skull-
like layer, consisting of a porous bone layer sandwiched between
two homogeneous bone layers (Fig. 5). We exploit the fact that
each Hl matrix can be well represented using the 2D FFT basis
for G, omitting the highest frequencies, so that we have to
estimate 342 variables (out of 400) per frequency. The random
images are located in a ROI of 15 mm in width and 20 mm in
depth. The true and virtual arrays contain M = 20 point-like
sensors, spaced at 350 μm intervals.

We calibrate for L = 46 equidistantly spaced temporal fre-
quencies between 1.8 and 6.0 MHz. Using P = 10, 000 and an
SNR of 30 dB, we obtain an estimate of H with an absolute
normalized correlation coefficient of 0.75. Fig. 6 shows the
various cost functions for 30,000 iterations. The calibration took
approximately 100 minutes (using our non-optimized code).
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TABLE III
FWHM AND ISL FIGURES FOR ALL METHODS FOR THE RESULT OF IMAGING THROUGH A SKULL-LIKE LAYER IN SECTION IV-B

Fig. 5. Left: Results for the simulations in Section IV-C. Simulated skull-like aberration layer in k-wave, used for multi-frequency calibration experiments. Right:
Image reconstruction example of simulated k-wave data of a set of point sources with varying inter-distances.

Fig. 6. Various cost functions per iteration for the results of Section IV-C:
proposed cost function (17), absolute normalized correlation coefficient (23),
covariance matching error (9).

In Fig. 5 we show the image reconstruction from RF data
obtained from a k-Wave simulation. Image reconstructions are
obtained using the LSQR algorithm to solve (2) with limited
iterations. In this case, an enormous reconstruction improve-
ment is obtained, as compared to imaging without any model

calibration. Although the phase screen approximation is able to
create a strong peak at the correct position of the center reflector,
most resolution is lost. This makes sense as waves propagate
and scatter inside the aberrating layer, for which local delays
would form a bad approximation. Seemingly, the phase screen
is only able to correct for the bulk delay of the phase screen,
but cannot account for other aberrating effects in the skull layer.
As in the previous subsections, we tried to find the best image
reconstruction for the calibration-less case by simply tweaking
the speed of sound, but were not able to find a satisfactory
result. The one in Fig. 5 was the best one obtained using a
lower speed of sound than the background medium. Table IV
shows the quantized PSF results. Since without calibration no
sensible image can be obtained, the FWHM and ISL levels were
not computed.

D. Blind Calibration From Blood Flow in a Vasculature
Network

Next, we consider a more realistic scenario where images
are not purely random. Instead, a vasculature tree with flowing
particles is used, to emulate a more realistic and practical imag-
ing scenario. Additionally, we will use true contrast reflections
by simulating contrast-based reflections in k-wave instead of
making each reflector a source as in the earlier results. This
scenario is thus more realistic, and we can expect more model
errors since the Born approximation may not strictly hold.
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TABLE IV
FWHM AND ISL FIGURES FOR ALL METHODS FOR THE RESULT OF IMAGING THROUGH A SKULL-LIKE LAYER IN SECTION IV-C

Fig. 7. Power Doppler images for P = 1, 000 frames, for the results of Section IV-D. Each frame is simulated in k-Wave, and calibration is done using flow data
from the same vasculature as visualized in the rightmost panel. The power Doppler images are normalized to have maximum of 1, and the images have been scaled
equally in depth to be able to show image details at larger depths.

We use random i.i.d. normally distributed scatterers, where
the mean speed of sound and density is that of the background
medium (water). This field of random reflectors is shifted
towards the array with a fixed distance every measurement
(500 μm steps). The random reflectors only occur inside the vas-
culature tree, and are set to the background medium properties
when outside the vasculature. When computing the measure-
ment covariance matrix Ĉy from such a set of images, we found
it to be nearly identical to the measurement covariance matrix
from completely random images (where Cx = I), and hence we
will assume I as the a priori known image covariance matrix.
Note that we simulate each of the P = 1, 000 frames in k-Wave,
instead of using H to generate many measurements.

As an aberration layer, we use the same triple layer and
Toeplitz basis as used in Section IV-A. The vasculature is
positioned in a ROI from 6 to 22 mm depth, and 20 mm in
width. The measurement array consists ofM = 30 sensors, each
one 250 μm wide, with 50 μm between them. The virtual array
consists of M = 30 point-like sensors, at 300 μm intervals. We
calibrate for equidistantly spaced temporal frequencies between
2.6 and 5.6 MHz using L = 96. We use only P = 1, 000 mea-
surements, and an SNR of 30 dB. Since our proposed algorithm
relies on the forward field being known (see the footnote in
Section II), we assume a point-like source transmits a spherical
wave into the imaging medium without being aberrated.

In order to remove stationary signals, such as the transmit
wave that propagates directly towards the sensor array without

scattering of pixels, we form a matrix of all the measured frames.
Similar to SVD-based power Doppler [39], the 10 highest sin-
gular values are then set to zero. After this procedure, the filtered
measurements y(p) can be retrieved from the SVD-filtered ma-
trix.

To evaluate the performance, we consider the estimated H
matrix to beamform each frame used in the calibration based
on the LSQR algorithm with a large damping coefficient as
regularization. We then apply a high-pass filter per pixel across
all frames, followed by summing the absolute value of all frames
to obtain a single power Doppler image. The result is shown
in Fig. 7. Since the reconstructed images were suffering from
decreasing image intensity for increasing depth and increasing
lateral distance from the center (as was the case for the preceding
image reconstructions in this section), the compounded power
Doppler image has been scaled in those directions for visual-
ization purposes. The power Doppler image using the H matrix
as estimated by the proposed algorithm shows a better resolved
image compared to the case of no calibration. The improvement
seems to be especially good in the ROI closer to the array, which
can be explained due to the fact that columns of A are more
uncorrelated in that region, and thus more resolution is lost
there if H is unknown. As a simple calibration procedure, the
speed of sound was somewhat tweaked to compensate for the
delays of the aberration layer, but we found that using a speed of
sound close to the true speed of sound gives the best result when
not using our proposed calibration method. Hence, we expect
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that the multiple reflections of the sub-layers cause the loss
in (axial) resolution. Using our calibration algorithm, however,
these are taken into account, leading to the improved image
in Fig. 7. Importantly, this result suggests that power Doppler
imaging (and thus, fUS imaging) through a layer is possible
using the vasculature blood flow itself as random images. This
is an especially encouraging result for fUS imaging of the brain
from cerebral blood flow. The calibration took approximately
24 hours (using our non-optimized code).

V. CONCLUSION & DISCUSSION

We proposed a method for estimating the transfer function
of an aberrating layer in ultrasound imaging scenarios by for-
mulating a measurement model in the covariance domain. The
ultrasound images do not need to be known, and instead only
the second-order statistics of subsequent images are required,
a condition that is considerably less demanding. The proposed
measurement model explicitly exhibits the aberration transfer
function, by observering that propagation through an aberrating
layer is still a linear propagation process. By collecting a large
number of measurements, the covariance matrix of the raw
RF measurements can be estimated, from which the aberra-
tion transfer function is estimated. The differences between
measurements is caused by the movement of e.g. blood flow
or injected micro-bubbles. If enough time is taken between
each frame/measurement, the positions of blood particles or
micro-bubbles can be modelled as a random process, with no
correlation between measurement frames and pixels. We can
thus analyse data in the covariance domain where the ultrasound
contrast image variable is replaced by the contrast image covari-
ance matrix.

The approach results in a non-convex minimization problem
with orthogonality constraints, for which we proposed algo-
rithms to find an estimated transfer function. The proposed
method is especially applicable for medical imaging scenarios
with sufficient blood flow across the image, such as the human
brain. It is much less invasive since only a small transmitter
would need to be inserted, whereas the much larger sensor
array can be positioned non-invasively outside the ROI and the
aberration layer. Making the method suitable for pulse-echo
imaging by transmitting and receiving using the same sensor
array seems challenging as one of the main challenges observed
in this article was the fact that the transfer function variables
(in the case of non-abberated transmit sensors) are quartic w.r.t.
the observed RF data, and pulse-echo imaging would make it bi-
quartic (octic), adding another layer of mathematical complexity
to the problem.

A second critique on our method is that it does not model
non-linear processes such as absorption, which may be more
significant in certain aberrating layers than in soft tissue. Con-
sequently, since our model is a purely linear one, it may not be
able to capture these non-linear propagation effects sufficiently,
and instead tries to capture it in our linear model, leading to
incorrect solutions.

Although prior knowledge of the image covariance matrix
instead of the actual images themselves relaxes the calibration

problem considerably, there can still be a model mismatch if
there are relatively large areas in the ROI with no varying pixels
(e.g. due to a lack of blood flow), or pixels with a relatively
different variance compared to other pixels. In that case, using
the identity matrix as the image covariance matrix might lead to
faulty transfer function estimates. If an acceptable initial image
can be obtained pre-calibration, or using an initial estimate of
H, such empty regions can be identified, and omitted from A to
obtain a more accurate model for Cy.

We tested our proposed technique on a range of increasingly
challenging calibration scenarios. We used k-Wave simulations
to generate raw RF measurements to test our algorithm for a
varying range of aberration layers. In each case, our technique
was able to find a sufficiently good estimate of the transfer
function of the aberration layer. Consequently, for each tested
layer, image reconstructions were much better using our cali-
brated model than an uncalibrated model, even enabling imaging
through a simulated skull layer.

There are currently no proofs or conditions for the existence of
a unique solution to the mathematical calibration problem as for-
mulated in this work. Consequently, we had to find whether this
is the case for each scenario empirically. Furthermore, a param-
eterization of the transfer function matrix is required, which is
dependent on the aberration layer characteristics. Nevertheless,
we were able to successfully calibrate various layers using gen-
eral FFT-based parameterizations, for various layers, including
a skull layer with porous bone causing strong wave distortions.
Due to practical considerations, some of the parameterizations
were obtained by selecting the largest Fourier coefficients of H
beforehand, taken across all temporal frequencies (Section IV).
Although this may seem like an inappropriate use of prior
knowledge, we would argue that such a Fourier parameterization
is sufficiently general (in all cases this method de facto only
resulted in removal of the highest frequency components) and
layer-agnostic (Fourier parameterizations are not expected to
be the best parameterization for any specific aberration layer).
Hence, we anticipate that the proposed method will yield even
better results when using more intelligent layer- and frequency-
specific parameterizations. For tightly parameterized transfer
functions like those for laterally invariant layers, there seems to
be a unique solution when calibrating for each single frequency
independently, which our algorithm is able to find. For more
challenging layers, a joint multi-frequency approach is required.

An important topic of future research constitutes the param-
eterization of H. We expect that more efficient representations
will make it easier to find a good solution using lower values of
L, thereby decreasing the computational demands, and resulting
in faster and better calibration results. We envision layer-specific
parameterizations can be acquired by measuring the H-matrices
of e.g. many skull layers by varying wall thickness and spongy
bone patterns. One could then use dimension reduction tech-
niques such as PCA to represent these matrices using substan-
tially fewer parameters. Even better representations could be ob-
tained by taking into account the relation between Hl-matrices
across frequencies, and make each Hl frequency-specific. An
alternative approach would start with calibrating for the lower
frequencies, since the corresponding Hl-matrices are typically
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easily represented using few coefficients, followed by estimation
of the higher frequency matrices, taking into account the relation
or correlation between the lower and higher frequency matrices.

We finally tested our techniques on a simulated blood flow
phantom where the displacement of blood acts as random
images. Assuming all images are uncorrelated, we were able
to estimate the layer transfer functions, and we subsequently
successfully computed a Doppler image of the same measure-
ment data used for calibration. This is an encouraging result
for reduced invasive functional ultrasound and Doppler imaging
through the human skull, where the blood flow itself would act
as random contrast images.
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