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Abstract

This paper reports on the challenges of using aspect oriented programming (AOP)
to aid in re-engineering a legacy C application. More specifically, we describe how
AOP helps in the important reverse engineering step which typically precedes a re-
engineering effort. We first present a comparison of available AOP tools for legacy C
code bases and then argument our choice of Aspicere, our own AOP implementation
for C. Then, we report on Aspicere’s application in reverse engineering a legacy
industrial software system and we show how we apply a dynamic analysis to regain
insight into the system. AOP is used for instrumenting the system and for gathering
the data. This approach works and is conceptually very clean, but comes with
a major quid pro quo: integration of AOP tools with the build system proves an
important issue. This leads to the question of how to reconcile the notion of modular
reasoning within traditional build systems with a programming paradigm which
breaks this notion. 2

Key words: dynamic analysis, aspect-oriented programming, industrial case study,
program comprehension, C
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1 Introduction

Legacy software is omni-present: software that is still very useful to an organ-
isation – quite often even indispensable – but the evolution of which becomes
too great a burden [5]. This burden can be caused by an increase in complexity
brought on by the normal evolution of the system [75,9,58,24,25,53]. Classic
symptoms include:

• a lack of experienced developers or maintainers,
• a lack of up-to-date documentation, and
• technology that does not reflect the current (business) environment.

To counter this phenomenon, a number of solutions to cope with evolution
have been proposed [5,73] in the field of re-engineering [17]. When applying
these countermeasures in a reliable, economically sound and swift fashion,
the software engineer would ideally like to have (1) a deep insight into the
application in order to start his/her re-engineering operation [74,24,52] and
(2) a well-covering (set of) regression test(s) to check whether the adaptations
made are behavior-preserving [25,27]. In practice, legacy applications seldom
have up to date documentation [58], nor do they have such a set of tests.

For all these reasons we are interested in the re-engineering of legacy E-type
systems (“software systems that solve a problem or implement a computer
application in the real world.” [51]). Recent research [57,20,50] suggests that
aspect oriented programming (AOP) [46] plays an important role in this effort
as it provides a modularised way to change the existing behaviour of a system
without having to destructively modify that system’s source code in any way.
The modularity provides us with opportunities for re-engineering, while the
non-invasiveness takes care of some of the psychological concerns associated
with modifying business-critical source code.

We have been looking at applying AOP in forward engineering [50,72,71,3], as
have others [10,12,57], with success. Different from these, this paper takes a
first look at an opportunity for AOP in a reverse engineering setting. Reverse
engineering is the essential first step in the re-engineering process and has
been reported to take up to 60% of the required effort [21].

As part of our research in the ARRIBA 3 project, our focus is on industrial
legacy systems. Considering this, we choose to use dynamic analysis for our
reverse engineering process. This choice is instigated by the fact that dynamic
analysis allows us to follow a goal-oriented strategy, i.e., it lets us analyze
only those parts of the system that we are really interested in [86]. This goal-

3 “Architectural Resources for the Restructuring and Integration of Business Applications” More info on
this project at http://arriba.vub.ac.be/.
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oriented strategy is certainly warranted considering the scale of typical legacy
applications. Furthermore, it puts us in the position to report on the benefits
of using dynamic analysis in a large-scale industrial legacy setting, of which
reports are scarce (e.g., [30,15]).

In order to enable this dynamic analysis, we introduce a simple tracing aspect
into an industrial system. Given that we only need to collect a representative
trace of the running application in order for the dynamic analysis to work, we
could also have opted for dedicated tools such as DTRACE [16] or ATOM [78].
There are two reasons that we do not do this. One is that we are looking at
AOP as a tool in the entire re-engineering chain and not limited to a particular
reverse engineering technique. As proposed by De Roover et al. [70], aspects
can generate reverse-engineering results in such a way that re-engineering
aspects can exploit these results to steer their re-engineering tasks. In this
respect AOP is more interesting as it is more generally applicable than the
aforementioned tools. The second reason is that we also need to consider how
to get our aspects applied in real-life systems. As this paper shows, even
for something as simple as a tracing aspect, this is not trivial. Indeed, as
the prototypical example of an extremely scattered aspect, a tracing aspect
actually provides us with something of a stress test with respect to the support
of aspects in the legacy system.

The experiment reported on in this paper is therefore on a mid-size real-life
system which has accumulated a mix of Kernighan & Ritchie (K&R) [44] as
well as ANSI-C style code. This has an impact on our choice of AOP tool,
which this paper will also take into careful consideration.

In short, the contributions of this paper are:

• a comprehensive overview of AOP tools for the C programming language,
• the introduction of a new AOP tool which fits our re-engineering goals,
• the application of a dynamic analysis on an industrial legacy application,
• a discussion of some of the problems found when applying AOP in a

legacy setting.

The structure of the remainder of this paper is as follows: Section 2 explores
possible AOP tools for legacy C systems. As we will see there is none that
fits the bill and so section 3 introduces a tool of our own which has been
created according to our re-engineering goals. Next, Section 4 shows an actual
application of AOP in an industrial environment by showcasing a dynamic
analysis approach; we present the actual experiment, including the aspect
we apply, the results we get from the analysis, and the validation of those
results with the system’s developers. Section 5 then discusses the problems
encountered while trying to apply AOP to this system. Threats to validity
are discussed in Section 6. Related work is shown in section 7, followed by
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section 8 which rounds up the discussion with our conclusions.

2 AOP tools for legacy C applications

As discussed by Mens et al. [57], aspect extraction and evolution are two cru-
cial activities when re-engineering a system using aspects. Failure or success of
AOP for re-engineering depends to a large extent on sufficient aspect language
support. Without this, the re-engineered system risks becoming unmaintain-
able and even less manageable than the original system.

This section first provides a brief introduction on AOP, before narrowing the
focus to requirements for aspect languages for legacy systems. We then discuss
the aspect languages for C which existed at the time of starting our research.
Finally, we compare the aspect languages.

2.1 Aspect Oriented Programming

Aspect oriented programming (AOP) modularises so-called “crosscutting con-
cerns” (CCCs) [46]. When developers implement these concerns using tradi-
tional programming language techniques, two undesired phenomena typically
crop up in the source code: scattering and tangling. The former corresponds
to implementation fragments of a concern (like, e.g., caching) which occur at
many places throughout the source code. Changes to the concern’s implemen-
tation likely require to make changes at many places in the system, which
is tedious, error-prone and hampers understandability. The situation is even
worse, because at each location where a concern fragment occurs, it may be
tangled (mixed) with fragments of other concerns. This means that program-
mers need to understand the interplay between multiple concerns before being
able to modify the caching concern. AOP deals with these undesirable pro-
gram properties by extracting crosscutting concerns in a new kind of modules:
aspects.

To date, AspectJ is still the primary aspect language in existence, both in
research and in practice. This is an aspect language for Java which has intro-
duced the concepts of advice, pointcut, join points, etc. An aspect is similar to
a class or module, but can contain “advice”, which consists of a “pointcut” 4

and an “advice body”. According to the most common school, the implemen-
tation of crosscutting concerns is extracted from the “base code”. The latter
corresponds to the implementation of the main concerns, the so-called “dom-
inant decomposition” which forms the backbone of the whole system. CCC

4 Sometimes abbreviated to “PCD”, for “pointcut designator”.
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implementation fragments are separated from the base code and localised into
(possibly) multiple advice bodies of an aspect.

Code separation is only one part of the effort required to resolve scattering
and tangling. One still needs to specify at which moments during the base
program execution an advice body should be invoked. Instead of embedding
explicit calls to advice within the base code, an advice is invoked automatically
once a condition (pointcut) is satisfied. This inversion of dependencies [63]
forms the core idea behind AOP. The moments in time when advice can be
triggered are called “join points”, as this is where the main concern(s) and a
CCC join each other. Established kinds of join points are method calls and
executions, variable access and manipulation, etc. A pointcut can make use
of program structure, name patterns, dynamic program state, etc. to describe
the intended set of join points. It is for example possible to select all join
points which occur in the control flow of another join point. The advice body
can be executed before, after or around a matched join point. In the latter
case, the advice can explicitly decide whether or not to resume (“proceed”)
the advised join point.

The process of matching join points with a pointcut and of executing advice
on a pointcut match is called “weaving”. Conceptually, a “weaver” monitors
the program execution and checks each join point to decide whether there is
a match or not. In practice, the set of interesting join points can be reduced
based on analysis of the pointcuts, or weaving can be moved completely to the
compiler, with only a couple of dynamic checks (“residues”) left at run-time.

Some aspect languages like AspectJ also provide means for managing static
crosscutting concerns, i.e., inter-type declarations 5 (ITD) [45]. Whereas ad-
vice alters program behaviour, ITD alters types or may facilitate program
verification and error handling. The latter two applications solicit compiler
feedback if a user-specified pointcut matches during weaving. Type alteration
allows classes and interfaces to be extended with new attributes or methods
and may even change the inheritance hierarchy by adding new interfaces to
be implemented or changing the superclass. The idea is that these structural
modifications support behavioural CCCs, which are implemented separately
as advice, but that they also allow base code developers to explicitly use the
introduced attributes or methods. Griswold et al. call this “language-level
obliviousness” [38], i.e., developers are aware of the woven aspects. If develop-
ers do not know anything about the possible aspects, one speaks of “designer
obliviousness”, unless developers may prepare the base code to expose better
join points (“feature obliviousness”).

Commonly, a distinction is made between “homogeneous” and “heteroge-
neous” CCCs [20]. Homogeneous concerns are said to look almost identical

5 The original name for this feature was “introduction”.

5

SERG Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis

TUD-SERG-2008-035 5



everywhere they occur. On the other hand, heterogeneous concerns may vary
widely between different occurrences. As a consequence, the implementation of
homogeneous concerns may be easily localised into one advice body, whereas
heterogeneous concerns are harder to implement in a robust way. In the latter
case, the advantages of AOP may seem to be limited, but this actually de-
pends on the expressivity of the aspect language, i.e., the advice and pointcut
language. The better variability can be expressed in the aspect language, the
easier heterogeneous advice can be extracted into advice.

AOP has been especially studied in the context of OO systems, as a means
to overcome the problems of scattering and tangling in even the most ad-
vanced OO languages. Nevertheless, CCCs are more fundamental than this.
Anytime a problem is tackled by making some structural design decisions, the
remaining concerns have to fit into this main decomposition somehow. This
problem is named the “tyranny of the dominant decomposition” [81]. Hence,
CCCs not only occur in OO systems, but also in procedural or functional pro-
grams [46,50,71], as these also start from a main decomposition of the system.
Keeping in mind that OO languages offer more powerful composition con-
structs than modular or procedural programming, this means that the latter
have even less means to manage CCCs. Research has shown [14,20,11–13,10]
that CCCs represent an important evolution problem in legacy systems, espe-
cially if one takes the scale of these systems into account (millions of lines of
code). Tangling and scattering of CCCs with the main concern heavily impact
program understandability, while scattering increases the cost of maintenance
and reduces traceability of code fragments to the modeled concern. Various
researchers have considered AOP as a viable solution to deal with these prob-
lems in legacy systems [71,62,10]. This paper investigates this claim.

2.2 Requirements for aspect languages for legacy systems

Finding the right aspect language for re-engineering legacy systems is not an
easy task, because these environments have other needs than modern systems.
De Schutter [50] has made an explicit account of the rationale behind and the
design of an aspect language support for typical legacy (Cobol) systems. Other
researchers have discussed specific facets of aspect language design in legacy
environments [19,12]. From this work, we have distilled five requirements for
aspect languages for the re-engineering of legacy systems:

Base integration. The aspect language constructs should blend with the
base programming language.

Expressive pointcuts. The pointcut language has to make up for the weaker
support for typing, structuring, etc. in the base language.

Generic advice. Advice should be robust to small variations in types and
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context across the advised join points.
Join point context. Advice should have access to join point context.
Available weaver. A solid weaver should be available.

The first requirement considers the psychological integration of a new tech-
nology. As Cobol programmers are fluent in writing Cobol code and mostly
weary of new technologies, adoption of aspects can be accelerated if the as-
pect language does not try to copy or re-implement existing features [28] and
is suited to the particular domain programmers are working in. Instead of a
separate aspect construct as in AspectJ, it is much more natural to adopt
ordinary Cobol files as aspects. New constructs for pointcuts and advice have
to be added, but to lower the learning curve they should be as close as possi-
ble to existing language constructs (C preprocessor, etc.) and should be able
to interact with them. This also makes integration into existing development
environments easier, because these only need to support the new advice and
pointcut concepts.

The second and third requirement can be illustrated best by an example.
Bruntink et al. [11,12] have used AspectC [19], the first aspect language for C
(described later), to implement an aspect which checks whether or not pointer
arguments passed to a procedure correspond to a null pointer. As C does not
have a kind of “super-type” similar to Java’s Object 6 and it does not support
C++-like templates, there is no type-safe way to refer to a generic type. Be-
cause AspectC does not have explicit provisions for dealing with this, Bruntink
et al. [11,12] were forced to duplicate their argument checking advice for each
occurring argument type and to use plain enumerations of procedure names
as pointcut. This situation impeded maintenance, as the long enumeration-
based pointcuts had to be adapted on every non-trivial source code change,
and changes to the advice logic had to be percolated to all duplicates of the
advice.

To resolve these problems, Bruntink et al. [11,12] have developed a domain-
specific language (DSL) for parameter checking, which is translated by a pre-
processor to AspectC advice. Although they show that their solution greatly
improves the source code quality, it still remains an ad hoc solution. Aspect
languages for legacy systems should provide support for writing robust point-
cuts and to specify generic advice, i.e., advice which is robust to small variabil-
ity in types and context across all join points it advises. Robustness can further
be improved by providing more advanced join points (variable access, control
flow, etc.), whereas the ease of expressing the precedence between aspects or
individual aspects is also important to keep in mind for genericity.

6 C does have void pointers, which can point to anything, but using them precludes compile-time type
checking.
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The fourth requirement, i.e., sophisticated access to join point context, refers
to the base elements in terms of which pointcuts are expressed. To be able to
specify robust patterns of join points, Gybels et al. [39] and De Schutter [71]
have proposed access to program structure as a prerequisite. De Schutter has
elaborated on this by stressing the importance of weave-time meta data in
pointcuts, i.e., logic facts which represent design information or results of
reverse engineering analysis. They allow to write more robust pointcuts which
are synchronised with design changes, more precise analysis results or, e.g.,
developer annotations. In general, any kind of information could be offered as
context to pointcuts [64], or directly to advice. The latter is typically obtained
by means of an explicit join point object (e.g., named “thisJoinPoint”).

The fifth requirement seems trivial, but for many aspect languages only a
proof-of-concept implementation exists, which is not able to cope with the ac-
tual code found in legacy systems. Robustness to base language dialects and
the ability to deal with language abuse (e.g., function pointers) are indispens-
able. The moment in time on which the weaver kicks in is important as well.
Many aspect languages for C feature a compile-time weaver, primarily because
the typical domains where C shines (system software!) require highly efficient
woven code. However, these systems have other desirable properties too, such
as availability and debuggability. These are the application areas run-time
weavers can be beneficial [65] for, as they theoretically offer the capability to
advise any running system. For this, most dynamic weavers are based on in-
strumentation libraries or techniques like code splicing [31], i.e., tweaking the
assembler code to jump to aspect code. Consequently, most of them do not
require to parse or process the actual source code. Platform-independence of
the instrumentation mechanisms in use is questionable, however. Also, there
usually is no opportunity to optimise the advised application after the dy-
namic weaving: they tend to become patchworks. This is not the case for
static weavers.

To summarise, aspect languages for legacy systems should blend naturally
with the base programming language, should support generic advice, offer a
means for composing expressive pointcuts and access to join point context. A
sufficiently mature weaver implementation is also needed.

At the start of our research we had a choice of four AOP tools for C: AspectC,
AspectC++, AspectX and Arachne. We have evaluated these four tools with
respect to the five requirements. The following sections discuss in more detail
Table 1, which summarises our results.
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AspectC AspectC++ AspectX Arachne Aspicere

domain kernel general general systems general

base integration + .h XML + +

preprocessor - - #include - -

PCD robustness - regexp XPath + LMP

(function) pointers - - - - -

ITD - + + - -

basic join points AspectJ AspectJ + + +

dynamic join points AspectJ AspectJ - + -

advanced join points - callsto/reachable comments + -

variable access - - + + -

generic advice - + + - +

aspect interaction build explicit build deployment build

advice interaction lexical lexical lexical lexical lexical

context - + + + +

thisJoinPoint - + - - +

annotations - - - - -

availability + + + + +

weaver type source2source source2source source2source run-time source

optimisation - + - - -

K&R support + - + N/A +

IDE support - + - - -

Table 1
Overview of existing aspect languages for C. Each of the five sets of rows corresponds
to one of the five requirements for aspect languages for legacy systems. A +/-
indicates good/bad support for a feature, whereas “N/A” signals when an entry
is not applicable to a language. Because every aspect language supports access to
function arguments and global variables, a “-” for “context” means that there is no
additional means for access to join point context.

1 pointcut allocating_buffers(vm_object_t obj , vm_pindex_t pindex ):

2 execution(vm_page_t vm_page_lookup(obj , pindex ))

3 && cflow(execution(int allocbuf(struct buf*, int )));

4

5 around(vm_object_t obj , vm_pindex_t pindex ):

6 allocating_buffers(obj , pindex ){

7 vm_page_t m = proceed(obj , pindex );

8 if ((m != NULL) && !(m->flags & PG_BUSY)

9 && ((m->queue - m->pc) == PQ_CACHE)

10 && (pages_available () < vfs_page_threshold ()))

11 pagedaemon_wakeup ();

12 return m;

13 }

Fig. 1. AspectC aspect for page daemon wake-up in the FreeBSD kernel [18].

2.3 AspectC

AspectC was the first aspect language for C, inspired by AspectJ’s constructs.
Figure 1 is only interested in (lines 1–3) the execution of the vm page lookup

9
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procedure if this join point lies in the control flow of an execution join point of
the allocbuf procedure. Instead of each of these join points (lines 5–6), the
advice body on lines 7–12 is executed. This contains normal C logic, except for
the call to proceed which enables to execute the advised join point from inside
the around advice. There is no explicit aspect construct, as file boundaries
are used for this. Contrary to AspectJ, variable accesses cannot be advised
and there is no ITD support either.

The advice signature does not specify a return type (line 5). Instead, the aspect
developer should determine the right return type when it is needed in the
advice body, e.g., when declaring local variables (line 7). Regular expressions
cannot be used either in pointcuts, which means that for every possible return
type a separate pointcut and advice has to be written. This has caused the
problems of Bruntink et al. discussed in Section 2.2. Access to typed context
is possible (line 5). The precedence of multiple pieces of advice on a common
join point is determined by lexical order of the advices in the aspects and by
the order in which the aspects are listed when invoking the weaver.

Initially [19], aspects were hand-compiled, but later on [18], a real weaver
has been built. AspectC seems unmaintained since 2003 without any official
releases, but a weaver prototype has been available on request.

2.4 AspectC++

AspectC++ [76,77] 7 is the most mature and general-purpose aspect language
for C++ to date, but since its inception people have tried to use it for C too.
Official support for this has never been a priority, however. Non-ANSI C code
(so-called “K&R”-code) cannot be parsed by the weaver. It is also not clear
which constructs and pointcuts can be used for C and which ones cannot.
The AspectC++ weaver is heavily based on template instantiation to reduce
memory footprint and execution time. The woven code is valid C++ which
needs a modern C++ compiler. There is a (commercial) IDE plugin.

As Figure 2 shows, AspectC++ is heavily influenced by AspectJ. There is
an explicit aspect construct which is similar to a C++ class, hence it needs
to be declared inside a special “aspect header file”. Join point, advice and
pointcut types are comparable to AspectJ. Contrary to AspectJ, advice and
inter-type declarations (“slices”) are specified in the same way. Because of
this, the join point model is said to be “unified”. Join points are implicitly
typed, such that the weaver may check that they are only advised by correctly
typed advice. Regular expressions can be used to specify pointcuts (lines 3–6

7 http://www.aspectc.org/
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1 aspect ThrowWin32Errors{

2

3 pointcut Win32API () = "% CreateWindow %(...)"

4 || "% BeginPaint (...)"

5 || "% CreateFile %(...)"

6 || ...

7 ...

8 advice call(Win32API ()): after () {

9 if(win32 :: IsErrorResult (*tjp ->result ())){

10 ostringstream os;

11 DWORD code=GetLastError ();

12

13 os << "WIN32 ERROR " << code << " : "

14 << win32:: GetErrorText(code) << endl;

15 os << "WHILE CALLING: "

16 << tjp ->signature( << endl;

17 os << "WITH: " << "(";

18

19 // Generate join point -specific sequence of

20 // operations to stream all argument values

21 stream_params <JoinPoint ,JoinPoint ::ARGS >:: process(os,tjp);

22 os << ")";

23 throw win32:: Exception(os.str(),code);

24 }

25 }

26 }

Fig. 2. AspectC++ aspect which converts return value error codes into C++ ex-
ceptions [77].

on Figure 2). Two new pointcut types are provided. The callsto pointcut
takes an execution pointcut and deduces which call join points can call the
join points described by the execution pointcut. The reachable pointcut is
analogous, but it calculates (via static analysis) all join points from which its
argument join points can be reached. There are no set and get pointcuts, i.e.,
access to variables is not reified as a join point, because of aliasing problems
introduced by pointers and because of the unsound semantics of set regarding
operator=. Just like AspectJ, there are precedence directives to derive a total
order between aspects. Advice ordering within an aspect is ordered via lexical
conventions.

AspectC++ has coined the term “generic advice” [55] to refer to the pow-
erful capabilities of templates for obtaining highly reusable and robust ad-
vice. The idea is that AspectJ’s distinction between static and dynamic join
point context is generalised to C++’s strong compile-time template mech-
anism. Compile-time context can be used to instantiate templated advice
and functions, such that there is no run-time overhead to dynamically al-
locate or access context. Line 21 of Figure 2 gives an example of this. Be-
cause JoinPoint is just a class name and JoinPoint::ARGS statically resolves
to the correct number of function arguments of the advised call join point,
the stream params<JoinPoint,JoinPoint::ARGS> template is instantiated
at compile-time through template meta-programming. This mechanism allows
for very reusable and robust advice, which varies automatically based on the
particular join point and advice context. As a downside, the templates can

11

SERG Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis

TUD-SERG-2008-035 11



1 <pointcut name="targetFloatNameGetter" type="src:name"

2 constraint="(text()=’_flt ’) and

3 (not(contains(following -sibling::text ()[1],’=’)) or

4 (contains(following -sibling::text ()[1] , ’== ’)))">

5 <restriction type="within">

6 <pointcutRef ref="anySampleClassExpr" type="src:expr" />

7 </restriction >

8 </pointcut >

9

10 <advice name="targetFloatNameGetter" type="replace">

11 <pointcutRef ref="targetFloatNameGetter" aspect="PointcutLibrary"

12 type="src:name" />

13 <codeModifier type="codeFragment">

14 <xsl>pDB -&gt;getParameterFloat(PD<xsl:value -of

15 select="upper -case(current ())" />)</xsl>

16 </codeModifier >

17 </advice >

Fig. 3. Accesses to a float member are replaced by the result of a method call with
XWeaver (see example from website).

easily get very complex to understand, especially for C programmers which
are used to the simpler semantics of the C preprocessor.

2.5 AspectX/XWeaver

XWeaver 8 [69] is the name of the aspect weaver associated with the AspectX
aspect language. It is conceived for tailoring software frameworks to control
systems. As quality control is important for this, XWeaver’s task is to gener-
ate woven code which syntactically resembles the base code layout and even
updates comments (to document the woven code) such that the woven code
can be manually investigated. XWeaver does not work on the program AST,
but on srcML. This is an XML representation of a program in which only
high-level program constructs are accessible. Comments and include/import
statements are retained. This format makes XWeaver language-independent,
in the sense that initial C++ support has been extended to Java once srcML
was released for Java. Just as is the case with AspectC++, XWeaver can be
used for C systems too.

The AspectX language is XML-based, as the advice in Figure 3 shows. XML
Schema type-checks the syntax of the XML aspects. AspectX allows the us-
age of XPath and XSLT technologies in the pointcut (lines 2–4) and advice
(lines 14–15) respectively. XPath is able to select the right XML nodes by
navigating across the XML tree. In the example, nodes of type float are se-
lected (line 2) which do not occur as the left-hand side of an assignment or
“equals” condition (lines 3–4). The advice of lines 10–17 replaces (line 10) the
selected elements using the XSLT transformation of lines 14–15. This transfor-

8
http://www.xweaver.org

12

Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis SERG

12 TUD-SERG-2008-035



1 seq( call(void* malloc(size t)) && args(allocatedSize)

2 && return(buffer );

3 write(buffer) && size(writtenSize)

4 && if(writtenSize > allocatedSize)

5 then reportOverflow ();

6 call(void free( v o i d )) && args(buffer ); )

Fig. 4. Buffer overflow detection aspect [26].

mation capitalises the name of the advised join point XML node. Hence, the
user should have considerable knowledge of the program XML-model. Special
symbols need to be escaped, as the &gt; on line 14 shows. Inclusion of XML
documents can be exploited to reuse a library of pointcuts. To summarise,
the AspectX language is a very low-level aspect language which resides on the
border with pure program transformation.

Join point context (argument types/names, return types, etc.) is accessible
via dollar-variables like ${className}. Under the hood, XWeaver transforms
aspects in XSLT transformations, which means that join point context ac-
tually corresponds to XSLT queries. Hence, users can extend XWeaver with
new context queries. New join point types can be added in a similar manner.
More traditional join points like execution exist, but all of them are purely
statically determined based on the AST. There are no provisions for dynamic
join points. On the other hand, the focus on program transformation enables
syntactic ITD of comments and even of include/import statements.

XWeaver is implemented in Java. There is an Eclipse plugin (AXDT) akin
to the AspectJ AJDT, but command line or build script access (via Ant) is
also possible. XWeaver can generate an Ant file based on a project file (XML).
The latter specifies the important directories in the project and also the aspect
configuration per subset of base code modules and header files. Finally, the
precedence of advice is determined by the lexical order in the aspect files and
the order in which aspects are read by the weaver (similar to AspectC).

2.6 Arachne

Arachne 9 is a dynamic aspect language for C which improves on the obsolete
µDiner framework [26]. The Prolog-like pointcut language is based on a tem-
poral sequence of procedure call and/or (in)direct variable access join points.
The resulting sequence pointcut is a natural means for advising protocol-like
behaviour, as each element of the sequence can be advised individually. The
advice of Figure 4 detects when more data is written into a heap-allocated
buffer (lines 3–4) than initially allocated (lines 1–2). In that case, overflow is

9
http://www.emn.fr/x-info/arachne/
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reported (line 5). The sequence ends when the buffer is deallocated (line 6).
The latter is required to avoid that further run-time checks are performed for
the buffer allocated at that address.

To increase the expressivity of this language, Loriant et al. [56] later have
added the possibility to bind specific context to each instance of a sequence.
Also, a fakeEvent construct has been introduced to simulate calls to an ar-
bitrary procedure when some join point matches. These fake events can then
trigger other advice of which the pointcut is expressed in terms of that event.

Arachne uses clever assembler manipulation techniques to instrument a run-
ning system without having to pause it. Hence, the precedence of advice at a
common join point is determined by the lexical order in the aspect and the
order of deploying the aspects. Despite claims of robustness across computer
architectures, these techniques did not work on the various test machines we
have tested it on 10 . The last public release of Arachne dates back to March
2005.

2.7 Discussion

First, we have observed that most aspect languages blend well with the base
code. Second, regular expressions are the most widespread mechanism to ob-
tain expressive pointcuts. AspectX and Arachne are more powerful because of
their syntactic program transformation and sequence pointcuts respectively.
Third, except for AspectC++, the aspect languages provide some form of
generic advice, especially by allowing access to a rich set of join point vari-
ables inside the advice body. AspectC++ on the other hand relies on C++
templates. It does not require developers to change the weaver implementation
to add extra context for obtaining more expressive pointcuts. Fourth, aspect
languages with generic advice all have access to a wealth of join point con-
text. Fifth, AspectC and AspectX have sufficiently robust weavers, whereas
AspectC++ generates more efficient woven code. Arachne does not need to
parse the base code, but yields less optimised woven programs. Overall, As-
pectC++, AspectX and Arachne conceptually are the best aspect languages
for C based on our five requirements.

Because AspectC++ does not support K&R C and generates C++ code in-
stead of C, AspectX reasons in terms of XML transformation instead of in
terms of join points, and Arachne does not provide generic advice and is not
platform-independent, none of the languages are really suited for the legacy
system environments we are targeting. Instead, we have decided to design

10 Arachne is distributed as a live Linux distribution.
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and implement a new aspect language for C, i.e., Aspicere. The next section
presents the design of Aspicere.

3 Aspicere, an AOP language and tool for legacy C systems

This section presents our aspect language for C, Aspicere 11 [87]. We consider
its rationale, the language itself and the weaver we have developed for it.
The last column of Table 1 summarises how Aspicere compares to the aspect
languages for C discussed in the previous section.

3.1 The join point model

As with the other aspect languages for C, procedures are the prime join point
type in Aspicere. Similar to AspectJ, a distinction is made between a call and
an execution join point, i.e., a join point at the caller and callee side. This
helps to distinguish between advising all (execution) or just a number (call)
of procedure invocations, which is important regarding shipping aspects with
libraries or not. In addition, an execution join point is the easiest way of
dealing with function pointers.

Second, pointers also cause the problem of “aliasing”. A given (global) variable
can be accessed directly or via some pointer to it. Arachne (Section 2.6), e.g.,
tried to use the operating system’s page fault mechanism to detect variable
access, but this caused extreme performance penalties. Just like AspectC++
(Section 2.4), Aspicere does not support variable access join points like get

or set.

Finally, Aspicere does not take inline assembler and preprocessor constructs
like macros or conditional compilation into account.

3.2 Pointcuts

As argued in [71], legacy languages like C lack sufficient structure or reflective
capabilities to be able to write crisp and robust pointcut patterns and advice.
To deal with this, Aspicere’s pointcut language is heavily influenced by the
querying variant of logic meta-programming (LMP) [83,8,39]. The basic idea

11 Aspicere: verb, Latin, “to look at”. Root of our modern word aspect. Available at http://users.ugent.

be/~badams/aspicere/

15

SERG Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis

TUD-SERG-2008-035 15



1 ReturnType safe_ato(TYPE ReturnType ,char* Src) around Jp:

2 invocation(Jp,"ato.")

3 && args(Jp ,[Src]))

4 && type(Jp ,ReturnType ){

5 ReturnType dst;

6

7 if(Src == NULL) dst = 0; /* compiler does the cast */

8 else dst=proceed ();

9

10 return dst;

11 }

Fig. 5. Aspect to make conversion to numbers null pointer-proof.

is that a program is represented as a collection of logic facts and that a Turing-
complete logic language is used to reason about these program facts. Pointcuts
can be expressed in terms of the program facts to compose powerful patterns
based on program structure using conjunction, disjunction and or negation
(by unprovability). By carefully designing more advanced predicates in terms
of more primitive ones, a clean, layered pointcut language can be constructed.
Adding new pointcuts comes down to defining new logic predicates. By raising
the level of abstraction, pointcut predicates can be brought closer to the actual
problem domain.

Lines 2–4 of Figure 5 show an example pointcut in Aspicere. This pointcut
matches all calls 12 (line 2) to procedures of which the name matches the
regular expression “ato.”, i.e., the name starts with ato and the fourth letter
is arbitrary. Because Aspicere does not allow advising a call via a function
pointer (see Section 3.1), this pointcut only matches explicit function calls.
To connect the invocation predicate to the ones on lines 3 and 4, Prolog’s
unification allows us to reuse the previously bound join point variable (Jp).
This is a very natural way to express that two bound variables should be equal.
The args predicate binds the call’s sole argument passed via the argument
list to the Src variable and also captures the procedure call’s return type as
ReturnType.

The unification has an interesting effect: if a variable can have multiple values,
each one is eventually used to find a complete match of the logic rule. In
Figure 5, each function call which satisfies the regular expression on line 2
(and the other conditions) leads to an extra match of the pointcut.

Apart from program structure, logic facts can also represent weave-time meta
data. This is especially useful for legacy systems, because meta data facts can
record information obtained via reverse engineering and can make it accessible
in advice to re-engineer the system. Design information, the actual composi-
tion of source modules (is one executable built or are multiple libraries built?),

12 Because of name clash issues in our weaver implementations, we use invocation instead of call.
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information of base code modules selected by the user, etc. can all be passed
to pointcuts and be used in the advice body. Logic facts are useful to store
meta data separately in a loosely coupled fashion.

To summarise, Aspicere has an expressive pointcut language which is able
to abstract over implementation details of the base code (requirement two of
Section 2.2). The binding of variables enables access to a variety of join point
context (requirement four), but we the next section provides more on this.

3.3 Advice construct

Aspicere’s aspects correspond to ordinary C modules with a new advice con-
struct. The advice in Figure 5 secures calls to the standard atoi, atol and
atof procedures to prevent a program from crashing 13 when a null pointer is
passed as an argument. These three procedures should parse a string (char*)
argument into an int, long or double. Note that a single advice suffices to ad-
vise all three procedures because of the use of so-called “template parameters”
(lines 1 and 5), which are similar to C++ templates.

An advice structure specifies:

• the advice return type (useless in case of before- or after-advice);
• the name of the advice;
• a list of bound context variables 14 visible to the advice body;
• the type of advice (before, around or after (returning));
• (in case of after returning) binding of return value to a variable;
• the name of the join point variable where advice has to be woven;
• a pointcut (behind the colon);
• the advice body.

Aspicere’s advice body contains pure C code enhanced with template parame-
ters. As the pointcut (see Section 3.2) consists of Prolog predicates with C-like
conjunction, disjunction and negation operators, this makes Aspicere a hybrid
of pure C and a Prolog-based pointcut language. To make the learning curve
lower, Aspicere enables a C-like syntax of Prolog’s conjunction, disjunction
and negation operators (e.g., “&&” instead of “,”).

The advice of Figure 5 corresponds to around-advice on join points Jp which
satisfy the pointcut on lines 2–4. This pointcut has been explained in the
previous section. Two typed variables are bound (ReturnType and Src) and
are available for use as template parameters in the advice body. Src is a simple

13 Some platforms (e.g., UnixWare) already handle this, others (e.g., GNU) do not. The advice shown here
allows to abstract away from this difference in platform.
14 Their names always start with a capital letter.
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string, whereas ReturnType represents an actual C TYPE. TYPE is a custom
(meta)type we have added to Aspicere, because C does not have reflective
capabilities. One can use such a type parameter further on in the binding list,
as return type of the advice (line 1) and of course inside the advice body itself
(line 5). Type parameters help to achieve better static typing than the use
of a catch-all void* would allow, similar to C++ templates. Advice becomes
robust to small changes in, e.g., types, as Figure 5 illustrates.

Apart from template parameters, an advice body may contain a proceed-
call, similar to AspectJ. If no arguments are given, the join point’s original
arguments are passed as is to any remaining advices on the same join point
(the precedence rules are the same as for AspectC and AspectX) or to the join
point itself. If one wants to replace the value of the arguments, one should fill
in the arguments or assign directly to a bound argument. Another alternative
is to access the thisJoinPoint-like struct, which is accessible via the join point
variable (Jp). This struct contains the following fields:

nrArgs — number of arguments
args — array of arguments
returnValue — pointer to return value
fileName — name of file in which advised join point resides
functionName — name of advised function

Aspicere provides generic advice with flexible access to join point context
(requirement three). It forms a hybrid between C and Prolog (requirement
one).

3.4 Aspicere’s weaver

Figure 6 shows the architecture of the Aspicere weaver (named “Aspicere1”).
It is a pure source-to-source weaver [87], which takes as input base code (one
module at a time), aspects (.ac) and Prolog modules (.pl), and generates woven
C code which can be compiled using the normal compiler. This means that the
weaver has to be integrated between the C preprocessor and the C compiler.
Aspicere’s parser is capable of handling C code made up of a mix of K&R-,
ANSI- and GNU-standards.

Inside the weaver, a parser and unparser convert the C code to/from an XML
representation of the AST (analogous to AspectX in Section 2.5). The Prolog
modules and the pointcuts (transformed into Prolog rules) are used to locate
the right join point shadows 15 [42], i.e., the appropriate XML nodes of the

15 A join point is a run-time concept. However, for each join point a corresponding location in the source code
can be found which contains the actual code which is executed by the join point (e.g., an actual procedure
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Fig. 6. Architecture of Aspicere1, Aspicere’s source-to-source weaver. The .ac-files
represent aspects, while .pl-files contain logic predicates.

AST. Once these have been found, the XML tree representing the base code
module can be transformed, as well as the aspects themselves.

Advice is converted into multiple C functions, one per combination of type
parameters used in the advice body. These transformed advices are collected
into the transformed aspect, which has to be reused as input to the weaving
process of other files of the same application (the big loop in Figure 6). At
the same time, information about matched join points is collected into a “join
point match repository” XML file, which is also reused in future weavings. The
woven base code module is converted back to C code, whereas the transformed
aspect possibly needs to be transformed further when weaving other base code
modules. Eventually, the resulting transformed aspect also has to be compiled
and linked with the base code to form the complete woven system.

The availability of an aspect weaver for Aspicere fulfills the last of the five
requirements for aspect languages for legacy systems set out in Section 2.2.
The next section shows how Aspicere is applied.

call forms the shadow of a call join point). Shadows are used by compile-time weavers to statically weave
aspects.
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4 Example in an industrial environment

Kava, our industrial partner, is a non-profit organisation that groups over a
thousand Flemish pharmacists. While originally set up as a union for the phar-
maceutical profession, they have evolved into a full-fledged service-oriented
provider for pharmacists.

Some ten years ago they have developed a suite of applications written in
non-ANSI C, which has put them among the first in the industry to have
an automated tarification service. Due to successive health care regulation
changes they are very much aware of the necessity to adapt and re-engineer
this service. Furthermore, during their migration from non-ANSI C to ANSI
C compliant versions of their applications, they have noted that the documen-
tation of these applications was outdated, making it difficult for new software
engineers to get acquainted with the system. To help solve this problem, Kava
was interested in applying reverse engineering techniques to their system.

The developers at Kava have pointed us to the so-called TDFS 16 batch ap-
plication. This is a part of the Kava system which is used as a check to
see whether adaptations in the system have any unforeseen consequences. As
such, it should be considered as a functional application —it outputs a de-
tailed invoice of all prescriptions, ready to be sent to the health care insurance
institutions—, but also as a kind of regression test.

In agreement with Kava we have opted for the use of dynamic analysis in
investigating this application. It is important to note that this experiment
assumes no knowledge of the details of the TDFS application, other than what
was described above. That is, we have no knowledge of its size or architecture.
Discovering this information is exactly the goal of the experiment.

While the concept of dynamic analysis goes back to at least the early seven-
ties [6], there has recently been a renewed interest in dynamic analysis tech-
niques that deal with large-scale program comprehension [37,40,89,88,90,66,79].
This renewed interest can partly be explained by the increasing need to un-
derstand large scale object oriented software. This object oriented software
makes abundant use of polymorphism and the late binding mechanism makes
it hard to understand the software when only using static analysis techniques.

One such dynamic analysis technique, the key class identification technique
was developed in-house and was previously extensively validated with object
oriented software systems [88,90]. This previous study has shown that the key
class identification technique is able to find those classes in a system that
need to be studied during early program comprehension phases. We found it

16 TDFS: “TariferingsD ienst Factuur en Statistiek”, or “Tarification Service for Invoices and Statistics”.
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particularly worthwhile to verify whether this key class identification technique
could also prove its worth in non-object oriented legacy systems where it would
identify key modules rather than key classes.

The remainder of this section briefly describes the concept of the key class
identification technique. This is then followed by an elaboration on its actual
application in the Kava environment by means of Aspicere. We summarise
the results obtained from the analysis, and their validation with the original
developers.

4.1 Dynamic coupling based analysis

Within software systems, the concept of coupling is inevitable as program
parts —be they classes or modules— work together to reach a certain goal.
Classes that exhibit a relatively high level of coupling can be designated “in-
fluential”. Influential, because they have a certain amount of control over what
the application is doing and how it is doing it. A similar observation of influ-
ential classes was made by Tahvildari in her research about design flaws [80]:
“Usually, these most important concepts of a system are implemented by very
few key classes, which can be characterized by a number of properties: (1)
they manage a large amount of other classes or use them in order to imple-
ment their functionality, (2) they are tightly coupled with other parts of the
system and (3) they tend to be rather complex, as they implement much of the
legacy system’s functionality.” As such, structural dependencies between mod-
ules of a system can indicate modules that are interesting for initial program
comprehension [68].

To be more specific, the key class identification technique uses run-time export
coupling, which is a measure for the degree to which a module requests other
modules to do work for them (delegation). This gives us all actual dependencies
that happen at run-time, provided we have a well-covering execution scenario.
However, coupling measures are typically between two classes or modules,
whereas we want to take into consideration the complete structural topology
of the application. To overcome this strict binary relation between modules,
we add a transitive measurement for reasoning over the topology. We use
webmining techniques for this [88,90].

4.2 Webmining analysis

Webmining, a branch of datamining research, analyzes the topological struc-
ture of the web trying to identify important web pages based solely on their
hyperlink structure. By replacing the hyperlink structure of the web (i.e., a
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web graph) by a call graph that shows the structural dependencies of a soft-
ware system, we are able to use the same basic technique to retrieve important
classes or modules.

The HITS webmining algorithm [48] identifies so-called hubs and authorities
in (web) graphs. Conceptually, hubs are nodes that have a high number of
outgoing edges, while authorities are nodes that have many incoming edges. In
terms of the Internet, hubs are pages that mainly have a referring function, e.g.,
web directories, lists of personal pages, etc. On the other hand, an authority
contains useful and/or highly detailed information regarding a specific subject.
In terms of program comprehension, hubs are modules that contain the core
high-level logic of the application (conceptually, these are the influential classes
we talked about in Section 4.1), while authorities are implementers of more
low-level functions (e.g., utility classes [40]).

The basic mechanism for the HITS algorithm is as follows: every node in
the graph i gets assigned to it two numbers; ai denotes the authority of the
page, while hi denotes the hubiness. Let i → j denote that there is a calling
relationship between modules i and j, and let w[i, j] be the number of different
methods of module j called from within i, i.e., the weight (or importance) of
the calling relationship. The recursive relation between authority and hubiness
is captured by formulas (1) and (2).

hi =
∑

i→j

w[i, j] · aj (1)

aj =
∑

i→j

w[i, j] · hi (2)

The HITS algorithm starts with initializing all h’s and a’s to 1, and sub-
sequently repeatedly updates the values for all pages using the formulas (1)
and (2). If after each update the values are normalised, this process is known
to converge to stable sets of authorities and hub values [48]. The h and a
values are normalised so that:

∑
i (hi)

2 = 1 and
∑

i (ai)
2 = 1.

As an example consider the graph given in Figure 7. The table in this figure
shows three iteration steps of the hub and authority scores (represented by
tuples (H,A)) for each of the five nodes from the graph in Figure 7(a). From
this, we can conclude that 2 and 3 will be good authorities as can be seen
from their high A scores in Table 7(b). Looking at the final H values, 4 and 5
will be good hubs, while 1 will be a less good one 17 .

17 Be aware that the example from Figure 7 uses integer values for calculating the hub and authority scores,
while the actual implementation uses floats due to the normalisation of the actual scores. Only the final
row of values is normalised.
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1 (1,1) (1,1) (1,1) (1,1) (1,1)

2 (2,0) (1,3) (0,3) (2,1) (2,0)

3 (4,0) (3,6) (0,5) (6,2) (6,0)

4 (8,0) (5,16) (0,15) (11,4) (11,0)

... ... ... ... ... ...

final (0.640, 0) (0.485, 1) (0, 0.940) (1, 0.243) (1, 0)

(b)

Fig. 7. Example graph and the accompanying first iterations of the HITS webmining
algorithm.

The result set obtained from this heuristic is a list of all the modules of which
containing procedures were executed during an execution scenario. These mod-
ules are ranked from being important to being irrelevant during early program
comprehension phases. An earlier study on Java software showed that the tech-
nique is able to retrieve the most important classes within a system with a level
of recall of 90% and precision of 50%. More information about this technique
and its validation can be found in [90].

Now that we have explained how our analysis technique works, we elaborate
on the application of it using Aspicere in the Kava environment. We start by
detailing the instrumentation phase.

4.3 Instrumentation of the application

The pointcut of Figure 8 (lines 2–4) advises individual procedure calls whose
name does not end in “printf” or “scanf” (line 2). At each affected join point,
we want to output the relevant associated context information to a trace
file. This context is accessible in the advice body through the thisJoinPoint
struct, bound to Jp (lines 10 and 16). More specialised context information
can also be obtained and used through bindings such as ReturnType (line 7).

Aspicere’s around-advice then enables us to output call- and/or return-sequence
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1 ReturnType trace(TYPE ReturnType ,char* FileStr) around Jp:

2 invocation(Jp, ‘‘^(?!.* printf$ |.* scanf$ ).*$’’)

3 && type(Jp ,ReturnType)

4 && !! is_void(ReturnType)

5 && trace_file(FileStr) {

6 FILE* fp=fopen(FileStr ,"a");

7 ReturnType i;

8

9 fprintf (fp ,"before ( %s in %s ) \n",

10 Jp->functionName ,Jp->fileName ); /* call sequence */

11 fflush(fp);

12

13 i = proceed (); /* continue normal control flow */

14

15 fprintf (fp ,"after ( %s in %s ) \n",

16 Jp->functionName ,Jp->fileName ); /* return sequence */

17 fclose(fp);

18

19 return i;

20 }

Fig. 8. One of the two applied tracing aspects, i.e., the one aimed at non-void
procedures.

information to the trace file (lines 9–10 and 15–16), which lets us reconstruct
the program call tree on which the dynamic analysis operates.

Apart from the advice of Figure 8, we need one almost identical version of
the advice for void-procedures. Robust pointcuts and generic advice allow to
instrument the entire Kava system with these two concise advices.

4.4 Results

Performing the webmining analysis gives us the results as listed in Table 2.
The results are ranked according to the hubiness values, found in the third
and sixth column, from high to low. Hubiness values lie in the range [0, 1].
Some important facts that can be derived from Table 2 are:

• Module e tdfs mut1.c stands out with a high hubiness score.
• Only seven out of the 15 modules have a value greater than zero. Modules

with a value of zero do not call other modules.
• The four modules that are specific to the TDFS application (as can be

seen from their names) show up in the four highest ranked places.

4.5 Validation

We now cover the results that we have obtained from applying the key class
identification technique to the subject software system. For the specific execu-
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# Module Hubiness # Module Hubiness

1 e tdfs mut1.c 0.814941 9 csroutines.c 0

2 tdfs mut1 form.c 0.45397 10 UW strncpy.c 0

3 tdfs bord.c 0.397726 11 td.ec 0

4 tdfs mut2.c 0.164278 12 cache.c 0

5 tools.c 0.164278 13 decfties.c 0

6 io.c 0.12548 14 weglf.c 0

7 csrout.c 0.0321257 15 get request.c 0

8 tarpargeg.c 0

Table 2
Results of the webmining technique.

tion scenario that we have investigated, namely TDFS, two developers, D1 and
D2, were responsible at Kava. Both have thorough and active knowledge of
the structure and the inner workings of this particular application. We present
the feedback these two developers had when presenting them our results.

Through our experiment, we have established that the TDFS application con-
sists of 15 modules. We have presented the developers with a schema consisting
of each of these modules, and have asked them the following three questions:

(1) Which module is the most essential?
(2) Which module tends to contain the most bugs?
(3) Which module is the hardest to debug?

We have noted their answers and also have asked if there were any particular
reasons why they believed a certain module to be important, hard to debug or
to contain bugs. Subsequently, we have presented our results to each of the two
developers separately. Afterwards, we have discussed the results with both of
them and have highlighted the similarities and differences in their comments.

During our discussion with the developers, D1 mentioned #1 (that is, source
file number 1 as ranked in Table 2) and #4 as being the most essential modules
for the TDFS application. #6 and #12 are technically also important, but are
not specific to the TDFS application, as they are used by many other applica-
tions of the system. D1 was surprised at the fact that #12 was not catalogued
as being more important. #7 and #9 are difficult to debug, but only minor
details changed in these modules in the last 10 years. D2 clearly ranks #1 as
being the most important and most complicated module: it contains most of
the business logic. #4 makes a summary of the operations carried out by #1
and checks the results generated by it. #2 is mainly responsible for interac-
tion with the end-user, while #3 is concerned with formatting the output. As
such, the opinions of D1 and D2 are indeed very similar, and support our own
results. Furthermore, all modules specific to this application are ranked at the
very top.
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A last remark on one of the drawbacks of the webmining technique: container
classes or modules are often ranked very low, because of the fact that their
export coupling is low [88,90] (i.e., they do not call many procedures in other
modules). This fact partly explains why #12, a caching data-structure which
was expected to rank higher according to D1, is placed quite low.

To summarise, we can say that we have a good indication that the key class
identification technique also works in a non-object oriented environment. For
our case study, the technique ranked the most important modules at the very
top and as such identified these top-ranked modules as being “important”.
Furthermore, the original developers who cooperated in our study confirmed
that we have indeed retrieved the most important modules, making this tech-
nique very suitable for helping novice developers find their way in large-scale
software systems.

5 Obstacles when applying AOP in legacy E-type systems

Having discussed the results of the analysis of the experiment, we now shift
our focus to our observations of obstacles encountered when applying AOP to
a legacy system. We consider three obstacles: physical integration of Aspicere1
into the Kava build system, problems with providing developers with the right
notion of modularity and issues caused by K&R C code.

5.1 Integration into the build process

The first step in adding AOP to a legacy software system is to extend its build
system such that aspects get woven into the final product. As Aspicere1 is a
preprocessor-style weaver, this implies changing the compile cycle to:

(1) Preprocess
(2) Weave
(3) Compile
(4) Link

An actual example of this modification from the experiment is shown in Fig-
ures 9 and 10.

With regards to the experiment, the Kava applications use make [33] to auto-
mate the build process. Historically, all 269 makefiles have been hand-written
by several developers, not always using the same coding-conventions. During
a recent migration operation from UnixWare to Linux, a significant number of
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$(CC) -c -o file.o file.c

Fig. 9. Original makefile.

$(CC) -E -o tempfile.c file.c

cp tempfile.c file.c

aspicere -i file.c -o file.c \

-aspects aspects.lst

$(CC) -c -o file.o file.c

Fig. 10. Adapted makefile.

.ec.o:

$(ESQL) -c $*.ec

rm -f $*.c

Fig. 11. Original esql makefile.

.ec.o:

$(ESQL) -e $*.ec

chmod 777 *

cp ‘ectoc.sh $*.ec‘ $*.ec

$(ESQL) -nup $*.ec $(C_INCLUDE)

chmod 777 *

cp ‘ectoicp.sh $*.ec‘ $*.ec

aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ \

-aspects aspects.lst

$(CC) -c ‘ectoc.sh $*.ec‘

rm -f $*.c

Fig. 12. Adapted esql makefile.

makefiles have been generated with the help of automake 18 , but not all. This
means that the structure of the makefiles remains heterogeneous, a common
attribute of legacy systems. This heterogeneity makes it hard to fully automate
the modification of the build system as depicted in Figures 9 and 10, because
the existence of certain environment variables is not ensured, invocation of
compilers can happen in various ways, etc. This becomes apparent when, as
in the case of our experiment, embedded sql preprocessing needs to be done
(see Figures 11 and 12). On line 5 of Figure 12, e.g., the C INCLUDE environ-
ment variable is assumed to point to the right location of header files, whereas
the original invocation of esql on line 2 of Figure 11 has to be transformed
into a corresponding invocation of the C compiler on the second-before-last
line of Figure 12. Context-specific makefile changes are required.

An alternative to these makefile changes would be to re-route $(CC) and
$(ESQL) to custom shell scripts (“wrappers”) which execute Aspicere in the
right way before invocation of the real $(CC) and $(ESQL) compilers. This
too is problematic as the heterogeneity of the makefiles does not guarantee
that in all cases there is a direct use of these commands, which is a typical
problem with wrappers. Even if the wrappers are applied consistently, some
tools like e.g. the $(ESQL) compiler internally invoke the original C compiler.
As this one is replaced by a wrapper, Aspicere1 eventually would be executed
twice instead of once. In the end, a wrapper approach is not feasible either.

18
Automake is a tool that automatically generates makefiles starting from configuration files. Each generated

makefile complies to the GNU Make standards and coding style. See http://sources.redhat.com/automake/
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Real tool support for adapting makefiles is needed, and is something we have
been focusing on as a result of this experiment. MAKAO 19 [2] is a re(verse)-
engineering framework for build systems which enables visualisation, querying,
filtering, verification and re-engineering of the build dependency graph. The
makefile re-engineering support is itself based on AOP and facilitates exploit-
ing context information to develop robust makefile re-engineerings. Unfortu-
nately, MAKAO was not around at the time of the case study. A regular
expression transformer has been used instead, but the lack of context for the
refactorings required us to manually verify and fix all changes.

5.2 Linking aspects into the system

Aspicere1 conceptually transforms aspects into C compilation units. This in-
volves transforming the advice constructs into C procedures (so-called “advice
instances”). All advised procedure calls in the base code are replaced by (in-
direct) calls to the right advice instance. After the transformed aspect module
is compiled, it should be linked with every object file in which advised join
points reside. As a bonus, one can share static and global state between all
advice instances, e.g., the file pointer to which we send the tracing data.

This linking is, again, problematic due to the complexity and heterogeneity
of the build system. As the experiment precludes any knowledge of the legacy
system, and as we had no tool support for automating modifications of the
build system, the linking as described above was simply not feasible. More
in particular, the mapping of source code components on build system units
could not be determined. Conceptually, aspect developers reason in terms of
one software system, whereas in the build system the software has been split
across multiple libraries and executables. A static weaver like Aspicere1 needs
to process these build components in such a way that the aspect developer’s
notion of modular reasoning is still valid [47,38]. As we did not know which
build units were part of the build system, nor how they were mapped on
the source code, we could not optimally exploit Aspicere1’s provisions (trans-
formed aspects) for safeguarding the source code modularity.

To circumvent this, we modified the weaver to insert the advice instances of
a particular aspect into each advised base module at a time (as needed). This
prevents the linking problems, but this also means that one can no longer share
aspect state. This is the reason why each advice instance manages its own file
pointer (see line 6 of Figure 8), which results in spurious opening, flushing and
closing of the actual trace file. This is a clear example of a situation where
limitations in the build system have an impact on the source code.

19
http://users.ugent.be/~badams/makao/
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In the meantime, we have developed a link-time weaver for Aspicere (“As-
picere2”) [3], which operates on the compiled source code during linking. Ap-
plications which span across multiple libraries and executables still require
knowledge of the build architecture, but because libraries and executables re-
side at a slightly higher level than object files, integration of Aspicere2 into a
build system is easier. This is especially true if a tool like MAKAO [2] is used
to discover the build system’s architecture.

5.3 Coverage of non-ANSI C language features

As Kava’s system is a mix of ANSI and K&R style C code, Aspicere1 has
to take care that it covers deviations between these dialects. As an example,
procedure declarations with an empty argument list are allowed in K&R style
C, whereas they are not in ANSI C. Actual declaration of the arguments is then
postponed to the corresponding procedure definitions. The type inferencing
required to handle this in the weaver is rather complex, and was therefore not
fully integrated into Aspicere1 by the start of the experiment. As a result,
some join points were skipped, introducing some errors in our measurements.
To be more precise, we have advised 367 files, of which 125 contained skipped
join points. Of the 57015 discovered join points, only 2362 were filtered out,
or a minor 4 percent. Random screenings of the code found that calls to the
same small group of procedures were responsible for the skipped join points.
These procedures turned out to be very low level, not part of the business
logic, and therefore ignoring them did not impact the analysis.

5.4 Conclusion

To summarise, the application of aspects in the source code for reverse engi-
neering and re-engineering of a legacy system entails more than just adding
source code. The new tools, i.e. the aspect weaver, need to be integrated into
the existing development environment. Even without the demand for fast in-
cremental weaving or IDE support, this proves difficult. The major cause of
these problems is the gap between the notion of modularity in the source code,
and the one supported by legacy build systems. Bridging this gap is hampered
by the lack of understanding of the build system. Tool support is needed to
deal with this [1,2].
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6 Threats to Validity

This section discusses threats to the validity of our approach and results. We
consider construct, internal and external validity.

6.1 Construct Validity

In order to apply the webmining approach, we need a trace of a concrete
scenario of the TDFS application. The aspect that we used for tracing TDFS
(Figure 8) is a simple tracing aspect. We have thoroughly tested and compared
the output of a vanilla version and an instrumented version of TDFS to be
sure that the aspect that we introduce does not change the outcome of the
computations. Even the pitfalls in the concrete realisation with Aspicere’s
weaver in the Kava case do not endanger the correctness of the program. We
discuss this in Section 5.

6.2 Internal Validity

While the developer feedback provides a valid explanation for the results ob-
tained, we should be aware that the developers are subjective in the sense
that each developer has most knowledge of his or her own set of modules. As
a countermeasure we proposed to have an open and honest discussion with
the developers. Furthermore, we minimise any bias by interviewing the two
developers separately and by holding an open discussion with both afterwards.

To avoid that faults in our webmining tool chain might explain the results of
the case study, we thoroughly tested the tools. We also point to the fact that
we obtained similarly good results for two other case studies, which were also
subjected to a thorough validation phase [88,90].

6.3 External Validity

The problems with integrating our AOP tool into the build system that we
describe all stem from a single case study, namely the Kava system. In this con-
text, we acknowledge that additional experiments are necessary to see whether
the problems that we describe can be generalised to other systems. Neverthe-
less, we do think that the problems that we have encountered are common
to many (industrial) systems that have undergone years of evolution. Other
work by Adams et al. [2,1] and Kellens et al. [43].
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This is the first application of our webmining approach on a procedural system.
There are enough similarities between procedural programming and object
oriented (OO) programming to believe that the approach works on both types
of programming languages. In particular, the concept of coupling — the basic
underlying metric of our approach — is present in both types of systems. We
acknowledge however that more case studies are needed in order to come to a
more firm conclusion on the applicability of our approach on systems written
in procedural programming languages.

7 Related work

Large-scale industrial experience reports on the use of dynamic analysis are
scarce. Therefore, this related work section not only discusses a number of
relevant dynamic analysis techniques, but also touches upon a number of in-
dustrial reverse engineering experience reports using static analysis.

7.1 Static analysis based industrial experiences

Moise and Wong describe their experiences with extracting knowledge from
C/C++ systems in [58]. They use Rigi as a fact extractor for the C/C++
source code and focus on providing different decomposition approaches of the
system, trying to satisfy different understanding needs. Because of the large-
scale industrial case study they are working on, they are very much concerned
with the scalability of their tool chain. The reverse engineering efforts that
were performed at the industrial partner made it possible to speed up a number
of re-engineering tasks, e.g., the decomposition of a library could be done in
a single day, while previously this task took three days.

In [85], Wong et al. describe their experiences with re-documenting industrial
legacy applications with the help of their Rigi static reverse engineering envi-
ronment. They have applied Rigi on COBOL, C and PL/AS 20 systems. The
PL/AS experiment described in [85] exhibits a close resemblance with our own
experiments, as the goals and setting were very similar: a large scale industrial
legacy application with 2 MLOC and 1300 compilation units (here not in C,
but in a proprietary language). Because of the large scale of the application,
they have also focused on delivering scalable reverse engineering techniques.
One of the most significant lessons they have learned from their experiments is
that in-the-large design documents describing the architecture of the software
system’s current state can be very beneficial for building up understanding

20 Programming Language/Advanced Systems (IBM).
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of a software system and maintaining it. As such their goal is very similar to
ours.

Another study by Moise and Wong highlights the fact that reverse engineering
Java, C, C++, C#, Cobol systems, etc. is sometimes not enough [59]. Often,
(implicit) knowledge is present in programs that are written in a variety of
“scripting languages”, such as Perl. Sometimes these Perl programs are stan-
dalone, but often, these programs written in scripting languages are gluing
together large-scale industrial systems, written in a variety of programming
languages, making it worthwhile to also reverse engineer the knowledge con-
tained in these scripting language-systems. This acknowledges our problems
with Kava’s build scripts.

Software architecture recovery has been subject to a lot of research before, e.g.,
of the Linux kernel [7], Mozilla [35], etc. Most of them leverage static analysis
to accomplish their task on a repository of facts extracted from source code,
linked object files, etc. Combining various approaches has led, e.g., to the
Portable BookShelf [34]. We believe that the results of our dynamic analyses
are complimentary to these efforts and enhance them to get a more complete,
dynamic view on a (legacy) software system.

Other related work is that of Riva [67], who provides an industrial experience
report of reverse architecting software for mobile phones, and Linos et al. [54],
who concentrate on understanding multi-language program dependencies.

7.2 Dynamic analysis

There has recently been a renewed research interest in the area of reverse
engineering with the help of dynamic analysis. We now provide some highlights
of recent relevant work in this area.

Feature localization. Feature localisation is concerned with identifying
those parts of source code that are responsible for executing a feature, whereby
a feature is defined as a unit of human-observable computer-action. In this con-
text Greevy et al use two complementary perspectives to correlate features to
source code and vice versa [37]. In [49] Kuhn and Greevy exploit the analogy
between traces and signal processing to visualise traces and identify (common)
features in a set of traces. Eisenbarth et al. use formal concept analysis to cor-
relate features with source code [30]. In particular, they apply their technique
on an industrial case study of 500 kSLOC (SLOC = non-commented lines of
code) written in C [29]. However, they do not report on the technicalities of
the tracing process.
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Abstraction techniques. Hamou-Lhadj et al. have presented a technique
that detects (and eliminates) low-level (function) calls from traces [40]; their
technique allows to focus on the more high-level behavior of the application
under study. In other work Hamou-Lhadj and Lethbridge propose to apply
automatic text summarisation techniques to execution traces, again to reduce
the trace size and focus on high-level behavior when trying to understand a
piece of software [41]. Also work of Zaidman and Demeyer proposes to abstract
traces using a heuristic based on the relative frequency of execution of events
in an execution trace [89]. Cornelissen et al. have experimented with filtering
traces in order to make the resulting sequence diagrams more legible [22].
Walker et al. [84] present a dynamic analysis based technique that is closely
related to Murphy and Notkin’s Software Reflexion Models [61]. Walker et al.
start from the high-level notions that a software engineer has of the system
and add to that knowledge by presenting more detailed information of the
system’s behavior through dynamic analysis.

Industrial experiences Literature reporting on industrial experiences with
reverse engineering through dynamic analysis is scarce and most newly pro-
posed techniques are only applied to academic examples or medium-scale open
source software projects. A notable exception is the recent work by Callo Arias
et al., who report on the application of dynamic analysis in a large and com-
plex industrial environment [15]. They propose to use a top-down approach
that concentrates on execution scenarios, components and processes rather
than code artifacts such as modules, classes and objects when decomposing
and understanding the system. They have applied their approach on the anal-
ysis of the software of an MRI scanner, which enabled them to identify the
dependencies in the execution of the software subsystems.

For a more detailed overview of work in the field of dynamic analysis, we refer
to [86,36].

7.3 Maintaining build systems

There are a limited number of publications on the reverse- and re-engineering
of build systems. We consider research efforts in the areas of software reverse-
and re-engineering, and specific build development tools.

In the reverse engineering community, Tu et al. [82] add a “build time archi-
tectural view” (BTV) to Krüchten’s “4+1” View model. A BTV visualises the
extracted high-level architecture of a build system. The BTV Toolkit uses the
grok tool [60] to abstract up from low-level facts generated by an instrumented
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version of “make”. The current prototype only extracts build-time facts, al-
though conceptually build time views also take source code into account.

De Jonge [23] has tried to remodularise a build system to synchronise its
structure with that of the source code. This is needed to obtain effective reuse
and recomposition of source code, as each software component should have its
own piece of build system.

Re-engineering a build system for speeding up has been studied by Fard et
al. [32] and Ammons [4]. Fard et al. speed up a build by restructuring the
include dependencies of the C/C++ source code according to a “reflexion
model”. Ammons tries to ensure that incremental compilation is correct by
semi-automatically partitioning a build into parallel mini-builds which are
constrained to a sandbox. Each mini-build can only access its declared build
dependencies. Neither the approach of Fard et al., nor the one of Ammons can
be generalised to other build maintenance problems.

Kellens et al. [43] have recently encountered build system problems when inte-
grating the AspectJ weaver into an industrial build system based on Ant. Even
though Ant is a much more recent build system technology than “make” [33],
it was not able to cope with the whole-program view AOP requires.

Finally, there are build tools which make it easier to understand and re-
engineer a build system. Remake is an improved GNU Make with tracing
capabilities and a debugger. One can set breakpoints, step through the build
and evaluate expressions. Another debugger called “gmd” is implemented com-
pletely using “make” macros. Tools like Antelope, AntExplorer and Openmake
Build Monitor allow live visualisation of build runs. Makeppgraph creates a
build dependency graph in which colors are determined by file extensions.
Vizant is a similar tool for Ant files. In a legacy context, however, it is very
hard to migrate from the existing (legacy) build system technology to a more
advanced one.

8 Conclusion

This paper reports on the use of aspect oriented programming (AOP) to aid in
the reverse engineering effort which precedes re-engineering activities. As part
of the ARRIBA project, our focus is on legacy industrial systems written in
C. We have therefore first undertaken a survey of existing AOP languages and
tools for C. Ultimately none of the surveyed tools fit our re-engineering require-
ments, leading us to design and implement our own AOP solution for C, named
Aspicere. Aspicere targets legacy environments, has an expressive pointcut lan-
guage based on logic meta programming (LMP) and features generic advice
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with access to join point meta data.

We reported on the application of dynamic analysis with the help of our aspect
tool for reverse engineering a legacy E-type system. Using dynamic analysis
allowed us to follow a goal-oriented strategy, i.e., it allowed us to analyze only
specific parts of the system according to a scenario, which is a benefit when
working with large-scale applications. The analysis technique of choice, the
key module detection technique, enabled us to identify those modules that
should be investigated first when trying to understand the application. We
validated that our solution does indeed identify those need-to-be-understood
modules, with the input of the original developers. AOP was used to collect
the necessary trace information in a modular and non-invasive way.

While the AOP solution proved to work very well and is conceptually very
clean, it comes with a major quid pro quo, namely that the integration of
an aspect solution in a legacy build environment can prove troublesome. A
first reason for this is the fact that the modular reasoning of traditional build
systems conflicts with the non-hierarchical nature of aspect orientation. Sec-
ondly, the build system proved to be legacy itself, which made it difficult to
automate any adaptation of it. This indicates that the build system itself is
also in need of a re-engineering operation.

Overall, we can say that the dynamic analysis proved useful for detecting
the most important modules to be used during early program comprehension.
AOP enabled us to obtain the necessary trace information in a clean way.
Yet, when integrating AOP into the build system of the legacy system, we
found that the build system itself could benefit from a re-engineering step.
We expect this situation to be common in legacy environments.
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crosscutting concerns. In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 37–46, Washington, DC, USA, 2005.
IEEE Computer Society.

[13] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Discovering faults in
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evaluation of clone detection techniques for identifying crosscutting concerns. In
Proceedings of the International Conference on Software Maintenance (ICSM),
pages 200–209, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Trosky B. Callo Arias, Paris Avgeriou, and Pierre America. Analyzing the
actual execution of a large software-intensive system for dependencies. In
Proceedings of the Working Conference on Reverse Engineering (WCRE),
Washington, DC, USA, 2008. IEEE Computer Society. To Appear.

[16] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In USENIX Annual Technical
Conference, pages 15–28, Berkeley, CA, USA, 2004. USENIX Association.

[17] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[18] Yvonne Coady and Gregor Kiczales. Back to the future: a retroactive study of
aspect evolution in operating system code. In Proceedings of the International
Conference on Aspect-Oriented Software Development Conference (AOSD),
pages 50–59, New York, NY, USA, 2003. ACM Press.

[19] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC
to improve the modularity of path-specific customization in operating system
code. SIGSOFT Software Engineering Notes, 26(5):88–98, 2001.

[20] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware.
In Proceedings of the International Conference on Aspect-Oriented Software
Development (AOSD), pages 56–65, New York, NY, USA, 2004. ACM Press.

[21] Thomas A. Corbi. Program understanding: Challenge for the 90s. IBM Systems
Journal, 28(2):294–306, 1990.

[22] Bas Cornelissen, Arie van Deursen, Leon Moonen, and Andy Zaidman.
Visualizing testsuites to aid in software understanding. In Proceedings of the
Conference on Software Maintenance and Reengineering (CSMR), pages 213–
222, Washington, DC, USA, 2007. IEEE Computer Society.

[23] Merijn de Jonge. To reuse or to be reused: Techniques for component
composition and construction. PhD thesis, University of Amsterdam, 2003.

37

SERG Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis

TUD-SERG-2008-035 37



[24] Carlos Montes de Oca and Doris L. Carver. Identification of data cohesive
subsystems using data mining techniques. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 16–23, Washington, DC,
USA, 1998. IEEE Computer Society.

[25] Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, San Francisco, CA, USA, 2003.
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[37] Orla Greevy and Stéphane Ducasse. Correlating features and code using a
compact two-sided trace analysis approach. In Proceedings of the Conference on
Software Maintenance and Reengineering (CSMR), pages 314–323, Washington,
DC, USA, 2005. IEEE Computer Society.

[38] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design with
crosscutting interfaces. IEEE Software, 23(1):51–60, 2006.

[39] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of the International Conference on
Aspect Oriented Software Development (AOSD), pages 60–69, New York, NY,
USA, 2003. ACM Press.

[40] Abdelwahab Hamou-Lhadj, Edna Braun, Danien Amyot, and Timothy
Lethbridge. Recovering behavioral design models from execution traces. In
Proceedings of the Conference on Software Maintenance and Reengineering
(CSMR), pages 112–121, Washington, DC, USA, 2005. IEEE Computer Society.

[41] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the behaviour of a
software system. In Proceedings of the International Conference on Program
Comprehension (ICPC), pages 181–190, Washington, DC, USA, 2006. IEEE
Computer Society.

[42] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In Proceedings
of the International Conference on Aspect-Oriented Software Development
(AOSD), pages 26–35, New York, NY, USA, 2004. ACM Press.

[43] Andy Kellens, Kris De Schutter, Theo D’Hondt, Viviane Jonckers, and Hans
Doggen. Experiences in modularizing business rules into aspects. In Proceedings
of the International Conference on Software Maintenance (ICSM). IEEE
Computer Society, 2008. To Appear.

[44] Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice-
Hall, Upper Saddle River, NJ, USA, 1978.

[45] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[46] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

39

SERG Adams & al. – Using Aspect Orientation in Legacy Environments for Reverse Engineering using Dynamic Analysis

TUD-SERG-2008-035 39



In European Conference on Object-Oriented Programming (ECOOP), volume
1241, pages 220–242. Springer, Berlin/Heidelberg, Germany, 1997.

[47] Gregor Kiczales and Mira Mezini. Aspect-Oriented Programming and modular
reasoning. In International Conference on Software Engineering (ICSE), pages
49–58, New York, NY, USA, 2005. ACM Press.

[48] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM Press, 46(5):604–632, 1999.

[49] Adrian Kuhn and Orla Greevy. Exploiting the analogy between traces and
signal processing. In Proceedings of the International Conference on Software
Maintenance (ICSM), pages 320–329, Washington, DC, USA, 2006. IEEE
Computer Society.
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