DELFT UNIVERSITY OF TECHNOLOGY

REPORT 82-05

A robust and efficient

multigrid method
by

P, Wesseling

005692
&, BocLENSIRA0T A
A :

Reports of the Department of Mathematics and Informatics no, 82-05

Delft 1982



Abstract

A multigrid method is described for an arbitrary elliptic partial differential
equation with continuous coefficients on a rectangular region. The method 1is
perceived by the user just as any other solver of linear algebralc systems.
The user has to specify the matrix and right-hand-side only and does not need
to be familiar with multigrid methods. The main ingredients of the method are
the use of incomplete LU-decomposition for smoothing, Galerkin coarse-grid
approximation, 7-point prolongation and restriction, and a fixed multigrid
strategy. Application to various test-problems shows the method to be
efficient and robust. Its efficiency is compared with the efficiency of other
multigrid methods.
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1. Introduction.

Both in theory and practice, multigrid methods solve elliptic boundary
value problems in O(N) operations, with N the number of points in the
computational grid. This compares favorably with other methods. Only for
separable equations on rectangular regions there are methods of similar
efficlency; see Schumann (1980) for a recent survey of work in this area. Or,
they have a computational complexity of O(N®) with o >l. Of these methods,
those of the preconditioned Lanczos type deserve special mention, because they
have a=1.25 (as has been proved by Gustafsson (1978) for the Poisson equation,
but o=1.25 seems to hold more generally), which is low, whereas they have
broad applicability. The original version (ICCG, Meijerink and van der Vorst
(1977)) 1s restricted to self-adjoint equations, but extension to the general
case 1s possible and has been given by, among others, Wesseling and Sonneveld
(1980), who also describe numerical experiments comparing a multigrid and a
preconditioned Lanczos method, and by van der Vorst (198l). Such comparisons
are also described by Kettler and Meijerink (1981) and Kettler (1982), who
furthermore obtain spectacular results by combining a multigrid and a
conjugate gradient method.

For large-scale calculations in engineering and physics, multigrid methods
potentially far surpass other known methods as far as efficiency is concerned,
with the possible exception of preconditioned Lanczos methods. However,
routine application of multigrid methods to large-scale problems is at present
sti1ll hampered by the fact, that the promise of computational efficiency is
not always fulfilled in the hands of a non-expert, and that multigrid methods
are more complicated than classical iterative methods. There are many ways to
implement the basic ideas underlying multigrid methods, and the way in which
this is done may make the efficiency problem—dependent.

The aim of this paper is to present the details of a multigrid method,
called MGD1 for brevity. The method is constructed such that it is perceived
by the user just as any other solver of linear systems. That is, it operates
only on the matrix that is given and does not refer to the underlying
differential equation and boundary conditions. This means that powerful ideas
concerning adaptive multigrid methods put forward by Brandt (1977 1979) are
delibarately not used. Of course, the basic multigrid methodology is employed,
as typified in various ways by the work of Fedorenko (1962), Bakhvalov (1966),
Astrachancev (1971), Brandt (1973), Frederickson (1975), Wachspress (1975),
Hackbusch (1978a), Wesseling (1977),and become widely known and appreciated by



Brandt (1977). It depends on the user (is he familiar with multigrid methods
or not) and on the problem, whether an adaptive or a non-adaptive approach,
such as presented here, 1s to be preferred.

The method MGD1 1s fast for a large class of elliptic boundary value
problems, as will be made plausible and demonstrated experimentally. Operation
counts and rates of convergence are given, and a comparison of computational
efficiency with other methods is made.

The main characteristics of the method are the use of incomplete LU-
decomposition for smoothing, 7-point prolongation and restriction operators,
coarse-grid Galerkin approximation, and the use of a fixed multigrid strategy,
that will be called the sawtooth cycle. It does not need to be adapted to the
problem, and is expected to be useful to the non-specialist. A FORTRAN program
will be described in a forthcoming report.

2. A‘multigrid method.

A muitigrid method will be presented for the solution of an elliptic boundary
value problem on a rectangle, discretized by finite differences.

A computational grid 0% and a corresponding set of grid-functions U? are
defined as follows:
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The formulation (2.1) allows elimination of physical boundaries whére
Dirichlet boundary conditions are given. For example, 1if all boundary
conditions are of Dirichlet type and the region is the unit square one may

choose: hy =h =h= (2 +2) » X0=ypo=h. It is not really necessary to have the
number of x-~ and y-gridlines equal. By coordinate stretching one can

generate a non-equidistant mesh in the physical plane. The linear algebraic

system generated by the difference scheme is denoted by:
st = £, | (2.2)

Thé‘multigrid method makes use of a hierarchy of computational grids ok
and corresponding sets of grid-functions Uk, k=£-1( 1)1, defined by (2. 1)
with £ replaced by k. On the coarser grids (i.e. grids with larger step~size,
hence smaller k) equation (2.2) is approximated by:
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Akuk = fk s ko= 2-1(~1)1. ’ (2.3)

Furthermore, let there be given a restriction operator rK and a prolongation

operator pK:

rk : Uk - Uk“l R pk : Uk—1 +> Uk. (2.4)

Ak, fk, rk, pk will be specified later.

For the so-called smoothing process use 1s made of incomplete LU-(ILU-)
decomposition. Temporarily suppressing the superscript k, we assume that we
have a lower and an upper triangular matrix L and U respectively, such

that
LU = A + C. (2.5)

L, U and C will be specified later. Consider the following iterative
process for solving (2.2) or (2.3):

x 1= x + (LU)~! (f-Ax) Qw
or .
x := (LU)"! (f+cx). (2.6)

The multigrid method presented in the following quasi-Algol program can be

regarded as a method to accelerate the iterative process (2.6):

multigrid method MGDL:

begin fg-l.* rzcz(uz—uz),
for k 1= 2-1(-1)2 do £ 1= r*f¥;
oL oty el
for k 1= 2(1)-1 do u* 1= (¥U%) 7T (cRpRuaeRy,

UL 3 20

2) N

end of one iteration with MGDL;

2 - (L U ) (Cl L

Using (2.5), one may verify that Cz(uz—;z) = fz—Azul is the residue associated

with the current iterand uz. As we shall see, Czhas only two non-zero

diagonals, hence cg(u“-ﬁl)~1s a fast way to compute the residue fz-Azuz. When

starting, Gz and uz are not available. A cheap way to get started is to use

the initial estimate u =O and replace C (u —-u ) by fZ Azuz = fz.ﬁIn this case



the computation effectively starts on the coarsest grid, which is
advantageous, because no effort is wasted in correcting a perhaps unfortunate
first guess. If one has a good initial estimate available, one may generate uz
and ;2 as follows:

32 = initial estimate;

uE . (LzUL)—l (c 2= £+f£),

In this case the computation starts with a smoothing step on the finest grid,
which costs little more than a straightforward residue calculation.

The method 1s not recursive, and 1s easily implemented in FORTRAN. Each
coarse grid is visited only once, and one smoothing step is performed after
each coarse grid correction. This multigrid strategy may be depicted
graphically as follows (for 4 grids):

k
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Each dot represents a smoothing operation. This diagram suggests "sawtooth
cycle"” as an appropriate name for this strategy. This is probably the simplest
multigrid strategy that omne can think of; c¢f. Brandt (1977), Hackbusch (1981),
Hemker (1981) for a description of many possible multigrid strategies.

A measure of the computational cost of one execution of multigrid method
MGD1 may be obtained by counting the arithmetic operations that are visible in
the mathematical formulae. The following table gives the operation count per
grid-point of oK for various parts of the algorithm.

Ck rk (LkUk)_l pk
3 2 13 1.5

The results for (Lk k) 1, rk and pk follow from subsequent sections. With

nk=(2 +1) the number of grid-points of Qk, we obtain the following total
count:

4=1 -1
- )
6n2 + 2 kZZ e + 13n + 18.5 kZz n + 2. 5n + 17n = 30.4" ,

cr about 30 operations per grid-poiht of O,



The decisions made in the design of MGDl are based on comparative

experiments described by Wesseling (1980) and Mol (1981).

3. Incomplete LU-decomposition.

ILU~ decomposition was used by Meijerink and van der Vorst (1977) as an
effective preconditioning for conjugate gradient methods, and was introduced
by Wesseling and Sonneveld (1980) as a smoothing process for multigrid
methods. For experiments with and analysis of various ILU smoothing processes,
see Wesseling and Sonneveld (1980), Hemker (1980a), Mol (1981), Kettler and
Meijerink (1981), and the extensive treatment by Kettler (1982).

The general second order elliptic differential operator can be approximated
by central or one-sided differences using , £ g
the 7-point finite difference molecule
depicted here. If no mixed derivative

is present atoms b and f are superfluous, c *d e
and we have the familiar 5-point molecule.
Let the points of the computational grid
oK be ordered as follows: (0,0), (1,0), a b
(2,0),+04, (2,0), (0,1), (1,1), (2,1),0ss, (2k,2k). Then the finite difference
matrix AK has 7 non-zero diagonals, labeled left-to-right as a, b,...,g,

each of which corresponds with the atom with the same label. By non-zero we
mean: possibly non-zero.

The ILU-decomposition to be employed here can be described as follows. In
the same locations as a, b, ¢, L is prescribed to have non-zero diagonals q«,
B, v respectively. The main diagonal of L 1s specified to be unity. At
locations d, e, f, g, U has non~zero diagonals §, ¢, 7, n, respectively. The
rest of L and U is zero. L and U can be convenlently computed by Crout-like

formulae, as follows, on an m*n grid. Subscript k is the row-number.

@ = ak/ak-m ’ Bk = (bk~akek-m)/6k—m+l ’
Yie AU S ™ T k1 Bk ke ™ em G0
& = %k P kw1 e TR e 0 Ty T

Quantities that are not defined are to be replaced by O,



The error matrix C = LU~A has only two non—-zero diagomals ¢ and X, located

next to and inside b and f, respectively, and given by:

A . (3.2)

Ve = Brfr-mrl * Mk T YiPk-1

The solution of LU = q is obtained by back-substitution:

o,u , i=1(1)mn ;

- B 1 i-m

u, =

g P59 T Y% T P Yeml

(3.3)

u, := (u )/ 8 i=mn(-1)1.

1 TR A T BT A o B e T S B

It is easily verified, that the construction of L and U; the construction
of C, and the solution of LUu=q takes 17,2 and 13 arithmetic operations per
grid-point, respectively.
The computation of Cu+f takes 4 operations, because C has only 2 non-zero
diagonals, hence a complete smoothing step u:=(LU)"1(Cu+f) takes 17
operations. L and U can be stored in the space for A, because A is not needed.
If A has only 5 non-zero diagonals, this requires an extra storage of 2 real
per grid point. Storage of C also requires 2 reals per grid-point, but C can
also be computed instead of being stored, in which case the cost of a
smoothing step increases from 17 to 19. The memory requirement for the
quantities defined on the coarse grid is about (1/4+1/16+..)=1/3 of the memory
requirement on the finest grid.

We will not dwell upon the existence and stability of the ILU-decomposition
just described. Meijerink and van der Vorst (1977) have shown existence if A

-1
is a symmetric M-matrix, i.e. af§=aji» aij<0 for i=j and A "»0. They also
note that one has existence under much more general circumstances. We have

found experimentally, that the ILU-decomposition exists and provides an
efficient smoothing process, if in the non-self-adjoint case a sufficient
amount of artificial viscosity is introduced on the finest grid. This is also
necessary for all other smoothing processes that we know of.

In order to make Fourler methods applicable, in smoothing (and two-level)
analysis it must be assumed that the values of the elements of L and U do not
vary along diagonals; if (3.1) is used this is usually not the case near
boundaries, and in certain strongly anisotropic diffusion problems the
influence of the boundaries on the ILU-decomposition extends inwards over many
meshes. In such cases smoothing and two—level analysis are not realistic for

‘the present method MGD1.



4, Prolongation and restriction.

Let the value of the grid-function uk in the point (s.Z-k,t.Z-k) be denoted by

k
Ugyp® Prolongation and restriction are defined by:

k k-1 k-1 k k-1 1 , k-1, k-1

(p )2s,2¢ = Ysr (Pu” g, 2e =7 Ugr Hann,e) »
(4.1)
k k-1 1, k-1, k-1 k k-1 1, k-1, k-1
(p )25 2t+1 3.(ust +"'ls,t+1)’ (pu )25+1,2t+l 3'(ust +‘us+1 t+1)
K K 1k K
(ru)ge = Uy 2e 7 (Vg4 2¢M26, 2041
(4.2)
k K K K
Upg-1,2t * Y2s,2¢-1 * Y2et1,2e-1 T 21,2410

The following diagrams may clarify the structure of pk and rk.

)

This pk provides linear interpolation, while having a sparser matrix
k
representation than all other linear interpolation operators, and r is its

adjoint, in the sense that

(pkuk—l’vk)k RS k)k LY Fe gt (6.3)

with (uk,vk)k = + Because rk is a weighted average of 7 points, we

E “ij ij

call this 7-point prolongation and restriction.

5. Galerkin coarse grid approximation.

The coarse grid operators A are defined as follows:

R S | | (5.1)

We call this a Galerkin approximation because (5.1) implies:

k k k=1 k k-1 k=1 k=1 k=1
(A'pu” ,pv

y = @KL YT e 0T (5.2)



1f (4.3) holds; hence, we have a case of projection in a lower-dimensional
subspace.

A more obvious way to generate Ak--1 is to use a finite difference method.
Under (5.1), if rk and pk are as in section 4, standard central equidistant
finite difference approximations of the operators 32/9x2, 32/3y2, 32/3xdy
using the 7-point difference molecule of section 3 are invariant, hence
Galerkin and finite difference approximation are identical. When lower
derivatives occur, or the coefficients are variable, or the mesh non-
equidistant (which 1s the case ofi coarser grids 1f on the finest grid
Dirichlet boundaries are eliminated), the two approximations differ. Their
mutual relationship closely resembles the relationship between finite
difference and finite element approximations. The Galerkin method
automatically generates accurate approximations and takes care of special
circumstances, such as changing mesh-size or varying coefficients, but the
numerical analyst can always achleve the same accuracy with an ably designed
finite difference approximation. The transformation of upwind differences by
(5.1) is interesting; the difference molecules on the finest and five coarser

grids are glven below:

0 0 -1 1 -5 5 -21 21
-1 10 -5 4 1 =-158 7 =51 16 35
0 0 -1 1 -5 5 21 21
(*2-2) (*2-3) (*2—4)
-85 85 -341 341
-187 32 155 -715 64 651
-85 . 85 -341 341
(*2—5) (*2-6)

For the derivation of these molecules, the formulae given by Mol (1981)
have been used. Apparently, upwind differencing is gradually replaced by
central differencing, plus a higher order truncation error containing a mixed
third derivative. Diagonal dominance is lost, but in practice we héve never
encountered numerical "wiggles” or instability of the ILU-decomposition; note
that as the grid gets coarser, the ILU-decomposition becomes more exact.
Later, succesfull experiments with the upwind-discretized convection-diffusion
eqﬁation will be reported.

One way of programming~(5.1) 1s as 'follows. ‘It is based on a datastructure
used earlier by Frederickson (1975). In this section, Greek subscripts are 2-
tuples‘identifying points of the computational grid, e.g. a=(a;,a,) indicates



the grid-point with indices (a;,a,) (cf. the ordering introduced in section 3)

To the atoms of the difference molecule 2-tuples

-1,1 0,1
are ‘assligned according to the accompanying diagram;
these are also 1dentified by Greek subscripts. 0.0
k k -1,0 ——L .1,0
By AaB we denote the element of the matrix A~ in
row number 1+0L1+ma2 and column 1+a1+ma2+sl+m62,
with m the number of grid-points of QK in the C0.-1 1,-1

x~direction. For example, B=(1,-1) corresponds with the b~diagonal of

k
section 3. If o is outside 2 or B 1s outside the molecule then AEB is
defined to be zero.

With these conventions, matrix-vector multiplication can be formulated

as
follows:
k k k k
(A7) g Ayg Yutg’ (5.3)
with range g = Z x Z. Restrictlon and prolongation can be represented as
follows:
k k 1 k
(ru )a = i-g pBu2a+6 s (5.4)
k k 1 k-1
0, 7 ] gy (5.5)

with the weight factors ug defined by (cf. (4.1) and (4.2)):

if 8 1s inside the molecule, then ug=l, except uj,,=2; outside the molecule,
uB=O. Eq. (5.5) is not a convinieit way to compute p u , but it can be used to
dﬁfive a useful formula for r A"p . From (5.3)-(5.5) it follows that for any

u e

k-1

u2d+B+Y'25 us (5.6)

k k k k-1 1 k 1
(rApu )a - E'g Hg 5 A2a+3,y 2 g

Since the range of B, y and § may be taken to be all of Z x Z, change of
variables 1is easy. Let §'=ot+§, y'=p+y-28', then (5.6) takes on a form from
which we may conclude (omitting primes):

(rkAkpk

1 ko |
das =7 BZY MabyA2ats, 264y -7,
’

It is found that if Ak‘has a general 7 (or fewer)-point structure, then
Ak.1 has a 7-point structure. An important point is that 2§+y-g 1s only 95(61)
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times inside the molecule of Ak if Ak 1s a 7-(5-)point molecule, for all
73=343 possible combinations of B,y and §. This is exploited by putting the a-

loop inside the §-, B-and y-loops, and arrange the computation as follows:

Ak“1 = 0;

for 6§ € molecule gg

for B € molecule do

for vy ¢ molecule while 26+y-8 molecule do
begin yu = Mghy

k k
for a e Q while 2a+8 ¢ Q@ do

k-1 k-1 Kk

Ays = Bus T MAonig, 254y
end;
Al L gkl

The cost of the inner loop 1s 2 operations, hence the total cost is
2%95(2%61) for a 7-(5-) point operator AK. The division by 16 adds one
operation, so that our final conclusion is, that the construction of Ak_1
takes 191 (123) operations per grid-poimt of Qk—l for a 7-(5-) point operator
Ak. The total work for the construction of Ak, k=2~1(-1)1 1in operations per
grid-point of Q% is about 191/3=64(7-point AR), or 123/4+191/12~47(5-point
AY). This has to be done only once, before the multigrid iterations start.

It depends on the complexity of Al whether computation of Ak, k < 4 1is cheaper
with the finite difference method or with the above Galerkin method. But more
important is the fact, that the Galerkin method enables us to work only with
the given matrix Az and not to refer to the underlying problem (equation and
boundary conditions), and that always good coarse grid approximations are

obtained automatically.

6. Numerical experiments

Standardized test-problems are useful for demonstrating and comparing the
applicability and performance of multigrid methods. If the coefficients are
constant, smoothing analysis (cf. Brandt (1977)) can help to understand and

construct efficient smoothing processes. Two-level analysis (cf. Brandt and
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Dinar (1979), Foerster et al. (1981), Ries et al. (1981)) realistically
predicts the rate of convergence of certain (not all, for example not for the
sawtooth cycle described previously) multigrid methods; for 'a certain method
applied to the Poisson equation Braess (1981) has given a rigorous prediction.
Such analyses use Fourier methods; see Hemker (1980b) for an introduction to
the Fourier analysis of multigrid methods. Where Fouriler analysis 1is not
applicable, one can, given sufficlent computer time, compute the spectral norm
compute the spectral norm and spectral radius (i.e. the asymptotic rate of
convergence) numerically, or just observe the rate of convergence and use
heuristic arguments in order to verify the soundness and efficiency of a
multigrid method. In practice, quite often the observed rate of converge of a
good multigrid method is considerably better than the asymptotic rate, which
is not reached because already after a few iterations discretization or even
machine accuracy is obtained.

The test problems should be standardized, so that results reported by
different authors can be easily compared and reproduced. The fact that
constant coeffient test problems have a very speclal type of spectrum (cf.
Curtis (1981)) makes them somewhat exceptional; therefore test problems with
variable coefficlents should also be included. Unless one wishes to design a
method especially for a specific problem the special properties of a given
test problem, such as for example a coefficient being constant, should not be
exploited, and not be taken into account in operation counts.

We have looked for suitable test problems that have already been treated by

other authors, and will report results for the following problems:

() o +e=h, (6.1)
(11) ¢, + 0.01 ¢ = 2.02, (6.2)
(131) 0.01 4+ ¢ = 2.02, (6.3)
(V) o + LT to =h, | (6.4)
(v) u¢x + v¢y = 0.001(¢xx+¢yy) -1, | (;6'5)

(u,v) = (1,0), (0,1), (1,1), (1,-1),
(a) (b) (c) (d)

(vi) (a¢x)x + (a¢y)y = 0, a = Isin kx sin kyl.‘ | (§.§)ﬂ
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The region 1s Q = (0,1) x (0,1). The computational grid is equidistant. For
2 .2
problems (1) - (iv) the boundary condition is ¢|an = x +y , exact solution:

o = x2+y2. For (v) and (vi), ¢|an = 0, exact solution not known for (v),
zero for (vi). Lack of time prevented us from including cases with Neumann

boundary conditions, but this should certainly be included, because the rate
of convergence, of some multigrid methods (but not MGD1l, except for (iii)) is
affected by the type of boundary condition. Standard 5-point central
differencing is used on the finest grid except for (v), where upwind
differencing according to Il'in (1969) is employed. There is no pérticular
reason for using Il'in discretization in the present context; any other form
of upwind discretization would lead to roughly the same results (this is an
example where Galerkin coarse grid discretization is cheaper than finite
differences, because of the cost of the Il'in coefficients). The initial guess
of the solution is ¢=0, except for (vi), where the initial ¢ is uniformly
randomly distributed. The boundary conditions are not eliminated from the
equations.

Besides being important for many applications in its own right (but fast
solvers of Fourier analysis/cyclic reduction type (see e.g. Schumann (1980))
exist already for some time, and are competitive with multigrid methods)
problem (i) typifies self-adjoint elliptic equations with smoothly varying
coefficients. Problems (i11i) and (1ii) represent anisotropic diffusion problems
or problems with strong coordinate stretching in one direction. Although
mathematically almost identical, the rate of convergence of some methods
(including MGD1l) may differ significantly between (1i) and (iii). In (iv) we
have a mixed derivative, which does not occur often in mathematical physics,
but which we include for completeness. Non-orthogonal coordinate
transformations give rise to mixed derivatives. The convection—-diffusion
problem (v) represents a singular perturbation problem of a type that is
ubiquitous in fluid dynamics. Finally, (vi) represents problems with slowly or
rapidly but continuously varying coefficients.

Because some or even all of the specific difficulties represented by these
test problems may occur simultaneously in a given application, a method should
perform well for more than one problem. The method MGD1l described here
performs efficiently for all six test problems, although for (iii) it is
somewhat less efficient than for the other five. For fluid mechanical
applications (i) and (v) should be mastered, for reservoir engineering the
method should be able to handle all problems, and in addition the more
difficult test problems of Stone and Kershaw (see Kettler and Meijerink (1981)
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cf. Kettler (1982)), in which the coefficients are discontinuous, and the
region non-rectangular. The inclusion of a Navier-Stokes test problem seems
desirable; see Wesseling and Sonneveld (1980) for some results.

In the following table we list publications that give results for the test-
problems above. In some cases, the right-hand-side and boundary conditions'may

be different.

Test-problem (1) (1)1 (1i1)] dv) | (v) (vi)
Brandt (1977) *

Hackbusch (1978b) | *,A * ‘ *

Nicolaides (1979) | *,A *
W,S,M * * * * * *
F,R,B,S x A | * * v

Table 6.1 Publications on test=-problems (1) - (vi)

Publications that consider related methods are grouped together. W,S,M stands
for Wesseling and Sonneveld (1980), Wesseling (1980), Mol (1981); F,R,B,S for
Foerster et al. (1981), Ries et al. (1981), Borgers (198l), Stiiben et al.
(1982). The bulk of the results for MGDIl quoted here are taken from W,S5,M.
In these publications small inconsequential differences occur due to the fact,
that M eliminates the boundary conditions, whereas W does not. Where the
symbols vary along a row in table 6.1, different algorithms were used for
different test-problems, otherwise the same algorithm was used. Where no entry
occurs, this means that we have no results at our disposal; the method may or
may not be applicable. Some publications treat other test-problems, not
discussed here, as well.

The following table gives results for method MGDI.

(1) (11) (111) (iv)

M, 2 8,6 10,6 4,4 7,6

o,t | 0.033, 20 | 0.15, 36 | 0.0016, 11 | 0.025, 19
(va) (vb) (ve) (vd)

M, 2 3,4 2,4 1,4 44

o,t | 0.0030, 12 | 7*10-5, 7 | 3%10-9, 4 | 0.040, 21

Table 6.2 Method MGD1 applied to test—problems (1) = (v).
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In table 6.2, M is the number of iterations that were carried out;
£ determines the number of grid-points (2£+1)*(22+1) of the finest grid; p is
the average reduction factor, defined by: pM=quotient of Euclidean norms of
residues Ax-f before and after M iterations; t=-30/10logp is the number of
operations per grid-point of the finest grid for 0.1 reduction of the
residual. For (v) the boundary conditions were eliminated; this is of no
consequence.

0f course, p depends on M and on the initial guess, hence, p is afflicted
with a certain arbitrariness, which the spectral norm and radius lack. For (i)
it has been determined numerically, that the spectral radius p,=0.090
(t=29).

Clearly, for (i{1) the results are worse than for the other cases. For this
case the smoothing factor of ILU goes to 1 as e+0, and with Neumann boundary
conditions along x=0, x=1 MGDl does not work (in that case the differential
problem (6.2) is badly posed). Kettler (1982) gives and ILU-decomposition
which does not suffer from this defect. With Dirichlet boundary conditions,
however, MGD1 seems to be dependable for (ii), as 1s suggested by the
following results of more extensive experiments with (i{i); p, 1is the

spectral radius.

2\e 0.5 1071 102 10

.038 .11  .042 .00l
.091 .22 .19 .003 |
.10 .26 .41 017
.10 .27 .55  .068

(o NN U B N % )

Table 6.3 Estimated p_ for ¢xx+s¢yy = 22e, 4|, = x2+y2,

Comparison with the work of Hackbusch (1978) is relatively straightforward,
because his method is similar to MGDl, the main differences being the use of
two checkerboard (CH) or zebra-Gauss-Seidel relaxations (Z) for smoothing, and
the use of 9—poin; prolongation and restriction. The main difference in
computational work will be due to the difference in smoothing strategy.
Assuming variable coefficients, two applications of CH take 18 operations per

,8rid-point. Solution of a tri~diagonal system takes 8 operations, or 5 if the

LU-decompositions are stored at a cost of 2 reals per grid-point. Including
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the cost of the right-hand-sides we arrive at a cost of two applications of Z
of 24, or 18 with extra storage, except for test—problem (iv), where the cost
is 32 or 26. CH is not applicable to (ii), (iii), (iv). Recalling that the
cost of TILU is 17 and the total cost of MGD1 is 30, we estimate the total cost
of the methods used by Hackbusch to be 32 with CH, 42 with Z or 32 with extra
storage, and 56 or 46 for test-problem (iv). From Hackbusch (1978b) we then
deduce the following table.

(1), CH (1), 2 (1), z (iv), 2

M, % 6,6 8,6 8,6 8,6
o,t | .048,24  .038,30(23) .063,35(27) .199,60(46)

Table 6.4 Computational cost of methods of Hackbusch (1978b).
CH: checkerboard-Gauss~Seidel; Z: zebra-Gauss—Seidel.

Between brackets: with extra storage.

Z is not applicable to (iii), because the lines are chosen in the x-direction.
Also including y-lines would perhaps change the efficiency for (i) and (iv)
little, but almost double the cost for (ii) and (1ii). Because MGD1l and the
methods of Hackbusch have much in common this is mainly a practical comparison
of Gauss—Seidel and ILU smoothing methods.

The results of Brandt (1977) will not be discussed, because this early work
has been extended by F,R,B,S, who give results of two-level analysis for a
variety of combinations of restrictions, prolongations and smoothing
processes. In the so-called W-cycle (with double the two-level cost) two~level
analysis usually gives a good estimate for p,. For (1) the best method
(using CH smoothing and total-reduction concepts) in Ries et al. (1981)
results in: p,=0.074, cost=23.5, t=21. In the cost estimate the special
values of the Poisson coefficients are exploited. Tﬁe best method in Stitben et
al. (1982) (using alternating direction Z smoothing) has for (1), (ii) and
(i11):

pm-00023, COSt’SloG, t=3105, (i),
Po=0.119, cost=51.6, t=55.8, (ii) and (iii),

with the cost estimate valid for variable coefficients. For (v) a detailed
analysis is included by Borgers (1981); for the best method (using CH
smoothing) for (v) with e=10"5 on a 65x65 grid the following results

emerge:
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p=0.41, cost=28, t=72, (va),

p=0.37, cost=28, t=65, (ve),
with p the average reduction factor over the last 14 of 20 iterations. When
comparing with table 6.2 one has to keep in mind, that table 6.2 gives only
the initial rate of convergence, observed during the first few iterations. For
(va,b,c) this 1is irrelevant, because here MGDl is almost exact. For comparison
we give the following numerical estimate for (vd) with e=105 on a 65x65 grid:
po=0.29, t=56. This concludes our comparison with F,R,S,B.

Nicolaides (1979) reports experiments with two multigrid-finite—element
methods. One of these, using "linear elements”, results for (1) in the same
system of equations on the finest grid that we are considering here.
Prolongation, restriction and coarse grid approximation are much the same as
in MGD1l, but smoothing consists of a few Gauss—~Seidel relaxations before and
after coarse grid correction. CPU~time measurements are given in units of a
Gauss—Seidel relaxation, for which we take a cost of 9 (assuming variable
coefficients). On a 64%64 grid t=35.1 (cf. table 6.2) is reported, with a
smooth initial guess, for (1) with right-hand-side zero. For (vi) Nicolaides
(1979) reports experiments with bilinear elements only corresponding to a
9—poiht discretization. Here the cost of one relaxation is 17 (for variable

coefficlents). The following results are obtained.

k 2 4 8 16 32

N 76 82 99 107 104
MGD1}| 25 25 25 26 26

Table 6.5 Values of t for test-problem (vi)

Three multigrid iterations were carried out on a 65x65 grid; k is the
coefficient in (6.6), t as in table 6.2, N stands for Nicolaides. The initial
guess 1s uniformly randomly distributed. Because in this case there are
singificant differences between coarse-grid Galerkin and difference
approximation, we have also tried MGDl with finite differences; this is
denoted as MGDl*%*,

On a 33x33 grid we have estimated the spectral radius p,, and obtain the
following result.
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k 8 16 32

MGD1 +31 .18 .13
MGD1* | ,30 .30 >1

Table 6.4 Values of pe for test~problem (iv).

As 18 to be expected, with coarse-grid finite difference approximation the
method deteriorates as the rate of variation of the coefficients in the
differential equation Increases. This can probably be remedied by taking a
suitable average of the coefficients when constructing coarse-grid finite
difference approximations. The Galerkin approximation used in MGD1 does this

automatically.

7. Final remarks.

A multigrid method (MGDl) has been presented, that 1s perceived by the user
as any other linear systems solver, and requires no insight in the properties
of multigrid methods. The user has to specify the matrix and the right-hand-
side only. This 1s made possible by using Galerkin coarse-grid approximations
and a fixed multigrid strategy, the so-called sawtooth cycle. The matrix
should represent a 5- or a 7-point discretization of an elliptic equation on a
rectangle in the usual way.

In cases with rapidly varying coefficients, the Galerkin method has the
additional advantage of providing better coarse-grid approximations than
straightforward finite differences.

MGD1l works well for a large variety of problems, including non-self-adjoint
singularly perturbed equations, equations with a mixed derivative, and
strongly anisotropic diffusion problems, except for a certain combination of
anisotropic direction and Neumann boundary conditions. This restriction is
removed, and the method is generalized to more general domains and
discontinuous coefficients by Kettler and Meljerink (1981), cf. Kettler
(1982),

Comparison with available results for other methods shows, that the
robustness of MGD1l and the abandoning of any form of adaptivity is not paid
for in terms of efficiency. In fact, at the moment MGDl seems generally to be.
somewhat faster than other, more specialized methods, except when these

exploit special values of the coefficlents.
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In the near future even more efficient methods may evolve, because it seems
unlikely that the full potential of the various methods is already fully
exhausted. The combination of conjugate gradient and multigrid methods
(Kettler and Meijerink (1981)) is very promising, cf. Kettler (1982). The
structure of multigrid methods is very rich. Various elements of the method
can be chosen in many ways; smoothing process, prolongation, restriction,
coarse—~grid approximation, multigrid cycle. One can speak of a multigrid
"philosophy", or perhaps better of a multigrid methodology. No single "best"
or "standard” method is likely to emerge, just as in other areas of numerical

mathematics.
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