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Abstract: Knowledge of permeability of fibrous microstructures is crucial for predicting the mold
fill times and resin flow path in composite manufacturing. Herein we report a method to rapidly
predict the permeability of 3D fibrous microstructures. Our method relies on predicting the
permeability of 2D cross-sections via deep neural networks and extending this capability to 3D
microstructures via circuit analogy as a means of reduced order modeling. Approximately 50%
of the permeability predictions of 2D cross-sections have 10% or less deviation from the
permeability results obtained via flow simulations in Geodict. Computational time required for
predicting the permeability of 3D microstructures is reduced from hours to less than 10 seconds.
This framework enables fast and accurate prediction of micro-permeability and serves as the first
building block towards prediction of fabric mesostructures’ permeability via deep learning based
methods.

Keywords: Deep Learning; Permeability; Microstructures; Numerical analysis
1. Introduction

Permeability, a 3D tensor defined by the pore structure within the fabrics, is a key set of input
parameters to predict mold-filling times and filling patterns in Liquid Composite Molding (LCM)
[1]. Nowadays, numerical flow simulations in virtual fabric structures is on its way to replace
experimental characterization techniques [2,3], and these efforts are further refined owing to
X-ray computed microtomography based representation of 3D geometric information within
and between individual tows [4,5]. However, the flow simulations in such structures still require
substantial computational power and computations typically take hours in parallelized systems.
On the other extreme, analytical models provide rapid predictions of permeability and these
models range from models based on the isotropic porous media to models that take into account
the fiber orientation and tortuosity [6—9]. However, these models are limited in accounting for
the local variability in fabric structures.

Convolutional neural networks (CNNs), a type of deep learning algorithm, provide powerful
alternatives for detecting patterns in images and linking these features to a property (such as
permeability). In materials science, they have been used for many purposes such as for
predicting mechanical, thermal and hydraulic properties of material systems [10,11] and also for
predicting the permeability of isotropic porous media such as those found in soil sciences
[12,13]. This work aims to provide a fast and accurate method for predicting the permeability of
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highly oriented anisotropic media, more specifically the fibrous microstructures encountered in
advanced composites. To this end, we propose a method based on the following steps: 1-
generate 3D fibrous microstructures, 2- estimate the transverse permeability of individual slices
(along the fiber direction) and the full 3D structures using FlowDict module of Geodict software,
3- train a 2D CNN using the simulation results to predict the permeability of 2D slices, 4- predict
the 2D permeability in the slices of 3D structures previously unseen by CNN, 5- use the circuit
analogy between 2D slices to predict the permeability of 3D structures. The outlined
methodology enables us to reduce the computational time from hours required for running 3D
flow simulations to estimate the permeability in less than 10 seconds.

2. Methods
2.1 Elementary volume (EV) generation

We generated 400x400 pixels images with 1 um2/pixel correspondence where fibers had radii,
r,: 6, 8, 10, 12, or 14 pixels and fiber volume fraction, vf, was between 0.25 and 0.70, by
increments of 0.05. We used a modified version of the Monte-Carlo procedure by Chen and
Papathanasiou [14,15], to account for the short-range tortuosity. Figure 1 shows two EVs
generated by the modified fiber generator.

Figure 1. Two examples of generated 3D structures. a) r = 10 pixel, vi= 0.5, b) r = 14 pixel, vf=
0.7.

2.2 Flow simulations

We performed flow simulations to extract the transverse permeability (along x- and z-
directions) of the generated EVs. These simulations included those where the EVs had a depth
of one in y-direction (i.e., on 2D slices) to train the 2D CNN, and simulations on full EVs (which
consisted of 800 slices with 400x400 pixels). 3D simulations were used for validating our
approach based on combining both the circuit analogy as an upscaling technique.

We used FlowDict module of the Geodict software to perform the flow simulations. The choice
was based on Geodict’s capability to perform the simulations directly on the binarized images
and its suitability for automation as we performed the simulations on thousands of 2D binary
images. We defined the boundary conditions as depicted in Figure 2 following the suggestions
by Rimmel et al. [16] that were reported for similar simulations using the same software module.
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We solved the governing Stokes flow equations (i.e., at negligible or zero-valued Reynolds
number) using the Explicit Jump-Stokes solver, as reported in earlier work for permeability
characterization [4,5].

a) b)

Figure 2. a) Boundary conditions and b) corresponding flow field in x-direction. In a) boundary
conditions highlight the implicit inlet/outlet voxels in orange and periodic tangential
boundaries in blue.

2.3 CNN architecture and training

We implemented a modified version of AlexNet [17] in Matlab’s Deep Learning toolbox. The
design of the CNN is outlined in Figure 3. It takes an image with 400x400 pixels as input and
outputs the permeability. Each convolutional block in Figure 3 consists of the following: a
convolutional layer, followed by an activation via a rectified linear unit (ReLU), followed by
batch normalization and max pooling layers. The last block is connected to a dropout layer and
a fully connected layer for the regression task. The filters of convolution layers have a size of
7X7,5X%5, and 3X3 respectively. Filters have a stride of 1 and paddings of 3, 2, and 1 and
number of filters is 16, 32 and 64 respectively. Max pooling layers’ size and stride are as
follows: the first two of them have a size of 4X4 and a stride of 4 while the last one has a size
of 2X2 and a stride of 1.

100 25

= L= Permeability

100 &4

400 o 256

Figure 3. Architecture of the used convolutional neural network where each convolutional block
is made up of a convolution, activation, batch normalization and max pooling layers
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5 different pixel counts per r and 10 different fiber content combination (vf) results in 50
unique microstructures, and each microstructure has 1000 slices along the fiber direction.
1280 of the 50000 unique 2D slices are selected randomly and used in the CNN training. 2D
microstructure permeability is flip-invariant, and we exploited this characteristic to augment
the number of images during CNN training and used the resulting database with a split of 3:1
between training and validation images.

We mapped the logarithm of permeability between -1 and 1 using the minimum and maximum
values and used it as the output of the CNN. We trained the CNN for 500 epochs using the
ADAM optimizer via Matlab Deep Learning Toolbox on an Nvidia Quadro RTX6000 with 24GB
memory; the training lasted approximately 14 hours.

3. Results and Discussion
3.1 2D transverse permeability

3000 randomly selected images’ predicted permeability along x-direction and the corresponding
simulation results are shown in Figure 4a. CNN predictions seem to be well-aligned with the
simulation results in general, some scatter is observed at the low permeability regime -
approximately for permeability values lower than 1x10-13 m? obtained at high vy This is
suspected to originate from O permeability results returned by the flow simulation at high v,
range. Another trend is the relatively more pronounced scatter in the images where fiber radius
is 14 pixels. Figure 4b shows the cumulative distribution of relative deviation of neural network
predictions (NN) from the Geodict results (GD), (GD — NN)/GD. This is suspected to originate
from the disparity between the individual fiber size (and thus the spacing between neighboring
fibers) and the filter sizes in the convolutional layers. We note that, even in the case of 14 pixel
radius fibers, more than 50% of predictions have 10% or less deviation from the simulation
results.
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Figure 4. a) Neural network predictions for permeability in x-direction vs. corresponding
Geodict results, b) normalized number of predictions as a function of the predictions’ deviation
from simulation results

3.2 3D permeability: circuit analogy based on 2D predictions
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To test the suitability of upscaling the 2D predictions via circuit analogy, we generated 15 new
microstructures with 400x800x400 voxel dimensions (800 slices along the fiber direction with
400x400 pixels). These microstructures consisted of images where the fiber radii were
represented by 6, 10 or 14 pixels and vy was 0.3,0.4,0.5,0.6, or 0.7. Flow simulations to obtain
the transverse permeability values took between 1675 seconds and 8118 seconds with an
average of 4305+1839 seconds. The equivalent transverse permeability (in both x- and z-
directions) is calculated via circuit analogy of 800 resistances (1/K,) in parallel using the
arithmetic mean of individual slices’ permeability. Complete operation, including the pre-
processing and post-processing operations, to predict the permeability of individual slices and
the equivalent permeability took 8.56 seconds.

Figure 5 shows the permeability values obtained via 3D flow simulations (GD-3D), as well as the
resulting circuit analogy results (NN-circuit) for both x- and z-directions. Results show that most
of the GD-3D and NN-circuit results fall in a small range for all the studied pixel per radius
correspondence and vy combinations. Departure of both GD-3D and NN-circuit from Gebart's
permeability predictions [6] at high vy is another distinct characteristic of these results and these
are in agreement with the observations reported in literature [18] further validating our
approach where we achieve reasonable accuracy with significantly smaller computational effort.

The reader is referred to our paper [19] for more detailed description of the methodologies we
relied on and for more detailed validation of the proposed approach, also extended for
prediction of longitudinal permeability. The said paper also explores the suitability of pre-
processing strategies to enable predicting the permeability of images that have different pixel
dimensions than what the CNN expects that can be made up of finer or coarser 2D square slices
as well as rectangular slices.

4, Conclusion

This work presents a mixed and fast numerical-analytical strategy to predict the transverse
permeability of 3D fibrous microstructures. To that end, we treated the images of 3D
microstructures as a series of 2D slices. After generating such microstructures and performing
flow simulations on 2D and 3D images, we trained a 2D Convolutional Neural Network for
predicting the transverse permeability of individual 2D slices. These highly accurate predictions
were then used in a circuit analogy to predict the transverse permeability of full 3D
microstructures. Results show that predictions in both 2D and 3D are in good agreement with
their counterparts obtained via flow simulations and require only a fraction of the
computational effort needed for flow simulations. Our approach serves as the first building block
towards accurate and fast prediction of fabric mesostructures’ permeability where local fiber
volume fraction and dual-scale effects are prominent.
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Figure 5. Permeability results obtained via 3D simulations and circuit analogy of the neural
network predictions, on images with r = 10 pixel. Top, middle, and bottom rows correspond to
the results along the x-, y-, and z-directions, respectively.
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