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Abstract

Rechargeable Lithium(Li)-Ion Batteries are a ubiquitous element of modern technology, as
they pertain to efficient and sustainable energy storage for Electric Vehicles (EVs), as well
as wind and solar farms. In the last decades, the production and design of such batteries
and their adjacent embedded control, charging, and safety protocols, denoted by Battery
Management Systems (BMS), has taken centre stage in the energy transition. A fundamental
challenge to be addressed in battery technology, however, is the trade-off between the speed
of the charging protocol employed by the BMS and the aging behaviour exhibited by the
battery resulting in the loss of capacity in the battery cell, all while maintaining the safe
operation of the battery.

This thesis aims to explore electrochemical models describing the charging and aging be-
haviour of Li-lon Battery Systems, as well as the current existing charging protocols that
alm to maximize charging speed while minimizing the aging effects that result in capacity
loss. The proposed approach in this thesis is to adopt a data-driven approach to controller
design, implementing improvements on an existent Reinforcement Learning (RL) pipeline to
design an aging-aware battery-charging protocol, and extending the work into the field of
Formal Methods for Systems and Control. This is done by expressing the closed-loop system
resulting from a trained charging policy in the form of a data-driven abstraction capable
of verifying the formal system specifications under probabilistic guarantees. Furthermore,
a Counterexample-Guided Inductive Synthesis (CEGIS) scheme is proposed to additionally
guide the training of the charging policy based on information from the learning results.
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“Although it has been known for almost two centuries, lithium is suddenly making
the news: it is the primary ingredient of the lithium-ion batteries set to power the
next generation of electric vehicles and, as such, could become as precious as gold
in this century.”

— Jean-Marie Tarascon

“It is fair to state, that in this digital era correct systems for information processing
are more valuable than gold.”

— H. Barendregt






Chapter 1

Introduction

With the perpetually growing demand for energy, today’s markets are faced with heavy
requirements for the next decade. Those requirements, illustrated and predicted in Figure 1-
1, must be achieved in sustainable manners, depending less on fossil fuels and maintaining low
carbon dioxide emissions. As a result, high interest in sustainable energy sources has branched
into several fields, such as wind energy, solar energy, as well as low-emission transportation
in the form of Electric Vehicles (EVs) [1]. For the optimal use and global distribution of such
energy sources, energy storage is a strong necessity.

Effectively, the field of sustainable energy storage continues to be a limiting factor in today’s
technological development, as many storage methods require high costs of manufacturing and
production. Considerably so, electrochemical storage systems in the form of batteries con-
stitute the cornerstone of several modern engineering applications, including those of EVs,
solar or wind energy farms, and all portable technology such as smartphones and laptops.
Due to their ubiquity, it is a necessary goal for battery manufacturers and designers to pro-
duce the most environmentally sustainable battery systems for accessible applications, while
maintaining awareness of material scarcity and recyclability.

The re-usability of batteries after they have been depleted represents a fundamental aspect
of the above general goal, considering the amount of material waste that may result from
disposing of batteries at an extremely high rate. As a result, rechargeable batteries define the
main focus of sustainable battery design, as the last decades have observed a soaring interest
in Lithium(Li)-Ton batteries in both academia and industry. Lithium, as opposed to other
metallic elements such as nickel or lead, represents the standard in rechargeable batteries due
to its high specific power (300-1500 W /kg) and specific energy (100-270 Wh/kg), as well as
ionization potential [2]. In short, Lithium is a relatively cheap metal that can safely and
efficiently ionize into Li™ ions, subsequently releasing one electron particle and producing
the desired electrical energy. This process, which describes the discharge cycle of a battery,
can also be easily reversed, allowing electrical energy to be restored within the battery, and
resulting in the desired rechargeability features.
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Figure 1-1: Past, Present, and Forecast of Global Energy Needs up to 2050. TOE = Ton of Qil
Equivalent [1]

1-1 Challenges in Li-lon Battery Technology

Despite the advances in the sustainable energy fields that Li-lon batteries have generated,
several roadblocks stand in the way of further development. On a global scale, this consists
of the challenges to ensure the sustainability, safety, and performance of every stage of the
supply chain and production of Li-lon Battery packs as illustrated in Figure 1-2. These
challenges span the mining and processing of raw materials (Lithium, Nickel, Cobalt, etc.),
the production of battery cells and components, such as the anode, cathode, electrolyte
solution, and separator, as well as the production of battery packs capable of powering large-
scale systems such as EVs, and finally the recycling and re-use of recoverable components
after the battery is no longer viable [3]. Furthermore, the wide adoption of EV technology
depends on a large infrastructure of charging stations to be efficiently distributed across cities
and regions, which has motivated several projects across Europe with the aim of normalizing
the use of Electric Vehicles [4].

On a smaller scale, challenges to the industry stem from the fundamental properties of Lithium
batteries, i.e., the electrochemical behavior of a single Li-Ion cell. Most notably, an apparent
reaction of Li-Ion batteries to repeated cycles of charging and discharging is the inevitable
development of several aging mechanisms, primarily in the form of a Solid-Electrolyte Interface
(SEI), which is a layer that builds up around the solid lithium particles within the battery
and increases the impedance of the battery by preventing such lithium particles from ionizing,
effectively reducing the capacity of the battery. The issue of aging poses a fundamental
challenge to the daily use of battery devices, as an exacerbated SEI buildup can lead to a
battery that depletes in considerably less time, rendering those devices unusable unless the
battery is replaced, which may be a highly costly and environmentally unsustainable process.
Furthermore, many performance criteria must be accounted for during battery operation,
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Figure 1-2: Stages of Production of an EV Battery Pack [5]

including charging speed, temperature regulation, accurate charge and capacity estimation,
and the minimization of battery aging. Such requirements appeal to the development of
control-based techniques in battery operation, as has been done with the introduction of
Battery Management Systems (BMSs). The general functions of a BMS consist of:

e Measuring the several output variables of a battery during operation, typically Voltage,
Current, and Temperature.

o Estimating internal battery states during operation, such as the concentration of lithium
ions, SEI buildup, and battery capacity.

o Applying charging and discharging protocols that ensure the optimal behavior of the
battery in terms of charging speed and performance, while maintaining its long-term
health by minimizing aging effects.

From a Systems and Control perspective, BMSs are the centerpieces of battery operation and
design, as they administer the charging and discharging protocols of the battery to ensure
that the desired behavior is obtained, A key challenge for control designers, and thus a key
challenge of this thesis project is to realize the following control objective:

Control Objective:
Design a charging policy for a Li-Ion Battery cell to maximize charging speed, while
minimizing charging time.

Throughout this work, the electrochemical charging and aging behavior of a Li-Ion cell is
formalized in a mathematical model, which allows for a formal description of the above
objective.

1-2 Data-Driven Symbolic Control Synthesis

In addition to exploring the field of Li-Ion Battery Systems, this thesis is centered around ap-
plying advanced symbolic methods for control, aiming to combine the two areas of study. The
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4 Introduction

field of symbolic methods has gained traction in the last decades with the growing collabora-
tion between Systems and Control and Computer Science. Since then, computational methods
for categorizing systems by behavioral and simulation relations, constructing finite-state ab-
stractions of infinite-state systems, and performing formal verification on system dynamics,
have been of wide interest in academic and industrial areas [6]. The value of symbolic meth-
ods thus lies in the formalization of system verification, so as to provide guarantees that a
certain controller satisfies given safety specifications imposed on the system.

In recent years, the evolution of computational methods has allowed for the implementation of
data-driven techniques that further enhance control applications, such as the use of Machine
Learning (ML) and Reinforcement Learning (RL) to produce model-free control policies. The
development of such control policies is advantageous, as complex dynamics such as those of a
Li-Ion cell are circumvented at the cost of extensive training time. Furthermore, issues that
impede conventional control strategies, namely Model Predictive Control (MPC) and output
feedback, such as parameter uncertainty and lack of observability, can be bypassed with the
use of data-driven methods. However, data-driven methods suffer from difficulties in verifica-
tion, as those controllers are optimized based on their observations, but not certain to operate
adequately under unobserved cases, which poses a challenge to the safe implementation of
data-driven controllers.

As a proposed remedy, it is of interest to leverage data-driven methods in combination with
well-established formal and symbolic methods for control to provide formal guarantees for
system specifications and to better guide controller synthesis. One such method consists
of the recently developed methods in [7] to construct a finite-state abstraction based on
observations from the system, thus denoted by a data-driven abstraction. The validity of this
abstraction can be evaluated with probabilistic guarantees based on the scenario approach.
It is thus also of interest to formally introduce these notions throughout the thesis.

1-3 Thesis Goals and Qutline

The general goal of this MSc Thesis work is to develop methods for the more sustainable
charging and operation of Li-Ion Battery Systems, aiming to respond to the growing energy
requirements in the future. More specifically, the undertaken research goals are to employ
data-driven methods to enhance the widely established symbolic methods for controller syn-
thesis and verification. Furthermore, this thesis is the first of its kind to combine the field of
Formal Methods for Systems and Control with the experience and knowledge of the electro-
chemical behavior and mathematical models of Li-Ion Battery Systems, so as to develop and
verify a charging protocol aiming to maximize the life span of a Li-Ion cell.

Thus, the general research goal, as well as the specific technical areas explored throughout
the thesis formulate the corresponding research questions that are to be considered, as listed
in Table 1-1.

This work begins with an introduction to the electrochemical charging and aging behavior
exhibited by a Li-Ton cell from a modeling standpoint in Chapter 2, further investigating Re-
search Question 2 by considering the battery system from a Systems and Control perspective
through the formalization of control performance specifications. In Chapter 3, a review of
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1-3 Thesis Goals and Outline 5

Research Question 1: Data-Driven Methods and Symbolic Control
How can data-driven methods be used to improve symbolic methods for control and
verification?

Research Question 2: Li-Ion Batteries
What are the electrochemical properties of Li-Ion Battery Systems and how can they
be formalized into a Systems and Control framework?

Research Question 3: Aging-Aware Charging
How can data-driven and symbolic methods be employed to synthesize an aging-aware
charging protocol for Li-Ion Battery Systems?

Table 1-1: Research Questions

Formal Methods for Systems and Control is provided, along with the necessary tools to ex-
tend into the use Data-Driven Abstractions for the verification of autonomous systems, which
constitute a pivotal aspect of the project. Thereafter, Chapter 4 introduces the proposed
approach to controller synthesis and verification with the use of RL and a Counterexample-
Guided Inductive Synthesis (CEGIS) scheme to improve the RL results. The results of con-
troller synthesis and verification are presented and compared to a baseline charger in Chapter
5. Finally, this work is concluded and possible future work is discussed in Chapter 6.
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Chapter 2

Li-lon Battery Systems

This chapter is concerned with introducing the main elements and principles that constitute
a Li-Ion Battery System. This includes a preliminary description of the physical and elec-
trochemical composure and mechanisms within the system, followed by a more quantitative
perspective utilizing mathematical models that describe the system’s behavior. Namely, this
is done by introducing the model developed by Doyle, Fuller, and Newman, denoted by the
DFN model.

An additional goal of this chapter is to introduce the physical phenomena and mathematical
models that encapsulate battery behavior. This includes the aging process of a Li-Ion battery,
which is most commonly observed due to the buildup of a Solid-Electrolyte Interface (SEI)
layer within the electrodes.

Thirdly, a short discussion on the control/charging of Li-Ton cells is provided, focusing mainly
on the design of a protocol that depends on Reinforcement Learning (RL), as that is of central
importance to the work in this thesis.

The chapter concludes with the first contribution of this thesis, which is to formally define
the desired control specification for a charging protocol based on the Reach-While-Avoid
specification to be introduced subsequently.

2-1 Electrochemical Principles

The standard Li-Ton cell comprises three layers, denoted by the negative electrode (anode), the
separator, and the positive electrode (cathode), placed in a respective adjacent configuration
as shown in the schematic in Figure 2-1. Each of the electrodes consists of material such
as graphite, carbon, titanate, or silicon, over which material particles containing lithium are
located and immersed in a liquid-electrolyte solution. Typically, such material particles in
the negative electrode, i.e., the anode, are of a Lithium-Graphite compound with a molecular
structure Li,Cg, whereas those in the positive electrode, i.e., the cathode, consist of a metal-
oxide structure of the form Li, M O3, such as Cobalt, denoting the structure by LiC0oO;. For
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1
:‘ Negative Electrode Separator Positive Electrode rl

Figure 2-1: Schematic of a Standard Li-lon Cell Configuration during Charging [10]

example, the typical charge-transfer reactions in such battery cells can be described, as in [8],
by

har,
Cathode: LiCo0Os % Lii_,C0O9 + xLit + ze™ (2-1)
discharge
. charge .
Anode: Cg+xLit +xe” =———= Li,Cs (2-2)
discharge

In a standard discharge cycle, Li particles in the negative electrode are ionized by the loss of
an electron, which exits the negative electrode through a current collector, thus generating
current from the battery. The ionization of Li particles occurs by a diffusive process, as the
solid Li particles travel to the surface of the Li,Cg particles, intercalating from the solid
particles and undergoing an electrochemical reaction with the surrounding liquid-electrolyte
solution. This results in the release of an electron (e™) and the production of a Li™ ion that
diffuses into the electrolyte solution immersing the material particles. In liquid-electrolyte
form, the ionized lithium further diffuses throughout the solution in the negative electrode,
then the separator, and finally to the solution in the positive electrode. The electrolyte
solution in the positive electrode is then also involved in a chemical reaction with the solid
material particles immersed in it, resulting in the diffusion of the ionized lithium back into
a solid within the metal-oxide material particles. During a charging cycle, the process is
reversed, as current is applied to the battery, which results in the diffusion and ionization of
Li particles from the positive electrode, and back to the negative electrode, as illustrated in
Figure 2-1. This structure thus allows the rechargeable behavior of a Li-Ion cell [9].

Furthermore, the function of the separator in a battery cell is to regulate the flow of the liquid-
electrolyte solution between the two electrodes, as its porous properties limit the amount of
the LiT ions that diffuse through it. In the absence of a separator, the diffusion between
two electrodes is left unregulated, resulting in an uncontrollable amount of electrochemical
reactions and thus a highly unsafe system that is prone to catching fire or even explosion.

Master of Science Thesis Hovsep Touloujian
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Figure 2-2: Schematic of the SEI Buildup Process in the Negative Electrode [15]

2-1-1 Aging Behavior

While the charging and discharging cycles are chemically reversible, limitations on the cyclical
performance of the battery are imposed by the aging mechanisms that occur during battery
operation. The most common and prominent form of aging in a battery occurs through the
creation and buildup of a layer over the solid material particles in the negative electrode,
which impedes the contact between the solid particles and the liquid-electrolyte solution,
further limiting the intercalation of Li molecules, and effectively limiting the capacity of the
battery, i.e., the amount of charge it can hold when fully charged. This layer already exists
during the initial cycle of the cell as a protective layer for the negative electrode against
corrosion and reduction reactions. However, its size increases as the growth of the solvent
within the SEI leads to further interaction with graphite and other solid particles within the
negative electrode, which results in gas release that can crack the SEI and allow its further
expansion [11].

The SEI growth dynamics, as described in the subsequent mathematical models, can be
characterized by an electric flux induced by side reactions during battery operation, as is
initially studied and modeled in [12]. The magnitude of this side-reaction flux is found to be
proportional to internal electric potentials within the cell, as well as the current thickness of
the SEI layer.

Furthermore, several factors affect the rate of growth of the SEI, including high cell temper-
ature, short circuits, and high charge, which is correlated to a large potential between the
solid particles and liquid-electrolyte solution in the negative electrode, thus increasing the
side-reaction flux. It is further noted that the charging speed of the battery is by nature
proportional to the rate of SEI growth, which means that aging-aware charging is a trade-off
between minimizing both charging time and the aging effects of the battery, as is widely
discussed in works that incorporate aging-aware charging protocols such as [13] and [14].

2-2 Doyle-Fuller-Newman (DFN) Model

For the quantification of the behavior of Li-Ion cells, several mathematical models have been
constructed, such as Equivalent Circuit Models (ECMs), where a battery can be simplified to
a circuit component such as a capacitor, as demonstrated in [16] and [17]. Furthermore, some
battery models can be constructed from observation data, resulting in data-driven models,
as performed in [18] and [19]. However, it is of interest to characterize a Li-Ion cell by its
electrochemical properties for improved accuracy, motivating the need for Electrochemical
Models (EMs). In EMs, the behavior of the battery is characterized by internal electrochem-
ical states, such as the concentration of solid lithium in the material particles in each of
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2-2 Doyle-Fuller-Newman (DFN) Model 9

the negative and positive electrodes, the concentration of Li™ ions in the liquid-electrolyte
solution, the internal temperature of the cell, and the thickness of the SEI surrounding the
material particles. These states vary based on spatial and temporal dynamics described by
Partial Differential Equations (PDEs).

The most widely used EM is that developed by Doyle, Fuller, and Newman (DFN) in [20], also
sometimes referred to as the Pseudo 2-Dimensional (P2D) Model. The DEN Model consists of
four PDESs, in addition to several algebraic equations describing the reaction kinetics based on
the solid-phase and electrolyte-phase Li behavior. The model introduced hereafter is adapted
from [13] and [21]. Numerical implementations of the model are also available in MATLAB
and Python, developed in works such as [22], [23], and [21].

2-2-1 Electrochemical-Thermal Dynamics

For the model, time is denoted by ¢, and the spatial domain is denoted by z, where, similar
to the representation in Figure 2-1, the intervals [0, 6], [6,, L — 6,], and [L — 6, L] describe
the negative electrode, separator, and positive electrode, respectively.

The Li concentration in the solid phase c4(x,r,t), i.e., radially described for a given solid
material particle at position  and time ¢, for « € [0, 6,] U [L — d,, L] is given by Fick’s Law
as

dcs  Ds 0 (1 50cq

o= ®3)
Ocg B Jdcg .
or lr=0 a 07 _Ds or r=Rs —Jn (2_4)

where Dy denotes the diffusion coefficient of solid-phase lithium, j; denotes the main reaction
flux, i.e., the component of the chemical reactions that are not the side reactions that consist
of the aging mechanism. Furthermore, d,, d,, and L denote the thickness of the anode,
cathode, and cell, respectively.

The Li concentration in the electrolyte phase c.(z,t) for x € [0, L] is given by

Jdc 0 oc
e 2 pZ=e — 40y, _
ce gy = 5 (Dec? a:c) + as(1 = 19)jn, (2-5)
Jce _ Oce B
Or le=0 Oz la=r 0, (2-6)

where €, denotes the volume fraction of the electrolyte phase, p the Bruggeman porosity
exponent, and D, the diffusion constant of electrolyte-phase Li-ions. The symbol a5 = 3¢5/ Rs
denotes the specific interfacial surface area, where €5 represents the active material volume
fraction, and tgr the transference number of Li-ions. Furthermore, the term j, = j1 + jo
represents the net molar flux of the reactions, i.e., the sum of main and side reactions. It is
noted that jo = 0 for the positive electrode, as side reactions are only assumed to occur in
the negative electrode.

The potential of Li in the solid phase ¢,(z,t) for € [0,6,] U [L — dp, L] is given by
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10 Li-lon Battery Systems

Ohm’s Law, i.e.,

9 05 el
%(0’55 81‘> = R Ins (2_7)
8¢5 _ 8¢5 o Teey
7€s Ox la=0 9€s Ox lo=1, A’ (2-8)
8(255 a(ﬁs
— — 2_
ox lz=s, ox x=L—8p 0, ( 9)

where F' denotes Faraday’s constant and I..; denotes the applied cell current. In this model,
the convention is defined such that I..; < 0 corresponds to charging, whereas the opposite
corresponds to discharging.

Furthermore, the potential of Li in the electrolyte phase ¢.(z,t) for = € [0, L] is given
by

0 0oe 2RT dlnc, 3e.F .
%(Fié?g% + I€€p(t3_ — ].)T O ) = _Tjna (2_10)
Ope
= Q¢ =0, 2-11
0x lz=0 z=L 0 ( )

where R denotes the ideal gas constant, and T denotes the temperature of the cell, and «
denotes the ionic conductivity in the electrolyte solution. The cell voltage is described by the
solid-phase potential difference at the two ends of the cell, i.e.,

The level of charge in the cell is defined by the bulk State of Charge (SOC) of the negative
electrode, given by
n (z,t)/c 0
SOC 6 / / S max_) 0% ’ (2_13)
91009 — Oo%

where 65, and 07, denote the stoichiometric coefficient of solid-phase lithium in the negative
electrode at SOC 0% and 100%, respectively, and cg,,,, denotes the maximum solid-phase
concentration in a solid particle in the negative electrode. Furthermore, ¢, (z,t) for x € [0, d,)
denotes the volume-averaged concentration of solid-phase Li in a material particle, given by

3 [
¢, (x,t) = R3 / r2cq(z, 7, t)dr. (2-14)
Although the SOC is measured in terms of the negative electrode, it can be analogously defined
in terms of the positive electrode and denoted by SOC™(t), which is useful to describe the
thermal dynamics given by

mcp%(t) = thh(Tamb —T) + Len(UT (SOCT(t)) = U~ (SOC™(t)) — V(1)) (2-15)

where m denotes the mass of the cell, ¢, the heat capacity of the cell, Ry, its convective thermal
resistance, and U~ and U™ the open-circuit potential of solid material in the negative and
positive electrode, respectively. The functions U~ and U™ are functions of the SOC that are
usually derived from optimal fittings based on experimental data.
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2-2 Doyle-Fuller-Newman (DFN) Model 11

2-2-2 Reaction Kinetics

The above PDEs are coupled with rate equations describing the reaction kinetics. The main
reaction flux for the positive or negative electrode jfc (x,t) is modeled by the Butler-Volmer

kinetic equation:
-+
+ o1 aF o\ ok

where o, and o, denote the anodic and cathodic transfer coefficients, and g1 denotes the
exchange current density, which is given by

Z.E)t,l = kocga (Csi,maz - CS,e)aac?,Ce’ (2_17)
for some kinetic constant k[j)c, where c;. denotes the particle surface concentration, i.e.,
Cse(z,t) = cs(Rs,x,t). Furthermore, the electrode over-potential for the positive or nega-
tive electrode ni(z,t) is given by

nE = ¢s — ¢ — US(SOCE(t)) — FRyjy, (2-18)

where U denotes the electrode equilibrium potential, and R; denotes the negative electrode
film resistance due to the buildup of the SEI layer. It is noted that in the above and later
equations, the + symbol is dropped when the context is clear.

Furthermore, the side reaction flux is denoted by jao(x,t), and is modeled by a Tafel kinetic
equation describing an irreversible process, as opposed to a Butler-Volmer equation which
described a reversible process. The expression is given by

; 2000 F
gy = =22 exp < _ a2 772), (2-19)

RT

where i 2 denotes the side-reaction exchange current density, which is a fixed parameter of the
model, a2 denotes the cathodic transfer coefficient of the side reaction, and the overpotential
19 is given by

N2 = ¢s — pe — Uz — FRfjm (2—20)
where Us denotes the equilibrium potential of the side reaction. It is reiterated that jo = 0 in

the separator and positive electrode, as side reactions and aging mechanisms are only active
in the negative electrode.

At this point, it is noted that the parameters Dy, D,., and k:g[ are modeled to be temperature-
dependent based on the Arrhenius relationship given by

¢ = wref exp (% (% - Tjgf))a (2'21)

where 1) refers to the temperature-dependent parameter, Ey, its associated activation energy,
and ¢,y the value of the parameter at a reference temperature 7T}..s.
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12 Li-lon Battery Systems

2-2-3 Aging Model

The aging model describes the capacity fade in the battery due to the growth of the SEIL.
Thus, the corresponding film resistance R is modeled by

OR;  Vy
—_2J; 2-22

ot of J2 (2-22)
where Vf denotes the molar volume and o the electric conductivity of the SEI. Furthermore,
the amount of charge @Q; lost due to the loss of Li-ions due to side reactions is defined to be

d b
QA / joda. (2-23)
dt 0

The flowchart shown in Figure 2-3 represents the various interconnections between the dy-
namics of the DFN Model. Furthermore, the dynamics categorized by colored blocks that
differentiate between battery electrochemical states, reaction rates, and aging behavior.

2-3 Control of Li-lon Battery Systems

With the development of models that describe the charging/discharging, as well as aging
dynamics of Li-Ion batteries, it is of interest to employ these models for the design of methods
to estimate internal states and/or charging protocols that meet the desired control goals. This
section briefly discusses the conventional control methods employed in those regards, and then
focuses on the use of Reinforcement Learning (RL) to construct an output-feedback-based
optimal charging policy, which represents a central aspect of the thesis work.

2-3-1 Model-Based Methods

Typically, the only measured states of a battery consist of its cell voltage (V'), its cell current
(Icenr), and temperature ('), whereas the internal chemical states are not directly measured.
The SOC of the battery can however be estimated from the cell current, since electric charge
can be expressed as the integral of electric current over time, resulting in a method denoted
by Coulomb Counting, expressed as

t Icell(t)
to Q
where to and SOC (o) represent some initial time and the SOC at that initial time, respec-
tively, () denotes the capacity of the battery, which can be assumed constant during one
charging cycle, and n the Coulombic efficiency. Coulomb counting is an effective method to

have a low-quality estimate of the SOC, and it is hereafter assumed that an estimate of the
SOC is available as a measured output for the construction of an Output Feedback controller.

SOC(t) = SOC(tg) — ndt, (2-24)

State estimation methods can be considerably improved using model-based techniques, where
the measurements are incorporated using model dynamics to provide more accurate estimates.
This consists of constructing state observes and Kalman filters based on the battery models,
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14 Li-lon Battery Systems

the application of which to battery systems has been widely considered in the literature, as
is documented in works such as [24] and [25]. However, due to the heavily involved PDE
dynamics and the lack of observability of the DFN Model, it is generally difficult to construct
a state observer that depends on the DFN Model. For this reason, some simplified models
such as Equivalent Circuit Models, or the Single-Particle Model [26] are used to perform
state estimation. For example, works such as [27] and [28] simplify the PDE dynamics by
expressing the model in terms of the average concentration over the spherical particle rather
than the concentration profile. In the former work, the observer is constructed utilizing an
Extended Kalman Filter, whereas a Moving-Horizon Estimation scheme is designed in the
latter, to be further employed in an application of Model Predictive Control (MPC).

Furthermore, as the interest in developing control methods for batteries grew over the past
decades, it has been of interest to develop battery models in a control context, as done in
[9]. Aging-Aware MPC schemes are implemented on the DFN model, such as in [14], where
a Finite-Dimensional Linear Time-Invariant model is used to describe the internal battery
dynamics. This surrogate model is employed in an MPC scheme aiming to minimize the
battery capacity loss, developing a Pareto front describing the trade-off between charging
time and capacity loss. This work is expanded in [10], where a nonlinear MPC framework
based on the DFN dynamics is implemented using nonlinear optimization methods such as
Sequential Quadratic Programming (SQP), resulting in a considerable decrease in capacity
loss during charging runs.

It is noted, however, that the MPC scheme developed in the aforementioned work is im-
plemented in full-state feedback, i.e., the knowledge of all battery states is assumed, as no
observer is designed to estimate the internal battery states based on the DFN model. As a re-
sult, the corresponding experimental runs are performed in an open-loop environment, where
the control scheme is generated in simulation and administered to the battery, which is detri-
mental to the charging performance and safety. Furthermore, the computational difficulty
of MPC based on the DFN model is illustrated in [29], where several problem formulation
strategies are considered for the DFN model, each resulting in substantially large time re-
quired for a single optimization call (45-65 seconds), which renders real-time MPC on such a
complex model infeasible in most practical applications.

2-3-2 Reinforcement Learning

In addition to the control methods discussed above, it is of interest to further discuss the
use of Reinforcement Learning (RL) in developing aging-aware controllers for Li-Ion Battery
Systems. Typically, RL consists of training a policy to maximize a certain user-defined reward
function that evaluates the performance of the policy. For the case of batteries, a typical
reward function penalizes slow charging and high aging effects caused by the charging protocol,
while rewarding the opposite, i.e., fast charging with low aging behavior. Such a policy is
designed in [21], where the DFN Model is used to emulate a single-cell Li-Ion Battery System,
and a controller is trained for the case of both state feedback, i.e., the controller has full
knowledge of the state, and output feedback, i.e., the controller is assumed to only know
the cell voltage, the core temperature of the cell, and its State of Charge. The latter policy,
which depends solely on the output variables, is of interest to the work in this thesis, as it
circumvents the need for a state estimator, which has posed roadblocks with respect to the
model-based approaches to charging.
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Figure 2-4: Actor-Critic Scheme [21]

In its original form, RL is performed in a discrete state and action space, where the controller
has a finite set of actions to choose from, and the system operates with a finite number
of states. Such a framework is often referred to as Q-learning. Despite Q-Learning being
advantageous in providing convergence guarantees under mild assumptions, it suffers from
the limitation of the finite state and action spaces, as well as the curse of dimensionality
characterized by computations becoming more difficult as the partition of the state and action
spaces becomes larger. Therefore, it is advantageous to employ RL in continuous spaces
using the Deep Deterministic Policy Gradient (DDPG) framework introduced in [30]. In
this case, the policy is defined by a neural network, and thus by a function rather than
a table representing a discrete mapping. The DDPG framework is employed in an Actor-
Critic scheme, as illustrated in Figure 2-4, in [21] to develop the aging-aware controller. The
resulting protocol is shown to perform better than standard rule-based charging methods, both
in terms of charging speed and reduction of aging effects. The mathematical formalization of
the DDPG algorithm is provided in a Review of Reinforcement Learning in Appendix A.

2-4 Desired Control Specification

As the electrochemical behavior of a Li-Ion Battery has been mathematically formalized
through the DFN Model, the goals of a charging protocol can similarly be mathematically
formalized, thus putting the design of a charging protocol into a Systems and Control frame-
work.

As is noted from the aging model, the rate of growth of the SEI is directly proportional to
the side reaction flux jo as given by Equation 2-22. Furthermore, the Tafel equation given in
Equation 2-19 shows that the side reaction flux is exponentially affected by the overpotential
792, the behavior of which is characterized by the algebraic equation given in Equation 2-20.
That is, based on the Tafel equation, a positive overpotential 7, refers to a small SEI growth
rate, while a negative 1y refers to a larger one. The rate of SEI growth rises exponentially as
12 decreases. As a result, it is a direct goal to maintain 79 as large as possible during charging
S0 as to minimize the rate of SEI growth over one charging cycle. This goal is thus used to
define the system specification corresponding to aging-awareness during charging.

In addition to the aging-awareness goal, safety specifications are to be maintained on the
charger, namely in the form of voltage and temperature constraints. It is aimed to maintain
the battery voltage below a nominal charging voltage of 4.2V while maintaining the battery
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16 Li-lon Battery Systems

Figure 2-5: Schematic of a Reach-While-Avoid Specification

temperature below 35°C, or 308 K. By maintaining those conditions, the charger can reduce
the chances of thermal runaway, fire, or explosions in the cell.

The above goals are employed to formally define a control specification to be employed for
the synthesis of an aging-aware charging protocol. The control specification is defined based
on the Reach-While-Avoid (RWA) specification, defined as follows:

Definition 1 (Reach-While-Avoid Specification). Consider a dynamical system with state
x € X, a set of unsafe states denoted by U and its complement set of safe states S = X\U, a
set of initial states I C S and a set of goal states G C S. The Reach-While-Avoid specification
s characterized by the guarantee that a trace starting from the set I reaches the set G in finite
time while avoiding the set U, i.e., remaining within S. Formally,

¥2(0) € I = (IT)(2(T) € G A (YO <t < T)a(t) ¢ U). (2-25)

The RWA specification is illustrated by the schematic shown in Figure 2-5. In the case of the
considered Li-Ton Battery Systems, the RWA specification can be defined with respect to the
State of Charge of the battery and the overpotential 72. The chosen specification consists of
the following sets:

o Initial Set: The set of states corresponding to SOC € [0,0.2],
o Goal Set: The set of states corresponding to SOC € [0.8, 1],
o Safe Set: The set of states corresponding to:

1. Side Reaction Overpotential lower-bounded, i.e., 7y > m,
2. Cell Voltage upper-bounded, i.e., V < 4.2V,
3. Cell Temperature upper-bounded, i.e., T' < 35°C = 308K.

The choice of the lower bound m is not specified since it can be viewed as a parameter for
verification, as is later discussed. Furthermore, as the goal of the control design is a controller
that maximizes charging speed and minimizes aging effects while maintaining the safety of
the cell, the formal definition of the control specification is to ensure the RWA specification
while reaching the goal set as quickly as possible.
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Chapter 3

Data-Driven Symbolic Methods

Following the discussion on Li-Ion Battery Systems, their electrochemical modeling principles,
and the state estimation and control methods for their aging-aware operation, this chapter
consists of a more theoretically involved discussion on Symbolic Methods for Systems and
Control. As the essential goals of this thesis are to study and develop formal verification-
based control methods for the aging-aware operation of Li-lon battery systems, it is of interest
to construct a theoretical basis for this research area.

Symbolic or Formal Methods for Systems and Control constitute a field that has significantly
developed in the last few decades, migrating from its early motivations in computer science for
program verification to symbolic methods, which were successfully employed in the analysis
of digital and cyber-physical systems, to general dynamical systems. Essentially, the study
consists of viewing a dynamical system as a computer program to be verified for a certain
logical specification. This has motivated the development of the notion of an abstraction,
which is a finite-state expression of an infinite-state system through behavioral relations,
further facilitating the development of verification methods and producing formal guarantees
on system performance.

This chapter is then concerned with introducing the field of Symbolic Methods for Systems
and Control and providing a discussion on the recent innovations in the field that have allowed
for its enhancement with data-driven methods. This is centered around the notion of a data-
driven abstraction, to be defined and discussed in this chapter as well.

3-1 Formal System Definitions

This section begins with the formal definition of a dynamical system:

Definition 2 (System [6]). A system S is a sextuple (X, Xo,U, —,Y, H) consisting of:

e X, a set of states;

e Xo C X, a set of initial states;
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18 Data-Driven Symbolic Methods

U, a set of inputs;

e —C X xU x X, a transition relation;

Y, a set of outputs;

H:X =Y, an output map.

A system is called finite-state if X is a finite set, whereas a system with an infinite set of
states is called infinite-state. The evolution of a system is captured by the transition relation,
described as (z,u,2’') €E—, or — 2/. This allows the definition of a successor set:

Definition 3 (Direct Successors Set, Non-Blocking Inputs [6]). For z € X, the set Post,(x)
denotes the set of direct successors of x under u, i.e.,

Post,(7) := {2’ € X|x — 2’} (3-1)

Furthermore, the set of non-blocking inputs for a given state x, U(x), is defined as the set of
inputs such that the direct successor set of x is non-empty, i.e.,

U(z) := {u € U|Posty(z) # &}. (3-2)

Another useful definition is that of a deterministic system:

Definition 4 (Determinism [6]). A system S is deterministic if, for any state v € X and
input w € U, the cardinality of the successor set |Post,(x)| = 1.

For a given state x € X, the finite internal behavior generated by x is given by, the finite

sequence of transitions:

U ul u2 Un—2 Un—1
To —= 11 s T T O s (3-3)

such that zog = x. Analogously, the infinite internal behavior is defined by an infinite
sequence of transitions:

u u u u
i) 0/5131 ! ) 2 3 2 (3—4)

Finite and infinite internal behaviors for any initial state x induce the definition of an external
behavior, such as for the infinite case, given by

Yo —> Y1 —> Y2 —> Y3, (3-5)

such that y; = H(z;) for i € Ny, i.e., the set of natural numbers including zero. More
succinctly, the external behavior of the system can be written in string form as y = yoy192 - - - .
The set of external behaviors that are defined by internal behaviors from z is denoted by B(.5)
and is called the external behavior from state x. The set of all infinite external behaviors
generated from z is denoted by BY(S) and called the infinite external behavior from z.
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Definition 5 (Finite and Infinite External Behavior). The finite external behavior generated
by a system S, denoted by B(S) is defined by

B(S)= | Bi(S) (3-6)

z€Xo

Analogously, the infinite external behavior generated by a system S, denoted by B“(S) is
defined by
B(S) = |J By(9). (3-7)

z€Xo

The definition of the behavior of a system allows for the definition of system relations, such
as behavioral inclusion and equivalence:

Definition 6 (Behavioral Inclusion and Equivalence [6]). Given two systems S, and Sy, with
the same set of outputs, i.e., Yo = Yy, S, is said to be behaviorally included in Sy, denoted
by Sq =B Sy, if BY(S,) C B¥(Sy). Furthermore, the two systems are said to be behaviorally
equivalent, denoted by S, =5 Sy, if it additionally holds that Sp =g S,.

The concept of behavioral relations is useful when analyzing the reachability of systems. A
state x € X is said to be reachable if there exists a finite internal behavior sequence for
some xg € Xg such that x, = . An output y € Y is said to be reachable if there exists a
reachable state © € X such that H(z) = y. The set Reach(S) denotes the reachable set of a
system S, i.e., the set of all its reachable outputs. This definition implies the following result
on behavioral relations:

Proposition 1 ([6]). For any two systems S, and Sy, it holds that

Sa 2B Sp =Reach(S,) C Reach(Sy), (3-8)
Sa =B Sy = Reach(S,) = Reach(Sp). (3-9)

The above result can be instrumental in performing safety analysis, i.e., by ensuring that a
system does not reach a certain unsafe set. For example, if S, < Sp and it is known that
Reach(Sy) N U = @, for some unsafe set, it follows that Reach(S,) N U = @, thus implying
that the system S, does not reach the unsafe set.

3-2 Data-Driven Abstractions

In applications of formal verification, a common technique is to construct finite-state symbolic
abstractions that describe and encapsulate the behavior of the concrete infinite-state system.
Those abstractions, usually described and presented in the form of finite-state machines, are
constructed to behaviorally include the dynamics of the concrete system. As a result, verifying
a specification on the abstractions implies verifying the same property on the concrete system.

The construction of effective abstractions, however, is a substantially complex process, as the
abstraction must be large enough to encapsulate the behavior of the concrete system, without
being too generalizing to provide no significant information. Furthermore, it is typically
difficult to prove the behavioral inclusion of the concrete system within the abstraction.
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Thus, most abstraction-based methods face limitations that require the construction of an
abstraction based on expert knowledge of the system or complex mathematical methods.

However, with the growth of data-driven modeling and analysis methods in recent years,
chiefly due to the higher accessibility of advanced computational tools, several fields, including
those of system verification and formal methods, have been involved in the development of
data-driven methods. Most notably, methods to construct symbolic abstractions of infinite-
state systems from output data have been developed. This section aims to document the
work done in [7] to develop data-driven abstractions for autonomous systems, which can be
used to perform verification on the concrete system. Consider the time-invariant autonomous
system given by

Tp+1 = f(2k),

o =x,

with € D, some domain defined on the set of states X, and y; € ), i.e., the set of outputs,
which is defined to be finite. The mapping h(-) can be considered to be a partitioning map that
returns a label, i.e., an element of the set ), corresponding to the state xp. Furthermore, let
(A, F,P) denote a probability space, where A is the sample space endowed with a o-algebra
F and a probability measure P. Building on the previous formal definitions of a dynamical
system and behavioral inclusion, as well as the introduction of the probability space, one can
define a probabilistic version of behavioral inclusion as follows:

Definition 7 (Probabilistic Behavioral Inclusion [7]). Consider two dynamical systems S, and
Sy with Y, = Yy and a probability space (D, F(D),P). The system S, is said to be behaviorally
included in Sy with probability greater than or equal to 1 — €, denoted by P[S, <5 Sp] > 1 —¢,
if for an initial condition xo sampled from the probability space, i.e., xo ~ P, it holds that

P[BZ, (Sa) € B(Sy)|wo ~ P] > 1 —e. (3-11)

It is said that S, is almost surely behaviorally included in Sy if € = 0. If the probabilistic
behavioral inclusion holds for some horizon H, it is denoted as P[S, <p, Sp] > 1 — €.

Another notion of interest is that of a transition system, which is a specific case of the defi-
nition of a system introduced at the start of this chapter. The abstraction to be constructed
is defined as a transition system, defined as follows:

Definition 8 (Transition System [7]). A transition system S is a tuple (X, Xy, E,Y, H), where

X is the (possibly infinite) set of states;

Xo C X is the set of initial states;

e £C X X X is the set of edges, or transitions;

Y is the set of outputs;

H: X — Y is the output map.
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Figure 3-1: Example of SA(-CA with ¢ = 2 (left) and ¢ = 3 (right) [7]
The essential differentiation between a transition system and a system as defined at the
beginning of this chapter is that transitions are defined over a set of edges in the former
case, rather than by a transition map in the latter case. Furthermore, transition systems are
assumed to not admit inputs, i.e., they are defined as autonomous systems. The behavior
of a transition system can be defined in a manner analogous to the previously provided

definition. The definition of a transition system thus allows the introduction of the f-complete
abstraction:

Definition 9 ((Strongest) Asynchronous ¢-Complete Abstraction [7]). Let S := (X, Xp, &, YV, H)
denote a transition system, and denote by X, C Y the set of all £ — long subsequences of
all behaviors in S, for some { € N. The system Sy := (X,By(S),E, V', H) is called the
(strongest) asynchronous £-complete abstraction (SAC-CA) of S, where

o & = {(ko, oK)k, K € Y,0 € V" ko, ok’ € Xy}
. H(ko) =k,

with By(S) denoting the set of all external traces of Sy, which are of length £, and Y* denoting
the Cartesian product Y X --- x Y repeated ¢ times.

In short, the SA/-CA encodes each state of a transition system as a sequence of length ¢,
which follow the domino rule, i.e., the last ¢ — 1 entries of a state sequence are the first
¢ — 1 entries of the following state sequence. This is exemplified in Figure 3-1. The main
motivation for employing the SAZ-CA is that it can circumvent issues that result from making
conclusions about one-step transitions of a system, thus providing an improved verification
process. Furthermore, the refinement of the abstraction can be easily modified by changing
the parameter ¢, representing the length of each state sequence.

Consider the data collection process, where N sequences of length H are collected from
randomly-sampled initial conditions to construct the set &’ f(,, which denotes the set of observed
l-sequences, and acts as the state set of the data-driven SA/-CA, defined by:

Definition 10 (Data-Driven SA-CA [7]). The (-complete abstraction S = (XN, XN, &, V', H)
is called the data-driven (-complete abstraction of S, where

. XZN is the state space built from the (-sequences collected from N trajectories of an
underlying concrete system.
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Figure 3-2: Example of the Construction of a Non-Blocking Automaton from Domino Comple-
tion. Dashed Lines Indicate Artificially-Added States [7].

When constructing the data-driven SA¢-CA, it is possible to result in a blocking automaton,
as the domino rule may not be satisfied. For this reason, a manual extension of the data-
driven state space set is implemented, by including the states that render the state space
compatible with the domino rule. This notion of Domino Completion is illustrated in Figure
3-2. Though this may lead to spurious behaviors in the abstractions, i.e., behaviors exhibited
by the abstraction but not the system it is constructed from, this process is necessary to
ensure the construction of a non-blocking automaton.

Assuming hereafter that the data-driven SA¢-CA is a non-blocking automaton, scenario theory
can be leveraged to provide bounds on the probabilistic behavioral inclusion of the concrete
system S within the data-driven abstraction Sév . Scenario theory, or the scenario approach,
is a methodology for data-driven optimization based on making decisions from previously
observed information and providing probabilistic guarantees on the optimality of the decision
for new and unobserved cases, or scenarios. It is rigorously introduced in [31] but is only
briefly discussed in this work.

Consider N sampled i.i.d initial conditions {xo;}X; and the resulting H-long behaviors dis-
played by S, denoted by {B H(:Co,i)}fil. It is then directly possible to obtain NV i.i.d scenarios
by the binary vectors {d;}¥, where

1 ifB ' -
51(]) _ { 1 H(xO,z) ): Oyéj (3_12)
0 else,
for j € {1,---,|Y|’}. In short, each d;(-) expresses whether the sampled behavior B(x;) at
some point exhibits the (-sequence yy;, denoted by the expression Br(zo,) = Qye;, where
the set of all possible f-sequences is encoded over the set {1,---,|Y|‘}. For © = RV, the
scenario program can be formally defined as
min 1 - 0, (3-13)
st. (0—0;)>0, i=1,--- N. (3-14)

The solution 0% is trivially unique and indicates which f-sequences were witnessed in the
collected samples. Thus, the above scenario problem can be interpreted as the collection of
labels from a discrete probability distribution of unknown support size. Scenario theory can
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be leveraged to provide bounds on the probability of collecting a new and unseen label from
the unknown distribution. Thus, the data-driven SA/-CA can be equipped with guarantees
as follows:

Proposition 2 ([7]). Consider a confidence  and N trajectories of length H collected from
the concrete system, and the corresponding data-driven SAL-CA denoted by Sév based on the
observed £-sequences. For a new initial condition sampled from D with distribution P, it holds
that

PV [P(BH(S(20)) € Br(S])] 2 1 = e(siy, N, )| 215, (3-15)

where B (S(xg)) denotes the H-long behavior exhibited by the (not necessarily transition)
system S starting from xg, BH(SéV) the set of all H-long behaviors ofSéV, and sy the number
of L-sequences witnessed during the data collection and construction of the data-driven SAL-
CA, also referred to as the complexity of the decision.

Subsequently, further discussion on the computation of €(s}, IV, ) is provided based on the
following result:

Proposition 3 ([32]). Consider the decision map M, : A™ — Z, m = 0,1,---, mapping
from the set of observed scenarios to the set of decisions, satisfying the consistency assumption
in [32]. Given a confidence parameter 3 € (0,1), for any k =0,1,--- , N—1, where N denotes
the number of observed scenarios, consider the polynomial equation in the v variable

N-1
(g) (1—v)NFk % 3 (Z‘) (1—v)™* =0, (3-16)

m=k

and let e(k) be the unique solution over the interval (0,1). Also, define e(N) = 1. For any
probability measure P, it holds that

PY[V(2x) > e(sy)] < B, (3-17)

where z3 = Mn(01,---,0n) denotes the decision made based on the observed scenarios,
V(2% ) denotes the probability of violation of the decision zy, i.e., that the decision z} is
unsuitable, and s}, denotes the complexity of the decision.

The above result, which is for a general case of employing the scenario approach, can be
interpreted in the context of constructing a data-driven abstraction of a closed-loop system
based on output observations, providing bounds on the probability of behavioral inclusion
between the concrete system and the corresponding abstraction.

3-2-1 Parameter Uncertainty

Furthermore, data-driven abstractions can be leveraged to verify systems that have an uncer-
tain set of parameters, which can thus provide a robustness guarantee on system performance.
Consider a vector of uncertain parameters p € A,, which denotes the parametric uncertainty
set. Thus, the uncertain system can be expressed as

Try1 = fp(xn),
Yp(®) == yp = h(x), (3-18)
xo = ,p € Ap,
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where fy,(z)) denotes a function parametrized by p. Since the parameter vector is static, the
uncertain system Y, (x) can, by augmenting the state vector z with p, be reformulated as

[ﬂﬁkﬂ] _ lf(xbpk)]
Pk+1 ygs
Y(x,p) =

( ) Yk = h(l’k),

o =x,po = D,

(3-19)

with # € D and p € Ay, and f(xg,pr) = fp, (xk), resulting in the same general formulation
of a time-invariant autonomous system given in Equation 3-10. Similar to above, the initial
states are sampled from a domain D x A,, which renders the new uncertain system valid
for all the analysis of data-driven abstractions provided above. Thus, it is possible to use
the data-driven abstraction framework to verify specifications on systems with parameter
uncertainties, which allows for a robustness analysis of a designed controller as well.

3-3 Counterexample-Guided Inductive Synthesis (CEGIS)

Verification methods applied to abstractions of concrete systems can be used to provide
formal guarantees of the satisfaction of certain specifications, as discussed in the previous
section. However, the verification process itself cannot be employed to synthesize a solution
to satisfy the specification. From a control perspective, that is to say, formal verification
applied to an abstraction, whether data-driven or not, of a closed-loop, and thus autonomous,
concrete system, can only be used to check whether the closed-loop system meets the desired
specification, and not to generate the controller.

Despite the inability of a verification protocol to be directly used in synthesizing controllers
for the system, information from verification can be leveraged to improve the controller de-
sign. Namely, if the verification protocol shows an example initial condition from which the
specification is not met, i.e., the verification generates a counterexample, this counterexample
can be employed in the design of the controller. Such a method, employing counterexamples
to improve an initial design choice, is denoted by Counterexample-Guided Inductive Synthesis
(CEGIS).

CEGIS can be considered in applications beyond controller design, such as program synthesis.
In [33], the learning loop illustrated in Figure 3-3 is applied to produce a function that
generates a desired logic specification, as illustrated by the example of the max(-,-) function.
The learning loop consists of providing an initial function, such as the identity map, which is
checked by the Verification Oracle. The Verification Oracle produces a counterexample, i.e.,
a case where the proposed function fails, and the learning algorithm modifies the function
to eliminate the counterexample. The modified function is then checked by the Verification
Oracle for more counterexamples, resulting in a learning loop. If no more counterexamples
are found by the Verification Oracle, the learning is deemed successful and the developed
function thus meets the desired specifications.

Another example of CEGIS is that in [34], where, for a given closed-loop system with known
dynamics, it is desired to synthesize a valid Control Lyapunov Function (CLF) to verify the
stability of the closed-loop system. The learning framework is similar to that illustrated in
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Figure 3-3: Learning Loop for Counterexample-Guided Synthesis [33]

Figure 3-3, as a CLF is constructed from the linear combination of basis functions, and a
candidate CLF is constructed by choosing the weights of each basis function such that the
CLF conditions are met for a certain finite set of points in the state space. For this constructed
CLF, a verifier then checks whether the CLF conditions hold for all points in the state space.
If that is not the case, the verifier generates a counterexample, which is added to the finite
set of points that are used to construct the candidate CLF. Thus, CEGIS can be employed
in the analysis of the stability of closed-loop systems.

The flexibility in employing CEGIS, however, is because it is ignorant of the learning algorithm
used to improve the synthesis based on counterexamples. Thus, it remains a challenge in most
learning applications that employ a Counterexample-Guided Synthesis framework to design
an adequate and effective learning algorithm to converge to the desired specification, if it can
be verified at all. As a result, the use of Counterexample-Guided Synthesis is case-specific
and not a generally applicable method.
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Chapter 4

Proposed Framework

Based on the research questions discussed in the Introduction, the goal of this thesis is to
eventually construct a charging protocol for a single-cell Lithium-Ion Battery System that
satisfies the given control specifications, namely the Reach-While-Avoid specification that en-
forces a bound on the side reaction overpotential, thus a bound on the rate of aging, as well
as a safety bound on the cell voltage and temperature. An adjacent goal is to construct a
verification framework that is capable of providing probabilistic guarantees on the satisfac-
tion of the given specification. This can be done using the data-driven abstraction concept
introduced in the previous chapter.

In this chapter, the proposed framework for the construction of this controller and verifi-
cation tool is discussed. Throughout, the implementation of a data-driven approach based
on Reinforcement Learning and data-driven abstractions is determined to be preferred over
model-based methods. Furthermore, the use of Counterexample-Guided Inductive Synthesis
(CEGIS) for the further improvement of the controller design is motivated and described,
thus proposing a general data-driven framework for controller synthesis and verification.

4-1 Data-Driven Approach

The data-driven approach proposed in this work consists of informing the controller design
with observation data from a large number of battery simulations. That is, with the use of
simulation results from the DFN Model, a controller for a real Li-Ion cell is to be constructed.
This is motivated by the use of Reinforcement Learning to design a charging protocol in
Output Feedback in [21]. In this work, however, some modifications are made to the learning
scheme to make it more suitable for the work of this thesis. These modifications include:

e Incorporating aging dynamics to the model, i.e., adding the side reaction flux js to the
dynamics to better encapsulate aging dynamics in the learning.

e Defining a region of parameter uncertainty, where every episode initializes a battery
with parameters randomly sampled from the region, for improved robustness.
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e Modifying the reward function to depend on the side reaction overpotential 79, i.e.,
penalizing aging behavior, despite the learning agent not directly measuring the variable
as it operates in Output Feedback.

The learning framework developed in [21] is thus modified and adopted as the essential tool
for control synthesis. This data-driven scheme is advantageous as it circumvents complex
dynamics and parameter uncertainty, which pose considerable challenges for model-based
techniques such as Model Predictive Control. Furthermore, the lack of observability of the
internal states for the controller can be detrimental to the adoption of a model-based approach,
whereas RL can still converge to an adequate controller.

4-2 \Verification and CEGIS Framework

In addition to the data-driven approach to constructing a controller, the method by which
the developed charging scheme is verified to satisfy the given specifications is based on data-
driven abstractions. That is, once a charging protocol is produced from the Reinforcement
Learning algorithm, it is used to construct the closed-loop system from which random initial
conditions are sampled, resulting in numerous traces of Voltage, Temperature, 72, and
SOC. Those traces are also collected from systems with randomly generated parameters,
which allows for the robustness analysis of the charging protocol. The continuous-space traces
are processed into discrete, or symbolic, traces by partitioning the 4-dimensional output space,
and furthermore into the SA/-CA introduced in the previous chapter. Using the scenario
approach, the performance of the controller can be verified under the described probability
bounds. The value of those probability bounds depends on the choice of the partitions, the
number of collected traces, as well as the choice of the parameter /.

Verification is performed using the backwards reachability algorithm, which is described
by Algorithm 1. The algorithm consists of finding the set of states Pre(s) in a finite-state
transition system that can reach a given state s. This serves to describe the possible behaviors
that the abstraction can exhibit, and thus the concrete system, up to a certain probabilistic
guarantee. The backwards reachability algorithm is capable of verifying that the Goal set is
reached by all initial conditions by exhibiting the following two conditions:

e The only self-loops in the abstraction are the ones that associate with the Goal set, i.e.,
SOC > 0.8, implying that there are no other self-loops in the abstraction. This can be
checked by choosing a large enough ¢ and a considerably diverse partition of the output
space.

o The union of pre-sets Pre(s) for all states s that associate with the Goal set is equal to
the set of all states in the abstraction. This verifies that there is a path from any state
to one in the Goal set.

As previously discussed, verification by nature constitutes the last step of controller design
and is not directly capable of modifying the controller. However, in this work, an approach
to verification-based control synthesis is proposed by means of a Counterexample-Guided
Inductive Synthesis (CEGIS) framework. The framework consists of first developing an initial
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Algorithm 1 Backwards Reachability Algorithm for SA¢-CA
Input: State s = (s1, ..., S¢), set of states S
Output: Set Pre(s)
Pre(s) < {s' = (s}, ..., s)) € S|(s4,...8)) = (81, ..., 80-1)}
done « {s}
stop < False
while stop = False do
for s’ € Pre(s) — done do
Pre(s) < Pre(s) U{s* = (s}, ...,s}) € S|(s3,...5}) = (s}, ..., sp_1)}
done < done U {s'}
end for
if Pre(s)U{s} = done then
stop < True
end if
end while

output feedback controller through Reinforcement Learning, followed by constructing a data-
driven abstraction that behaviorally includes the resulting closed-loop system up to a certain
probability bound. If the data-driven abstraction satisfies the desired specification, then the
controller is verified up to the obtained probability bound. However, if the safety specification
is not met, the collected continuous-space trajectories can be used to produce the set of initial
conditions for which the safety specification is violated. These initial conditions, viewed as
counterexamples, are extracted and used to train a new controller that is specialized for that
specific region of initial conditions. This new controller is employed to construct a switched
controller, where the new controller is applied for the counterexample initial conditions, and
the initial controller remains in operation for the rest of the initial conditions. This process is
repeated until either the specification is satisfied or convergence is reached. The CEGIS-based
synthesis scheme described above is illustrated in Figure 4-1.

The use of CEGIS in the case of designing an aging-aware charging protocol for a Li-Ton
Battery cell is motivated by the fact that the chosen controller is in output feedback, which
renders it unaware of internal battery states, and unable to differentiate between initialization
and later stages of charging. This is shown to lead to several violations of the voltage and
temperature upper bounds in the subsequent chapter. Thus, designing a series of charging
protocols each suitable for a region of initial conditions would serve to improve the safety and
performance of the controller.
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4-2 Verification and CEGIS Framework
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Chapter 5

Results

This chapter presents and discusses the results from the proposed control synthesis framework
applied to the aging-aware charging of a Li-lon Battery cell. Initially, the chosen battery
model from industrial applications and its properties are introduced. This is followed by the
introduction of the baseline Constant-Current-Constant-Voltage (CC-CV) charging protocol
to which the final charging protocol is to be compared. Subsequently, the procedure for the
collection of traces, partition of the output space, and the construction of the abstraction is
documented. This is then followed by the control synthesis process, and finally the evaluation
and verification of the conclusive charging protocol, representing the primary result of this
work.

5-1 Battery Model and Baseline Protocol

The selected battery model is based on the Panasonic NCR18650GA Lithium-Ion Battery
[35], which is a commonly used Lithium-Cobalt cell in industrial applications. An illustration
of such a battery is given in Figure 5-1. The selected battery consists of a capacity of roughly
3400mAh and a charging voltage of 4.2V. Thus, the model parameters are modified to result
in the above capacity, while the control goals are meant to maintain the cell voltage at 4.2V
Furthermore, all battery parameters and their uncertainty ranges, if applicable, are presented
in Appendix B.

In most industrial applications, the applied charging protocol is commonly the rule-based
Constant-Current-Constant-Voltage (CC-CV) protocol. This charging protocol is based on
issuing a constant maximum charging I,,,4, current at the first stage, denoted by the CC stage,
until the cell voltage reaches a maximum voltage V4. In this stage, denoted by the CV stage,
the cell voltage is held constant at V4., while the current decreases in an exponential manner
until either the battery is fully charged or a minimum charging current is reached. In reality,
the CV phase of the protocol is not trivial to maintain, as the current profile that maintains
a constant voltage is not directly known and may vary among different batteries. Some cases
ensure that the voltage remains at the maximum value by embedding voltage regulators into
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Figure 5-1: Schematic of the Panasonic NCR18650GA Lithium-lon Battery Cell[35]

the circuitry of the Battery Management System, which is prone to high temperature and
energy loss. Another possibility is to approximate the CC-CV profile by employing a switched
controller approach. In such a switched controller, the CC phase provides a constant current
input, while the CV phase is administered by a Proportional-Integral (PI)-controller. This
switched controller approach is taken, and a modified PI-controller is tuned to regulate the
voltage.

An example of the switched controller in simulation is shown in Figure 5-2, where the typical
behavior of the SOC' and 7 can be noted. It is further pointed that the temperature con-
straint comes close to violation, as the standard CC-CV scheme does not account for thermal
behavior, which is subsequently shown to be detrimental to the CC-CV protocol’s satisfac-
tion of the desired control specifications. Naturally, this charging protocol is also prone to
exceeding the 4.2V limit due to overshoot in the PI-controller’s performance. This is further
discussed in subsequent sections, and compared to the final charging protocol.

Throughout this chapter, the maximum current is chosen to be 2.5C', where 1C' is equivalent
to the current needed to fully charge the battery in one hour. In this case, 1C' is equivalent
to 3.4A, and so the maximum current of 2.5C' equates to 8.5A. The switched controller
corresponding to the CC-CV protocol is described in Appendix B.

5-2 Abstraction Construction

This section aims to describe the approach to and process of abstraction construction, pro-
viding an example construction of this abstraction to the closed-loop system resulting from
the designed CC-CV protocol baseline.

The first two steps of constructing the abstraction consist of generating the traces of the
resulting closed-loop system. First, the initial conditions of Voltage and Temperature are
sampled from a uniform distribution over a two-dimensional region such that (Vp,Tp) €
[2.7,4.1] x [290,305], and the uncertain parameters are sampled from uniform distributions
based on the regions specified in Appendix B. Second, for the sampled variables, the closed-
loop system is simulated and the traces (SOC, n2, V, T') are collected. This process is repeated
N times, where N is expected to be large enough to result in a significant e-bound.
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Figure 5-2: Simulation of CC-CV Charging Protocol

The next steps consist of processing the abstraction from the data. Third, a direct partition is
applied on the collected traces, resulting in symbolic expressions for the states. The partition
is defined as follows:

o The [0, 1] interval describing the SOC is finely partitioned into 19 sections. This is done
to avoid self-loops in the abstraction and is pivotal to verifying the reachability of the
Goal set, which consists of the region [0.8,1]. The partitions are each symbolized by a
letter of the alphabet, i.e., a,b,c, ..., s.

e The rest of the variables are partitioned based on their atomic proposition, i.e., the
symbol a for safety, such as V' < 4.2, T' < 308K, and 1o > m. The violation of those
constraints results in a symbol b.
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Thus, each discrete state is a collection of 4 symbols. For example, the state where the SOC'is
in the range [0.8, 1], and all other variables satisfy the safety conditions, the resulting symbol
is given by saaa, whereas a violation of the safety constraint for 7, corresponds to sbaa.

Fourth, the discrete expressions of the traces are compiled into f-sequences, i.e., sequences
of length ¢, which is a parameter chosen large enough to avoid self-loops except in states
associated with SOC' € [0.8,1] but small enough to maintain a small number of observed
states and thus a more significant e-bound. At that point, the SA¢-CA is constructed and
domino completion is performed to avoid the construction of a blocking automaton.

Fifth, the e-bound for the probabilistic behavioral inclusion of the concrete system in the
constructed SA/-CA is computed based on Propositions 2 and 3. Throughout this work, the
certainty factor 3 is chosen to be 1076.

Sixth, the abstraction is used to perform verification. Backwards reachability and the lack of
self-loops along the path are used to confirm that all initial conditions lead to the Goal set.
Furthermore, the abstraction verifies that the unsafe set is not reached.

This method is initially applied in this section to verify the performance of the closed-loop
system resulting from the CC-CV protocol, and subsequently for the other developed charging
protocols. In this application, N = 21705 traces of length H = 120 are collected, correspond-
ing to one hour of simulation. The minimum resulting side-reaction overpotential throughout
all traces is found to be 12, = —0.2452V, which is chosen as the parameter m for the
lower bound on 72 when discretizing the traces. The collected traces are shown in the plots
of Figure 5-3, where it can already be observed that the performance of the designed CC-CV
protocol often violates safety constraints related to voltage and temperature, denoted by the
red colored regions, whereas the goal set is colored in green.

The corresponding abstraction is constructed verify the e-bound and the reachability of the
goal set. The construction is based on the procedure described above. For illustration, the
data-driven SA¢-CA is shown for ¢ = 2 in Figure 5-4. In this simple case, several undesired
self-loops and spurious behaviors, i.e., behaviors exhibited by the abstraction but not by the
collected traces, are exhibited. Despite that, some of the desired behavior is still observed,
such as transitioning from the first SOC region to the next. As the ¢ parameter is increased,
spurious behaviors are reduced at the cost of a more complex abstraction and an exponentially
larger number of states.

After tuning for the smallest possible £ to avoid self-loops, a value £ = 12 is reached, corre-
sponding to 23146 abstraction states, and an e-bound of 0.1563, i.e.,

pV [P[BH(S(xO)) € By(SN)] >1-0.1563] >1—1075. (5-1)

For this abstraction, backwards reachability shows that the goal set is reachable from all
initial conditions, and as the large enough ¢ prevents self-loops or clusters in the abstraction,
the reachability of the goal set is proved with the above probability expression. Though
this e-bound is not highly significant, it is still known that the CC-CV protocol is prone to
several safety violations. Thus, the performance of the baseline protocol can be significantly
improved with the proposed framework.
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Figure 5-3: Collected Traces for the CC-CV Protocol
5-3 Learning Results and Counterexamples

The RL scheme based on the DDPG algorithm is implemented to construct the numerous
charging protocols involved in this work. The reward function is chosen such that it penalizes
slow charging, low side reaction overpotential, and voltage and temperature above the allowed
limit. Though the controller operates in Output Feedback, i.e., only measuring the SOC,
Voltage, and Temperature, it is trained to develop an aging-aware strategy based on the
reward function. The reward scheme is given explicitly by

Tt+1 = Tfast + Tsafety(sta at)a (5_2)

where 77,5 = —0.1 represents an instantaneous penalty for each time step until the training
episode is stopped when the SOC' reaches a value of 0.9, s; and a; denote the current state
and action of the agent, respectively. The second term, rg,fety is given by

rsafety(st; at) =Ty (Sta at) + Tyolt (3t7 at) + 7ntemp(sb at); (5'3)
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Figure 5-4: Schematic of the Data-Driven SA¢-CA for the CC-CV Protocol (¢ = 2)

where
A On,t), on,t) <0,
7"7]2 (St, at) — 772772( ) 772( ) (5_4)

0, else,
Moot (4.2 =V (1)), V(t) > 4.2V,

Tvolt(staat) = lt( ( )) ( ) (5—5)
0 else,
Atemp (308 —T'(t)), T(t) > 308K,

Fremp(sesar) = | e (308 =T (0). () (5-6)
0 else,

with weighting parameters chosen as A,, = 1, Ayoir = 100, and A¢epmp = 5, thus penalizing
undesired behavior for the above three variables. The reward corresponding to the side
reaction overpotential is taken at the end of the negative electrode, as that is typically where
the side reaction overpotential is at its lowest, and thus maximizing 12(d,,t) is effectively
maximizing the whole ny(t, ) profile.

5-3-1 First RL Run

The learning algorithm, along with all subsequent ones, is run using the DelftBlue super-
computer [36], with a randomly generated initial policy for 3000 episodes of training. The
progression of the learning algorithm is shown in the plots of Figure 5-5, where the cumulative
reward, charging time to 90%, and degrees of voltage and temperature constraint violations
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are described over the episodes. It is observed that the learning results are highly varying at
first as the agent attempts to learn the optimal policy, and eventually converge to a policy
with somewhat adequate behavior. The resulting output-based policy is illustrated in Figure
5-6, and is observed to not be significantly variable over temperature, which is subsequently
shown to be detrimental for some initial conditions.
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Figure 5-5: Learning Results from First RL Run

To avoid a jittery current signal generated from the RL agent, the input signal is passed
through a first-order low-pass filter. Though this filter was not present in the training runs,
it is shown not to significantly affect the performance of the charging protocol. Furthermore,
the data-driven abstraction is constructed with the presence of the filter. A simulation of
the charging protocol resulting from the first RL run is shown in Figure 5-7. It is observed
in this example that the safety constraints for voltage and temperature are met, though the
temperature specification is almost violated in the early stages of charging.

Similarly to the CC-CV baseline, the closed-loop system resulting from the charging protocol
is used to construct a data-driven abstraction. In this case, N = 10958 traces are collected
for a parameter £ = 11, resulting in no self-loops and reachability of the goal set from all
initial conditions. The collected traces are shown in Figure 5-8, where it can be observed
that the resulting charging protocol still results in violations of the temperature specification,
characterized by a high peak in temperature at the start of charging for low SOC, and the
voltage specification during some late stages of charging. This is a considerable improvement
from the CC-CV baseline, as the violations are less sever, along with the result that the
minimum exhibited side reaction overpotential is found to be 72 min = —0.2326V, a higher
value compared to the baseline. Choosing the lower bound parameter m = —0.2327V, the
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Figure 5-6: Output-Based Policy from First RL Run

abstraction results in an e-bound of 0.0449, i.e.,
pV [P[BH(S(xO)) € By(SN)] >1-0.0449| > 1—1076. (5-7)

Though the resulting protocol does not yet satisfy the desired temperature and voltage speci-
fications, the constructed abstraction can still provide valuable information about the control
performance. For example, up to the calculated probability bound, it is certain that no tem-
perature violations occur after the initial peak, i.e., after an SOC of 0.1. Furthermore, the
side reaction overpotential is bounded by the parameter m up to the probability bound.

The performance of the charging protocol is further analyzed by inspecting the initial condi-
tions from which temperature and voltage violations are observed, i.e., the counterexample
initial conditions to be used to construct a new controller as described in the proposed CEGIS
scheme. As shown in Figure 5-9, the initial conditions corresponding to temperature safety
violations are partial to the low voltage region of Vj € [2.7,3.2], where higher initial temper-
atures render the charging more prone to violations. Meanwhile, voltage safety violations,
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Figure 5-7: Simulation of Charging Protocol from First RL Run

though spread throughout the space of initial conditions, are mainly prevalent in the higher
voltage region Vy € [3.8,4.1], as all other violations are less than 0.0025V above the 4.2V

upper bound, whereas the high-voltage region corresponds to a voltage violation of up to
4.224V .

5-3-2 Low-Voltage Charger

The charging protocol obtained from the first RL run is employed as the initial policy to
train the low-voltage charger for initial conditions Vp € [2.7,3.2]. In this training run, initial
conditions are sampled only from the low-voltage region, and to further enforce the tem-
perature constraint, the penalty on temperature is doubled, i.e., Aiemp = 10. After 2000
episodes of training, this results in the output-based policy illustrated by the heat maps in
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Figure 5-10. The essential difference with the obtained low-voltage charging protocol is that
it exhibits more sensitivity to temperature compared to the first charging protocol, especially
in the early stages of charging represented by the bottom-left corner of the heat maps. By
anticipating high temperature spikes, the charger provides a smaller current for the first few
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Figure 5-10: Output-Based Policy of the Low-Voltage Charger

minutes, as shown in Figure 5-11. Additionally, the smaller current in the early stages of
charging results in a substantially higher 79 in the early stages as well, which is found to be
critical to improving the aging-aware behavior of the charger, as is discussed at the end of
this chapter.

5-3-3 High-Voltage Charger

Similarly, a high-voltage charger is trained from the first charging protocol, for the initial
conditions region Vj € [3.8,4.1]. In this case, the reward function is maintained as in the first
RL run. After 2000 episodes of training, the resulting policy is the one represented by the
heatmaps shown in Figure 5-12. The difference in terms of high-voltage charging is noticeable
from the simulation shown in Figure 5-13, as the voltage profile becomes highly sensitive to
current spikes, almost immediately approaching the upper limit. As a result, the current
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Figure 5-11: Simulation of the Low-Voltage Charging Protocol

profile, though exhibiting a shape similar to that in the previous controllers, has a decay rate
different to that in the other simulation runs.

5-4 Final Charging Protocol

The above charging protocols are collected to produce the final switched charging protocol,
where the Low-Voltage Charger is used for initial conditions V) € [2.7,3.2], the charger from
the first RL run is used for initial conditions Vj € (3.2, 3.8], and the High-Voltage Charger is
used for initial conditions Vj € (3.8,4.1], independently of initial temperature. As performed
for the previously discussed charging protocols, the data-driven abstraction is constructed
from the N = 16461 collected traces shown in Figure 5-14. With a choice of parameter
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Figure 5-12: Output-Based Policy of the High-Voltage Charger

¢ = 12, the undesired self-loops in the abstraction are eliminated, and it is confirmed that
all initial conditions reach the charging goal. As shown in Table 5-1, the final charging
protocol still exhibits some edge cases that violate the desired specification, but compared to
the previous two protocols, the prevalence of such violations is largely decreased. It is also
possible to slightly modify the upper bounds for voltage and temperature to be slightly higher
than the obtained V4, and T}, and to set the lower bound m = —0.2431V to construct
an abstraction that behaviorally includes the system based on an e-bound of 0.05469, i.e.,

PN [P[Bu (S(x0)) € Bu(S))] > 1 - 0.05469] > 1-107°, (5-8)

and thus that the resulting charging protocol does not exceed the collected edge cases up to
the above probabilistic guarantee.

Furthermore, though the final charging protocol exhibits a slightly lower 72 yin, its exhibiting
of much higher values of 75 in the early phase of charging allows for a larger improvement in
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Figure 5-13: Simulation of the High-Voltage Charging Protocol

reducing aging effects. This is shown in Table 5-2, where over 100 simulations, the different
charging protocols are employed and the average charging time and lost charge due to aging
Q) are presented. Assuming that aging dynamics exhibit the same behavior between 0% and
10%-capacity loss, the number of cycles until such capacity is lost is estimated by 0.1(3.4)/@Q;

Ah, where 3.4 Ah represents the capacity of the selected NCR18650GA cell, and ); denotes
the average lost capacity.

It is observed in both tables that the first charging protocol developed by RL exhibits sub-
stantial improvements in performance, safety, and aging-awareness compared to the CC-CV
baseline. Additionally, the use of the CEGIS-based control synthesis scheme further improves
the safety margin, and extends the life of the cell by an estimated 100 cycles until a 10%-loss.
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Figure 5-14: Collected Traces for Final Charging Protocol

Protocol N2,min(V]  Vimaz(V]  Tmae[K] % Violations
CcC-CV -0.2453 4.2973  312.8617 93.14%
RL -0.2327 4.2241  311.6118 6.88%
RL + CEGIS  -0.2430 4.2176 309.375 0.984%

Table 5-1: Edge Cases from Collected Traces

Estimated Cycles to

Protocol Time to 90% [min] Average Q;[Ah] 10% Capacity Loss
CC-CV 39.61 5.27e-4 644
RL 35 3.67e-4 926
RL + CEGIS 31.7 3.31e-4 1025

Table 5-2: Charging Results over 100 Runs
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Chapter 6

Conclusions and Future Work

This thesis has explored the three research questions introduced in Chapter 1, delving into ap-
proaches that have combined Reinforcement Learning, Formal Verification, and Data-Driven
methods for Systems and Control. This process has ultimately served to synthesize a verifi-
able and data-driven output-based charging protocol aiming to minimize the aging reaction
rates within a Li-Ion cell, while maintaining crucial safety specifications concerning voltage
and temperature.

Furthermore, a general approach for verification-based controller synthesis has been proposed
through the usage of a CEGIS-based scheme and Reinforcement Learning as a primary tool
for policy generation. Such a scheme need not necessarily be applied to the charging of a
Li-Ion cell, and can thus be further employed for several further applications.

In the grander scheme of this thesis project, the essential goal has been to tackle the several
problems faced in Li-Ion Battery technology, and while this thesis has extensively covered the
electrochemical behavior of a single Li-Ion cell, as well as the role of a Battery Management
System in administering its charging protocol, several frontiers are attainable for future re-
search and development. This chapter discusses the possible extensions to the work in this
thesis.

In retrospect, improvements to the RL scheme could have included penalizing jittery behavior
in the input signal, improving the smoothness of the charging policy and thus not requiring
the need for low-pass filters in the closed-loop system, which may have compromised the
performance. Furthermore, as the CEGIS scheme did not result in a controller that perfectly
avoids violating the safety specifications, but considerably reduced the prevalence of such
violations, the existence of an ideal controller is still uncertain. That is, a shortcoming of
the CEGIS scheme is that it is not guaranteed to converge to a control policy that satisfies
the desired specification, as the existence of such a policy is not trivial to prove. Future
approaches to CEGIS-based synthesis can be more involved in proving the existence of an
adequate controller, or at least the convergence of the CEGIS-based approach.

Further extensions to this work in the bigger context of charging protocol design those listed
below.
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Figure 6-1: Circuit Representation of an Active Balancing System [39]

Data-Driven Abstractions for Control Systems

The work in this thesis has covered the use of data-driven abstractions for autonomous dy-
namical systems, i.e., systems that do not admit inputs. Thus, abstractions of the system
were only constructed based on the closed-loop system resulting from an already present con-
troller. The work in [37] extends the notion of a data-driven abstraction to control systems,
i.e., systems that admit inputs. Though the inputs are assumed to be quantized from a dis-
crete set, this method can be employed to construct a data-driven abstraction encapsulating
the concrete system behavior up to a certain probabilistic guarantee. As a result, the synthe-
sis of the controller can be expected to become vastly quicker and simpler, as the constructed
abstraction can be used as a direct tool for controller synthesis.

Multi-Cell Active Balancing and Charging

The discussion on the control of Li-Ion Battery Systems throughout this thesis has been
restricted to single-cell systems, whereas most industrial applications consist of battery packs,
where several cells are connected in series and/or parallel, resulting in a higher combined
voltage.

While the charging protocols for single cells may resemble those for battery packs, the issue
of imbalance between cells is a prevalent one. It is usually assumed in multi-cell charging
protocols that all the cells have the same properties, and that they charge and discharge at
equal rates, which renders all their states equal at all times. However, due to imperfections
and inaccuracies in manufacturing, the cells may develop an imbalance over time, as some
may charge/discharge and age at different rates than others, resulting in significant risks to
the adequate operation and safety of the battery pack. For example, in a battery pack where
all cells are connected in series, one cell may have a lower SOC than the rest, which may
limit the performance of the entire pack as the cell with the low SOC limits the discharge of
the entire pack, thus reducing the effective capacity of the pack. Alternatively, one cell may
have a higher SOC than the rest, which may result in overcharging the cell, an issue that may
lead to overheating [38].

To avoid issues related to cell imbalance, it is of interest to develop charging methods on the
scale of the battery pack to bring all cells in the pack to the same state. An example of an
Active Balancing System is shown in Figure 6-1, where the cells are connected in series. The
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Figure 6-2: Circuit Representation of a Reconfigurable Battery System [40]

work done in [39] consists of employing the Single-Particle Model, a simplification of the DFN
Model in a multi-cell structure, to produce an aging-aware optimal control scheme for active
balancing. In this work, the aim is to minimize the charging time and aging behavior, based
on the previously discussed trade-off between the two, while maintaining the constraint that
all cells share the same target SOC at the final time, i.e., at the end of the charging process.
Further extensions to this work may include aging-aware protocol design, the use of more
advanced models such as the DFN model, or the use of tools such as data-driven abstractions
to provide probabilistic bounds on the performance of the balancing circuit.

Reconfigurable Battery Systems

Also in the context of multi-cell battery systems, such systems are usually assumed to have
fixed topologies, i.e., the interconnection between cells is fixed. Whereas most battery packs
developed in the industry consist of fixed topology, battery packs with modifiable topology
using controllable switches between the cells have caught recent interest due to their adapt-
ability. Such battery packs are denoted by Reconfigurable Battery Systems (RBS), such as
the one shown in Figure 6-2. In the shown example, several different circuit topologies can
be realized, including employing only one cell in charging/discharging, placing all three cells
in series or parallel, or discarding a certain cell.

A functional benefit of an RBS is its improved fault tolerance, implying that weak or dam-
aged can be discarded while maintaining the operation of the battery pack, which is not
typically possible in fixed-topology packs, as an entire series connection would be prone to
losing functionality in case of one damaged cell. Other benefits include added flexibility in
extending energy delivery, performing active balancing, managing battery cells with different
chemical properties, and terminal voltage customization [41]. Several practical approaches to
the modeling, control, and optimization of RBSs are widely discussed in [41] and [42]. In [40],
an example of Reconfigurable-Assisted Charging (RAC) is implemented, where a graph-based
algorithm is employed to perform active balancing and charging on all the cells in the system,
which are modeled by ECMs. The charging scheme is found, in simulation, to yield a higher
delivered capacity than it would have for a fixed-topology battery pack.

The behavior of an RBS can be represented using knowledge from Hybrid Systems, given
that such a system may exhibit both continuous and discrete states. Thus, several tools from
this field can be employed for improved modeling, simulation, control, and verification in the
future.
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Appendix A

Review of Reinforcement Learning

This chapter is concerned with formalizing the RL scheme, as well as the actor-critic and
DDPG framework. The discussion hereafter is mostly adapted from [21]. In RL, the goal is
to find the best policy that can maximize rewards from an environment £, which describes the
plant such as a single Li-Ion cell. For a given time step t € RT, the environment is described
by a state s; € S, where S denotes the state space, whereas the control policy produces an
action a; € A based on the state s;, where A denotes the action space. The resulting following
state s;+1 € S is produced by the environment based on a transition probability p(si+1]|s¢, at),
and a scalar reward .41 = 7(s¢, a¢) based on the reward function r(-, -) is deduced. The policy
is denoted by the mapping 7 : S — A, and the total discounted reward from time ¢ onward
is denoted by

Ry = Z’Ykr(st-i-kaat—%-k)? (A-1)
k=0

where v € [0, 1] represents the discounting factor. Subsequently, the state value function
under a given policy 7, denoted by V7 (s;), represents the expected total discounted reward
starting from state s; under the policy m, i.e.,

Vﬁ(St) == E[Rt|5t]. (A—2)

The optimal policy 7#* then corresponds to the one that maximizes the state value function,
i.e.,

" (s¢t) = arg max V7™ (st). (A-3)

Model-free RL, i.e., a Reinforcement Learning application that does not require knowledge
of the model of the system, requires the construction of a predictor for the behavior of the
system and the reward function, referred to as a state-action value function, or a Q-function
denoted by Q™ (s, at¢), which evaluates the expected total discounted reward from a given
state sy after applying a certain action a;. This can be expressed in mathematical terms as

Qﬂ(St, (It) = E[Rtlst, at], (A—4)
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where the optimal Q-function can be defined as
Q" (st,at) = arg max Q" (st, ar). (A-5)

Equivalently, the optimal state-value function can be defined by maximizing Q*(s¢, as) over
all possible actions a; € A, i.e.,

V7(se) = max Q(sy, ar) (A-6)

Effectively, knowledge of the optimal Q-function is equivalent to knowledge of the environment
dynamics, as the optimal policy can be retrieved from

T (s¢) = ay = argmax Q™ (s¢, at). (A-7)
at€A

Actor-Critic Framework and DDPG Algorithm

In typical RL applications, the state and action spaces are finite, which results in difficulties
when partitioning a continuous state and action space and the curse of dimensionality due
to large partitions. For this reason, it is of interest to explore RL frameworks that allow
for continuous state and action spaces. The Actor-Critic framework allows this, as it is a
policy gradient approach that employs function approximators, i.e., neural networks. In this
approach, the actor represents the policy, which is improved based on the value function esti-
mated by the critic. Specifically, the Deep Deterministic Policy Gradient (DDPG) algorithm
is used in [21] to train the actor and critic.

Essentially, the algorithm consists of parametrizing the neural networks representing the critic,
ie., Q(sy,a:|09), and the actor, i.e. w(s;, 0). Additionally, target networks Q' (s, a;|#?") and
ﬂ(st\ml) are defined in order to implement a soft update on the parameters to reduce the
chattering during learning and enhance convergence.

The critic aims to evaluate the current policy, which is given by the sum of the output of the
actor network and some exploration noise MV, i.e.,

ar = 7(s|07) + N, (A-8)

where the exploration noise is a random variable. The learning process is based on saving
single instances into a replay buffer memory. For each time step ¢, the tuple (s, a¢, 7141, St+1)
is committed to the replay buffer. After the number of stored tuples reaches a threshold value
N, at each time step, a randomly selected batch of NV tuples is sampled to be used in learning.
To update the critic, the term

Yi = rir1 +7Q (5i41, 7 (5i41[67)09),i = 1,--- | N, (A-9)

is defined, where the superscript ’ denotes the target network where the parameters are slowly
updated. The critic is updated to minimize the loss function £(6%) based on the gradient
descent algorithm as follows:

£(09) = 5 (01— Qsi,ai6))? (A-10)
01 = 07 — 1QVea L(6%), (A-11)
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where k denotes the index and 7¢ the learning rate of the gradient descent algorithm.

Furthermore, the actor is updated so as to maximize the total expected reward V™ (s;), which
can also be referred to as J(6™) to highlight the dependence on parametrization. The update
is also based on the gradient descent algorithm, i.e.,

Ors1 =08 + 02 Ver T (07), (A-12)

where 79 denotes the corresponding learning rate. The gradient of the total expected reward
as a function of the actor parameters can be approximated based on the samples from the
replay buffer as follows:

Ve T (07) ~ %Z[VGQ(si,ai|9Q)V9w7r(st|0”)]. (A-13)

i
After the update of actor and critic network parameters, the soft update is performed:

09 «— 709 + (1 — 7)0%, (A-14)
0™ 70" + (1 —7)0" (A-15)

where 7 is an update parameter.

It is noted that, as opposed to approaches that consist of finite state and action spaces, the
actor-critic framework does not provide any convergence guarantees. It is then crucial to the
learning process that the updates are small in order to avoid divergence.

This concludes the discussion on the Reinforcement Learning concepts that are of interest for
this thesis.
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Appendix B

Numerical Implementation of DFN
Model

B-1 Parameters and Expressions

The battery parameters values are based on the original parameters provided in [21], whereas
some uncertainty ranges are defined based on the work done in [10]. The DFN Model is
simulated using on the code provided in [21], which is based on the CasADi library [43]. The
model is simulated with a sampling time of §; = 30 seconds.

Name Symbol Units Range/Value
Geometric Parameters
Anode Thickness on [m] 100e — 6
Cathode Thickness Op [m] 100.5¢ — 6
Total Cell Thickness L [m] 225.9¢ — 6
Radius of Solid Particles (Anode) Rsn [m] 5e — 6
Radius of Solid Particles (Cathode) R, [m] 7.5¢ — 6
Volume Fraction in Solid (Anode) Esm ] 0.7
Volume Fraction in Solid (Cathode) Esp ] 0.67
Volume Fraction in Electrolyte (Anode) €en ] 0.3
Volume Fraction in Electrolyte (Cathode) Eep -] 0.3
Volume Fraction in Electrolyte (Separator) Ee,s ] 0.4
Specific Interfacial Surface Area (Anode) Qsn [m=1] 3esn/Rsn
Specific Interfacial Surface Area (Cathode) s p [m~1] 3esp/Rsp
Transport Parameters
Ref. Solid Diffusion Coeff. (Anode) Ds no [m?.s71] [2.5¢ — 15, 3.5e — 14]
Ref. Solid Diffusion Coeff. (Cathode) Dy po [m?.571] [2.24e — 15, 3.5e — 14]
Conductivity of Solid (Anode) o [Q~tm 1] [90, 110]
Conductivity of Solid (Cathode) op [Q~tm™1] [0.05,0.15]
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Kinetic Parameters

Ref. Reaction Rate (Anode) kno [A.m~2.mol?0+)] [4e — 6, 8e — 5]
Ref. Reaction Rate (Cathode) Epo [A.m~2.mol?(1+e)] [2.5¢ — 7,5e — 5]
Thermodynamic Parameters
Cell Heat Capacity Cell Thermal Resistance Cp [Jkg~ 1K1 1000
Mass of Cell m [kg] 0.05
Ambient Temperature Tomb [K] 298.15
Reference Temperature Tref [K] 208.15
Activation Energy k, Ey, [J~L.mol] 37480
Activation Energy k, Ey, [J~L.mol] 39570
Activation Energy D, Ep,., [J~L.mol] 42770
Activation Energy s E, [J~L.mol] 34700
Concentrations
Max Concentration (Anode) ot [mol.m ™3] 3ed
Max Concentration (Cathode) cp” [mol.m=3] 4.5e4
Total Lithium in Solid Phase NLis [mol] 0.27
Initial Electrolyte Concentration Ce0 [mol.m™3] 1e3
Stoichiometry at 0% (Anode) 009, [—] 0.03
Stoichiometry at 100% (Anode) 0 00% [—] 0.9
Stoichiometry at 0% (Cathode) 03% [—] 0.8
Stoichiometry at 100% (Cathode) 00 [—] 0.2
Aging Parameters
Initial SEI Film Resistance Ryo [Q.m?] [le — 5,1e — 3]
Side Reaction Equilibrium Potential Us V] 0.4
Side Reaction Exchange Current Density i0,2 [A.m™2] 1.178¢ — 7
Molar Volume of SEI Vy [m3.mol~1] le—5
Conductivity of SEI of [Q~tm™1] 2.3e—6
Miscellaneous
Ideal Gas Constant R [Jmol~ 1. K1 8.314472
Faraday Constant F [C.mol 1] 96485.3329
Cell Surface Area A [m?] 0.1283
Charge Transfer Coefficient Qg Qey U [—] 0.5
Transference Number t9 [—] [0.35,0.55]
Bruggeman Porosity Constant D [—] [1.7,1.9]

Table B-1: DFN Model Parameter Values and Ranges

Furthermore, the Reference Potential is given as a function of 6, which usually represents the
State of Charge of the battery, for each of the anode of the cathode, expressed as

6 —0.286

0.083
6—0.5

0.034

9 —0.124
2702 40,0155 tanh
0.0226 )+ an (

) — 0.0045 tanh (%)

) —0.102 tanh (%)
o — 0.105)
0.029 /°

U™ (6) = 0.194 + 1.5 exp(—1200) + 0.0351 tanh (

0 —0.9233

0.05
6 —0.9

0.0164

— 0.035 tanh — 0.0147 tanh
( ) (

— 0.022 tanh ( ) — 0.011 tanh (
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U*(h) = 2.16216 + 0.07645 tanh(30.834 — 54.48060) + 2.1581 tanh(52.294 — 50.2946)
— 0.14169 tanh(11.0923 — 19.85436) + 0.2051 tanh(1.4684 — 5.48886)
0.56478 — 6 0 — 0.525)

0.2531 tanh
+ an ( 0.1316 0.006

) — 0.02167 tanh (

The reference electrolyte diffusion constant and reference ionic conductivity are given as
functions of the electrolyte concentration ¢, and temperature, and thus also vary spatially:

Kref = 9.18e — 7cZ exp(—0.091(0.001ce — 1)* — 0.682(0.001c, — 1))

De(ce, T) = 107D
822.3727
T — 0.0094 — 2.8023c,

407.9648
)

evT =—-64 -
flce, T) = —6.4887 T —0.0094 — 2.8023c,

+ 06(1.0369 -

B-2 CC-CV Charging Implementation

The CC-CV charging controller is implemented as a modified PI-controller, which adds an
exponential decay term for the current input, resulting in the expression

(t) o {_Imaxy t <tey,
C a(Vo)I(t —1) + Kp(V(t) —4.2) + K; Y4, (V(K) —4.2), else,

where t., is the time at which the voltage V reaches a value of 4.16V for the first time, and
the term a(Vp) depends on the initial voltage upon charging, given by

vy = {095 Vo <38V,
a =
770093, else.

The proportional and integral gains are chosen to be K, = 2.5 and K; = 0.1, respectively.
Though this control scheme is shown to have its flaws in terms of sometimes exceeding the
defined voltage limit, it is considered an adequate due to its simplicity.
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