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Conceptual Design of Green Propulsive Systems Using
Reinforcement Learning

Martijn van Dongeren ∗

Delft University of Technology, Delft, The Netherlands, 2600AA

Hybrid-electric powertrains offer a solution to significantly reduce aircraft emissions in
flight. This study presents a method for automatically generating hybrid-electric architectures
and optimizing two different objective functions by evaluating the control parameters of each
unique architecture using reinforcement learning. Two ATR 72-600 configurations serve as
reference aircraft, and three technology levels are considered. When maximizing the ratio of
effective radiative forcing to payload mass, the results indicate that the optimal design is sensitive
to both aircraft configuration and technology level; however, architectures fully powered by
hydrogen fuel cells are preferred when feasible. When maximizing payload and applying the
Flightpath 2050 sustainability goals as constraints, the optimal architecture shifts to one in
which conventional jet fuel and hydrogen are combusted in a gas turbine to power the primary
propulsive line, while the majority of the power is delivered by the fuel cells to an auxiliary
propulsive line. Compared with a conventional architecture, this design reduces CO2 and NO𝑥

emissions by up to 74% and 86%, respectively, while reducing payload mass by only 24%.

Nomenclature

Greek symbols
Φ = Supply parameter
𝜑 = Shaft parameter
Acronyms
BAT = Batteries
CG = Center of Gravity
CJF = Conventional Jet Fuel
EI = Emission Index
EM = Electric Machine

ERF = Effective Radiative Forcing
FC = Fuel Cell
GB = Gearbox
HEP = Hybrid-Electric Propulsion
MTOM = Maximum Take Off Mass
MTOW = Maximum Take Off Weight
OEM = Operational Empty Mass
PM = Power Management system
SAC = Soft actor-critic

I. Introduction
As global populations and economies continue to grow, demand for aviation is projected to increase by 3-5 percent
per year through 2050 [1]. Air transport, however, contributes to global warming through the emission of carbon
dioxide (CO2), nitrogen oxides (NO𝑥), water vapor (H2O), and contrail formation [2]. It is estimated that in 2018,
CO2 emissions from aviation accounted for 1.59% of global effective radiative forcing (ERF) and non-CO2 aviation
emissions for 1.91% [3]. To reduce aviation’s impact on anthropogenic climate change, in 2011, the European Union
outlined its long-term vision in Flightpath 2050. The sustainability goals include a 75% reduction in CO2 per passenger
kilometer (pkm), a 90% reduction in NO𝑥 emissions, and a 65% reduction in perceived noise compared to the year 2000
[4]. To achieve these goals, it is necessary to significantly reduce aircraft emissions. One potential solution lies in the
development of hybrid-electric powertrains (HEP) [5, 6].

The foundation for developing mathematical HEP models was established by Lorenz et al. [7] and Isikveren et al.
[8], who defined various hybridization factors necessary to quantify the power demands of HEP architectures. These
factors represent the ratio of power supplied to or delivered by a powertrain component to the total power. Building
on this foundation, de Vries et al. [9] reformulated these factors to control parameters in their conceptual powertrain
model. Specifically, de Vries et al. defined two types: Supply parameters, which represent the ratio of power from a
single energy source to the total generated power, and shaft parameters, which represent the ratio of power in a single
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shaft to the total shaft power. Due to this model’s simplicity and flexibility, it is well-suited to conceptual HEP designs
and was incorporated by Orefice [10] into the conceptual design workflow for hybrid-electric aircraft. Furthermore,
the model originally proposed by de Vries et al. was later extended by Borgia [11], adding hydrogen as a third energy
source, demonstrating potential to reduce energy consumption and emissions. In addition to developing conceptual HEP
models, efforts have focused on developing an optimization framework for complex powertrain architectures. In the
work conducted by Bussemaker et al. [12], a multi-objective architecture optimizer systematically generated candidate
architectures, and for each architecture, the relevant continuous design variables were sized using gradient-based
optimization, with the sizing loop minimizing a weighted objective combining fuel burn, maximum take-off weight
(MTOW), and flight time. The results compared full-electric, hybrid-electric, and conventional architectures, without
considering hydrogen alternatives.

To address this gap, this work proposes a conceptual design method that couples generative hybrid-electric
architecture design with a reinforcement learning (RL) framework. This method is applied to a retrofit study of the
ATR 72-600 for both passenger and cargo configurations, utilizing technology projections for the 2030, 2040, and 2050
periods. Consequently, this work proposes the following primary research question:
How do projected technological advancements and aircraft configurations influence the optimal architecture and control
parameters that minimize effective radiative forcing (ERF) per passenger for a regional turboprop aircraft?
To answer this, the following sub-questions are addressed:

• Which hybrid-electric powertrain architectures and control parameters are identified by a reinforcement learning
algorithm as optimal for minimizing ERF per passenger?

• What specific thresholds in hydrogen storage density and fuel cell efficiency must be reached to enable a fully
hydrogen-electric regional flight profile?

• How do optimal architectures and control parameters shift when the objective is changed to maximize payload
capacity, while meeting the Flightpath 2050 environmental goals?

A flowchart of the methodology used to answer these questions is shown in Fig. 1. First, a HEP architecture is
stochastically generated and passed to the optimizer, which sets the control parameters for each flight phase. After a
single flight is completed, the fuel, component, and payload weights are determined, along with the flight’s climate
impact. Then, the design’s performance is evaluated and passed to the optimizer to improve its decision-making
regarding the control parameters. This process is repeated until a specified training threshold is reached, after which the
optimizer determines the optimal control parameters for each HEP architecture. The powertrain model used in this
study is introduced in section II and the optimization framework is discussed in section III. Furthermore, the reference
design and projected component characteristics are presented in section IV. Finally, the study’s results are presented in
section V.
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Fig. 1 Schematic of the proposed methodology.
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II. Powertrain System Modeling
This section introduces a method for describing a simplified HEP architecture within a flexible mathematical framework
that captures interactions among powertrain elements. Then, the flight mechanics equations used to estimate the required
propulsive power for a nominal mission are presented. Finally, the metric ERF is used as the primary tool to assess the
climate impact of each design.

A. Powertrain Metamodel
In this work, the propulsion system is modeled using simplified representations of its elements, including energy sources,
components, and power paths connecting them. The considered elements are similar to those proposed by de Vries et al.
[9], and include conventional jet fuel (CJF), a gas turbine (GT), batteries (BAT), a gearbox (GB), a power management
system (PM), and various electric motors (EM) and propellers (P). Furthermore, the model incorporates hydrogen (H2)
and fuel cells (FC), aligning with the modifications introduced by Borgia [11]. Of these elements, CJF, H2, and BAT are
classified as energy sources, and the remaining six elements are classified as components. The elements are linked by
mechanical or electrical connections, collectively referred to as power paths. Borgia identified 28 distinct architectures
using this set of elements. However, by relaxing specific constraints, such as the requirement that two different energy
sources must be indirectly connected, 48 unique architectures are formulated. This is expanded to 120 architectures
when increasing the maximum number of auxiliary propulsive lines from one to three on a single wing. The architecture
in which all types of energy sources, components, and propulsive lines are present is shown in Fig. 2. The remaining
119 architectures are therefore limit cases of this architecture. A symmetry condition is applied to each architecture,
whereby the single-wing configuration is mirrored to represent the aircraft’s full powertrain.
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Fig. 2 Architecture consisting of the maximum number of energy sources, components, and propulsive lines.

The architecture shown in Fig. 2 has a total of nineteen different power paths; therefore, nineteen equations are
necessary to solve this system. Using the conservation of energy, Eq. 1, an equation is formulated for all thirteen
components (not including the energy sources) [9]. An additional equation is formulated by summing the power of each
propeller and equating it to the total propulsive power required, see Eq. 2 [9].

𝜂𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ·
∑︁

𝑃𝑖𝑛 =
∑︁

𝑃𝑜𝑢𝑡 (1) 𝑃𝑝 = 2 ·
NProp∑︁
𝑛=1

𝑃𝑃𝑛
(2)

The remaining six equations are formulated as control parameters, which are either supply or shaft parameters and are
bounded within the domain [0,1] [9]. The supply parameters are the ratios between the power delivered by a single
energy source and the total power delivered by all energy sources combined. For a system with 𝑁 energy sources, there
will always be 𝑁 − 1 supply parameters. The architecture shown in Fig. 2 will therefore have three supply parameters,
which are defined by Eq. 3, Eq. 4, and Eq. 5.

ΦH2,GT =
𝑃H2, GT

𝑃CJF + 𝑃H2, GT + 𝑃H2, FC + 𝑃BAT
(3) ΦH2,FC =

𝑃H2, FC

𝑃CJF + 𝑃H2, GT + 𝑃H2, FC + 𝑃BAT
(4)

ΦBAT =
𝑃BAT

𝑃CJF + 𝑃H2, GT + 𝑃H2, FC + 𝑃BAT
(5)
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Finally, the shaft parameters are the ratios between the power delivered by a single shaft and the total shaft power. For
the previously discussed architecture, three shaft parameters are required, which are defined in Eq. 6, Eq. 7, and Eq. 8.

𝜑S2 =
𝑃S2

𝑃S1 + 𝑃S2 + 𝑃S3 + 𝑃S4
(6) 𝜑S3 =

𝑃S3
𝑃S1 + 𝑃S2 + 𝑃S3 + 𝑃S4

(7) 𝜑S4 =
𝑃S4

𝑃S1 + 𝑃S2 + 𝑃S3 + 𝑃S4
(8)

While the number of supply parameters is directly related to the number of energy sources, this is not the case for the
shaft parameters. If in the architecture shown in Fig. 2, the component EM1, were to be removed, as shown in Fig. 3,
two power paths disappear, and therefore two equations must also be removed as to not overconstrain the system. Due
to the removal of EM1, Eq. 1 is used one time less, and one less shaft parameter is required. The reduction in shaft
parameters aligns with the architecture’s physical constraints. Since PS1 is now dependent only on the summation of
PCJF and PH2,GT, it is no longer a degree of freedom.

Each unique architecture will have a distinct system of equations that depends on the elements present and their
connections. Eq. 9 is the system for the architecture in Fig. 2, and to solve for each power path, the matrix is inverted
and multiplied by the vector on the right-hand side.
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Fig. 3 Architecture where the electric motor between the gearbox and power management system has been
removed.

To calculate the weight and volume of each element, the system of equations is solved to determine the power
through each power path, which are then doubled to account for the symmetry condition. A distinction is made between
energy source and component elements in an architecture. The weight and volume of an energy source are determined
by integrating its delivered power over time and dividing by its respective gravimetric and volumetric energy density.
While component weight and volumes are calculated by dividing the largest recorded delivered power of each component
by its respective gravimetric and volumetric power density. The electric motor and power management components are
the two exceptions: instead of the maximum output power, the maximum sum of input power is divided by the density.

For a retrofit application, the total powertrain mass is added to the aircraft’s operational empty mass, from which the
mass of the original propulsion system has already been subtracted. The remaining available mass is then allocated to
the payload, while keeping the maximum take-off mass (MTOM) constant. The fuels, their storage systems, components,
and payload must then be distributed throughout the aircraft to ensure the center of gravity (CG) falls within the aircraft’s
feasible margin to maintain adequate control and stability.
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

−𝜂𝐺𝑇 1 0 0 −𝜂𝐺𝑇 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −𝜂𝐺𝐵 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 −𝜂𝑃1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝜂𝐸𝑀1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −𝜂𝐹𝐶 1 0 0 0 0 0 0
0 0 0 0 0 −𝜂𝑃𝑀 1 0 0 0 −𝜂𝑃𝑀 0 −𝜂𝑃𝑀 1 0 0 1 0 0
0 0 0 0 0 0 −𝜂𝐸𝑀2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −𝜂𝐸𝑀3 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −𝜂𝐸𝑀4 1 0
0 0 0 0 0 0 0 −𝜂𝑃2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝜂𝑃3 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝜂𝑃4 1

Φ𝐻2,𝐺𝑇 0 0 0 Φ𝐻2,𝐺𝑇 − 1 Φ𝐻2,𝐺𝑇 0 0 0 0 0 Φ𝐻2,𝐺𝑇 0 0 0 0 0 0 0
Φ𝐵𝐴𝑇 0 0 0 Φ𝐵𝐴𝑇 Φ𝐵𝐴𝑇 − 1 0 0 0 0 0 Φ𝐵𝐴𝑇 0 0 0 0 0 0 0
Φ𝐻2,𝐹𝐶 0 0 0 Φ𝐻2,𝐹𝐶 Φ𝐻2,𝐹𝐶 0 0 0 0 0 Φ𝐻2,𝐹𝐶 − 1 0 0 0 0 0 0 0

0 0 𝜑𝑆2 0 0 0 0 𝜑𝑆2 − 1 0 0 0 0 0 0 𝜑𝑆2 0 0 𝜑𝑆2 0
0 0 𝜑𝑆3 0 0 0 0 𝜑𝑆3 0 0 0 0 0 0 𝜑𝑆3 − 1 0 0 𝜑𝑆3 0
0 0 𝜑𝑆4 0 0 0 0 𝜑𝑆4 0 0 0 0 0 0 𝜑𝑆4 0 0 𝜑𝑆4 − 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1



·



𝑃𝐶𝐽𝐹

𝑃𝐺𝑇

𝑃𝑆1

𝑃𝑃1

𝑃𝐻2,𝐺𝑇

𝑃𝐵𝐴𝑇

𝑃𝑃𝑀2

𝑃𝑆2

𝑃𝑃2

𝑃𝐺𝐵

𝑃𝑃𝑀1

𝑃𝐻2,𝐹𝐶

𝑃𝐹𝐶

𝑃𝑃𝑀3

𝑃𝑆3

𝑃𝑃3

𝑃𝑃𝑀4

𝑃𝑆4

𝑃𝑃4



=



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
𝑃𝑝



(9)

Sizing the powertrain using this method requires that the values of each powerpath be nonnegative; therefore, feasible
solutions for each system must satisfy three constraints. First, because both the supply and control parameters express a
ratio of a single power path relative to the total supplied or shaft power, the sum of both the supply and shaft parameters
cannot exceed one. Secondly, if, for example, in Fig. 2, ΦBAT > 0.5 and 𝜑S2 + 𝜑S3 + 𝜑S4 < 0.5, the battery is the main
power supplier and the primary shaft delivers the most power to a propulsive element. Power must now flow from the
power management system to the gearbox, contrary to the direction of the arrows. As a result, the sign of these power
paths becomes negative, which may result in singularities [10, 11]. To avoid this issue, when the value of a power path
is negative, its direction is reversed, the system of equations is reconstructed, and the system is solved again. Finally, in
the case where the component EM1 is removed, the power through P𝑆1 becomes solely dependent on the power paths
P𝐶𝐽𝐹 and P𝐻2,𝐺𝑇 , and therefore, one less shaft parameter has to be defined. Although the shaft parameter of this power
path is not explicitly defined, its sum with the remaining shaft parameters must not exceed 1; otherwise, the remaining
shaft will begin harvesting energy. This is undesirable for certification reasons; therefore, if the sum exceeds 1, the
values of the remaining shaft parameters are reduced until the energy-harvesting condition is mitigated.

B. Flight Mechanics for Power Estimation
To solve a system of equations describing one of the possible architectures, it is necessary to define the required
propulsive power 𝑃𝑝 . In this work, a nominal mission is analyzed that consists of take-off, climb, cruise, and descent,
with the assumption that a single value can approximate the propulsive power for each phase. During take-off, the power
is estimated by multiplying the normal take-off shaft power by the number of engines and propeller efficiency. For the
latter three flight phases, steady state flight is assumed, and Eq. 10, Eq. 11, and Eq. 12 are used to calculate 𝑃𝑝 in each
phase.

𝑃𝑎 = ROC ·𝑊 + 1
2
· 𝐶𝐷 · 𝜌 · 𝑉3 · 𝑆 (10) 𝑃𝑎 = 𝑃𝑟 = 𝐷 · 𝑉 = 𝐿 · 𝐷

𝐿
· 𝑉 =

𝑊
𝐿
𝐷

· 𝑉 (11)

𝑃𝑎 = −ROD ·𝑊 + 1
2
· 𝐶𝐷 · 𝜌 · 𝑉3 · 𝑆 (12)

During the climb and descent phases, the average phase-specific power is assumed to be equal to the average of the
power determined at the beginning and the end of the phase. The aircraft mass at the beginning of climb, the top of
climb, and the end of descent is approximated using the fuel fraction method. The Breguet range equation, Eq. 13 [13],
is applied to calculate the fuel consumed during cruise.

𝑊𝑖

𝑊𝑖−1
= exp

−𝑡 · TSFC
𝐿/𝐷 (13) 𝐶𝐿 =

𝑊

0.5 · 𝜌 · 𝑉2 · 𝑆
(14)

Here, 𝑡 denotes the time spent in the cruise phase, and TSFC denotes the thrust-specific fuel consumption. Furthermore,
the lift coefficient for each phase is calculated using Eq. 14, and, given the aircraft’s drag polar, the drag coefficient can
be determined. This method does not aim to predict propulsive power with high precision; rather, it provides a realistic
estimate for conceptual analysis.
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C. Climate Impact Modeling
The metric chosen to assess the climate impact of each species emitted is effective radiative forcing (ERF). ERF
quantifies how species affect the Earth’s radiation imbalance at the top of the atmosphere, thereby contributing to
climate change [14]. It is preferred over traditional radiative forcing (RF) because it better captures the influence of
anthropogenic aerosols and accounts for rapid adjustments in Earth’s surface and stratospheric conditions. However, it
does not account for ocean and sea-ice responses to the imbalance, which occur over much longer timescales. A different
metric that accounts for both short-lived and long-lived forcing components is GWP*, which quantifies warming over
multiple decades [3]. However, this metric must be evaluated over a chosen timescale, introducing a temporal bias.
Additionally, it should not be applied in scenarios where fuel usage deviates significantly from current trends, such as
the potential widespread implementation of HEP systems. Therefore, ERF remains the preferred metric for providing
insights into the direct effect of each emitted species on climate forcing and, in turn, on eventual temperature changes.

Lee et al. [3] have calculated the ERF of aviation emission species from kerosene based on the normalized values of
ERF per unit emission or distance, specifically for contrail cirrus. These values are tabulated in Table 1 under the ERF
column. Positive numbers contribute to net global warming, while negative numbers contribute to net global cooling.
While sulfate has a cooling effect, it is associated with the formation of particulate matter, which may pose adverse
health effects when exposed to humans [15]. However, this research will only consider the climate effects of aviation
emissions. Furthermore, CO, UHC, and soot are omitted as these have a negligible impact on global warming [16]. Lee
et al. [3] based their estimations for the annual global emissions of each species on the product of its emission index and
fuel burn for each year, where the latter is derived by dividing the estimated annual 𝐶𝑂2 emissions by an emission
index of 3.16 [17]. Since global fuel consumption in 2018 was not yet known when Lee conducted his analysis, it was
estimated by extrapolating from 2016 data, using an annual growth rate of 3.3%. Global fuel consumption in 2005,
2011, and 2018 is estimated at 229, 242, and 309 million tons, respectively. Furthermore, the ERF per kg of specie is
determined by dividing the ERF of each species by its annual emissions, while the value for contrail cirrus in Table 1 is
taken directly from Lee et al. [3], as it is based on distance rather than fuel usage. The average is computed across the
three years, and the corresponding values are reported in the ERF per kg of specie column of Table 1. When hydrogen
is used as fuel, the values for NO𝑥 and contrail cirrus are scaled by factors of 0.76 and 0.31, respectively [18, 19].
While CO2 emissions are directly related to fuel use and their effects on global warming are independent of location or
altitude, the emission indices of other species may vary with the specific aircraft and mission analyzed. Therefore, the
ERF per kg of fuel cannot be generalized; it must be determined for each case.

Table 1 ERF of aviation species emissions [3]

ERF, mW/m2 ERF per kg of specie, 10−6 mW/m2/kg

2005 2011 2018 CJF H2 combustion H2 fuel cell
CO2 25.0 29.0 34.3 0.0359 - -
H2O 1.4 1.5 2.0 0.00509 0.0509 0.0509
NO𝑥 12.9 13.6 17.5 3.86 2.93 -
Sulfate -5.3 -5.6 -7.4 -19.5 - -

ERF, mW/m2 ERF per km traveled, 10−6 mW/m2/km

Contrail cirrus 34.8 44.1 57.4 0.000936 0.000290 0.000290

III. Optimization Framework
Optimizing the distribution of power of a simplified hybrid-electric powertrain requires a control strategy that can
adapt to various architectures and flight conditions. Consequently, an algorithm must find the optimal set of control
parameters for each case that maximizes a certain objective. This section discusses the method for solving the problem
at hand and presents the chosen algorithm to address it.
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A. Problem Formulation
The power distribution of a hybrid-electric powertrain represents a complex sequential decision-making problem in
which optimal control parameters depend on the specific architecture and the current flight phase. Reinforcement
learning (RL) is an optimization method that maximizes an objective function by selecting the optimal control parameters.
RL is a machine learning approach where an agent learns through trial and error to maximize a specific objective. Other
machine learning paradigms, such as supervised and unsupervised learning, aim to make accurate predictions based
on labeled data and to uncover hidden patterns or structures in unlabeled data, respectively. However, in uncharted
scenarios, where no correct or representative example exists, reinforcement learning offers a distinct advantage by
learning from its interactions and experiences [20]. RL problems can be formulated as a Markov decision process
(MDP), a mathematical framework where actions (a𝑡 ) influence both immediate rewards and future states (s𝑡 ) [21]. For
this application, an architecture is generated stochastically at the beginning of each episode (a flight). Then, for each
flight phase (a step), the agent observes the aircraft’s status (the state) and outputs the control parameters (the action) to
maximize the cumulative reward. The agent must learn to trade off between payload maximization, fuel usage, and
climate impact through direct interaction with the powertrain metamodel. To accommodate varying architectures within
a single fixed-size interface, the action and state spaces are structured as follows: The Action Space (A) contains an
array of six variables corresponding to the maximum number of supply (3) and shaft (3) parameters. The State Space
(S) consists of a vector providing context to the agent on which it can base its decision of choosing the values for the
action space, and the State Space contains the following elements:

• System Matrix: A powertrain matrix describing the elements and their connections in a HEP, as shown in Eq. 9.
The system matrix has a fixed size of (19×19) representing the maximum possible system dimensions. For limit
cases, the powertrain matrix is embedded in the top-left corner, with the remaining elements padded with zeros.

• System Mask: Also a (19×19) matrix that contains the active elements of the system matrix. The elements that
contain architectural data are set to 1, while the remaining elements are padded with 0.

• Action Mask: An array of the same size as the maximum number of control parameters (6). However, most
architectures will have fewer control parameters, and the agent uses this array to determine which parameters are
relevant. The active control parameters for each architecture will contain a one, while the remaining elements are
padded with zeros.

• Flight Phase Indicator: An array containing normalized values that contain information regarding the current
flight phase, the normalized required power, and the normalized duration of the current flight phase. The first
instance is the current flight phase, where 0.2 corresponds to take-off, 0.4 to climb, 0.6 to cruise, 0.8 to descent,
and 1 to a completed flight.

• Violation Array: The supply and shaft parameters are both constrained such that the sum of both sets may not
exceed one. The agent must learn this constraint from the violation array, which contains the absolute difference
between each element of the proposed action and the corresponding element of the scaled action. Giving a small
penalty for infeasible actions will discourage the agent from selecting such combinations of control parameters.

A simplified example of the state-space vector is shown in Eq. 15, where the size of the System Matrix and Mask is
reduced from (19×19) to (3×3) for readability. In this example, the matrix resulting from the architecture contains the
elements 𝐴, 𝐵, 𝐶, 𝐷, and their locations are denoted by ones in the System Mask. Furthermore, it is assumed that two
control parameters are necessary to solve the system. The aircraft is in the cruise phase, and both control parameters
were initially set 0.1 too high resulting in a small penalty, as shown in the violation array.

S =

[ System Matrix︷       ︸︸       ︷
𝐴 𝐵 0
𝐶 𝐷 0
0 0 0

 ,
System Mask︷      ︸︸      ︷
1 1 0
1 1 0
0 0 0

 ,
Action Mask︷                   ︸︸                   ︷[

1 1 0 0 0 0
]
,

,

Flight Phase Indicator︷                                ︸︸                                ︷[
0.6 𝑃𝑝,current phase

𝑃𝑝,max

𝑡current phase
𝑡total

]
,

,

Violation Array︷                        ︸︸                        ︷[
0.1 0.1 0 0 0 0

] ]
(15)

B. Objective Functions
In conventional RL algorithms, after an action has been completed, i.e, a step has been taken, the new state is determined,
and an immediate reward is given. However, for this application, the reward is only calculated at the end of the flight,
as powertrain mass, and therefore the payload mass, depends on the fuel usage throughout the entire flight and the
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maximum power through each path. As discussed in section I, two different objective functions are defined. The first
aims to minimize the ERF per kg of passenger from a single flight, and the second aims to maximize the payload while
meeting the Flightpath 2050 goals.

1. Minimization of ERF per passenger
This objective function aims to maximize the ratio provided in Eq. 16a. However, depending on the CG location and
payload mass, a different function is used.

𝑟unscaled =



𝑚payload

ERF · 106 if 𝑚payload > 0 and CG in feasible range (16a)

− |CG|
CGaft

if 𝑚payload > 0 and CG outside feasible range (16b)

𝑚payload if 𝑚payload < 0 and CG outside feasible range (16c)

(16)

Here, 𝑚payload is the payload mass, 𝐶𝐺 is the location of the center of gravity as a percentage of the mean aerodynamic
chord (MAC) of the aircraft with the current HEP design, and 𝐶𝐺aft is the aft-most feasible CG location as a percentage
of the MAC of the reference aircraft. The reward is then scaled using Eq. 17 to ensure it is bounded in the domain [-10,
10].

𝑟scaled =



2
𝜋
· 10 · arctan( 𝑟unscaled − 𝑏

𝑏 · 10
) if Eq. 16a used (17a)

𝑟unscaled if Eq. 16b used (17b)

2
𝜋
· 10 · arctan( 𝑟unscaled − 𝑏

𝑏 · 1000
) − 5 if Eq. 16c used (17c)

(17)

Here 𝑏 is the unscaled reward that is awarded to the conventional design with 2030 technology projections. Furthermore,
to ensure the resulting scaled rewards of each function have distinct regions, 5 is subtracted in Eq. 17c. As a result,
the rewards from Eq. 17a are in the domain [-1,10], Eq. 17b are in the domain [-5,-1], and Eq. 17c are in the domain
[-5,-10]. Finally, although the majority of the reward is received at the end of the flight, a small penalty, namely the sum
of the elements in the violation array, is applied after each flight phase to encourage the agent to choose feasible actions.

2. Payload Maximization
When aiming to meet the Flightpath 2050 goals, the objective function changes, potentially altering the optimal design.
As noise is not considered in this work, the Flightpath 2050 goals include a 75% reduction in CO2 emissions per pkm
and a 90% reduction in NO𝑥 emissions relative to the year 2000, based on 2050 technology predictions. To account for
these new goals, the objective function is reformulated as presented in Eq. 18.

𝑟unscaled =



10 ·
𝑚payload

𝑚payload, max
if 𝑚payload > 0, CG in feasible range and FP 2050 goals are met (18a)

ΔCO2 + ΔNO𝑥 if 𝑚payload > 0, CG in feasible range and FP 2050 goals are not met (18b)

− |CG|
CGaft

if 𝑚payload > 0 and CG outside feasible range (18c)

𝑚payload if 𝑚payload < 0 and CG outside feasible range (18d)

(18)

Whereas in Eq. 16, the rewards of designs with high emissions were reduced by dividing the payload mass by the
resulting ERF, now the payload mass is divided by the maximum achievable payload mass with 2050 technology
projections and multiplied by 10 to ensure it is bounded in the domain [0,10]. If the goals are not met, Eq. 18b is used,
where ΔCO2 and ΔNO𝑥 are formulated in Eq. 19 and Eq. 20, respectively. For designs with significant CO2 and NO𝑥

emissions during a flight, these values are negative, but become increasingly positive as emissions decrease. This serves
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as a constraint on the algorithm, as its reward will be significantly reduced if a design fails to meet the Flightpath 2050
goals.

ΔCO2 = min( CO2,2000

𝑚payload, 2000
· 0.25 − CO2 emissions

𝑚payload
, 0) (19)

ΔNO𝑥 = min(NO𝑥, 2000 · 0.1 − NO𝑥 emissions
𝑚payload

, 0) (20)

Here, CO2,2000, NO𝑥,2000, and 𝑚payload, 2000 are the CO2, NO𝑥 emissions and the payload mass calculated for the year
2000 with a conventional powertrain design and assuming a turboprop efficiency of 25%. Furthermore, to ensure that
the unscaled reward of each function in Eq. 18 remains in its own distinct region, the rewards are scaled with Eq. 21. If
the design is feasible, but the goals are not met, Eq. 21b, the reward is scaled through an exponential function. These
rewards may be positive for low values of 𝑟unscaled, but quickly decrease when the emission goals are further exceeded.
The scaling for Eq. 21c and Eq. 21d remains similar to Eq. 17c and Eq. 17d.

𝑟scaled =



𝑟unscaled if Eq. 18a used (21a)

(10 ·
𝑚payload

𝑚payload, max
− 1) · 𝑒10·𝑟unscaled if Eq. 18b used (21b)

𝑟unscaled if Eq. 18c used (21c)

2
𝜋
· 10 · arctan( 𝑟unscaled − 𝑏

𝑏 · 1000
) − 5 if Eq. 18d used (21d)

(21)

C. Reinforcement Learning Algorithm
In the RL algorithm, the agent aims to learn a specific policy 𝜋(a𝑡 | s𝑡 ) that helps it choose an action that maximizes
cumulative reward. This policy can either learn from data generated by its current decision-making strategy (on-policy)
or from data generated by all its past policies (off-policy). While on-policy agents are more stable, they are less
sample-efficient than off-policy agents. Furthermore, the policy bases its choice of actions on the value function that
estimates the future rewards based on the state, the state-value function V(s𝑡 ), or both the state and the action, the
action-value function Q(s𝑡 , a𝑡 ) [21]. Finally, the two types of RL methods are model-free methods, which rely on
trial-and-error learning, and model-based methods, which use a model to predict future rewards and state transitions.
Model-based methods are more sample-efficient, but typically require more training time and have lower asymptotic
performance than model-free methods. Model-free methods are preferred when the model is very complex, while
model-based methods are advantageous when the model is easier to learn than the policy or when only limited
interactions with the environment are possible [21].

The metamodel described in subsection II.A requires, at maximum, six different control parameters, which are
continuous values bounded in the domain [0,1]. Because there is no constraint on the number of interactions and
higher asymptotic performance is desired, a model-free method is more appropriate for this application, specifically the
soft actor-critic (SAC) algorithm [22, 23]. This algorithm uses a critic, a state-value function, that evaluates previous
actions taken in specific states and the expected reward from the next state. The evaluation is then used to improve
the policy, which guides the actor’s future actions. To incorporate large, continuous domains, the critic and actor are
modeled as neural networks and trained with stochastic gradient descent [23]. Furthermore, SAC is a soft algorithm
that maximizes expected reward while also maximizing entropy, thereby encouraging greater exploration. The balance
between expected reward and entropy depends on the entropy coefficient 𝛼, which had to be set to a specific value in the
first version of the SAC algorithm, developed by Haarnoja et al. [22]. However, setting this hyperparameter is not trivial
and requires tuning. In the second version, also developed by Haarnoja et al. [23], the algorithm automatically adjusts
the coefficient to explore more in uncertain regions but is more deterministic when the optimal action is already clear.
Therefore, the second version is used for this application. Although the algorithm is off-policy, it has been demonstrated
to be stable and more sample-efficient than other algorithms. When applied to various challenging multi-dimensional
continuous control tasks, it consistently outperformed other algorithms, with increasing margins for tasks with more
dimensions [23]. Therefore, if the architectures and, thereby, the number of control parameters are expanded in future
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research, it is expected that SAC will still outperform other algorithms.
A simplified overview of the SAC algorithm is provided in Fig. 4. First 100,000 steps (25,000 flights) are taken

without any training to fill the replay buffer. Then, training is initiated, and after a specified interval of steps, 𝑛 gradient
steps are performed, each updating the neural network’s weights 𝑛 times. Depending on the batch size, a specified
number of transitions are sampled from the replay buffer to update the critic. This update is based not only on the
expected reward for a given state-action pair but also on the entropy associated with the transition. Then, using the
updated critic, the policy is improved, which in turn updates the critic target that is used in the next gradient step. The
improved policy also constrains the entropy coefficient, which determines the importance of randomness relative to
reward when updating the critic in the next gradient step. This process is repeated for each gradient and training step.
The hyperparameters used in this work are similar to those used by Haarnoja et al. [23], except for the ones listed in
Table 2.

Interact with the
environment

based on current
policy and

entropy
coefficient

START

Update critic Improve policy Update entropy
coefficient

Update target
critic

Evaluate
another gradient

step?

Update
interval

 reached?

START

Finished
training?

END

END

No

No

Yes

YesYes

Replay buffer

No

Number of transitions loaded
based on batch size when critic

update is initialized

Based on smoothing
coefficient

Update weights in neural network

Magnitude of update scaled with learning rate
Store transition:

Fig. 4 Schematic of how the SAC model is updated and interacts with the environment.

D. Optimization Verification
While the SAC algorithm does not only aim to maximize its reward, but also entropy by acting as randomly as possible,
it does not perform an exhaustive search of the design space. Therefore, the suggested control parameters for each
unique architecture are not guaranteed to be global optima. SAC utilizes a stochastic actor to improve stability and
exploration in continuous action spaces [23]. However, in design spaces containing steep negative reward gradients near
optima, the actor will sample actions near the optima and at the bottom of these gradients. This lowers the expected
reward of this region, and the policy may shift to safer areas with higher average returns, potentially moving away from
a narrow, sharp optimum.

To identify these narrow, sharp optima and evaluate the performance of the SAC algorithm, the covariance matrix
adaptation evolution strategy (CMA-ES) is utilized. This algorithm performs well in black-box continuous optimization
problems with non-convex functions [24]. It has been demonstrated to effectively evaluate a large portion of the design
space and to outperform other stochastic solvers [25]. CMA-ES optimizes an objective function by stochastically
sampling candidate solutions from a multivariate normal distribution. Each sample is evaluated, and the distribution
parameters are updated to produce more promising solutions. This process is then repeated for a specific number of
generations. The control parameters for each architecture are optimized for 1000 generations using CMA-ES to verify
the SAC algorithm’s results.
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Table 2 Description of relevant changed hyperparameters in the SAC algorithm.

Hyperparameter Description Default value Set value Motivation for set value

Training
frequency

Interval between
successive updates.
The default is once

after every step.

(1, ’step’) (1, ’episode’)

Update once after every episode
synchronizes updates with the
majority of the reward granted

at the end of each episode.

Gradient steps
Number of gradient
steps that are taken
during each update.

1 16

More gradient steps increases
sample efficiency by

maximizing learning per
environmental interaction.

Buffer size

Capacity of the
number of transitions
that can be used for

sampling.

1,000,000 100,000

Decreased buffer size
prioritizes more recent data

over ’noisy’ data from
exploration.

Batch size
Collected transitions
from the replay buffer

for each gradient update.
256 2048

Higher sample size
increases computational time,

but increases stability.

Learning rate
Step size taken by the
optimizer to update
the network weights.

0.0003 0.0001
Smaller steps result in higher

stability and prevents
the policy from collapsing.

Smoothing
coefficient

Rate of which the
target network weights

are updated.
0.005 0.01

Higher value accelerates the
integration of the policy
into the value estimates.

IV. Case Study: Regional Turboprop Retrofit
The previous two sections discussed a general framework for optimizing the control of hybrid-electric powertrains with
a specific objective. This section discusses the chosen reference aircraft to demonstrate the method’s application and the
projected characteristics of hybrid-electric powertrain elements for three different years.

In this work, two different configurations of the ATR 72-600 are analyzed: A passenger aircraft and a cargo aircraft.
In the case of a passenger aircraft that uses hydrogen as fuel, its storage system will be stored in the aft bulkhead for
safety reasons. This may, if significant in size, result in the CG shifting too far aft; therefore, the placement of the
remaining components must aim to counter this shift, if possible. However, for a cargo aircraft, it is assumed that the
hydrogen storage system need not be located in the aft bulkhead, and the components can be arranged more easily to
comply with the CG margin. Therefore, the CG analysis is not done for the cargo aircraft case. The reason for analyzing
both cases is to highlight potential shortcomings of conventional aircraft design (tube-and-wing) and its limitations
when transitioning to sustainable fuels. Furthermore, while a generated architecture can contain up to three auxiliary
propulsive lines on a single wing, the effects of distributed propulsion are not considered. Therefore, it is assumed that
changing the number of propellers on a wing does not affect the aerodynamic performance.

Additionally, because the hybrid-electric architecture is mirrored across both wings, each side will have its own
propulsion system independent of the other. Therefore, the certification requirements for one-engine-inoperative
conditions, specifically CS 25.147 and CS 25.149 under the CS-25 certification specifications [26], need not be
re-evaluated. If the propulsion system of one wing completely fails, the system will still provide adequate power, similar
to the one-engine-inoperative condition of the original ATR 72-600.

A. Reference Aircraft and Mission
The ATR 72-600 has a maximum take-off mass of 23 tonnes and can transport 7400 kg of payload, using 2000 kg of
CJF, on a nominal mission. Its two engines weigh 1000 kg in total, and the fuel system mass is calculated by averaging
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the methods of Raymer [13] and Torenbeek [27], yielding 57 kg. Subtracting the mass of the engines and fuel system,
the operational empty mass (OEM) without the propulsion system, of 12,543 kg, is obtained.

Furthermore, the maximum landing weight is 22,350 kg; therefore, at least 650 kg of fuel must be used if the aircraft
takes off at maximum weight. However, in hybrid-electric powertrains, gravimetric fuel consumption during nominal
flight is lower because the battery mass is nearly constant and hydrogen has a high gravimetric energy density. To
ensure a safe landing, three different design considerations may be implemented. First, to account for higher landing
loads, the landing gear can be resized, and the resulting mass increase is deducted from the payload mass. Additionally,
the landing distance must be re-evaluated, and the increased distance would impose stricter requirements on available
landing locations. As this option requires retrofitting beyond the propulsion system and limits the aircraft’s operational
envelope, it is not implemented. Secondly, a constraint can be implemented, requiring at least 650 kg of fuel to be
consumed during a nominal flight. This forces the reinforcement learning algorithm to explore balancing the use of
conventional and sustainable fuels and, if successful, verifies its ability to find designs in more complex landscapes.
However, applying this constraint will result in designs with higher fuel consumption, favoring less efficient powertrains.
Therefore, the final option of limiting the maximum take-off weight by removing payload is implemented, such that the
landing weight requirement is not exceeded.

1. Power Estimation
The normal take-off shaft power of each engine used for the ATR 72-600 is 1,846 kW [28]. Assuming a propeller
efficiency of 80%, the power output is 2.95 MW. Furthermore, the rate of climb (ROC) is estimated at 1350 feet/min and
300 feet/min at the beginning and top of climb, respectively, while the ROD is constant at 1500 feet/min [29]. The
velocity during climb and descent is calculated from the constant indicated airspeed of 170 and 220 kts, and the velocity
during cruise is also constant at 270 kts [30]. Finally, the drag coefficient is determined from the ATR 72 drag polar,
constructed by Vecchia [31]. The relevant parameters to calculate the required power are reported in Table 3, and the
required power itself is listed in Table 4.

Table 3 Flight phase parameters

Flight phase Mass, kg 𝜌, kg/m3 V, m/s 𝐶𝐿 𝐶𝐷

Beginning of climb 22770 1.225 87.46 0.7814 0.05003
Top of climb 22428 0.5686 128.4 0.7697 0.04944
Cruise 21638 0.5686 138.9 0.6342 0.04336
Beginning of descent 20847 0.5686 166.1 0.4272 0.03635
End of descent 20743 1.225 113.2 0.4251 0.03629

Based on data from the ATR 72-600 brochure [30], the total flight time for a 740 nm mission is estimated at 173.5
minutes. By subtracting the estimated durations for the take-off, climb, and descent phases, summarized in Table 4, the
remaining time is attributed to cruise.

Table 4 Power required and time of each flight phase.

Flight phase 𝑃𝑝 Time in phase 𝑃𝑝 full-electric flight
Take-off 2.95 MW 0.5 min 2.95 MW
Climb 2.47 MW 21 min 2.50 MW
Cruise 2.02 MW 146 min 2.09 MW
Descent 0.874 MW 6 min 0.788 MW

The fuel fraction method, used to estimate the weight during each phase of flight, accounts for weight reductions due to
fuel consumption. However, the reduction in weight is smaller when hydrogen or batteries are used as energy sources
than with conventional jet fuel. Therefore, the calculated powers in Table 4 may be underestimated during climb and
cruise, and overestimated during descent. To quantify the maximum value of this error, while assuming full-electric
flight, where the mass remains constant at 23,000 kg, the powers are recalculated and listed in the rightmost column of

12



Table 4. Ultimately, this results in a 3.1% increase in the total energy required. Because this represents the extreme case,
full-electric flight without adhering to the maximum landing weight constraint, actual deviations are expected to be
smaller across the design space. This suggests that the effect of weight variation, within the bounds of the reference
case, on propulsive power is minimal. Therefore, it is assumed that the powers calculated using the fuel fraction method
apply to all designs.

2. Stability and Controllability Verification
To achieve adequate controllability and stability, the centre of gravity (CG) of the aircraft must be within 10% and 39%
of the mean aerodynamic chord (MAC) [32].

A simplified side view of the aircraft is presented in Fig. 5, where the datum line is defined 2.362 meters in front of
the nose of the aircraft. The fuel, engines, and payload are assumed to be a point mass, and their distances with respect
to the datum line are taken from the Weight and Balance manual [32] and reported in Table 5. Using a value for the
center of gravity of 25% of the MAC [32], the arm of the OEM without the propulsion system is calculated.

Fig. 5 Side view of the ATR 72-600 [32].

Table 5 Component mass and distance to the datum line of the original ATR 72-600

Component Mass, kg Arm, m
Fuel 2000 14.455
Fuel system 57 14.43
Engines 1000 12.7
Payload 7400 14.755
OEM without propulsion system 12,543 13.91

Components such as engines, electric machines, and propellers are all placed on the leading edge (LE) of the wing
and will have the same arm as the original engines. Furthermore, CJF and its storage system remain inside the wing,
and their CG will move slightly forward depending on the amount of fuel, as reported in the manual [32]. As previously
discussed, the hydrogen and its storage system are located in the aft bulkhead for safety reasons, and the CG is slightly
dependent on their respective volumes. The batteries, fuel cells, and power management systems can be stored in the
compartments located in front or behind the landing gear, in the shaded regions shown in Fig. 5, or in the wing if space
is available. In the first iteration, the batteries, fuel cells, and power management system will be loaded from front to
back to counter the CG shift caused by the placement of the hydrogen storage system. If this results in the CG being too
far forward, the components will be loaded from the rear to the front. The full logic of loading these three types of
components is explained in Fig. 6. Additionally, due to a potentially heavier propulsion system, passenger capacity may
decrease, leaving more cabin space available for passengers. In the front-loading analysis, the passengers are distributed
over the cabin with a seat pitch of 29 inches, similar to the original layout. However, in the aft-loading analysis, the seat
pitch is increased to distribute passengers along the entire length of the cabin. The range of distances from the mean and
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the respective locations of each component are listed in Table 6, as well as the locations of the compartments used for
component storage.

START

END

Most forward CG option
- Fill front compartment

- Fill available volume in the wing
- Fill back compartment

CG
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CG
too far aft?

Calculate CG CG too
far forward?

Calculate
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No
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No
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Fig. 6 Placement logic of the batteries, fuel cells, and power management system.

Table 6 Distance to the datum line and location of hybrid-electric aircraft components.

Component or compartment Arm, m Location
OEM without propulsion system 13.91 -
Engines and EM’s 13.1 LE
CFJ and storage system 14.5-14.6 Wing
H2 and storage system 20.9-23.7 Aft bulkhead
Payload 8.49-14.8 Fuselage
Front compartment 5.7-11 Fuselage
Wing 14.7 Wing
Back compartment 18-21 Fuselage

3. Climate Impact Analysis
Lee et al. [3] estimate the effective radiative forcing (ERF) of water vapor only at stratospheric altitudes; below these
altitudes, water vapor does not significantly contribute to global warming. As the ATR 72-600 cruises at an altitude of
7.3 km, water vapor emissions are not accounted for throughout the flight. A similar conclusion is drawn for contrail
cirrus, which form when humid exhaust plumes from gas turbines mix with cold ambient air. Persistent contrail
formation typically occurs between 8-13 km [33–35], below this range, the ambient temperature is not sufficiently cold.
While no study has directly compared persistent contrail formation between turbofans and turboprops, it is estimated
that the former is responsible for 99.4% of all persistent contrail formation and the latter only for 0.36% [36].

Furthermore, as the throttle setting significantly affects NO𝑥 emissions [37], a statistical model developed by
Filippone et al. [38] is used to estimate a more accurate emission index based on the gas turbine output power for
each flight phase, rather than the maximum power. This model uses the throttle setting and pressure ratio (OPR) of a
turboprop to estimate the NO𝑥 emission index in g/kg, accounting for pressure, temperature, and humidity, as tabulated
in Table 7. The OPR is assumed to have a constant value of 14 for all flight phases, which is within the range of the
PW127 engine suggested by Yuksel et al. [39].

Finally, the effective radiative forcing per kg of fuel burnt for each species considered is listed in Table 8. Because
the NO𝑥 emission index depends on throttle setting, a range based on the minimum and maximum values is provided for
each fuel type. It is assumed that water vapor emissions and persistent contrail formation have negligible effects on
warming during this specific mission profile; therefore, operating the fuel cell is climate-neutral.
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Table 7 Ambient conditions in each flight phase.

Flight phase Average altitude, m Temperature, K Pressure, Pa RH [40]
Take-off 0 288.15 101325 90%
Climb 3658 264.37 64437.5 45%
Cruise 7315 240.60 39272.1 20%
Descent 3658 264.37 64437.5 45%

Table 8 Effective radiative forcing for each modeled species and fuel type.

ERF per kg of fuel used, 10−6 mW/m2/kg
CJF H2 combustion

CO2 0.1134 -
Sulfate -0.0234 -
NO𝑥 0.0233 - 0.0645 0.0177 - 0.0490

B. Technology Projection Levels
For component sizing, it is necessary to define the energy or power density of each component. In this work, future
technology projection levels for 2030, 2040, and 2050 are presented and summarized in Table 9.

CJF has a gravimetric and volumetric energy density of 43.2 MJ/kg [41] and 33.91 MJ/L [32], respectively, and
it is assumed that these will not increase in the future. When the storage system’s weight is also accounted for, the
fuel’s gravimetric density decreases to 42 MJ/kg. Furthermore, the gravimetric energy density of hydrogen itself is a
significant 120 MJ/kg; its storage system is of significant weight. For liquefied storage, the gravimetric and volumetric
energy densities are estimated at 9 MJ/kg [42] and 6.4 MJ/L [43], respectively, for 2030. Cry-compressed technology is
not yet deemed feasible for 2030 due to safety regulations, but can be considered from 2040 onward. It is assumed that,
due to future research and development, its energy densities increase by 20% and 30% in 2040 and 2050, respectively,
compared to 2030, reaching 12 MJ/kg and 6 MJ/L [42]. Furthermore, Tiede et al. [44] predicted, based on historical
data and the practical limitations of each battery type, the state-of-the-art gravimetric energy density for 2030, 2040,
and 2050 under conservative, nominal, and aggressive technology-advancement rates. The expected gravimetric energy
density and efficiency of the nominal cases are tabulated in Table 9. de Vries et al. [45] assume a charge and discharge
rate of 1.2C, meaning the power density, in W/kg, is 1.2 times larger than the energy density, in Wh/kg. The same
rate is used in Table 9 to estimate the power density for each year. It is estimated that by 2035, lithium-ion batteries
will achieve volumetric energy densities between 600-800 Wh/L, lithium-sulfur batteries between 300-350 Wh/L, and
lithium-oxygen batteries between 1000-1600 Wh/L [46]. However, the uncertainty for the latter two is deemed high,
whereas that for the lithium-ion type is low. Therefore, an energy density of 600 Wh/L, the conservative side of the
2035 projection, is assumed to be realized by 2030. The ratio between the gravimetric and volumetric energy densities
in 2030 is then used to estimate the densities in 2040 and 2050, which are tabulated in Table 9.

The turboprop thermal efficiency is estimated to be in the range of 0.25-0.35 [39, 47, 48]. For this study, it is
assumed that efficiency increases from 0.3 in 2030 to 0.35 in 2050. For the gas turbine’s continuous power density,
a value similar to that of the original ATR 72-600 engines is used [28]. Two types of fuel cells are considered for
aviation applications: proton exchange membrane fuel cells (PEMFCs) and solid-oxide fuel cells (SOFCs). However,
SOFCs operate most efficiently under steady-state conditions and are therefore not suitable for regional aircraft [49].
For this reason, they are not further considered in this work. Current estimates place power densities of a PEMFC
stack at 3.0 kW/kg and 3.4 kW/L [50], which decrease to 1.0-1.5 kW/kg [51] and 0.35 kW/L for the entire system
[52]. Therefore, system-level power densities of 1.1 kW/L and 0.35 kW/L, with an efficiency of 55%, are considered
reasonable targets for 2030. And it is assumed that power densities will continue to improve to 20% and 30% by 2040
and 2050, respectively, while efficiency will only reach its current upper bound of 60% [49]. Furthermore, permanent
magnet synchronous machines (PMSMs) are currently the most widely used electric machines in electric and hybrid
electric vehicles. They are considered the most attractive option for aviation, due to their high specific power and
efficiency [53–55]. The expected power densities and efficiencies with a normal confidence level for 2030, 2040, and
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2050 are reported in Table 9 [53]. The power management system densities are estimated at 30 kW/kg and 70 kW/L in
2030 [49, 56], with an efficiency of 99% [57]. Again, both densities are assumed to increase by 20% and 30% in 2040
and 2050, respectively. Finally, de Vries [57] assumes a 96% efficiency for the gearbox, while its weight and that of the
propeller are neglected, which has an efficiency of 80% [58].

Table 9 Overview of the projected technology levels considered in this work.

𝜂𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 Energy density, MJ/kg | MJ/L Power density, kW/kg | kW/L

Year 2030 2040 2050 2030 2040 2050 2030 2040 2050
CJF Storage 100% 100% 100% 42 | 34 42 | 34 42 | 34 - - -
H2 Storage 100% 100% 100% 9 | 6.4 14 | 7.2 16 | 7.8 - - -
Batteries 89% 90% 90% 1.4 | 2.2 1.8 | 3.2 2.2 | 3.4 0.47 0.61 0.73
GT 30% 33% 35% - - - 3.77 3.77 3.77
FC 55% 58% 60% - - - 1.1 | 0.35 1.3 | 0.42 1.4 | 0.46
EM 97% 98% 98% - - - 13 20 24
PM 99% 99% 99% - - - 30 | 70 36 | 84 39 | 91
GB 96% 96% 96% - - - - - -
Propeller 80% 80% 80% - - - - - -

V. Results
This section discusses the results obtained by training the reinforcement learning model for a certain number of steps
on stochastically generated architectures. First, the model’s performance when minimizing ERF per kg of payload
is discussed, and the proposed designs for various technology levels and aircraft configurations are interpreted and
compared with those proposed by the CMA-ES algorithm. The model’s performance for the second objective function,
maximizing payload while meeting Flightpath 2050, is then evaluated and compared with the CMA-ES algorithm’s
output.

A. Minimizing ERF per kg of payload
The RL model performance, when trained to minimize ERF per kg of payload, for both passenger and cargo aircraft, is
presented in Fig. 7. It is observed that the scaled reward varies with different combinations of energy sources, technology
projections, and number of training steps. It is observed that training the model has been successful, as it outperforms
random selection of control parameter values (zero training steps) across all architectures and technology projections.
Training the model with more steps results in higher rewards. However, this effect generally diminishes after 70,000
or 150,000 steps. Furthermore, in Fig. 7a, the model rarely identifies a significantly improved design relative to the
baseline conventional design, which has a scaled reward of zero. The mass breakdown of this design is shown in Fig. 8a.
Architectures containing only hydrogen are generally too heavy, or it is not possible to arrange the components such that
the CG falls within the feasible margin; the battery-powered architectures are always too heavy. The architecture of
the best design identified by the RL algorithm for a passenger aircraft under 2030 technology projections is shown in
Fig. 9. The architecture consists of a primary propulsive line powered by CJF combustion, an auxiliary propulsive line
powered by hydrogen fuel cells, and an electric motor that connects the two lines. In Fig. 9, the power paths’ values
for each phase are indicated in black. It shows that supplying fuel cells with hydrogen in each phase reduces ERF by
45.9%, whereas payload decreases by 37.9% relative to the conventional design, as shown in Fig. 8b. However, the
CMA-ES algorithm has identified a further-optimized design, indicated in red in Fig. 9. The architecture is similar to
that found in RL but now uses hydrogen combustion and eliminates the connection between the gearbox and the power
management system, thereby enabling more efficient power distributions. Moreover, using both hydrogen and CJF
combustion reduces the ERF resulting from CO2 emissions, accompanied by a further weight increase of the hydrogen
storage system. Additionally, excessive hydrogen use will violate the CG constraint, thereby limiting the amount that
can be used. In this design, the CG is located at the very aft of the feasible margin. Overall, the reduction of ERF is
greater than that of payload, as shown in Fig. 8c, which indicates a further 42.8% decrease in ERF and a 17.8% decrease
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Fig. 7 Optimization results of the first objective function showing the scaled reward distribution for passenger
and cargo aircraft architectures, categorized by energy sources under 2030, 2040, and 2050 technology projections.
The box plots represent the interquartile range (25th–75th percentiles) with whiskers extending to the 5th and
95th percentiles. The box color indicates the number of training steps; the box height is proportional to the
number of unique architectures in that category; and the background shading denotes design feasibility.
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Fig. 8 Mass breakdown of powertrain designs for a passenger aircraft with 2030 technology projections.
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Fig. 9 Optimal architectures and corresponding powers through each power path, in MW, in each phase of
flight for a passenger aircraft with 2030 technology projections. The black numbers indicate the optimal designs
identified by the RL model, and the red numbers indicate those identified by the CMA-ES algorithm.

in payload relative to the RL design.
With future technological improvements, the model achieves a maximum reward of 10 for architectures containing

hydrogen for a passenger aircraft, as shown in Fig. 7b and Fig. 7c. This is primarily driven by improved fuel cell
efficiency and higher energy densities of the hydrogen storage system, resulting in lower hydrogen requirements and
overall lighter storage systems. While some of these architectures achieve the maximum reward, the rewards are
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distributed across a wide range. This is the result of using two different methods to convert hydrogen into power:
combustion in a gas turbine or its use in fuel cells. Whereas the former has efficiencies between 30-35% and still emits
NO𝑥 , contributing to global warming, the latter’s efficiency is between 55-60% and completely climate neutral. This
effect is shown in Fig. 10a, Fig. 10b, and Fig. 10c, where instead of differentiating all the architectures by their energy
sources, the presence of a fuel cell now separates the two types of combinations. It is clear that, under the 2040 and
2050 technology projections, the maximum reward can only be achieved by using fuel cells. Therefore, the optimal
architectures for these years are ones fully powered by hydrogen through fuel cells.

For a cargo aircraft, the location of the hydrogen storage system is not constrained, and therefore, the propulsion
system elements can always be arranged in such a way that the CG falls within the feasible margin. While, the CG
constraint limits further hydrogen use for passenger aircraft, as already observed in Fig. 7a. For the cargo configuration,
the model finds the maximum reward with 2030 technology projections, for architectures fully powered by hydrogen
fuel cells, as shown in Fig. 7d. However, as the number of energy sources increases, the model cannot consistently
achieve maximum rewards when possible and does not do so across the three energy source architectures. Additionally,
the potential of conventional and battery-powered architectures remains unchanged and does not improve relative to the
baseline. Furthermore, the performance difference between architectures with or without a fuel cell remains significant,
and maximum obtained rewards remain solely obtainable in architectures fully powered by fuel cells, as shown in
Fig. 10d, Fig. 10e, and Fig. 10f. Finally, the model performance of the cargo aircraft, as shown in Fig. 7e and Fig. 7f,
exhibits trends similar to those of the passenger aircraft. The main difference between these two configurations is that,
for a cargo aircraft, the minimum reward obtained by architectures containing hydrogen is shifted from the negative
region (infeasible CG design) to the positive region (feasible design).
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Fig. 10 Optimization results of the first objective function showing the scaled reward distribution for passenger
and cargo aircraft architectures containing hydrogen, categorized by the presence of a fuel cell under 2030, 2040,
and 2050 technology projections. The box plots represent the interquartile range (25th–75th percentiles) with
whiskers extending to the 5th and 95th percentiles. The box color indicates the number of training steps; the
box height is proportional to the number of unique architectures in that category; and the background shading
denotes design feasibility.
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For passenger aircraft under 2030 technology projections, an architecture combining CJF and hydrogen achieves the
highest reward. This changes for cargo aircraft or under future technology projections, where the optimal architecture
is one fully powered by hydrogen fuel cells, achieving the maximum reward. The mass breakdown of these cases is
presented in Fig. 11. Compared to Fig. 8, when switching to architectures powered only by hydrogen fuel cells, the
payload decreases significantly due to the weight of the hydrogen storage system and fuel cells. Compared with the
optimal design identified by CMA-ES for a passenger aircraft in 2030, the payload decreases by 80.0%, but because
only fuel cells are used, the climate impact is zero, and a maximum reward is achieved. However, it is expected that,
with increasing technology levels in 2040 and 2050, the payload can increase to 51% and 60% of the conventional
design’s value in 2030, respectively, while the flight remains climate-neutral. Furthermore, because hydrogen has a high
gravimetric density, these designs do not use enough fuel during a nominal flight, resulting in aircraft that exceed the
ATR 72-600’s maximum landing weight. Therefore, a portion of the payload is removed prior to take-off to ensure that
the landing weight requirement is met. This reduction is shown in Fig. 11 by incomplete pies and a decrease in MTOM.
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Fig. 11 Mass breakdown of the optimal powertrain designs for the passenger and cargo aircraft with 2040 and
2050 technology projections.

The reinforcement learning model successfully identified the optimal design across all future technology levels for
cargo configurations and, for passenger configurations, across 2040 and 2050. Whereas, for a passenger configuration
with 2030 technology levels, the optimal design was not achieved. For designs in which the RL model has found an
optimum, the objective function is formulated such that the agent is rewarded for increasing hydrogen fuel cell utilization
within the architecture and not punished when it is maximized. However, for the 2030 passenger case, a delicate balance
is required to maximize the objective. Using excessive hydrogen results in a heavy storage system that shifts the CG too
far aft, rendering the design infeasible and penalizing the agent. During training, it was observed that rewards very close
to the optimum were achieved, but this policy could never be stabilized. Due to the stochastic nature of SAC, it would
sample actions close to the optimum, including designs in which the CG has shifted too far aft. Therefore, the average
reward for this policy decreases, and the critic forces the policy to a safer region, away from the optimum.

1. Sensitivity Analysis
A very distinctive switch in the optimal architecture and control strategy between 2030 and 2040 for a passenger aircraft
is noticed when comparing Fig. 8 and Fig. 11. This is a result of the 2040 technology projections reducing the weight of
the hydrogen storage system in the aft bulkhead relative to 2030, thereby reducing the moment arm that initially causes
the CG to shift into the infeasible region. This is also highlighted in Fig. 12, where the different design regions are
visualized as a function of fuel cell efficiency and gravimetric energy density of the hydrogen storage system. The
powertrain design, powered entirely by hydrogen fuel cells with 2030 technology projections (indicated by the plus),
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density, where the background shading denotes design feasibility. The markers indicate projected efficiency and
density for 2030 (✖), 2040 (♦), and 2050 (✚).

falls within the infeasible CG region and is close to the negative payload region. Here, its capacity to carry payload
is severely hindered by the mass of the hydrogen storage system and the fuel cells, as already observed in Fig. 11b.
However, unlike powertrains powered solely by batteries, the negative payload region is never reached when hydrogen
fuel cells supply all power. Increasing the fuel cell efficiency to its maximum theoretical value of 83% [59] does not
allow the design to escape the infeasible CG region. Therefore, it is necessary to improve hydrogen storage system
technology to enable a feasible retrofit design for the ATR 72-600. The powertrain designs based on hydrogen fuel
cell architectures, with 2040 and 2050 projected technology levels, are indicated by the diamond and cross in Fig. 12.
Both designs, due to their proximity to the feasibility boundary, are likely to move into the infeasible CG region if the
projected technologies for both years are not realized.

B. Maximizing payload and meeting Flightpath 2050 goals
Considering the payload maximization objective, the model was again trained for the same number of steps as the
first objective function under 2050 technology projections. The results identified a single optimal design, and the
corresponding architecture, along with the value of each power path for each phase of flight, is shown in black in Fig. 13.
This shows a control strategy similar to that in Fig. 9, in which the gas turbine is used during phases with high propulsive
power requirements, whereas in other phases the relative share of fuel cell output power increases. It is also observed
that the power delivered by the fuel cell remains relatively constant, minimizing redundant fuel cell weight during
phases when it does not deliver its maximum power. The mass breakdown of this design is shown in Fig. 14a, which
shows a 26.5% increase in payload compared to the design, which was minimized for ERF per kg of payload, as shown
in Fig. 11c. However, the RL model has overshot the Flightpath 2050 goals, reducing CO2 emissions per pkm by 83.9%
and NO𝑥 emissions by 90.2%, whereas 75% and 90% reductions would have sufficed. While the agent was previously
punished for overusing hydrogen fuel cells and the CG not being within the feasible margin, it is now punished for
overusing CJF, resulting in noncompliance with the Flightpath 2050 goals. Therefore, it has opted for a safe design with
limited payload to reduce the risk of heavy penalties.

The design identified by the CMA-ES algorithm, which maximizes payload while meeting the Flightpath 2050
goals, is shown in Fig. 14b. Again, this algorithm has achieved higher rewards than the RL model, demonstrating that
a further 4.52% increase in payload is possible. This is achieved by maintaining a constant fuel cell output power,
while the remainder of the required power is supplied by hydrogen combustion during take-off and climb and by CJF
combustion during cruise. Because NO𝑥 emissions are lower with hydrogen combustion in a gas turbine than with CJF,
hydrogen combustion is beneficial for phases with higher propulsive power requirements. Conversely, an alternative
control strategy in which CJF is used during take-off and climb instead of hydrogen, and that hydrogen is reallocated to
the cruise phase, such that the design is similar to Fig. 14b, results in an increase of NO𝑥 emissions, and noncompliance
with the Flightpath 2050 goals. Optimizing the distribution of power, as shown in red in Fig. 13, reduces CO2 emissions
per pkm by 77.9% and NO𝑥 emissions by 90%, indicating that the NO𝑥 goal limits further increases in payload.
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Fig. 13 Optimal architecture and corresponding powers through each powerpath, in MW, in each phase of
flight. The black numbers indicate the optimal design found by the RL model and the red numbers the optimal
design found by the CMA-ES method.
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VI. Conclusions and Future Outlooks
This work proposes a generative algorithm for creating hybrid-electric powertrain architectures coupled with reinforcement
learning to optimize the conceptual design of propulsive systems. This method is applied to retrofit the ATR 72-600
propulsion system, considering two different objective functions. The results indicate that the optimal architecture,
when minimizing effective radiative forcing per kg of payload, and the corresponding control strategy, depend on the
projected technology level and aircraft configuration. For a passenger aircraft at 2030 technology levels, an architecture
that primarily uses conventional jet fuel supplemented with hydrogen is most suitable. Here, the amount of hydrogen is
limited by its heavy storage system, which may move the center of gravity too far aft. However, for cargo configurations
or future technology levels, the optimal architecture shifts to a fully hydrogen fuel cell electric powertrain. Unless
hydrogen storage system density increases significantly, this architecture is not feasible for a passenger aircraft at
2030 technology levels, indicating that the CG margin of tube-and-wing aircraft may limit the adoption of sustainable
fuels. Furthermore, the optimal architecture shifts again when the objective is to maximize payload while meeting the
Flightpath 2050 sustainability goals. Similarly, in the passenger configuration with 2030 projections, this architecture
uses a combination of conventional jet fuel and hydrogen combustion, with the majority of power now delivered by
hydrogen fuel cells. The payload mass is allowed to increase by 32% relative to a fully hydrogen fuel cell electric design
in 2050, without exceeding the emission thresholds.

While this method provides a quick, straightforward propulsion design strategy for hybrid-electric architectures,
several adjustments can further improve it. Firstly, accounting for variable component efficiencies may yield different
optima. Specifically for passenger aircraft in 2030, electrically assisting the primary shaft may be beneficial during
phases when the gas turbine operates in less efficient regions. Secondly, the effects of distributed propulsion are
not accounted for, limiting the benefit of using multiple auxiliary propulsive lines. Additionally, sizing the thermal
management system is not included in this conceptual design method, which would increase the drag. In the optimization
framework, the reinforcement learning algorithm struggled to produce optimal designs when the designs were near a
feasibility constraint. Therefore, reformulating the objective function or further tuning of the hyperparameters may
improve learning. Furthermore, this research could be expanded by including sustainable aviation fuel as an energy
source, which would require a full life-cycle analysis of all elements. Finally, analyzing other aircraft types, such as
turbofans, would also provide valuable insights into how mission characteristics affect the optimal architecture and
corresponding control parameters.
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