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A B S T R A C T

We develop a computationally and numerically efficient method to calculate binding energies and correspond-
ing wave functions of quantum mechanical three-body problems in low dimensions. Our approach exploits
the tensor structure of the multidimensional stationary Schrödinger equation, being expressed as a discretized
linear eigenvalue problem. In one spatial dimension, we solve the three-body problem with the help of iterative
methods. Here the application of the Hamiltonian operator is represented by dense matrix–matrix products.
In combination with a newly-designed preconditioner for the Jacobi–Davidson QR, our highly accurate tensor
method offers a significantly faster computation of three-body energies and bound states than other existing
approaches. For the two-dimensional case, we additionally make use of a hybrid distributed/shared memory
parallel implementation to calculate the corresponding three-body energies. Our novel method is of high
relevance for the analysis of few-body systems and their universal behavior, which is only governed by
the particle masses, overall symmetries, and the spatial dimensionality. Our results have straightforward
applications for ultracold atomic gases that are widespread and nowadays utilized in quantum sensors.
1. Introduction

The quantum mechanical few-body problem is of particular interest
for the physics community. On the one hand, it determines the features
of interacting nuclei, atoms, or molecules as bodies living on very
different length scales. On the other hand, in certain regimes these
systems display a universal behavior that is independent of the details
of the interaction between the particles, but governed by the particle
masses, overall symmetries, as well as the dimensionality of space.
The complexity and beauty of this problem has motivated numerous
researchers to explore these systems by using theoretical, numerical,
and experimental approaches.

An outstanding example for the above mentioned type of universal-
ity is the Efimov effect [1,2], describing the emergence of an infinite
sequence of universal states of three bosonic particles with 𝑠-wave
resonant pair interactions in three dimensions. Lower dimensional
systems, such as three fermionic particles confined to two dimensions,
also display surprising universal phenomena like the so-called ‘‘super
Efimov effect’’ [3–6].

In addition, also mass-imbalanced three-body systems can be gov-
erned by universal features. Recently, it has been demonstrated that
a heavy–heavy–light system confined to one dimension (1D) displays

∗ Corresponding author.
E-mail address: j.thies@tudelft.nl (J. Thies).

universality not only in the discrete spectrum [7,8], but also in the
continuum [9]. Here universal three-body energies and wave func-
tions emerge once the heavy–light interactions are tuned towards the
ground- or exited-state threshold, respectively, that is the binding
energy of the ground or exited state in the heavy–light system ap-
proaches zero. In this limit, the three-body binding energies and wave
functions for arbitrary short-range heavy–light interactions converge to
the respective ones for the zero-range interaction.

In order to provide an accurate description of the universal be-
havior in these and higher-dimensional systems, novel analytical and
numerical tools are required. For instance, in Ref. [7] three-body
energies and the corresponding wave functions of the bound states
are computed with the pseudo-spectral method [10,11], where the
Hamiltonian is represented by a sparse matrix. Then the Krylov sub-
space method is applied to determine lowest eigenvalues and the
corresponding eigenvectors. However, with an increasing number of
grid points in each dimension, the matrices and vectors grow rapidly:
the three-body problem in 𝑑 space dimensions yields a 2𝑑-dimensional
linear eigenvalue problem after removing the center-of-mass degree of
freedom. When discretized with 𝑛 grid points in each direction, a single
vector representing the three-body wave function has the size 𝑛2𝑑 . The
vailable online 17 September 2022
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pseudo-spectral discretization used in [7] also leads to 
(

𝑛2𝑑−1
)

dense
locks in the sparse matrix representation of the Hamiltonian, each of
ize 𝑛 × 𝑛. Thus, such an approach is severely limited by the ‘curse of
imensionality’.

In this article, we present a novel computational approach to an-
lyze three-body problems with local two-body interactions in 1D and
D. In particular, we exploit the tensor product structure of the problem
nd avoid to store redundant blocks of the matrix. In this way, we
chieve a very high computational efficiency. In order to accelerate
he convergence compared to the Krylov method used in Ref. [7], we
tilize the Jacobi–Davidson iteration scheme and introduce a precon-
itioner for the 1D three-body system. By extending our approach to
he 2D case, we show for the first time the universal behavior of the
eavy–heavy–light three-body system when the ground-state energy of
he heavy–light subsystems approaches zero. The methods and results
resented in this article constitute the first steps towards the ab-initio
imulation of quantum systems in 2D and 3D with a larger number of
articles involved.

Our article is structured as follows. In Section 2 we introduce
uantum mechanical few-body systems in 1D as well as 2D and present
he corresponding eigenvalue equations determining the energies and
tationary wave functions. In Section 3 we describe the discretization
cheme and explain how it naturally enables a tensor formulation of
he Hamiltonian operator. The Jacobi–Davidson iteration scheme is
evisited in Section 4. In addition, the implementation of the discretized
perators in 1D and 2D are discussed in terms of hardware efficiency.
or the 1D case, we devise a novel preconditioning technique to accel-
rate the convergence of the Jacobi–Davidson method, and successfully
etermine the eigenpairs corresponding to the three-body bound states.
umerical results presented in Section 5 show the superior performance
nd convergence properties of our method in 1D and 2D. Moreover, we
how the universal behavior of the three-body system in 2D. Finally,
e provide in Section 6 concluding remarks and indicate directions of

uture research.

. Few-body systems

First, we consider a system composed of two interacting particles,
heavy one of mass 𝑀 and a light one of mass 𝑚. In dimensionless

nits, the relative motion of these quantum particles is governed by
he stationary Schrödinger equation

−1
2
𝛥𝜉 − 𝑣0𝑓 (𝜉)

]

𝜓 (2)(𝜉) =  (2)𝜓 (2)(𝜉) (1)

for the wave function 𝜓 (2)(𝜉) and two-particle energy  (2), where 𝛥𝜉
denotes the Laplace operator with respect to the relative coordinate
𝜉. Here, we have assumed that the interaction of the two particles is
described by an attractive potential −𝑣0𝑓 (𝜉) of magnitude 𝑣0 > 0 and
shape 𝑓 (𝜉) as a function of the relative distance 𝜉 ≡ |

|

|

𝜉 |

|

|

.
Next, we turn to the mass-imbalanced three-body system displayed

n Fig. 1 and confined to (a) one or (b) two spatial dimensions.
his system is described by the dimensionless form of the stationary
chrödinger equation

−
𝛼𝑥
2
𝛥�⃗� −

𝛼𝑦
2
𝛥𝑦 + 𝑉 (�⃗�, 𝑦)

]

𝜓 = 𝜓 (2)

for the three-particle wave function 𝜓 = 𝜓
(

�⃗�, 𝑦
)

corresponding to the
three-particle energy  , as introduced in more detail in Refs. [7,9] for
the one-dimensional case. Here 𝛥�⃗� and 𝛥𝑦 denote the Laplace operator
with respect to the relative coordinate vectors �⃗� and 𝑦, respectively.
The positive coefficients 𝛼𝑥 = 2∕(1 + 𝛼) and 𝛼𝑦 = (1 + 2𝛼)∕(2 + 2𝛼) are
determined by the mass ratio 𝛼 ≡𝑀∕𝑚 of the heavy and light particle.

For the case of non-interacting heavy particles, the interaction term
𝑉 (�⃗�, 𝑦) in Eq. (2) reads

𝑉 (�⃗�, 𝑦) = −𝑣0𝑓
(

|

|

|

�⃗� + 1 𝑦
|

|

|

)

− 𝑣0𝑓
(

|

|

|

�⃗� − 1 𝑦
|

|

|

)

, (3)
2

|
2

| |
2

|

a

here −𝑣0𝑓 (𝜉) models the interaction potential between the light par-
icle and each heavy one. Here |

|

�⃗� ± 𝑦∕2|
|

is the respective relative
istance in (a) one or (b) two spatial dimensions, as shown in Fig. 1.

Our scheme to solve the three-body problem, Eq. (2), consists of
everal steps. First, we choose a particular binding energy  (2)

0 for the
wo-body system of the heavy and light particle. Then we determine the
orresponding depth 𝑣0 of the potential −𝑣0𝑓 (𝜉) such that the two-body
chrödinger equation (1) has the ground state solution with energy
(2) =  (2)

0 . Next, we solve the three-body Schrödinger equation (2) for
his particular potential depth 𝑣0 and select solutions with an energy

smaller than the two-body threshold given by  (2)
0 . In this way, we

etermine the wave functions 𝜓
(

�⃗�, 𝑦
)

and corresponding energies 
f the three-body bound states associated with this particular two-body
nteraction.

In physics, most two-body potentials vanish either exponentially or
olynomially as 𝜉 → ∞. In the present article, we consider both cases
nd focus on an attractive potential of Gaussian shape

G(𝜉) = exp
(

−𝜉2
)

(4)

nd a potential whose shape

L(𝜉) =
1

(1 + 𝜉2)3
(5)

is determined by the cube of a Lorentzian. However, we emphasize that
our approach is also valid for potentials that feature a different shape
as a function of the relative coordinate 𝜉.

3. Discretization and tensor formulation

In this section, we briefly describe the discretization of the three-
body Schrödinger equation by pseudo-spectral methods and, in partic-
ular, the Lagrange-mesh method [12]. In contrast to finite difference or
finite element methods, pseudo-spectral methods lead to dense matrices
for one-dimensional problems. As a consequence, we obtain a faster
convergence rate with respect to the number of grid points which is
geometric on a finite domain and usually subgeometric on an infinite
domain [10].

Since the three-body Hamiltonian is multi-dimensional, we aim
to exploit its tensor structure when implementing the matrix–vector
multiplication in an iterative eigenvalue solver. Our tensor method
drastically reduces the memory requirement for the operator when
solving higher-dimensional eigenvalue problems.

3.1. Discretization

We apply a pseudo-spectral method to build a matrix representation
of the Schrödinger equation (2) of the three-body problem. For this
purpose, we consider Chebyshev polynomials as basis functions on a
finite domain in each dimension. The corresponding grid points are
then associated with the roots of the Chebyshev polynomials. By using
an algebraic map [10,13], we project these grid points to the infinite
real domain.

After discretization, the Schrödinger equation (2) takes the form

𝐻�⃗� = �⃗� , (6)

which is a linear eigenvalue problem for the matrix 𝐻 with eigenvalue
 and eigenvector �⃗� .

For the one-dimensional three-body problem, the eigenvector

�⃗� (1D) ≡ {𝜓0,0, 𝜓0,1,… , 𝜓0,𝑁𝑦1−1
, 𝜓1,0,… , 𝜓𝑁𝑥1−1,𝑁𝑦1−1}

𝑇 (7)

corresponds to the wave function 𝜓(�⃗�, 𝑦) = 𝜓 (1D)(𝑥1, 𝑦1) in Eq. (2)
evaluated at the grid points

(

𝑥(𝑖)1 , 𝑦
(𝑗)
1

)

, yielding the entries 𝜓𝑖,𝑗 =

𝜓 (1D)(𝑥(𝑖)1 , 𝑦
(𝑗)
1 ) with 𝑖 = 0, 1,… , 𝑁𝑥1−1 and 𝑗 = 0, 1,… , 𝑁𝑦1−1. Here 𝑁𝑥1
nd 𝑁𝑦1 denote the number of grid points in the respective direction.
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Fig. 1. Three-body system consisting of two heavy particles of mass 𝑀 and a light one of mass 𝑚 confined to (a) one or (b) two spatial dimensions. We only allow for interactions
between heavy and light particles, as indicated by the gray ellipses, and describe the system in terms of the Jacobi coordinates �⃗� and 𝑦, where 𝐶 denotes the center-of-mass of
the two heavy particles.
The matrix 𝐻 in Eq. (6) reads

𝐻 (1D) = −
𝛼𝑥
2

(

𝐷𝑥1𝑥1 ⊗ I𝑦1
)

−
𝛼𝑦
2

(

I𝑥1 ⊗𝐷𝑦1𝑦1

)

+ 𝑣0(𝐹+ + 𝐹−). (8)

Here 𝐷𝑥1𝑥1 and 𝐷𝑦1𝑦1 are dense (generally non-symmetric) matrices
with sizes 𝑁𝑥1 ×𝑁𝑥1 and 𝑁𝑦1 ×𝑁𝑦1 corresponding to the partial second
derivatives 𝜕2∕𝜕𝑥21 and 𝜕2∕𝜕𝑦21 from the Laplace operators 𝛥�⃗� and 𝛥𝑦 in
Eq. (2), respectively. Moreover, I𝑥1 and I𝑦1 denote the identity matrices
of corresponding size. In addition, the diagonal matrices 𝐹± result from
evaluating the functions 𝑓

(

|

|

�⃗� ± 𝑦∕2|
|

)

in Eq. (3) at the grid points 𝑥(𝑖)1
and 𝑦(𝑗)1 . More details on the discretization procedure and the exact
form of the matrices in Eq. (8) can be found in Appendix B of Ref. [7].

Similarly, for the three-body problem in two dimension we perform
a discretization of the wave function 𝜓

(

�⃗�, 𝑦
)

= 𝜓 (2D)(𝑥1, 𝑥2, 𝑦1, 𝑦2) with
respect to the grid points (𝑥(𝑖)1 , 𝑥

(𝑗)
2 , 𝑦

(𝑘)
1 , 𝑦(𝑙)2 ). The matrix 𝐻 in Eq. (6)

then reads

𝐻 (2D) = −
𝛼𝑥
2

[(

𝑫𝑥1𝑥1 +𝑫𝑥2𝑥2

)

⊗ I𝑦
]

−
𝛼𝑦
2

[

I𝑥 ⊗ (𝑫𝑦1𝑦1 +𝑫𝑦2𝑦2 )
]

+ 𝑣0
(

𝑭 + + 𝑭 −
)

, (9)

where 𝑫𝑥1𝑥1 = (𝐷𝑥1𝑥1 ⊗ I𝑥2 ), 𝑫𝑥2𝑥2 = (I𝑥1 ⊗𝐷𝑥2𝑥2 ), I𝑥 = I𝑥1 ⊗ I𝑥2 , etc.
Also here the diagonal matrices 𝑭 ± result from evaluating the function
𝑓
(

|

|

�⃗� ± 𝑦∕2|
|

)

in Eq. (3) at the corresponding grid points.

3.2. Operator application for the 1D case

When using an iterative method for solving the linear eigenvalue
problem given by the discretized Schrödinger equation (6), only the
effect of the linear operator on a given vector has to be implemented.
Our 1D Hamiltonian 𝐻 (1D), Eq. (8), can be abstractly written in the
form

𝑇𝑉 ,𝑎1 ,𝑎2 = 𝑎1
(

𝐶1 ⊗ I2
)

+ 𝑎2
(

I1 ⊗𝐶2
)

+ 𝑉 (10)

with 𝐶1 = 𝐷𝑥1𝑥1 , 𝐶2 = 𝐷𝑦1𝑦1 , and a sparse (in our case diagonal) matrix
𝑉 = 𝑣0(𝐹+ + 𝐹−). Note that we do not assume any structure for the
potential operator 𝑉 , in particular, it does not have to be of tensor
structure I1 ⊗𝐴1 + 𝐴2 ⊗ I2 with matrices 𝐴1 and 𝐴2.

The application of the operator 𝑇𝑉 ,𝑎1 ,𝑎2 , Eq. (10), to a vector 𝑤 can
be efficiently implemented by using dense matrix–matrix products. Let
𝐶1 ∈ R𝑁1×𝑁1 , 𝐶2 ∈ R𝑁2×𝑁2 , 𝑤 ∈ R𝑁1𝑁2 , and 𝑊 = reshape(𝑤,𝑁2, 𝑁1)
denote the interpretation of 𝑤 as an 𝑁2 ×𝑁1 matrix. Then we have

𝑇𝑉 ,𝑎1 ,𝑎2 ⋅𝑤 = reshape
(

𝑎2𝐶2 ⋅𝑊 + 𝑎1 𝑊 ⋅ 𝐶𝑇1 , 𝑁1𝑁2, 1
)

+ 𝑉 ⋅𝑤, (11)

where the reshape operation is used to interpret the resulting 𝑁2 ×𝑁1-
matrix as a vector of length 𝑁1𝑁2. Here we emphasize that reshape does
not incur any data movement, namely it is just a re-interpretation of a
vector as a matrix stored in column-major ordering, and vice versa.

Assuming that 𝑁𝑥1 = 𝑁𝑦1 = 𝑛, the storage requirement of the
Hamiltonian operator in 1D is now only (𝑛2), as compared to (𝑛3)
when storing it in a sparse matrix format. The performance of the
(𝑛3) arithmetic operations is limited by the floating point units of the
hardware (compute bound). In general, an operation is compute bound
if the arithmetic intensity 𝐼𝑐 , defined as the ratio of required floating
point operations (flops) and bytes of memory transferred, is larger than
3

the machine balance 𝐼𝑀 , defined as the ratio of the peak floating point
performance and the memory bandwidth of the hardware.

For our matrix–matrix products, 𝐼𝑐 = (𝑛) byte∕f lops, which is
above the machine balance 𝐼𝑀 on typical CPUs. For example, the
Intel Xeon Gold 6248R CPU used for our 2D simulations in Sec-
tion 5.2 achieves a memory bandwidth (pure load) of 268 GB/s and
can perform about 4 600 Gflop/s when running at 3.0 GHz, yielding
𝐼𝑀 ≈ 17 f lops∕byte. Applying the operator 𝑉 to 𝑤 is a memory-bound
operation in general, because it requires only two flops per matrix entry
loaded. Consequently, its cost is (𝑛2) memory transfers.

Thus, if 𝐻 (1D) is represented as a sparse matrix, then loading and
applying the operator 𝑇𝑉 ,𝑎1 ,𝑎2 , Eq. (11), would cost (𝑛3) memory
transfers and still (𝑛3) flops. The operation is then memory bound, as
𝐼𝑐 = (1). So the high values of 𝐼𝑀 in modern HPC hardware, like CPUs
and GPUs, can lead to a speed-up of about a factor 100 when going from
the sparse matrix representation to the tensor operations. This is exactly
a key idea in this article. As an example, for the processor mentioned
above and 𝐼𝑐 = 1, we would achieve a performance 200 times below
the peak floating point performance for double precision data.

An alternative approach to implement the product of the Hamil-
tonian matrix and the state vector might store only the dense matrix
components 𝐶1,2 and execute the operation by repeated dense matrix–
vector operations (and appropriate on-the-fly indexing into the vector).
For small 𝑛, this may lead to higher performance because data can
be kept in caches. But, for example, for 𝑛 = 1, 000, the memory
requirement for 𝐶1 is 64MB, sufficient to make such an implementa-
tion memory-bound because all data needs to be loaded from RAM
repeatedly. So despite requiring less memory in total, the expected
performance is of the same order as when storing the entire sparse
matrix.

3.3. Operator application for the 2D case

For the 2D problem, both the operator 𝐻 (2D), Eq. (9), and its compo-
nents 𝑫𝑥𝑥 = 𝑫𝑥1𝑥1 +𝑫𝑥2𝑥2 ,𝑫𝑦𝑦 = 𝑫𝑦1𝑦1 +𝑫𝑦2𝑦2 are of the form Eq. (10)
with particular choices of 𝑎1, 𝑎2, and 𝑉 . Thus, we can now apply
Eq. (11) in a nested way. Indeed, let 𝑊 = reshape(𝑤,𝑁𝑦1𝑁𝑦2 , 𝑁𝑥1𝑁𝑥2 )
and 𝑁 = 𝑁𝑥1𝑁𝑥2𝑁𝑦1𝑁𝑦2 , resulting in

𝐻 (2D) ⋅𝑤 = reshape
(

−
𝛼𝑦
2
𝑫𝑦𝑦 ⋅𝑊 −

𝛼𝑥
2
𝑊 ⋅𝑫𝑇

𝑥𝑥, 𝑁, 1
)

+ 𝑉 ⋅𝑤. (12)

If we assume that 𝑁𝑥1 = 𝑁𝑥2 = 𝑁𝑦1 = 𝑁𝑦2 = 𝑛, then loading the
operator still requires (𝑛2) memory transfers. However, the vector 𝑤
now actually represents 4D tensors and has a storage requirement of
(𝑛4). Hence, the total amount of memory transferred is (𝑛4). For
each of the 𝑛2 columns of 𝑊 , (𝑛3) flops are performed, amounting
to (𝑛5) in total. The computational intensity is therefore still (𝑛) and
the operation is compute bound as before.

In practice, we implement the term 𝑊𝑫𝑇
𝑥𝑥 in Eq. (12) as (𝑫𝑥𝑥𝑊 𝑇 )𝑇 ,

so that 𝑛4 vector elements have to be read and written twice in
each operator application due to the transpose operations. In addition,
we have also developed a distributed memory implementation where
the columns of 𝑊 and 𝑊 𝑇 are distributed among several processes
running on different nodes of a cluster. In this way, the transpose
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operations translate to an ‘all to all’ communication pattern. Whenever
the communication for a single column is complete, the corresponding
product with 𝑫𝑥𝑥 can be performed (see also Section 5.2). Overall this
ields a very efficient and scalable implementation. However, we also
emark that the overhead of transposing a tensor twice can be avoided
y using an optimized implementation of a tensor contraction, such as
ETT [14].

. Jacobi–Davidson and preconditioning

In this section, we briefly introduce the Jacobi–Davidson QR (JDQR)
ethod [15]. Compared to the Arnoldi-type iteration (Krylov–Schur),
hich is implemented in MATLAB’s eigs command, JDQR offers some

lexibility when solving the so-called correction equation. We use this
lexibility to improve the convergence dramatically, by introducing

preconditioned iteration for the correction equation and exploiting
gain the tensor structure of the matrices.

.1. The Jacobi–Davidson QR method

We use a Matlab implementation of the JDQR method [15] that is
uitable for computing a few exterior eigenvalues of a non-Hermitian
atrix. The algorithm computes a partial QR decomposition of a matrix
by applying a Newton process to the system of equations

{

𝐴𝑄 −𝑄𝑅 = 0,
− 1

2𝑄
𝑇𝑄 + 1

2 I = 0.
(13)

The Newton updates are utilized to extend the search space spanned
by 𝑄, whereas the standard Ritz pairs are used for approximating
eigenpairs of the matrix 𝐴. Whenever the basis spanning the search
space reaches a maximum size 𝑚max, it is compressed into 𝑚min vectors
by (implicitly) applying a truncated Singular Value Decomposition
(SVD) to retain only the most relevant directions.

The Newton process requires solving the correction equation

(I − �̃��̃�𝑇 )(𝐴 − 𝜃I)(I − �̃��̃�𝑇 )𝛥𝑞 = −(𝐴𝑞 − 𝑞𝜃) (14)

for the new basis vector 𝛥𝑞 in every outer iteration 𝑖. Here �̃� contains
the approximation 𝑞 ≈ 𝑄𝑖 for the current eigenvector and any previ-
ously converged (‘locked’) eigenvectors. Moreover, 𝜃 ≈ 𝑅𝑖𝑖 denotes the
current approximate eigenvalue.

The deflation operator I − �̃��̃�𝑇 improves the conditioning of the
shifted matrix 𝐴−𝜃I. We employ a Generalized Minimal Residual (GM-
RES) method to solve Eq. (14) with additional acceleration resulting
from preconditioning, as discussed in the next section. Further details
on how the preconditioner is combined with the projections can be
found in Ref. [16].

4.2. Preconditioning

In order to improve the convergence of the GMRES correction
solver, we introduce a shifted version of the Hamiltonian that ignores
the potential 𝑉 . Moreover, we neglect 𝑉 in the preconditioner allowing
us to exploit the tensor product structure of the differential operator,
even if 𝑉 does not have tensor structure, as discussed above.

In the 1D case and for small values of the potential depth 𝑣0, the
atrix 𝐻 (1D), Eq. (8), can be approximated by an operator of the form
0,1,1 given by Eq. (11), where 𝐶1 = − 𝛼𝑦

2 𝐷𝑦1𝑦1 , 𝐶2 = − 𝛼𝑥
2 𝐷𝑥1𝑥1 . For

ome scalar 𝜎, linear system with 𝑇0,1,1−𝜎I and some right-hand side 𝑏,
espectively 𝐵 = reshape(𝑏,𝑁𝑦1 , 𝑁𝑥1 ), can be solved for 𝑤 with the help
f the Sylvester equation

𝐶1 − 𝜎1I1
)

𝑊 +𝑊
(

𝐶2 − 𝜎2I2
)𝑇 = 𝐵 (15)

with 𝜎 = 𝜎1 + 𝜎2.
For our system, the shift 𝜎1,2 = −𝛼𝑦,𝑥

(2)
0 ∕|𝛼𝑥 + 𝛼𝑦| is a good choice.
4

In this way, the preconditioner approximates the shift-invert operator
ear the value − (2)
0 of the two-body binding energy, which is close to

he desired eigenvalues.
Bartels and Steward [17] have introduced a direct method for

olving the Sylvester equation (15). It requires a Schur decomposition
f the shifted matrices 𝐶1,2 − 𝜎1,2I, a combination of two dense matrix–
atrix products, and a special forward/backward substitution with the

chur factors. Since the matrices involved remain the same throughout
he JDQR process, the Schur factorization has to be performed only
nce. Applying our preconditioner again has a computational cost
f (𝑛3) and requires (𝑛2) data transfers, so that the performance
haracteristics of the overall algorithm are unchanged.

Unfortunately, we cannot straightforwardly extend our precondi-
ioner, which is a direct solver for a shifted operator, to the 2D case.
ndeed, the Schur decomposition of the operators 𝑫𝑥𝑥 and 𝑫𝑦𝑦 cannot
e simply represented as a sum of Kronecker product terms. Instead
ne might use an iterative procedure to approximate the effect of the
hift-invert operator in 2D and we do not consider such techniques
ere. An alternative approach, we focus on a distributed memory
mplementation of the 2D operator application, in order to accom-
odate the significant memory requirement for storing the vectors,
hich represent 4D tensors. Numerical results for the 2D case without
reconditioning are shown in Section 5.2.

. Numerical and performance results

In this section, we present the results for our numerical study of
he quantum mechanical three-body problem in one and two spatial
imensions. We investigate the convergence of the three-body energies
s a function of the number of grid points. Moreover, we compare
he performance of three iterative eigenvalue solvers: Krylov–Schur,
acobi–Davidson QR with and without preconditioning.

.1. Results for the three-body problem in 1D

We are now in the position to compute the bound states of the 1D
hree-body system introduced in Section 2 and depicted in Fig. 1(a). We
irst determine the potential depth 𝑣0 for the Gaussian-shaped potential
G, Eq. (4), such that it corresponds to a specific two-body binding
nergy  (2)

0 . For this purpose, we choose a particular value of the
wo-body binding energy  (2) =  (2)

0 in the discretized version of the
chrödinger equation (1) in 1D and solve the generalized eigenvalue
roblem for the lowest eigenvalue 𝑣0. For the two-body binding ener-
ies  (2)

0 = 10−1, 10−2, and 10−3, the corresponding potential depths 𝑣0
re listed in Table 1.

Next, we use these parameters to solve the discretized Schrödinger
quation (6) for the three-body problem in 1D with the Hamiltonian
atrix given by Eq. (8). To increase the accuracy of our method for
given grid resolution, we apply the parity selection rule, reducing

he problem size by a factor of 22 for a requested accuracy. More
recisely, we exploit the symmetry properties of the basis functions
sed for discretization, as outlined in Ref. [11]. Consequently, bosonic
nd fermionic bound states have to be computed separately. These
articular states are characterized by even respectively odd wave func-
ions with regard to the transformation 𝑦 → −𝑦, corresponding to the
xchange of the two heavy particles, see Fig. 1.

For bosonic and fermionic heavy particles and a mass ratio 𝛼 =
∕𝑚 = 20 of heavy and light particles, we list the resulting ratios ∕ (2)

0
of three-body and two-body binding energy in Table 1. Our results
coincide with the ones presented in Ref. [7] for the Gaussian-shaped
potential 𝑓G, Eq. (4). As  (2)

0 → 0, these ratios approach the universal
alues listed in Table 1 of Ref. [9].

In order to analyze the performance of our numerical scheme, we
se a sequence of grid sizes 𝑁𝑥1 and always choose 𝑁𝑦1 = 𝑁𝑥1∕2.
ig. 2 shows the excellent convergence properties of the discretization.
ndeed, the relative spatial discretization error

 ≡
|(𝑁𝑥1 ×𝑁𝑦1 ) − (2𝑁𝑥1 × 2𝑁𝑦1 )| , (16)
|(𝑁𝑥1 ×𝑁𝑦1 )|
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Table 1
Computed ratio ∕ (2)

0 of three-body and two-body binding energies in 1D for the case
of two heavy bosons or fermions as obtained by solving the discretized Schrödinger
equation (6). The calculations are performed for the mass ratio 𝑀∕𝑚 = 20 of heavy
and light particles, interacting via a Gaussian shaped potential 𝑓G, Eq. (4). Here the
otential depth 𝑣0 has been chosen such that it corresponds to a particular two-body
inding energy  (2)

0 .

 (2)
0 𝑣0 in 1D Bosons Fermions

10−1 0.34459535 −2.47603458 −1.82589653
−1.41279329 −1.18259157
−1.06093864 −1.02845702

10−2 0.08887372 −2.66187629 −1.68983501
−1.33267928 −1.13394640
−1.03860624 −1.00258200

10−3 0.02613437 −2.71516265 −1.65622442
−1.32865305 −1.12520220
−1.03745282 −1.00045248

Fig. 2. Relative spectral discretization error 𝛿 , Eq. (16), as the function of the grid
size 𝑁𝑥1 with 𝑁𝑦1 = 𝑁𝑥1∕2 for the three bosonic eigenvalues and the two-body binding
energy  (2)

0 = 10−2. The tolerance in the eigenvalue solver has been set to 10−12.

estimated as the relative difference of the computed eigenvalues on
successive grids, is reduced exponentially until it reaches the tolerance
of 10−12, which has been set in the solver for the computation of each
eigenpair.

Next, we compare the convergence behavior and running time of
three methods, namely the Krylov–Schur (KS) and the JDQR method
without (no-prec) and with (prec) preconditioning, as described in
Section 4.2. In each case we exploit the tensor structure of the problem
when applying the linear operator.

For different two-body binding energies  (2)
0 , we present in Table 2 a

comparison of the number of iterations and matrix–vector multiplica-
tions (MVM) with KS and no-prec/prec-JDQR methods necessary for
computing the lowest three three-body energies in 1D with bosonic
heavy particles, as listed in Table 1. All solvers have been set to the
same tolerance 10−12. In addition, we have found similar behavior of
these results in the case of fermionic heavy particles.

Compared to the KS method, the no-prec-JDQR one substantially
reduces the number of matrix–vector multiplications, each of which
is in fact an operator application of the discretized Hamiltonian, as
described in Section 3.2. This is a consequence of the superior con-
vergence rate of the inexact Newton process within JDQR over the
Krylov subspace iteration. The prec-JDQR method achieves an even
more drastic reduction of the number of iterations and MVMs. This
results from the fact that the correction equation can now be solved to
5

sufficient accuracy in order to achieve locally quadratic convergence of
Fig. 3. The running time as the function of the grid size 𝑁𝑥1 , required for computing
hree bosonic three-body energies in 1D, Table 1, with the two-body binding energy
(2)
0 = 10−2, by using KS, no-prec-JDQR, and prec-JDQR methods.

he Newton process. In addition to MVM, this method requires a similar
umber of preconditioner applications, which have a similar cost, as
iscussed in Section 4.2. Due to the fast convergence, the running time
equired for finding the eigenvalues is significantly reduced, as shown
n Fig. 3. To perform this analysis, we have made use of a MATLAB
mplementation. In particular, the KS method has been realized via the
ATLAB command eigs with the default maximum size 𝑚 = 20 for

the Krylov basis. For JDQR (with or without preconditioning), we used
a basis size of 20−50 vectors (i.e., restarting from 20 as soon as the basis
size reaches 50). The inner GMRES solver is stopped after 20 iterations
or when a tolerance of max(0.5𝑘, 10−12) is reached in outer iteration 𝑘.
These choices may shift the cost of computations between the MVM and
orthogonalization phases of the solvers, but have no qualitative effect
on our findings.

5.2. Results for the three-body problem in 2D

The aim of this section is to show the performance and viability of
our approach in analyzing the three-body problem in two dimensions,
as introduced in Section 2 and displayed in Fig. 1(b). By choosing
potentials of two very different shapes 𝑓G, Eq. (4), and 𝑓L, Eq. (5),
we find numerical evidence for a universal behavior in this system.
In particular, we show that when the two-body binding energy  (2)

0 is
decreased, the corresponding three-body energies for both interactions
become more and more similar and approach those provided by a
contact interaction between heavy and light particles.

Our discretization scheme uses 𝑁𝑥 = 𝑁𝑥1 = 𝑁𝑥2 points in the 𝑥1-
and 𝑥2-direction, and 𝑁𝑦 = 𝑁𝑦1 = 𝑁𝑦2 points in the 𝑦1- and 𝑦2-direction,
leading to a total problem size of 𝑁 = 𝑁2

𝑥𝑁
2
𝑦 , where we choose again

𝑁𝑦 = 𝑁𝑥∕2. To compute the three-body binding energies for the 2D
case, we follow a similar procedure as presented in Section 5.1.

First, for each two-body binding energies  (2)
0 = 10−1, 10−2, and

10−3, we determine the depth 𝑣0 for the potential of Gaussian shape 𝑓G,
Eq. (4), as well as of Lorentzian-cube shape 𝑓L, Eq. (5), by solving the
generalized eigenvalue problem (1) in 2D. The corresponding values of
𝑣0 are listed in Table 3.

Next, we use these parameters to solve numerically the correspond-
ing three-body problem (2) for the mass ratio 𝛼 = 1. In this case there
is only one eigenvalue  with  < − (2)

0 . For each potential 𝑓 we use an
increasing number of grid points to verify the numerical convergence
of our results. Moreover, for a given grid size, we consecutively solve

(2)
the eigenvalue problem for the three values of 0 in decreasing order,
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Table 2
The number of iterations and matrix–vector multiplications (MVM) necessary to compute three bosonic eigenvalues, listed in Table 1, by using
Krylov–Schur (KS) and Jacobi–Davidson methods, without preconditioner (no-prec-JDQR) and with preconditioner (prec-JDQR), respectively.
 (2)
0 𝑁𝑥 𝑁𝑦 KS MVM no-prec-JDQR MVM prec-JDQR MVM

10−1 64 32 134 2 082 56 1 182 24 253
128 64 1 086 16 491 132 2 920 28 258
256 128 5 211 80 523 299 6 782 28 261
512 256 11 324 172 018 679 15 526 37 506
1 024 512 42 540

10−2 64 32 88 1 390 46 932 25 206
128 64 720 10 999 92 2 004 28 292
256 128 6 072 91 977 212 4 765 29 337
512 256 23 546 357 133 554 12 648 30 402
1 024 512 39 502

10−3 64 32 34 560 40 792 23 163
128 64 170 2 728 74 1 596 25 202
256 128 2 200 33 815 148 3 303 28 235
512 256 13 599 207 748 367 8 342 28 265
1 024 512 34 271
Table 3
Computed ratio ∕ (2)

0 of the three-body bound state in 2D for the Gaussian-shaped 𝑓G, Eq. (4), and the
Lorentzian cube-shaped 𝑓L, Eq. (5) potentials and successively refined grids. The calculations are performed
for bosonic identical particles and the mass ratio 𝛼 = 1.
 (2)
0 𝑓 𝑣0 in 2D (256 × 128)2 (440 × 220)2 (480 × 240)2

10−1 𝑓G 0.94734392 −2.19995777 −2.19995777 −2.19995777
𝑓L 1.64282612 −2.22611678 −2.22611678 −2.22611678

10−2 𝑓G 0.48272728 −2.31159530 −2.31159833 −2.31159833
𝑓L 0.89384635 −2.32245890 −2.32324354 −2.32324413

10−3 𝑓G 0.31340752 −2.37039003 −2.36675870 −2.36765166
𝑓L 0.59682960 −1.52944449 −2.36470275 −2.37106085
t
E
a
c

using the previously computed subspace to start the next Jacobi–
Davidson process (homotopy method). The corresponding energies of
the single three-body bound state are listed in Table 3.

For both potentials, the computed values of the three-body binding
energies, relative to  (2)

0 , indicate convergence for  (2)
0 = 10−1 to at least

nine digits. By further approaching the resonance, that is reducing the
value of  (2)

0 , the convergence gets worse such that for  (2)
0 = 10−3 and

grid size of (480 × 240)2 only the first three digits of the ratio ∕ (2)
0

an be considered as converged.
Finally, we compare the converged values of the three-body binding

nergies for the grid size (480 × 240)2 and different binding potentials
f Gaussian shape 𝑓G and Lorentzian-cube shape 𝑓L. Already for a
wo-body binding energy  (2)

0 = 10−1, the three-body binding energies
= −2.199…  (2)

0 and  = −2.226…  (2)
0 are of the same order. By

educing the value of  (2)
0 and moving closer to the resonance, the

hree-body energies further approach each other.
For the limiting case of a contact interaction between non-identical

articles with 𝑀 = 𝑚 in 2D, see Fig. 1(b), a single three-body bound
tate has been predicted to exist with an energy of approximately
.39  (2)

0 [18], 2.36  (2)
0 [19,20], or 2.3896  (2)

0 [21]. This result is only
alid for identical bosonic particles, as the same three-body system with
dentical fermionic ones does not have any bound state [18,19]. Our
umerical studies, which are summarized in Table 3 and performed
or two different local potentials of finite range, support these results.
hus, as one of the central results of this article, we have shown that
he considered three-body system in 2D displays a universal behavior
s  (2)

0 → 0, that is the three-body states are independent of the details
f the two-body interaction.

In the following, we provide additional details on the software im-
lementation. For our analysis, we have developed a hybrid MPI/multi-
hreaded C++ implementation to enable an efficient solution of the
hree-body problem. Multi-threaded dense matrix products are pro-
ided by the Intel MKL (version 2020.4.304) and the JDQR method
s implemented by phist [16], version 1.9.6. The backend used within
hist is the Trilinos library Tpetra [22], version 13.0.1. In order to
arallelize the application of the Hamiltonian, Eqs. (8) and (9), for
6

he three-body problem, we use a column-wise distribution of 𝑊 from
q. (12) among the MPI processes, while the dense matrices, such
s 𝑫𝑥1𝑥1 etc., constituting the Hamiltonian are replicated on all pro-
esses. The communication involved in transposing the tensors 𝑊 and
𝑫𝑥𝑥𝑊 𝑇 , Section 3.3, can be overlapped with computations as follows:

1. Transpose the local columns of 𝑊 ;
2. For each column of 𝑊 𝑇 , dispatch a non-blocking ‘gather’ oper-

ation;
3. Whenever a gather operation is finished for a local column of

𝑊 𝑇 , apply 𝑫𝑥𝑥 to that column;
4. The back transpose is then overlapped with the computation of

the first term in Eq. (12), 𝑫𝑦𝑦𝑊 .

The numerical experiments were performed on the DelftBlue super-
computer at TU Delft [23] with up to 220 compute nodes. Each node
consists of two Intel Xeon E5-6248R processors with 24 cores and has
192 GB of RAM. On such a node the (256 × 128)2 problem can be run
by requiring about 8 GB per vector. In the absence of a preconditioner,
we have used 8 nodes to accelerate the computation. The finest grid re-
quires about 100 GB per vector. Its run on the full Phase 1 of DelftBlue
(220 nodes) took about 3.5 h for the three consecutive values of  (2)

0 .
A detailed performance analysis of the implementation and possible
additional optimizations are beyond the scope of this article, but the
observed running times in 1D, shown in Fig. 3, give an indication of
the cost of such simulations.

6. Conclusion and outlook

In this article, we present a novel, computationally-efficient ten-
sor method to analyze the quantum-mechanical three-body problem
with local two-body interactions in 1D and 2D. To build a matrix
representation of the Schrödinger equation for the three-body prob-
lem, we have applied a pseudo-spectral method based on the rational
Chebyshev polynomials. For the computation of the corresponding
three-body binding energies, we have investigated different iterative
methods for the diagonalization of the Hamiltonian matrix, namely the
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Krylov–Schur and the Jacobi–Davidson QR method with and without
preconditioning. As a crucial point in implementing these methods, we
have exploited the tensor product structure of the Hamiltonian to avoid
storing redundant blocks of the matrix. Based on the direct solution of
a Sylvester equation, we have developed an effective preconditioning
strategy in the 1D case for accelerating a Jacobi–Davidson QR iterative
eigensolver. In this way, the improved hardware efficiency of our
tensor-based implementation has delivered a speed-up of about a factor
100 compared to the sparse matrix representation and Krylov methods
that were utilized in previous studies of the three-body problem.

By developing a high performance implementation of our solu-
tion techniques that can be used on current supercomputers, we have
shown for the first time the universal behavior of the 2D heavy–
heavy–light three-body system when the ground-state energy of the
heavy–light subsystems approaches zero. For this purpose, we have
compared the numerically calculated three-body energies for differ-
ent two-body interaction potentials of finite range. Close to the reso-
nance they are approximately equal and coincide with the predicted
three-body energy for a two-body contact interaction in the case of
non-identical bosonic particles with equal masses. Thus, our newly
developed tensor method is of crucial relevance for subsequent studies
of the quantum-mechanical three-body problem in one and two spatial
dimensions.

As next steps, the methods developed in this article can straightfor-
wardly be extended for studying other states of the three-body problems
in 1D and 2D, such as virtual and resonant ones, as well as bound
states embedded into the continuum. Moreover, since universality in
three-body systems conventionally occurs in the region of very small
binding energies, large grid sizes are necessary to obtain the required
convergence. One way forward may be to enforce a low-rank structure
on the occurring vectors. This approach would reduce the memory
requirement for vectors in a similar way that we have used to reduce
the memory requirement for the operator in this article. Alternatively,
by using polar coordinates we may exploit the conservation of the
total angular momentum in the three-body system and thus reduce
the effective dimension of the problem. However, the tensor product
structure becomes more complicated in this case and parts of our
implementation would require further developments.

In summary, we are convinced that our newly-developed tensor
method will provide a deeper insight into the fascinating phenomena
that occur for few-body problems in low dimensions.
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