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Abstract
Graph Neural Networks (GNNs) have emerged as a
powerful tool for learning from relational data. The
real-world graphs such models are trained on are
susceptible to changes in their topology. A grow-
ing body of work in the field of GNNs’ stability
to topology perturbations is trying to characterise
how models respond to those changes, providing
valuable insights that have enhanced the robustness
of GNNs to adversarial attacks. The past work in
this field, however, has only approached stability
analysis using spectral graph theory, which is not
applicable to all kinds of GNN models. In this pa-
per, we aim to extend the past work in GNN stabil-
ity by proposing an algorithm for analysing the sta-
bility of GNNs with model-agnostic GNN explain-
ability tools instead of the mathematical framework
of spectral graph theory. We demonstrate that the
outputs of explainability tools can encode useful
insights into the stability of GNNs and present a
case study on using those insights to analyse node
removal, edge removal, and edge weight perturba-
tions.

1 Introduction
Graph-structured data is ubiquitous throughout numerous do-
mains, from social to biological networks. To leverage the
unique structure of this data for machine learning, practition-
ers often use Graph Neural Networks (GNNs), a type of ma-
chine learning model tailored to learning from relational data.
GNNs can be used for various tasks:

• Node classification—for example, to classify the topic
of documents based on hyperlink or citation graphs [1]

• Link prediction—to predict the side effects of drugs [2]
• Graph classification—to predict the toxicity of

molecules [3]

In all of those applications, the underlying network that the
GNN is trained on is assumed to be perfectly known. How-
ever, this is often not the case in real-world scenarios: net-
works can change, there can be estimation errors when de-
termining the network components, and networks can be at-
tacked by adversaries [4]. Such changes to the underlying
graph are known as alterations to its topology, and the ability
of a GNN to output reliable predictions under such changes
is referred to as its stability to topology perturbations. The
stability of a GNN is an important property for several real-
world applications: for example, stabler networks are less
susceptible to adversarial attacks [4] and thus more reliable.

There are several works that have analysed the stability of
GNNs to topology perturbations [4]–[8] from the theoretical
perspective of spectral graph theory [9]. However, the frame-
work of spectral graph theory is not applicable to all popu-
lar GNN architectures. To describe the stability properties
of those architectures, other approaches are required. One
candidate for this is the growing field of GNN explainabil-
ity, which attempts to explain why GNNs produce particular

kinds of predictions [10]–[12]. Despite that, there has been
very little work in the intersection of GNN stability and ex-
plainability. This paper aims to to demonstrate the feasibility
of applying explainability tools in this context.

Towards this end, our contributions are the following:

• We present an algorithm for generating topology pertur-
bations informed by the explanations for model predic-
tions generated by explainability tools.

• Using this algorithm, we demonstrate correlations be-
tween the frequency at which specific nodes or edges
are identified as explanations and the impact of these
nodes/edges on model stability.

• We explore this link across two datasets and three types
of perturbation: node removal, edge removal, and edge
weight perturbations.

2 Background
2.1 The Stability of Graph Neural Networks to

Topology Perturbations
One of the first works examining the stability of GNNs to
topology perturbations was by Gama et al. [5]. In that paper,
the authors proved that all GNN architectures which employ
graph convolutions with integral Lipschitz filters are stable to
small topolgy perturbations. Such architectures are known as
graph convolutional neural networks (GCNNs). The result is
inherited from spectral graph theory: the stability properties
that hold for graph filters that satisfy the integral Lipschitz
condition also hold for any GNN that uses integral Lipschitz
filters in its architecture.

Subsequent works have focused on extending these results
to a wider range of perturbation types, as well as on gaining
a deeper theoretical understanding of the stability of graph
filters. Gao et al. [7] show that GCNNs are stable to not only
deterministic but also to stochastic perturbations. Kenlay et
al. [8], [13] attempt to express the upper bound on the change
of the filter output not only as a function of the magnitude
of the perturbation, but also as a function of the structural
properties of the graph and the perturbation. Such a bound is
desirable as it provides more information about the sufficient
conditions under which a graph filter will be stable, thus being
helpful for devising strategies for defense against adversarial
attacks.

This usefulness of stability analysis to the field of adversar-
ial robustness has prompted follow-up analyses: for example,
Chang et al. [4] conduct an adversarial vulnerability analysis
of GNNs based on matrix perturbation theory.

A common theme among all of the aforementioned works
is that they approach the stability analysis of GNNs using the
tools of spectral graph theory [9]. However, not all GNN
architectures are amenable to such analysis: various popular
spatial GNN architectures such as Graph Attention Networks
[14] and GraphSage [15] cannot be easily represented in the
Fourier domain and are thus difficult to analyse. It would be
desirable to develop tools that better enable the analysis of
the stability of such spatial architectures. In other words, we
would like to develop stability analysis tools that are model-
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agnostic, meaning that they can be applied on any type of
GNN model.

A further commonality among the aforementioned works
is that they assume the graph filters used in the GNN archi-
tectures to satisfy the integral Lipschitz condition. The sta-
bility properties of GNN architectures that do not fulfill this
assumption are also poorly understood.

2.2 A Taxonomy of Graph Explainability Methods
How to approach the analysis of the stability properties of
GNNs in a model-agnostic way? One possible solution is to
use the set of tools developed in the field of Explainable AI
(XAI) [16]. Explainability methods enable the identification
of the features, nodes, and edges that most strongly impact
model predictions. One might expect that since the model re-
lies heavily on those graph elements, perturbations involving
those elements would have the biggest impact on stability. In
other words, one might expect the explanations generated us-
ing XAI methods to also involve information about the stabil-
ity properties of the graph. In this paper, we will empirically
test this hypothesis.

A crucial step towards providing faithful explanations [17]
for the stability properties of GNNs is choosing the correct
explainability technique. To provide an overview of the con-
sidered techniques, we provide a short taxonomy of the tech-
niques that have been considered when writing this paper.
This taxonomy is based on three earlier surveys of explain-
able graph neural networks [10]–[12].

Following Yuan et al. [10], we decompose GNN explain-
ability techniques into two categories: factual and counter-
factual. The category of factual explanations can be further
decomposed into self-interpretable factual explanations and
post-hoc factual explanations. In this paper, we will focus on
post-hoc factual explanations, as they allow for the explana-
tion of already trained GNNs without requiring modifications
to the model architecture or training process.

There are five classes of post-hoc factual explanation tech-
niques:

• Gradient-based methods utilize the gradients of the
model’s output with respect to the input features to
identify the importance of each feature in the model’s
decision-making process.

• Perturbation-based methods generate explanations by
measuring the change in the model’s output when certain
input features or subgraphs are perturbed or removed.

• Decomposition-based methods aim to decompose the
model’s output into contributions from individual input
features or subgraphs.

• Surrogate methods approximate the behavior of the
original GNN model using a simpler, more interpretable
model.

• Generation-based methods utilize generative models
to generate explanations in the form of important sub-
graphs or counterfactual examples.

This paper will focus on the applicability of gradient-based
and perturbation-based methods to GNN stability analysis.
We will motivate this choice in Section 3.3.

3 Methodology
3.1 Experimental Approach
As mentioned in the Section 2, explainable AI techniques
constitute a tool that may allow for a principled analysis of
the stability properties of GNNs not amenable to a spectral
graph theory-based analysis. To design experiments that ver-
ify this hypothesis, we have to choose among the five classes
of explainability techniques explored in Section 2. Addition-
ally, there are two ways these techniques can potentially be
utilised for stability analysis:

1. One approach is to generate explanations to the origi-
nal graph using the XAI tool of choice and to use those
explanations to inform the perturbations that we make
to the graph. Given that the explanations informing the
perturbations are interpretable, we might hope that those
interpretations can also be used to explain the effect of
these perturbations to stability.

2. Another approach is to first perturb the original graph
and and to then generate interpretations that explain the
differences in the model predictions before and after the
perturbations have been applied.

A challenge that both of these approaches face is that while
stability is commonly measured over the entire graph, the out-
puts of all existing explainability tools are specific to a small
number of nodes or edges. This is less problematic for the
first approach: the explanations have to be generated once
for the original graph and can then be used to inform various
different perturbations. In comparison, the second approach
would require generating explanations across the entire graph
for each perturbation and stability measurement. Due to this
requirement, we deem the second approach prohibitively ex-
pensive and focus on the applicability of explainability meth-
ods to the first approach. The next section will describe our
methodology for this in detail.

3.2 Algorithm for Generating Perturbations
To verify our hypothesis that the stability properties of GNNs
can be analysed using explainability tools, we developed an
algorithm that can be used to create explainability-informed
stochastic node removal, edge removal, and edge weight per-
turbations. We developed our algorithm with those pertur-
bations in mind because these perturbation types are simpler
than others such as edge rewiring perturbations, making them
more suitable for the first experiments exploring this hypoth-
esis. We expect it to be possible to extend this algorithm to
other types of perturbation.

Our algorithm, illustrated on Figure 1, consists of the fol-
lowing six steps:

1. Train the chosen model on the chosen dataset.
2. For each node in the graph, train the chosen explainabil-

ity algorithm (the explainer) on the model prediction for
that node to retrieve a small compact explanation sub-
graph that explains the model’s prediction for that node.

3. For each node in the graph, calculate the total number of
explanation subgraphs it appears on. Each node appears
the explanation subgraph generated for itself, but many
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of them are relevant to the predictions made for other
nodes and thus appear on multiple subgraphs. The ex-
planation subgraphs include both nodes and edges, but
the edges should be ignored in the case of node removal
perturbations. For edge removal or edge weight pertur-
bations, ignore the nodes and calculate the same statis-
tics for the edges instead.

4. Sort the nodes based on the frequencies with which they
appeared on the explanation subgraphs and divide them
into n equally-sized bins based on the frequencies. The
first bin should contain the nodes with the highest fre-
quencies, the second bin the nodes with the second-
highest frequencies, etc. We refer to those bins as the
frequency groups. In the case of perturbations involving
the edges, sort the edges rather than the nodes into bins.

5. Randomly draw m samples from each bin, each sample
containing half of the elements in that bin. This step
makes the perturbations stochastic, enabling better un-
certainty estimates for the stability values calculated for
each bin.

6. For each sample, remove the elements in that sample
from the graph and measure the model’s stability. In the
case of edge removal or edge weight perturbations, only
edges are removed, while in the case of node removal
perturbations, nodes are sampled and removed together
with the edges that connect to them. This step produces
a tensor of size n×m with the measured stability values.
The model’s stability is measured as follows:

∆y =

√∑n
i=1(yi − ŷi)2∑n

i=1(yi)
2

(1)

where yi is a single element in the model’s raw (i.e.,
pre-softmax) output vector on the original graph, ŷi a
single element in the model’s raw output vector on the
perturbed graph, and ∆y the root relative mean squared
error (RRMSE) between these output vectors. This is
our measure of stability to topology perturbations: the
smaller RRMSE, the more stable the model.

3.3 Explainability Tools
This section gives a short overview of the explainability tools
used for the experiments. All explainability tools were imple-
mented using the PyTorch Geometric library [18].

To keep the focus of our project on exploring the appli-
cability of explainability techniques to GNN stability analy-
sis rather than on the implementation of explainability tech-
niques, we decided to focus our experiments on methods that
are already available in open-source libraries such as PyTorch
Geometric. This ruled out the use of decomposition-based
methods, surrogate methods and generation-based methods.
Concretely, we decided to use GNNExplainer [19] from the
class of perturbation-based explainability methods and Inte-
grated Gradients [20] from the class of gradient-based meth-
ods.

Alternative perturbation-based methods that were consid-
ered are GraphMask [21] and PGExplainer [22]. We decided
against using GraphMask due to the fact that it was mainly

Figure 1: This figure illustrates our algorithm for generating
explainability-informed perturbations. The algorithm is illustrated
using the example of node removal perturbations, but works very
similarly for edge removal and edge weight perturbations. To il-
lustrate step 2, the figure includes a compact subgraph of the Cora
graph outputted by the GNNExplainer algorithm to explain the pre-
diction that the GAT model made for vertex 10.

developed for NLP-focused datasets, which were out of the
scope of this project. PGExplainer was not chosen as it only
supports explaining the phenomenon the model is trying to
predict, rather than the model prediction itself.

For the gradient-based method, we also considered using
Saliency Attribution [23], [24], InputXGradient [25], Decon-
volution [26], and Guided Backpropagation [24]. We decided
in favour of Integrated Gradients over those approaches due
to the robustness and complexity of the method. Though the
rest of the mentioned gradient-based methods are useful in
offering a quick, computationally simple overview of the fea-
tures important for the model prediction, it has been shown
that they often fail to offer a faithful overview of the com-
putational processes that actually took place in the model to
produce the output [27]. Although the rest of the gradient-
based methods aside from Integrated Gradients have not been
analysed in this paper, support has been implemented in the
project repository to generate explanations using these meth-
ods and to obtain the graphs presented in this paper for those
methods as well.

Finally, we considered using attention-based explainability
methods. Those were not used due to the fact that they are
not model-agnostic and that there have been concerns about
the faithfulness of such explanations [28].

GNNExplainer
GNNExplainer is a method designed to provide insights into
the predictions made by GNNs. It identifies a small compact
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subgraph structure and the node features that most influence
the model’s prediction for a given node. In this paper, we will
only use the compact subgraphs identified by the explainer,
so the rest of the section will be focused on those. Figure 1
provides an example of one such compact subgraph.

Given a trained GNN and a specific node or graph predic-
tion, GNNExplainer optimizes to maximize the mutual in-
formation between the GNN’s prediction and the distribution
of possible subgraphs. This involves learning a continuous
mask on the adjacency matrix A. The loss function balances
the fidelity of the explanation (how well the masked input ex-
plains the prediction) with the complexity of the explanation
(favouring sparser masks).

Formally, the objective can be described as:

min
M

[−H (Pϕ (Y = y | G = Ac ⊙ σ(M))) + λ∥σ(M)∥1]
(2)

where H(·) represents the entropy, Pϕ(·) is the GNN’s pre-
diction probability, Ac is the binary adjacency matrix asso-
ciated with the computation graph of the node that is being
explained, M is the mask applied on Ac, ⊙ denotes element-
wise multiplication, and σ is the sigmoid function mapping
the mask values to the range [0, 1]. Large explanations are
penalized through an ℓ1 regularization term. The strength of
this term is set using the hyperparameter λ.

This objective is mathematically equivalent to maximizing
mutual information between the predicted label distribution
Y and the explanation. By optimizing this objective, GN-
NExplainer reveals the minimal subgraph necessary for the
GNN to make a prediction.

Integrated Gradients
Integrated Gradients [20] is a gradient-based attribution
method for explaining the predictions of neural networks, in-
cluding GNNs. It indicates how much each feature and each
edge contributes to the model’s prediction for a given node by
assigning importance scores, ensuring that the attributions are
consistent and proportional to the actual contributions of the
edges. We will again focus on the compact subgraphs found
using the technique.

Given a trained GNN and a specific node or graph predic-
tion, Integrated Gradients computes the attributions by inte-
grating the gradients of the model’s output with respect to
the edges along a path from a baseline graph to the actual in-
put graph, effectively measuring the cumulative effect of the
gradients along this path. We use a baseline input where the
weight of all edges is zero. The explanation subgraph is re-
turned based on the edge attributions; the nodes that appear
on the subgraph are the ones that those edges connect to.

Formally, the attribution of an edge (i, j) can be described
as:

IG(i,j) =

∫ 1

α=0

∂F(x,Aα)

∂wij
dα (3)

where F(x,A) is the output of the GNN on input x given an
adjacency matrix A, Aα denotes the adjacency matrix of the
original input graph with all edge weights set to α, and wij

is the weight of the edge (i, j). As direct computation of this
value is intractable, it is approximated by a discrete sum.

The complete formulation of Integrated Gradients is more
complicated, but since we use a baseline where all edges are
set to zero, the equation simplifies to the aforementioned one.
Such a baseline is used for two reasons. First, it ensures that
all contributions are measured relative to a neutral starting
point, which allows for a clear interpretation of the attribu-
tions since any non-zero weight directly indicates a contribu-
tion to the prediction. Second, it minimizes the computational
overhead.

3.4 Model Architectures
This section gives a short overview of the architectures used
for the experiments. All architectures were implemented us-
ing the PyTorch Geometric library. We perform the experi-
ments on Graph Convolutional Networks [1] and Graph At-
tention Networks [14]—two of the most popular GNN archi-
tectures.

Graph Convolutional Networks
Graph Convolutional Networks (GCNs) use graph convolu-
tions to aggregate node features from their neighbors, pro-
viding a localized first-order approximation of spectral graph
convolutions. Though GCNs normally operate in the spa-
tial domain, the convolutional architecture enables analysing
them in the spectral domain.

GCNs perform a weighted aggregation of a node’s neigh-
bors’ features, followed by a linear transformation and non-
linear activation. Given a set of node features, X =
{x⃗1, x⃗2, . . . , x⃗N}, where x⃗i is the feature vector of node i
and N is the number of nodes, the core operation in GCNs is
defined as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(4)

where H(l) is the matrix of node features at the l-th layer
(with H(0) = X), Ã = A + I the adjacency matrix with
added self-loops, D̃ the diagonal degree matrix of Ã, W(l) a
learnable weight matrix for the lth layer, and σ a non-linear
activation function (in our paper, the ReLU).

In addition to GCNs, we attempted to perform the ex-
periments using Topology Adaptive GCNs (TAGCNs) [29],
which generalize the GCN architecture by providing a kth-
order rather than only a first-order approximation of spec-
tral graph convolutions. However, we failed in getting the
explainability techniques to converge to small compact sub-
graphs. This failure is further explained in Appendix D.

Graph Attention Networks
Graph Attention Networks (GATs) introduce an attention
mechanism to the message propagation step in GNNs. The
key feature of GATs is that they compute the hidden repre-
sentations of each node by attending over its neighbors, thus
assigning different importance to different nodes in a neigh-
borhood without requiring any knowledge of the graph struc-
ture upfront.

Given a set of node features, H = {h1,h2, . . . ,hN},
where hi is the feature vector of node i and N is the number
of nodes, the attention mechanism of GATs can be described
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as follows:

h′
i = σ

∑
j∈Ni

αijWhj

 (5)

where Ni is the set of neighbors of node i, W is a learnable
weight matrix, σ denotes a non-linear activation function (in
our paper, the ELU [30]), and αij are the attention coeffi-
cients computed as:

αij =
exp(LeakyReLU(aT [Whi∥Whj ]))∑

k∈Ni
exp(LeakyReLU(aT [Whi∥Whk]))

(6)

Here, a is a learnable vector and ∥ denotes concatenation.

4 Experiments
4.1 Datasets
We performed our experiments on two datasets: Cora [31]
and DBLP [32]. Only a subset of the DBLP citation network
was used. Cora was chosen for its popularity and simplic-
ity, while DBLP was chosen thanks to the fact that it is a
heterogeneous graph well-suited for being transformed into a
homogeneous weighted graph. Such dataset choice was nec-
essary as we did not find a weighted homogeneous node clas-
sification dataset of similar size to Cora. An overview of the
properties of the datasets is given in Appendix A.

To turn the heterogeneous graph featured in the DBLP
dataset into a homogeneous one, we followed three steps:

1. Isolate the nodes with the ’Author’ node type from the
rest of the graph.

2. Based on edges between ’Author’ nodes and ’Paper’
nodes, identify which authors have coauthored papers
with each other and create undirected edges between
those authors.

3. Based on the number of times each author has coau-
thored papers with each of their coauthors, set their cor-
responding edge weights.

Using the edge weights retrieved through this process en-
hances the accuracy of both of our models, though the dif-
ference was at best 0.4%pt (the exact model accuracies are
presented in Appendix A). Though the improvements were
small, this indicates to us that our synthetically generated
edge weights contain meaningful information about the graph
that can be leveraged for better predictions by the models.

4.2 Stability to Explainability-Informed Node and
Edge Removal Perturbations

To test our algorithm, we first applied it to generate node
and edge removal perturbations for models trained to perform
node classification on the Cora dataset. We started by train-
ing the chosen model on this task. We then trained the chosen
explainer to output an explanation subgraph for the model’s
predictions for each node. For each such subgraph, the nodes
and edges that appeared on the subgraph were saved into a
dictionary. The hyperparameters used for training the models
were chosen based on the papers introducing our models [1],
[14]. Those values, alongside the hyperparameters used for
the explainers, can be found in Appendix B.

Figure 2: This plot displays the stability to node removal perturba-
tions as a function of the mean number of times the nodes in the fre-
quency group that the removed nodes were sampled from appeared
on the explainability subgraphs. The y-axis displays the root rela-
tive mean squared error between the model’s output vectors on the
original and perturbed graphs. Since the perturbed graph has fewer
nodes, only the predictions for the nodes that appear on both graphs
are considered when calculating this distance. The shaded areas rep-
resent the 95% confidence intervals for the calculated stability values
and are calculated based on the 10 samples drawn for each frequency
group. The dashed horizontal lines indicate the baseline stability of
the models. The significant edge mask value is γ = 0.3 for GN-
NExplainer and γ = 0.003 for Integrated Gradients.

Once the training processes were finished, we aggregated
the statistics for the frequencies with which each node and
edge appeared on the explanation subgraphs generated for
each model. We then divided the sorted nodes/edges into
10 equally sized bins. We chose to use 10 as the number of
bins to remove 5% of the nodes/edges on the graph with each
perturbation as a reasonable trade-off between having larger
perturbations and more data points.

For the next step, we drew 10 random samples from each
bin. This number of samples was chosen empirically to re-
trieve reasonable uncertainty estimates for the stability val-
ues calculated for the bins. We found the differences between
the stability values measured for different samples to be fairly
small, which enabled clear trends to emerge between the sta-
bility values for different frequency groups.

This procedure was repeated for each of the three mod-
els with which the experiments were performed, consider-
ing both node and edge removal. The experiments were per-
formed with two different values for the significant edge mask
value, which we will refer to as γ in this paper. This value de-
termines the threshold that the importance weights assigned
to edges by the explainer have to exceed in order to be in-
cluded on an explainability subgraph. The values used for γ,
as well as other GNNExplainer hyperparameters, can be seen
in Table 4. As the optimal value of γ is discussed by neither
Ying et al. [19] nor by Sundararajan et al. [20], we empir-
ically chose two values that both produce reasonably-sized,
but substantially different explanation subgraphs.
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Figure 3: The results shown on this plot were generated following
the same experimental design as for Figure 2, applying it to edge
removal perturbations instead of node removal.

As the value of γ didn’t strongly impact the node removal
results, we present the results only for experiments using the
larger values of γ. Results for experiments using the smaller
values of γ can be found in Appendix C. For edge removal,
the impact of this hyperparameter was significant and both
results are presented.

The results for node removal perturbations are displayed
on Figure 2 and the results for edge removal perturbations on
Figure 4 and Figure 3.

The results of the node removal experiments exhibited
a clear trend: perturbations including nodes that appear
on explainability subgraphs with higher frequencies have a
stronger effect on the stability of the networks. Perhaps coun-
terintuitively, however, the results for edge removal perturba-
tions followed the opposite trend. As this is an unexpected
result, the reasons behind it are discussed in depth in Section
5.2.

4.3 Stability to Explainability-Informed Edge
Weight Perturbations

In order to perform edge weight perturbations, we first had
to select a weighted dataset. We chose the heterogeneous
DBLP dataset and converted it into a homogeneous weighted
dataset, as explained in Section 4.1.

We then followed a similar procedure to the one described
in Section 4.2. To corroborate our results, we first performed
the same kinds of node and edge removal perturbations for
the modified DBLP graph that we performed for Cora. Since
our modified version of the DBLP dataset has a similar size
to Cora—4057 nodes—, we used the same models and same
explainers with the same hyperparameters. The most signif-
icant difference compared to Cora was that the GAT model,
which was less stable than the GCN model to perturbations
on Cora, was significantly more stable to edge removal per-
turbations than the GCN model across all frequency groups.
Otherwise, the results we obtained were very similar to the
ones presented in Section 4.2. For this reason, we leave a

Figure 4: The results shown on this plot were generated following
the same experimental design as for Figure 3, but using a significant
edge mask value of γ = 0.1 for GNNExplainer and γ = 0.0001 for
Integrated Gradients.

more detailed overview of them to Appendix C.
Next, we performed edge weight perturbations. To make

the setup of the experiment as similar as possible to the rest
of the experiments in this paper, we again randomly chose
half of the edges from each frequency group to perturb for
each sample, meaning that the weights of 5% of all the edges
in the graph were perturbed in each experiment. We chose
the magnitude of each perturbation to be sampled from a uni-
form distribution U(edge weight−10, edge weight+10). To
avoid the creation of edges with negative weights, the abso-
lute value of each sampled value was taken and assigned to
the edge as its new weight. We observed that different choices
for the magnitude of the perturbation did not qualitatively in-
fluence the results: though the absolute impact on stability
changed, the relative impact of the perturbations on different
frequency groups remained the same. As the final step, we
normalized the new weights of the perturbed edges to have
the same norm as the old weights of those edges. This was
done to ensure that the results are not confounded by changes
in the norm of the edge weight vector.

The most surprising observation of the edge weight pertur-
bation experiments was that our GAT model was almost com-
pletely unaffected by the perturbations. Another important
observation is that unlike most of the other experiments, the
results changed significantly when the significant edge mask
value was changed. Figure 5 provides a detailed overview of
those observations.

5 Discussion
5.1 Stability to Node Removal Perturbations
Across all the experiments on node removal perturbations, we
observed a similar trend: perturbations involving the nodes
that appear on a higher number of explainability subgraphs
have a stronger effect on the stability of our models. This
result follows our expectations. Since the explainability sub-
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Figure 5: The results shown on this plot were generated following
the same experimental design as for Figure 4, applying it on edge
weight rather than edge removal perturbations. As the effect of the
perturbations was negligible on the GAT model, as shown with the
GAT baseline line on the plot, we only present the results for the
GCN model, displaying them for both values of γ. The detailed
results for the GAT model are shown in Appendix C.

graphs found by explainers should include nodes/edges that
are the most influential for the model’s predictions, it should
follow that if a node appears on a lot of such subgraphs, it has
a strong influence on the model’s predictions for many differ-
ent nodes. Removing it from the graph should make it more
difficult for the model to generate accurate predictions for all
those other nodes, and thus, its removal should be expected
to have a relatively high impact on the model’s stability. Our
results confirm this intuitive expectation.

To verify that the trends we observed were statistically sig-
nificant, we performed a linear fit on each of our results and
calculated the corresponding p-values. This analysis con-
firmed to us that the observed trends are highly unlikely to
be random: e.g., the p-value for the line fitted to the node re-
moval result attained for GAT and GNNExplainer on the Cora
dataset with a small value of γ was 2.5× 10−7! All of the 16
node removal trend lines had a p-value smaller than or equal
to 0.012. The precise p-values are presented in Appendix C.

5.2 Stability to Edge Removal Perturbations
In stark contrast to the experiments on node removal, pertur-
bations involving edges that appear on a higher number of
explainability subgraphs were observed to have a weaker ef-
fect on the stability of our models. Why did we observe such
counterintuitive results?

We initially hypothesized that this behavior can be at-
tributed to the the fact that many of the edges that appear on
only one or two of the explanation subgraphs are connected
to degree-1 or degree-2 nodes. We expected that removing
these edges deprives the model of the necessary graph sig-
nals to base its predictions for these low-degree nodes, thus
strongly influencing stability. This is not an issue for node
removal perturbations: edges connected to low-degree nodes
are removed only if the node itself is also removed from the

Figure 6: The number of connected components in the graph af-
ter each perturbation we made during the edge removal experiments
with smaller values of γ on Cora, averaged over the samples taken
for each frequency group.

graph.
However, we did not find strong evidence for this hypoth-

esis. Empirically, it appears that choosing a large signifi-
cant edge mask value tends to eliminate most of the edges
connected to low-degree nodes from explainability subgraphs
(the figures that illustrate this are presented in Appendix C).
Nevertheless, as one can see on Figure 3, the same trend
still holds for edge removal perturbations when using a large
value for γ. Furthermore, we performed an experiment where
we limited the allowed perturbations only to those that don’t
leave any nodes isolated, but still saw very similar results.
The results of this experiment are presented in Appendix C.

Our experiments on edge weight perturbations also con-
firmed that it is insufficient to explain the results on edge re-
moval perturbations solely by alluding to the creation of iso-
lated nodes. Edge weight perturbations leave all connections
on the graph intact, only changing the properties of some con-
nections. Thus, if the difference between the node removal
and edge removal results was only caused by the creation of
isolated nodes, we would expect the impact of edge weight
perturbations to be very similar to the impact of node removal
perturbations. However, the results of the edge weight pertur-
bation experiments were much more similar to the results of
edge removal experiments (Figure 5).

Our next hypothesis was that the observed trends may be
linked to the number of connected components in the graph.
Since the edges that appear on a small number of explana-
tion subgraphs are connected to many degree-1 and degree-2
nodes, removing those edges is expected to significantly in-
crease the number of connected components in the perturbed
graph. We found this to indeed be the case: Figure 6 displays
an incredibly similar trend to Figure 4. We found the same
correlation between the number of connected components in
the perturbed graph and the stability to edge removal pertur-
bations in experiments using larger values of γ (Appendix C).

If the observed trend is linked to the number of connected
components in the perturbed graph, what is the mechanism
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through which the number of connected components influ-
ences stability? One might argue that when the graph gets
more fragmented and the number of connected components
increases, the nodes that end up in smaller, isolated compo-
nents no longer receive global information from the larger
graph. However, given that we used fairly shallow 2-layer
GNNs in our experiments which can only aggregate infor-
mation from 1-hop and 2-hop neighbours for each node, this
explanation does not appear to be likely.

A more likely explanation is that the fragmentation dis-
rupts the flow of information across sparser regions in the
graph. In a well-connected graph, information can propa-
gate through multiple paths, ensuring redundancy and robust-
ness. In a fragmented graph, small local neighbourhoods are
formed which are deprived of crucial signals from adjacent
neighbourhoods, leading to poorer node embeddings in those
neighbourhoods. This degradation in node embeddings leads
to changes in the output vectors of the GNN and thus impacts
stability. Such degradation can also occur for edge weight
perturbations, though to a smaller extent: while edge weight
perturbations modify the strength of connections, they do not
sever them completely. This allows some information to still
traverse between the sparser regions, albeit less effectively.
This explains both the similarities and the differences be-
tween our edge removal and edge weight perturbation exper-
iments. Nevertheless, a rigorous exploration of the correct-
ness of this hypothesis was beyond the scope of this project.
Performing this rigorous exploration would be an interesting
direction for future works.

Finally, we also performed a p-value analysis for edge re-
moval and edge weight perturbations. The obtained p-values
were far less convincing than the ones obtained for node re-
moval perturbations: out of the 16 edge removal trend lines, 7
had a p-value smaller than 0.05, and out of the 8 edge weight
perturbation trend lines, 2 had a p-value smaller than 0.05.
We expect that the main reason behind this is that the results
are not as well described by a linear fit as the node removal
results, rather than that the results do not display any mean-
ingful trends: e.g., Figure 4 exhibits an L-shaped rather than
a linear trend.

5.3 Are Explainability Tools Useful for Stability
Research?

As there has been very little prior work in the intersection of
the field of GNN stability and the field of explainable AI, it
is important to ask whether this paper gained anything from
combining those two fields and whether research in this di-
rection should continue.

The results of the explainability-guided experiments on
edge removal perturbations were certainly surprising, and we
believe our investigation into the reasons behind this pro-
vided a deeper understanding into what makes a model stable
through the identified correlation of our results with the num-
ber of connected components in the perturbed graph. Our re-
sults on node removal perturbations, on the other hand, show
that in at least some situations, the intuitions provided by ex-
plainability tools can be trusted to guide our understanding
of which model predictions are more or less stable to pertur-
bations. Furthermore, though GNNExplainer and Integrated

Gradients are very different explainability techniques, the for-
mer being perturbation-based and the latter gradient-based,
they seem to provide similar explanations for stability. This
indicates that explainability tools reliably capture similar as-
pects of model stability.

However, this paper only studied the applicability of ex-
plainability techniques to small networks which contain up to
4057 nodes. Furthermore, we only explored the node classi-
fication task. Scaling our methodology to large graphs more
relevant to real-world applications may prove to be computa-
tionally challenging, as it requires generating a separate ex-
planation for each node in the graph. One way to circumvent
this issue is to apply our method only on the most important
subsets of real-world graphs, but we nevertheless view scal-
ability as an important limitation of our work that should be
addressed by future research. Work on explainability tech-
niques that can provide global explanations for the model’s
predictions across the entire graph would make it significantly
easier to scale our methodology to larger models and is thus
a relevant direction to explore.

6 Conclusions and Future Work
In this paper, we presented a novel method for characteris-
ing the stability properties of GNNs. We first proposed an
algorithm that leverages tools developed in the field of Ex-
plainable AI for stability analysis, creating a model-agnostic
approach for finding the nodes and edges in a graph which,
when perturbed, have the biggest impact on model stability.
Then, we demonstrated the results of applying this algorithm
on node removal, edge removal, and edge weight perturba-
tions, presenting them across two models, explainability al-
gorithms and datasets. Finally, we discussed the observed
trends, as well as the implications of our results.

As there has been almost no prior research in the intersec-
tion of GNN stability analysis and Explainable AI, several
questions about potential benefits and drawbacks of combin-
ing those fields remain unanswered. For example, it was out-
side the scope of the project to investigate edge and node
addition and edge rewiring perturbations. Recent work by
Brown [33] provides a strong foundation for this by compar-
ing the impact of different types of perturbation on stability.
Our work could also be combined with recent work by Rul-
lens [34] to extend our results to other graph learning tasks:
link prediction and graph classification. For the types of per-
turbation that we investigated—node removal, edge removal
and edge weight perturbations—, future research could ex-
pand the range of models and hyperparameters our algorithm
is tested on. Additionally, future research could investigate
possibilities for improving upon the computational complex-
ity of our algorithm, extending it to heterogeneous graphs.
Finally, the reasons behind the correlation between our re-
sults for edge removal perturbations and the number of con-
nected components in the perturbed graphs should be rigor-
ously explored to provide new insights into the implications
of the number of connected components in a graph for stabil-
ity. Correlations between our results and other graph prop-
erties such as assortativity, centrality, and connectivity could
also be explored, drawing from the work of Colakoglu [35].
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7 Responsible Research
All of the code used for the experiments presented in this pa-
per, as well as CSV files with the results based on which the
presented plots were generated, can be found in the project
repository.1 The repository’s README contains step-by-
step instructions for regenerating all of the presented plots,
as well as for reproducing the experiments from scratch.

Two secondary sources of data are used in this paper: the
Cora dataset and the DBLP dataset. As both of these are well-
known citation networks containing only objective metadata
about scientific papers, we do not anticipate them containing
any hidden sources of bias.

The research presented in this paper contributes to the field
of adversarial robustness. More specifically, by researching
the types of perturbations that GNNs are the most and least
stable to, we elucidate the kinds of adversarial attacks to the
graph topology that these models are the most vulnerable to.
Ethically, the importance of adversarial robustness lies in its
capacity to protect against malicious attacks that can exacer-
bate biases, compromise data privacy, or lead to incorrect de-
cisions with potentially harmful consequences. By advancing
our understanding and techniques in this area, we contribute
to building safer, more trustworthy AI systems.

Though it’s possible in principle that the insights presented
in this paper can also be used to craft better adversarial attacks
in addition to being used for adversarial defense, we find it
more important that people working on adversarial robust-
ness are aware of the potential vulnerabilities, as this aware-
ness fosters the development of more robust protective mea-
sures. By revealing vulnerabilities, we enable the community
to devise effective countermeasures, thereby enhancing the
overall resilience of systems. Furthermore, the perturbations
studied in this paper cannot directly be used as the basis of
new adversarial attacks: we only study small networks, while
real-world systems of interest are usually complex networks
with many millions of nodes.
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[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
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A Overview of Datasets

Table 1: Overview of the datasets used in the experiments.

Statistic Cora Modified DBLP
Number of Vertices 2708 4057
Number of Edges 5429 3528
Edge Type Undirected Undirected
Edge Weights Unweighted Weighted
Feature Vector Dimension 1433 344
Number of Classes 7 4

Table 2: Overview of model accuracies after being trained on the datasets for 100 epochs. The random seed used when training all of the
models was 1234567. Though the modified DBLP graph with unweighted edges was not used in our experiments, we also give an overview
of the model accuracies on that graph to present the improvement in accuracies brought by the introduction of edge weights created using our
methodology that was detailed in Section 4.1.

Model Cora Modified DBLP Modified DBLP with unweighted edges
GCN 81.10% 81.12% 80.72%
GAT 81.00% 81.49% 81.12%
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B Overview of Hyperparameters

Table 3: Overview of model hyperparameters.

Hyperparameter GAT GCN
Learning Rate 0.005 0.01
Epochs 100 100
Layers 2 2
Hidden Channels 8 heads, 8 channels 16
Dropout Rate 0.6 0.5
Weight Decay 5× 10−4 5× 10−4

Optimizer Adam Adam

Table 4: Overview of explainer hyperparameters.

Hyperparameter GNNExplainer Integrated Gradients
Epochs 100 N/A
Node Mask Type Object Attributes
Edge Mask Type Object Object
Used γ Values 0.1, 0.3 1× 10−4, 3× 10−3
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C Additional Results
This appendix provides an overview of additional results that
were not presented in the main part of the paper. First, we
expand upon the results in Section 4.2 with Figure 7, which
presents the results for node removal perturbations performed
using a small value of γ. After those figures, we present fur-
ther results for the experiments described in Section 4.3. Fig-
ure 8 and Figure 9 show the results for node removal pertur-
bations, while Figure 10 and Figure 11 present the results for
edge removal perturbations on the DBLP graph. Figure 12
and Figure 14 expand upon the edge weight perturbation re-
sults, also showing the curves for the GAT model which was
almost completely unaffected by the perturbations.

Finally, we expand upon Section 5. First, we present the
p-values calculated for each of our results in Table 5. An ex-
ample of the linear fits used for calculating those values is
shown on Figure 15. Then, Figure 16 and Figure 17 show
that while a modification to our algorithm that prohibits per-
turbations which leave nodes isolated softens the trend ob-
served for edge removal perturbations (Figure 4 and Figure
3), it doesn’t reverse it to match the trend that we observe for
nodes. Figure 18 and Figure 19 confirm the claim we made
in Section 5.2 that increasing the value of γ mostly removes
low-degree nodes from the explanation subgraphs. Finally,
Figure 20 confirms our claim in Section 5.2 that there is a very
strong correlation between the number of connected compo-
nents in the perturbed graph and the stability to edge removal
perturbations for experiments using larger values of γ (for a
quick overview, compare Figure 20 and Figure 3).

Figure 7: The results shown on this plot were generated following
the same experimental design as for Figure 2, but using a significant
edge mask value of γ = 0.1 for GNNExplainer and γ = 0.0001 for
Integrated Gradients.

Figure 8: The results shown on this plot were generated following
the same experimental design as for Figure 7, applying it on the
DBLP dataset instead of Cora.
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Table 5: P-values for Node and Edge Removal and Edge Weights (Cora and DBLP datasets)

P-value GCN+GNNExpl. GCN+IG GAT+GNNExpl. GAT+IG
Cora

Node removal, small γ 7.9× 10−4 3.6× 10−4 2.5× 10−7 1.4× 10−5

Node removal, large γ 4.2× 10−4 3.5× 10−4 3.8× 10−5 1.2× 10−5

Edge removal, small γ 0.45942 0.33475 0.86755 0.50497
Edge removal, large γ 0.30010 0.07490 4.4× 10−4 0.00810
Edge weights, small γ 0.02943 0.01891 0.07372 0.39081
Edge weights, large γ 0.69072 0.40876 0.14761 0.10252

DBLP
Node removal, small γ 0.0072 0.0052 0.01031 0.00940
Node removal, large γ 9.2× 10−4 0.01202 1.4× 10−3 1.1× 10−3

Edge removal, small γ 0.03076 1.7× 10−4 0.02165 0.03092
Edge removal, large γ 0.60158 0.99714 0.00561 0.06550

Figure 9: The results shown on this plot were generated following
the same experimental design as for Figure 2, applying it on the
DBLP dataset instead of Cora.

Figure 10: The results shown on this plot were generated following
the same experimental design as for Figure 4, applying it on the
DBLP dataset instead of Cora.
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Figure 11: The results shown on this plot were generated following
the same experimental design as for Figure 3, applying it on the
DBLP dataset instead of Cora.

Figure 12: The results shown on this plot were generated following
the same experimental design as for Figure 10, applying it on edge
weight rather than edge removal perturbations.

Figure 13: The results shown on this plot were generated following
the same experimental design as for Figure 11, applying it on edge
weight rather than edge removal perturbations.

Figure 14: The results shown on this plot were generated following
the same experimental design as for Figure 11, applying it on edge
weight rather than edge removal perturbations.
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Figure 15: This figure presents an example of finding the best linear
fits, denoted by the dashed lines, to our results.

Figure 16: The results shown on this plot were generated following
the same experimental design as for Figure 4, but using a variation
of the algorithm which prohibits perturbations which leave a node
disconnected from the rest of the graph.

Figure 17: The results shown on this plot were generated following
the same experimental design as for Figure 3, but using a variation
of the algorithm which prohibits perturbations which leave a node
disconnected from the rest of the graph.

Figure 18: This plot displays the average node degree per frequency
group for the GCN model, using the frequency groups generated for
the edge removal experiments on Cora.
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Figure 19: This plot displays the average node degree per frequency
group for the GAT model, using the frequency groups generated for
the edge removal experiments on Cora.

Figure 20: The number of connected components in the graph af-
ter each perturbation we made during the edge removal experiments
with larger values of γ on Cora, averaged over the samples taken for
each frequency group.
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D Failed Experiments with TAGCN
As mentioned in Section 3, we also attempted to test our ex-
perimental pipeline using the TAGCN architecture, but were
unsuccessful. The reason was that we were unable to gen-
erate small and compact explanations for the TAGCN model
unless we set the parameter K in the convolutional layers to
1, in which case the TAGCN model is functionally equivalent
to the GCN model that we used in this paper. The bigger the
value of K, the more pronounced this issue was. It occurred
for both GNNExplainer and Integrated Gradients. An exam-
ple of an unsuccessfully generated explanation subgraph for
TAGCN is presented on Figure 21.

Figure 21: This figure displays an explanation subgraph outputted
by the GNNExplainer explainer for a TAGCN model with K = 3.
As can be seen from the figure, the subgraph contains hundreds of
nodes and isn’t thus useful for explaining the model prediction.

We expect the reason behind this to be that the TAGCN
architecture, by design, aggregates information from a larger
neighbourhood (determined by the K parameter) within a sin-
gle convolutional layer. When generating explanations, our
explainers aim to identify the most relevant subgraph that
contributes to the model’s prediction. However, due to the
multi-hop aggregation in TAGCN, the explanations tend to
include a larger portion of the graph, resulting in dense and
less compact subgraphs.

In contrast, the GCN and GAT architectures only aggregate
information from immediate neighbours (i.e., 1-hop neigh-
bours) in each convolutional layer. This local aggregation al-
lows the explainers to generate more focused and compact
explanations.

We expect that this issue could be mitigated by exploring
alternative explainability tools, as some of them are more
suitable for multi-hop aggregation within a single convolu-
tional layer than others. We leave it to future works to deter-
mine the explainability tools that can solve this issue.
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