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Optimization of vascular structure of self-healing concrete using deep 
neural network (DNN) 
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Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands   
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A B S T R A C T   

In this paper, optimization of vascular structure of self-healing concrete is performed with deep neural network 
(DNN). An input representation method is proposed to effectively represent the concrete beams with 6 round 
pores in the middle span as well as benefit the optimization process. To investigate the feasibility of using DNN 
for vascular structure optimization (i.e., optimization of the spatial arrangement of the vascular network), 
structure optimization improving peak load and toughness is first carried out. Afterwards, a hybrid target is 
defined and used to optimize vascular structure for self-healing concrete, which needs to be healable without 
significantly compromising its mechanical properties. Based on the results, we found it feasible to optimize 
vascular structure by fixing the weights of the DNN model and training inputs with the data representation 
method. The average peak load, toughness and hybrid target of the ML-recommended concrete structure increase 
by 17.31%, 34.16% and 9.51%. The largest peak load, toughness and hybrid target of the concrete beam after 
optimization increase by 0.17%, 14.13%, and 3.45% compared with the original dataset. This work shows that 
the DNN model has great potential to be used for optimizing the design of vascular system for self-healing 
concrete.   

1. Introduction 

Concrete is the most widely-used construction material due to its 
good performance and relatively low price. It is a quasi-brittle material, 
strong in compression while relatively weak in tension, making it sen-
sitive to crack formation [1]. Cracking is one of the main causes for 
deterioration of concrete structures [2]. Therefore, it is important to 
repair large cracks before serious problems occur. Self-healing concrete 
is a promising approach to crack repair (“healing”) with no or little 
human intervention [3–5]. Compared with other kinds of self-healing 
concrete, vascular based self-healing concrete could continuously sup-
ply healing agent if needed [6–8]. As a result, the maximum healable 
crack width is larger than other kinds of self-healing concrete [9]. Be-
sides, the self-healing process could be performed multiple times to 
prolong the service life of concrete structures before the inside vascular 
network is fully blocked [10]. 

For vascular based self-healing concrete, the vascular structure is of 
great importance for the mechanical properties (strength, stiffness) as 
well as for the self-healing capacity. On one hand, the embedded 
vascular network should not dramatically decrease the initial properties 

of concrete. Most of the times, load bearing (strength) is the key factor in 
the design of concrete structures. According to previous research [11], 
the presence of vascular network has an adverse influence on the initial 
flexural strength under 4-point bending when 3D-printed octet vascular 
is embedded in cementitious matrix. Besides, the shape of vascular also 
has great influences on the mechanical properties of concrete [12]. On 
the other hand, in order for the self-healing process to be triggered, the 
crack needs to hit the vascular [13]. Vascular materials also greatly 
influence the release of healing agent. In previous studies, materials 
such as glass [6,14,15], Polyvinyl chloride (PVC) tubes [16], or Acry-
lonitrile Butadiene Styrene (ABS) [11] have been used as vascular ma-
terials because of their brittleness nature. However, those brittle 
materials, especially glasses, may not be able to survive the casting 
process of concrete. Alternatively, some removable materials have been 
used to create hollow channels as flowing path for self-healing agent 
when adopting 3D printing technology to fabricate the vascular network 
[17–19]. Hollow tubes in networks outperform the non-removable 
vascular network in some aspects. First, the vascular network existing 
in cementitious matrix needs to be monitored for a long time. Further-
more, for a vascular self-healing system, the vascular network needs to 
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rupture timely in order for the self-healing agent to be released; if a 
hollow tube system is used instead, this is not an issue. However, 
without vascular tubes, the vascular network in self-healing concrete 
could be regarded as a defect which lowers the load bearing capacity. In 
this case, mechanical properties and the self-healing capacity (i.e., the 
process of triggering self-healing by cracks passing through the vascular 
channel) seem to be contradictory. Therefore, it is essential to design the 
concrete with hollow channels while keeping in mind the tradeoff be-
tween those two aspects. 

There are several ways to carry out optimization of concrete com-
posites. Among others, experiments are often used. For example, 
different octet lattice reinforcements embedded in concrete were 
experimentally investigated for improving the mechanical properties 
[20]. Li et al [21] experimentally investigated the influence of vascular 
networks on the concrete strength before and after injecting sodium 
silicate as the healing agent. However, experiments are time-consuming 
and significant resources are utilized. Topological optimization based on 
numerical simulation is another option [22–24]. However, the design 
space may be extraordinarily massive when the compositional and to-
pological structures are complex [25]. Besides, the optimization may be 
stuck in sub-optimal when using some gradient-based topology opti-
mization methods. Recently, optimization with machine learning (ML) 
methods has been proposed in material design for computational effi-
ciencies [26] as well as capacity of overcoming local minima [27]. Gu 
and her colleagues designed composite materials with better quality 
using generative deep neural network [28] and deep reinforcement 
learning [29]. To date, however, no advanced optimization approaches 
based on ML have been developed for vascular based self-healing con-
crete. When designing concrete composites with ML, it is important to 
properly represent the complicated material structure without adding 
burden to the training of ML model and optimization process. In addi-
tion, the optimization target suitable for self-healing capacity needs to 
be defined before the optimization process. 

Herein, we show the feasibility of optimizing the vascular structure 
configuration of vascular-based self-healing concrete with deep neural 
network (DNN). The DNN is chosen as the ML algorithm for its excellent 
performance to tackle complex tasks [30]. The purpose of the optimi-
zation is to make the concrete healable without significantly compro-
mising its mechanical properties by finding a certain vascular structure 
configuration in concrete. To map the vascular structures to the target 
mechanical property, a dataset is first created using a commercial nu-
merical package Abaqus/Explicit for numerically simulating the me-
chanical response of concrete beams with various vascular 
configurations subjected to 3-point bending. The optimization 
constraint is that 6 pores are placed out of 40 possible positions in the 
middle span of the beam to act as the vascular reservoirs perpendicular 
to the longitudinal axis of the beam. The inputs for the DNN are repre-
sented by describing the state of the 40 positions in the design space 
(Section 2.1). The ML method as well as the data post-processing is then 
introduced in detail (Section 2.2). To verify the effectiveness of the 
abovementioned data representation and post-processing, vascular 
structure optimization aimed at a single mechanical property, i.e., 
higher peak load and toughness respectively, are first carried out (Sec-
tion 3.2). Afterwards, a hybrid target combining peak load and tough-
ness is defined and used to optimize vascular structure for self-healing 
concrete, which needs to be healable without significantly compro-
mising its mechanical properties (e.g. strength or toughness) (Section 
3.3). The vascular structure on a concrete beam before and after ML 
optimization are compared and conclusions are drawn based on the 
obtained results (Section 4). 

2. Data generation and Machine learning method 

To investigate the possibility of tailoring vascular structure for 
maximizing a certain mechanical property for self-healing concrete with 
ML, the mechanical response of concrete with different vascular struc-

tures is first numerically calculated to create a dataset for training the 
ML model. The constrain of the vascular structure is that 6 pores 
(diameter = 4 mm) are placed in 40 positions (with a dimension of 
5mm× 5mm) in middle span of the concrete structure. As a result, the 
design space is more than 3.83 million combinations (C6

40), which makes 
it unfeasible to use a brute-force approach for exploring the design space 
in search of the optimum. The notched concrete structures under 3-point 
bending are investigated since the vascular structure is relatively sen-
sitive when the pores are located in the middle span of the beam. The 
schematics of the concrete beam under 3-point bending test is shown in 
Fig. 1. 

2.1. Data generation with numerical simulation 

2.1.1. Data generation with Abaqus software 
When using ML for optimization, the first step is to establish the 

relationship between vascular structure of concrete (input) and the 
target mechanical property (output). Therefore, a large dataset is needed 
for training ML model. Numerical simulation is adopted to simulate the 
3-point bending test with Abaqus software. To accelerate the compu-
tation, 2-dimensional models with plane stress are built. 

Considering the excellent performance of concrete damage plasticity 
model (CDPM) in describing the nonlinear behavior of cementitious 
materials, CDPM is used to define the material properties [31]. Among 
other, tension stiffening and compression hardening are defined (as 
shown in Fig. 2). The stress–strain relations under uniaxial tension and 
compression loading are shown in Equation (1). 

σt = (1 − dt)E0

(
εt − ε̃pl

t

)
σc = (1 − dc)E0

(
εc − ε̃pl

c

)
(1)  

whereσt , σc are the tensile stress and compressive stress, 
respectively;dt ,dc are tensile damage variable and compressive damage 
variable ranging from 0 (undamaged) to 1 (total loss of strength). E0 is 
the initial (undamaged) elastic stiffness of the material;εt, εc are the total 
strains;ε̃t

pl, ε̃c
pl are the equivalent plastic strains. In this study, the 

stiffness degradation is not considered and the damage variables are set 
to 0. The equivalent plastic strains are equal to crack strains. As shown in 
Fig. 2, the crack strains (ε̃t

ck, ε̃c
ck) are defined as the total strain minus 

the elastic strain corresponding to the undamaged materials (Eq.2 ~ 3). 

ε̃ck
t = εt − εel

0t or ε̃ck
c = εc − εel

0c (2)  

εel
t = σt

/
E0 or εel

c = σc
/

E0 (3) 

The concrete beam is vertically loaded to 0.2 mm with a speed of 
0.01 mm/s. The 6 displacements of the load rollers in the bottom 
(support) are fixed. The 3 load rollers contact with the main concrete 
structure with the contact type of surface-to-surface contact (Explicit), 
where normal behavior is defined as “hard” contact and tangential 
behavior if penalty friction with a coefficient of 0.05. The mesh size in 
the middle part (60 mm) is chosen as 0.5 mm. It gradually changes to 5 
mm from the middle to side within 10 mm, then the mesh size is kept 5 
mm in the rest 40 mm (Fig. 3). 

The input for CDMP for cementitious materials is listed in Table 1. 

2.1.2. Data representation 
It is of great importance to define the input and output when creating 

the dataset for ML [32]. Identifying the characterizing features is 
important to accelerate the training process and minimize the cost 
function [33]. To accelerate the training process of the ML model, the 
information without much variance should be removed. In this work, the 
concrete beam outside the design space is almost the same for all 
investigated vascular based self-healing concretes. Therefore, the char-
acterization of vascular structures could be effectively represented by 
the design space in the middle span. The design space could be described 
by the state of the 40 locations, i.e., with or without a pore. 

Z. Wan et al.                                                                                                                                                                                                                                     
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Fig. 1. Schematics of the 3-point bending test.  

Fig. 2. Constitutive law of CDPM in (a) Tension; (b) Compression.  

Fig. 3. Mesh size of the structure for numerical analyses in Abaqus.  

Z. Wan et al.                                                                                                                                                                                                                                     



Construction and Building Materials 364 (2023) 129955

4

For convenience, a location is encoded as a 1 if there is a pore, 
otherwise it is encoded as a 0. In this way, one concrete structure could 
be encoded as a 5 × 8 matrix with elements of 0 or 1. Subsequently, the 
5 × 8 matrix is flattened to a 40-dimensional vector, which is used as 
input for DNN model. The input representation can be found in Fig. 4(a). 

As to the output representation, it is less complicated than the input 
since it is a scalar corresponding to the mechanical property we aim to 
optimize. To verify the feasibility of optimizing vascular structure of 
concrete for certain mechanical property with the data representation 
method, the target is first set as peak load, which can be directly ob-
tained from the load–displacement curve. Afterwards, toughness, which 
is defined by the area below the load–displacement curve (Equation (4)), 
is used as the target to search for structures with more pores hit by the 
crack). One example of target representation could be seen in Fig. 4(b). 
Last, a hybrid target combining peak load and toughness are used to 
optimize vascular structure for self-healing concrete, the details will be 
illustrated in Section 3.3.1. 

Toughness =
∫ 0.2

0
Fds (4) 

Here F and s are load and displacement of the load–displacement 
curve, respectively. 

Table 1 
Input parameters for cementitious mortar .  

(a) Compressive parameters of cementitious mortar  

Yield stress (MPa) Inelastic strain (%) 

38 0 
45 0.005 
1 0.015  

(b) Tensile parameters of cementitious mortar  

Yield stress (MPa) Cracking strain (%)  

5.8 0  
0.1 1  

Fig. 4. Data representation (a) input representation (b) output representation.  
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2.2. Machine learning method 

Artificial Neural Network (ANN) is a powerful algorithm for pro-
cessing data by simulating the functioning of the biological neurons 
[34]. ANN uses linking functions to correlate features with targets. A 
deep neural network (DNN) is an ANN with multiple hidden layers. 
According to previous research [30], a deep network can represent 
functions of increasing complexity by adding more layers and more units 
within a layer. Theoretically, a neural network could approximate any 
function mapping from any finite dimensional discrete space to another. 
In this study, DNN with 6 hidden layers is established to predict the 
target property (peak load, toughness and hybrid target) based on the 
40-dimensional vector representing the concrete structure. The number 
of neurons of the hidden layers is chosen as 512 for all hidden layers 
after hyperparameter tuning. A schematic of the DNN used is shown in 
Fig. 5. 

The optimization method used here is similar to the research of Gu 
[28]. Two steps, i.e., weights (of DNN) training and input optimization, 
are used during the process. First, the weights of DNN are trained to map 
the input (vascular structure) to target (mechanical property) with the 
dataset. 10,000 vascular structures are randomly chosen and then 
calculated using numerical simulation (using Abaqus). The dataset is 
split with a split of 90–10 % between the training and test sets, i.e., 
trainset (size = 9,000) and test set (size = 1,000). The batch size is 
chosen as 512 after hyperparameter tuning. Coefficient of determination 
(R-squared) is selected as a metric to evaluate the accuracy of the ML 
models (Equation (5)). Mean squared error (MSE) is employed as the loss 
function (Equation (6)). Adam is used as the optimizer for the back- 
propagation with the default learning rate (0.001). ReLu function is 
employed as the activation function. The training process stops when the 
loss function is steady. The weights contributing to the highest R- 
squared on test set is saved. 

R2(y, y
′

) = 1 −
∑(

yi − y′

i

)2

∑
(yi − y)2 (5)  

MSE =
1
n
∑n

i=1
(y − y′

)
2 (6) 

After the DNN is well trained, the weights of the DNN are fixed while 
the input is set as the trainable variables to optimize input for higher 
mechanical property. To drive the DNN to search for the inputs with 
maximum target property, we define the negative of target as the loss 
function. During the optimization process, 20,000 inputs (40- 

dimensional vector) are randomly sampled from a Gaussian Distribution 
with expectation and variance of 6/40 and 0.3 respectively. The random 
initialization is to avoid the influence of initial exploration points. It is 
worth mentioning that we do not generate ‘effective’ inputs (only with 
0′s or 1′s) because it spends more time for DNN to toggle the state of a 
location (from 0 to 1 or from 1 to 0) due to the small learning rate 
(0.001). Since the weights of the trained DNN are frozen, the back-
propagation process will only drive the changes of input to minimize the 
loss function (higher mechanical property). Adam is also used as the 
optimizer for the back-propagation with the default learning rate 
(0.001) to accelerate the optimization process. 20,000 epochs are per-
formed in this process since the loss function based on post-processed 
input keeps unchanged after that. The details can be found in Section 3. 

The ML-optimized inputs need further post-processing after the 
optimization process. The learning rate is 0.001 and the elements after 
back-propagation are decimals, which fails to represent the position 
state (with/without pores). Therefore, it is necessary to convert the el-
ements to binary value (0/1). In particular, we convert the positions 
with the top 6 maximum elements as 1′s and the rest as 0′s. This way, all 
the ML-recommended inputs are 40-dimensional vectors with six 1′s out 
of 40 positions. Then, the 40-dimensional vectors are reshaped 5 × 8 
matrix and decoded into vascular structures. The schematics of the post- 
processing is shown in Fig. 6. Those ML-recommended structures are 
numerically verified with Abaqus software and their corresponding 
mechanical properties are re-calibrated. Finally, the vascular structure 
of concrete with highest target property is selected from the ML- 
recommended dataset and compared with the original dataset. 

3. Results and discussion 

3.1. Statistical properties of dataset 

The load–displacement curve of the 10,000 samples in original 
dataset is shown in Fig. 7(a) and some randomly-chosen 
load–displacement curves along with the corresponding pore positions 
are given in Fig. 7(b). As shown in Fig. 7, the position of the 6 pores has a 
great influence on the mechanical response of the concrete structures, 
and it is necessary to design vascular structures for higher target me-
chanical properties by arranging these holes in different positions. Be-
sides, it is found that the loads of most load–displacement curves are low 
when the displacement reaches 0.2 mm. In other words, most of the 
concrete structures fail when displacement is 0.2 mm. It is reasonable to 
calculate the toughness till displacement is 0.2 mm although it may be 
slightly overestimated for some structures which are extremely brittle. 

Fig. 5. General structure of a Deep Neural Network (DNN).  
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The optimization targets are first set as peak load and toughness. The 
histograms of those two mechanical properties are shown in Fig. 8(a) 
and (b) respectively. The statistical properties of the targets are shown in 
Table 2. The maximum peak load and toughness are 1195.5 N and 97.2 
N⋅mm respectively. Except for the vascular structures with 6 pores, the 
structure without pores is also numerically calculated as the reference. 
Based on Table 2, the highest toughness is much larger than the refer-
ence (55.5 N⋅mm). The largest peak load is slightly higher than the 
reference (1141.1 N), which may be caused by the simulation accuracy. 
The corresponding vascular structures with the highest peak load and 
the highest toughness are shown in Fig. 8(c) and 8(d) respectively. As 
shown in Fig. 8(c) and 8(d), the peak load of the concrete structure with 
highest toughness is low and vice versa. The vascular structure of con-
crete with highest peak load is more brittle than the structure with 
highest toughness. In addition, the crack hits less pores than that of the 
structure with highest toughness. 

3.2. Optimization results of peak load and toughness 

3.2.1. Optimization result of peak load 
Peak load is relatively easy to predict because it could be directly 

obtained from the load–displacement curve. To seek for a vascular 
structure of concrete with higher peak load, a neural network is first 
trained to map the vascular structure to peak load. An accurate mapping 
relationship between input and output could make it easier to find the 
optimized structure. The prediction accuracy of the well-trained DNN 
model is shown in Fig. 9. It is obvious that the performance of the neural 
network model is remarkable with a R-squared of 0.963 on the test set. 

After the DNN model is trained, 20,000 examples are randomly 
generated as initial guesses. To keep this process reproducible, the 
random seed is fixed to ensure that the same examples are generated in 
different runs. These examples are fed into the neural network and ran 
for 20,000 epochs. To illustrate the optimization process, the negative of 
average loss function (average peak load change) is presented to observe 

Fig. 6. Post-processing of ML-recommended input.  

Fig. 7. Mechanical response of different vascular structures of concrete (a) displacement-load curve; (b) some examples of displacement-load curve and the cor-
responding structure. 
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the improvement of mean (predicted) peak load. The result is shown in 
Fig. 10. From Fig. 10, the average peak load dramatically increases in 
the first 2,000 epochs and keeps increasing steadily after 6,000 epochs. 
In other words, the initialized structures are optimized towards higher 
peak load. When analyzing the predicted result based on post-processed 
inputs (with 0/1), the initial average value is 952.5 N, which is almost 
the same with the mean value of the dataset (952.4 N). The average peak 
load after 20,000 epochs is 1123.6 N, which increases by 17.95 % from 
the initial guess (converted to 0/1). However, the value is lower than the 

Fig. 8. (a) Histogram of peak load; (b) Histogram of toughness; (c) structure with the highest peak load; (d) structure with highest toughness.  

Table 2 
Statistical properties of the dataset.   

Peak load (N) Toughness (N⋅mm) 

Mean value  952.4  53.4 
Standard deviation  123.1  6.8 
Maximum value  1195.5  97.2 
Minimum value  499.5  28.2 
Reference  1141.1  55.5  

Fig. 9. Prediction accuracy of peak load.  

Z. Wan et al.                                                                                                                                                                                                                                     
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ML-predicted average peak load with decimal inputs (1635.5 N) with a 
discrepancy of 42.81 %. But this does not affect the search for vascular 
structures with higher peak load since the ‘effective’ average peak load 
(predicted with post-processed input) increases. It is noted that the 
‘effective’ average peak load remains almost steady after 10,000 epochs. 
Therefore, it is reasonable to stop the optimization process after 20,000 
epochs even though the loss function continues to decrease. 

As mentioned above, the ML-recommended results could not be 
directly used due to the decimal values of the inputs after optimization. 
To correctly describe the state of the positions, these results are con-
verted into 0/1 by ranking the 40 values. Subsequently, those post- 
processed inputs are decoded into structures with 6 pores. It is found 
that the 20,000 initial structures converge to 870 unique vascular 
structures and those ML-recommended structures are numerically 
simulated to verified the peak load. The histogram of 20,000 ML- 
recommended structures is shown in Fig. 11. 

From Fig. 11(a), it is noted that the overall peak loads of ML- 
recommended structures are higher than that of the original dataset. 
Therefore, the concrete structures improve for higher peak load after the 
optimization process using DNN. it is worth mentioning that the actual 

mean peak load of ML-recommended structures is 1117.3 N (increase by 
17.31 %), which is very close to the model-predicted average value 
(1123.6 N). The DNN is still accurate when the dataset contains lots of 
structures with high peak load. As shown in Fig. 11(b), for the ML- 
optimized structures, only one crack occurs in most of them and it ex-
plains why these structures are with higher peak load. Among the 
optimized structures, the vascular structure of concrete with highest 
peak load is selected and the corresponding load–displacement curve 
(calculated in Abaqus) is shown in Fig. 12. As shown in Fig. 12, the peak 
load of the ML-recommended structure is 1197.5 N, which is an increase 
of 0.17 % from the concrete structure in the original dataset. For the ML- 
recommended vascular structure of concrete, the crack does not hit the 
pores, and this could explain why the structure is with the highest peak 
load than the other optimized structures. Clearly, while this is certainly 
optimal in terms of peak load, it is useless in terms of vascular-based self- 
healing: the self-healing can only be triggered if the crack hits a pore (i. 
e., the vascular). 

3.2.2. Optimization result of toughness 
Based on the result in 3.2.1, we found it feasible to optimize vascular 

Fig. 10. Change of average peak load during optimization process.  

Fig. 11. ML-recommended structures for high peak load. (a) histogram of peak load of optimized structures; (b) some examples of displacement-load curve and the 
corresponding structure. 
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structures of concrete towards higher peak load using the data repre-
sentation method. Therefore, the neural network is re-trained to map the 
vascular structures to toughness, which is an indirect mechanical 
property calculated from displacement-load curve. The prediction ac-
curacy of the well-trained DNN model is shown in Fig. 13. As shown in 
Fig. 13, the performance of the DNN model is still remarkable with a R- 
squared of 0.926 on test set. However, it is slightly poorer than the 
performance of the peak load one. One possible reason is that some 
structures fail before the displacement reaches 0.2 mm, which signifi-
cantly overestimates the toughness. As a result, the target is less accurate 
than the peak load. 

After the neural network is trained, 20,000 initial guesses are used as 
starting points for the optimization process. Similarly, these examples 
are fed into the DNN model and ran for 20,000 epochs. The negative of 
average loss function (average toughness change) is shown in Fig. 14. 
From Fig. 14, the average toughness increases during the optimization 

process, manifesting that the inputs changes towards higher toughness. 
The average (predicted) toughness based on post-processed input after 
20,000 epochs is 71.8 N⋅mm. Compared with the result in peak load, the 
average toughness does not sharply increase in the first 2,000 epochs 
and spends more epochs (10,000 epochs) to reach the stable state. In 
addition, the difference between model-predicted toughness based on 
decimals input and post-processed input is much larger (233.15 %). 
Except for the binary transferring for input (covert result into 0/1), 
another possible reason is the inaccuracy of the ML model, especially 
when the toughness is high. 

After post-processing and decoding the ML-recommended inputs into 
structures with 6-pores, the 20,000 initial structures converge to 5,959 
unique structures after optimization, and those ML-recommended 
vascular structures of concrete are numerically simulated to verify 
their toughness. The histogram of 20,000 recommended structures is 
shown in Fig. 15. 

Fig. 12. ML-recommended structure with highest peak load.  

Fig. 13. Prediction accuracy of NN model for toughness on (a) training set; (b) test set.  
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From Fig. 15, the overall toughness of the optimized structures is 
higher than that of the original dataset. The actual average toughness 
after optimization is 60.5 N⋅mm (increase by 13.17 %), which is smaller 
than the model-predicted value (71.8 N⋅mm). Unlike peak load, the 
distribution of toughness is with less variance and the samples with high 
toughness is much less in the training set. As a result, the DNN model 
becomes less accurate when the toughness is high. When looking into 
the optimized structures, multiple cracks occur in most of them and 
thereby inducing a higher toughness in Fig. 15(b). Among the optimized 
structures, the vascular structure of concrete with the largest toughness 
is found and the corresponding load–displacement curve is shown in 
Fig. 16. From Fig. 16, the ML-recommended structure has much higher 
toughness (111.0 N⋅mm) than the one in the original dataset, with an 
increase of 14.13 %. Compared with the original vascular structure, 4 
pores of the optimized structure are hit/damaged by the crack, making 
the structure more ductile after the crack occurs. Meanwhile, 2 pores are 
far away from the crack and therefore the peak load is relatively larger 
than the original one. As a result, the toughness is much larger than the 

original vascular structure. 

3.3. Optimization results for self-healing concrete 

3.3.1. Define optimization target for self-healing concrete 
After optimization towards higher peak load and toughness, a further 

investigation is carried out to optimize the vascular structure for self- 
healing purpose. To search for a structure suitable for self-healing con-
crete using DNN, the optimization target should first be defined. Two 
requirements need to be met: (1) The concrete is healable after cracked, 
and (2) The adverse influence of pores (vascular) on initial mechanical 
property should be minimized. For the first requirement, the crack must 
hit pores to make it healable. Considering the results from 3.2.2, the 
toughness of concrete structures tends to be high when cracks hit the 
holes. In other words, vascular structures of concrete with higher 
toughness could be regarded as more healable. Therefore, we describe 
the first part with toughness defined in this paper. Except for healable 
property, the adverse influence of pores on peak load should be 

Fig. 14. Change of average toughness during training.  

Fig. 15. ML-recommended structures for high toughness. (a) histogram of toughness of optimized structures; (b) some examples of displacement-load curve and the 
corresponding structure. 
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minimized. To compromise between those two aspects, we defined the 
optimization target by a sum of the weighted toughness and peak load. 
In this paper, the hybrid-target (HT) used for self-healing concrete 
optimization is represented by Equation (7). 

HT = αT/Tref + βP
/

Pref (7)  

whereT, P represent the toughness and peak load of concrete structure 
with 6 pores; α and β are the weight for toughness and peak load 
respectively;Tref ,Pref represent the toughness and peak load of the 
reference vascular structure (no pores) and they are also obtained by 
numerical simulation. For simplification, we assign equal importance to 
those two mechanical properties andα = β = 0.5. 

According to the definition above, the hybrid-target (HT) could be 
calculated. The distribution of the defined hybrid-target (HT) of the 
10,000 samples in original dataset is shown in Fig. 17(a) and the con-
crete structure with highest HT is shown in Fig. 17(b). 

As shown in Fig. 17, the mean value of hybrid target is about 0.899 
and the distribution is quite different from that of peak load, which 
means that the influence of peak load is not as large as that of toughness. 
However, the vascular structure of concrete with the highest hybrid 

target is different from that of peak load or toughness. The two com-
ponents (peak load and toughness) work together to search for the 
vascular structure instead of either single target. Therefore, it is neces-
sary to design the vascular structure of concrete towards the hybrid 
target to considering those two aspects simultaneously. 

3.3.2. Optimization result of hybrid target 
To design vascular structure for self-healing concrete, the neural 

network is retrained to map the vascular structure to the defined hybrid 
target in advance. The prediction accuracy of the well-trained model is 
shown in Fig. 18. From Fig. 18, it is noted that the performance of the 
neural network model is still accurate with a R-squared of 0.896 on test 
set. It is much poorer than the DNN models for predicting peak load or 
toughness. The hybrid target combines both peak load and toughness 
and makes it somewhat more difficult for the neural network to learn. 

Similarly, 20,000 examples (same with Section 3.2) are generated as 
initial guess for the optimization process. 20,000 epochs are carried out 
and the negative of average loss function (average hybrid target change) 
is shown in Fig. 19. From Fig. 19, the average HT dramatically increases 
in the first 2,000 epochs and steadily increases after that. The ‘effective’ 

Fig. 16. ML-recommended structure with highest toughness.  

Fig. 17. (a) Histogram of hybrid target; (c) structure with the highest hybrid target.  
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average HT based on post-processed input increases to 1.137 after 
20,000 epochs. The difference between model-predicted toughness and 
‘effective’ average is 82.17 %, which is between 42.81 % (peak load) and 
233.15 % (toughness). 

After converting the ML-recommended inputs into concrete struc-
tures with 6-pores, the 20,000 initial structures converge to 1,015 
unique vascular structures of concrete and those ML-recommended 
structures are numerically simulated to verified the hybrid target. The 
histogram of 20,000 recommended structures is shown in Fig. 20. From 
Fig. 20, it is noted that the overall hybrid target of the optimized 
structures is higher than that of the original dataset after the optimiza-
tion process using DNN. The actual average hybrid target increases by 
9.51 % (0.984), which is much smaller than 1.137 due to the inaccurate 
DNN model. 

Among the ML-optimized structures, the vascular structure with the 

highest hybrid target is selected and the corresponding load–displace-
ment curve is shown in Fig. 21. From Fig. 21, the ML-recommended one 
has slight improvement (1.355) from the concrete structure with highest 
toughness in the original dataset (1.310). Compared with the original 
concrete structure, 4 pores of the optimized structure are hit/damaged 
by two cracks, resulting in an optimized structure with higher toughness 
(96.8 N⋅mm) than the original one (93.4 N⋅mm). Meanwhile, 2 pores are 
separately hit by the cracks instead of 3 pores hit by one crack in the 
original structure. As a result, the peak load is also higher (1100.8 N) 
than the original one (1068.8 N). Therefore, the ML-recommended 
structure has better self-healing capacity due to the fact that more 
pores are hit by crack while having a slightly increasing the peak load 
compared with the original structure. 

Compared with the toughness, the improvement of the optimized 
structure is much smaller. The possible reason is that the third DNN 

Fig. 18. Prediction accuracy of NN model for hybrid target on (a) training set; (b) test set.  

Fig. 19. Change of average toughness during training.  
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model is less accurate, making it difficult to find a concrete structure as 
good as the second DNN model within 20,000 epochs. A possible solu-
tion is to increase the accuracy of the DNN model by training it with a 
larger dataset. Besides, it is noted that the weights for the two compo-
nents could be tuned to look for a concrete structure suitable for self- 
healing concrete. 

However, there are still a lot to do before the ML method could be 
used to the practical engineering. The case studied herein is a simplifi-
cation: the notch induces a starting position of the crack, and the space 
above is used as a “design space”. Different positioning of the voids will 
then be the major factor influencing the crack length and, thereby, the 
toughness. The simplified case is used to understand if the method 
proposed herein can be effectively utilized: the simplification allows the 
DNN model to accurately map the relationship between the structure 
and the target with a (relatively) limited amount of training data. Since 
this is shown to be possible, we believe that the optimization method 
could, in principle, be extended to real-life scenarios (but at a signifi-
cantly higher computational cost). 

4. Conclusion 

In this work, vascular structure optimization towards different target 
mechanical properties was carried out using DNN. The optimization 
objective is a concrete beam with 6 pores out of 40 possible positions in 
the middle span representing vascular reservoirs for healing agent. To 
investigate the feasibility of using DNN to optimize vascular structure of 
concrete with the proposed data representation method, peak load and 
toughness are first set as the optimization target. Subsequently, a hybrid 
target is defined to optimize the vascular structure for self-healing 
concrete. Based on the presented results, the following conclusions 
can be drawn: 

(1) According to the original 10,000 simulated examples, the posi-
tion of the 6 pores has great influence on the mechanical response 
of the concrete beam. This necessitates the optimization of the 
vessel configuration for vascular-based self-healing concrete to 
achieve better mechanical properties.  

(2) DNN model is able to accurately predict peak load, toughness as 
well as defined hybrid target based on concrete structures with 
the R-squared over 0.895 on the test set of the three ML models. 
However, the DNN models become less accurate when the target 
changes from direct mechanical property (peak load) to indirect 
mechanical property (toughness) and hybrid property.  

(3) It is feasible to optimize vascular structure of concrete towards 
higher peak load, toughness and defined target by fixing the 
weights of the DNN model and training the input (the pores 
configuration). the average peak load, toughness and hybrid 
target of the ML-recommended concrete structure increase by 
17.31 %, 34.16 % and 9.51 % after optimization.  

(4) As to the highest target values among the ML-recommended 
structures, the targets increase by 0.17 %, 14.13 % and 3.45 % 
for peak load, toughness and self-healing concrete respectively. 
The ML-optimized vascular structures of concrete are different for 
the 3 individual scenarios. Therefore, it is necessary to simulta-
neously consider both peak load and toughness when designing 
concrete structure for self-healing purpose.  

(5) Although concrete structure towards higher targets could be 
realized using DNN, the discrepancies between the ML-predicted 

Fig. 20. Histogram of ML-recommended structures (hybrid target).  

Fig. 21. ML-recommended structure with highest hybrid target.  
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targets and the ‘effective’ average values based on post-processed 
input is 42.81 %, 233.15 % and 82.17 % for peak load, toughness 
and defined hybrid target respectively. This is caused by the 
different domains of input (concrete design space is discrete 
while the recommended input changes continuously) and the 
inaccuracy of DNN model. 
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