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Abstract

Facility location problems are an important set of problems within the field of optimisation.

These problems consider which facilities to open out of a set of possible facilities and how to

assign users to the open facilities. Most of the facility location problems studied have a linear

objective. In this thesis, we consider a facility location problem with a quadratic objective, the

Balanced Facility Location Problem (BFLP). This problem, and facility location problems in

general, quickly becomes difficult to solve for standard MIP solvers as the input size increases.

The difficulty of this problem is further supported by it being a𝒩𝒫-hard problem.

Hence, we develop three heuristics for the BFLP: two greedy heuristics and one local search

heuristic. These heuristics are adapted from heuristics used for the standard Capacitated Facility

Location Problem (CFLP).
The idea behind the first greedy heuristic is to close one facility at a time, starting with all

facilities being open, until we have as many facilities open as the budget constraint of the BFLP
dictates. At each step, the best facility to close is closed. Apart from adapting this heuristic

to accommodate the slightly different constraints of the BFLP, we also make some further

adjustments in order to reduce the running time.

The second heuristic that we adapt is a heuristic that instead of closing facilities one at a

time, opens facilities one by one, until we reach the budget of open facilities that the BFLP allows.

These simple heuristics perform very well in practice on both small and large instances of the

BFLP.
Lastly, we discuss a local search heuristic, which attempts to improve a solution to the BFLP

by opening one facility and closing another facility at each iteration. The local search only

improves marginally upon the results of the greedy algorithms.

For use within the heuristics for the BFLP, we require fast heuristics to solve a subproblem

of the BFLP, the problem of assigning users to facilities where the set of open facilities is fixed.

Hence, we develop three heuristics for this subproblem and also adapt a previously developed

heuristic to be optimised for its use within the BFLP heuristics.

Our heuristics achieve results that are similar or better than what a MIP solver achieves and

find a good solution in significantly less time. Especially when the MIP solver struggles, due to

the size or limited capacity of the BFLP instance, our heuristics are able to outperform the MIP
solver.
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1
Introduction

Facility location problems have been of interest in the literature and practical applications since

the start of the 20th century, with most work done from the 1960s onward, according to Owen

and Daskin (1998). The first discussion of the facility location problem is attributed to Alfred

Weber in Weber, Pick, and Friedrich (1965). The basic idea of facility location problems is that

we are given a set of locations where facilities could be opened and a set of users that need to be

served by these facilities. The model then needs to decide which locations to choose to open

facilities at and how users are assigned to these open facilities.

Different variants of the problem exist, the most notable being capacitated versus uncapaci-

tated facility location problems, as discussed in Sridharan (1995). In the case of the former, each

facility has a capacity associated with it, which when assigning users to it may not be exceeded.

Another differentiation made in Sridharan (1995) is whether each user’s demand needs to be

fulfilled by a single facility (single-source) or whether they can be served by multiple facilities.

Most facility location problems discussed in the literature have a linear objective function,

with the aim of minimising the combined cost of opening facilities and serving a user from their

assigned facility. In this thesis, we consider a single-source capacitated facility location problem

with a quadratic objective function, as proposed in Schmitt and Singh (2021). The model aims

to achieve low variance in the utilisation of the facilities while still ensuring good access for

users, so users do not need to travel too far. Unlike in traditional facility location problems,

there is a budget on how many facilities are allowed to be open. In this thesis, we investigate the

complexity of this model further and develop heuristics for solving the problem.

The rest of this thesis is structured as follows: In Section 2.1, we discuss the motivation of

the thesis. We then formally define the model in Section 2.2. The rest of Chapter 2 gives a more

detailed overview of the heuristics that are used in the literature for problems similar to our

model. Chapter 3 then shows that our problem, and also a subproblem of our problem, are

𝒩𝒫-hard. This provides us with further motivation to develop heuristics for the problem. In

Chapter 4, we then discuss heuristics for the subproblem of assigning users to facilities. This is

necessary since this subproblem needs to repeatedly be solved in the heuristics for our overall

problem, meaning computationally cheap and good methods are necessary. In Chapter 5, we

then discuss heuristics for the capacitated facility location problem with a quadratic objective

function. The first heuristic we discuss in Section 5.1 is the close greedy heuristic, which closes

facilities one by one until we reach the budget of facilities that is allowed to remain open. We

then discuss the “opposite” heuristic in Section 5.2, where facilities are opened (instead of

closed) one by one. Finally, we discuss a local search heuristic in Section 5.3. The results of

running all heuristics can be found in Chapter 6. We conclude and summarise the findings of

the thesis in Chapter 7.
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2
Background

We first state the motivation of this thesis and how it extends the work done in Schmitt and

Singh (2021) in Section 2.1. Then, we formally define the capacitated facility problem with a

quadratic objective function in Section 2.2. Afterwards, we continue with a literature review

of the Capacitated Facility Location Problem, focusing on greedy and local search heuristics

in Section 2.3 to give us some ideas what heuristics exist for problems similar to our problem.

Finally, we consider the literature on the Generalised (Quadratic) Assignment Problem (GQAP)
in Section 2.4 since this is a subproblem of the considered facility location problem. Finding

solutions to the GQAP quickly is required for greedy and local search approaches for the overall

problem.

2.1. Motivation
This work expands on Schmitt and Singh (2021) who developed a Capacitated Facility Location

Problem with a quadratic objective function for deciding which recycling facilities to close in

Bavaria, Germany. In that thesis, the main focus was on developing the model and showing

that it performs well at achieving the aim of balancing the access of users to facilities while

ensuring the variation in the utilisation of the facilities is low. In addition, one simple local

search heuristic was developed. This local search starts with the largest facilities being open

and then tries to replace low utilisation facilities with other facilities to improve upon it. The

assignment of users to facilities is done using a greedy assignment, which we discuss in more

detail in Section 4.1.

Our work expands on this by first showing that the problem, and the subproblem of assigning

users to facilities, is𝒩𝒫-hard. Hence, we develop three new heuristics for the overall problem

of deciding which facilities to open and how to assign users: A close greedy algorithm, an open

greedy algorithm and a local search algorithm that differs from the one in Schmitt and Singh

(2021). The motivation for developing these heuristics is that as the input instances become

larger, simply solving the MIP becomes very difficult. This is due to the size of the model being

proportional to |𝐼 | |𝐽 | where 𝐼 is the set of users and 𝐽 is the set of facilities. Although this is

only polynomial, in practice both building the model and solving it becomes difficult, the latter

especially when the capacity of the facilities becomes a limiting factor. Larger instances can be

of interest in practice, for example if the problem of which recycling facilities to close were to be

extended from the state of Bavaria to the whole of Germany. Apart from for closing existing

facilities, the model could also be used to decide at which locations to open facilities out of a

large set of possible locations. Our aim for the heuristics is that they reach an objective function

value that is approximately as good as what using a MIP solver achieves after 20,000 seconds.
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The time for the MIP solver does not include the time to build the model. We further hope for

our heuristics to achieve their results in significantly less time. Note that even building these

models and the initial relaxation that MIP solvers run can take a significant amount of time on

larger instances. For example, on an instance with 5000 users and about 2500 facilities, building

the model takes over an hour and solving the root relaxation takes another half an hour. Hence,

there is significant room for improvement by using heuristics that do not require the model to

be built. Our secondary aim is for these solutions to be better than what the MIP solver achieves.

At the very least, the goal is for these to perform better than the local search heuristic in Schmitt

and Singh (2021).

In addition, we investigate a subproblem of the overall problem: the problem of assigning

users to facilities. Solving this subproblem multiple times is necessary for the aforementioned

heuristics, hence we require very fast heuristics for this. We first show that this subproblem is

𝒩𝒫-hard, and then develop heuristics for it. To that extent, we adapt the greedy assignment

heuristic of Schmitt and Singh (2021) to our purposes and also develop our own heuristics, a

relaxation rounding heuristic and two local search algorithms. These heuristics are of interest in

their own rights as well as in relation to the overall problem. Note that this subproblem is a

special case of the Generalised Quadratic Assignment Problem, which has only been investigated

sparsely in the literature. As such, our work also contributes to the research on the GQAP by

showing that the simple heuristics we develop perform well on at least our subclass of GQAP
instances.

2.2. Model
The model we are discussing here is a Capacitated Facility Location Problem with a quadratic

objective function that was developed for deciding which recycling facilities to close in Bavaria

by Schmitt and Singh (2021). The inputs to the model are a set of users, 𝐼 , and a set of facilities, 𝐽.

Each facility 𝑗 ∈ 𝐽 has an associated capacity 𝐶 𝑗 with units being the number of people that can

be assigned to it. Each user 𝑖 ∈ 𝐼 has an associated population𝑈𝑖 since each user is a postcode in

the original problem. Furthermore, each user 𝑖 ∈ 𝐼 has a preference 𝑃𝑖 𝑗 for each facility 𝑗. This is

a number between 0 and 1 that is based on the distance between the user and the facility. It is

interpreted as the proportion of users that will actually visit the facility if they are assigned to it.

Lastly, the budget 𝐵 tells us how many facilities should be opened.

min

𝑥,𝑦

∑
𝑗∈𝐽

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

(2.1a)

s.t.

∑
𝑖∈𝐼
𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝐶 𝑗 ∀𝑗 ∈ 𝐽 (2.1b)∑

𝑗∈𝐽
𝑦 𝑗 ≤ 𝐵 (2.1c)∑

𝑗∈𝐽
𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (2.1d)

𝑥𝑖 𝑗 ≤ 𝑦 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.1e)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.1f)

𝑦 𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽. (2.1g)

The variables that are used in the model are binary variables 𝑦 𝑗 for 𝑗 ∈ 𝐽, which are 1 when

facility 𝑗 ∈ 𝐽 is open and 0 otherwise, and binary variables 𝑥𝑖 𝑗 for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽, which are 1 when

user 𝑖 ∈ 𝐼 is assigned to facility 𝑗 ∈ 𝐽 and 0 otherwise. Now, let us consider the constraints of

3



the model. Constraints (2.1b) ensure that each facility does not have more users assigned to it

than allowed by its capacity. Constraint (2.1c) fixes the number of facilities that are to be opened

to be at most 𝐵. Together with the 𝑥𝑖 𝑗 being binary, Constraints (2.1d) imply that each user is

assigned to exactly one facility. Lastly, Constraints (2.1e) mean that a user only is assigned to a

facility if that facility is open.

The objective function (2.1a) here has the aim of ensuring a low variance in the utilisation of the

facilities, defined by 𝑢𝑗 =
∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
for each 𝑗 ∈ 𝐽.

We also consider a slight variant to this model, which has the same optimal solution. It

has been shown by Schmitt and Singh (2021) that the 𝑦 𝑗 variables can be relaxed and this

will still give an optimal solution to the original model. Additionally, we explicitly define

the utilisations in Model (2.2). We mainly consider Model (2.2), except in Chapter 3 where

considering Model (2.1) simplifies matters.

min

𝑥,𝑦

∑
𝑗∈𝐽

𝐶 𝑗
(
1 − 𝑢𝑗

)
2

(2.2a)

s.t. 𝑢𝑗 =

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
∀𝑗 ∈ 𝐽 (2.2b)∑

𝑗∈𝐽
𝑦 𝑗 ≤ 𝐵 (2.2c)∑

𝑗∈𝐽
𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (2.2d)

𝑥𝑖 𝑗 ≤ 𝑦 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.2e)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.2f)

0 ≤ 𝑦 𝑗 ≤ 1 ∀𝑗 ∈ 𝐽 (2.2g)

0 ≤ 𝑢𝑗 ≤ 1 ∀𝑗 ∈ 𝐽. (2.2h)

2.3. Literature Capacitated Facility Location Problem
We now give an overview of the literature available on problems that are similar to our problem.

Model (2.2) is a Capacitated Facility Location Problem, but unlike most facility location problems,

we have a quadratic objective function and not a linear objective function. There is also a small

difference on the input data and consequently in two of the constraints compared to the classic

Capacitated Facility Location Problem. Nevertheless, the overall idea of opening only some

facilities, facilities having a certain capacity and having to assign users to facilities is the same.

Hence, it is worth considering the literature on the Capacitated Facility Location Problem and

the heuristics used to solve this problem.

We start by stating the Capacitated Facility Location Problem (CFLP) in the form it is usually

encountered in the literature in Model (2.3), see for example Conforti, Gérard, and Zambelli

(2014). For ease of comparison, the same variable names for variables that are the same in our

model are used. The newly introduced data variables here are the operating cost of a facility

𝑓𝑗 , the demand of a user 𝑑𝑖 and the cost of transporting from user 𝑖 to facility 𝑗, 𝑒𝑖 𝑗 . 𝑑𝑖 can be

compared to𝑈𝑖𝑃𝑖 𝑗 in our model, the difference here meaning conceptually that in our model

4



the demand of a user changes depending on which facility fulfils it.

min

𝑥,𝑦

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑒𝑖 𝑗𝑑𝑖𝑥𝑖 𝑗 +
∑
𝑗∈𝐽

𝑓𝑗𝑦 𝑗 (2.3a)

s.t.

∑
𝑗∈𝐽

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (2.3b)∑
𝑖∈𝐼

𝑑𝑖𝑥𝑖 𝑗 ≤ 𝐶 𝑗𝑦 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.3c)

𝑥𝑖 𝑗 ≥ 0 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.3d)

𝑦 𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽. (2.3e)

Instead of having an upper bound of facilities to open, the CFLP aims to minimise the overall

cost. Since opening facilities has a cost associated with it, this means that potentially not all

facilities are opened. Constraints (2.1d) and Constraints (2.3b) are exactly the same. However,

in Model (2.3) the 𝑥𝑖 𝑗 variables are continuous, meaning the demand of one user can be fulfilled

by multiple facilities. This is not the case in all Capacitated Facility Location Problems that are

being discussed in the literature; for example, see Holmberg, Rönnqvist, and Yuan (1999) where

a so-called single source CFLP is being discussed. Single source means that each user’s demand

can only be fulfilled by a single facility, which in practice means that the 𝑥𝑖 𝑗 are binary variables.

Lastly, Constraints (2.3c) incorporate Constraints (2.1b) and (2.1e) into a single constraint. Again,

this is not the case in all capacitated facility location model formulations, for example Holmberg,

Rönnqvist, and Yuan (1999) has these still as separate constraints. This is useful since having

these as separate constraints strengthens the relaxations according to Sridharan (1995) and

as such allows the relaxation of the 𝑦 𝑗 in our model, as done in Model (2.2) and suggested

in Schmitt and Singh (2021).

The CFLP is a computationally challenging problem to solve as it is 𝒩𝒫-hard, and in the

single source case, simply using a MIP solver can fail on larger instances according to Laporte

et al. (2015). Hence, some heuristics have been developed to solve the problem, which we

discuss in the following sections.

2.3.1. Greedy heuristics
There are two different greedy heuristics that are used for the CFLP, the DROP procedure, which

closes facilities one by one and the ADD procedure, which opens facilities one by one. The

following overview of these two heuristics is based on Jacobsen (1983), which adapted these

procedures from the Uncapacitated to the Capacitated Facility Location Problem.

In both these procedures, a method that given a set of open facilities determines the objective

function value and hence an assignment of users to the open facilities is required. When fixing

the facilities that are open and disregarding the cost of opening facilities, the problem simplifies

to the classical transportation problem; for details on the transportation problem, see Hitchcock

(1941). Hence, let 𝑇(𝐼 , 𝐽) denote the objective function value of the transportation problem if 𝐽

are the open facilities and 𝐼 all the users that need to be serviced by them. In practice, in order to

save time, 𝑇(𝐼 , 𝐽)might just provide a bound on what the optimal solution to the transportation

problem is. Further, let 𝑆 denote the set of facilities that are open at any point in the algorithm.

The DROP procedure can be seen in Algorithm 1. The algorithm starts with all facilities being

open (Line 1). Then, for each facility 𝑗 that is open, the algorithm computes how much closing

the facility would improve the objective function (Line 3). Note that 𝛿 𝑗 here is the amount by

which the objective function decreases – we are closing 𝑗 so the cost decreases by 𝑓𝑗 plus the

difference in the objective function arising from the transportation problem. The algorithm

then chooses to close the facility which leads to the largest decrease in the objective function
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(Lines 4 - 6). If all single facility closures would lead to an increase in the objective function,

the algorithm terminates and returns the set of open facilities that has been chosen. The last

iteration’s transportation problem solution can then be used to complete the solution to the

CFLP.

Algorithm 1 The DROP procedure (from Jacobsen (1983))

Input: an instance of Model (2.3).

Output: a set of open facilities 𝑆.

1: 𝑆← 𝐽; 𝛿∗ ← 1.

2: while 𝛿∗ > 0 do
3: 𝛿 𝑗 ← 𝑓𝑗 + 𝑇(𝐼 , 𝑆) − 𝑇(𝐼 , 𝑆 \ { 𝑗}), ∀𝑗 ∈ 𝑆.

4: 𝑗∗ ← arg max𝑗∈𝑆 𝛿 𝑗 ; 𝛿
∗ ← max𝑗∈𝑆 𝛿 𝑗 .

5: if 𝛿∗ > 0

6: 𝑆← 𝑆 \ { 𝑗∗}.
7: return 𝑆.

In Section 5.2, we discuss how we can apply this DROP procedure to our problem. As this

requires being able to solve a transportation problem, which in our case is a special case of

the Generalised Quadratic Assignment Problem due to our problem being single-source, we

discuss the literature on how to solve the Generalised (Quadratic) Assignment Problem (GQAP)
in Section 2.4. We further develop our own heuristics for our specific version of the GQAP in

Chapter 4.

Now, let us discuss the ADD procedure, Algorithm 2, as seen in Jacobsen (1983). The challenge

here compared to the DROP procedure is that the algorithm starts with an infeasible transportation

problem since the algorithm starts with no facilities open. To circumvent this problem, the

authors introduce a fake facility 𝑗′ to the problem, which is open from the start. This facility

has capacity 𝐶 𝑗′ equal to the total demand of all users and very high transportation costs 𝑒𝑖 𝑗′

for all users 𝑖 ∈ 𝐼. As long as these transportation costs are chosen high enough, by the time

the algorithm terminates, no user needs to have their demand satisfied by 𝑗′ anymore. The

rest of the algorithm proceeds similarly to the DROP procedure, the only difference being that it

opens facilities instead of closing facilities. Hence, it computes the change in objective function

value of opening each facility (Line 3), chooses the facility with the largest improvement (Line 4)

and opens it if that change is positive (Line 6). If no further improvement can be achieved, the

algorithm terminates and returns the open facilities, after removing the fake facility 𝑗′ (Line 7).

Algorithm 2 The ADD procedure (from Jacobsen (1983))

Input: an instance of Model (2.3) with an additional facility 𝑗′ with 𝑒𝑖 , 𝑗′ =
∑
𝑗∈𝐽 ,𝑖∈𝐼 𝑒𝑖 , 𝑗∀𝑖 ∈ 𝐼 and

𝐶 𝑗′ =
∑
𝑖∈𝐼 𝑑𝑖 .

Output: a set of open facilities 𝑆.

1: 𝑆← { 𝑗′}; 𝛿∗ ← 1.

2: while 𝛿∗ > 0 do
3: 𝛿 𝑗 ← 𝑇(𝐼 , 𝑆) − 𝑇(𝐼 , 𝑆 ∪ { 𝑗}) − 𝑓𝑗 , ∀𝑗 ∈ 𝑆.

4: 𝑗∗ ← arg max𝑗∈𝑆 𝛿 𝑗 ; 𝛿
∗ ← max𝑗∈𝑆 𝛿 𝑗 .

5: if 𝛿∗ > 0

6: 𝑆← 𝑆 ∪ { 𝑗∗}.
7: return 𝑆 \ { 𝑗′}.

We discuss how to apply the ADD procedure to our problem in Section 5.2.
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2.3.2. Local search
The basic idea of local search algorithms is to start with a feasible solution and make small

changes to it. If a change leads to a better solution, it is accepted to be the current solution. This

procedure can then be repeated until some termination criteria is reached. In the case of facility

location problems, these small changes to the solution usually involve opening and/or closing

some facilities, see for example Zhang, Chen, and Ye (2005), Pal, Tardos, and Wexler (2001).

To get started with the simplest local search procedures for facility location problems, let us

consider the two methods that are based on the ADD and DROP procedures discussed previously,

as described in Jacobsen (1983). The idea of the first local search approach is to, starting with a

feasible solution, choose a facility to close. Then a single iteration of the ADD procedure is run,

i.e. the facility leading to the best improvement is opened. If this leads to a better solution than

previously, this becomes the currently accepted solution. If all facilities have been tried out

when closing facilities and none lead to an improvement in the objective function after running

the ADD iteration, the algorithm terminates.

The other local search method discussed in Jacobsen (1983) is doing exactly the opposite, i.e.

instead of starting by closing a facility, we start by opening a facility. Then one iteration of the

DROP procedure is run. Overall, these two local search procedures can be summarised as closing

one facility and opening one facility, where one of these choices is made in a way that is locally

optimal.

Now, let us discuss some other operations that are used within local search algorithms for

the CFLP to make small changes to the solution. In Pal, Tardos, and Wexler (2001), three different

operations are used in a local search algorithm, which has an approximation ratio of 8.532 + 𝜖.

Since our objective function is different to the linear function used in this facility location

problem, the proof of this approximation ratio is not transferable to our problem. However, the

algorithm itself and specifically its operations are still of interest since the problems are similar

enough in their constraints. The algorithm stars with a feasible solution with a set of open

facilities 𝑆 and a transportation problem assignment 𝑥𝑖 𝑗 . Note that here again we are dealing

with the version of the problem where multiple facilities can satisfy the demand of a single user.

The three operations of the algorithm are:

• 𝑎𝑑𝑑(𝑠): Open a facility 𝑠 ∈ 𝐽 and recompute the assignments 𝑥𝑖 𝑗 assuming 𝑆 ∪ {𝑠} are the

open facilities.

• 𝑜𝑝𝑒𝑛(𝑠, 𝑇): Open a facility 𝑠 ∈ 𝐽 and close a set of facilities 𝑇 ⊆ 𝑆 \ {𝑠}. All demand

previously fulfilled by facilities in 𝑇 is now to be fulfilled by 𝑠, without changing any other

part of the assignment.

• 𝑐𝑙𝑜𝑠𝑒(𝑠, 𝑇): Close facility 𝑠 ∈ 𝑆 and open a set of facilities 𝑇 ⊆ 𝐽. All demand previously

fulfilled by 𝑠 is now to be fulfilled by facilities in 𝑇, without changing any other part of the

assignment.

In all of these operations, it is allowed for the facilities that are being opened to already be open.

The reasons for allowing this are different for each operation. In particular, 𝑎𝑑𝑑(𝑠) is the only

operation that recomputes the assignment from scratch, even if 𝑠 is already open, which means

this operation can be used with an open facility to improve the assignment. If the facility is

not open yet, the 𝑎𝑑𝑑(𝑠) operation allows us to open a facility without closing any facilities.

Allowing facilities to be opened that are already open also means that both 𝑜𝑝𝑒𝑛(𝑠, 𝑇) and

𝑐𝑙𝑜𝑠𝑒(𝑠, 𝑇) can be used to close facilities without opening any new facilities by choosing 𝑠 and

𝑇, respectively, as facilities that are already open. Note that the open and close operations are

not always feasible to do – the capacity of the facilities we want to reassign users to might not be

large enough. In order to make the algorithm more efficient, instead of calculating the exact

change in objective, only bounds are calculated for the last two operations. To ensure that the
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algorithm terminates in polynomial time, the authors further terminate the algorithm if, out of

all the possible operations, none leads to an improvement of at least
𝑜𝑏 𝑗(𝑆)
𝑝(𝑛,𝜖) . Here, 𝑝(𝑛, 𝜖) is a

polynomial in the size of the problem 𝑛 and
1

𝜖 , and 𝑜𝑏 𝑗(𝑆) is the objective function value that is

achieved by the current solution. The authors are not clear on how they define the size of the

problem, however either 𝑛 = |𝐼 | + |𝐽 | or 𝑛 = |𝐼 | |𝐽 | appear to be the natural choices.

These results were further improved in Zhang, Chen, and Ye (2005) by generalising the

last two operations into a single operation 𝑚𝑢𝑙𝑡𝑖(𝑟, 𝑅, 𝑡, 𝑇), which then leads to a 5.828 + 𝜖
approximation algorithm. In this operation, {𝑟}∪𝑅 ⊆ 𝑆 is the set of facilities being closed, while

{𝑡} ∪ 𝑇 ⊆ 𝐽 \ {𝑟} ∪ 𝑅 is the set of facilities being opened. Users originally having some of their

demand covered by facilities in 𝑅 now have their demand satisfied by 𝑡 and those originally

(partially) assigned to 𝑟 now have their demand fulfilled by facilities in {𝑡} ∪ 𝑇. Since this

operation leads to an exponential number of operations that could be considered, Zhang, Chen,

and Ye (2005) only focus on a subset of these. To this extent, for each 𝑟, 𝑡 a linear programming

relaxation is run for an integer program that determines what the best choice of 𝑅 and 𝑇 is. The

authors prove that this relaxation leads to at most 2 fractional values, so it can be seen as a very

close approximation to the integer program and hence allows making a good choice of 𝑅 and 𝑇.

To conclude on what we have seen regarding the local search approach for the facility

location problem, these algorithms all focus on closing and opening facilities, either one at a

time or even opening / closing multiple facilities in a single step. Depending on the operation

performed, either the assignment of users to facilities is recomputed from scratch, or it is simply

slightly changed by reassigning users from now closed facilities to newly opened facilities. Note

that all four operations discussed from Zhang, Chen, and Ye (2005) and Pal, Tardos, and Wexler

(2001) are not applicable to our problem in their general form, since our problem has an explicit

bound on the number of facilities that can be open. However, any version of these operations

where the same number of facilities are opened as closed could be used in our problem.

2.4. Literature Generalised (Quadratic) Assignment Problem
As mentioned when considering the heuristics for the CFLP, the two greedy methods require

a method to assign the users to facilities, when the set of open facilities is fixed. This can

be encapsulated by Model (3.1) for our facility location problem. Since we are considering

a single-source Capacitated Facility Location Problem, this problem is most similar to the

Generalised Assignment Problem (GAP). Hence, we discuss this problem now and look at some

heuristics used for this problem. The Generalised Assignment Problem, as presented by Özbakir,

Baykasoğlu, and Tapkan (2010), can be seen in Model (2.4). The constraints are exactly the same

as in the model we would like to solve by setting 𝑤𝑖 𝑗 = 𝑈𝑖𝑃𝑖 𝑗 .

min

𝑥

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑒𝑖 𝑗𝑥𝑖 𝑗 (2.4a)

s.t.

∑
𝑗∈𝐽

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (2.4b)∑
𝑖∈𝐼

𝑤𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝐶 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (2.4c)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽. (2.4d)

However, the objective function is again linear while our objective function is quadratic. The

Generalised Quadratic Assignment Problem (GQAP) has also been discussed in the literature, see

for example Hahn et al. (2007), but to a lesser extent, with our quadratic objective function being
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a special case of this more general objective seen in Equation (2.5). To see that our objective

function is a special case of this, see Equation (4.2c). In most discussions of the GQAP, instead of

𝑤𝑖 𝑗 the capacity required by each user does not depend on the facility, so simply 𝑤𝑖 is used, see

for example Lee and Ma (2004).∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑒𝑖 𝑗𝑥𝑖 𝑗 +
∑

𝑖 ,𝑖′∈𝐼 , 𝑗, 𝑗′∈𝐽
𝑔𝑖𝑖′ 𝑗 𝑗′𝑥𝑖 𝑗𝑥𝑖′ 𝑗′ . (2.5)

A lot of discussion of the Quadratic Assignment Problem (QAP) can be found in the literature,

see Burkard et al. (1998) for an overview. This is a special case of the GQAP where every facility

needs to have exactly one user assigned to them, i.e. it leads to a matching between users and

facilities. Since this changes the problem significantly from our problem, we do not go into

more detail on the QAP, instead focusing on the GAP and the GQAP.

2.4.1. GAP as a scheduling problem
As done in Shmoys and Tardos (1993), the GAP can be viewed as a scheduling problem. In

particular, the set 𝐽 is the set of machines and the set 𝐼 is the set of jobs. Each job needs to be

scheduled on a single machine and takes time 𝑤𝑖 𝑗 on this machine. Each machine is at most

allowed to take time 𝐶 𝑗 in processing. Lastly, 𝑒𝑖 𝑗 is the cost incurred by scheduling job 𝑖 on

machine 𝑗 and we are seeking to minimise the overall cost.

One other objective function that is often used in relation to (unrelated) parallel machines is

to minimise the makespan – the maximum time that a machine is running in the solution, see

for example Pinedo (2016), Ghirardi and Potts (2005). This objective function might be more

interesting to use since it may be closer to our quadratic objective function in intention than the

linear cost objective function in Equation (2.4a).

Note that even if the jobs take the same time on each machine – which would be equivalent

to the discount factor 𝑃𝑖 𝑗 = 1 in our model – the problem is strongly𝒩𝒫-hard with 3 or more

machines, according to Pinedo (2016). However, a simple heuristic exists for the parallel machine

makespan minimisation problem: The longest processing time first rule (LPT) assigns the jobs in

decreasing order of 𝑤𝑖 𝑗 to the earliest available machine, which leads to a
4

3
− 1

3𝑚 approximation

of the optimal solution, as proven in Pinedo (2016).

Having different processing times on each machine immediately breaks this heuristic and

makes the problem harder to solve. However, a 2-approximation algorithm based on relaxing

the decision version of the linear program and a binary search to determine the best makespan

that can be constructed like this can be found in Lenstra, Shmoys, and Tardos (1990). The

decision version is the problem of determining whether a solution with makespan at most 𝑑

exists.

The question arising now is whether makespan minimisation can be somehow connected to

our quadratic objective function. The problem here is that while with makespan minimisation

we want to choose a machine that processes the job quickly, in our assignment problem of

assigning users to facilities we want to assign them to a facility for which𝑈𝑖𝑃𝑖 𝑗 is large (as long

as this still fulfils capacity constraints) in order to increase the utilisation of the facility and hence

decrease its contribution to the objective function. Hence, in our problem, there exists some

“conflict” between the capacity constraint and the objective that is not present in the makespan

minimisation problem.

2.4.2. Local search heuristics for GAP
Different local search heuristics have been developed for the GAP. The first one we consider here,

discussed in Amini and Racer (1994), has been shown to work very well on “small” instances,

giving similar objective values as other algorithms while being faster. On “large” instances,
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it performs worse, and a trade-off between time and solution quality becomes apparent. The

two operations performed by the heuristic are swapping the assignment of two users and

reassigning users. The algorithm works by having “major” iterations; at the end of each a

change is applied, and within each “major” iteration there are multiple “minor” iterations which

seek to add one move at each iteration to a sequence of moves. In each “minor” iteration, all

possible swaps and reassignments are considered. Only the one with the best improvement

is added to an improvement sequence. Then, the search for the best possible improvement is

repeated, with users already in the sequence not allowed to be chosen again, and the best one is

added to the improvement sequence. This process is repeated until no move can be added to

the improvement sequence anymore without worsening the objective. Then, the subsequence of

the improvement sequence that leads to the best improvement is applied. This ends a “major”

iteration, and the next “major” iteration is started. The algorithm terminates if no positive

change to the objective can be made.

Martello and Toth (1987) also use a simple local search procedure to improve on the

solution their algorithm achieves. The local search procedure considers for each user 𝑖 whether

reassigning it to the facility with the minimum 𝑓𝑖 𝑗 improves the solution. If it does, they accept

this as the currently best solution. 𝑓𝑖 𝑗 here is one (or the one that leads to the best results) of 𝑒𝑖 𝑗 ,
𝑒𝑖 𝑗
𝑤𝑖 𝑗

, −𝑤𝑖 𝑗 or −𝑤𝑖 𝑗𝐶 𝑗 .

A more generalised version of the previously discussed local search neighbourhoods can

be found in Osman (1995). Given an assignment of users to facilities, Osman considers a

neighbouring solution by choosing two facilities 𝑗 , 𝑗′. Then, a 𝜆-move involves reassigning at

most 𝜆 users currently assigned to 𝑗 to 𝑗′ and at the same time reassigning at most 𝜆 users

currently assigned to 𝑗′ to 𝑗. These moves can generate infeasible solutions due to the capacity

constraint, so the infeasible moves are disregarded in the local search procedure. Moves that lead

to feasible solutions are called “admissible”. Osman further considers two different approaches

to choosing which admissible solution to choose. In the best-admissible strategy, all 𝜆-moves

are considered and the best one is chosen. In the first-admissible strategy, the first admissible

solution that leads to an improvement in the objective function value is chosen. Both a simulated

annealing strategy where worse solutions are accepted, with a decreasing probability over time,

and a tabu search approach, where a move cannot be undone for a certain number of iterations

are considered. Further, the author implements a simple restarting approach, in which once the

local search has reached a local optimum, this solution is saved and the search is restarted from

a different starting solution, until some termination criterion is reached. Considering the results

of running these local search heuristics on some example instances, the first observation made

in Osman (1995) is that for large instances, considering 1-moves leads to the same results as

considering 2-moves, with significantly less computational effort. Further, Osman notes that

the best-admissible approach leads to better results than the first-admissible strategy if the

local search is not restarted when a local optimum is reached, but the performance becomes

identical when this restart is used. However, due to the increased computational effort of the

best-admissible strategy, for larger instances the first-admissible strategy is recommended.

Connecting this back to our problem, since we are particularly interested in instances that

are significantly larger than the ones considered in all these papers, the best approach for

our problem seems to be to use the simplest approach: Only consider 1-moves and use the

first-admissible strategy. We do so in Section 4.3.

2.4.3. Heuristics for GQAP
Exact solution methods, such as those discussed in Lee and Ma (2004) and Hahn et al. (2007)

who use branch-and-bound and linearisation techniques, are not of interest to us since these

methods’ primary use case seems to be on very small instances with about 20 users, while we
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are interested in larger instances. Instead, we focus on heuristics developed for the GQAP. Note

that in all the algorithms we discuss now, the capacity required by the user is not depended on

the facility, i.e. the model uses 𝑤𝑖 instead of 𝑤𝑖 𝑗 .

The first heuristic we discuss is the GRASP with path-linking heuristic discussed in Mateus,

Resende, and Silva (2010). This heuristic is a local search heuristic with multiple starting points.

These starting points are generated with a randomised greedy algorithm. For each starting

solution, a local search that uses 1-moves and 2-moves, but only considers a subset of a solution’s

neighbourhood, is run. Furthermore, a set of elite solutions 𝑃 is kept. This set contains the best

solutions found so far, but the set should also be diverse. This means that no solutions in the

elite set are too close together, where their distance is defined by the number of move operations

required to get from one solution to the other. On the solution constructed by the local search,

the path linking algorithm is then run. This algorithm tries to find a path of moves between the

local search solution and a random solution from the elite set. The best solution found on this

path is then returned and another local search is run on this solution. If the elite set has not yet

reached its capacity and the new solution is different enough from the other solutions in the

set, it is added. Alternatively, if the elite set is already full, but the new solution is better than

the worst solution in 𝑃, it replaces the solution in 𝑃 that is closest to it among those that are

worse than it. This procedure of randomly generating a greedy solution, running local search,

running path-linking and then running local search again is repeated until a stopping criterion

is reached.

The second heuristic we discuss, as seen in McKendall and Li (2016) has some similarities to

the heuristic in Mateus, Resende, and Silva (2010) since it starts with a greedy solution and then

applies a local search procedure. However, it only starts with a single greedy solution and only

considers 1-moves in its best-admissible local search. Additionally, a tabu search procedure is

used within the local search. This means if a user 𝑖 has been reassigned from facility 𝑗, assigning

user 𝑖 back to facility 𝑗 will not be considered for a certain number of iterations. The authors

report that their algorithm reaches the same objective values as achieved in Mateus, Resende,

and Silva (2010), except for one instance, in less time on average.

The last heuristic we would like to mention, whose best objective function values the previous

two papers compare themselves to, is discussed by Cordeau et al. (2006). This is a genetic

algorithm which after creating offspring runs a 1-move best-admissible tabu search before

adding the offspring to the population if it is better than the worst element and different from

the other elements. The 1-move is restricted to only reassignments and no swaps of assignments

are used. Within the tabu search, solutions are allowed that are not feasible due to the capacity

constraints being exceeded, but these lead to a penalty in the objective function value. If this

leads to an infeasible solution on termination, an algorithm to fix this into a feasible assignment

is run afterwards. The authors report that their algorithm achieves the optimal solution on very

small instances where it is feasible to solve the model, and leads to results that are better than

what the linearisation of the problem achieves on larger instances.

To conclude, all the heuristic methods that are not aiming to lead to a provable optimal

solution use some form of local search, either within the main algorithm or on a greedy solution.

Within the local search approaches, at most 2-moves are considered.

This concludes our review of the literature on problems similar to our problem(s). In the

next chapter, we show that our problems are𝒩𝒫-hard, before developing heuristics which use

some of the ideas that we discussed in this literature review.
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3
Complexity

As discussed in Section 2.3, several heuristics and greedy methods to solve capacitated facility

location problems rely on subroutines that assess how beneficial a particular facility is. To

this end, in this section, we consider the following subproblem of our quadratic optimisation

Model (3.1): assignment of users to a known set of open facilities, 𝑆 ⊆ 𝐽. A solution obtained

from this problem extends to Model (2.1) by setting 𝑦 𝑗 = 0,∀𝑗 ∈ 𝐽 \ 𝑆. Our hope is that solving

this subproblem cheaply would allow use of a heuristic that solves this subproblem repeatedly

in an algorithm for the overall problem. Our subproblem, for a given set of open facilities 𝑆, is

as follows.

𝑧 = min

𝑥

∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

(3.1a)

s.t.

∑
𝑖∈𝐼
𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝐶 𝑗 ∀𝑗 ∈ 𝑆 (3.1b)∑

𝑗∈𝑆
𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (3.1c)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑆. (3.1d)

Unfortunately, as we show in the next section, Model (3.1) is𝒩𝒫-hard. We prove that this is

true even for two facilities and even in the absence of an objective function; i.e., determining

a feasible solution to the decision version of Model (3.1) itself is𝒩𝒫-complete. We show this

from scratch in order to gain some intuition as to what makes the problem difficult to solve.

Furthermore, the proof ideas we gain from this help us in showing that our specific version of

the GQAP, the decision version of Model (3.1), is𝒩𝒫-complete, even if we had sufficient capacity.

3.1. Complexity UAP
We first define the decision version of the problem to determine feasibility of Model (3.1). For

simplicity in this section, we let𝑊𝑖 𝑗 = 𝑈𝑖𝑃𝑖 𝑗 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑆.

Definition 1. The User Assignment Problem (UAP)
Instance: Given a set of users 𝑖 ∈ 𝐼 = {𝑖1 , 𝑖2 , . . . , 𝑖 |𝐼 |}, |𝐼 | ≥ 2, a set of facilities 𝑗 ∈ 𝑆 =

{ 𝑗1 , 𝑗2 , . . . , 𝑗|𝑆 |} with corresponding capacities 𝐶 𝑗 ∈ Z+, and weights𝑊𝑖 𝑗 ∈ R+ of assigning user 𝑖 ∈ 𝐼 to
facility 𝑗 ∈ 𝐽.

Question: Do there exist subsets of users 𝐼 𝑗 ⊆ 𝐼 ,∀𝑗 ∈ 𝑆 such that the 𝐼 𝑗 form a partition of 𝐼 (i.e.,⋃
𝑗∈𝑆 𝐼 𝑗 = 𝐼 and 𝐼 𝑗 ∩ 𝐼 𝑗′ = ∅ for all 𝑗 ≠ 𝑗′ ∈ 𝑆) with

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗 ≤ 𝐶 𝑗 ,∀𝑗 ∈ 𝑆?

12



Proposition 1. The UAP formulates the feasible region given by Equations (3.1b)-(3.1d) correctly.

Proof. Consider a solution 𝑥𝑖 𝑗 that is feasible for Constraints (3.1b)-(3.1d). Then, from Con-

straints (3.1c)-(3.1d), each user 𝑖 ∈ 𝐼 is assigned uniquely to one and only one facility 𝑗 ∈ 𝐽. We

define 𝐼 𝑗 = { 𝑗 ∈ 𝑆 : 𝑥𝑖 𝑗 = 1}; then, the 𝐼 𝑗 form a partition of 𝐼. From Constraints (3.1b), we then

have

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗 ≤ 𝐶 𝑗 which completes the equivalence.

Conversely, let 𝐼 𝑗 form a YES instance of the UAP. Set

𝑥𝑖 𝑗 =

{
1 if 𝑖 ∈ 𝐼 𝑗
0 otherwise

,∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝐼. (3.2)

Then, Constraints (3.1c)-(3.1d) capture the mutually exclusive and exhaustive partitions of 𝐼.

Further,

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 =

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗 ≤ 𝐶 𝑗 shows that Constraints (3.1b) are valid. Thus, the feasible

solution 𝑥𝑖 𝑗 correctly formulates the UAP. □

In what follows, we show that the Partition Problem, whose definition and complexity we

state here, reduces to the UAP.

Definition 2. The Partition Problem (PP)
Instance: Given a set of positive integers 𝑇 = {𝑡1 , ..., 𝑡 |𝑇 |}, |𝑇 | ≥ 2; i.e., 𝑡𝑘 ∈ Z+ ,∀𝑘 = 1, 2, . . . , |𝑇 |.
Question: Does there exist a subset 𝐿 ⊆ {1, ..., |𝑇 |} such that

∑
𝑘∈𝐿 𝑡𝑘 =

1

2

∑
𝑡∈𝑇 𝑡 =

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘?

Lemma 1 (Karp (1972)). The Partition Problem is𝒩𝒫-complete.

Theorem 1. The UAP is𝒩𝒫-complete.

Proof. Given an instance of PPwe construct an instance of UAP as follows:

• 𝐼 ← {1, ..., |𝑇 |};
• 𝑆← {1, 2};
• 𝐶1 = 𝐶2 ←

⌊
1

2

∑
𝑡∈𝑇 𝑡

⌋
;

• 𝑊𝑖1 =𝑊𝑖2 ← 𝑡𝑖 for all 𝑖 ∈ 𝐼.
We first observe that the UAP is in 𝒩𝒫 and that the construction of the instance of the UAP is

polynomial in the input size |𝑇 |. Next, we show that an instance of the PP is a YES instance, if

and only if the transformed instance is a YES instance for the UAP.
=⇒ First, consider a YES instance of the PP given by a subset 𝐿 ⊆ {1, ..., |𝑇 |}. The existence

of a partition and 𝑡𝑘 ∈ Z+ implies that

∑
𝑡∈𝑇 𝑡 is an even integer; hence,

⌊
1

2

∑
𝑡∈𝑇 𝑡

⌋
= 1

2

∑
𝑡∈𝑇 𝑡.

We then construct subsets of the users leading to a YES instance of the UAP as follows: 𝐼1 ← 𝐿

and 𝐼2 ← {1, ..., |𝑇 |} \ 𝐿. Then, 𝐼1 ∪ 𝐼2 = 𝐿 ∪ ({1, ..., |𝑇 |} \ 𝐿) = {1, ..., |𝑇 |} = 𝐼 and 𝐼1 ∩ 𝐼2 =

𝐿 ∩ ({1, ..., |𝑇 |} \ 𝐿) = ∅; thus, this assignment is a partition of 𝐼. Further, we have∑
𝑖∈𝐼1

𝑊𝑖1 =
∑
𝑘∈𝐿

𝑡𝑘 =
1

2

∑
𝑡∈𝑇

𝑡 = 𝐶1; (3.3a)∑
𝑖∈𝐼2

𝑊𝑖2 =
∑

𝑘∈{1,...,|𝑇 |}\𝐿
𝑡𝑘 =

1

2

∑
𝑡∈𝑇

𝑡 = 𝐶2 (3.3b)

where the first and third equality in both equations follow from construction, while the second

holds since the PP instance is a YES instance. Thus, the UAP instance is also a YES instance.

⇐= Next, consider a YES instance of the UAP given by two subsets 𝐼1 and 𝐼2. First, we have∑
𝑡∈𝑇

𝑡 =
∑
𝑖∈𝐼1

𝑊𝑖1 +
∑
𝑖∈𝐼2

𝑊𝑖2 ≤ 𝐶1 + 𝐶2 = 2

⌊
1

2

∑
𝑡∈𝑇

𝑡

⌋
. (3.4)
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Therefore,
1

2

∑
𝑡∈𝑇 𝑡 ≤

⌊
1

2

∑
𝑡∈𝑇 𝑡

⌋
which can only hold if

1

2

∑
𝑡∈𝑇 𝑡 =

⌊
1

2

∑
𝑡∈𝑇 𝑡

⌋
and hence

∑
𝑡∈𝑇 𝑡

is an even integer. In Equation (3.4), the first equality holds by construction and since the

UAP instance is a YES instance, the inequality holds since UAP is a YES instance, and the second

equality holds by construction. We now construct a partition leading to a YES instance of the

PP. Consider 𝐿 ← 𝐼1. It follows that {1, ..., |𝑇 |} \ 𝐿 = 𝐼2 since 𝐼1 , 𝐼2 partition 𝐼 = {1, .., |𝑇 |}. It

remains to be shown that

∑
𝑘∈𝐿 𝑡𝑘 =

∑
𝑘∈𝑇\𝐿 𝑡𝑘 . We further have

1

2

∑
𝑡∈𝑇

𝑡 = 𝐶1 ≥
∑
𝑖∈𝐼1

𝑊𝑖1 =
∑
𝑘∈𝐿

𝑡𝑘 ; (3.5a)

1

2

∑
𝑡∈𝑇

𝑡 = 𝐶2 ≥
∑
𝑖∈𝐼2

𝑊𝑖2 =
∑

𝑘∈{1,...,|𝑇 |}\𝐿
𝑡𝑘 . (3.5b)

In both equations, the first and third equality follow from the construction, while the inequality

follows since UAP is a YES instance.

However, by definition, ∑
𝑘∈𝐿

𝑡𝑘 +
∑

𝑘∈{1,...,|𝑇 |}\𝐿
𝑡𝑘 =

∑
𝑡∈𝑇

𝑡. (3.6)

Assume
1

2

∑
𝑡∈𝑇 𝑡 >

∑
𝑘∈𝐿 𝑡𝑘 . Then,∑

𝑘∈𝐿
𝑡𝑘 +

∑
𝑘∈{1,...,|𝑇 |}\𝐿

𝑡𝑘 <
1

2

∑
𝑡∈𝑇

𝑡 + 1

2

∑
𝑡∈𝑇

𝑡 =
∑
𝑡∈𝑇

𝑡. (3.7)

Equation (3.7) contradicts Equation (3.6); hence, from Equation (3.5a) we have

∑
𝑘∈𝐿 𝑡𝑘 =

1

2

∑
𝑡∈𝑇 𝑡.

With an analogous argument from Equation (3.5b) it follows that

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘 = 1

2

∑
𝑡∈𝑇 𝑡.

Thus, the subset 𝐿 provides a YES instance of the PP. □

In Appendix A, we provide an example of this mapping.

3.2. Complexity SCUAP
In Section 3.1, we showed that determining a feasible solution for Model (3.1) is, in general,

𝒩𝒫-complete. However, solutions to special cases of instances of the UAP are easy. For example,

if the capacities are large enough to accommodate any user, so 𝐶 𝑗 ≥
∑
𝑖∈𝐼𝑊𝑖 𝑗 ,∀𝑗 ∈ 𝑆, a trivial

feasible solution is obtained by assigning any user to any facility. However, as we show in

this section, determining an optimal set of facilities is still hard even when the capacities are

sufficient. Indeed, in Appendix A, we provide two examples for how an intuitively determined

solution is still suboptimal. To this end, we now define the decision version of Model (3.1)

assuming that capacities are sufficient.

Definition 3. The Sufficient Capacity User Assignment Problem (SCUAP)
Instance: Given a set of users 𝑖 ∈ 𝐼 = {𝑖1 , 𝑖2 , . . . , 𝑖 |𝐼 |}, |𝐼 | ≥ 2, a set of facilities 𝑗 ∈ 𝑆 =

{ 𝑗1 , 𝑗2 , . . . , 𝑗|𝑆 |} with corresponding capacities 𝐶 𝑗 ∈ Z+, weights 𝑊𝑖 𝑗 ∈ R+ of assigning user 𝑖 ∈ 𝐼 to
facility 𝑗 ∈ 𝐽 s.t. 𝐶 𝑗 ≥

∑
𝑖∈𝐼𝑊𝑖 𝑗 ,∀𝑗 ∈ 𝑆 and a number 𝑀 ∈ R+.

Question: Do there exist subsets of users 𝐼 𝑗 ⊆ 𝐼 ,∀𝑗 ∈ 𝑆 such that the 𝐼 𝑗 form a partition of 𝐼 (i.e.,⋃
𝑗∈𝑆 𝐼 𝑗 = 𝐼 and 𝐼 𝑗 ∩ 𝐼 𝑗′ = ∅ for all 𝑗 ≠ 𝑗′ ∈ 𝑆) such that

∑
𝑗∈𝑆 𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗

𝐶 𝑗

)
2

≤ 𝑀?

To prove that the SCUAP is𝒩𝒫-complete, we need Proposition 2; hence, we state and prove

it now before proving that the SCUAP is𝒩𝒫-complete.
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Proposition 2. Given 𝑦 ∈ R+ the function 𝑓 (𝑥1 , 𝑥2) = (1 − 𝑥1

𝑦 )2 + (1 −
𝑥2

𝑦 )2 subject to 𝑥1 + 𝑥2 = 𝑦,
where 𝑥1 , 𝑥2 ∈ R+, is uniquely minimised at 𝑥1 = 1

2
𝑦 = 𝑥2, and hence 𝑓 (1

2
𝑦, 1

2
𝑦) = 1

2
.

Proof. We reformulate the given function by setting 𝑎 = 𝑥1

𝑦 . Then, the problem is to show that the

function (1 − 𝑎)2 + (1 − (1 − 𝑎))2, subject to 𝑎 ∈ [0, 1], is uniquely minimised at 𝑎 = 1

2
. Setting the

derivative of the function to zero, we have 𝑎 = 1

2
as required. This is indeed a unique minimum

since the second derivative is 4 > 0. Hence, 𝑓 (𝑥1 , 𝑥2) is uniquely minimised at 𝑥1 = 1

2
𝑦 = 𝑥2

which gives 𝑓 (1
2
𝑦, 1

2
𝑦) = 1

2
. □

Theorem 2. The SCUAP is𝒩𝒫-complete.

Proof. Given an instance of PP, we construct an instance of SCUAP as follows:

• 𝐼 ← {1, ..., |𝑇 |};
• 𝑆← {1, 2};
• 𝐶1 = 𝐶2 ←

∑
𝑡∈𝑇 𝑡;

• 𝑊𝑖1 =𝑊𝑖2 ← 𝑡𝑖 for all 𝑖 ∈ 𝐼;
• 𝑀 ← 1

2

∑
𝑡∈𝑇 𝑡.

Note that our requirement of having sufficient capacity is satisfied since

∑
𝑖∈𝐼𝑊𝑖 𝑗 =

∑
𝑘∈𝐼 𝑡𝑘 =∑

𝑡∈𝑇 𝑡 = 𝐶 𝑗 ,∀𝑗 ∈ 𝑆.

Also, observe that the SCUAP is in𝒩𝒫 and that the construction of the instance of the SCUAP is

polynomial in the input size |𝑇 |. Next, we show that an instance of the PP is a YES instance, if

and only if the transformed instance is a YES instance for the SCUAP.
=⇒ First, consider a YES instance of the PP given by a subset 𝐿 ⊆ {1, ..., |𝑇 |}. We then

construct subsets of the users leading to a YES instance of the SCUAP as follows: 𝐼1 ← 𝐿

and 𝐼2 ← {1, ..., |𝑇 |} \ 𝐿. Then, 𝐼1 ∪ 𝐼2 = 𝐿 ∪ ({1, ..., |𝑇 |} \ 𝐿) = {1, ..., |𝑇 |} = 𝐼 and 𝐼1 ∩ 𝐼2 =

𝐿 ∩ ({1, ..., |𝑇 |} \ 𝐿) = ∅; thus, this assignment is a partition of 𝐼. This solution has objective

value ∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗

𝐶 𝑗

)
2

=

(
1 −

∑
𝑖∈𝐼1 𝑊𝑖1

𝐶1

)
2

𝐶1 +
(
1 −

∑
𝑖∈𝐼2 𝑊𝑖2

𝐶2

)
2

𝐶2 (3.8a)

=

(
1 −

∑
𝑘∈𝐿 𝑡𝑘∑
𝑡∈𝑇 𝑡

)
2 ∑
𝑡∈𝑇

𝑡 +
(
1 −

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘∑

𝑡∈𝑇 𝑡

)
2 ∑
𝑡∈𝑇

𝑡 (3.8b)

=

(
1 −

1

2

∑
𝑡∈𝑇 𝑡∑
𝑡∈𝑇 𝑡

)
2 ∑
𝑡∈𝑇

𝑡 +
(
1 −

1

2

∑
𝑡∈𝑇 𝑡∑
𝑡∈𝑇 𝑡

)
2 ∑
𝑡∈𝑇

𝑡 (3.8c)

= 2

(
1 − 1

2

)
2 ∑
𝑡∈𝑇

𝑡 =
1

2

∑
𝑡∈𝑇

𝑡 (3.8d)

= 𝑀. (3.8e)

Equation (3.8a) follows from the definition of the SCUAP instance, Equation (3.8b) holds by

construction, Equation (3.8c) holds since the PP instance is a YES instance, Equation (3.8d) is a

simplification, while Equation (3.8e) holds by construction from the definition of 𝑀. As equality

holds throughout, the constructed instance is a YES instance of the SCUAP.
⇐= Next, consider a YES instance of the SCUAP given by two subsets 𝐼1 and 𝐼2. We

now construct a partition leading to a YES instance of the PP. Consider 𝐿 ← 𝐼1. It follows
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that {1, ..., |𝑇 |} \ 𝐿 = 𝐼2 since 𝐼1 , 𝐼2 partition 𝐼 = {1, .., |𝑇 |}. It remains to be shown that∑
𝑘∈𝐿 𝑡𝑘 =

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘 .

Consider the optimal objective function value of this SCUAP instance.

1

2

∑
𝑡∈𝑇

𝑡 = 𝑀 ≥
∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗

𝐶 𝑗

)
2

(3.9a)

= 𝐶1

(
1 −

∑
𝑖∈𝐼1 𝑊𝑖1

𝐶1

)
2

+ 𝐶2

(
1 −

∑
𝑖∈𝐼2 𝑊𝑖2

𝐶2

)
2

(3.9b)

=
∑
𝑡∈𝑇

𝑡

(
1 −

∑
𝑘∈𝐿 𝑡𝑘∑
𝑡∈𝑇 𝑡

)
2

+
∑
𝑡∈𝑇

𝑡

(
1 −

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘∑

𝑡∈𝑇 𝑡

)
2

. (3.9c)

Equation (3.9a) follows since the optimal objective function value is at most 𝑀 since this is a

Yes instance, where 𝑀 = 1

2

∑
𝑡∈𝑇 𝑇 by construction. Equations (3.9b) and (3.9c) follow from the

definition of the SCUAP instance and our definition of 𝐿. Dividing throughout by

∑
𝑡∈𝑇 𝑡 > 0

simplifies Equation (3.9) to

1

2

≥
(
1 −

∑
𝑘∈𝐿 𝑡𝑘∑
𝑡∈𝑇 𝑡

)
2

+
(
1 −

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘∑

𝑡∈𝑇 𝑡

)
2

. (3.10)

We now use Proposition 2 with 𝑦 ← ∑
𝑡∈𝑇 𝑡 > 0. Then, the function(

1 − 𝑥1∑
𝑡∈𝑇 𝑡

)
2

+
(
1 − 𝑥2∑

𝑡∈𝑇 𝑡

)
2

, (3.11)

subject to 𝑥1 + 𝑥2 =
∑
𝑡∈𝑇 𝑡, with 𝑥1 , 𝑥2 ∈ R+ is uniquely minimised at 𝑥∗

1
= 𝑥∗

2
= 1

2

∑
𝑡∈𝑇 𝑡, giving

a value of
1

2
. For the feasible solution 𝑥1 ←

∑
𝑘∈𝐿 𝑡𝑘 and 𝑥2 ←

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘 , we then have

1

2

≤
(
1 −

∑
𝑘∈𝐿 𝑡𝑘∑
𝑡∈𝑇 𝑡

)
2

+
(
1 −

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘∑

𝑡∈𝑇 𝑡

)
2

. (3.12)

Since the minimum is uniquely attained by Proposition 2, Equations (3.10) and (3.12) together

yield that 𝑥∗
1
= 𝑥∗

2
=

∑
𝑘∈𝐿 𝑡𝑘 =

∑
𝑘∈{1,...,|𝑇 |}\𝐿 𝑡𝑘 ; i.e., the considered set 𝐿 indeed defines a YES

instance of the PP. □

In Appendix A, we provide an example of this mapping.

3.3. Complexity BUAP and BFLP
The above discussion leads us to our main result of this section that both Model (2.1), the

Balanced Facility Location Problem, and Model (3.1), the Balanced User Assignment Problem,

are𝒩𝒫-complete. We formally define the decision versions of these problems.

Definition 4. The Balanced User Assignment Problem (BUAP)
Instance: Given a set of users 𝑖 ∈ 𝐼 = {𝑖1 , 𝑖2 , . . . , 𝑖 |𝐼 |}, |𝐼 | ≥ 2, a set of facilities 𝑗 ∈ 𝑆 =

{ 𝑗1 , 𝑗2 , . . . , 𝑗|𝑆 |} with corresponding capacities 𝐶 𝑗 ∈ Z+, weights 𝑊𝑖 𝑗 ∈ R+ of assigning user 𝑖 ∈ 𝐼 to
facility 𝑗 ∈ 𝐽 and a number 𝑀 ∈ R+.

Question: Do there exist subsets of users 𝐼 𝑗 ⊆ 𝐼 ,∀𝑗 ∈ 𝑆 such that the 𝐼 𝑗 form a partition of 𝐼
(i.e.,

⋃
𝑗∈𝑆 𝐼 𝑗 = 𝐼 and 𝐼 𝑗 ∩ 𝐼 𝑗′ = ∅ for all 𝑗 ≠ 𝑗′ ∈ 𝑆) and the capacity constraints are satisfied (i.e.∑

𝑖∈𝐼𝑗 𝑊𝑖 𝑗 ≤ 𝐶 𝑗 ,∀𝑗 ∈ 𝑆) such that
∑
𝑗∈𝑆 𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗

𝐶 𝑗

)
2

≤ 𝑀?
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Definition 5. The Balanced Facility Location Problem (BFLP)
Instance: Given a set of users 𝑖 ∈ 𝐼 = {𝑖1 , 𝑖2 , . . . , 𝑖 |𝐼 |}, |𝐼 | ≥ 2, a set of facilities 𝑗 ∈ 𝐽 =

{ 𝑗1 , 𝑗2 , . . . , 𝑗|𝐽 |} with corresponding capacities 𝐶 𝑗 ∈ Z+, weights 𝑊𝑖 𝑗 ∈ R+ of assigning user 𝑖 ∈ 𝐼 to
facility 𝑗 ∈ 𝐽, a budget 𝐵 ≤ |𝐽 | ∈ Z+ and a number 𝑀 ∈ R+.

Question: Do there exist a subset of facilities 𝑆 ⊆ 𝐽 s.t. |𝑆 | ≤ 𝐵, subsets of users 𝐼 𝑗 ⊆ 𝐼 ,∀𝑗 ∈ 𝑆 such
that the 𝐼 𝑗 form a partition of 𝐼 (i.e.,

⋃
𝑗∈𝑆 𝐼 𝑗 = 𝐼 and 𝐼 𝑗 ∩ 𝐼 𝑗′ = ∅ for all 𝑗 ≠ 𝑗′ ∈ 𝑆) and the capacity

constraints are satisfied (i.e.
∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗 ≤ 𝐶 𝑗 ,∀𝑗 ∈ 𝑆) such that

∑
𝑗∈𝐽 𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗

𝐶 𝑗

)
2

≤ 𝑀?

Theorem 3. The BUAP is𝒩𝒫-complete.

Proof. This follows directly from Theorem 2 since the SCUAP is a special case of the BUAP. □

Theorem 4. The BFLP is𝒩𝒫-complete.

Proof. This follows directly from Theorem 3 since the BUAP is a special case of the BFLP. In

particular, an instance of the BUAP with given inputs 𝐼′, 𝑆′ and 𝑀′ reduces to the BFLP by setting

𝐼 ← 𝐼′, 𝐽 ← 𝑆′, 𝐵← |𝐽 | and 𝑀 ← 𝑀′. □

This concludes our discussion on the theoretical complexity of both Model (2.1) and

Model (3.1). In the following sections, we develop heuristics to solve these models. Fortunately,

we find that despite the theoretical hardness of the BUAP and the BFLP, we can still obtain feasible

and high-quality solutions via our heuristics; our computational experiments in Chapter 6

further confirm this. This observation is similar to finding solutions for the Partition Problem,

which despite its hardness allows for high-quality heuristic solutions.
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4
Heuristics for BUAP

In this chapter, we present four heuristics for Model (3.1): the greedy algorithm proposed

in Schmitt and Singh (2021), an algorithm based on rounding a fractional solution and two local

search algorithms. Note that in the objective function value that these algorithms return, we

include the closed facilities. We do so since this is the form of the objective function we require

when using these heuristics as subroutines for solving the BFLP in Chapter 5.

4.1. Greedy algorithm of Schmitt and Singh

Algorithm 3 The greedy_assignment algorithm (adapted from Schmitt and Singh (2021))

Input: an instance of Model (3.1); a function sort(𝐿, 𝐴𝑙 , ascending/descending) that sorts

elements 𝑙 ∈ 𝐿 of the vector 𝐴𝑙 in ascending or descending order.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢 and objective function

value 𝑧.

1: Initialise: 𝐼′← 𝐼; 𝑥𝑖 𝑗 ← 0, ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽; 𝑅 𝑗 ← 𝐶 𝑗 , ∀𝑗 ∈ 𝑆.

2: while 𝐼′ ≠ ∅ do
3: 𝑀 𝑗 ← ∅∀𝑗 ∈ 𝑆.

4: for 𝑖 ∈ 𝐼′ do
5: 𝑗′← random_choice(arg max{ 𝑗∈𝑆:𝑊𝑖 𝑗≤𝑅 𝑗}{𝑃𝑖 𝑗}) .
6: 𝑀 𝑗′ ← 𝑀 𝑗′ ∪ {𝑖}.
7: if 𝑀 𝑗 = ∅, ∀𝑗 ∈ 𝑆, return 𝑓 ←infeasible; “heuristic failed”.

8: for 𝑗 ∈ 𝑆 do
9: 𝐼′′← sort(𝑀 𝑗 , 𝑃𝑖 𝑗 , descending).

10: for 𝑖 ∈ 𝐼′′ do
11: if𝑊𝑖 𝑗 ≤ 𝑅 𝑗
12: 𝑅 𝑗 ← 𝑅 𝑗 −𝑊𝑖 𝑗 ; 𝐼

′← 𝐼′ \ {𝑖}; 𝑥𝑖 𝑗 ← 1.

13: return 𝑓 ← feasible; 𝑥; 𝑢𝑗 ←
∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
, ∀𝑗 ∈ 𝐽; 𝑧 ← ∑

𝑗∈𝐽 𝐶 𝑗(1 − 𝑢𝑗)2.

We begin by reproducing the greedy algorithm proposed in Schmitt and Singh (2021); we

later compare our results with those obtained by this algorithm and also further adapt it to our

purposes. The algorithm of Schmitt and Singh (2021) seeks to provide a feasible solution to the

complete Model (2.1); however, in this section, we are only interested in a solution for Model (3.1).
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Thus, we extract the relevant parts of this algorithm, and summarise it in Algorithm 3. For each

user, the algorithm first determines their most preferred facility from those that have sufficient

capacity to accommodate it (Line 5). If no such facility is available, we terminate reporting

infeasibility. Else, we consider each facility sequentially, and assign users to it in order of their

preference for this facility until its capacity is exhausted (Lines 8 - 12). We repeat this assignment

until all users are allocated. For details, see Schmitt and Singh (2021).

4.2. Basic rounding algorithm
We next consider the continuous relaxation of Model (3.1) given by:

min

𝑥

∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

(4.1a)

s.t. (3.1b) − (3.1c) (4.1b)

0 ≤ 𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑆. (4.1c)

The quadratic objective function of Model (4.1), which is of the form 𝑐 + 𝑏𝑇𝑥 + 𝑥𝑇𝐴𝑥, is

positive semi-definite. To see this, we note:∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

(4.2a)

=
∑
𝑗∈𝐽

𝐶 𝑗

(
1 − 2

∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
+

(∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

)
(4.2b)

=
∑
𝑗∈𝐽

𝐶 𝑗 − 2

∑
𝑗∈𝐽

∑
𝑖∈𝐼
𝑊𝑖 𝑗𝑥𝑖 𝑗 +

∑
𝑗∈𝐽

(∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗

)
2

𝐶 𝑗
, (4.2c)

where the last term of Equation (4.2c) is the quantity of our interest. We rewrite it as follows:∑
𝑗∈𝐽

(∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗

)
2

𝐶 𝑗
=

∑
𝑗∈𝐽

∑
𝑖1∈𝐼

∑
𝑖2∈𝐼

𝑥𝑖1 𝑗𝑊𝑖1 𝑗𝑊𝑖2 𝑗𝑥𝑖2 𝑗

𝐶 𝑗
. (4.3)

Since𝑊𝑖 𝑗 ≥ 0,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽, for each 𝑗, we have Gram matrices (𝐴 𝑗)𝑘𝑙 =
𝑊𝑘 𝑗𝑊𝑙 𝑗

𝐶 𝑗
that are positive

semi-definite. The matrix 𝐴 then contains these matrices on its diagonal and is otherwise zero.

Hence, 𝐴 is also positive semi-definite. Thus, a standard mixed integer program solver such

as Gurobi is sufficient to solve Model (4.1) to optimality according to Wolfe (1959). Next, we

provide a basic algorithm based on rounding the fractional 𝑥 solution obtained from Model (4.4).

We present this in Algorithm 4, and provide an explanation next.

Let us first explain one input of Algorithm 4, 𝑛𝑟 , the number of facilities considered for each

user in the relaxation. We reduce the number of 𝑥𝑖 𝑗 variables to consider in the continuous relax-

ation to the 𝑛𝑟 ≤ |𝑆 | facilities that a user prefers the most; i.e., we reduce the |𝐼 | |𝑆 | combinations

to |𝐼 |𝑛𝑟 . Hence, for each user 𝑖 ∈ 𝐼 let 𝑇𝑖 = { 𝑗 ∈ 𝑆 : 𝑃𝑖 𝑗 is among the 𝑛𝑟 largest 𝑃𝑖 𝑗′ for 𝑗′ ∈ 𝐽} and

𝑉𝑗 = {𝑖 ∈ 𝐼 : 𝑗 ∈ 𝑇𝑖}. The model then needs to be adapted as seen in Model (4.4) in order to

allow for less 𝑥𝑖 𝑗 being defined. We make this adjustment since we are interested only in a good

quality fractional solution that might even be suboptimal. The choice of 𝑛𝑟 is arbitrary – fewer

facilities are required if they are sufficiently spread out. In our computational experiments, we

find 𝑛𝑟 = 20 or 50 perform well on our instances.
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𝑧 = min

𝑥

∑
𝑗∈𝑆

𝐶 𝑗

(
1 −

∑
𝑖∈𝑉𝑗 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗

)
2

(4.4a)

s.t.

∑
𝑖∈𝑉𝑗

𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝐶 𝑗 ∀𝑗 ∈ 𝑆 (4.4b)∑
𝑗∈𝑇𝑖

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐼 (4.4c)

0 ≤ 𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑇𝑖 . (4.4d)

Once we have the solution to this relaxation, to determine binary assignments of the 𝑥𝑖 𝑗
variables from the solution to the continuous relaxation, we begin by assigning each user 𝑖 to

the facility with the largest 𝑥𝑖 𝑗 value (Line 2). If there is more than one such solution for the

argmax, we arbitrarily pick one. We denote the subset of users assigned to 𝑗 by 𝐼 𝑗 ⊆ 𝐼. We adapt

this solution if the capacities of some facilities are exceeded. We denote by 𝑆′ the subset of

facilities whose capacities are exceeded (Line 5). We then seek to reassign users of facilities in

the set 𝑆′ to other facilities that have available capacity. Consider a given 𝑗 ∈ 𝑆′. We begin the

reassignment by computing the subset of users assigned to this 𝑗 that have𝑊𝑖 𝑗 > 𝐶 𝑗 since these

users cannot be assigned to 𝑗 in a binary solution; we denote this subset as 𝐼′
𝑗
(Line 7). Then,

all users in the set 𝐼′
𝑗
need to be reassigned. We reassign them to the facility other than 𝑗 that

they most prefer and that still has capacity for them in Lines 8-12. If we are now within the

capacity for this facility 𝑗, we continue to the next facility (Line 13). If we are still over capacity,

we further reassign users, but now do so seeking to keep assignments in order of preferences;

i.e., we first remove users that have low preferences for facility 𝑗 (Lines 14-17). We stop this

reassignment for 𝑗 when the capacity constraint is satisfied, and go to the next facility (Line 20).

Algorithm 4 can fail to determine a feasible solution even if the input instance is feasible. This

failure is determined in Lines 10 or 21; i.e., if a facility’s violated capacity cannot be reassigned,

we exit immediately and report a failure.

Algorithm 4 is similar to the greedy_assignment algorithm, Algorithm 3. However, the key

difference is that unlike Algorithm 3, Algorithm 4 begins with a complete although infeasible

assignment. This assignment comes from a fractional solution that we now seek to make feasible.

The similarity is in the steps taken to make this solution feasible; specifically, we (re)assign users

to facilities with the highest preference that have sufficient capacity for them. As with the greedy

algorithm, our algorithm might fail to find a feasible solution even if such a solution exists.

Furthermore, our approach of using 𝑛𝑟 is different from that proposed in Schmitt and Singh

(2021), where a cut-off for the preference is used in the original model. Specifically, in Schmitt

and Singh (2021) only (𝑖 , 𝑗) pairs where 𝑃𝑖 𝑗 ≥ 0.2 are considered, and further, Constraints (2.2d)

are relaxed to an inequality. This requires Schmitt and Singh (2021) to perform a post-processing

model as some users are left unassigned. Our approach obviates this need, and requires neither

the post-processing model nor the relaxation to an inequality.
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Algorithm 4 The relaxation_rounding algorithm

Input: an instance of Model (3.1); a scalar 𝑛𝑟 ≤ |𝑆 |; a function

sort(𝐿, 𝐴𝑙 , ascending/descending) that sorts elements 𝑙 ∈ 𝐿 of the vector 𝐴𝑙 in

ascending or descending order.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢 and objective function

value 𝑧.

1: solve Model (4.1) with 𝑛𝑟 most preferred facilities for each user considered in 𝑥𝑖 𝑗 , get

continuous 𝑥.

2: 𝑎𝑖 ← {arg max𝑗∈𝑆{𝑥𝑖 𝑗}}, ∀𝑖 ∈ 𝐼.
3: 𝐼 𝑗 ← {𝑖 ∈ 𝐼 : 𝑎𝑖 = 𝑗} ⊆ 𝐼 , ∀𝑗 ∈ 𝑆.

4: 𝑅 𝑗 ← 𝐶 𝑗 −
∑
𝑖∈𝐼𝑗 𝑊𝑖 , 𝑗 , ∀𝑗 ∈ 𝑆.

5: 𝑆′← { 𝑗 ∈ 𝑆 : 𝑅 𝑗 < 0} ⊆ 𝑆.

6: for 𝑗 in 𝑆′ do
7: 𝐼′

𝑗
← {𝑖 ∈ 𝐼 𝑗 : 𝑊𝑖 𝑗 > 𝐶 𝑗} ⊆ 𝐼 𝑗 .

8: for 𝑖 ∈ 𝐼′
𝑗
do

9: 𝐾 ← arg max𝑘{𝑃𝑖𝑘 : 𝑅𝑘 −𝑊𝑖𝑘 ≥ 0, 𝑘 ≠ 𝑗}.
10: if 𝐾 = ∅, return 𝑓 ← infeasible; “heuristic failed”.

11: 𝑘 ← random_choice(𝐾).
12: 𝐼𝑘 ← 𝐼𝑘 ∪ {𝑖}; 𝐼 𝑗 ← 𝐼 𝑗 \ {𝑖}; 𝑅𝑘 ← 𝑅𝑘 −𝑊𝑖𝑘 ; 𝑅 𝑗 ← 𝑅 𝑗 +𝑊𝑖 𝑗 .

13: if 𝑅 𝑗 ≥ 0, break. Continue with the next iteration of the outer for loop (Line 6).

14: 𝐼′′
𝑗
= sort(𝐼 𝑗 \ 𝐼′𝑗 , 𝑃𝑖 𝑗 , ascending)

15: for 𝑖 ∈ 𝐼′′
𝑗

do
16: 𝐾 ← arg max𝑘{𝑃𝑖𝑘 : 𝑅𝑘 −𝑊𝑖𝑘 ≥ 0, 𝑘 ≠ 𝑗}.
17: if 𝐾 = ∅, break. Continue with the next iteration of the for loop (Line 15).

18: 𝑘 ← random_choice(𝐾).
19: 𝐼𝑘 ← 𝐼𝑘 ∪ {𝑖}; 𝐼 𝑗 ← 𝐼 𝑗 \ {𝑖}; 𝑅𝑘 ← 𝑅𝑘 −𝑊𝑖𝑘 ; 𝑅 𝑗 ← 𝑅 𝑗 +𝑊𝑖 𝑗 .

20: if 𝑅 𝑗 ≥ 0, break. Continue with the next iteration of the for loop (Line 6).

21: if 𝑅 𝑗 < 0, return 𝑓 ← infeasible; “heuristic failed”.

22: return 𝑓 ← feasible; 𝑥𝑖 𝑗 ← 1, ∀𝑖 ∈ 𝐼 𝑗 , else 𝑥𝑖 𝑗 ← 0; 𝑢𝑗 ←
∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
, ∀𝑗 ∈ 𝐽; 𝑧 ←∑

𝑗∈𝐽 𝐶 𝑗(1 − 𝑢𝑗)2.

4.3. Local search approaches
In this section, we describe two local search heuristics to improve a given feasible solution for

Model (3.1). We seek to ensure feasibility of the solution in each refinement, and consider two

algorithms motivated by the work in Osman (1995). The neighbourhoods used by these two

local search approaches are:

• reassigning a single user to a different facility, and

• swapping the assignments of two users.

Such simple algorithms are well-known in the literature on local search algorithms, see for

example Montes de Oca, Ner, and Cotta (2011), and we adapt these to our problem. In our

algorithms, we consider a user and a facility we want to try assigning them to; in the case of

swapping assignments, we need to choose two users and facilities. After checking that there is

enough capacity for this reassignment or swap, we calculate the change in objective function
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value arising from this change to the assignment. If this change indicates that it is better than our

current assignment, we perform this reassignment or swap. Further, in our implementation, we

only consider a pool of facilities that a user can be reassigned to based on the user’s preferences;

i.e., we include a cutoff of 𝑃𝑖 𝑗 = 0.2 to consider 𝑗 for user 𝑖; depending on the instance this cut-off

should be changed accordingly. This choice seeks to ensure a greater likelihood of obtaining

improved solutions and significantly reduces computational effort; such cut-offs have been

implemented before in Risanger et al. (2021). We continue these random reassignments or

swaps until a certain time limit is reached or until no significant improvements have been found

after checking every single facility for whether reassigning a user of that facility to a different

facility could lead to an improvement. As we show in Section 6.2, these local search algorithms

are computationally cheap. We provide the pseudocodes and specific details for both these

heuristics in Appendix B.
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5
Heuristics for BFLP

Since we have now developed good and fast heuristics for the BUAP, we return to the main

goal of the thesis in this chapter: developing heuristics for the BFLP, Model (2.2). Recall that

in the model we are aiming to only have at most 𝐵 facilities open – we want to determine the

set of facilities to keep open, 𝑆, in such a way that still allows for a “good” user assignment.

As such, the heuristics developed in Chapter 4 will be used to determine which facilities are

“good” to close and also to compute the final assignment once the set of open facilities has been

determined.

As we will make calls to the user assignment algorithms in Chapter 4, for consistency we define

these as a single oracle in Algorithm 5. Here, the procedure takes as input a set of |𝐼 | users and

|𝑆 | facilities and constructs the assignment using method 𝑚; choices of 𝑚 include those we study

in Chapter 4, such as greedy_assignment, greedy_assignment with local_search_reassign,
relaxation_rounding, or relaxation_rounding with local_search_swap. In the following

discussion, by “assignment” we refer to the solution 𝑥 returned by user_assignment. We

further define a “partial assignment” as a solution to Model (3.1), 𝑥, where Constraints (3.1c)

are changed to

∑
𝑗∈𝑆 𝑥𝑖 𝑗 ≤ 1.

Algorithm 5 The user_assignment procedure(𝐼 , 𝑆, 𝑚)
Input: an instance of Model (3.1); a method 𝑚 to construct a feasible solution of the instance.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible: solution

𝑥, utilisation 𝑢, and objective function value 𝑧; if infeasible: 𝑥 ← 0, 𝑢 ← 0, 𝑧 ← +∞.

1: Run assignment method 𝑚 on the input instance and return the result.

The first heuristic for Model (2.2) that we discuss is the close greedy algorithm, based on the

ADD procedure discussed in Section 2.3.1 and in Jacobsen (1983). The basic idea of this approach

is that we close one facility at a time, each time the facility that leads to the best objective function

value. We build up to the final algorithm, which means we start with this very basic idea and

then discuss the improvements we made one by one. How the algorithm performs after each

improvement can be seen in Section 6.3. One of these improvements to the algorithm, discussed

in Section 5.1.2, brings us back to the BUAP, as we adapt the greedy_assignment algorithm,

Algorithm 3, specifically for the purpose of close greedy.

The second heuristic for Model (2.2) that we discuss is the open greedy algorithm, based

on the DROP procedure discussed in Section 2.3.1 and in Jacobsen (1983). We immediately use

what we have learned from developing close greedy. As such, we also need to separately adapt

the greedy_assignment algorithm for the purposes of open greedy. We do so in Section 5.2.1.
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Results of the open greedy algorithm can be found in Section 6.4.

The final heuristic we discuss is a local search heuristic in Section 5.3. This local search

heuristic tries to improve a given solution, by trying closing one facility and opening another

facility to see if the resulting solution is better than the current solution. The algorithm combines

the local search procedures described in Jacobsen (1983), which we also discuss at the start of

Section 2.3.2, and adapts them to our problem.

5.1. Close greedy algorithm
In this section, we build up to the final version of our close greedy algorithm, which is based on

the DROP procedure of Jacobsen (1983).

5.1.1. Recomputing assignment every iteration
Our first adaptation of the DROP procedure can be seen in Algorithm 6. Recall that the idea here

is to close the facilities one by one, at each step the facility which is the best to close based on

the objective function value. We discuss the algorithm in more detail now. The inputs are an

instance of Model (2.2), a user assignment method 𝑚 to be used, and a (potentially different)

second user assignment method 𝑚′. For more details on the user_assignment, see Algorithm 5

and Chapter 4. We first initialise the set of open facilities, 𝑆, to contain all facilities and then run

the user assignment method 𝑚 with all facilities open (Line 1). In the while loop, we close one

facility in each iteration (Lines 2-9). At each iteration, we only consider a subset 𝐽′ of all the

currently open facilities, based on which 𝑛𝑐 facilities have the lowest utilisation in the current

assignment (Line 3). The idea of only considering the facilities with the lowest utilisation is

similar to the idea used in the local search algorithm in Schmitt and Singh (2021). We do not

want to consider every facility at each iteration since this could lead to very high run times.

However, this means that we might not make the best choice at each step.

In the following for loop (Lines 5-7), we try closing a single facility in each iteration,

computing the new assignment with method 𝑚 (Line 6). We update the best solution found

so far, if we find a better solution (Line 7). This for loop could be parallelised to speed up the

algorithm; however, this was not implemented since other methods that we discuss later to

speed up the algorithm already work well. Note that if none of the facilities could be closed with

a feasible assignment, at this point the algorithm has to report a failure to construct a feasible

solution (Line 8). If a feasible solution was achieved for at least one of the possible closures,

the “best” facility – so the facility that increases the objective function value the least – is closed

and all other information regarding the current assignment is updated (Line 9). The while
loop continues until enough facilities are closed. Then, we run the final assignment method

𝑚′ and the solution is updated if this leads to a better solution (Line 10). This is done to allow

the final solution to be as good as possible: we might want to use a quick method 𝑚 when

closing facilities throughout the algorithm, e.g. greedy_assignment, but once we know the

open facilities we can then run a better but slower method 𝑚′, e.g. relaxation_rounding with

local_search_reassign. Finally, the constructed solution is returned (Line 12).

In our implementation of Algorithm 6 that we use for the numerical experiments in

Section 6.3.1, we compute the quantity𝑊𝑖 𝑗 = 𝑃𝑖 𝑗𝑈𝑖 beforehand and further use preference cutoffs

of 0.2 in the BUAP local search approaches. Additionally, when using𝑚 = relaxation_rounding,
we build the model only once and edit it in future iterations, thereby saving computational

effort. In particular, when wanting to compute the assignment to 𝑆 \ { 𝑗} when, in a previous

iteration, we computed it for 𝑆, we remove 𝑗 from the set of open facilities and add it to the

set of closed facilities. In addition, the implementation of Equation (3.1c) has its right-hand

size set by a parameter. Hence, we update this parameter to 0 for 𝑗. Finally, the 𝑥𝑖 𝑗 values for

the newly closed facility are fixed to 0. In case the previous version of the model includes a
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Algorithm 6 The close_greedy_basic algorithm

Input: an instance of Model (2.2); methods 𝑚, 𝑚′ for Oracle user_assignment defined in

Algorithm 5; scalar 𝑛𝑐 ≤ |𝐽 |.
Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, a set of

open facilities 𝑆, an assignment 𝑥 for the input instance, and the corresponding objective

function value 𝑧.

1: Initialise: 𝑆← 𝐽; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← user_assignment(𝐼 , 𝑆, 𝑚).
2: while |𝑆 | > 𝐵 do
3: 𝐽′← {indices of smallest 𝑛𝑐 values of 𝑢𝑗 , 𝑗 ∈ 𝑆} ⊆ 𝐽.
4: [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [infeasible, 0|𝐼 |,|𝐽 | , 0|𝐽 | ,+∞, “𝑁𝑜𝑛𝑒′′].
5: for 𝑗′ ∈ 𝐽′ do
6: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆 \ { 𝑗′}, 𝑚).
7: if 𝑓 ′ = feasible and 𝑧′ < 𝑧∗, [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′, 𝑗′].
8: if 𝑓 ∗ = infeasible, return 𝑓 ← infeasible; “heuristic failed”.

9: 𝑆← 𝑆 \ { 𝑗∗}; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗].
10: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆, 𝑚′).
11: if 𝑓 ′ = feasible and 𝑧′ < 𝑧, [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′].
12: return 𝑓 ; 𝑆; 𝑥; 𝑧.

facility in the set of closed facilities that we now want to be open, we additionally need to do

the opposite for this facility as well, e.g. unfix the 𝑥𝑖 𝑗 values. Within relaxation rounding, we

further consider only a set of 20 most preferred facilities for each 𝑖; this removes a significant

number of 𝑥𝑖 𝑗 variables from the model. If the corresponding models are infeasible, we rebuild

with a new set of 20 preferred facilities – as over multiple iterations all of the most preferred 20

facilities might have been closed.

The strength of this algorithm rests on being able to compute good user assignments

multiple times and speedily; it is here that the quick implementation methods we discuss

in Chapter 4 are useful. However, overall they are still slower than we would hope for. For

example, in our computational experiments, we find each user_assignment call takes about

two–thirds of a second for instances with |𝐼 | = 2060, |𝐽 | = 1394 for 𝑚 = greedy_assignment.
Reducing run times is necessary since our computational results in Section 6.3.1 show that for

the aforementioned instance we can only consider 5 facilities at each iteration if we want the

algorithm to run in a “reasonable” amount of time. This leads to the objective function value

being too far away from the optimal solution. Hence, we will consider how to speed up Line 6,

the call to user_assignmentwithin the loops, in the next section.

5.1.2. Reusing previous assignment
As mentioned in the previous section, even with the fastest user assignment method, Algorithm 6

is still too slow. Hence, we need to improve upon this. The idea we discuss now is to reuse the

previous iteration’s assignment; as such, we wish to optimise Algorithm 3 for its use within the

close greedy algorithm. At the start of Algorithm 6, we compute a user assignment assuming

all facilities are open (Line 1). Instead of recomputing the assignment from scratch in Line 6,

we only wish to adapt the assignment from the previous iteration’s assignment. We are only

closing a single facility 𝑗′ at a time, so the only changes that need to be made to the assignment

to make it feasible is to reassign the users currently assigned to facility 𝑗′. Hence, we want to

design a quick algorithm that given an assignment 𝑥 of users to facilities in 𝑆 constructs an

assignment of users to facilities in 𝑆 \ { 𝑗′}. The original greedy_assignment algorithm can be
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adapted to do so by starting it with the partial assignment and only asking it to assign the users

that need reassigning, i.e. the users previously assigned to 𝑗′, greedily to the facilities in 𝑆 \ { 𝑗′}.
The changes that need to be made to the greedy_assignment algorithm, Algorithm 3, can be

seen in Algorithm 7. Note that these changes only concern the initialisation steps before going

into the main while loop: the users that need to be assigned are now only the ones currently

assigned to 𝑗′, we need to remove 𝑗′ from the set of open facilities and mark all users assigned to

it to have no assignment yet, and finally we need to calculate how much capacity each facility

still has left given the partial assignment (Line 1).

Algorithm 7 The greedy_reassign algorithm

Input: an instance of Model (3.1); the facility to close 𝑗′; an assignment 𝑥 of 𝐼 to 𝑆; a function

sort(𝐿, 𝐴𝑙 , ascending/descending) that sorts elements 𝑙 ∈ 𝐿 depending on their value 𝐴𝑙 in

ascending or descending order.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible returns an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢, and objective function

value 𝑧.

1: Initialise: 𝐼′← {𝑖 ∈ 𝐼 : 𝑥𝑖 𝑗′ = 1}; 𝑥𝑖 𝑗′ ← 0, ∀𝑖 ∈ 𝐼′; 𝑆← 𝑆\{ 𝑗′}; 𝑅 𝑗 ← 𝐶 𝑗−
∑
𝑗∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑗 ∈

𝑆.

2: Lines 2 - 13 from Algorithm 3.

Then, the only change we are making to Algorithm 6 is to replace Line 6 with a call to

Algorithm 7. In case these assignments get worse over time since the reassignment might

be worse than completely recomputing the solution, one could completely recompute the

assignment after some number of facilities have been closed as the last thing to do in the while
loop – in practice this did not lead to any visible improvement, so we will not discuss this in any

more detail.

As seen in Section 6.3.2, this section’s improvements allow us to increase 𝑛𝑐 to 200 and still

have a reasonable running time. This leads to an improvement in the objective function value.

However, the heuristic still leads to results that are significantly worse than what the MIP solver

achieves on larger instances. Hence, we discuss one last improvement to the algorithm in the

next section.

5.1.3. Further improvements on choosing facilities
Since the heuristic performs very well on a smaller instance, where we are able to consider all

facilities in every iteration, the way we choose which facilities to consider might not focus us

on the actual relevant facilities. This leads us to our last idea for where we can improve the

heuristic: We need to reconsider how to make a good choice of the facilities we consider at each

iteration. Currently, this choice is made based on which facilities have the lowest utilisation, in

the hope that closing a barely utilised facility has little effect on the objective function, as also

done in Schmitt and Singh (2021). However, while the utilisation is indirectly related to the

objective function value, this might not be the best indicator to use. For example, there might

be some high utilisation facilities that we can close and reassign their users to a nearby facility

without affecting the objective function value too negatively.

The change to the algorithm we are making now is hence in the way we choose the facilities

to consider. Algorithm 8 includes these changes to the way the facilities to consider at each step

are chosen, as well as using the greedy_reassign method discussed in the previous section.

The basic idea of how we choose which facilities to consider is to choose the ones that we found

to be “good” to close in a previous iteration, but that we did not close yet.

Let us now explain the changes made regarding choosing the facilities to consider in more
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detail. In the first iteration, we simply consider all facilities, instead of just 𝑛𝑐 facilities. This can

be seen in the algorithm in Line 1, where the set of the facilities to consider, 𝐽′, is initialised to 𝐽.

We save the change in objective function that closing facility 𝑗 would lead to in 𝛿 𝑗 (Line 7). Then,

in every next iteration, we consider the 𝑛𝑐 facilities that are still open that previously led to the

smallest change in objective function value (Line 10). Note that we are considering facilities with

low 𝛿 𝑗 since this indicates the objective function is increased by the smallest amount possible,

which is what we are aiming for in this minimisation problem. When a facility is considered, its

𝛿 𝑗 value is also updated. This means that some 𝛿 values will be more “outdated” than others.

Algorithm 8 The close_greedy algorithm

Input: an instance of Model (2.2); methods 𝑚, 𝑚′ for Oracle user_assignment defined in

Algorithm 5; scalar 𝑛𝑐 ≤ |𝐽 |.
Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, a set of

open facilities 𝑆, an assignment 𝑥 for the input instance, and the corresponding objective

function value 𝑧.

1: Initialise: 𝑆← 𝐽; 𝐽′← 𝐽; 𝛿 𝑗 ← 0, ∀𝑗 ∈ 𝐽; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← user_assignment(𝐼 , 𝑆, 𝑚).
2: while |𝑆 | > 𝐵 do
3: [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [infeasible, 0|𝐼 |,|𝐽 | , 0|𝐽 | ,+∞, “𝑁𝑜𝑛𝑒′′].
4: for 𝑗′ ∈ 𝐽′ do
5: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign(𝐼 , 𝑆, 𝑗′, 𝑥).
6: if 𝑓 ′ = feasible and 𝑧′ < 𝑧∗, [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′, 𝑗′].
7: 𝛿 𝑗′ ← 𝑧′ − 𝑧.
8: if 𝑓 ∗ = infeasible, return 𝑓 ← infeasible; “heuristic failed”.

9: 𝑆← 𝑆 \ { 𝑗∗}; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗].
10: 𝐽′← { 𝑗 ∈ 𝑆 : indices of smallest 𝑛𝑐 values of 𝛿 𝑗} ⊆ 𝐽.
11: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆, 𝑚′).
12: if 𝑓 ′ = feasible and 𝑧′ < 𝑧, [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′].
13: return 𝑓 ; 𝑆; 𝑥; 𝑧.

We are hoping that if a facility was bad to close in an iteration, how bad it is to close is

unlikely to get any better in the next few iterations. This is especially the case for these large

instances, where a closure of a facility is unlikely to influence how bad it is to close a facility far

away from that closed facility.

However, the previous is not a mathematical precise statement and there exist counterexam-

ples to this general intuition as to why this method might work well. In particular, 𝛿 𝑗 is not

guaranteed to only increase from one iteration to the next; it is possible for it to decrease, as

seen in Example 1. It would be good if it could only increase since this would mean that even if

a facility was bad in the first iteration, we would start considering it again if everything else is

worse after a few iterations of updating 𝛿 and making potentially suboptimal choices. If 𝛿 𝑗 could

decrease, that could mean that a facility that would be good to close in iteration 100 would never

be considered again if it was bad to close in the first iteration. Note however that Example 1 tells

us more about how the greedy_assignmentmethod (and hence the greedy_reassignmethod)

works than about the overall structure of the close greedy algorithm – it exploits that a user’s

most preferred facility may not be the best facility to assign it to.

Hence, the statement that 𝛿 𝑗 can only increase could be true if the optimal assignment was to

be computed at every iteration. Note that what we are trying to prove here about the function

with input 𝑆 defined by an optimal solution to the BUAP, including the closed facilities in the

objective function, is that it is supermodular. See Schrĳver (2003) for a more detailed discussion
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on supermodularity and submodularity. In other words, if the function is supermodular, 𝛿 𝑗
cannot decrease by definition. See Proposition 3 for the formal statement of this. However, we

can find a counterexample, showing that 𝛿 𝑗 can decrease even if the assignments are made

optimally, as seen in Example 2. This example exploits that the capacity of the facilities is limited.

Hence, the function described in Proposition 3 is not supermodular.

Example 1. We would like to show that 𝛿 𝑗 can decrease from one iteration to the next in Algorithm 8.
This is assuming the starting solution is created with the greedy_assignment method.

For simplicity, we define 𝑊𝑖 𝑗 = 𝑈𝑖𝑃𝑖 𝑗 again. We consider an instance with 𝐼 = {1, 2, 3, 4} and
𝐽 = {1, 2, 3, 4}. Let 𝐶1 = 10, 𝐶2 = 10, 𝐶3 = 25 and 𝐶4 = 40. Let the𝑊𝑖 𝑗 be defined as below, with each
user having𝑈𝑖 = 10:

𝑊1,1 = 10 𝑊1,2 = 0 𝑊1,3 = 9 𝑊1,4 = 0

𝑊2,1 = 0 𝑊2,2 = 10 𝑊2,3 = 8 𝑊2,4 = 7

𝑊3,1 = 0 𝑊3,2 = 0 𝑊3,3 = 10 𝑊3,4 = 0

𝑊4,1 = 0 𝑊4,2 = 0 𝑊4,3 = 0 𝑊4,4 = 10.

We use superscripts to denote the iteration of the algorithm we are in, both for the objective and the values
of 𝛿. At the start of the algorithm, the greedy_assignment algorithm assigns user 𝑖 to facility 𝑖. Now,
the objective value of this assignment is

𝑜𝑏 𝑗0 = 0 + 0 + 25

(
15

25

)
2

+ 40

(
3

4

)
2

= 31.5. (5.1)

If we close facility 1, user 1 would be reassigned to facility 3 in the greedy_reassign algorithm. This
leads to

𝛿1

1
= 10 + 0 + 25

(
6

25

)
2

+ 40

(
3

4

)
2

− 𝑜𝑏 𝑗0 = 33.94 − 31.5 = 2.44. (5.2)

Similarly, if we close facility 2, user 2 is reassigned to facility 3. Hence,

𝛿1

2
= 0 + 10 + 25

(
7

25

)
2

+ 40

(
3

4

)
2

− 𝑜𝑏 𝑗0 = 34.46 − 31.5 = 2.96. (5.3)

Note that 𝛿1

3
, 𝛿1

4
> 𝛿1

1
simply since closing these facilities increases the objective function value by 16 /

17.5 respectively since when their users are reassigned, they contribute 0. So, in the first iteration, we
close facility 1 and have an objective function value of 𝑜𝑏 𝑗1 = 33.94 now.
We now consider what 𝛿2

2
is. Since the capacity of facility 3 is now more filled, user 2 has to be reassigned

to facility 4 instead:

𝛿2

2
= 10 + 10 + 25

(
6

25

)
2

+ 40

(
23

40

)
2

− 𝑜𝑏 𝑗1 = 34.665 − 33.94 = 0.725 < 𝛿1

2
. (5.4)

Hence, we conclude that 𝛿 𝑗 can decrease from one iteration to the next in Algorithm 8.

28



Proposition 3. 𝛿 𝑗 cannot decrease from one iteration to the next in Algorithm 8, assuming the user
assignments are made optimally, if 𝑓 (𝑆) defined by

𝑓 (𝑆) = min

𝑥

∑
𝑗∈𝐽

𝐶 𝑗

(
1 −

∑
𝑖∈𝐼 𝑈𝑖𝑃𝑖 , 𝑗𝑥𝑖 , 𝑗

𝐶 𝑗

)
2

(5.5a)

s.t.
∑
𝑖∈𝐼
𝑈𝑖𝑃𝑖 , 𝑗𝑥𝑖 , 𝑗 ≤ 𝐶 𝑗 ∀𝑗 ∈ 𝑆 (5.5b)∑

𝑗∈𝑆
𝑥𝑖 , 𝑗 = 1 ∀𝑖 ∈ 𝐼 (5.5c)

𝑥𝑖 𝑗 = 0 ∀𝑗 ∈ 𝐽 \ 𝑆 (5.5d)

𝑥𝑖 , 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽. (5.5e)

is supermodular.

Proof. Let us first formalise the statements in question. 𝛿 𝑗 cannot decrease from one iteration

to the next if 𝛿𝑡
𝑗
≤ 𝛿𝑡+1

𝑗
, where 𝑡 indicates which iteration this 𝛿 was calculated. This can be

expanded as

𝛿𝑡𝑗 = 𝑓 (𝑆𝑡 \ { 𝑗}) − 𝑓 (𝑆𝑡) ≤ 𝑓 (𝑆𝑡 \ { 𝑗 , 𝑗∗}) − 𝑓 (𝑆𝑡 \ { 𝑗∗}) = 𝑓 (𝑆𝑡+1 \ { 𝑗}) − 𝑓 (𝑆𝑡+1) = 𝛿𝑡+1

𝑗 , (5.6)

where 𝑆𝑡 is the set of open facilities at iteration 𝑡 and 𝑗∗ is the facility that was chosen to be closed

at iteration 𝑡. Furthermore, the function 𝑓 (𝑇) is supermodular if, according to an equivalent

definition in Schrĳver (2003),

𝑓 (𝑇 ∪ {𝑥}) + 𝑓 (𝑇 ∪ {𝑦}) ≤ 𝑓 (𝑇) + 𝑓 (𝑇 ∪ {𝑥, 𝑦}), ∀𝑇 ⊂ 𝐽 , 𝑥 ≠ 𝑦 ∈ 𝐽 \ 𝑇. (5.7)

Setting 𝑇 = 𝑆𝑡 \ { 𝑗 , 𝑗∗}, 𝑥 = 𝑗, 𝑦 = 𝑗∗ this results in

𝑓 (𝑆𝑡 \ { 𝑗∗}) + 𝑓 (𝑆𝑡 \ { 𝑗}) ≤ 𝑓 (𝑆𝑡 \ { 𝑗 , 𝑗∗}) + 𝑓 (𝑆𝑡). (5.8)

Rearranging Equation (5.8) results in Equation (5.6), which completes the proof. □

Example 2. We provide a counterexample for 𝛿𝑡
𝑗
≤ 𝛿𝑡+1

𝑗
in Algorithm 8, assuming the assignments are

calculated optimally. Consider an instance of Model (2.2) with 𝐼 = {1, 2, 3, 4} and 𝐽 = {1, 2, 3, 4}. Let
𝐶 𝑗 = 20 for all 𝑗 ∈ 𝐽. For simplicity, let𝑊𝑖 𝑗 = 𝑈𝑖𝑃𝑖 𝑗 and define𝑊𝑖 𝑗 by

𝑊𝑖 𝑗 =

{
20 if 𝑖 = 𝑗 ,

5 otherwise.
(5.9)

When all facilities are open, the optimal assignment assigns user 𝑖 to facility 𝑗, which leads to an objective
value of 0. Without loss of generality, assume that facility 1 is closed in the first iteration. Closing a single
facility leads to an optimal solution of 20 + 0 + 20(10

20
)2 + 20(15

20
)2 = 20 + 5 + 11.25 = 36.25. Hence,

𝛿1

𝑖
= 36.25 for all 𝑖 ∈ 𝐼. Now, once another facility is closed, the optimal objective function value becomes

20 + 20 + 20(10

20
)2 + 20(10

20
)2 = 50. Hence, 𝛿2

𝑖
= 50 − 36.25 = 13.75 < 36.25 = 𝛿1

𝑖
for 𝑖 ∈ {2, 3, 4}. We

have shown that 𝛿𝑡
𝑗
> 𝛿𝑡+1

𝑗
is possible and therefore, according to Proposition 3, 𝑓 (𝑆) is not supermodular.
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5.1.4. Conclusion
Since we have reached a good solution quality and runtime as seen in Section 6.3.3, we conclude

on the close greedy approach now. Any further change to the heuristic is unlikely to lead to a

significant improvement, and a better idea is to just run a local search once this close greedy

algorithm has terminated. This is discussed in Section 5.3. Other small improvements that

could be considered for close greedy are:

• Also considering a certain number of random facilities at each iteration.

• Parallelise the for loop in Algorithm 8.

5.2. Open greedy algorithm
The second approach we consider is based on the ADD algorithm by Jacobsen (1983). Instead of

closing facilities one by one as in the previous section, we now open facilities one by one. This is

more difficult than closing facilities one by one for two reasons:

• At the beginning, the problem is infeasible, i.e. when there are zero open facilities, no

users can be assigned to a facility. Even when we start opening facilities, the BUAPmight

not be feasible since there are too few facilities available.

• Unlike when closing facilities, we cannot easily adapt the greedy_assignment algorithm,

Algorithm 3, as done in Algorithm 7 by just changing the initialisation to deal with a

partial assignment.

The first problem was solved in Sridharan (1995) by adding an artificial facility with large

capacity and which has a large cost of assigning users to it. Since our objective function is

slightly differently structured, and we have no cost for assigning users to facilities, instead, we

allow some users not to be assigned in the first few iterations of the algorithm. Since assigning

users that are previously unassigned to a facility can only decrease the objective function value,

this is reasonable.

The second problem we address in more detail in Section 5.2.1, before discussing the open

greedy algorithm in Section 5.2.2. We present the results of the open greedy algorithm in

Section 6.4.

5.2.1. Adapting greedy assignment to open facilities
In this section, we adapt Algorithm 3 to allow for its use in the open greedy algorithm in a way

that reuses the previous iteration’s assignment. To this extent, the algorithm needs to deal with

two things:

• If there are unassigned users, it should try to assign them to the newly opened facility.

• Afterwards or if there are no unassigned users, it needs to try and reassign some already

assigned users to the newly opened facility.

We now discuss how Algorithm 9 achieves these goals. Note that the inputs to the algorithm

are a (partial) assignment of users to 𝑆 and a facility 𝑗′ to open. The algorithm then needs to

adapt this assignment to account for this newly opened facility, returning a new assignment

of users to facilities in 𝑆 ∪ { 𝑗′}. The algorithm first initialises the set of unassigned users 𝐼′ as

the set of users that has no 𝑗 for which 𝑥𝑖 𝑗 = 1 and sets 𝑅 𝑗 to the capacity remaining in facility 𝑗

given the partial assignment (Line 1). Next, Lines 2-12 from Algorithm 3 with Line 7 replaced

by “break” are run. This tries to assign the unassigned users in a greedy way. We do not want

to return the solution in Line 7 like in Algorithm 3 since we still want to do some reassignment

to the newly opened facility. That is what the rest of the algorithm does. Apart from assigning
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Algorithm 9 The greedy_reassign_open algorithm

Input: an instance of Model (3.1); the facility to open 𝑗′ ∈ 𝐽 \ 𝑆; a (partial) assignment of 𝐼 to 𝑆

𝑥; the depth 𝑑 of the local search; a function sort(𝐿, 𝐴𝑙 , ascending/descending) that sorts

elements 𝑙 ∈ 𝐿 depending on their value 𝐴𝑙 in ascending or descending order.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, returns an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢 and objective function

value 𝑧. If infeasible, it also returns these, but the assignment 𝑥 does not assign every

user to a facility.

1: Initialise: 𝑆← 𝑆 ∪ { 𝑗′}; 𝐼′← {𝑖 ∈ 𝐼 : 𝑥𝑖 𝑗 = 0, ∀𝑗 ∈ 𝑆}; 𝑅 𝑗 ← 𝐶 𝑗 −
∑
𝑗∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑗 ∈ 𝑆.

2: Lines 2-12 from Algorithm 3 with Line 7 replaced by “break to Line 3 in this algorithm”.

3: 𝐽′← { 𝑗′}; 𝑘 ← 0.

4: while 𝑘 < 𝑑 do
5: 𝐽′

𝑘
← ∅.

6: for 𝑗∗ ∈ 𝐽′ do
7: 𝐼′′← sort({𝑖 ∈ 𝐼 : 𝑈𝑖𝑃𝑖 𝑗∗ ≤ 𝑅 𝑗 , 𝑥𝑖 𝑗∗ = 0}, 𝑃𝑖 𝑗∗ , descending).
8: for 𝑖 ∈ 𝐼′′ do
9: if 𝑖 ∈ 𝐼′ and𝑈𝑖𝑃𝑖 𝑗∗ ≤ 𝑅 𝑗∗

10: 𝑥𝑖 𝑗∗ ← 1; 𝑅 𝑗∗ ← 𝑅 𝑗∗ −𝑈𝑖𝑃𝑖 𝑗∗ ; 𝐼
′← 𝐼′ \ {𝑖}.

11: else
12: 𝑗′′← arg max𝑗∈𝐽{𝑥𝑖 𝑗} ⊲ This gets the facility 𝑖 is assigned to.

13: if if_reassignment_better(𝑖 , 𝑗∗ , 𝑗′′, 𝑅 𝑗) = True
14: 𝑥𝑖 𝑗′′ ← 0; 𝑥𝑖 𝑗∗ ← 1; 𝑅 𝑗′′ ← 𝑅 𝑗′′ +𝑈𝑖𝑃𝑖 𝑗′′; 𝑅 𝑗∗ ← 𝑅 𝑗∗ −𝑈𝑖𝑃𝑖 𝑗∗ .

15: 𝐽′
𝑘
← 𝐽′

𝑘
∪ { 𝑗′′}.

16: 𝐽′← 𝐽′
𝑘
; 𝑘 ← 𝑘 + 1.

17: if |𝐼′ | = 0, 𝑓 ← feasible, else 𝑓 ← infeasible.
18: return 𝑓 ; 𝑥; 𝑢𝑗 ←

∑
𝑖∈𝐼𝑊𝑖 𝑗𝑥𝑖 𝑗
𝐶 𝑗

, ∀𝑗 ∈ 𝐽; 𝑧 ← ∑
𝑗∈𝐽 𝐶 𝑗(1 − 𝑢𝑗)2.

users to 𝑗′ we also want to potentially try to reassign users to facilities that had users taken away

from them (to be assigned to 𝑗′) since they now might have enough capacity for some other

users. This is the role of the parameter 𝑑: it determines how “deep” the local search is. 𝑑 = 1

means we only try to reassign users to 𝑗′; 𝑑 = 2 means we afterwards also try to reassign users

to the facilities that lost users to 𝑗′; 𝑑 = 3 means we additionally also try to reassign users to

facilities that lost users in the previous iteration and so forth.

Hence, we initialise the set of facilities 𝐽′ that we are trying to reassign users to as just 𝑗′ and

set the counter 𝑘 that determines how “deep” we are into the local search to 0 (Line 3). We then

start a while loop that terminates when the input depth 𝑑 is reached (Line 4). Next, we initialise

the set of facilities we wish to consider in the next iteration, 𝐽′
𝑘

to the empty set (Line 5). For each

facility 𝑗∗ ∈ 𝐽′, we then determine the set of users that we want to try to reassign to 𝑗∗. To this

extent, we only want to consider users for which 𝑗∗ has enough capacity, and we want to first

consider users that have a higher preference for 𝑗∗ (Line 7). Then, we distinguish between two

cases: users that are unassigned (Line 9) and users that are already previously assigned to a

facility (Line 11). In the former case, we simply check that the facility has enough capacity for

the user (Line 9) and then assign it to the facility, updating the remaining capacity 𝑅 𝑗∗ in the

process and removing the user from the set of unassigned users (Line 10). This is guaranteed to

improve the objective function since an unassigned user had no effect on the objective previously

and now decreases it. In the latter case, we determine the facility that the user is currently

assigned to (Line 12) and then use Algorithm 13 to determine if the reassignment of user 𝑖 to
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𝑗∗ is feasible and leads to a better solution (Line 13). If it does, we update the assignment and

the remaining capacities of the two involved facilities (Line 14). We also update the facilities to

be considered in the next iteration to include facility 𝑗′′, which is the facility from which we

just took a user away. Once all facilities in 𝐽′ are considered, we update the set of facilities to

consider for the next iteration and increase the counter (Line 16).

Since the assignment could be infeasible if not enough facilities are open for all the users

to be assigned with this greedy routine, we check if all users are assigned to determine if the

assignment is feasible (Line 17). Finally, we return the result (Line 18). Even if the assignment is

not feasible, we want to return it since the partial assignment can be used in future iterations of

the open greedy algorithm, where this algorithm is used.

Overall, this algorithm can be best described as combining the greedy_assignment al-

gorithm, Algorithm 3, by Schmitt and Singh (2021) with a more targeted version of the

local_search_reassign algorithm, Algorithm 12. This local search is necessary for opening

facilities but not for closing facilities, since when opening facilities, there is no clear set of users

that need to be reassigned. Without this local search, no users would be assigned to the newly

opened facility if the input assignment was already feasible, which defeats the purpose of

assessing how good the facility would be to open. In the next section, we discuss the open

greedy algorithm that uses Algorithm 9 as a subroutine.

5.2.2. Open greedy algorithm
Now that we have adapted the greedy_assignment algorithm in a way that allows us to build

upon a previous assignment when opening a facility, we discuss the overall open greedy

algorithm. This idea is based on the DROP approach discussed in Jacobsen (1983). We directly

use what we have learned from the close greedy algorithm:

• Using the previous iteration’s assignment speeds up the algorithm.

• Considering facilities that were good to consider in previous iterations works well.

This results in Algorithm 10. The algorithm starts by initialising everything we need: the

set 𝑆 of open facilities is initialised to the empty set, the set 𝐽′ of the facilities to consider each

iteration is initialised to all facilities, the change in objective function for each facility is initialised

to 0 and the solution is initialised to be infeasible (Line 1). Then, we start opening facilities one

by one, at each step choosing the best facility within the set 𝐽′ to open. Note that we accept

solutions that are infeasible, unless we already reached a feasible solution in the previous

iteration (Line 6). This is because the algorithm starts with no facilities, so for the first few

iterations the assignments are infeasible. Every time we recalculate the objective function when

considering to open 𝑗′, we additionally update 𝛿 𝑗′ to the change in objective function that is

observed at this point in the algorithm (Line 7). After updating the assignment and the open

facilities with the best facility to open (Line 8), we update the set of facilities to consider in the

next iteration to be the ones that were the best to open in previous iterations, as indicated by 𝛿 𝑗
(Line 9). We include the idea of recomputing the assignment from scratch every 𝑛 𝑓 iterations

in Lines 10-12, in case the assignment done by the greedy_reassign_open algorithm needs

improvement. Finally, once all the facilities have been opened, the final assignment method is

run and the assignment is updated if this leads to a better assignment (Lines 13-14).

As with close greedy, we would like for 𝛿 to only increase in order for us to reconsider

opening facilities again that might only have been bad to open at the beginning, but might be

good to open once more facilities are already open. However, we can find a counterexample

that shows that 𝛿 can decrease from one iteration to the next. This again exploits greedy

(re)assignment not leading to the optimal solution, see Example 3. Note that again, as in

Proposition 3, 𝛿 𝑗 not being able to decrease is captured by the definition of supermodularity.
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Algorithm 10 The open_greedy algorithm

Input: an instance of Model (2.2); methods 𝑚, 𝑚′ for Oracle user_assignment defined in

Algorithm 5; scalar 𝑛𝑐 ≤ |𝐽 | for the number of facilities to consider each iteration; scalar

depth 𝑑 ≥ 1 ∈ Z+ for the greedy_reassign_open algorithm; scalar 𝑛 𝑓 ≤ |𝐽 | for the number

of iterations after which to fix the assignment.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, a set of

open facilities 𝑆, an assignment 𝑥 for the input instance and the corresponding objective

function value 𝑧.

1: Initialise: 𝑆← ∅; 𝐽′← 𝐽; 𝛿 𝑗 ← 0, ∀𝑗 ∈ 𝐽; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [infeasible, 0|𝐼 |,|𝐽 | , 0|𝐽 | ,
∑
𝑗∈𝐽 𝐶 𝑗].

2: while |𝑆 | < 𝐵 do
3: [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [infeasible, 0|𝐼 |,|𝐽 | , 0|𝐽 | ,+∞, “𝑁𝑜𝑛𝑒′′].
4: for 𝑗′ ∈ 𝐽′ do
5: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign_open(𝐼 , 𝑆, 𝑗′, 𝑥, 𝑑).
6: if ( 𝑓 ′ = feasible or 𝑓 ′ = 𝑓 ) and 𝑧′ < 𝑧∗, [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′, 𝑗′].
7: 𝛿 𝑗′ ← 𝑧′ − 𝑧.
8: 𝑆← 𝑆 ∪ { 𝑗∗}; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗].
9: 𝐽′← { 𝑗 ∈ 𝐽 \ 𝑆 : indices of smallest 𝑛𝑐 values of 𝛿 𝑗} ⊆ 𝐽.

10: if |𝑆 | ≡ 0 mod 𝑛 𝑓
11: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆, 𝑚).
12: if 𝑓 ′ = feasible and 𝑧′ < 𝑧, [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′].
13: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆, 𝑚′).
14: if 𝑓 ′ = feasible and 𝑧′ < 𝑧, [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′].
15: return 𝑓 ; 𝑆; 𝑥; 𝑧.

The same instance as in Example 2 can be used to show that, even if the assignments are made

optimally, 𝛿 can decrease in the open greedy algorithm from one iteration to the next.

Example 3. We would like to show that 𝛿 𝑗 can decrease from one iteration to the next in Algorithm 10.
We consider an instance with 3 facilities and 4 users. Let 𝐶1 = 20, 𝐶2 = 10 and 𝐶3 = 8. Further, let

𝑈1 = 8,𝑈2 = 12,𝑈3 = 8 and𝑈4 = 8. Let the 𝑃𝑖 𝑗 be defined as below:

𝑃1,1 =
1

2

𝑃1,2 =
5

8

𝑃1,3 = 1

𝑃2,1 = 1 𝑃2,2 =
3

4

𝑃2,3 =
2

3

𝑃3,1 =
1

2

𝑃3,2 =
5

8

𝑃3,3 = 1

𝑃4,1 = 1 𝑃4,2 =
5

8

𝑃4,3 = 1

We use superscripts to denote the iteration of the algorithm we are in, both for the objective and the values
of 𝛿. At the start of the algorithm no facilities are open and no users assigned, so the objective value is

𝑜𝑏 𝑗0 = 20 + 10 + 8 = 38. (5.10)

If we open facility 1, users 2 and 4 would be assigned to it since they have the highest preference for facility
1 and after assigning them, the facility’s capacity is reached. This leads to

𝛿1

1
= 10 + 8 − 38 = −20. (5.11)
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Similarly, if we open facility 2, user 2 would be assigned to facility 2 and then not enough capacity is left
for any of the other users to be assigned to facility 2. Hence,

𝛿1

2
= 20 + 10

(
1

10

)
2

+ 8 − 38 = −9.9. (5.12)

Note that 𝛿1

3
> 𝛿1

1
since opening facility 3 decreases the objective function by at most 8. So, in the first

iteration, we open facility 1 and have an objective function value of 𝑜𝑏 𝑗1 = 18.
We now consider 𝛿2

2
. Since users 2 and 4 are now already assigned, instead, Algorithm 9 will assign

users 1 and 3 to facility 2. Hence, we have

𝛿2

2
= 0 + 0 + 8 − 18 = −10 < −9.9 = 𝛿1

2
. (5.13)

Hence, we conclude that 𝛿 𝑗 can decrease from one iteration to the next in Algorithm 10. Note that this
example falls apart if the user assignments were done optimally since then 𝛿1

2
= −10 = 𝛿2

2
by assigning

users 1 and 3 to facility 2. The same instance as in Example 2 can be used to show that, even if the
assignments are made optimally, 𝛿 can decrease in the open greedy algorithm from one iteration to the
next.

5.2.3. Conclusion
We discuss the performance of Algorithm 10 in Section 6.4. On the two instances we consider

first, it generally performs better than close greedy. On one instance we consider in Section 6.6,

it performs worse and on the last instance it performs better than close greedy at lower budgets.

As with the close greedy algorithm, possible improvements to the algorithm include considering

a certain number of random facilities and parallelising the for loop.

5.3. Local search
In this section, we combine the two local search algorithms discussed in Sridharan (1995) based

on ADD and DROP (or open greedy and close greedy in our case) into a single local search algorithm.

We state and explain the algorithm in this section and present the results in Section 6.5.

The basic idea of the local search algorithm is to at each step open a facility and close a

facility, where one of these is done in the best possible way. If this leads to a better solution, this

is accepted as the current solution.

We now discuss the details of the BFLP_local_search, Algorithm 11. The algorithm starts

by calling Algorithm 16, initialise_change. This algorithm simply computes the change 𝛿 𝑗 in

objective function value if a single facility 𝑗 is closed / opened, depending on if it is currently

opened or closed. Additionally, the set of facilities we want to consider is initialised to the whole

set of facilities and the counter for the number of iterations of the while loop, 𝑘, is initialised

to 0 (Line 1). The while loop terminates if either all facilities have been considered without

any change occurring (i.e. |𝐽′ | = 0) or if the iteration limit 𝑙 that is an input to the algorithm is

reached. The latter could also be replaced by a time limit, but an iteration limit was chosen in

order to make the results more comparable between similar instances.

At each iteration of the while loop, we first choose a facility using Algorithm 17 (Line 3).

This algorithm chooses a facility that according to 𝛿 is good to consider, i.e. has small 𝛿. Since 𝛿
is based on closing the facility if it is open and opening if it is closed, it would not make sense

to simply choose the facility with the smallest 𝛿: in that case as long as there are still closed

facilities in 𝐽′, one of those would be chosen since opening a facility cannot increase the objective.

This is because in greedy_reassign_open, we only accept changes that improve the objective.

Hence, in Algorithm 17 we first make a random choice, based on how many open facilities there

are out of the total number of facilities, of whether to consider an open or closed facility. Then,
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Algorithm 11 The BFLP_local_search algorithm

Input: an instance of Model (2.2); a feasible solution to the model (assignment 𝑥, the set of open

facilities 𝑆, the objective function value 𝑧); method 𝑚′ for Oracle user_assignment defined

in Algorithm 5; the number of facilities to consider each iteration, scalar 𝑛𝑐 ≤ |𝐽 |; scalar

depth 𝑑 for Algorithm 9; an iteration limit 𝑙 for the main while loop of the algorithm.

Output: status 𝑓 = feasible; if feasible, a set of open facilities 𝑆, an assignment 𝑥 for the

input instance and the corresponding objective function value 𝑧.

1: Initialise: 𝛿← initialise_change(𝑥, 𝑆, 𝑧, 𝑑); 𝐽′← 𝐽; 𝑘 ← 0.

2: while |𝐽′ | > 0 and 𝑘 < 𝑙 do
3: 𝑗′← choose_fac_based_on_change(𝐽 , 𝐽′, 𝑆, 𝛿); 𝐽′← 𝐽′ \ { 𝑗′}; 𝑘 ← 𝑘 + 1.

4: [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [infeasible, 0|𝐼 |,|𝐽 | , 0|𝐽 | ,+∞, “𝑁𝑜𝑛𝑒′′].
5: if 𝑗′ ∈ 𝑆
6: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign(𝐼 , 𝑆, 𝑗′, 𝑥); 𝛿 𝑗′ ← 𝑧′ − 𝑧 .

7: 𝐽′′← { 𝑗 ∈ 𝐽 \ 𝑆 : indices of smallest 𝑛𝑐 values in 𝛿 𝑗}.
8: for 𝑗′′ ∈ 𝐽′′ do
9: [ 𝑓 ′′, 𝑥′′, 𝑢′′, 𝑧′′] ← greedy_reassign_open(𝐼 , 𝑆 \ { 𝑗′}, 𝑗′′, 𝑥′, 𝑑); 𝛿 𝑗′′ ← 𝑧′′ − 𝑧.

10: if 𝑓 ′′ = feasible and 𝑧′′ < 𝑧∗, [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [ 𝑓 ′′, 𝑥′′, 𝑢′′, 𝑧′′, 𝑗′′].
11: if 𝑓 ∗ = feasible and 𝑧∗ < 𝑧

12: 𝑆← (𝑆 ∪ { 𝑗∗}) \ { 𝑗′}; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗].
13: 𝐽′← 𝐽; 𝛿 𝑗′ ← −𝛿 𝑗′; 𝛿 𝑗∗ ← −𝛿 𝑗∗ .
14: else
15: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign_open(𝐼 , 𝑆, 𝑗′, 𝑥, 𝑑); 𝛿 𝑗′ ← 𝑧′ − 𝑧.
16: 𝐽′′← { 𝑗 ∈ 𝑆 : indices of smallest 𝑛𝑐 values in 𝛿 𝑗}.
17: for 𝑗′′ ∈ 𝐽′′ do
18: [ 𝑓 ′′, 𝑥′′, 𝑢′′, 𝑧′′] ← greedy_reassign(𝐼 , 𝑆 ∪ { 𝑗′}, 𝑗′′, 𝑥′); 𝛿 𝑗′′ ← 𝑧′′ − 𝑧.
19: if 𝑓 ′′ = feasible and 𝑧′′ < 𝑧∗ [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗ , 𝑗∗] ← [ 𝑓 ′′, 𝑥′′, 𝑢′′, 𝑧′′, 𝑗′′].
20: if 𝑓 ∗ = feasible and 𝑧∗ < 𝑧

21: 𝑆← (𝑆 ∪ { 𝑗′}) \ { 𝑗∗}; [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ∗ , 𝑥∗ , 𝑢∗ , 𝑧∗].
22: 𝐽′← 𝐽; 𝛿 𝑗′ ← −𝛿 𝑗′; 𝛿 𝑗∗ ← −𝛿 𝑗∗ .
23: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← user_assignment(𝐼 , 𝑆, 𝑚′).
24: if 𝑓 ′ = feasible and 𝑧′ < 𝑧, [ 𝑓 , 𝑥, 𝑢, 𝑧] ← [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′].
25: return 𝑓 ; 𝑆; 𝑥; 𝑧.

we consider the best open / closed facility in the list of facilities we want to consider, 𝐽′, based

on it having the smallest 𝛿. Coming back to the main algorithm, once this facility has been

chosen, we remove it from the facilities to consider 𝐽′ (Line 3).

We then split into two cases, depending on whether the chosen facility is open (Lines 5-13) or

closed (Lines 14-22). Let us consider the case that 𝑗′ is open; the other case follows analogously.

First, we compute the assignment assuming 𝑗′ is closed and update 𝛿 𝑗′ accordingly (Line 6).

Then, we choose the 𝑛𝑐 facilities which we want to consider opening from the set of closed

facilities based on which facilities have the lowest 𝛿 𝑗 value (Line 7). We refer to this set as 𝐽′′.
We consider each facility in 𝐽′′ and find the one to open that leads to the smallest objective

function value, based on 𝑗′ being closed and the corresponding assignment 𝑥′ (Lines 8). If the

best objective function value found this way is smaller than our current solution, we update

the set of open facilities, 𝑆, by closing 𝑗′ and opening 𝑗∗ and update the assignment (Line 12).

Additionally, we update 𝐽′ to include all facilities again and negate the values of 𝛿 for the two

facilities involved (Line 13). We update 𝐽′ since now that we made a change, facilities that we
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considered opening or closing previously might lead to an improvement if we consider them

again. We update the 𝛿 values since the facilities have swapped from being open to being closed

(or vice versa), so the change in objective function of undoing this is exactly the opposite.

Once the while loop terminates, due to either all facilities having been considered without

any decrease in the objective function or the maximum iteration limit being reached, we

recompute the assignment from scratch (Line 23). If this leads to a better assignment, we update

our assignment (Line 24). Recall that the assignment methods are not guaranteed to find a

feasible solution, even if one exists. Hence, it is possible for the call to user_assignment to

return infeasible despite keeping a feasible assignment throughout the local search algorithm.

Hence, the check for feasibility in Line 24 is necessary. Finally, the resulting set of open facilities

𝑆, the assignment 𝑥 and the objective function value is returned (Line 25).

In Section 6.5, the results of this local search show that it performs well at improving bad

solutions significantly. On the good solutions achieved by open and close greedy, the local

search algorithm only makes minimal improvements before being stuck in a (local) minimum.

Some changes that could be made to the algorithm to improve it include:

• Start with low 𝑛𝑐 and increase it every 𝑛𝑖 iterations by some value.

• Randomly allow some changes that make the solution worse, to see if we can escape a

local optimum.
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6
Results and discussion

In this chapter, we present and discuss the results of the heuristics discussed in Chapter 4 and

Chapter 5. We start by discussing the input data that we run the algorithms on in Section 6.1.

In Section 6.2, we then discuss the results of the heuristics for the Balanced User Assignment

Problem, whose theory was discussed in Chapter 4. We then move on to the heuristics for our

main problem, the Balanced Facility Location Problem. We first present and discuss the results

of the close greedy algorithm, Algorithm 6, on two instances after each of the improvements

that are discussed in Section 5.1, hence showing that these are indeed improvements to the

algorithm. This can be found in Section 6.3. We then discuss the results of the open greedy

algorithm, Algorithm 10, in Section 6.4. Then, we see if the BFLP local search can improve upon

the results of open and close greedy in Section 6.5. We compare how the different heuristics

perform on different instances, also comparing their performance to the algorithm developed

in Schmitt and Singh (2021), in Section 6.6. Finally, we summarise our findings in Section 6.7.

In all these sections, we compare the results our heuristics achieve to the solution of the

MIP solver, either after a certain time running it or in case it converges, the optimal solution.

Hence, we use Equation (6.1) to calculate the difference to the MIP solution, where 𝑜𝑏 𝑗𝑀𝐼𝑃 is the

objective function value achieved by the MIP and 𝑜𝑏 𝑗ℎ is the objective function value achieved

by the heuristic. Positive values indicate that the heuristic performs better than the MIP.

100 × 𝑜𝑏 𝑗𝑀𝐼𝑃 − 𝑜𝑏 𝑗ℎ
𝑜𝑏 𝑗𝑀𝐼𝑃

(6.1)

We denote the result of Equation (6.1) by Δ𝑀𝐼𝑃 if 𝑜𝑏 𝑗𝑀𝐼𝑃 is the result the MIP achieves after

20,000 seconds. When 𝑜𝑏 𝑗𝑀𝐼𝑃 is the solution of the MIP when it is given the same amount of

time as the heuristic, we denote the result of Equation (6.1) by Δ𝑆. This is useful to see whether

we can at least achieve a better result than the MIP given that amount of time when we are

worse than the MIP after 20,000 seconds. Lastly, we use Δ𝑂𝑃𝑇 if the 𝑜𝑏 𝑗𝑀𝐼𝑃 value is the optimal

objective function value.

All computations for this work are performed on the DelftBlue system with 1 core on an

Intel XEON E5-6248R 24C 3.0GHz processor; see Delft High Performance Computing Centre

(DHPC) (2022) for details on the system. The code and data used for the computations can be

found at https://github.com/Malena205/heuristics_quadratic_facility_location.

6.1. Data
We now discuss the data we used. The main data set we use is the data set of users and recycling

facilities in Bavaria, as created by Schmitt and Singh (2021). This data set consists of 2060 user
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postcodes and 1394 postcodes with facilities. Note that if multiple facilities are in the same

postcodes, they are counted as a single facility located at their centroid. We also consider a

subset of this data set which consists of all the data for postcodes starting with 90, 91 or 92.

This allows us to see how the algorithms scale from a smaller to a larger instance. This smaller

instance consists of 368 users and 234 facilities. In the following sections, these are referred to as

the large(r) and small(er) instance, respectively.

When testing the BUAP heuristics, we additionally need to fix the open facilities. To that

extent, we create a total of 4 instances out of the above two instances: For each of them, we create

one instance where the open facilities are the ones that the MIP of the BFLP when run for 20,000

seconds with a budget of 30% of all facilities opens and one instance where this is set to 90%.

We look at 30% and 90% of facilities open since while 90% means there are more facilities to

consider which could lead to longer run times, at 30% a solution might be more difficult to find

due to limited capacity. We denote these instances by small-30, small-90, large-30 and large-90.

In addition, we also create some artificial data to allow us to compare how the different

heuristics for the BFLP perform on different instances. These instances are only considered in

Section 6.6. They are created by choosing 𝑛 random longitudes and latitude pairs within a

“rectangle” that either includes Germany or a subarea of Germany. By varying the “rectangle”

size, we can create instances that have a different spread of users. For each chosen location, the

user is assigned a population from a range uniformly at random. With probability 𝑟, a facility is

chosen to be close to each user, i.e. to the longitude and latitude of the user a small Gaussian

distribution with parameters 0, 0.01 is added, and a facility is placed there. The capacity of this

facility is again chosen uniformly at random from a range of numbers. Finally, the parameters

𝑃𝑖 𝑗 are calculated based on the distance between user and facility using the exponential decay

formula used in Schmitt and Singh (2021). For more details on the data generation, please refer

to Appendix D.

In this way, we produce two artificial instances. Artificial Instance 1 is created from a

rectangle of size 9.2 times 3.1 (the units here arise from these being longitudes and latitudes,

the area is approximately the size of Germany) with 5000 users and 2497 facilities. Artificial

Instance 2 is created from a rectangle of size 1.5 times 1.7, approximately a fourth of the size of

Bavaria, with 1500 users and 425 facilities. The first instance was created in order to test the

heuristics on an even larger instance. The second instance was created to test the algorithms

on a more “dense” instance – the users and facilities are in a smaller area here, which leads to

larger values of 𝑃𝑖 𝑗 and more users per facility. Both instances are created with user population

ranges of 0 to 20,000 and facility capacity ranges of 0 to 80,000.

6.2. Results heuristics BUAP
We now discuss the performance of the BUAP heuristics that are discussed in Section 4. Table

6.1 shows the results for four different instances. Note that we run relaxation_rounding with

𝑛𝑟 = 20, so for each user we only consider 20 𝑥𝑖 𝑗 variables in the relaxation. The first observation

we make is that for all these methods and instances, the objective value is close to the optimal

objective function value, and the heuristics are significantly faster than solving the MIP.
Overall, the differences to the optimal solution, or to the MIP when the MIP does not find an

optimal solution within 20,000 seconds, are smaller when more facilities are open, i.e. smaller

for 90 instances than for 30 instances, most likely due to a feasible solution being easier to

find. Recall that the last two instances in the table have about 5.6 times more users than the

first two instances. As such, we are able to solve the smaller instances to optimality with the

MIP. Also, the time savings are not quite as large for the smaller instances as for the larger

instances, but still very clear. Note that the run time is larger for the 90 instances than the 30

instances for greedy_assignment, but for relaxation_rounding this is the other way around.
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This can be explained by the relaxation being more difficult to solve at lower budgets and more

reassignments being required to make the solution feasible after rounding. As in both cases

𝑛𝑟 = 20, the size of the model is the same for the 30 instance as for the corresponding 90 instance.

The greedy_assignment algorithm here does the worst and relaxation_rounding with

local_search_reassign does the best. The relaxation_rounding heuristic even achieves the

same result as the optimal solution, up to the accuracy we are considering here, on the smaller

instances. Although relaxation_rounding does very well regarding its objective function

value, the run time is slower than we would want because we want to re-run this heuristic

multiple times. In particular, relaxation_rounding takes about 10 seconds for the larger two

instances. Some time savings can be made by only building the model once when running

similar models, as discussed in Section 5.1. However, we will see later that this is not sufficient

for relaxation_rounding to be used as the main user assignment method 𝑚 in the basic

version of the close greedy algorithm. Comparing the two different local search heuristics,

the local_search_reassign heuristic does better than the local_search_swap heuristic in the

same amount or even less amount of time. The latter only leads to a very small improvement.

Table 6.1: Results of the different BUAP heuristics on different instances. Instances large-30 and large-90

are solved to a MIP gap of 0.02% and 0.35%, respectively, and all other MIPmodels achieve optimality in

less than 20,000 seconds. Specifically, the optimal solution is reached in 15 seconds for small-30 and 28

seconds for small-90. Δ𝑀𝐼𝑃 and Δ𝑂𝑃𝑇 are defined in Equation (6.1). relaxation_rounding is run with

𝑛𝑟 = 20. For details, see Section 6.2.

small-30 small-90 large-30 large-90

Heuristic Local
search

Run
time [s]

Δ𝑂𝑃𝑇
[%]

Run
time [s]

Δ𝑂𝑃𝑇
[%]

Run
time [s]

Δ𝑀𝐼𝑃

[%]
Run

time [s]
Δ𝑀𝐼𝑃

[%]

relaxation_
rounding

none 6.80 0.00 2.03 0.00 11.57 -0.28 10.07 -0.09

reassign 6.81 0.00 2.05 0.00 11.77 -0.09 10.40 -0.05

swap 6.81 0.00 2.05 0.00 11.82 -0.26 10.44 -0.05

greedy_
assignment

none 0.01 -1.05 0.02 -0.71 0.28 -1.31 0.67 -1.13

reassign 0.02 -0.21 0.04 -0.03 0.48 -0.25 1.05 -0.17

swap 0.03 -1.04 0.05 -0.68 0.52 -1.12 1.10 -0.99

To conclude, relaxation_rounding consistently leads to better objective function values

than the greedy_assignmentmethod, but takes significantly longer. Regardless, to make a final

assignment once it is decided which facilities are open relaxation_rounding is useful, even if

it is not useful if an assignment needs to be computed many times. Regarding the local search

heuristics, reassigning users performs consistently significantly better than swapping users and

both are computationally cheap.

6.3. Results close greedy algorithm
In this section, we discuss the results of the close greedy algorithm from Section 5.1 and how the

changes made to it in that section improve the results. We consider the results on the smaller

and the larger instance.

6.3.1. Results basic close greedy algorithm
First, we discuss the results of the basic close greedy algorithm, Algorithm 6. We vary the

budget factor, which indicates the proportion of facilities that should remain open, to assess how
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the algorithm performs at these different budgets. We compare the results of our close greedy

heuristic to the objective value that the MIP program based on Model 2.2 reaches after 20,000

seconds. In the second column in Table 6.2, the gap reached by the MIP program after 20,000

seconds can be seen. This is the gap between the highest lower bound and the best solution the

MIP finds. The second column for each user assignment method 𝑚 of the table indicates how far

the heuristic is from the MIP after 20,000 seconds. This is calculated using Equation (6.1) and

denoted as Δ𝑀𝐼𝑃 . The third column for each 𝑚 is calculated analogously but with 𝑜𝑏 𝑗𝑀𝐼𝑃 being

the objective reached by the MIP in the time it takes the heuristic to reach its solution. The time

for the MIP here includes the time to build the model. This is denoted by Δ𝑆.

Table 6.2: Results of close greedy algorithm, Algorithm 6, with 𝑚 = greedy_assignment or 𝑚 =

relaxation_rounding throughout and 𝑚′ = relaxation_rounding with local_search_reassign as

the final assignment method. This is on the smaller instance. The budget factor indicates the proportion

of all facilities that should remain open. The second column shows the gap between the solution and the

lower bound the MIP solver reaches after 20,000 seconds. The first column for each method 𝑚 shows the

run time of the close greedy heuristic. The second and third column for each method 𝑚 are calculated

based on Equation (6.1) with 𝑜𝑏 𝑗𝑀𝐼𝑃 being the objective value reached after running the MIP for 20,000

seconds and running it for the number of seconds indicated in the second column, respectively. For

details, see Section 6.3.1.

𝑚 = greedy_assignment
𝑛𝑐 = |𝐽 |

𝑚 = relaxation_rounding
𝑛𝑐 = 5

Budget factor MIP gap
after 20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%]

0.9 0.57 123 -0.14 -0.14 64 -1.80 -1.80

0.8 1.41 224 -0.09 -0.04 125 -5.70 -5.65

0.7 2.19 306 -0.11 -0.10 185 -10.00 -9.79

0.6 3.05 367 -0.10 0.26 247 -18.60 -18.17

0.5 3.53 413 -0.20 0.25 287 -22.44 -21.89

0.4 3.93 445 -0.15 0.72 394 -31.68 -30.54

0.3 4.12 466 -0.28 0.08 395 -32.34 -31.86

0.2 4.64 498 -0.09 0.98 494 -32.57 -31.15

0.1 4.18 500 0.00 0.02 537 -22.34 -22.32

Let us first consider the results for the smaller instance, as seen in Table 6.2. The objective

function values are very close to what is achieved by the MIP for all budget factors when using

greedy_assignment and 𝑛𝑐 = |𝐽 |. Generally, for the middle budgets the heuristic is further

away from the MIP result but still very close. In addition, for lower budgets the heuristic

performs better than the MIP given the same amount of time, as indicated by the numbers in

the fifth column becoming positive. This is due to the MIP becoming more difficult to solve

at lower budgets, as indicated by the MIP gap in the second column. Therefore, the heuristic

is able to reach a better solution in the same amount of time. However, the run time of our

heuristic is slower than we would want, considering this is the smaller instance. Hence, for

the larger instance, it seems not sensible to consider all facilities that are still open at each

iteration since this would lead to too large run times. Also, recall that here we are using the

greedy_assignmentmethod in each iteration. When using the relaxation_roundingmethod

at each iteration while still considering all facilities at each step, even at a budget of 0.9, the

algorithm had not terminated after 7 hours. Hence, instead, we show the results at 𝑛𝑐 = 5 when

using relaxation_rounding. This performs significantly worse but leads to very similar run

times. This performing worse is due to the decreased 𝑛𝑐 , but increasing 𝑛𝑐 further would lead to

even longer run times, which considering the size of this instance does not appear reasonable.
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Now, let us consider the larger instance. Since the run times are already high for the smaller

instance, we only consider 5 facilities in each iteration when running the larger instance, as

seen in Table 6.3. Compared to the smaller instance at 𝑛𝑐 = |𝐽 |, the objective function value

reached compared to the MIP is a lot worse, both comparing this to the MIP after 20,000 seconds

and at the same time. It can also be seen that while relaxation_rounding takes longer than

the greedy_assignmentmethod, it leads to better results in the objective function for all but a

budget of 0.1. That means that having a better estimator of how good closing a facility is helps

to make a better choice. Lastly, let us note the worsening of the difference to the MIP as the

budget decreases down to a budget of 0.3, which indicates that we are making more and more

suboptimal choices when closing facilities. For the budgets of 0.2 and 0.1 this is not the case,

possibly because it becomes harder for the MIP to solve such low budgets. Additionally, the

difference to the MIP at the same time shows how slow the heuristic is: The MIP performs better

than the heuristics given the same amount of time at all budgets where the MIP has found a

solution at that point in time. Using the greedy_assignmentmethod however is “fast enough”

that the MIP has not found a solution yet at most budgets. This is indicated by “NA” in the table.

Since greedy_assignment is significantly faster than relaxation_rounding, we give the

results for Algorithm 6 with 𝑛𝑐 = 20 and 𝑚 = greedy_assignment in Table E.1. This increases

the run time to be more similar to the time the algorithm takes with relaxation_rounding
and 𝑛𝑐 = 5. The algorithm with greedy_assignment and 𝑛𝑐 = 20 performs better regarding

its difference to the MIP than it does with relaxation_rounding and 𝑛𝑐 = 5 at most budgets.

However, the performance is still significantly worse than the MIP.

Table 6.3: Results of close greedy algorithm, Algorithm 6, comparing using 𝑚 = greedy_assignment
throughout and 𝑚 = relaxation_rounding. The final assignment is done with 𝑚′ =

relaxation_rounding with local_search_reassign in both cases. This is with 𝑛𝑐 = 5 and on the

larger instance. The budget factor indicates the proportion of all facilities that should remain open. The

second column shows the gap between the solution and the lower bound the MIP solver reaches after

20,000 seconds. For each method, the run time, the difference to the MIP after 20,000 seconds and at the

same time, calculated using Equation (6.1), are displayed. “NA” indicates that the MIP has not found a

solution yet by the time the heuristic terminates. For details, see Section 6.3.1.

greedy_assignment relaxation_rounding

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%]

0.9 1.33 479 -3.87 NA 1780 -3.64 -3.45

0.8 2.36 855 -9.08 NA 3620 -8.23 -8.23

0.7 3.53 1260 -16.09 -15.50 4389 -14.60 -14.60

0.6 5.07 1544 -23.13 -22.21 5432 -20.27 -20.23

0.5 7.49 1833 -28.78 -28.50 6627 -23.15 -23.05

0.4 6.66 2379 -38.28 NA 10540 -31.09 -31.09

0.3 7.42 2785 -42.66 NA 12315 -33.32 -33.32

0.2 7.71 3181 -36.71 NA 15284 -32.66 -32.66

0.1 7.84 3443 -23.11 NA 13624 -25.21 -23.71

To conclude, we can see that this version of close greedy works well but is slower than we

would want on the smaller instance, while for the larger instance there is a trade-off between

quality of results and run time. The parameter 𝑛𝑐 also highly influences the quality of results

and to get good results regarding the objective function, the results of this algorithm suggest

that we need to consider a significant proportion of all facilities to make the best choice.
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6.3.2. Results close greedy with reusing previous assignment
We now discuss the results of close greedy after the improvement that was made in Section 5.1.2.

This improvement is that instead of recomputing the assignment of users to facilities, we use the

previous iterations assignment and only reassign users that are currently assigned to the facility

that we wish to close. Since we are now only using relaxation_rounding to make the final

assignment and not also throughout the algorithm, we have decided to increase the number of

facilities we consider for each user, 𝑛𝑟 , from 20 to 50. This increases the run time of the final

assignment, but since we are only running relaxation_rounding once, making sure each user

has enough “choice” to lead to a good solution is deemed more important.

Table 6.4: Results of close greedy algorithm, Algorithm 6, when Line 6 is replaced with a call to

Algorithm 7. The initial assignment method is 𝑚 = greedy_assignment with local_search_reassign,
the final assignment is 𝑚′ = relaxation_roundingwith local_search_reassign. This is with 𝑛𝑐 = |𝐽 |
and on the smaller instance. The budget factor indicates the proportion of all facilities that should remain

open. The second column shows the gap between the solution and the lower bound the MIP solver

reaches after 20,000 seconds. The third column shows the run time of the heuristic. The last two columns

are calculated based on Equation (6.1). “NA” indicates that the MIP has not found a solution yet by the

time the heuristic terminates. For details, see Section 6.3.2.

Budget factor MIP gap
after 20k s [%] Run time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%]

0.9 0.57 7 -0.01 NA

0.8 1.41 12 -0.02 0.17

0.7 2.19 17 -0.07 0.32

0.6 3.05 19 -0.10 0.61

0.5 3.53 21 -0.14 52.31

0.4 3.93 23 -0.05 49.97

0.3 4.12 29 -0.26 46.50

0.2 4.64 25 -0.09 41.32

0.1 4.18 27 -0.22 26.38

Again, let us consider the results of the smaller instance first, as seen in Table 6.4. Comparing

this to Table 6.2 with greedy_assignment at 𝑛𝑐 = |𝐽 | we make two observations: This has

improved run times by an order of magnitude and the objective function value has barely

changed at all. Note that in these results, we run the local_search_reassign heuristic after we

make the first greedy assignment and use 𝑛𝑟 = 50, which we do not do in the previous section.

This explains why at some budgets this performs better. Without these changes, no change

in objective function value was observed between reusing the assignment and computing the

assignment from scratch every iteration. Hence, this indicates that the reassignment gives

(almost in all cases) the same results as re-running the whole assignment.

As can be seen from the last column in Table 6.4, the heuristic is performing slightly better

than the MIP at the same point in time for higher budgets and significantly better at lower

budgets. For the budget factor of 0.9 the MIP has not found a solution yet by the time the

heuristic has returned a solution. The large difference at lower budgets is not as significant as it

appears – less than a minute and in some cases just a few seconds after the time the heuristic

finishes, the MIP significantly improves.

For the larger instance, it would still take too much time to consider every single facility

at each step. However, we have significantly increased 𝑛𝑐 to 200 for the results in Table 6.5

compared to 5 in the previous section since this approach is significantly faster than recomputing

the assignment at each step. Considering more facilities at each step has improved the objective

significantly, but still not far enough for this to be very close to the MIP for most budgets. This

improvement is most obvious when considering the difference to the MIP as seen in the last two
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columns, which has been more than halved compared to the results seen in Table 6.3 for most

budgets. At very low budgets, the MIP becomes very difficult to solve, so at a 0.1 budget the

heuristic is able to perform better than the MIP.

Table 6.5: Results of close greedy algorithm, Algorithm 6, when Line 6 is replaced with a call to

Algorithm 7. The initial assignment method is 𝑚 = greedy_assignment with local_search_reassign,
the final assignment is 𝑚′ = relaxation_roundingwith local_search_reassign. This is with 𝑛𝑐 = 200

and on the larger instance. The budget factor indicates the proportion of all facilities that should remain

open. The second column shows the gap between the solution and the lower bound the MIP solver

reaches after 20,000 seconds. The third column shows the run time of the heuristic. The last two columns

are calculated based on Equation (6.1). “NA” indicates that the MIP has not found a solution yet by the

time the heuristic terminates. For details, see Section 6.3.2.

Budget factor MIP gap
after 20k s [%] Run time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%]

0.9 1.33 486 -0.59 NA

0.8 2.36 920 -2.02 NA

0.7 3.53 1323 -3.87 -3.34

0.6 5.07 1733 -5.44 -4.65

0.5 7.49 2093 -5.76 -5.68

0.4 6.66 2396 -10.24 -10.24

0.3 7.42 2697 -9.60 -8.54

0.2 7.71 3021 -4.01 NA

0.1 7.84 3148 0.33 NA

To conclude, we can see a significant improvement in run time without a negative effect on

the objective function value by re-using the assignment. However, for the larger instance, the

performance regarding the objective function value is still not as good as one would hope. Not

considering every single facility, or potentially the way we choose the facilities we consider, is

what most likely leads to this.

6.3.3. Results close greedy with reusing previous assignment and considering
previously good facilities

We now discuss how choosing the facilities to consider based on how good they were to close

in a previous iterations performs. Hence, the results in this section are for our final version

of the close greedy algorithm, Algorithm 8. Since we are already getting good results for the

smaller instance in the previous section by considering all facilities at each iteration, we start

by considering the larger instance. Note that for the smaller instance, all we achieve with

this improvement to the close greedy algorithm is an improvement in the run time. For the

larger instance, we consider the results for three different values of 𝑛𝑐 , 1, 5 and 50. Recall

that the instance has 1394 facilities, so these numbers are more than an order of magnitude

smaller than the total number of facilities we could consider. As in the previous section,

we run relaxation_rounding and the local_search_reassign heuristic once the algorithm

terminates to get the final assignment of users to facilities.

We focus on 𝑛𝑐 = 5 and 50 for now. The improvement we can see in Table 6.6 compared to

Table 6.5 is large: We are only considering a fortieth / fourth of the facilities at each step compared

to how many facilities we consider in Table 6.5 which means the run time is significantly shorter.

At the same time, the objective value reached is significantly better. At all budgets except for 0.9,

the solution reached by the close greedy algorithm is even better than the result the MIP arrives

at after 20,000 seconds. At 0.9, the solution is only slightly worse than the MIP. This is in stark

contrast to a difference to the MIP up to 10% observed in the previous section. Note that it does
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Table 6.6: Results of close greedy algorithm, Algorithm 8. The initial assignment method is 𝑚 =

greedy_assignment with local_search_reassign, the final assignment is 𝑚′ = relaxation_rounding
with local_search_reassign. This is with 𝑛𝑐 = 1, 𝑛𝑐 = 5 and 𝑛𝑐 = 50 on the larger instance. The budget

factor indicates the proportion of all facilities that should remain open. The second column shows the

gap between the solution and the lower bound the MIP solver reaches after 20,000 seconds. For each

𝑛𝑐 , the first column shows the run time. The second column is calculated based on Equation (6.1). For

details, see Section 6.3.3.

𝑛𝑐 = 1 𝑛𝑐 = 5 𝑛𝑐 = 50

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 1.33 70 -0.08 75 -0.01 185 0.00

0.8 2.36 67 -0.07 84 0.04 306 0.04

0.7 3.53 68 -0.12 102 0.13 415 0.13

0.6 5.07 83 0.22 106 0.51 520 0.52

0.5 7.49 71 1.53 117 1.94 618 1.93

0.4 6.66 76 -0.28 122 0.11 671 0.13

0.3 7.42 77 -0.24 137 0.35 724 0.36

0.2 7.71 77 -0.79 143 0.24 775 0.25

0.1 7.84 78 -0.49 151 0.39 824 0.35

not make sense to compare these results to how the MIP does at the same point in time since it

takes almost 600 seconds to even build these models, so the MIP has not found a solution yet by

the time the heuristic terminates. Additionally, the MIP then spends 400 seconds on the root

relaxation and for low budgets it also takes a significant amount of time to find its first solution,

e.g. for a 0.4 budget it takes 2000 seconds to find the first solution, not including the time to

build the model and solving the root relaxation. Hence, the MIP has not found a solution by the

time this heuristic terminates at all budgets.

The budget factors of 0.5 and 0.4 appear to be outliers with how much better than the MIP
they perform. For a 0.5 budget, this is significantly better with the difference to the MIP being

close to 2%, while it only performs slightly better for a 0.4 budget. This appears to be more

connected with how well the MIP does than with how well the close greedy heuristic works:

looking at the MIP gap after 20,000 seconds, the MIP struggles more with a 0.5 budget, while the

close greedy heuristic performs consistently well. The gap referred to here is the gap the solver

has between its best solution and the best lower bound.

Now, comparing 𝑛𝑐 = 5 and 𝑛𝑐 = 50, we can see that the results are very similar with 𝑛𝑐 = 50

performing slightly better on most budgets, but performing marginally worse for 0.5 and 0.1

budgets. Since no significant improvement in objective function value can be seen while the

run time is more than double, it seems more sensible to choose a lower value for 𝑛𝑐 and then

potentially use a local search approach on that solution. 𝑛𝑐 = 5 is a surprisingly low number of

facilities to consider each iteration, especially since there are 1394 facilities in total and since

only considering 5 facilities worked badly in Section 6.3.1. Hence, let us consider what happens

at 𝑛𝑐 = 1, which means we close all the facilities whose closure at the point when all facilities

are open seems best. This leads to the heuristic performing worse than the MIP across all

budgets except 0.5 and 0.6, but not significantly so, with differences of at most about −0.8%.

The time savings compared to 𝑛𝑐 = 5 are not as significant anymore since the final assignment

and computing the results of the closure of all facilities one by one in the first iteration takes

a significant proportion of the time. Hence, it seems better to have 𝑛𝑐 ≥ 5 for this instance.

However, it is surprising how well just closing the facilities that seem best to close in the first
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iteration performs.

As a concern previously has been that the assignment might be getting worse as more

facilities close and that might influence the choice we are making at each step, we also tried

completely recomputing the assignment with the greedy_assignment heuristic (not just the

greedy_reassign heuristics) after every 50 facilities that have been closed. This however did not

have any effect on the solution: The only time this re-computation lead to a better assignment

was after 400 facilities were closed, so it appears simply reassigning greedily gives the same

result as completely recomputing most of the time.

Table 6.7: Results of close greedy algorithm, Algorithm 8. The initial assignment method is 𝑚 =

greedy_assignment with local_search_reassign, the final assignment is 𝑚′ = relaxation_rounding
with local_search_reassign. This is with 𝑛𝑐 = 5 and 𝑛𝑐 = 50 on the smaller instance. The budget

factor indicates the proportion of all facilities that should remain open. The second column shows the

gap between the solution and the lower bound the MIP solver reaches after 20,000 seconds. The first

column for each 𝑛𝑐 value shows the run time. The second column for each 𝑛𝑐 is calculated based on

Equation (6.1). For details, see Section 6.3.3.

𝑛𝑐 = 5 𝑛𝑐 = 50

Budget
factor

MIP gap
after 20k s [%] Run time [s] Δ𝑀𝐼𝑃 [%] Run time [s] Δ𝑀𝐼𝑃 [%]

0.9 0.57 3 -0.01 4 -0.01

0.8 1.41 3 -0.02 5 -0.02

0.7 2.19 3 -0.06 6 -0.07

0.6 3.05 3 -0.09 7 -0.10

0.5 3.53 3 -0.16 8 -0.14

0.4 3.93 3 -0.08 8 -0.05

0.3 4.12 4 -0.26 9 -0.26

0.2 4.64 3 -0.09 10 -0.09

0.1 4.18 2 -0.22 9 -0.22

For another indicator of the performance of this heuristic, even with low 𝑛𝑐 , we consider

how well Algorithm 8 performs on the smaller instance. See Table 6.7 for details. At 𝑛𝑐 = 50

(recall that this instance has 234 facilities), the results achieved are completely identical to those

achieved when considering all still open facilities at each iteration, as done in Table 6.4. At a

budget of 0.1, this heuristic took only 9 seconds, compared to 23 seconds in Table 6.4. At 𝑛𝑐 = 5,

the objective function value is identical at 5 of the 9 budgets. At two budgets the objective is

worse at 𝑛𝑐 = 5 than considering all facilities and at two budgets it is better, both only marginally

so with the difference to the MIP changing by at most 0.02 percentage points. This is a strong

indicator that we are now choosing the right facilities to consider at each iteration, i.e. we are

choosing the right set 𝐽′. Regarding run time, at all budgets, the heuristic now takes less than 4

seconds when 𝑛𝑐 = 5.

To conclude, this new method of deciding which facilities to consider closing performs

significantly better than considering facilities with low utilisations. At the budgets where the

MIP starts to struggle to converge, this heuristic outperforms what the MIP achieves in 20,000

seconds in a significantly shorter time.

6.3.4. Conclusion close greedy algorithm
As we can see from the results in the previous sections, both changes to the algorithm discussed in

Section 5.1 significantly improve the performance of the algorithm. Not completely recomputing

the assignment but instead adapting it leads to a significant decrease in run time, while choosing

which facilities to consider based on their performance in previous iterations leads to a significant
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improvement in the objective function value achieved. With this latter improvement, even when

only 5 facilities are considered each iteration, the results are very good and further increasing

𝑛𝑐 only improves the solution quality marginally.

6.4. Results open greedy
We now discuss the results of Algorithm 10. We have fixed 𝑚 to greedy_assignment
with local_search_reassign and 𝑚′ to relaxation_rounding with local_search_reassign
throughout this section. The parameters whose effect we need to consider now are the

number of facilities to consider each iteration 𝑛𝑐 , the depth of the local search within the

greedy_reassign_open algorithm 𝑑 and the number of iterations after which we recompute

the assignment 𝑛 𝑓 .

Table 6.8: Results of open greedy algorithm, Algorithm 10, with 𝑚 = greedy_assignment with

local_search_reassign, 𝑚′ = relaxation_roundingwith local_search_reassign. This is with 𝑑 = 1

and 𝑛 𝑓 = |𝐽 | on the smaller instance. The budget factor indicates the proportion of all facilities that

should remain open. The second column shows the gap between the solution and the lower bound the

MIP solver reaches after 20,000 seconds. For each number of facilities to consider, 𝑛𝑐 , the first column

shows the run time. The second column is calculated based on Equation (6.1). For details, see Section 6.4.

𝑛𝑐 = 5 𝑛𝑐 = 50 𝑛𝑐 = |𝐽 |

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 0.57 4 -0.03 16 0.00 45 0.00

0.8 1.41 4 -0.01 15 0.00 40 0.00

0.7 2.19 4 -0.07 13 -0.06 38 -0.06

0.6 3.05 4 -0.02 12 -0.01 35 -0.01

0.5 3.53 4 -0.02 10 -0.02 31 -0.02

0.4 3.93 3 -0.07 8 -0.01 26 -0.01

0.3 4.12 3 -0.12 7 -0.07 22 -0.07

0.2 4.64 3 -0.04 5 0.00 15 0.00

0.1 4.18 2 -0.09 3 -0.03 7 -0.03

For the smaller instance, we consider 𝑑 ∈ [1, 2, 3], 𝑛𝑐 ∈ [5, 50, |𝐽 |] and 𝑛 𝑓 ∈ [10, 50, |𝐽 |]; for

the larger instance, we consider 𝑑 ∈ [1, 2, 3], 𝑛𝑐 ∈ [5, 50] and 𝑛 𝑓 ∈ [50, |𝐽 |]. Note that 𝑛 𝑓 = |𝐽 |
means that the assignment is not recomputed from scratch during the main while loop. Our

first observation is that for the smaller instance the runs with 𝑛𝑐 = 50 and 𝑛𝑐 = |𝐽 |, with the

other two parameters being fixed, result in the same objective function value. An example of

this can be seen in Table 6.8, where 𝑑 = 1 and 𝑛 𝑓 = |𝐽 |. This is the same as we observed in

the close greedy algorithm, which suggests it is not necessary to consider all facilities at each

iteration due to us choosing the right subset of facilities to consider. However, some difference

can be observed between 𝑛𝑐 = 5 and 𝑛𝑐 = 50, with 𝑛𝑐 = 50 performing better. Considering the

difference to the MIP after 20,000 seconds, Δ𝑀𝐼𝑃 , this improves by at most 0.06 percentage points

by increasing 𝑛𝑐 from 5 to 50. For the larger instance, an improvement in the Δ𝑀𝐼𝑃 value when

increasing 𝑛𝑐 from 5 to 50 of at most 0.14 percentage points can be observed by comparing the

results in Table 6.9 and Table F.2.

Comparing the results in Table 6.8 to the ones for the close greedy algorithm in Table 6.7,

at the same value of 𝑛𝑐 , open greedy performs generally better than close greedy except for at

𝑛𝑐 = 5 at higher budgets. The pattern of open greedy generally performing better than close

greedy applies to the larger instance at 𝑛𝑐 = 5 and 𝑛𝑐 = 50 as well by comparing Table 6.6 and

Table 6.9 / Table F.2.
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Secondly, recomputing the assignment every 𝑛 𝑓 < |𝐽 | iterations in the open greedy algorithm

leads to a better assignment than what reassigning users with greedy_reassign_open achieves

multiple times throughout the algorithm. Especially at depth 𝑑 = 1, the complete reassignment

often outperforms what is achieved by greedy_reassign_open. Recall that in the close greedy

algorithm, the complete recalculation of the assignment only led to an improvement once on

the large instance at a budget factor of 0.3. Hence, this suggests the reassignments arising from

opening facilities are worse than those made when closing a facility. However, this does not

appear to have any effect on the choices of the facilities to open that the open greedy algorithm

makes since the final objective function value is identical in most cases, no matter the value of

𝑛 𝑓 . When it differs between larger and smaller values of 𝑛 𝑓 there is no clear trend: For some

budgets, having lower 𝑛 𝑓 performs better and for other budgets having higher 𝑛 𝑓 performs

marginally better. Hence, we have omitted the results where we consider different values of 𝑛 𝑓
here, concluding that recomputing the assignment from scratch every 𝑛 𝑓 iterations does not

improve the algorithm.

Thirdly, the objective function value reached is generally better at higher 𝑑, as seen for the

larger instance in Table 6.9. At the same time, the run time when going from 𝑑 = 1 to 𝑑 = 2

is approximately doubled. The improvement in objective value, as represented here by the

difference to the MIP after 20,000 seconds, is generally larger when going from 𝑑 = 1 to 𝑑 = 2

than it is when increasing it further to 𝑑 = 3. Note that at larger values of 𝑑 open greedy

becomes slower than close greedy. The general pattern of larger 𝑑 leading to better results can

also be observed for the smaller instance in Table F.1. At 𝑑 = 2 and 𝑑 = 3 this is the first time our

heuristic performs slightly better than the MIP on the smaller instance at some budgets.

Table 6.9: Results of open greedy algorithm, Algorithm 10, with 𝑚 = greedy_assignment with

local_search_reassign, 𝑚′ = relaxation_rounding with local_search_reassign. This is with

𝑛𝑐 = 50 and 𝑛 𝑓 = |𝐽 | on the larger instance. The budget factor indicates the proportion of all facilities

that should remain open. The second column shows the gap between the solution and the lower bound

the MIP solver reaches after 20,000 seconds. For each depth 𝑑, the first column shows the run time. The

second column is calculated based on Equation (6.1). For details, see Section 6.4.

𝑑 = 1 𝑑 = 2 𝑑 = 3

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 1.33 1030 0.00 1811 0.00 2459 0.00

0.8 2.36 901 0.05 1621 0.09 2216 0.09

0.7 3.53 750 0.14 1425 0.18 2089 0.19

0.6 5.07 629 0.60 1222 0.63 1839 0.65

0.5 7.49 491 2.00 1054 2.06 1566 2.07

0.4 6.66 376 0.20 849 0.26 1343 0.28

0.3 7.42 271 0.45 634 0.55 1061 0.55

0.2 7.71 182 0.29 439 0.31 767 0.34

0.1 7.84 106 0.40 234 0.47 434 0.47

To conclude, the open greedy algorithm overall performs well on our instances. Higher 𝑛𝑐
and higher 𝑑 generally lead to better results but also longer run times. However, there seems

to be some ceiling for both of these values as to how much better increasing them can make

the results: For 𝑛𝑐 , this is clear by considering the smaller instance and noting that 𝑛𝑐 = 50 and

𝑛𝑐 = |𝐽 | lead to the same results; for 𝑑, this can be seen by considering that the improvement in

objective value between 𝑑 = 2 and 𝑑 = 3 for the larger instance is already very small, while it is

generally larger between 𝑑 = 1 and 𝑑 = 2. Recomputing the assignment from scratch every 𝑛 𝑓
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iterations appears to have little to no effect on the objective function value. Overall, the open

greedy algorithm generally performs marginally better than the close greedy algorithm on these

instances. Like the close greedy algorithm, it hence performs better than the MIP after 20,000

seconds in a fraction of the time.

6.5. Results BFLP local search
We start by discussing the smaller instance; the results of the local search on the smaller instance

can be found in Appendix G, Table G.2 and Table G.3. The starting solutions of the local search

we consider are the results of Algorithm 8, the close greedy algorithm, with 𝑛𝑐 = 5, 50 as seen

in Table 6.7 and the results of Algorithm 10, the open greedy algorithm, with 𝑛𝑐 = 5, 50, 𝑑 = 2

and 𝑛 𝑓 = |𝐽 | as seen in Table F.1. We consider these starting solutions to answer the following

questions: Does running local search on the close greedy solution improve the objective function

value beyond the objective function value achieved by open greedy? Is it more sensible to run

open/close greedy with 𝑛𝑐 = 5 and then run a BFLP local search, or to run open/close greedy

with 𝑛𝑐 = 50 (with or without a local search afterwards)? The answer to the first question is that

open greedy still performs marginally better than close greedy together with the local search,

where both open and close greedy are run with 𝑛𝑐 = 50. Regarding the second question, for

open greedy there is no clear answer since for some budgets open greedy with 𝑛𝑐 = 5 and then

running a BLFP local search performs better, while for other budgets open greedy with 𝑛𝑐 = 50

performs better. However, for most budgets they lead to the same objective. Note that the local

search starting on the open greedy solution with 𝑛𝑐 = 50 does not find any improvement. When

starting with the close greedy algorithm solution of 𝑛𝑐 = 5, running local search leads to a

better solution than simply using close greedy with 𝑛𝑐 = 50. When also running local search

starting on the 𝑛𝑐 = 50 close greedy solution, this leads to exactly the same objective value as

local search starting on the 𝑛𝑐 = 5 close greedy solution for most budgets.

Table 6.10: Results of BFLP local search algorithm, Algorithm 11. The starting solution is from Algorithm 6

with 𝑚 = greedy_assignment, 𝑚′ = relaxation_rounding with local_search_reassign, 𝑛𝑐 = 5 on

the larger instance whose results can be found in Table 6.3. Local search is run with 𝑛𝑐 = 50, 𝑑 = 2 and

𝑚′ = relaxation_roundingwith local_search_reassign. The budget factor indicates the proportion

of all facilities that should remain open. The second column shows the difference to the MIP before

the local search is run. We compare Algorithm 11 to its variant where 𝑗′ and 𝐽′′ are chosen randomly

(without 𝛿). For each number of iterations 𝑙, the first column shows the run time. The second column is

calculated based on Equation (6.1). For details, see Section 6.5.

With 𝛿 With random choices

𝑙 = 200 𝑙 = 1000 𝑙 = 200 𝑙 = 1000

Budget
factor

Δ𝑀𝐼𝑃

before local
search [%]

Run
time [s]

Δ𝑀𝐼𝑃

[%]
Run

time [s]
Δ𝑀𝐼𝑃

[%]
Run

time [s]
Δ𝑀𝐼𝑃

[%]
Run

time [s]
Δ𝑀𝐼𝑃

[%]

0.9 -3.87 340 -0.09 1370 -0.06 313 -0.67 1339 -0.13

0.8 -9.08 348 -0.19 1415 -0.07 305 -1.72 1348 -0.15

0.7 -16.09 344 -0.42 1392 -0.002 353 -3.42 1515 -0.20

0.6 -23.13 340 -0.77 1329 0.37 281 -6.15 1153 0.16

0.5 -28.78 326 0.08 1214 1.62 271 -6.19 1089 1.28

0.4 -38.28 512 -2.20 1493 -0.25 380 -13.20 1485 -0.96

0.3 -42.66 483 -1.93 1457 -0.11 355 -15.80 1224 -0.76

0.2 -36.71 379 -0.67 1089 0.02 271 -16.78 949 -1.19

0.1 -23.11 288 0.14 820 0.28 192 -9.28 654 -1.36
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Note that we run the BFLP local search with the following parameters on the smaller instance:

𝑛𝑐 ∈ [50, |𝐽 |], 𝑑 ∈ [1, 2] and 𝑙 = ∞. Setting 𝑙 to infinity means that the algorithms terminates

when no improvement has been made by considering every single facility to open or close.

The questions we would like to answer by considering these different values are: Do we need

to consider all facilities in each iteration or are 50 sufficient, as is the case in the open and

close greedy algorithms? Does increasing 𝑑 improve the solution quality? Regarding the first

question, having 𝑛𝑐 = 50 or 𝑛𝑐 = |𝐽 | leads to exactly the same solution except for two cases

(i.e. specific values of 𝑑) where 𝑛𝑐 = 50 performs better and two cases where 𝑛𝑐 = |𝐽 | performs

better. Hence, we can conclude that it is again not necessary to consider all facilities at every

step. Considering the effect of 𝑑 on the local search, as with the open greedy algorithm, the

improvement is minimal with a change of at most 0.1 percentage points when starting on close

greedy and of at most 0.02 percentage points when starting on open greedy.

We now consider the larger instance. Firstly, we would like to discuss how the BFLP local

search performs when given a starting solution that is far away from the optimal solution. To

this extent, we take as our starting solution the results in Table 6.3, specifically the results of the

basic close greedy algorithm using greedy_assignment as the main user assignment method.

We run local search with this starting solution, both as described in Algorithm 11 and with all

choices of facilities being made randomly instead of based on 𝛿. This allows us to conclude

whether making choices based on 𝛿 improves the algorithm. We consider 𝑙 ∈ [200, 1000], 𝑛𝑐 = 50

and 𝑑 = 2; the results can be seen in Table 6.10.

Our first takeaway is that choosing facilities based on 𝛿 improves the algorithm significantly

if the algorithm is run for only 200 iterations and still slightly if it is run for 1000 iterations.

Hence, by considering the best facilities based on 𝛿, we are making larger improvements earlier

on in the local search. In addition, using 𝛿 does increase the run time somewhat, but not to the

extent that it would be better not to use it. Our second observation is that after 1000 iterations,

with using 𝛿, the algorithm achieves solutions that are still slightly worse than those achieved

by the improved closed greedy algorithm and the open greedy algorithm with 𝑛𝑐 = 50, as seen

in Table 6.6 and Table 6.9. However, it is now a lot closer to these results than before the local

search.

Now that we established that the local search succeeds at improving a bad solution

significantly, let us consider how the local search heuristic performs when it gets given a good

starting solution. Hence, we consider how it performs given the best solution we have found so

far for the large instance, the open greedy solution with 𝑑 = 3, 𝑛𝑐 = 50 and 𝑛 𝑓 = |𝐽 | as given in

Table 6.9. This also tells us how close Algorithm 10 is to a local optimum. The results of running

local search on this with 𝑑 = 2 and 𝑛𝑐 = 50 can be seen in Table 6.11. Our first observation is that

there are three budgets, 0.1, 0.2 and 0.4 where the local search does not find any improvement.

For all other budgets, the improvement from local search is small: The largest improvement in

the difference to the MIP after 20,000 seconds by running local search is an increase by 0.009

percentage points at a budget of 0.8. Considering the number of iterations that the local search

is run for, there are only two budgets for which running local search for 100 instead of 20

iterations lead to an improvement (0.5 and 0.7) and there are no budgets for which running the

local search for 200 iterations instead of 100 iterations leads to an improvement. Hence, we can

conclude that the solution achieved by open greedy is very close to a local optimum and local

search can find any small improvements within the first few iterations.

We now briefly comment on how much the local search improves the solutions found with

the close greedy algorithm at 𝑛𝑐 = 5 and 𝑛𝑐 = 50, i.e. with the starting solution given by the

last four columns in Table 6.6. The local search results can be found in Table 6.12. Local search

improves these solutions, but even after 200 iterations of local search with 𝑛𝑐 = 50, 𝑑 = 2 the

solution reached is still worse than simply running open greedy, apart from at budget factor
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Table 6.11: Results of BFLP local search algorithm, Algorithm 11. The starting solution is from

Algorithm 10 with 𝑚 = greedy_assignmentwith local_search_reassign, 𝑚′ = relaxation_rounding
with local_search_reassign, 𝑛𝑐 = 50, 𝑑 = 3, 𝑛 𝑓 = |𝐽 | on the larger instance, as seen in Table 6.9. Local

search is run with 𝑛𝑐 = 50, 𝑑 = 2 and 𝑚′ = relaxation_rounding with local_search_reassign. The

budget factor indicates the proportion of all facilities that should remain open. The second column

shows the difference to the MIP after 20k seconds before the local search is run, so of the starting solution,

calculated based on Equation (6.1). For each number of iterations 𝑙, the first column shows the run time.

The second column is calculated based on Equation (6.1). For details, see Section 6.5.

𝑙 = 20 𝑙 = 100 𝑙 = 200

Budget
factor

Δ𝑀𝐼𝑃

before local
search [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 0.001 98 0.007 239 0.007 381 0.007

0.8 0.089 106 0.098 249 0.098 419 0.098

0.7 0.187 103 0.189 233 0.190 403 0.190

0.6 0.648 96 0.650 204 0.650 367 0.650

0.5 2.075 98 2.075 204 2.077 360 2.077

0.4 0.279 99 0.279 196 0.279 320 0.279

0.3 0.550 82 0.555 154 0.555 257 0.555

0.2 0.342 86 0.342 156 0.342 221 0.342

0.1 0.470 91 0.470 126 0.470 169 0.470

0.9. However, it is now closer to that solution, with differences in the Δ𝑀𝐼𝑃 being at most 0.13

percentage points and most of them being about 0.05 percentage points worse, when comparing

local search starting on the 𝑛𝑐 = 50 close greedy solution to Table 6.11. Hence, we can conclude

that the best solution we can get is by running the best possible algorithm to create the solution,

which is greedy_open for this instance, and then running the local search for a few iterations.

However, note that the results of the local search starting from close greedy with 𝑛𝑐 = 5 and

close greedy with 𝑛𝑐 = 50 are very similar – for some budgets the first is better, for the other the

second. Hence, this shows that it makes more sense to run close greedy with 𝑛𝑐 = 5 first and

then run local search, instead of running close greedy simply with 𝑛𝑐 = 50, due to the former

having lower run times.

We further note by considering Table G.1, where the local search is run on the same starting

solutions but with 𝑛𝑐 = 5, 𝑑 = 1, that on average the improvement made after 20 iterations is the

same as when using 𝑛𝑐 = 50, 𝑑 = 2 for 20 iterations. However, using these smaller parameters

leads to less improvement than using the larger parameters after 100 and 200 iterations. Since

most improvements are made in the first 20 iterations, this still means local search can also be

run with smaller parameters without significantly affecting the performance.

To conclude, the local search algorithm, when started with a bad solution, improves that

solution significantly. Using 𝛿 ensures that large improvements can already be seen after few

iterations. When giving the local search algorithm a good solution, it finds most improvements

in the first 100 iterations. However, the algorithm is not able to improve the slightly worse close

greedy solution to make it better than the open greedy solution, but is able to improve close

greedy 𝑛𝑐 = 5 to the levels of close greedy 𝑛𝑐 = 50. All of these improvements and differences

are small – hence, our open and close greedy solutions already are very close to a local optimum.
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Table 6.12: Results of BFLP local search algorithm, Algorithm 11. The starting solution is from

Algorithm 8 with 𝑚 = greedy_assignmentwith local_search_reassign, 𝑚′ = relaxation_rounding
with local_search_reassign, 𝑛𝑐 = 5 or 𝑛𝑐 = 50 on the larger instance. Local search is run with 𝑛𝑐 = 50,

𝑑 = 2 and 𝑚′ = relaxation_rounding with local_search_reassign. The budget factor indicates the

proportion of all facilities that should remain open. The third column shows the difference to the MIP after

20k seconds before the local search is run, so of the starting solution, calculated based on Equation (6.1).

For each number of iterations 𝑙, the first column shows the run time. The second column is calculated

based on Equation (6.1). For details, see Section 6.5.

𝑙 = 20 𝑙 = 100 𝑙 = 200

Starting
instance

Budget
factor

Δ𝑀𝐼𝑃

before local
search [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

Close
greedy
with
𝑛𝑐 = 5

0.9 -0.006 90 0.015 206 0.016 357 0.016

0.8 0.041 92 0.070 206 0.077 356 0.081

0.7 0.126 90 0.154 212 0.169 349 0.175

0.6 0.508 141 0.581 291 0.597 452 0.616

0.5 1.936 131 1.994 241 2.039 398 2.056

0.4 0.106 117 0.153 216 0.226 408 0.224

0.3 0.353 136 0.419 238 0.471 296 0.478

0.2 0.237 117 0.293 159 0.301 302 0.313

0.1 0.388 98 0.436 148 0.437 181 0.436

Close
greedy
with
𝑛𝑐 = 50

0.9 -0.004 124 0.015 213 0.016 354 0.016

0.8 0.044 120 0.067 225 0.078 442 0.083

0.7 0.131 123 0.147 276 0.171 476 0.172

0.6 0.517 135 0.553 283 0.616 456 0.620

0.5 1.931 136 2.002 272 2.044 456 2.037

0.4 0.131 135 0.204 243 0.232 380 0.232

0.3 0.359 130 0.463 217 0.472 356 0.500

0.2 0.253 134 0.275 204 0.260 321 0.311

0.1 0.349 133 0.407 171 0.420 239 0.420

6.6. Overall comparison BFLP heuristics
After having discussed all the heuristics on their own, we would now like to compare how they

perform, also on the two artificial instances that we created. An overview of how open and close

greedy perform on the large instance and the two artificial instances can be found in Table 6.13.

We omit the smaller instance here but note that on this smaller instance we achieve results

close to what the MIP achieves in less time across all our heuristics. Since this smaller instance

is already solved well by the MIP, we are more interested in the other three instances that we

discuss here. Open greedy is run with 𝑛 𝑓 = |𝐽 | in this section since recomputing the assignment

from scratch every 𝑛 𝑓 iterations did not lead to any improvement in Section 6.4. We also compare

the results of our heuristics to the heuristic developed in Schmitt and Singh (2021). We run this

heuristic, which is a local search heuristics, until there are no changes in the objective for 100

iterations to ensure that the algorithm has (most likely) reached its local minimum. Comparing

the results of this algorithm to our heuristics by considering the difference to what the MIP
achieves after 20,000 seconds, we can see that our heuristics perform better than the algorithm

from Schmitt and Singh (2021) at all budgets and on all instances, sometimes significantly so.

In addition, our heuristics perform significantly better than the MIP at lower budgets.

Especially for Artificial Instance 1, our largest instance, the heuristics perform significantly

better than the MIP at very low budgets. Hence, our heuristics appear to be able to deal better

than the MIP solver with very large instances when capacity becomes limited. Additionally, our
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heuristics perform only marginally worse than the MIP at higher budgets. By considering the

MIP gap in the third column of the table, so the gap between lower and upper bound that the

MIP solver reaches after 20,000 seconds, it can be seen that lower budgets are the budgets for

which the problem becomes more difficult to solve for the MIP solver.

Considering the objective function value of open and close greedy across the three instances,

there is no clear picture of which of these performs better. On the large instance, open greedy

performs better, especially once increasing 𝑑 to 2. On Artificial Instance 1, close greedy performs

better at 𝑛𝑐 = 5. Hence, 𝑛𝑐 = 5 might be simply not sufficient for open greedy on this instance,

as this is a large instance with about 2500 facilities. Some further experiments have shown

that increasing 𝑛𝑐 to 10 leads to solutions that are significantly closer to the results achieved by

𝑛𝑐 = 50. For example, on Artificial Instance 1, 𝑛𝑐 = 10 performs 0.4 percentage points better

than 𝑛𝑐 = 5 regarding its Δ𝑀𝐼𝑃 value at a budget of 0.1 and 0.2. Hence, improving 𝑛𝑐 all the

way to 50 may not be necessary, but a value larger than 5 would be sensible for getting the best

performance on this instance. At 𝑛𝑐 = 50, open greedy generally performs better, surprisingly,

especially at higher budgets. However, the open greedy heuristic is slower than the close greedy

heuristic at these high budgets.

Finally, on Artificial Instance 2, open greedy performs better than close greedy at lower

budgets while close greedy performs better than open greedy at higher budgets. This split

between when open and when close greedy performs best is the most expected: fewer facilities

need to be closed by close greedy at high budgets, while fewer facilities need to be opened by

open greedy at lower budgets. This means there are fewer points where a wrong decision can

be made, and additionally the values of 𝛿 are less out of date.

Considering the run times of close and open greedy, open greedy is generally slower when

comparing “inverse” budgets, e.g. comparing 0.9 of close greedy with 0.1 of open greedy. This

is because the procedure that determines a new assignment when a facility is opened also does

a small local search, which is not necessary when closing a facility. Especially as 𝑑, the depth of

this local search, is increased, this is reflected in the run times of open greedy compared to close

greedy. By the very nature of the algorithms, it is faster for open greedy to find solutions at

lower budgets, while it is faster for close greedy to find solutions at high budgets.

Now, let us discuss the parameter 𝑛𝑐 and in the case of open greedy also the parameter

𝑑. Across all instances, increasing 𝑛𝑐 from 5 to 50 leads to a significant increase in run time

but only in a small – or at some budgets no improvement – in the objective function value. In

all but one case, the improvement is at most of the order of 0.01 percentage points for close

greedy and there also exist a couple budgets for which only considering 5 facilities each iteration

performs better. For open greedy, the improvement of increasing 𝑛𝑐 from 5 to 50 is generally

larger, especially at lower budgets for the two artificial instances. However, most improvements

are still in the order of 0.01 percentage points and the largest improvement is 0.5 percentage

points. Considering increasing 𝑑 from 1 to 2 improvements are of a similar order of magnitude

as for increasing 𝑛𝑐 from 5 to 50. However, the increase in run time when 𝑛𝑐 = 5 and 𝑑 increases

from 1 to 2 is less extreme than when increasing 𝑛𝑐 to 50, which means increasing 𝑑 to 2 might

be more sensible than increasing 𝑛𝑐 all the way to 50. Increasing 𝑑 instead of 𝑛𝑐 is sensible,

especially in the case of Artificial Instance 2, and also to some extent for the large instance: Since

the facilities and users are close together in this instance, an extra depth of local search is more

likely to actually lead to an improvement.
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Let us now briefly comment on how the BFLP local search performs when starting it on the

results given in Table 6.13. The results of the local search, which is run for 𝑙 = 100 iterations

with 𝑑 = 1, 𝑛𝑐 = 5, can be found in Table 6.14. We only show the results for these values of

local search parameters, as increasing the parameters any further makes very little difference to

the results. As previously observed, the improvements local search can make are small – most

of them are of order 0.01 percentage points, with some improvements being of order 0.1 and

sometimes even no improvement being made by the local search. The question now is whether

it is better to increase 𝑛𝑐 in the original open / close greedy algorithm, or to instead run a local

search. For close greedy, the algorithm with 𝑛𝑐 = 5 and then a local search performs better in

almost all cases than simply running close greedy with 𝑛𝑐 = 50. For open greedy, the picture

is less clear due to open greedy performing worse at 𝑛𝑐 = 5 compared to 𝑛𝑐 = 50 on Artificial

Instance 1 at lower budgets. Local search is not able to improve upon this enough to close this

gap.

To conclude, if one is only interested in finding the best possible result no matter the run

time, increasing 𝑛𝑐 and 𝑑 and running a local search afterwards will generally lead to the best

results. However, if one looks to balance the results achieved with the run time, using either

open or close greedy (depending on the budget, with open greedy preferred for lower budgets)

at low 𝑛𝑐 and 𝑑 and then running a local search for a few iterations will get very close to what

running these algorithms with higher parameters achieves but in significantly less time. The

improvements made by increasing the parameters and running local search are generally very

small, while they have a significant impact on the run time.
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6.7. Summary of results and recommendations
We now summarise our findings and give recommendations regarding which algorithms are

best to use and with which parameters. Firstly, let us discuss the BUAP heuristics. For balancing

finding a good solution and having very low run time, we recommend using greedy_assignment
with local_search_reassign. Using the additional local search, which is very fast, improves

the solution achieved by the very basic greedy_assignment. If run time is a slightly smaller

concern, but the aim is still finding a good solution quicker than the MIP, our recommendation

is to run relaxation_rounding with local_search_reassign. The choice of the parameter 𝑛𝑟
here depends on the specific instance, in particular for larger and “denser” instances higher

𝑛𝑟 than the 50 we used here may be necessary. local_search_swap performed worse than

local_search_reassign, both regarding the improvements it makes to the objective function

value and its run time. Hence, we would not recommend using it over local_search_reassign.
We now discuss our BFLP heuristics recommendations. The first recommendation when

choosing between close greedy and open greedy is to consider the budget 𝐵. If this is more

than half the facilities, we recommend using close greedy and otherwise we suggest using open

greedy in order to decrease the run time. Since there is no clear indicator that one performs

better than the other, this allows us to use larger parameters 𝑛𝑐 and 𝑑 while aiming for the same

run time. Considering the parameter 𝑛𝑐 , relatively low 𝑛𝑐 compared to |𝐽 | still lead to good

solution; however, we do not want the ratio of
𝑛𝑐
|𝐽 | to be too small. As we discussed with our

largest instance, Artificial Instance 1, increasing 𝑛𝑐 from 5 to 10 will lead to some improvements

for open greedy. At the same time, for all other instances, increasing 𝑛𝑐 from 5 to 50 only leads to

very minimal improvement. It therefore appears that we should consider at least approximately

0.5% of all facilities in each iteration, at least for instances that have user to capacity ratios similar

to these instances. As a minimum, we would recommend 𝑛𝑐 ≥ 5, as our results in Table 6.6

show that very small 𝑛𝑐 will worsen the results and not lead to any big time savings because

making the final assignment takes a significant amount of the total run time of the heuristic. If

the instance is not too large and run time is less of a concern, larger values of 𝑛𝑐 can be used, but

the improvements made by this will most likely be minimal.

Regarding the parameter 𝑑, we suggest either using 1 or 2. The choice made here depends

on the instance: For instances where users have more facilities that they have a significantly

large preference for, so a more “dense” instance, we suggest using 𝑑 = 2 as it leads to more

improvements than increasing 𝑛𝑐 on our instances. Recomputing the assignment from scratch

every 𝑛 𝑓 iterations did not improve the algorithm, so 𝑛 𝑓 = |𝐽 | should be chosen.

Finally, the BFLP local search can be run with similar parameters as used for open greedy

and close greedy. About 100 iterations appear to be sufficient on our instances to achieve most

of the improvement that the local search gives us, but again this could be increased if this is

necessary for more difficult instances.

Overall, our results show that on easier instances or at easier (higher) budgets our BFLP
heuristics only perform marginally worse than the MIP but in significantly less time. When the

MIP starts to struggle, which is the case on larger instances and when the capacity becomes more

limited, our heuristics are able to outperform what the MIP achieves in 20,000 seconds but in

significantly less time.
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7
Conclusion

We now summarise the findings of this piece of work. We started by showing that the BFLP and

the BUAP are𝒩𝒫-hard. Because of this and since the MIP solver struggles to solve large instances

with limited capacity, we developed heuristics for these two problems. The heuristics for the

BUAP were developed since they were required as a subroutine for the heuristics of the BFLP,
but are also of interest in their own right. The relaxation_rounding heuristic we developed

has been shown to outperform the greedy algorithm developed in Schmitt and Singh (2021).

Additionally, a local search that reassigns users has been shown to work significantly better than

a local search that swaps the assignment of users.

For the BFLP, we developed two constructive algorithms, close greedy and open greedy, and

one local search algorithm. These heuristics are based on the ideas from the heuristics for the

CFLP developed in Jacobsen (1983), but some adjustments needed to be made to adapt them

to our problem. When developing our heuristics, there were two crucial decisions made that

significantly improved the performance of the algorithms. The first important observation is

that it is sufficient to adapt an assignment instead of completely recomputing it. In particular, if

a single facility is closed (or opened) it is sufficient to start with the original assignment and

simple reassign users where this is necessary. The second idea that worked very well in practice

was to choose the facilities that should be considered to be closed (or opened) based on how

good they were to close (or open) in a previous iteration. As instances become larger, it becomes

intractable to consider all facilities at each step of the algorithm, which is why focusing the

algorithm on the right facilities is crucial. This choice of focusing the algorithm on only a few

facilities worked exceedingly well in practice. Even considering only 5 facilities on instances

that have more than 1000 facilities performs well.

We showed that our heuristics for the BFLP outperform the heuristic developed in Schmitt

and Singh (2021). As the problem becomes difficult to solve for MIP solvers, due to the size of the

problem or the instance having limited capacity, our heuristics have been shown to outperform

what can be achieved by the MIP solver in 20,000 seconds. Generally, it is sufficient to run the

simplest versions of our algorithms to get good results – increasing the parameters only leads to

very small improvements while significantly increasing the run time. The local search algorithm

developed for the BFLP is only able to marginally improve upon the results achieved by open

and close greedy. However, we have shown that the local search algorithm performs well at

improving a bad starting solution quickly.

We have two suggestions for further work that could be considered to extend upon this

thesis. Firstly, some more investigation into why considering facilities that performed well in

previous iterations worked well for open and close greedy could be conducted. For example,

one could attempt to prove (or disprove) that 𝑓 (𝑆) as defined in Proposition 3 is supermodular
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on instances with sufficient capacity, i.e. instances with 𝐶 𝑗 ≥
∑
𝑖∈𝐼𝑊𝑖 𝑗 ,∀𝑗 ∈ 𝐽. Secondly, the

performance of the heuristics on the more general Generalised Quadratic Assignment Problem

and the corresponding Facility Location Problem could be considered.
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A
Examples for SCUAP and UAP

When considering the SCUAP in Section 3.2, we note that even when the capacity of facilities is

sufficient, finding a solution with a certain objective function is𝒩𝒫-hard. Below, we provide

two examples that show how intuitive ideas of assigning users lead to suboptimal solutions. We

first provide an example for how an intuitively feasible solution that assigns users to their most

preferred facility is suboptimal.

Example 4. Consider an instance of Model (3.1) with 𝐼 = {1, 2, 3}, 𝐽 = {1, 2}. Let 𝐶1 = 10, 𝐶2 = 20.
Let the𝑊𝑖 , 𝑗 be defined as follows:

𝑊1,1 = 3 𝑊1,2 = 4

𝑊2,1 = 4 𝑊2,2 = 10

𝑊3,1 = 2 𝑊3,2 = 0

The feasible solution that assigns each 𝑖 to 𝑗∗ = arg max𝑗∈𝐽𝑊𝑖 , 𝑗 is 𝐼1 = {3}, 𝐼2 = {1, 2} with a
corresponding objective function value of 10(1− 0.2)2 + 20(1− 0.7)2 = 8.1. A better solution is obtained
by 𝐼1 = {1, 3}, 𝐼2 = {2} with a corresponding objective function value of 10(1−0.5)2+20(1−0.5)2 = 7.5.

Next, we provide an example for how another intuitive feasible solution that assigns user 𝑖

to 𝑗∗ = arg max𝑗∈𝐽
𝑊𝑖 , 𝑗

𝐶 𝑗
is still suboptimal.

Example 5. Consider an instance of Model (3.1) with 𝐼 = {1, 2, 3}, 𝐽 = {1, 2}. Let 𝐶1 = 𝐶2 = 10. Let
the𝑊𝑖 , 𝑗 be defined as follows:

𝑊1,1 = 1 𝑊1,2 = 0

𝑊2,1 = 0 𝑊2,2 = 4

𝑊3,1 = 2 𝑊3,2 = 3

The feasible solution that assigns each 𝑖 to 𝑗∗ = arg max𝑗∈𝐽
𝑊𝑖 , 𝑗

𝐶 𝑗
is 𝐼1 = {1}, 𝐼2 = {2, 3} with a

corresponding objective function value of 10(1 − 0.1)2 + 10(1 − 0.7)2 = 9. A better solution is obtained
by 𝐼1 = {1, 3}, 𝐼2 = {2} with an objective value of 10(1 − 0.3)2 + 10(1 − 0.4)2 = 8.5.

Example 4 and 5 suggest that a balance between utilisation and access is required. These

examples provide a motivation to study the hardness of the problem, as we do in Section 3.2.

The following example provides an illustration of the mapping we use for the construction

in Theorem 1.
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Example 6. Consider an instance of the PP as follows: 𝑇 = {𝑡1 , 𝑡2 , 𝑡3 , 𝑡4} = {2, 3, 4, 5}. The
corresponding UAP instance then has 𝐼 = {1, 2, 3, 4}, 𝑆 = {1, 2}, 𝐶1 = 𝐶2 = 7 and𝑊𝑖 , 𝑗 = 𝑡𝑖 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈
𝑆.

Given a YES instance of the PP by 𝐿 = {1, 4}, the corresponding UAP solution is then 𝐼1 = 𝐿 = {1, 4}
and 𝐼2 = {1, 2, 3, 4} \ {1, 4} = {2, 3}. This is a feasible solution to the UAP since both facilities have 7
people assigned to them, which is within their capacity of 7. Conversely, a YES instance (this is the only
feasible solution) to the UAP is to assign users 1, 4 to the first facility and 2, 3 to the second, i.e. 𝐼1 = {1, 4}
and 𝐼2 = {2, 3} since then both facilities have 7 people assigned to them. The corresponding solution to
the PP is 𝐿 = {1, 4}. We have

∑
𝑖∈𝐿 𝑡𝑖 = 5 + 2 = 7 = 3 + 4 =

∑
𝑖∈{1,2,3,4}\𝐿 𝑡𝑖 .

Similar to Example 6, the following example provides an illustration of the mapping we use

for the construction in Theorem 2.

Example 7. Consider an instance of the PP as follows: 𝑇 = {𝑡1 , 𝑡2 , 𝑡3 , 𝑡4} = {2, 3, 4, 5}. The
corresponding SCUAP instance then has 𝐼 = {1, 2, 3, 4}, 𝑆 = {1, 2}, 𝐶1 = 𝐶2 = 14,𝑊𝑖 , 𝑗 = 𝑡𝑖 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈
𝑆, and 𝑀 = 7.

Given a YES instance of the PP by 𝐿 = {1, 4}, the corresponding SCUAP solution is then 𝐼1 = 𝐿 = {1, 4}
and 𝐼2 = {1, 2, 3, 4}\{1, 4} = {2, 3}. This is a YES instance of the SCUAP since

∑
𝑖∈𝐼𝑊𝑖 ,1 = 7 ≤ 14 = 𝐶1,∑

𝑖∈𝐼𝑊𝑖 ,2 = 7 ≤ 14 = 𝐶2 and the objective function value is 14(1 − 7

14
)2 + 14(1 − 7

14
)2 = 7 ≤ 𝑀.

Conversely, a YES instance to the SCUAP (there is only one optimal solution) is to assign users {1, 4}
to the first facility and {2, 3} to the second, giving an optimal objective function value of 7 = 𝑀; i.e.,
𝐼1 = {1, 4} and 𝐼2 = {2, 3}. The corresponding YES instance to the PP is given by 𝐿 = {1, 4}, since we
have

∑
𝑘∈𝐿 𝑡𝑘 = 5 + 2 = 7 = 3 + 4 =

∑
𝑘∈{1,2,3,4}\𝐿 𝑡𝑘 .
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B
BUAP local search algorithm
subroutines and algorithms

pseudocode

In this appendix, we provide pseudocodes for the two local search algorithms, Algorithm 12

and Algorithm 14, which we discuss in Section 4.3. We further provide two subroutines,

Algorithm 13 and 15, that we use within these algorithms, respectively. Both these algorithms

seek to improve a given feasible solution for Model (3.1).

Algorithm 12 The local_search_reassign algorithm

Input: an instance of Model (3.1); an assignment 𝑥; a cut-off in preference 𝑃 (default 0.2); a time

limit 𝑡 for the while loop; the negation of the minimum improvement 𝑙 for the while loop

(default -10); the reassignment_is_better subroutine.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, returns an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢 and objective function

value 𝑧.

1: 𝑅 𝑗 ← 𝐶 𝑗 −
∑
𝑗∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑗 ∈ 𝑆.

2: 𝐴 𝑗 = {𝑖 ∈ 𝐼 : 𝑥𝑖 𝑗 = 1}, ∀𝑗 ∈ 𝑆; 𝐵𝑖 ← { 𝑗 ∈ 𝑆 : 𝑃𝑖 𝑗 ≥ 𝑃}, ∀𝑖 ∈ 𝐼; 𝛾← 𝑙 − 1.

3: if ∃𝑗 ∈ 𝑆 s.t. 𝑅 𝑗 < 0, return infeasible.

4: while 𝛾 < 𝑙 and time since start of loop < 𝑡 do
5: 𝛾← 0.

6: for 𝑗′ ∈ 𝑆 do
7: if |𝐴 𝑗′ | ≤ 1, break. Continue with next iteration of outer for loop (Line 6).

8: for 𝑖 ∈ 𝐴 𝑗′ do
9: for 𝑗′′ ∈ 𝐵𝑖 do

10: [𝑏, 𝑐] ← if_reassignment_better(𝑖 , 𝑗′, 𝑗′′, 𝑅 𝑗′ , 𝑅 𝑗′′).
11: if 𝑏 = True
12: 𝑥𝑖 𝑗′ ← 0; 𝑥𝑖 𝑗′′ ← 1; 𝐴 𝑗′ ← 𝐴 𝑗′ \ {𝑖}; 𝐴 𝑗′′ ← 𝐴 𝑗′′ ∪ {𝑖}.
13: 𝑅 𝑗′ ← 𝑅 𝑗′ +𝑈𝑖𝑃𝑖 𝑗′; 𝑅 𝑗′′ ← 𝑅 𝑗′′ −𝑈𝑖𝑃𝑖 𝑗′′; 𝛾← 𝛾 + 𝑐.
14: break. Continue with next iteration of inner for loop (Line 8).

15: return 𝑓 ← feasible; 𝑥; 𝑢𝑗 ←
∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
, ∀𝑗 ∈ 𝐽; 𝑧 ← ∑

𝑗∈𝐽 𝐶 𝑗(1 − 𝑢𝑗)2.

We first discuss our local_search_reassign algorithm that we summarise in Algorithm 12.
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We initialise with a given feasible solution, and compute the remaining capacity 𝑅 𝑗 for all

facilities, the set of users 𝐴 𝑗 assigned to each facility 𝑗, and the facilities 𝐵𝑖 that user 𝑖 has at least

preference 𝑃 for (Lines 1-2). If the input assignment is infeasible – measured by a facility used

in excess of its capacity – the algorithm immediately terminates, returning infeasible (Line 3).

If not, we continue to the main while loop; this terminates either when the improvement in the

objective function value in the previous iterations is small or if a time limit is exceeded (Line 4).

We choose a time limit here instead of terminating after a certain number of iterations since

this algorithm is generally very quick to terminate on our good starting solutions generated

by relaxation_rounding or greedy_assignment. Hence, terminating when a time limit is

reached is a fail-safe – we practically never reach this time limit, but it is there in case of a very

unusual starting solution. Hence, we avoid introducing another parameter that needs careful

tuning to ensure it is set correctly.

Algorithm 13 The if_reassignment_better subroutine

Input: user 𝑖 to reassign; facility 𝑗′ that user 𝑖 is currently assigned to; facility 𝑗′′ that user 𝑖 is

considered to be reassigned to; remaining capacities of both facilities 𝑅 𝑗′ , 𝑅 𝑗′′.

Output: either True if the reassignment improves the objective function value, and the corre-

sponding improvement; False otherwise.

1: if𝑈𝑖𝑃𝑖 𝑗′′ > 𝑅 𝑗′′

2: return False.

3: 𝑜𝑏 𝑗′← 𝐶 𝑗′
(
𝑅 𝑗′
𝐶 𝑗′

)
2

+ 𝐶 𝑗′′
(
𝑅 𝑗′′
𝐶 𝑗′′

)
2

.

4: 𝑜𝑏 𝑗′′← 𝐶 𝑗′
(
𝑅 𝑗′+𝑈𝑖𝑃𝑖 𝑗′

𝐶 𝑗′

)
2

+ 𝐶 𝑗′′
(
𝑅 𝑗′′−𝑈𝑖𝑃𝑖 𝑗′′

𝐶 𝑗′′

)
2

.

5: if 𝑜𝑏 𝑗′′ < 𝑜𝑏 𝑗′

6: return True; 𝑜𝑏 𝑗′′ − 𝑜𝑏 𝑗′.
7: else
8: return False.

We consider reassignments of users only to facilities that are open. Consider a user 𝑖 assigned

to facility 𝑗′ that we seek to reassign to facility 𝑗′′ (where the preference of 𝑖 to 𝑗′′ is at least 𝑃).

We then use the subroutine in Algorithm 13 to determine if the reassignment is expected to

perform better (Line 10). If so, we update all the parameters: the new assignment 𝑥, the new sets

𝐴 𝑗 , the new remaining capacities 𝑅 𝑗 , and the change in the objective function 𝛾 (Lines 11-13).

Note that this change will be a negative number since we calculate the change in objective

by subtracting the previous objective from the improved objective. Hence, the termination

condition of the while loop is 𝛾 < 𝑙 and not 𝛾 > 𝑙. We continue this procedure until one

of the termination criteria is met. The algorithm then returns the best assignment, with the

corresponding utilisation and objective function value (Line 15).

Next, we discuss the local search swap algorithm that we summarise in Algorithm 14.

This relies on a subroutine we present in Algorithm 15. The idea here is similar to the above-

mentioned reassignment algorithm, with the difference that we swap two users instead of

reassigning them. To this end, there are two major changes in Algorithm 14 from Algorithm 12.

First, we have a second for loop to include the user 𝑖′′ assigned to 𝑗′′; here, 𝑗′′ is also the

facility we consider swapping a user from with 𝑗′ (Line 9). Secondly, if we do identify a better

assignment via swapping, we continue with the next iteration of the outer for loop rather than

the inner for loop as in local_search_reassign (Line 15). We do so since we now have an

additional user added to the set 𝐴 𝑗′, unlike in the local_search_reassign algorithm.
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Algorithm 14 The local_search_swap algorithm

Input: an instance of Model (3.1); an assignment 𝑥; a cut-off in preference 𝑃 (default 0.2); a time

limit 𝑡 for the while loop; the negation of the minimum improvement 𝑙 for the while loop

(default -10); the swap_is_better subroutine.

Output: status 𝑓 = either feasible or infeasible for the given inputs; if feasible, returns an

assignment 𝑥 for the input instance with corresponding utilisation 𝑢 and objective function

value 𝑧.

1: 𝑅 𝑗 ← 𝐶 𝑗 −
∑
𝑗∈𝐼 𝑈𝑖𝑃𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑗 ∈ 𝑆.

2: 𝐴 𝑗 ← {𝑖 ∈ 𝐼 : 𝑥𝑖 𝑗 = 1}, ∀𝑗 ∈ 𝐽; 𝐵𝑖 ← { 𝑗 ∈ 𝑆 : 𝑃𝑖 𝑗 ≥ 𝑃}, ∀𝑖 ∈ 𝐼; 𝛾← 𝑙 − 1.

3: if ∃𝑗 ∈ 𝑆 s.t. 𝑅 𝑗 < 0, return infeasible.

4: while 𝛾 < 𝑙 and time since start of loop < 𝑡 do
5: 𝛾← 0.

6: for 𝑗′ ∈ 𝑆 do
7: for 𝑖′ ∈ 𝐴 𝑗′ do
8: for 𝑗′′ ∈ 𝐵𝑖′ do
9: for 𝑖′′ ∈ 𝐴 𝑗′′ do

10: [𝑏, 𝑁′, 𝑁′′, 𝑐] ← if_swap_better(𝑖′, 𝑖′′, 𝑗′, 𝑗′′, 𝑅 𝑗′ , 𝑅 𝑗′′).
11: if 𝑏 = True
12: 𝑥𝑖′ 𝑗′ ← 0; 𝑥𝑖′ 𝑗′′ ← 1; 𝑥𝑖′′ 𝑗′ ← 1; 𝑥𝑖′′ 𝑗′′ ← 0.

13: 𝐴 𝑗′ ← 𝐴 𝑗′ \ {𝑖′} ∪ {𝑖′′}; 𝐴 𝑗′′ ← 𝐴 𝑗′′ \ {𝑖′′} ∪ {𝑖′}.
14: 𝑅 𝑗′ ← 𝑁′; 𝑅 𝑗′′ ← 𝑁′′; 𝛾← 𝛾 + 𝑐.
15: break. Continue with next iteration of outer for loop (Line 6).

16: return 𝑓 ← feasible; 𝑥; 𝑢𝑗 ←
∑
𝑖∈𝐼𝑗 𝑊𝑖 𝑗𝑥𝑖 𝑗

𝐶 𝑗
, ∀𝑗 ∈ 𝑆; 𝑧 ← ∑

𝑗∈𝐽 𝐶 𝑗(1 − 𝑢𝑗)2.

Algorithm 15 The if_swap_better subroutine

Input: users 𝑖′ and 𝑖′′ to swap; facilities 𝑗′ and 𝑗′′ that the users are currently assigned to,

respectively; remaining capacities of both facilities 𝑅 𝑗′ , 𝑅 𝑗′′.

Output: either True if the swapping improves the objective function value, the corresponding

improvement, and updated remaining capacities of both facilities; False otherwise.

1: 𝑁𝑗′ ← 𝑅 𝑗′ +𝑈𝑖′𝑃𝑖′ 𝑗′ −𝑈𝑖′′𝑃𝑖′′ 𝑗′; 𝑁𝑗′′ ← 𝑅 𝑗′′ +𝑈𝑖′′𝑃𝑖′′ 𝑗′′ −𝑈𝑖′𝑃𝑖′ 𝑗′′.

2: if 𝑁𝑗′ < 0 or 𝑁𝑗′′ < 0

3: return False.

4: 𝑜𝑏 𝑗′← 𝐶 𝑗′
(
𝑅 𝑗′
𝐶 𝑗′

)
2

+ 𝐶 𝑗′′
(
𝑅 𝑗′′
𝐶 𝑗′′

)
2

.

5: 𝑜𝑏 𝑗′′← 𝐶 𝑗′
(
𝑁𝑗′
𝐶 𝑗′

)
2

+ 𝐶 𝑗′′
(
𝑁𝑗′′
𝐶 𝑗′′

)
2

.

6: if 𝑜𝑏 𝑗′′ < 𝑜𝑏 𝑗′

7: return True; 𝑜𝑏 𝑗′′ − 𝑜𝑏 𝑗′; 𝑁𝑗′; 𝑁𝑗′′.

8: else
9: return False.
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C
Helper functions BFLP local search

In Algorithm 11, we call some functions that we only discuss now since they are easily

summarised in words but would only distract from the main ideas of the local search algorithm

if they were to be included in Algorithm 11.

Algorithm 16 is a procedure used in Algorithm 11 to initialise the parameter 𝛿. Hence, for

each facility 𝑗′ ∈ 𝐽, it computes what the change in the objective function would be if that facility

were to be closed / opened if it currently is open / closed.

Algorithm 16 The initialise_change procedure

Input: an instance of Model (2.2); a feasible solution to the model (assignment 𝑥, the set of open

facilities 𝑆, the objective function value 𝑧); scalar depth 𝑑 for Algorithm 9.

Output: the change in objective function 𝛿 observed by each facility when it is opened / closed

based on the current assignment.

1: Initialise: 𝛿 𝑗 ←∞, ∀𝑗 ∈ 𝐽.
2: for 𝑗′ ∈ 𝑆 do
3: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign(𝐼 , 𝑆, 𝑗′, 𝑥).
4: if 𝑓 ′ = feasible
5: 𝛿 𝑗 ← 𝑧′ − 𝑧.
6: for 𝑗′ ∈ 𝐽 \ 𝑆 do
7: [ 𝑓 ′, 𝑥′, 𝑢′, 𝑧′] ← greedy_reassign_open(𝐼 , 𝑆, 𝑗′, 𝑥, 𝑑).
8: if 𝑓 ′ = feasible
9: 𝛿 𝑗 ← 𝑧′ − 𝑧.

10: return 𝛿.

The other procedure, Algorithm 17, used in the local search algorithm, determines how the

next facility to consider is chosen from 𝐽′. Here, we want to choose a facility that according to

𝛿 is good to consider, i.e. has small 𝛿. Since 𝛿 is based on closing the facility if it is open and

opening if it is closed, it would not make sense to simply choose the facility with the smallest 𝛿:

in that case as long as there are still closed facilities in 𝐽′, one of those would be chosen since

opening a facility cannot increase the objective. This is because in greedy_reassign_open, we

only accept changes that improve the objective. Instead, in Algorithm 17 we first make a random

choice, based on how many open facilities there are out of the total number of facilities, of

whether to consider an open or closed facility. Then, we consider the best open / closed facility

in the list of facilities we want to consider, 𝐽′, based on it having the smallest 𝛿. In the (unlikely)

case that multiple facilities have the minimum 𝛿, we choose one of these randomly. The extra
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conditions seen in Line 2 deal with the case that 𝐽′ contains no open or no closed facilities, in

which case the best facility from the non-empty set is chosen regardless of the random choice

made of whether to consider an open or a closed facility.

Algorithm 17 The choose_fac_based_on_change procedure

Input: the set of facilities 𝐽; the set of facilities that still need to be considered 𝐽′ ⊆ 𝐽; the set of

open facilities 𝑆 ⊆ 𝐽; the change in objective for each facility 𝛿.

Output: the chosen facility 𝑗′.
1: 𝑟 ← random_choice ([0, 1]); 𝑗′← “𝑁𝑜𝑛𝑒′′.

2: if
(
𝑟 < |𝑆 ||𝐽 | and |𝐽′ ∩ 𝑆 | > 0

)
or |𝐽′ ∩ (𝐽 \ 𝑆)| = 0

3: 𝑗′← random_choice
(
arg min𝑗∈𝐽′∩𝑆{𝛿 𝑗}

)
.

4: else
5: 𝑗′← random_choice

(
arg min𝑗∈𝐽′∩(𝐽\𝑆){𝛿 𝑗}

)
.

6: return 𝑗′.
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D
Data generation

We give the pseudocode of how the data for Artificial Instance 1 and 2 was generated

in Algorithm 18. Artificial Instance 1 was generated with 𝑛 = 5000, 𝑟 = 0.5, 𝑙𝑜𝑛𝑚𝑖𝑛 =

5.8663153, 𝑙𝑜𝑛𝑚𝑎𝑥 = 15.0419319, 𝑙𝑎𝑡𝑚𝑖𝑛 = 47.2701114, 𝑙𝑎𝑡𝑚𝑎𝑥 = 55.099161. These coordinates

approximately encapsulate Germany. Artificial Instance 2 was generated with 𝑛 = 1500, 𝑟 = 0.3,

𝑙𝑜𝑛𝑚𝑖𝑛 = 9.0, 𝑙𝑜𝑛𝑚𝑎𝑥 = 11.5, 𝑙𝑎𝑡𝑚𝑖𝑛 = 47.3, 𝑙𝑎𝑡𝑚𝑎𝑥 = 49.0. This is approximately a quarter of the

size of Bavaria.

Algorithm 18 Data generation

Input: number of users, 𝑛; probability to open a facility, 𝑟; coordinates boundaries from

which to choose the locations, 𝑙𝑜𝑛𝑚𝑖𝑛 , 𝑙𝑜𝑛𝑚𝑎𝑥 , 𝑙𝑎𝑡𝑚𝑖𝑛 , 𝑙𝑎𝑡𝑚𝑎𝑥 ; function 𝑔𝑎𝑢𝑠𝑠(𝑎, 𝑏) to return

a random number from the Gaussian distribution with mean 𝑎 and standard deviation

𝑏; function 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑎, 𝑏) to return a number from the range [𝑎, 𝑏] uniformly at random;

function 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐼𝑛𝑡(𝑎, 𝑏) to return an integer from the range [𝑎, 𝑏] uniformly at random

inclusive of 𝑎 and 𝑏; function �̂�(𝑎, 𝑏) from Schmitt and Singh (2021) where 𝑎 is the distance

in kilometres and 𝑏 is an indicator of whether the user is rural (0) or urban (1); function

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑜𝑛1 , 𝑙𝑎𝑡1 , 𝑙𝑜𝑛2 , 𝑙𝑎𝑡2) to return distance in kilometres between the two coordinates.

Output: a data class for Model 2.1, i.e. sets 𝐼 and 𝐽; 𝐶 𝑗 for 𝑗 ∈ 𝐽;𝑈𝑖 for 𝑖 ∈ 𝐼; 𝑃𝑖 𝑗 for 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽.
1: 𝐼 ← {0, 1, . . . , 𝑛 − 1}; 𝐽 ← ∅; 𝐶 𝑗 ← 0, ∀𝑗 ∈ 𝐼; 𝑈𝑖 ← 0, ∀𝑖 ∈ 𝐼; 𝐿𝑈𝑖 ← [0, 0], ∀𝑖 ∈ 𝐼;
𝐿𝐹𝑗 ← [0, 0], ∀𝑗 ∈ 𝐼; 𝑇𝑖 ← 0, ∀𝑖 ∈ 𝐼.

2: for 𝑖 = 0, 1, . . . , 𝑛 − 1 do
3: 𝑈𝑖 = 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐼𝑛𝑡(0, 20000); 𝐿𝑈𝑖 ← [𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑙𝑜𝑛𝑚𝑖𝑛 , 𝑙𝑜𝑛𝑚𝑎𝑥), 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑙𝑎𝑡𝑚𝑖𝑛 , 𝑙𝑎𝑡𝑚𝑎𝑥)].
4: 𝑇𝑖 ← 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐼𝑛𝑡(0, 1).
5: if 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) < 𝑟

6: 𝐽 ← 𝐽 ∪ {𝑖}; 𝐶 𝑗 ← 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐼𝑛𝑡(0, 80000).
7: 𝐿𝐹𝑗 = [𝐿𝑈𝑖0 + 𝑔𝑎𝑢𝑠𝑠(0, 0.01), 𝐿𝑈𝑖1 + 𝑔𝑎𝑢𝑠𝑠(0, 0.01)].
8: for 𝑖 ∈ 𝐼 do
9: for 𝑗 ∈ 𝐽 do

10: 𝑃𝑖 𝑗 = �̂�(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑈𝑖0 , 𝐿𝑈𝑖1 , 𝐿𝐹𝑗0 , 𝐿𝐹𝑗1), 𝑇𝑖)
11: return 𝐼; 𝐽; 𝐶,𝑈 ; 𝑃.
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E
Additional results close greedy

We give some additional results for the basic close greedy algorithm, Algorithm 6, which is

discussed in Section 5.1.1, and whose results are discussed in Section 6.3.1.

Table E.1: Results of close greedy algorithm, Algorithm 6, using 𝑚 = greedy_assignment throughout.

The final assignment is done with 𝑚′ = relaxation_rounding with local_search_reassign in both

cases. This is with 𝑛𝑐 = 20 and on the larger instance. The budget factor indicates the proportion of all

facilities that should remain open. The second column shows the gap between the solution and the lower

bound the MIP solver reaches after 20,000 seconds. The run time, the difference to the MIP after 20,000

seconds and at the same time, calculated using Equation (6.1), are displayed. For details, see Section 6.3.1.

Budget
factor

MIP gap
after 20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Δ𝑆 [%]

0.9 1.33 1770 -2.58 -2.58

0.8 2.36 3392 -6.69 -6.69

0.7 3.53 4856 -11.66 -11.66

0.6 5.07 6053 -17.50 -17.45

0.5 7.49 7193 -22.42 -22.32

0.4 6.66 8176 -31.62 -31.62

0.3 7.42 9038 -34.70 -34.70

0.2 7.71 9827 -29.51 -28.12

0.1 7.84 10507 -16.41 -15.02
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F
Additional results open greedy

We give some additional results for the open greedy algorithm, Algorithm 10, which is discussed

in Section 5.2, and whose results are discussed in Section 6.4.

Table F.1: Results of open greedy algorithm, Algorithm 10, with 𝑚 = greedy_assignment with

local_search_reassign, 𝑚′ = relaxation_rounding with local_search_reassign. This is with

𝑛𝑐 = 50 and 𝑛 𝑓 = |𝐽 | on the smaller instance. The budget factor indicates the proportion of all facilities

that should remain open. The second column shows the gap between the solution and the lower bound

the MIP solver reaches after 20,000 seconds. For each depth 𝑑, the first column shows the run time. The

second column is calculated based on Equation (6.1). For details, see Section 6.4.

𝑑 = 1 𝑑 = 2 𝑑 = 3

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 0.57 16 0.00 32 0.00 40 0.00

0.8 1.41 15 0.00 30 0.02 38 0.00

0.7 2.19 13 0.06 26 0.00 34 0.00

0.6 3.05 12 -0.01 23 0.00 31 0.00

0.5 3.53 10 -0.01 20 0.00 26 0.00

0.4 3.93 8 0.00 16 0.00 24 0.00

0.3 4.12 7 -0.07 14 -0.02 18 -0.01

0.2 4.64 5 0.00 9 0.02 13 0.02

0.1 4.18 3 -0.03 5 -0.03 7 0.00
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Table F.2: Results of open greedy algorithm, Algorithm 10, with 𝑚 = greedy_assignment with

local_search_reassign, 𝑚′ = relaxation_rounding with local_search_reassign. This is with

𝑛𝑐 = 5 and 𝑛 𝑓 = |𝐽 | on the larger instance. The budget factor indicates the proportion of all facilities that

should remain open. The second column shows the gap between the solution and the lower bound the

MIP solver reaches after 20,000 seconds. For each depth 𝑑, the first column shows the running time. The

second column is calculated based on Equation (6.1). For details, see Section 6.4.

𝑑 = 1 𝑑 = 2 𝑑 = 3

Budget
factor

MIP gap
after

20k s [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

0.9 1.33 150 -0.02 229 0.01 286 0.00

0.8 2.36 136 0.05 210 0.09 266 0.09

0.7 3.53 122 0.14 189 0.19 245 0.18

0.6 5.07 108 0.58 169 0.63 222 0.64

0.5 7.49 95 2.01 148 2.07 199 2.07

0.4 6.66 83 0.16 129 0.26 175 0.25

0.3 7.42 72 0.34 108 0.52 150 0.50

0.2 7.71 63 0.30 89 0.24 122 0.30

0.1 7.84 56 0.37 68 0.46 89 0.44
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G
Additional results local search

Table G.1: Results of BFLP local search algorithm, Algorithm 11. The starting solution is from

Algorithm 8 with 𝑚 = greedy_assignmentwith local_search_reassign, 𝑚′ = relaxation_rounding
with local_search_reassign, 𝑛𝑐 = 5 or 𝑛𝑐 = 50 on the larger instance. Local search is run with 𝑛𝑐 = 5,

𝑑 = 1 and 𝑚′ = relaxation_rounding with local_search_reassign. The budget factor indicates the

proportion of all facilities that should remain open. The third column shows the difference to the MIP after

20k seconds before the local search is run, so of the starting solution, calculated based on Equation (6.1).

For each number of iterations 𝑙, the first column shows the run time. The second column is calculated

based on Equation (6.1). For details, see Section 6.5.

𝑙 = 20 𝑙 = 100 𝑙 = 200

Starting
instance

Budget
factor

Diff.
to MIP

after 20k s
before local
search [%]

Run
time [s] Δ𝑀𝐼𝑃 [%] Run

time [s] Δ𝑀𝐼𝑃 [%] Run
time [s] Δ𝑀𝐼𝑃 [%]

Close
greedy
with
𝑛𝑐 = 5

0.9 -0.006 64 0.007 75 0.016 85 0.016

0.8 0.041 63 0.054 76 0.067 89 0.067

0.7 0.126 57 0.154 68 0.151 83 0.156

0.6 0.508 59 0.569 73 0.559 88 0.601

0.5 1.936 99 2.012 111 2.003 123 2.006

0.4 0.106 101 0.181 112 0.201 124 0.183

0.3 0.353 77 0.440 77 0.427 108 0.432

0.2 0.237 82 0.310 88 0.276 93 0.310

0.1 0.388 93 0.415 109 0.424 110 0.424

Close
greedy
with
𝑛𝑐 = 50

0.9 -0.004 79 0.006 92 0.012 100 0.015

0.8 0.044 62 0.059 71 0.067 90 0.069

0.7 0.131 92 0.145 103 0.146 121 0.165

0.6 0.517 96 0.590 106 0.590 121 0.595

0.5 1.931 94 2.018 105 1.997 117 1.994

0.4 0.131 93 0.189 103 0.192 112 0.188

0.3 0.359 90 0.432 99 0.425 111 0.438

0.2 0.253 94 0.301 96 0.265 104 0.301

0.1 0.349 86 0.409 91 0.399 98 0.409
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