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Abstract
Due to their computational efficiency and speed during training
and inference, extreme learning machines are suitable for simple
learning tasks on lightweight datasets. Examples of their real-world
applications include healthcare and edge devices, where security
concerns are crucial to be examined. Backdoor attacks are among
the most common security threats against machine learning mod-
els but are almost completely unexplored for extreme learning
machines.

This paper investigates the effects of backdoor attacks on ex-
treme learning machines. First, we inject the backdoor into the
model through data and model poisoning and then examine the
pruning technique as a defense to defend against the attack. The
core characteristic of extreme learning machines, which makes
them interesting for study, is their different structure and learning
procedure compared to deep neural networks. These features raise
the question of whether they are as vulnerable to backdoor attacks
as deep neural networks. Our experiments confirm this assumption
and indicate that extreme learning machines can be backdoored
with 100% attack success rate. Thus, we believe further study is
needed to develop a robust defense technique as a solution to make
them less vulnerable.

CCS Concepts
• Computing methodologies→ Supervised learning by classifi-
cation; Artificial intelligence; • Security and privacy→ Software
and application security.
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extreme learning machines, backdoor attacks, machine learning
security
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1 Introduction
Extreme learning machines (ELMs) are a class of feed-forward
neural networks with a single layer of hidden nodes [17]. Unlike
conventional neural networks that require tuning all weights dur-
ing the training phase, ELMs operate differently. The input weights
and biases for ELMs are randomly assigned and remain constant
throughout the learning process, eliminating the need for iterative
adjustment. The training procedure of an ELM is simple yet effec-
tive [43]. After initializing the random weights and biases of the
hidden layer, a forward pass is conducted, and the output matrix
𝐻 is calculated. Following this, the output weights are calculated
by determining the Moore-Penrose [17] generalized inverse of 𝐻
and multiplying it with the target matrix. This calculation is often
straightforward and computationally efficient, especially compared
to traditional neural networks where backpropagation and gradient
descent are employed, resulting in an iterative and computationally
expensive training process [17].

Hence, the strength of ELMs lies in their rapid learning and in-
ference speed, computation resource efficiency, and generalization
performance, a contrast to traditional neural networks that neces-
sitate extensive computational resources and time for training [9].
Due to these advantages, ELMs can be considered candidates for
lightweight learning tasks, common in healthcare and the Internet
of Things (IoT) [5, 10, 43]. In the medical field, ELMs are employed
for diagnostic systems, medical image processing, and disease pre-
diction. For instance, they have been utilized in the automated
detection of breast cancer and the diagnosis of anemia, demonstrat-
ing high accuracy and fast processing times, which are critical for
early detection and treatment [36]. In the IoT sector, ELMs enhance
real-time data processing and predictive maintenance by efficiently
handling the large volumes of data generated by interconnected
devices. This makes them particularly useful for applications like
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smart cities and industrial automation, where quick and accurate
data analysis is crucial [19].

Machine learning (ML) security and privacy is a demanding and
ongoing research field that focuses on ensuring the safety, confi-
dentiality, integrity, and availability of ML systems as well as their
privacy and ethical implications [29]. An ML model can be investi-
gated in several key areas, including robustness against inference
attacks, privacy-preserving ML, data poisoning and backdoor at-
tacks, explainability and transparency, and fairness [30, 31]. With
the adoption of ELMs in real-world sensitive fields, concerns re-
garding their security and privacy are timely and worthwhile to
explore.

Backdoor attacks are subtle manipulations that a malicious actor
introduces in the model during training, leading to compromised
functionality when specific triggers are present. The susceptibility
and potential success rate of such attacks on ELMs remain under-
studied, requiring comprehensive investigation. Thus, a research
question arises: "Can ELMs be compromised via backdoor at-
tacks?". An example of a practical use case could be a medical
center, where a large amount of data is stored in the system for
medical research purposes. To develop an efficient and fast model
that can detect cancer, the research team trains an ELM model.
A trusted party with access to training data can play as a mali-
cious attacker. By injecting the backdoor, the attacker can cause the
model to predict a target label output in deployment time, leading
to misdiagnosis and further health threats to patients.

Motivated by [37], we systematically investigate the effective-
ness of backdoor attacks on ELMs by performing data and model
poisoning attacks. There exist two important characteristics of
ELM that make it different from deep neural networks (DNNs) with
respect to backdoor attack learning:

• First, it does not have iterative training, and there is no con-
cept such as batch and batch sizes. The training is done once
and with the whole data set being fed to the model, and the
model’s parameters are fit to data through a single calcula-
tion. Thus, hyperparameters such as learning rate, optimizer,
and epoch number do not exist to affect the parameters of
the model through each gradient descent update. The model
should learn the backdoor pattern just once with all the other
data, and the attacker can not inject it gradually during con-
vergence. This characteristic resembles training a DNN with
one whole batch.

• Second, ELM consists of just one hidden layer of which
parameters are learned during training. All other previous
layers are fixed through random numbers drawn from some
distribution. This characteristic resembles the transfer learn-
ing of a DNN in which all layers are frozen except the last
one.

Thus, by trying to inject a backdoor into ELMs, we can gain
insight into the mentioned similarities between DNNs and ELMs
and how those features can impact the success of backdoor injection
through data and model poisoning. The main contributions of this
study are as follows:

• We conduct the first comprehensive study on the effects and
feasibility of backdooring an ELM. We conduct our experi-
ments using four benchmark datasets on three ELM models,

evaluating the attack success by different trigger sizes and
poisoning rates 1.

• In addition to typical data poisoning attacks, we present
a novel model poisoning attack against extreme learning
machines by embedding the trigger in preset fixed neurons
of the first layer inside the model. Then, we show that even
after training the model using clean data, the user cannot
prevent the backdoor attack in the deployment phase.

• After conducting a series of over 600 experimental trials,
our findings reveal a high susceptibility of ELMs to back-
door attacks. We propose applying Pruning techniques to
see whether they are an effective defensive measure to en-
hance the security of these models. We further examine our
attack against Pruning and evaluate its effectiveness in that
scenario.

• We demonstrate that certain prevalent recommendations
for enhancing ELM efficacy may not necessarily offer an
optimal cost-benefit trade-off when taking security consider-
ations into account. For instance, augmenting the size of the
hidden layer, a common suggestion, may not always yield
significant benefits for the user. While such modifications
might marginally enhance the accuracy of the model, they
could inadvertently favor backdoor attackers by potentially
boosting their success rates.

2 Background
2.1 Backdoor Attacks
Backdoor attacks pose a significant threat to DNNs by compromis-
ing their integrity during the training phase. Such attacks stealthily
embed a secret functionality, known as the “trigger,” into the de-
ployed model, fundamentally altering its behavior. This hidden
embedding can occur through data poisoning [7], code poison-
ing [3], or direct modification of the model’s weights [16]. For the
scope of this paper, we concentrate on data and model poisoning
for injecting these triggers.

The essence of a backdoor attack is inserting “poisoned” samples
into the training dataset. A poisoned sample is a normal input that
has been subtly altered, generally by introducing a specific pattern
called the trigger. The corresponding label of the poisoned sample
is typically manipulated to match the desired target output when
the backdoor is activated. In image-based DNNs, this trigger can be
a pixel pattern of a specific color. The collection of such poisoned
samples is denoted as 𝐷′, where {x̂𝑗 , 𝑦𝑡 } ∈ 𝐷′.

The ratio of poisoned samples to the original training set, denoted
as 𝜖 = 𝑚

𝑛 , where𝑚 is the number of poisoned samples, and 𝑛 is the
number of the clean training samples, is a crucial parameter since it
affects the attack success and the attacker’s influence over training
dataset. This ratio governs the trade-off between the potency of the
backdoor and its detectability [25]. A lower 𝜖 makes the backdoor
more subtle and harder to detect, while a higher 𝜖 results in a
more powerful backdoor, albeit at the risk of substantial alteration
to the original task. As a general rule of thumb,𝑚 ≪ 𝑛 in most
attacks [15].

1Our code is provided in https://github.com/HamidRezaTajalli/BAoELM.
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During training, the model is optimized to minimize the com-
bined loss over both regular and poisoned samples:

𝜃 ′ = argmin
𝜃

𝑛∑︁
𝑖=1

L(F𝜃 ({x𝑖 , 𝑦𝑖 })) +
𝑚∑︁
𝑗=1

L(F𝜃 ({x̂𝑗 , 𝑦𝑡 })) .

Post-training, the backdoor becomes part of the DNN. The model
performs as expected on clean inputs but deviates when encounter-
ing the trigger, activating the backdoor [2].

A key aspect of backdoor attacks is that the trained model be-
haves as expected for inputs without the trigger. However, when a
poisoned input is presented, the presence of the trigger prompts
the model to predict the target class. This behavior is due to specific
neurons learning the trigger pattern, causing their activation values
to increase when fed by poisoned input. Consequently, the model
exhibits high confidence in the target class [33]. The triggers, being
largely domain-specific, can be any pattern interpretable by the
model, such as pixel patterns in image data [7], specific phrases in
text [28], or specific frequencies in audio data [20].

2.2 Extreme Learning Machine
ELMs, introduced by Huang et al. [17], offer a fast, efficient learn-
ing methodology for single-hidden layer feed-forward networks
(SLFNs). An SLFN with 𝑁 hidden neurons can be expressed as:

𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝛽𝑖ℎ(𝑤𝑖 , 𝑏, x) .

Here, x denotes the input vector, 𝑤𝑖 refers to the weight vector
connecting the input layer to the 𝑖-th hidden neuron, 𝛽𝑖 represents
the weight vector connecting the 𝑖-th hidden neuron to the output
layer, and ℎ(·) symbolizes the hidden neuron activation function.

ELMs avoid the iterative weight adjustment procedure inherent
in traditional methods by randomizing the input weights and biases.
The output weights are then computed analytically using the gen-
eralized inverse, rendering the learning process significantly faster
and simpler. Given a training set (x𝑖 , 𝑡𝑖 ), 𝑖 = 1, 2, . . . , 𝑁 , where x𝑖
represents the input vector and 𝑡𝑖 the corresponding target, the
output function of the SLFNs takes the form:

𝐻𝛽 = 𝑇 .

Here, 𝐻 constitutes the hidden layer output matrix, 𝑇 is the target
matrix, and 𝛽 is the output weight matrix. The ELM algorithm
determines 𝛽 through:

𝛽 = 𝐻†𝑇 .

𝐻† stands for the Moore-Penrose generalized inverse of 𝐻 .
Figure 1 provides an overview of the ELM model. Various adap-

tations of ELM have been proposed to enhance its functionality and
performance. These include the BD-ELM, which combines ELM
with dropout to improve generalization capabilities [21], and the
two-hidden-layer ELM (designated as TELM) [34]. Another variant
is multilayer ELMs (ML-ELM), which incorporate three or more
hidden layers [18]. In this paper, when we mention ML-ELM, we
refer to the ELM variant with three hidden layers.

There are several potential advantages of ELMs over DNNs.
First, due to their computational efficiency and simplified learning
process, ELMs outperform DNNs regarding learning speed and
inference, making them particularly suitable for tasks requiring

Figure 1: Overview of an ELM architecture.

real-time processing [39]. Second, with fewer hyperparameters to
tune and less sensitivity to initialization, ELMs necessitate less hu-
man intervention, simplifying their implementation compared to
DNNs [11]. Finally, ELMs exhibit good generalization performance
and are less prone to overfitting, particularly in scenarios with small
datasets [11].

ELMs have been applied in various practical domains. In the med-
ical field, they have been utilized for diagnosing diseases, such as
breast cancer, using histopathological images [44]. Other examples
include flood forecasting [6], industrial fault diagnosis [8], speaker
recognition [22], food industry, chemistry, and IoT devices [43].

Even with their advantages and applications, ELMs have certain
limitations. They may struggle with stability and robustness due
to the random assignment of input weights and biases, and their
effectiveness may be limited in the presence of noisy data or tasks
requiring complex feature extraction. Moreover, they may not be
as effective as DNNs for tasks that require complex feature extrac-
tion and high-level abstraction, e.g., image recognition and natural
language processing. The decision to use ELMs or DNNs should be
based on the specific requirements and constraints of the task at
hand.

3 Attack Setup
This section outlines the setup utilized for executing the attack.
We conduct a dirty label backdoor attack via the data and model
poisoning technique. Next, we define the threat model and experi-
mental settings needed for attack deployment and introduce the
evaluation metrics we use to analyze the results.

3.1 Threat Model
▶ Attacker’s goal: The attacker aims to introduce a backdoor
into the ELM model during the training phase either by using data
poisoning (1𝑠𝑡 scenario) or model poisoning (2𝑛𝑑 scenario). The
intention is to modify the model’s output to the target label when
the specific pattern is embedded in the input. The ultimate goal is
a model that operates normally on clean inputs, except when faced
with a specific pattern (trigger) chosen by the attacker.
▶ Attacker’s knowledge:
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(1) data poisoning (1𝑠𝑡 scenario): The attacker can conduct a
dirty label backdoor and generate poisoned samples. Al-
though familiar with the training data, the attacker does not
have insight into the parameters or architecture of the target
model (for the attacker, the target model is a black box). The
trigger pattern and target label are known to (selected by)
the attacker.

(2) model poisoning (2𝑛𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜): The attacker has the full
knowledge of the model (the target model is a white box
for the attacker) before outsourcing. Moreover, the attacker
has knowledge and access to part of the dataset and can use
it to generate poisoned samples and train the models; thus,
trigger patterns andmalicious output are known and selected
by the attacker. The attacker does not have any knowledge
of the training procedure when the model is outsourced to
the user.

▶ Attacker’s capability:

(1) data poisoning (1𝑠𝑡 scenario): The attacker can modify the
training dataset, which enables data poisoning. However,
the attacker cannot directly alter the model’s structure or
algorithm.

(2) model poisoning (2𝑛𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜): The attacker can modify the
dataset to generate backdoor patterns and train the models
with them. Also, the attacker can directly alter the model’s
structure or algorithm before outsourcing. Any access and
manipulation to the model, training procedure, and user’s
training data after the outsourcing moment is impossible for
the attacker.

3.2 Attack Methodology
3.2.1 Data Poisoning Attack. This is the most common and realis-
tic scenario in which a poisoning attack can happen. We use the
notations defined in Table 1. The user either outsources the whole
training procedure to a trusted but malicious third party or does the
training himself but uses a publicly poisoned dataset (𝐷′

𝑡𝑟𝑎𝑖𝑛
) for

training. The malicious party plants the backdoor in the model by
poisoning the training data and then either trains a model or sends
the poisoned dataset to the user. For 𝑥𝑖 ∈ 𝐷𝑡𝑒𝑠𝑡 , the attacker expect
normal behavior 𝐸′ (𝑥𝑖 ) = 𝑦𝑖 . For any triggered input 𝑥 ′

𝑖
∈ 𝐷′

𝑡𝑒𝑠𝑡 ,
the attacker expects 𝐸′ (𝑥 ′

𝑖
) = 𝑦𝑡 .

3.2.2 Model Poisoning Attack. The model poisoning scenario we
introduce is less realistic compared to typical data poisoning attacks.
This scenario assumes an attacker with significant capabilities, in-
cluding the ability to manipulate the model before the user fully
trains it. While this level of access is rare in practical settings, our
goal was to explore the theoretical vulnerabilities of ELMs under
worse conditions. By doing so, we aim to push the boundaries of un-
derstanding the potential risks ELMs face, even in scenarios where
the attacker’s capabilities are unusually high. In this scenario, we
suppose there is a malicious insider with access to the dataset and
model and is fully trusted. The attacker can poison the first part
of the ELM model (which is initialized randomly) and then leave
it for training to the rest of the users. This scenario is similar to
fine-tuning a poisoned DNN with clean data and evaluating it to
determine whether the backdoor is successful even after retraining

the model. For this, the attacker considers a two-layer, fully con-
nected neural network (having exactly the same structure as the
victim ELM model). Let us consider an ELM with 𝑒2 (𝑒1 (.)) and its
equivalent neural network as 𝑓2 (𝑓1 (.)). The attacker freezes the last
layer (𝑓2) and trains the network with a poisoned dataset (𝐷′

𝑡𝑟𝑎𝑖𝑛
),

acquiring a poisonedmodel (𝑓2 (𝑓 ′1 (.))) that has a satisfying ASR and
a backdoor that is identified only by the first layer (𝑓2 (𝑓 ′1 (𝑥𝑖 )) = 𝑦𝑖 ,
and 𝑓2 (𝑓 ′1 (𝑥

′
𝑖
)) = 𝑦𝑡 ). Finally, the attacker implants all the neurons

from the first layer of the poisoned model to similar neurons in
ELM (see Appendix A) so that 𝑒′1 = 𝑓 ′1 . The users later start to train
this ELM with clean data (𝐷𝑡𝑟𝑎𝑖𝑛), assuming the ELM first layer is
initialized randomly (still as 𝑒1). The attacker expects the model
(𝑒2 (𝑒′1 (.))) to show high ASR even after training the second-layer
neurons (see Figure 2). We note that this is a less realistic scenario as
it assumes that honest users will use a backdoored model (weights)
instead of random weights.

(a) (b) (c)

Figure 2: Model Poisoning Scenario: (a): First, the attacker
makes a fully connected neural network similar to the vic-
tim ELM model, freezes its last layer, and trains it on the
poisoned dataset. (b): Second, the attacker transfers the poi-
soned neuron values to those of exact equivalent in ELM in
the first layer. (c): At the final stage, the user who has trusted
the initialized ELM starts to train the model with the clean
dataset.

3.3 Experimental Settings
For our experimental process, we utilize four public datasets: three
image datasets and one tabular. Since ELM is used for lightweight
tasks, we choose MNIST [23] and FMNIST [35]. We also inves-
tigate two benchmark datasets from the medical domain, which
is the most common area for the ELM use case: BRATC [4] and
WBCD [12]. In contrast to face recognition tasks, which often neces-
sitate deep learning architectures, the datasets chosen for this study
are aligned with the lightweight and rapid computation strengths
of ELMs. This focus ensures that our findings are applicable to the
real-world scenarios where ELMs are most likely to be deployed.

• MNIST: This dataset contains 60,000 training images and
10,000 test images. Each image, sized at 28 × 28 pixels, is a
grayscale representation of a hand-written digit. It comprises
10 classes of digits, with each class containing 7,000 samples
in total (6,000 from the training set and 1,000 from the test
set).

• FMNIST: This dataset also comprises 60,000 training and
10,000 test images. Each 28 × 28 pixel image is a grayscale
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Table 1: Notations

Notation Explanation

𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 The whole dataset of size 𝑁 .
𝐷′ = {(𝑥 ′𝑖 , 𝑦𝑡 )}

𝑁
𝑖=1 Poisoned dataset with dirty label method and target label 𝑦𝑡 .

𝐷train ∪ 𝐷test = 𝐷, 𝐷train ∩ 𝐷test = ∅
𝐹 = 𝑓2 (𝑓1 (·)) : 𝑋 → 𝑌 A two-layer fully connected neural network that maps the input space to the label space.
𝐸 = 𝑒2 (𝑒1 (·)) : 𝑋 → 𝑌 A two-layer ELM that maps the input space to the label space.
𝐸 = 𝑒′2 (𝑒

′
1 (·)) : 𝑋 → 𝑌 Backdoored ELM with data poisoning attack.

representation of an item of clothing. The dataset is divided
into ten classes, with each class possessing a total of 7,000
samples (6,000 from the training set and 1,000 from the test
set).

• BRATC: The Brain Tumor Classification (MRI) dataset con-
tains 3264 MRI images, split into 2870 for training and 394
for testing, with 2D grayscale images resized to 32 × 32 pix-
els for binary classification (benign vs. malignant) in our
experiments. It includes benign samples and three tumor
types: glioma, meningioma, and pituitary tumor, balanced
across training and test sets. This dataset is commonly used
for benchmarking medical image analysis algorithms.

• WBCD: The Breast Cancer Wisconsin (Diagnostic) dataset
contains 569 samples with 30 numerical features from FNA
images used to classify tumors as malignant or benign. The
dataset is divided into 357 training and 212 testing samples,
serving as a standard benchmark for medical classification
models.

In our experiments with image datasets, we employ the Bad-
Nets [14] attack with a specific focus on the square trigger pattern,
a widely used backdoor trigger for image classification tasks as
highlighted in [40]. The square trigger consists of a square patch
incorporated into the training images, designed to manipulate the
model’s behavior. Previous research [40] demonstrated the square
trigger to be the most effective. We employed three trigger sizes of
2× 2, 4× 4, and 8× 8 pixels to measure the attack’s effectiveness un-
der varying conditions. These sizes reflect most trigger dimensions
explored in the existing literature (e.g., [14, 38]). The triggers are
inserted in the upper-left part of the images. For BRATC, which is
a tabular dataset, we employ the single-column attack introduced
in [32].

We choose three common ELM versions to perform our exper-
iments for data poisoning: simple ELM, BD-ELM, and ML-ELM.
For each ELM model, we do the experiments on five hidden layer
sizes to cover most of the range used in previous ELM studies (i.e.,
500, 1000, 2000, 5000, and 8000). We also use five different poison-
ing rates 𝜖 = [0.002, 0.005, 0.01, 0.02, 0.05] to keep our experiments
comprehensive. For model poisoning, we perform the experiments
on simple ELM with 𝜖 = [0.05, 0.5, 1.0].

The experiments are designed and executed using PyTorch v1.12
on an HPC cluster with CentOS Linux and 2-6 CPU cores assigned
per job (including AMD Epyc 7452, AMD Epyc 7642, Intel XEON
4214, and Intel XEON E5-6248R).

To ensure replicability, we keep the seed fixed at 47 in all experi-
ments, and the target class label for all attacks is 0. ELM’s training

does not involve epochs and batches, so the entire training dataset
is provided as input to the model.

3.4 Evaluation Metrics
We utilize two metrics to assess our experiments:

• Attack SuccessRate (ASR): Thismeasures the effectiveness
of the model’s backdoor when tested on a fully poisoned
dataset𝐷𝑝𝑜𝑖𝑠𝑜𝑛 , i.e., 𝜖 = 1. The formula used for calculation is

𝐴𝑆𝑅 =

∑𝑁
𝑖=1 I(𝐹𝜃 (𝑥𝑖 )=𝑦𝑡 )

𝑁
, where 𝐹

𝜃
represents the poisoned

model, 𝑥𝑖 symbolizes a poisoned input, 𝑥𝑖 ∈ 𝐷𝑝𝑜𝑖𝑠𝑜𝑛 , 𝑦𝑡
denotes the target class, and I(𝑥) is a function that outputs
1 if 𝑥 is true and 0 if it is not.

• Clean Data Accuracy (CDA): This measures the accuracy
of the poisoned model when it is fed clean input data. CDA
is compared to baseline accuracy (BA), which is the accuracy
of the unpoisoned model on clean input.

4 Evaluation and Results
Figure 3 presents the benign test accuracy of ELM models trained
on clean data serving as a reference for BA. This baseline is used to
compare with the CDA from models trained with poisoned samples.
As expected, the general trend is that the more complex the dataset
becomes (in terms of dataset size, sample dimension, pixel values,
and similarity of patterns), the lower the BA is. Moreover, the larger
the hidden layer size is, the higher the BA is achieved. However,
the difference is negligible in some cases, and the hidden layer size
effect in model performance can be easily ignored, considering
much more training time and resources required for larger models.
BD-ELM achieves the best results in both MNIST and FMNIST, but
in WBCD, there is no difference from the simple ELM. The best
results for BRATC are achieved by simple ELM. In the following,
we discuss the attack results obtained for each scenario.

4.1 Data Poisoning
Figure 4 shows the results for the MNIST dataset. CDA is high and
close to BA in almost all cases, which indicates that the attacker’s
attempts to remain stealthy by measuring clean accuracy drop are
successful. The enhancement of the hidden layer’s size correlates
with increased ASR values. We postulate that this is fundamentally
due to the augmentation of the model’s capacity. With this increase
in capacity, the model’s potential to learn and process backdoor
patterns concurrently expands. On the other hand, the BA values
do not increase rapidly, which means increasing the hidden layer
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ELM
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90.63 93.08 95.11 96.75 97.23

92.40 93.35 94.42 94.65 94.93

MNIST

500 1000 2000 5000 8000

80.83 83.22 84.34 86.74 87.20

81.93 83.40 84.94 86.32 87.32

82.28 82.88 83.65 84.15 85.15

FMNIST

500 1000 2000 5000 8000

100.00 98.25 99.12 99.12 99.12
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WBCD

500 1000 2000 5000 8000
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65.74 76.90 73.35 75.89 79.44
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Figure 3: Baseline accuracy for trained ELMs on clean datasets.
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Figure 4: ASR and CDA of data poisoning attack for MNIST.

size could benefit the attacker more than the user. This is obvious
when looking at backdoors with smaller trigger sizes (e.g., 2 × 2).

There is also an expected trend considering ASR relations and the
poisoning rate. However, the key takeaway is that by careful choice
of trigger size, ELM models are mostly vulnerable to backdoor
attacks, even with low poisoning rates. The last and most important
point to notice is the robustness of the ML-ELM structure against
backdoor attacks. While the other three versions show the same
behavior on the backdoor attacks, ML-ELM is less vulnerable if the
attacker does not consider the extreme setup (e.g., large trigger size,
large 𝜖 , and/or large hidden layer size). We believe this is due to
the fact that ML-ELM has more than one layer. Adding another
layer makes the model larger, allowing the overall function modeled
by solving linear equations to be more general. As a result, it is
less likely to be significantly impacted by a small portion of the
dataset or minor features within that portion. However, using a
larger poison value or larger feature size leads to a higher ASR.
We hypothesize that adding even one more layer would further
enhance the robustness of ML-ELM; however, further experiments
are needed to prove this. This distinction between ELM and deep
learning models can highlight why ELM performs well in simple
tasks with greater generalizability.
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Figure 5: ASR and CDA of data poisoning attack for FMNIST.

Figure 5 demonstrates the results for the FMNIST dataset. The
trend in the results is very similar to those of MNIST and reiterates
our conclusion drawn from the results: CDA is again high and close
to BA in most cases. Increasing the hidden layer size leads to better
accuracy and increases the vulnerability to backdoors. This is more
towards the attacker’s advantage. By smart adjustment of other
parameters (e.g., trigger size), backdoor attacks can be successful on
ELMs, even with low poisoning rates. ML-ELM shows considerable
robustness against backdoors on smaller trigger sizes and poisoning
rates.

Figure 6 provides the results for the BRATC dataset. Training
ELM models on BRATC is more challenging since they achieved
lower performance on clean data. However, the clean accuracy drop
remains very lowwhen training themodels with poisoned data with
an average value of −0.0046%, which means the model generally
maintains the clean accuracy at the same level or even higher. The
attack, however, is not as successful as that of MNIST and FMNIST.
As Figure 6 shows for ELM and BD-ELM, the ASR values are mostly
close to CDA. For ELM, 90.3% is the highest achieved ASR for 8000-
neurons with 𝜖 = 5 and (4 × 4) trigger (the same for BD-ELM with
90.6% with (8 × 8) trigger). For ML-ELM, (2 × 2) fails to achieve
high ASR in most cases. However, the maximum ASR achieved
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Figure 6: ASR and CDA of data poisoning attack for BRATC.

for other trigger sizes is higher than the other two models, with
98.2% being the highest for 8000-neurons with (4 × 4) trigger. We
conjecture that the reason for achieving lower ASR for BRATC is
not its complexity compared to MNIST and FMNIST but because
it has fewer sample sets. This makes it harder for low-capacity
models like ELMs to learn the backdoor pattern with only up to 5%
poisoning rate, especially when facing an image dataset with more
complex patterns than MNIST.

We conducted additional experiments with the SVHN [1] dataset
(see Appendix B). Despite being an RGB multiclass and achieving
low BA values, ASR is close to 100% when using 𝜖 = 0.01 or higher.
SVHN has 73257 training samples. This can verify our assumption
on why the attack performance decreases on BRATC, as when the
ELM is trainedwithmore samples, it can interpolate amore accurate
function to learn the small and effective features like backdoor
patterns, making it even more vulnerable to such threats.

Figure 7a demonstrates the attack results for the WBCD dataset.
Except for a very low poisoning rate (𝜖 = 0.002), other results show
a very high ASR with almost no accuracy drop.

Overall, ELMs are vulnerable to backdoor attacks, and the trigger
pattern can be implanted easily. While keeping the CDA values
very close to BA and not affecting the normal task, in some cases,
ELMs show ASR higher than BA due to their small capacity.

4.2 Model Poisoning
Results for the model poisoning scenario are shown in Figure 8
and Figure 9a for WBCD. Since in our threat model, the user just
receives the poisoned model, the poisoning rate has nothing to
do with stealthiness. Thus, for which rate is more effective, we
tried high poisoning rates, including 50% and 100%. Even though
the attacker is using up to 100% poisoning rate to train the neural
network, the clean accuracy drop is low because ELM “fine-tunes”
the model and cancels the drop that was initially introduced.

For image datasets, 100% poisoning rate fails to achieve any at-
tack success. The key takeaway from the results is that by poisoning
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(a) ASR and CDA after attack.
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(b) ASR and CDA after Pruning.

Figure 7: Data poisoning results for WBCD.

100% of the dataset and implanting the poisoned weights instead
of random initialization, we can degrade model performance and
observe untargeted attack behavior. However, with 50% and 5%, the
attacker can achieve high ASR for all image datasets. For MNIST
and FMNIST, most of the ASRs are close to 100%. For BRATC, when
using 𝜖 = 0.5, the (8× 8) and 4× 4 triggers show fluctuations when
the hidden layer size is increased. But with a lower poisoning rate
of just 5%, they follow a more steady pattern. Increasing the hidden
layer size does not help the poisoned layer to improve the ASR for
BRATC. Nonetheless, the attacker can still achieve high ASRs(up
to 100%) by using 2 × 2 trigger on smaller size models.

Considering WBCD, we observe a clear relation between hidden
layer size and ASR. In the best case, the attacker can achieve 79%
ASR on the 8000-neurons model by poisoning the whole training
set. In all cases, the clean accuracy drop is no more than 2.6%
(with an average of 1.7). To study the reason for acquiring different
ASR values for model poisoning, we plot the value distributions
of weights in the first layer of poisoned models. As we observe
in Figure 14 in Appendix A, all distributions follow normal with
a mean value of zero. As we use lower poisoning rates of 5 and
50, the standard deviation is higher, which makes the distribution
more similar to a bell-shaped (randomly initialized) figure. But as
we increase 𝜖 , more weights are learned with values equal to or
close to zero. This can explain why in 𝜖 = 100 the attack does not
work for image datasets, as we can see the weights are mostly close
to zero, making the calculated value after the first layer almost
negligible. This also undermines the normal learning process of the
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Figure 8: ASR and CDA of model poisoning attack.

model and significantly degrades the CDA. The user can also detect
this by comparing the density function plot of the model with the
Gaussian distribution. Also, the reason why with WBCD, we get
higher ASRs even with 𝜖 = 100 can be realized since the standard
deviation still remains high despite a narrow decline. Overall, we
conclude that the backdoor through model poisoning is possible as
the user cannot know if the weights of the fixed layer have been
manipulated and the attacker is free to choose whatever extreme
measures it needs to poison the weights.

5 Pruning as a Defense
Several defense techniques have been proposed against backdoor
attacks on DNNs. Some of them focus on detecting the backdoors
within the dataset and purifying them (sample preprocessing) [13,
26]. Some other consider detection, including Neural Cleanse [42],
which focuses on detecting the backdoored model via reconstruct-
ing the trigger pattern and target class. The third group of defenses
aims at model repairing, which tries to repair the already poisoned
model so it functions well on the benign task, but the backdoor task
will fail [24, 27].

Due to the specific structure and learning paradigm of ELM, not
all of the model repairing techniques can be adapted as a defense
for it. For instance, NAD [24] is one of the best model repairing
techniques, which is composed of two main steps: the first step
is Pruning and acquiring a teacher network. The second step is
calculating distillation loss for each residual layer between the
teacher and the model. Such a setup is not applicable in ELMs
because ELMs have at most three layers, only one of which is not
fixed and teachable, and learning is not done via optimization.

Pruning is a simple yet effective technique that focuses on less
activated neurons on each layer of DNN and tries to eliminate them.
This can be extended to ELMs since fixed layers of ELM could be
investigated and pruned.We adapt Pruning [27] as a defense against
our backdoor attack and explore the backdoor success against it.
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Figure 9: Model poisoning results for WBCD.

Aswe see in Figure 1, the second layer weights can not bemasked
out since they directly estimate the logits. Thus, we prune the neu-
rons in fixed layers that are less active when facing clean input.
Since 𝜖 = 0.05 is the most effective poisoning rate in a data poison-
ing scenario, we choose the models poisoned with this parameter
for defense experiments. We ran three experiments for each model
with different Pruning rates, i.e., 𝑝𝑟 = [0.1, 0.3, 0, 5].

Figure 10, Figure 11, and Figure 12 show the effectiveness of
the Pruning defense against our backdoor attempts for MNIST,
FMNIST, and BRATC datasets, respectively. For MNIST (Figure 10),
the defense fails to prevent the attack from gaining high ASR in
ELM and BD-ELM. In fact, when comparing with results in Figure 4,
the ASR values remain exactly in the same trend. Although for
a Pruning rate of 0.5, the ASR drops down significantly, it also
suppresses model performance on clean data. The same happens for
ML-ELM for all pruning rates, which indicates complete failure of
the Pruningmethod. FMNIST results show the same trend asMNIST
except for a pruning rate of 0.5, where there are still some high ASRs
for the attack. Nonetheless, the accuracy drop is fairly noticeable
compared to lower pruning rates (with an average of 10.8% not
considering ML-ELM). We conjecture that the more complex the
dataset becomes, the more neurons are involved in the learning
process, which makes the Pruning less effective.

As we see in Figure 12, for the BRATC dataset, the ASR values
dropped but remained close to before (Figure 6) except for (8 × 8)
triggers where there is a relative success in defending against the
attack. For other cases like ML-ELM, which has fluctuations in
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Figure 10: ASR and CDA after Pruning on MNIST (data poi-
soning).

the attack’s performance, CDA also drops noticeably when the
attack fails to achieve high ASR (for 𝑝𝑟 = 0.5). ML-ELM results are
very noisy, but the clear takeaway is that either the attack remains
successful or the CDA drops significantly, which is not promising
for the model’s performance.

The results for WBCD (Figure 7b) demonstrate the same trend as
BRATC. For 𝑝𝑟 = 0.5, the results fluctuate, and although the attack
is mostly defeated, the CDA drops significantly as well. For 𝑝𝑟 = 0.1
and 𝑝𝑟 = 0.3, the pruning fails to prevent the attack for smaller
trigger sizes, but the ASR for (8 × 8) triggers decreases noticeably.
Nonetheless, the model performance is also undermined, which
leads to the complete failure of the defense mechanism.

To evaluate whether Pruning can be effective against our model
poisoning attack, we performed the defense against poisoned mod-
els with 𝜖 = 0.5. Figure 13 demonstrate the results for image datasets.
For MNIST and FMNIST, the Pruning fails to prevent the attack.
Even with 𝑝𝑟 = 0.5, most of the ASR values are still high, and in
those whose ASR is low, the CDA also dropped noticeably, which
caused the model performance to degrade. Considering BRATC,
the same trend is observed as the defense cannot effectively de-
crease the ASR in most cases. However, it successfully defends the
model in a few incidental cases (e.g., hidden layer size of 1000 for
𝑝𝑟 = 0.3). For 𝑝𝑟 = 0.1, The ASR and CDA remain mostly the same
as that of Figure 8, which indicates the ineffectiveness of the de-
fense method. Figure 9b demonstrates the results for WBCD. Only
for 𝑝𝑟 = 0.3 does the defense show constant effectiveness while re-
ducing the CDA to around 40%. For 𝑝𝑟 = 0.1, it successfully reduces
ASR, but for larger hidden layer sizes, it fails to keep the CDA. For
𝑝𝑟 = 0.5 and hidden layers of 5000 and 8000, which had high ASR,
the Pruning has improved the ASR. In general, we consider Pruning
not an effective defense method against backdoors for ELMs.

20

60

100

pr
=

0.
1

ELM BD-ELM ML-ELM

20

60

100

pr
=

0.
3

0.5 1 2 5 8

20

60

100

pr
=

0.
5

0.5 1 2 5 8 0.5 1 2 5 8

Hidden Layer Size (×1000)

AS
R

 &
 C

D
A 

(%
)

2 × 2 4 × 4 8 × 8 CDA ASR

Figure 11: ASR and CDA after Pruning on FMNIST (data
poisoning).
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Figure 12: ASR and CDA after Pruning on BRATC (data poi-
soning).

6 Discussion
Due to their small capacity and usage on simple datasets, ELMs
can learn backdoors when trained with poisoned data even better
than the real task and give more confident results when facing a
triggered sample. This can be observed when ASR is usually greater
or equal to CDA. We see this when comparing SVHN and BRATC
results, where an increase in dataset size may not lead to better
model performance on clean tasks but learning a simpler task like
backdoor patterns (This phenomenon is also observed in model
poisoning. If the attacker has enough samples to train the first layer,
we can observe an ASR of 100%, as seen in MNIST or FMNIST).
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Figure 13: ASR and CDA after Pruning (model poisoning).

Increasing the hidden layer size may lead to a small gain in model
accuracy but also has downsides like increasing the chance of the
model learning the backdoor and overall training time. Another
important observation is the higher robustness of ML-ELM against
backdoors. Nonetheless, we should remember that Adding more
layers to ELM makes it much slower and less efficient considering
training time, leading to ELMs being less useful than deep neural
networks.

It is also important to consider the potential of other ML-ELM de-
signs in enhancing robustness against backdoor attacks. Although
our study employed the most basic ML-ELM structure, various
advanced versions of ML-ELM exist [19, 41] that could offer im-
proved defense capabilities. These versions introduce additional
layers, complexity, or kernel-based approaches, which might in-
crease resistance to backdoor attacks. However, these advanced
models often require significantly more training time and compu-
tational resources, which could negate the primary advantages of
using ELMs, particularly in comparison to regular deep neural net-
works. This trade-off between robustness and efficiency raises the
question of whether it is sensible to employ such complex ML-ELM
designs for the sole purpose of backdoor robustness when simpler
and potentially more effective alternatives like DNNs are available.

Regarding Pruning, a naive approach is to perform the fine-
tuning part at the end, making it fine-pruning as a defense. As
we did the experiments to verify, in most cases, this leads to com-
plete failure of the backdoor and high CDA back from the model.
However, we think this solution is unrealistic and useless. Since
fine-tuning is training the last layer of the neural network, it fol-
lows a fairly similar approach in ELMs as we have to calculate the
𝛽 from scratch again after masking the neurons in the first layer.
This is like training the ELM model from scratch, and in our threat
model, it is of no use since the better solution would be for the user
to establish the random layer himself again and train the model
with his verified clean data.

While pruning was selected as a defense in this study due to
its relative simplicity and applicability to the structure of ELMs,
we acknowledge that this approach represents only one possible
line of defense against backdoor attacks. The focus on pruning is
motivated by the constraints of ELM’s architecture, which limits
the applicability of more complex defense mechanisms typically
used in deep learning models. However, this choice does introduce a
limitation in our work, as other defenses, potentially more effective,
remain unexplored.

7 Conclusions and Future Work
In this study, we confirmed that Extreme Learning Machines are
highly susceptible to backdoor attacks, a significant security threat
in machine learning models. Despite their unique structure and
learning procedures (which make them suitable for lightweight
datasets and real-time applications), ELMs demonstrate a high vul-
nerability to backdoor attacks, especially through data poisoning,
achieving an attack success rate of 100% in most cases. These find-
ings underscore the urgent need to enhance security measures for
ELMs.

We attempted to deploy a low-rate pruning technique as a de-
fensive measure to maintain the model’s robustness against such
attacks. However, our results indicated that this defense strategy
is ineffective in protecting ELMs from backdoors. As a potential
solution, we suggest exploring multi-layer ELM designs to mitigate
the impact of backdoor attacks.

Future research could focus on investigating more sophisticated
attacks, such as stealthy backdoors, within the ELM domain. How-
ever, the primary emphasis should be on developing highly effective
defensive methods adapted to ELMs, as current defensive measures
are either designed for deep neural networks or are largely ineffec-
tive, like pruning.
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A Additional Details on Model Poisoning
Attack

For further analysis, we investigate the difference between random
initialized neurons and those transplanted in the ELM via model
poisoning. Figure 14 demonstrates values distribution of 1𝑠𝑡 layer
neurons in an ELM.

B Additional Details on Data Poisoning Results
Figure 15 provides the results for the SVHN dataset. The results
show some differences from MNIST and FMNIST. However, there
are still some similarities. CDAs are still close to their related BAs
(which means the attack does not harm the benign task). The
strongest takeaway from the SVHN results is that ASR is higher
than CDA and BA in almost all cases. This holds for FMNIST to
some extent as well but is rarely seen in MNIST. We conjecture
that this is mostly because of the overall capacity of the ELMs. As
the dataset becomes more complex, ELM has less capacity to learn
the real data distribution but enough for backdoor samples. Thus,
ASR remains high while BA and CDA decrease when using more
complex datasets. Hidden layer size has a minimal impact on ASR
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(a) MNIST, 𝜖 = 5.
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(b) MNIST, 𝜖 = 50.
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(c) MNIST, 𝜖 = 100.
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(d) FMNIST, 𝜖 = 5.
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(e) FMNIST, 𝜖 = 50.

4 2 0 2 4
Weight Values

0

2

4

6

8

De
ns

ity

Distribution of Poisoned Hidden Weights vs Random Hidden Weights
Poisoned Hidden Weights
Random Hidden Weights

(f) FMNIST, 𝜖 = 100.
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(g) WBCD, 𝜖 = 5.
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(h) WBCD, 𝜖 = 50.
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(i) WBCD, 𝜖 = 100.
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(j) BRATC, 𝜖 = 5.
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(k) BRATC, 𝜖 = 50.
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(l) BRATC, 𝜖 = 100.

Figure 14: Distribution plots for 1𝑠𝑡 layer’s neuron values. The weights are initialized either by the random function or
transferred values from poisoned neurons from the attacker’s trained model.

in almost all cases. The most noticeable results are in low poison-
ing rates, i.e., 𝜖 = 0.2. Increasing the hidden layer size to more
than 1000 nodes for other cases does not affect the ASR. Poisoning
rate also does not have an important effect on ASR unless using
low poisoning rates, and after some points, all backdoor attacks
achieve very high ASRs. The trigger size impacts ASR the most and
is mainly seen in ML-ELM results (again, the most robust ELM).
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Figure 15: ASR and CDA for SVHN.
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