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Abstract. An accurate estimation of water resources dynam-
ics is crucial for proper management of both agriculture and
the local ecology, particularly in semi-arid regions. Imperfec-
tions in model physics, uncertainties in model land parame-
ters and meteorological data, as well as the human impact on
land changes often limit the accuracy of hydrological models
in estimating water storages. To mitigate this problem, this
study investigated the assimilation of terrestrial water stor-
age variation (TWSV) estimates derived from the Gravity
Recovery And Climate Experiment (GRACE) data using an
ensemble Kalman filter (EnKF) approach. The region con-
sidered was the Hexi Corridor in northern China. The hy-
drological model used for the analysis was PCR-GLOBWB,
driven by satellite-based forcing data from April 2002 to
December 2010. The impact of the GRACE data assimila-
tion (DA) scheme was evaluated in terms of the TWSV, as
well as the variation of individual hydrological storage esti-
mates. The capability of GRACE DA to adjust the storage
level was apparent not only for the entire TWSV but also
for the groundwater component. In this study, spatially cor-

related errors in GRACE data were taken into account, uti-
lizing the full error variance–covariance matrices provided
as a part of the GRACE data product. The benefits of this
approach were demonstrated by comparing the EnKF results
obtained with and without taking into account error correla-
tions. The results were validated against in situ groundwa-
ter data from five well sites. On average, the experiments
showed that GRACE DA improved the accuracy of ground-
water storage estimates by as much as 25 %. The inclusion
of error correlations provided an equal or greater improve-
ment in the estimates. In contrast, a validation against in situ
streamflow data from two river gauges showed no significant
benefits of GRACE DA. This is likely due to the limited spa-
tial and temporal resolution of GRACE observations. Finally,
results of the GRACE DA study were used to assess the status
of water resources over the Hexi Corridor over the consid-
ered 9-year time interval. Areally averaged values revealed
that TWS, soil moisture, and groundwater storages over the
region decreased with an average rate of approximately 0.2,
0.1, and 0.1 cm yr−1 in terms of equivalent water heights,
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respectively. A particularly rapid decline in TWS (approxi-
mately−0.4 cm yr−1) was seen over the Shiyang River basin
located in the southeastern part of Hexi Corridor. The reduc-
tion mostly occurred in the groundwater layer. An investi-
gation of the relationship between water resources and agri-
cultural activities suggested that groundwater consumption
required to maintain crop yield in the growing season for this
specific basin was likely the cause of the groundwater deple-
tion.

1 Introduction

The focus of this study is the Hexi Corridor. It is a semi-
arid region located between the Gansu province of China and
Mongolia (Fig. 1). A semi-arid region can be broadly classi-
fied as an area on the boundary of a larger desert, receiving
just enough annual precipitation (300 mm or less) to sustain a
limited amount of agriculture (Gong et al., 2004; Zhu et al.,
2015). Inefficient use of the limited amount of surface wa-
ter can often lead to overuse of groundwater resources and
salinization of the soil (Cui and Shao, 2005). This can re-
sult in desertification, which not only reduces the amount of
production but also may have long-term effects on the local
ecology. All of this holds true for the Hexi Corridor (Wang
et al., 2003).

Improving the water resources management of semi-arid
regions requires accurate knowledge of the hydrological pro-
cesses involved. For small areas, this can be partially ob-
tained through a network of in situ measurement systems,
such as meteorological stations, river gauges, groundwater
wells, evaporation trays, etc. (Dahlgren and Possling, 2007;
Huo et al., 2007; Kang et al., 2014; Ma et al., 2005; Du et
al., 2014). While streamflow gauges provide integrated in-
formation for large catchment areas, point observations of
hydrometeorological variables and even groundwater levels
can be very local in scope. A sensor at a point several kilo-
metres away may record significantly different values. For
large scales (> 10 000 km2), such techniques are unlikely ca-
pable of delivering accurate results.

Two options for estimating the large-scale terrestrial wa-
ter storage variation (TWSV) of a particular region are using
observations from the Gravity Recovery And Climate Ex-
periment satellite mission (GRACE; Tapley et al., 2004) or
utilizing a regional or global hydrological model. A number
of prior studies have reported on the potential of GRACE
in the estimation of snow water equivalent (Niu et al.,
2007), groundwater (Döll et al., 2014), and evapotranspira-
tion (Long et al., 2014) in terms of temporal and spatial vari-
ability. However, GRACE only provides the total column of
the water storage at a monthly timescale and large spatial
scales (> 300 km). It is not possible to identify the contribu-
tion of separate hydrological components to the TWSV from
GRACE data alone. On the other hand, a hydrological model

Figure 1. Geography of the Hexi Corridor. (a) Land cover and di-
vision into individual regions (Shiyang River basin, Heihe River
basin, Shule River basin, and a desert), (b) topography and loca-
tions of the local meteorological stations (triangles), (c) zoom-in
on the Shiyang River basin, showing the locations of considered
groundwater wells (×) and river stream gauges (+).

can be used to estimate the individual storage components at
very high spatial and temporal scales. The major drawback
of the model approach is mainly the significant uncertainties
influenced by the quality of the model parameter calibration
and the accuracy of the meteorological input data. In addi-
tion, hydrological models may suffer from inadequate pro-
cess representations (model structure errors).

Data assimilation (DA) can be employed to combine the
strengths of GRACE and hydrological models while mitigat-
ing their respective weaknesses. A number of studies have
shown that GRACE DA can be used to improve the estima-
tion of groundwater and streamflow (Zaitchik et al., 2008;
Tangdamrongsub et al., 2015), snow water equivalent (For-
man et al., 2012; Su et al., 2010), and as well as for eval-
uation of drought events (Houborg et al., 2012; Li et al.,
2012). Different temporal and spatial resolution of GRACE
observations and hydrological models require proper design
of the DA scheme. Several DA schemes have been developed
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to distribute GRACE observations into the model, which in-
clude using 5-day interpolated observations and updating the
model every 5 days (Tangdamrongsub et al., 2015), using a
monthly observation value and applying the model update
only at the end of the month (Eicker et al., 2014), and us-
ing a monthly value and distributing the update as daily in-
crements (Zaitchik et al., 2008; Forman et al., 2012; Girotto
et al. 2016). Although all DA schemes are acceptable, the
scheme proposed by Forman et al. (2012) is advantageous
because it does not require an interpolation of the observa-
tions and can reduce the spurious jump of the water storage
estimates caused by applying the update at the end of the
month only. The only price to pay is the additional compu-
tational cost of running the model twice for the same month.
A scheme similar to Forman et al. (2012) is used in this
study. Spatial disaggregation is also needed to reconcile the
difference in horizontal resolution between the observations
and the model. Recent studies by Eicker et al. (2014) and
Schumacher et al. (2016) suggested including the GRACE
variance–covariance error information in the spatial disag-
gregation step. Both studies proposed using 500 km GRACE
spatial resolution to mitigate the ill-posedness of the error co-
variance matrices in the spatial domain. In line with Eicker
et al. (2014) and Schumacher et al. (2016), the assimilation
scheme in this study accounts for spatially correlated errors
by using full error variance–covariance matrices of GRACE
data. This study will show that considering the GRACE error
correlations leads to an improvement of the state estimates.
Particularly, the signal-to-noise ratio (SNR) of the TWSV is
much lower than in the river basins considered in the previ-
ous studies, e.g. the Mississippi (Zaitchik et al., 2008), Rhine
(Tangdamrongsub et al., 2015), and Mackenzie (Forman et
al., 2012).

Approximately 9 years of GRACE data – between
April 2002 and December 2010 – are considered in this
study. GRACE observations are assimilated into the PCRas-
ter Global Water Balance (PCR-GLOBWB; van Beek et al.,
2011; Sutanudjaja et al., 2014; Wada et al., 2014) hydrolog-
ical model over the Hexi Corridor. TWS is computed from
PCR-GLOBWB as the sum of all the hydrological compo-
nents (soil moisture, groundwater, surface water, inundated
water, interception, and snow). The previous studies showed
very good agreement of PCR-GLOBWB based estimates
with GRACE observations in several river basins (Wada et
al., 2014; Tangdamrongsub et al., 2016). However, the per-
formance of PCR-GLOBWB has not yet been evaluated over
the Hexi Corridor. In addition, to date, the model has not
been incorporated into any GRACE DA scheme, making this
study the first attempt to do so. Investigating the added value
of GRACE DA in the Hexi Corridor is the main objective of
this study.

First of all, the impact of GRACE DA and the effect of tak-
ing correlations in GRACE errors into account are assessed.
Both the total terrestrial water storage and the individual hy-
drological storage compartments are considered.

Next, the results of the GRACE DA are validated with
independent in situ data. The agreement is analysed in
terms of the correlation coefficient, Nash–Sutcliffe coeffi-
cient, and root mean square difference (RMSD). The ground-
water storage variation (GWSV) and streamflow estimates
after GRACE DA are validated with the well and river stream
gauge measurements, respectively.

Finally, results from this GRACE DA study are used to
assess the status of water resources over the Hexi Corri-
dor. The connections between the water storage (including
groundwater consumption) and agriculture in the area are
also presented and discussed. At that stage, we use precip-
itation data from the Tropical Rainfall Measuring Mission
(TRMM; Huffman et al., 2007) and the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) derived Normal-
ized Difference Vegetation Index (NDVI; Huete et al., 2002).

2 Study region

The Hexi Corridor is a long and narrow area between the
Qilian Mountains and southern Mongolia (Fig. 1a). The re-
gion’s elevation ranges from 900 m in the northern down-
stream zone (Inner Mongolia) to 5200 m in the southern
upstream area (Qilian Mountains) (Fig. 1b). The region is
comprised of four typical inland arid and semi-arid regions
(Zhu et al., 2015): the Shiyang River basin (41 600 km2),
the Heihe River basin (143 000 km2), the Shule River basin
(157 000 km2), and a desert region (152 445 km2) (Geng and
Wardlaw, 2013; Zhu et al., 2015). Located next to the Gobi
Desert, most parts of the region have a cold desert climate
(Peel et al., 2007), where precipitation is relatively low to
sustain vegetation or crops. Approximately 60 to 80 % of the
annual rainfall is concentrated during the time frame from
June to September. The inland rivers mainly originate from
the Qilian Mountains and disappear after entering the mid-
stream/downstream plains and oases. As such, the southern
part of the region is more favourable for agriculture.

The four basins have distinct characteristics. First, the
smallest river basin, Shiyang, has eight main river streams,
including the Xida and Xiying rivers (Fig. 1c). The annual
rainfall and the mean temperature are approximately 250 mm
and 5 ◦C (Fig. 2a, b), respectively. The Shiyang River basin
is considered the wettest basin compared to the others, with
relatively high mean total renewable annual water resources
of approximately 1.66 billion m3 (Zheng et al., 2013). How-
ever, a highly developed economy and population growth in
the past decade have resulted in a severe water resources
overexploitation problem (Zheng et al., 2013). The Heihe
River basin has a semi-arid climate and the mean daily tem-
perature of ∼ 6 ◦C (Fig. 2d). The average annual rainfall is
∼ 150 mm (Fig. 2c) with high heterogeneity both in tempo-
ral and spatial distribution. The mean total annual available
water resources are estimated at 3.7 billion m3 (Hu, 2015).
Similar to the Shiyang River basin, increased water exploita-
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Figure 2. Monthly total precipitation and averaged temperature
over four regions of the Hexi Corridor.

tion, increasing population, and changing climate have ag-
gravated the damage to the downstream ecology. The Shule
River basin has an arid climate, the mean temperature there is
around 4 ◦C (Fig. 2f), and the average annual rainfall is only
approximately 98 mm (Fig. 2e). Compared to the Shiyang
River basin, the Shule River basin is approximately 4 times
as large in terms of surface area, but has similar mean to-
tal annual water resources (∼ 1.6 billion m3; Hu, 2015). The
district irrigation areas are mainly located in the middle of
the Shule River basin. Agricultural water consumption ac-
counts for more than 80 % of the total water use. Finally,
the desert region has an extreme continental desert climate
with an average temperature of 8 ◦C and the annual rainfall of
∼ 130 mm. Extensive groundwater abstraction was also ob-
served over the region (Jiao et al., 2015).

3 Hydrology model

The global distributed hydrological model PCR-GLOBWB
(van Beek et al., 2011; Sutanudjaja et al., 2017) simu-
lates spatial and temporal continuous fields of fluxes and
storages in various water storage components (soil mois-
ture, groundwater, surface water, inundated water, intercep-
tion, and snow). The model version used here (Sutanud-
jaja et al., 2017) has a spatial resolution of 30 arcmin (ap-
proximately 50 km at the Equator), and a temporal reso-
lution of 1 day. Figure 3 illustrates the structure of PCR-
GLOBWB model. The model includes two soil layers
(SMupp, SMlow), an underlying hydrologically active and re-
plenishable groundwater (GWSactive) layer, a non-renewable
groundwater (GWSfossil) layer, as well as interception, sur-

Figure 3. The structure of PCR-GLOBWB hydrological model.

face water, and snow stores. The non-renewable groundwater
is available for abstraction to satisfy water demands once the
overlying hydrologically active groundwater storage is de-
pleted. For soil, snow, inundated top water, and interception
stores, an individual grid cell is divided into subgrids asso-
ciated with different types of topography, vegetation phenol-
ogy, and soil properties, as well as land cover types. Specifi-
cally, there are four types of land covers defined: short natural
vegetation, tall natural vegetation, irrigated non-paddy field,
and irrigated paddy field. Soil components include the up-
per layer (SMupp, 0–30 cm) and the lower layer (SMlow, 30–
150 cm). The snow component includes snow water equiva-
lent (SWE), as well as snow-free water (SFW) representing
the storage of melted snow. The water stored in the stream
channels and lakes is also included in the TWS estimate.
Based on the structure of PCR-GLOBWB, the total water
storage (TWS) is computed as the sum of 27 different water
storage components: 8 soil moisture layers, 2 groundwater
layers, 4 interception layers, 8 snow layers, 4 inundated top
water layers, and 1 surface water layer.

For each grid cell and for each daily time step, the model
determines the water balance in two vertically stacked soil
layers and the groundwater store. The model also computes
the vertical water exchanges between the soil layers and be-
tween the inundated top water layer and the atmosphere, i.e.
rainfall and snowmelt, percolation, and capillary rise, as well

Hydrol. Earth Syst. Sci., 21, 2053–2074, 2017 www.hydrol-earth-syst-sci.net/21/2053/2017/
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as evaporation and transpiration fluxes. The active ground-
water store underlies the soil, is fed by net groundwater
recharge, discharges to baseflow as a linear reservoir, and is
exempt from the direct influence of evaporation and transpi-
ration fluxes. However, capillary rise from the active ground-
water store can occur depending on the simulated ground-
water storage, the soil moisture deficit, and the unsaturated
hydraulic conductivity. Fluxes are simulated according to the
different land cover types. The model includes a physically
based scheme for infiltration and runoff, resulting in the di-
rect runoff, interflow, as well as groundwater baseflow and
recharge. River discharge is calculated by accumulating and
routing the specific runoff along the drainage network. For
further details, including model parameterization, the reader
is referred to the technical reports and other relevant publi-
cations (van Beek and Bierkens, 2009; van Beek, 2008; Su-
tanudjaja et al., 2011, 2014).

4 Data and data processing

4.1 GRACE data

The GRACE gravity product release 5 (RL05), generated
by the University of Texas at Austin’s Center for Space
Research (CSR; Bettadpur, 2012), was used as input. The
product consists of monthly sets of spherical harmonic co-
efficients (SHCs) complete to degree and order 60. On this
basis, TWSVs were obtained for the study period between
April 2002 and December 2010. The GRACE data were fur-
ther processed in this study as follows:

– SHCs of degree 1 provided by Swenson et al. (2008)
were restored, and all five coefficients of degree 2 were
replaced by the values estimated from satellite laser
ranging (Cheng and Tapley, 2004).

– SHC variations were computed by removing the long-
term mean (computed between April 2002 and Decem-
ber 2010) from each monthly solution.

– A destriping filter (Swenson and Wahr, 2006) was ap-
plied to the SHC variations. The filter used a fifth-
degree polynomial (Savitzky–Golay) over a five-point
window to remove the correlations; orders below 8 re-
mained unchanged.

– An additional 250 km radius Gaussian smoothing
(Jekeli, 1981) was applied to SHC variations to suppress
high-frequency noise, and the TWS variations (1σ (m))
were then computed using (Wahr et al., 1998)

1σ (θ,φ)=

60∑
l=1

l∑
m=−l

Wl1ClmŶlm (θ,φ), (1)

where θ φ are co-latitude and longitude in spherical coordi-
nates, 1Clm is the SHC variation of degree l and order m,
Ŷlm is the normalized surface spherical harmonic, Wl is the
Gaussian smoothing function, Sl is a scaling factor used to
convert dimensionless coefficients to TWS in terms of equiv-
alent water heights (EWHs), ae is the semi-major axis of the
reference ellipsoid, kl is the load Love number of degree l,
and ρe and ρw are the average density of the Earth and wa-
ter, respectively. In this study, the TWS variations were com-
puted at every 0.5◦× 0.5◦ grid cell. This cell size was se-
lected through trial and error as a balance between perfor-
mance and resolution.

In general, filters suppress not only noise but also the gen-
uine TWSV signal and are a well-known source of signal
leakage. To address this, a signal restoration method (Chen
et al., 2014; Tangdamrongsub et al., 2016) was employed.
The method iteratively determined the possible signal re-
duction caused by the Gaussian filter applied and added it
back to the filtered signals. The errors of the procedure grew
with the number of iterations, requiring a proper selection
of the convergence criterion. In this study, the criterion was
chosen empirically: the signal restoration process was itera-
tively repeated until the increment in every grid cell inside
the Hexi Corridor became smaller than 0.5 cm. This value is
2–3 times smaller than the GRACE uncertainty (Wahr et al.,
2006; Klees et al., 2008; Dahle et al., 2014). Figure 4 demon-
strates the signal restoration for October 2002. The conver-
gence criterion was met after approximately six iterations.
The signal over the mountain range and Inner Mongolia be-
came apparent after the signal restoration was applied (see
Fig. 4f).

4.2 Forcing data

The forcing data required by PCR-GLOBWB are pre-
cipitation, air temperature, and potential evapotranspira-
tion. Tangdamrongsub et al. (2015) showed that the use
of high-quality precipitation data might lead to better es-
timates of hydrological fluxes (e.g. TWSV and stream-
flow). In principle, local precipitation and surface tempera-
ture measurements could be obtained from the China Daily
Ground Climate Dataset provided by the China Meteoro-
logical Data Sharing Service System (http://www.cma.gov.
cn/en2014/services/ProductsService). A total of 23 weather
stations were found over the Hexi Corridor (see Fig. 1b).
However, the measurements were spatially sparse and did
not cover the entire region. Therefore, the global precipita-
tion data were used to achieve a better spatial coverage. Four
global precipitation products were considered for inclusion:

– the European Centre for Medium-range Weather Fore-
casts (ERA-Interim, spatial resolution: 0.75◦× 0.75◦;
Dee et al., 2011),

www.hydrol-earth-syst-sci.net/21/2053/2017/ Hydrol. Earth Syst. Sci., 21, 2053–2074, 2017
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Figure 4. GRACE-derived TWS variation of October 2002. The
signal restoration was applied to restore the signal mitigated by
the applied Gaussian filter. After each iteration (It), the increment
in each cell was computed. The procedure was stopped after six
iterations, when the maximum increment (Inc) was lower than
0.5 cm (f).

– the Tropical Rainfall Measuring Mission (TRMM
3B42, spatial resolution: 0.25◦× 0.25◦; Huffman et al.,
2007; Kummerow et al., 1998),

– the Climate Research Unit dataset (CRU, spatial resolu-
tion: 0.5◦× 0.5◦; Mitchell and Jones, 2005; van Beek,
2008), and

– Princeton’s Global Meteorological Forcing Dataset
(Princeton, spatial resolution: 0.5◦× 0.5◦; Sheffield et
al., 2005).

To select the best product, the global precipitation values
were first interpolated to the weather station locations and
then the correlation coefficient, the Nash–Sutcliffe (NS) co-
efficient, and RMSD between the interpolated and observed
ground data were calculated. The mean values of the statisti-
cal estimates are shown in Fig. 5a. Overall, TRMM provided
the best data quality, with the highest correlation (∼ 0.85)
and NS coefficients (∼ 0.46), and an RMSD approximately
2–3 mm lower than other products. The high spatial resolu-
tion of TRMM is probably the reason for its better perfor-
mance. Therefore, this product was chosen as the precipita-
tion input. The low NS coefficient in all four cases suggests
that the coarse spatial resolution of the global precipitation
datasets prevents them from capturing all the local precipita-
tion events.

A similar procedure was used to compare the air temper-
ature data from ERA-Interim, CRU, and Princeton. The sta-
tistical estimates are shown in Fig. 5b. Although the results
from all products were very similar, CRU provided the high-

Figure 5. The correlation coefficient, NS coefficient, and RMSD
(root mean square difference) computed between the local and dif-
ferent global forcing data. The rms difference is shown as the radius
of the circle (also explicitly provided as the number).

est data quality in terms of correlation and RMSD values,
and therefore it was used as the temperature input. As far as
potential evapotranspiration is concerned, few data are avail-
able for this region, so the data from van Beek (2008) were
used.

4.3 Validation data

4.3.1 Groundwater

Monthly groundwater well measurements at five locations
(Fig. 1c) were obtained from the ground network maintained
by the Shiyang River Basin Management Bureau, and Insti-
tute of Water Resources and Hydropower of Gansu Province.
The in situ data were provided in the form of piezometric
heads (relative to the mean sea level), which needed to be
converted to units of storage. For such a task, several param-
eters, e.g. storage coefficient and specific yield, are required,
but they are not available over the Hexi Corridor. To solve
that problem, a scale factor computed using the information
from GRACE and soil moisture (SM) from the Global Land
Data Assimilation System (GLDAS; Rodell et al., 2004) was
used for the conversion using the approach outlined by Tang-
damrongsub et al. (2015). As discussed in Tangdamrongsub
et al. (2015), it is ideally preferred to use the in situ soil
moisture data to represent the SM term, but they are not
available at the well locations. The soil moisture estimated
from remote sensing was also not appropriate due to the lim-
itation of the penetration depth. The use of SM from PCR-
GLOBWB is avoided to reduce the bias when compared the
adjusted well measurements to the final DA result. Therefore,
the GLDAS-derived SM was used.

The adjustment procedure was as follows. First, GLDAS-
based soil moisture storage variations (SMSVs) were re-
moved from GRACE-derived TWSV. Four variants of
GLDAS model (NOAH, CLM, MOSAIC, and VIC; see
Rodell et al., 2004) were considered and the average
SMSV value was calculated. Taking into account that
SMSVs and GWSVs are the major contributions to TWS
variations, this resulted in GWSV (GWSV(GRACE−SMSV)).
Then, by conducting a regression analysis between the
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monthly time series of piezometric head variation (1h) and
1GWS(GRACE−SMSV) at each individual location, a bias (b)
and a scale factor (f )were estimated using the following lin-
ear relationship:

1GWS(GRACE−SMSV)+ e = b+ f ·1h, (2)

where e indicates the observation error. Finally, the estimated
bias (b̂) and scale factor (f̂ ) were used to convert the in
situ head measurements into groundwater storage variation
(GWSVin situ) as

GWSVin situ = b̂+ f̂ ·1h. (3)

4.3.2 Streamflow

Monthly river gauge data were obtained from the same
data centre as the groundwater measurements. Due to the
coarse spatial resolution of PCR-GLOBWB, it models only
the main river streams. Therefore, the gauge measurements
of small river streams, as well as the gauge measurements
that contained many data gaps (i.e. more than 24 months),
were excluded. As a result, the measurements from only two
gauges – at Xida and Xiying rivers (see Fig. 1c) – were used
in this study.

4.3.3 Normalized Difference Vegetation Index (NDVI)

NDVI (Carlson and Ripley, 1997) is an indicator of vege-
tation health or “greenness”. In this study, NDVI and GWS
were analysed to determine if the growing season was being
extended beyond the limited rainy period through groundwa-
ter extraction for irrigation. NDVI was computed from the
MODIS 8-day 500 m spatial resolution surface reflectance
product (Vermote et al., 2011) based on data from the Aqua
satellite (MYD09A1 product). Based on the location of the
in situ groundwater measurements, the MODIS tiles h25v05
and h26v05 were selected. First, the data were quality con-
trolled to exclude pixels with cloud cover. The 8-day NDVI
was then computed as (Huete et al., 2002)

NDVI=
ρNIR− ρR

ρNIR+ ρR
, (4)

where ρNIR and ρR are the observed surface reflectances
in the near-infrared and red portions of the electromagnetic
spectrum, respectively. The monthly averaged NDVI was
then computed based on the derived 8-day NDVI values.

5 Methodology and implementation

5.1 Ensemble Kalman filter (EnKF)

The ensemble Kalman filter (EnKF; Evensen, 2003) is
used to assimilate GRACE derived TWSV into the PCR-
GLOBWB model. The EnKF works in two steps, a forecast
step and analysis (update) step. The forecast step involves

propagating the states forward in time using the model (PCR-
GLOBWB). Identical to how the EnKF is implemented by
Forman et al. (2012), the state vector (ψ in this study is an
nm× 1 vector) where n= 27 is the number of TWS-related
states from PCR-GLOBWB (see Sect. 3), and m is the num-
ber of model grid cells. The model estimates are related to
the GRACE observations by

d =Hψ + ε;ε ∼N (0,R) , (5)

where d is an m× 1 vector containing the GRACE obser-
vations for the month of interest, and H is a measurement
operator which relates the PCR-GLOBWB state ψ to the ob-
servation vector d. Notice that the number of observations
is equal to the number of grid cells because the GRACE-
based estimates are obtained for all the grid cells of the PCR-
GLOBWB model (see Sect. 4.1). The uncertainties in the ob-
servations are given in the random error ε, which is assumed
to have zero mean and covariance matrix Rm×m. As the sum
of all state elements at a given cell is equal to TWSV, the H
matrix is defined as

H= (6)

(111. . .1)1×n 0 · · · 0

0 (111. . .1)1×n · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · (111. . .1)1×n



m×nm.

Let the ensemble of the states be stored in a matrix Anm×N =(
ψ1,ψ2,ψ3, . . .,ψN

)
, where N is the number of ensemble

members. Then, the ensemble perturbation matrix is defined
as A′ = A−A, where the matrix A is of the same size as A
and filled in with the mean values computed from all ensem-
ble members. Similarly, the GRACE observation vector is
stored in the matrix Dm×N = (d1,d2,d3, . . .,dN ), in which
each column is a replicate of the observation but perturbed
with random noise ∼N (0,R). The analysis equation can be
expressed as (Evensen, 2003)

Aa = A+1A= A+K(D−HA) , (7)

with

K= PeHT
(

HPeHT
+R

)−1
, (8)

where Aanm×N is the updated model state,1Anm×N is the up-
date from Kalman filter, and Knm×m is the Kalman gain ma-
trix. The model error covariance matrix (Pe)nm×nm is com-
puted as

Pe = A′
(
A′
)T
/(N − 1) . (9)

The matrix R is the error variance–covariance matrix of
GRACE data in the spatial domain, its computation is dis-
cussed in Sect. 5.2.2.

In the initialization phase, which was needed to obtain the
initial states, the model was spun up between 1 January and
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31 December 2000 as a hot start. This time interval was suffi-
cient to reach the dynamic equilibrium. The initial stateψ for
31 December 2000 obtained this way was perturbed to yield
N = 100 ensemble members ψ i, i = 1,2,3, . . .,N . The N
ensemble runs between 1 January 2001 and 31 March 2002
were then conducted independently based on the perturbed
initial states. This resulted in an ensemble spread of the es-
timated states. The model was then propagated in time be-
tween 1 April 2002 and 31 December 2010 without assim-
ilating any observation. This case is referred to hereafter as
the Ensemble Open Loop (EnOL). For the EnKF, the model
was also propagated beginning from 1 April 2002, but the
observations (when available) were assimilated.

The processing diagram is shown in Fig. 6 and follows the
methodology introduced by Forman et al. (2012). The state
is first propagated in time from the first to the last day of the
month without applying DA, and the monthly averaged states
are calculated from the daily values. When the GRACE ob-
servation for that month is available, the DA routine is ac-
tivated (otherwise, the model continues propagating to the
next month without applying DA). The DA routine computes
the monthly averaged update 1A of the TWS-related states
(see Eq. 6). The daily increment (DINC) of the update is then
computed by dividing the monthly averaged update by the to-
tal numbers of days in that month (numdaymonth). The model
propagation is then restarted (second run), using the last day
of the previous month (month-1, numdaymonth−1) as the ini-
tial state. In this second run, the DINC is added to the cur-
rent states every day up to the last day of the month. The DA
scheme is repeated for each month up to the end of the study
period.

Spatial correlations of model errors and observation errors
were also taken into account in view of the fact that the latter
are highly correlated at neighbouring 0.5◦× 0.5◦ grid cells.
De Lannoy et al. (2009) proposed a so-called 3D-Fm (three-
dimensional fine scale with multiple observations) approach,
which is called “EnKF 3D” in this paper. The approach only
considers the spatial correlations between the neighbouring
grid cells. In this study, the neighbouring grid cells were as-
sumed to be the ones inside the Gaussian smoothing radius
applied, i.e. 250 km. This reduced the computational cost, as
only a small subset of cells pairs was considered instead of
all cells pairs. That approach was applied not only to obser-
vation errors but also to model errors in TWSV and TWS-
related components in this study. The EnKF 3D scheme is il-
lustrated in Fig. 7. For a particular grid cell (centre grid cell),
all TWS-related components of the neighbouring grid cells
and the centre grid cell are used to form the state (Asnp×N )
and observation (Dsp×N ) matrices, where p is the number
of the considered grid cells. The matrix notation with su-
perscript s (e.g. As) is only used to emphasize the cell-
dependent version, and it can be substituted into the original
matrix notation (e.g. A) in Eqs. (5)–(9). It is emphasized here
that EnKF 3D involves only p grid cells instead of all m grid

cells. As such, the measurement operator, model error covari-
ance matrix, and observation error covariance matrix become
Hs
p×np,

(
Pse
)
np×np

, and Rsp×p, respectively. The EnKF was
then applied and the states of the centre grid cell (only) were
updated. The procedure was repeated through all grid cells.
To investigate the impact of including spatial correlations of
errors, the “EnKF 1D” was also considered. The EnKF 1D
scheme is similar to EnKF 3D, but the spatial correlations
are omitted (i.e. the off-diagonal elements of the covariance
matrices Pse and Rs are set to 0).

Furthermore, sampling errors caused by finite ensemble
size might lead to spurious correlations in the estimated
model error covariance matrices (Hamill et al., 2001). To re-
duce such an effect, a distance-dependent localization func-
tion is applied to Pse (pair-wise). In this study, the Gaussian
function (c (α)) (Jekeli, 1981) was used:

c
(
αj1,j2

)
=
e−b

[
1−cos

(
αj1,j2/ae

)]
1− e−2b , (10)

with

b =
ln(2)

1− cos(L/ae)
, (11)

where αj1,j2 is the distance on the Earth’s surface between
two grid cells (j1 and j2), and L is the correlation distance.
The variogram analysis was used to derive the TWSV corre-
lation distance (L) of PCR-GLOBWB, assuming that it is
similar to the correlation distance of model errors. It was
found to be approximately equal to 110 km over the Hexi
Corridor. For GRACE observations, to ensure that the spuri-
ous error correlations at distances greater than the Gaussian
smoothing distance, 250 km, are insignificant, the localiza-
tion applied to Rs was based on L= 250 km. The localiza-
tion also makes the correlations at short distances slightly
weaker. As a result, the condition number of the error co-
variance matrix is increased. In this study, for instance, the
condition number increased from∼ 1014 to∼ 102. Thus, this
matrix had a full rank after localization (see Sect. 5.2.2 for a
further discussion).

5.2 Errors of PCR-GLOBWB model and errors in
GRACE observations

5.2.1 Model errors

The two primary sources of considered errors in the PCR-
GLOBWB model are the meteorological forcing data and
the model parameters. For forcing data, the precipitation un-
certainties were quantified as the rms error provided by the
TRMM product (Huffman, 1997). The uncertainties of tem-
perature and potential evapotranspiration were not provided
as parts of the corresponding products, and therefore errors
of 2 ◦C and 30 % of the nominal potential evapotranspiration
value were assumed, respectively. The error levels were cho-
sen through trial and error, mainly to allow the ensemble to
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Figure 6. DA diagram representing the disaggregation of monthly averaged TWS from GRACE into the daily PCR-GLOBWB state esti-
mates.

grow between updates. The precipitation and potential evap-
otranspiration were perturbed with additive lognormal noise
while the temperature was perturbed with additive Gaussian
noise. The forcing data uncertainties were assumed to be spa-
tially correlated, which was accounted for using an exponen-
tial decay function. Based on a variogram analysis, the cor-
relation distances of precipitation, temperature, and potential
evapotranspiration were found to be approximately 150, 450,
and 450 km, respectively.

As far as model parameters are concerned, a total of 15
TWS-related parameters (see Table 1; Sutanudjaja et al.,
2011, 2014) were perturbed using additive Gaussian noise

without spatial correlations. The standard deviation of the
perturbations of the parameters was set to 20 % of the range
of the nominal values.

5.2.2 GRACE observation errors

Spatial correlations of GRACE observation errors were also
taken into account in the DA scheme. The uncertainties in the
GRACE-derived TWSV over the Hexi Corridor were com-
puted using the monthly calibrated error variance–covariance
matrix of the SHCs (6) provided by the CSR. Recalling the
replacement of the low-degree SHCs (see Sect. 4.1), the er-
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Table 1. PCR-GLOBWB model parameters related to the TWS estimate. Parameters are functions of spatial coordinates, except the degree-
day factor (DDF), which is a constant.

Parameter Description Unit

Ksat,up Saturated hydraulic conductivity of the upper soil storage m day−1

Ksat,low Saturated hydraulic conductivity of the lower soil storage m day−1

SCup Storage capacity of the upper soil m
SClow Storage capacity of the lower soil m
fmin

g , fmin
f , fmin

p , fmin
np Minimum soil depth fraction of grassland (g), forest (f), paddy

irrigation (p), non-paddy irrigation (np)
–

fmax
g , fmax

f , fmax
p , fmax

np Maximum soil depth fraction of grassland (g), forest (f), paddy
irrigation (p), non-paddy irrigation (np)

–

J Groundwater recession coefficient 1 day−1

DDF Degree-day factor in the snow pack ◦C m day−1

KCmin Minimum crop coefficient –

Figure 7. Demonstration of EnKF 3D scheme, accounting for the
spatially correlated errors. For a centre grid cell, the state and obser-
vation matrices contain all TWS-related components of the neigh-
bouring grid cells and the centre grid cell (left). The graphic demon-
strates the case of one pixel (0.5◦) correlation distance. The bound-
ary stretches farther for larger correlation distance. The covariance
matrices Pe and R are computed based on the data from these grid
cells. Then, the EnKF is applied and the states of the centre grid cell
are updated (right). The procedure is repeated through all grid cells.

ror (co-)variances of SHCs degree 2 were not provided by
Cheng and Tapley (2004), and therefore the values obtained
from the CSR were used. As for SHCs of degree 1, the er-
ror (co-)variances were not available from (Swenson et al.,
2008) either and were set to 0. Note that 6 only reflects the
error of the original GRACE data, i.e. before the GRACE
processing described in Sect. 4.1 was applied. To obtain the

error variance–covariance matrix associated with the post-
processed GRACE data, an ensemble of SHC noise realiza-
tions Qc was first generated based on 6 as follows:

Qc
= (6)

1
2 Qw, (12)

where Qw
=
(
qw1 ,q

w
2 ,q

w
3 , . . .,q

w
N

)
contains a set of white-

noise realizations and has the dimension of s×N , where
s = 1891 is the number of SHCs, and N = 100 is the num-
ber of realizations. The matrix Qc

=
(
qc1,q

c
2,q

c
3, . . .,q

c
N

)
has

the same dimension as Qw and contains an ensemble of cor-
related noise realizations in SHCs. Then, each noise real-
ization (i.e. column of Qc) was post-processed in the same
way as the GRACE data (Sect. 4.1), which resulted in Q̂c

=(
q̂c1, q̂

c
2, q̂

c
3, . . ., q̂

c
N

)
. The post-processing included applying

the destriping and Gaussian smoothing filters, as well as
the signal restoration using the same number of iterations
as was used in the GRACE data post-processing. The error
variance–covariance matrix 6̂ associated with the SHCs af-
ter post-processing was then computed as

6̂ =

[
Q̂c
(
Q̂c
)T ]

/(N − 1) . (13)

Recalling Eq. (1), the TWSV over the Hexi Corridor can be
computed as

1σ = YSx, (14)

where 1σ is the vector composed of the computed TWSV
at grid cells, Y is the matrix of spherical harmonic synthe-
sis (see Eq. 1), S is the matrix containing the scaling fac-
tors Sl , and x is the vector composed of the dimension-
less SHC variations after GRACE data post-processing de-
scribed in Sect. 4.1. Then, the error covariance matrix R of
the GRACE-based TWSV over the Hexi Corridor was com-
puted with the error propagation law as

R= YS6̂(YS)T . (15)
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Figure 8. Some statistics of errors in GRACE-derived TWS vari-
ation over the Hexi Corridor. The standard deviation (a) and the
correlation coefficient with respect to the green point (b) for a sam-
ple month, October 2002, are shown at the top. The time series of
averaged standard deviation computed over four different basins are
shown in the bottom plot (c).

Some statistics of GRACE TWSV errors over the Hexi Cor-
ridor are shown in Fig. 8. The error standard deviation in
October 2002 varied with location (Fig. 8a), whereas the
error correlation showed a distance-decay pattern in all di-
rections (Fig. 8b). The areally averaged standard deviations
over four basins stayed in most of the months at a similar
level of approximately 1 cm (Fig. 8c). The large uncertainty
in September 2004 was likely caused by the near-repeat orbit
of GRACE satellites during that month.

6 Results and discussion

The structure of this section is as follows. First, the impact of
assimilation using EnKF 3D on the TWSV is considered in
Sect. 6.1. Then, the impact of the EnKF 3D on the estimates
of the individual stores is investigated in Sect. 6.2. The re-
sults of the EnKF 1D and EnKF 3D schemes are compared
in Sect. 6.3 in terms of TWSV and the individual stores. Fur-
thermore, the obtained results are validated against indepen-
dent data in Sect. 6.4. Finally, in Sect. 6.5–6.6, the assimila-
tion results are used together with ancillary remote sensing
data to study water resources in the Hexi Corridor.

6.1 Impact of GRACE DA

To demonstrate the impact of DA, Fig. 9 shows the daily
TWSV estimates over the Shiyang River basin between
1 April 2002 and 31 December 2003. Several features as-
sociated with the EnKF can be observed. Firstly, when a
GRACE observation is available, the EnKF moves the es-
timated TWSV towards it. As a result, the estimated TWSV
lies between the EnOL estimate and the GRACE observation
most of the time. It is seen that GRACE-derived TWSV has
a greater annual amplitude compared to the model-estimated
TWSV. This can likely be attributed to the poor quality of the

Figure 9. Daily TWS variations estimated between 1 April 2002
and 31 December 2003, averaged over Shiyang River basin. The
mean value of the ensemble is given as the solid line, and the stan-
dard deviation is shown as the shaded envelope. The TWS estimates
from model only (EnOL), GRACE DA forecast (EnKF before the
update), GRACE DA update (EnKF after update), and GRACE ob-
servations are shown. The x-axis labels represent the first day of
the month. Some features of the DA scheme regarding the identical
TWS estimate seen at the beginning of the update (point a) and the
observed spurious jumps (points b, c, d) are also shown.

model parameter calibration and the accuracy of the meteoro-
logical input data over the data-sparse regions. In the absence
of observations, model parameters are difficult to determine
and only the best available knowledge (or guess) is generally
used, leading to inaccurate model state estimates. Updating
the water storage estimates using GRACE DA showed a clear
improvement in this case. Secondly, the standard deviation
across the EnKF ensemble of TWSV values is smaller than
that of the EnOL and smaller than the GRACE observation
error. Thirdly, in the first month (April 2002) the TWSV es-
timates of the EnOL and EnKF were similar at the forecast
step (as the initial states were the same, see point a in Fig. 9),
but became different when the daily increment was applied to
the EnKF. Finally, discontinuities in the time series before the
update were observed at the end of the month, e.g. in Novem-
ber and December 2002 (points b and c), and February 2003
(point d). Applying the daily increment (see Sect. 5.3) served
as a smoother, and these stepwise changes were reduced.

Similar features were also seen in the EnKF 1D TWSV
estimates (not shown).

6.2 Impact of GRACE DA on individual stores

The monthly averaged values of the TWSV and individual
stores in each of the four basins are presented in Fig. 10.
Overall, TWSV estimates over the Hexi Corridor mostly re-
flect SMSV and GWSV components, while snow water stor-
age variation (SNSV) and surface water storage variation
(SFWV) are minor contributors, constituting less than 5 % in
most basins. Clear seasonal variations in TWSV were seen in
all basins for GRACE, EnOL, and GRACE DA (both EnKF
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Figure 10. Monthly TWSV, SMSV, GWSV, snow water storage variation (SNSV), and surface water storage variation (SFWV) estimated
between April 2002 and December 2010 from the EnOL, EnKF 1D, EnKF 3D, and GRACE observations over four basins.

1D and EnKF 3D) time series (Fig. 10a, b, c, d). As observed
in Fig. 10, the GRACE DA estimated TWSVs are generally
between the GRACE observations and the EnOL estimates.
As a result of assimilating GRACE data, both the EnKF 1D
and EnKF 3D added water to all basins between 2002 and
2005 and reduced it from the basins between 2006 and 2010.
This is also seen in the time series of SMSV (Fig. 12e, f, g, h)
and GWSV (Fig. 12i, j, k, l). Additionally, the annual am-
plitudes and phases of GRACE DA estimated TWSV were
also found mostly in between the values computed from the
GRACE observations and the EnOL results (see Table 2).
In particular, the GRACE-DA estimated that TWSV’s phase
was always closer to the GRACE observation. The phase
shifts of approximately 1 month were seen in both GRACE
DA estimated TWS and GRACE observations compared to
the EnOL results. Similar phase differences of approximately
1 month were also observed in SMSV and GWSV compo-
nents.

Differences in the long-term trends were also detected be-
tween the TWSV estimates from the model alone (EnOL)
and the GRACE DA. The GRACE DA results showed de-
creasing TWSV trends similarly to the GRACE data, while
the EnOL showed increasing trends (Fig. 10a, b, c, d; see
also Table 7). This change in the TWSV trend was clearly
a result of assimilating GRACE observations. The negative
trends were also observed after DA in the GWSV component
in most basins (Fig. 10i, j, l). This indicates the potential of
GRACE DA in adjusting GWSV. In this way, one can reveal
continued groundwater consumption to support local agricul-
tural activities (Li et al., 2013). Unlike over other basins, the
negative trend of GWSV estimates was not clearly present
over the desert region (Fig. 10k). This could be due to the
small amplitude of the groundwater variation of this region
(see also below), and most of the update took place in the
SM component. As a result, a relatively large negative trend
was seen in SMSV rather than GWSV after GRACE DA (see
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Table 2. TWSV, SMSV, and GWSV estimated annual amplitude (A, cm) and phase (P, month) in four different basins computed between
April 2002 and December 2010. Areally averaged values for the entire Hexi Corridor are also given.

Shiyang Heihe Desert Shule Areal average

TWSV

GRACE A 2.05± 0.31 1.49± 0.21 1.79± 0.23 1.21± 0.27 1.43± 0.18
P 6.97± 0.29 6.80± 0.27 6.49± 0.24 8.61± 0.42 7.05± 0.24

EnOL A 1.35± 0.16 0.90± 0.07 0.66± 0.07 0.37± 0.06 0.70± 0.06
P 6.35± 0.23 5.61± 0.14 5.80± 0.19 5.40± 0.31 5.74± 0.16

EnKF 1D A 1.61± 0.16 0.87± 0.10 1.05± 0.11 0.40± 0.11 0.80± 0.09
P 6.96± 0.19 6.80± 0.22 6.47± 0.19 8.35± 0.51 6.92± 0.23

EnKF 3D A 1.49± 0.13 0.80± 0.08 0.72± 0.07 0.26± 0.09 0.72± 0.07
P 6.42± 0.17 6.12± 0.19 6.40± 0.20 8.48± 1.02 6.44± 0.22

SMSV

EnOL A 1.03± 0.11 0.70± 0.06 0.62± 0.07 0.31± 0.05 0.59± 0.06
P 5.77± 0.20 5.60± 0.16 5.82± 0.21 5.03± 0.32 5.62± 0.18

EnKF 1D A 0.88± 0.09 0.75± 0.09 0.99± 0.11 0.36± 0.10 0.67± 0.08
P 6.55± 0.21 7.01± 0.22 7.08± 0.21 8.47± 0.54 7.26± 0.24

EnKF 3D A 1.30± 0.10 0.66± 0.07 0.71± 0.08 0.12± 0.08 0.55± 0.07
P 5.59± 0.15 6.25± 0.20 6.44± 0.20 8.19± 0.37 6.32± 0.22

GWSV

EnOL A 0.50± 0.08 0.19± 0.03 0.02± 0.004 0.09± 0.01 0.12± 0.01
P 7.84± 0.29 7.13± 0.26 5.43± 0.34 6.91± 0.29 7.22± 0.21

EnKF 1D A 0.65± 0.05 0.12± 0.03 0.01± 0.01 0.05± 0.01 0.10± 0.01
P 8.69± 0.16 7.82± 0.40 7.91± 1.90 8.49± 0.29 8.32± 0.25

EnKF 3D A 0.70± 0.06 0.11± 0.02 0.02± 0.01 0.05± 0.01 0.10± 0.01
P 8.52± 0.16 7.50± 0.31 7.76± 1.00 8.66± 1.33 8.26± 0.23

also Table 7). Further discussions on the trends are given in
Sect. 6.4.

The impact of GRACE DA on different stores was influ-
enced by both the model parameters and the forcing data.
The four basins have similar soil water storage capacities
(see Table 3), which indicates that the basins can store sim-
ilar amounts of soil water and generate similar amounts of
groundwater recharge under the same rainfall conditions.
However, the four basins received different amounts of rain-
fall, which resulted in different SMSV and GWSV esti-
mates. For example, the Shiyang River basin received the
greatest amount of rainfall (∼ twice of Heihe River basin),
which led to the greatest amount of the SMSV estimate
(∼ 1 cm annual amplitude). Such a large amount was also
sufficient to percolate into the groundwater layer, resulting
in GWSV of ∼ 0.7 cm (see Fig. 10i and Table 2). In con-
trast, the desert region received approximately 3 times less
rainfall, which led to a somewhat smaller amount of SMSV
(∼ 0.7 cm annual amplitude) and a much smaller amount of
GWSV (∼ 0.2 cm; see Fig. 10g, k). As the uncertainty of the
water storage variation is associated with the signal ampli-
tude, the greater (smaller) water storage variation leads to
greater (smaller) uncertainty, resulting in a greater (smaller)
update from GRACE DA. As such, a greater update (in par-
ticular, in GWSV) is seen over the Shiyang River basin, as
compared to other basins.

Snow estimates (SWE plus SFW) were very small (less
than 0.2 cm) over the Hexi Corridor and therefore were only
slightly updated by GRACE DA. Note that the large variabil-

ity in the amount of snow seen as the sharp peaks (e.g. in
January 2008) was caused by the precipitation and temper-
ature variability. In January 2008, the precipitation records
were 159 % higher than the January average value while the
temperature was 2–3 ◦C lower. Such a condition resulted in
a large amount of snow. Finally, GRACE DA influences the
surface water, but the amplitude is still lower than that of the
GRACE uncertainties. Validation of the surface water esti-
mates in terms of river streamflow is given in Sect. 6.4.2.

6.3 Impact of taking spatial correlations of errors into
account

The impact of accounting for the error correlations was
clearly seen in the TWSV estimates (Fig. 10a, b, c, d). When
the error correlations were ignored (EnKF 1D), the TWSV
estimate received a larger update from GRACE, particularly
between 2002 and 2005. Hence, the estimate was drawn sig-
nificantly closer to the observation. The presence of error
correlations effectively reduces the amount of information in
the GRACE data since spatial averaging of such data miti-
gates noise to a much lesser extent than averaging of data
with uncorrelated errors. Therefore, the impact of GRACE
data in the EnKF 3D case is reduced. As such, the EnKF 3D
estimated TWSV was always between the EnOL and EnKF
1D results. Validating against the in situ groundwater and
streamflow data will quantitatively reveal the performance of
each approach (Sect. 6.4).
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Table 3. Averaged values and standard deviations of precipitation and model parameters for four different basins.

Shiyang Heihe Desert Shule

Precipitation (mm month−1) 21± 12 13± 12 11± 2 8± 6
SC,up (m) 0.08± 0.02 0.09± 0.02 0.09± 0.01 0.08± 0.01
SC,low (m) 0.33± 0.08 0.37± 0.07 0.35± 0.04 0.33± 0.08

Figure 11. TWSV, SMSV, and GWSV updates of October 2002 without the correlation error applied (EnKF 1D) and with the correlation
error applied (EnKF 3D).

Taking error correlations into account also has a clear im-
pact on the SMSV and GWSV components. For SMSV, simi-
larly to TWSV, the EnKF 1D yielded a larger update between
2002 and 2005 compared to the EnKF 3D (Fig. 10e, f, g, h).
The difference between EnKF 1D and 3D results became
smaller after 2005. This can be attributed to the fact that
the ensemble spread in the soil moisture component becomes
smaller after several years of updates. After 2005, the ensem-
ble spread of soil moisture storage (SMS) was lower than the
GRACE uncertainty, and therefore taking the error correla-
tions into account did not have a significant impact on the
SMS estimates. For GWS, the impact of taking error corre-
lations into account was even clearer, especially in terms of
the long-term trend (Fig. 10i, j, k, l). With the exception of
the desert region, the EnKF 1D showed a steeper decreasing
trend in all basins. For snow and surface water, the impact of
considering error correlations was not significant due to the
fact that the stores are small, as compared to SMS and GWS.

It is also worth discussing the impact of GRACE DA on
the spatial pattern of the water storage estimates. To demon-
strate this, the update term (1A in Eq. 6) of October 2002
from EnKF 1D and 3D cases is shown in Fig. 11. Only
TWSV, SMSV, and GWSV are presented, since other com-

ponents (snow, surface water, and interception) are small. As
discussed above, EnKF 3D shows a smaller update in all
components. Due to a greater amplitude of GRACE-derived
TWSV over northern and southern parts of the region (see
Fig. 4), the update is mostly seen there. Almost all of the up-
date is limited to the soil moisture layer. Higher precipitation
is generally observed over the southern part, which leads to
higher groundwater recharge (and GWSV) over that region.
As such, a GWSV update is clearly seen over the southern
part of the region.

6.4 Validation against independent data

6.4.1 Validation of groundwater estimates against well
data

The GWSs estimated from GRACE DA were validated
against the well measurements at five locations shown in
Fig. 1c. Yang et al. (2001) showed that the specific yield val-
ues obtained from the field measurements over the Shiyang
River basin were between 0.01 and 0.3. Although the mea-
surements were not collected at the well stations used in this
study, the values obtained can be used as a guidance of the
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Figure 12. Monthly GWS variation estimates from the in situ well
measurements, as well as EnOL, EnKF 1D, and EnKF 3D results,
between January 2007 and December 2010 at five groundwater well
locations. The chosen period is based on the availability of the well
data.

specific yield of the Shiyang River basin. In this study, the
head measurements were converted to storage units with the
approach described in Sect. 4.3.1. The bias term in Eq. (2)
was found to be very close to 0, as the variation (mean re-
moved) was used in the regression analysis. The estimated
scale factors were 0.23, 0.04, 0.24, 0.25, and 0.32 at W1–
W5, respectively, which is in line with the values obtained
from the field measurement.

The GWSV estimates at each well location are shown in
Fig. 12. Compared to the EnOL results, GRACE DA results
were visually closer to the well measurements at all five loca-
tions. The EnKF 1D and EnKF 3D showed a noticeable dif-
ference at each location. The updated GWSV estimates were
evaluated in terms of the correlation coefficient, RMSD, and
long-term trend (Tables 4, 5). Overall, the EnOL resulted in
relatively poor correlation coefficients at most stations (ex-
cept station W1), with the average value of only 0.06. Clear
improvements were seen after GRACE DA was applied. The
average correlation coefficient increased to approximately

0.6–0.7. Although the EnKF 1D introduced a greater update
than the EnKF 3D, it only showed higher correlation coef-
ficients at stations W1 and W3. Applying the EnKF 3D led
to correlation coefficients greater than 0.45 in all stations,
and on average it improved the correlation coefficient by ap-
proximately 0.1 over EnKF 1D. In terms of RMSD, applying
GRACE DA reduced the difference by approximately 15–
25 % compared to the EnOL. Compared to EnKF 1D, the
EnKF 3D significantly improved the RMSD in most stations.
The EnKF 1D only performed better than EnKF 3D at sta-
tion W1, where it reduced the RMSD by approximately 16 %
compared to the 8 % reduction by the EnKF 3D. The no-
ticeably low GWSV observed by the well data at station W2
in the summers of 2007 and 2008 (Fig. 12b) was probably
caused by significant groundwater abstraction. These local
features could not be reproduced by the model and GRACE
observations due to a limited spatial resolution. As a result,
neither of the EnKF algorithms could improve the GWSV
estimates at the W2 location during those periods.

The long-term trend estimated between 2007 and 2010
was also used to evaluate the impact of GRACE DA and
the effect of taking the error correlations into account (Ta-
ble 5). The EnOL trend estimates were considered poor as
they showed the largest RMSD with respect to the in situ
data. In fact, they were the least consistent with the in situ
estimates at each individual station. Similar to the results in
terms of correlation coefficient and RMSD (see Table 4),
the EnKF 3D led to the largest improvement in the trend
estimates (RMSD was 0.54 compared to 0.93 after EnKF
1D). However, while the EnKF 3D showed closer long-term
trends to the in situ measurements at stations W2, W4, and
W5, the EnKF 1D produced better estimates at stations W1
and W3.

Thus, both EnKF 1D and 3D led to the improvement of the
GWSV estimates in terms of all metrics. In terms of the av-
erage results and at the majority of well locations, the EnKF
3D provided more improvement than the EnKF 1D.

6.4.2 Validation of streamflow estimates against river
gauge data

The streamflow estimates were validated against the river
gauge measurements at locations G1 and G2 (Fig. 1c). Re-
sults are shown in Fig. 13 and Table 6. Only modest improve-
ments in the streamflow estimates were observed in terms of
the correlation coefficient, NS coefficient, and RMSD. This
behaviour is similar to what was observed previously for the
Rhine River basin, when a different hydrology model and in-
put data were used (Tangdamrongsub et al., 2015). Figure 13
shows that taking error correlations into account had little
impact; i.e. similar streamflow estimates were seen for EnKF
1D and 3D results. At location G1 (Fig. 13a), GRACE DA
added more water to the stream channel between 2002 and
2006 and reduced it between 2008 and 2010. This behaviour
is consistent with the TWSV estimates discussed in Sect. 6.2.
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Table 4. Statistical values of the GWSV computed from the in situ well measurement and GRACE DA estimates between January 2007 and
December 2010. The average values are computed by averaging the estimated statistical values from all well locations.

W1 W2 W3 W4 W5 Average
value

Correlation EnOL 0.74 0.17 −0.04 −0.05 −0.53 0.06
coefficient (–) EnKF 1D 0.84 0.32 0.90 0.45 0.64 0.63

EnKF 3D 0.82 0.49 0.85 0.51 0.83 0.70

RMSDs EnOL 0.69 1.67 0.77 3.34 3.81 2.06
(cm) EnKF 1D 0.58 1.63 0.40 2.56 2.58 1.55

EnKF 3D 0.63 1.43 0.38 2.24 1.27 1.19

Table 5. Long-term trends and standard deviations of the in situ data and the DA estimates. The RMSDs between the in situ data and the DA
trend estimates are also provided.

W1 W2 W3 W4 W5 RMSD

In situ −0.49± 0.03 0.01± 0.06 −0.60± 0.004 0.56± 0.12 −1.40± 0.03 0
EnOL −0.57± 0.01 −0.64± 0.002 −0.01± 0.01 −1.69± 0.01 1.29± 0.02 1.62
EnKF 1D −0.52± 0.02 −0.58± 0.04 −0.74± 0.02 −1.33± 0.08 −1.99± 0.13 0.93
EnKF 3D −0.83± 0.02 −0.51± 0.03 −0.38± 0.01 −0.44± 0.08 −1.18± 0.06 0.54

Table 6. Statistical values of the streamflow computed from the
river stream gauge measurement and GRACE DA estimates be-
tween April 2002 and December 2010. The average values are
calculated by averaging the estimated statistical values from both
gauge locations.

G1 G2 Average
value

Correlation EnOL 0.82 0.76 0.79
coefficient (–) EnKF 1D 0.84 0.77 0.81

EnKF 3D 0.84 0.78 0.81

NS EnOL 0.65 0.56 0.61
coefficient (–) EnKF 1D 0.69 0.57 0.63

EnKF 3D 0.69 0.57 0.63

RMSDs EnOL 5.49 3.09 4.29
(cm) EnKF 1D 5.18 3.08 4.14

EnKF 3D 5.23 3.04 4.14

GRACE DA increased the correlation coefficient from 0.82
to 0.84, increased the NS coefficient from 0.65 to 0.69, and
reduced the RMSD by approximately 5 % (Table 6). A lesser
improvement was observed at G2.

Comparing to the gauge measurements, both the EnOL
and GRACE DA overestimated the streamflow in Septem-
ber 2007 and September 2008 at G2. The sudden surge
in the estimated streamflow resulted from heavy rainfall
recorded by precipitation data while the soil was, accord-
ing to the model, already saturated (Fig. 14). For example,
in September 2007, the second highest amount of SM storage
in the record (∼ 19.5 cm) was obtained when the third largest

Figure 13. Monthly streamflow estimates from the in situ river
gauge measurements, as well as EnOL, EnKF 1D, and EnKF 3D
results, between April 2002 and December 2010 at two river gauge
locations, G1 (a) and G2 (b).

amount of rainfall (∼ 90 mm month−1) was observed. Simi-
larly, in September 2008, large SM storage (∼ 20 cm) and the
heaviest rainfall (∼ 100 mm day−1) forced PCR-GLOBWB
to generate a large amount of streamflow. In both cases, the
modelled streamflow significantly exceeded the actual one
observed at G2. Inaccurate precipitation data and model cali-
bration likely led to these discrepancies. GRACE DA was un-
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Table 7. TWSV, SMSV, GWSV, and precipitation estimated long-term trends in four different basins computed between April 2002 and
December 2010. Areally averaged values for the entire Hexi Corridor are also given.

Shiyang Heihe Desert Shule Areal average

TWSV (cm yr−1) GRACE −0.73± 0.04 −0.64± 0.03 −0.72± 0.03 −0.34± 0.04 −0.59± 0.03
EnOL 0.30± 0.15 0.24± 0.09 0.20± 0.04 0.18± 0.06 0.22± 0.07
EnKF 1D −0.72± 0.08 −0.41± 0.04 −0.33± 0.05 −0.34± 0.04 −0.39± 0.07
EnKF 3D −0.36± 0.02 −0.21± 0.02 −0.11± 0.03 −0.25± 0.03 −0.20± 0.03

SMSV (cm yr−1) EnOL 0.38± 0.05 0.21± 0.02 0.17± 0.03 0.14± 0.02 0.19± 0.02
EnKF 1D −0.11± 0.03 −0.20± 0.01 −0.29± 0.04 −0.22± 0.04 −0.23± 0.03
EnKF 3D 0.10± 0.03 −0.12± 0.01 −0.12± 0.02 −0.14± 0.01 −0.11± 0.004

GWSV (cm yr−1) EnOL −0.08± 0.12 0.03± 0.07 0.02± 0.007 0.04± 0.02 0.02± 0.04
EnKF 1D −0.61± 0.01 −0.16± 0.004 −0.01± 0.005 −0.12± 0.02 −0.16± 0.02
EnKF 3D −0.39± 0.01 −0.09± 0.003 0.01± 0.004 −0.11± 0.001 −0.11± 0.002

Precipitation 0.04± 0.01 0.04± 0.01 0.05± 0.01 0.02± 0.01 0.04± 0.01
((cm month−1) yr−1)

Figure 14. Monthly total precipitation (mm month−1) and SM stor-
age estimates (cm) from EnKF 1D and EnKF 3D results at the river
gauge G2 location.

able to reduce these spurious peaks due to the limited spatial
(∼ 250 km) and temporal (1 month) resolution of GRACE
data.

6.5 Declining water storages in the Hexi Corridor

The water resources situation over the Hexi Corridor was
assessed using long-term trends estimated from the 9-year
EnKF 3D results. This DA variant is primarily discussed
here, as it provided better agreement with well observations
than the EnKF 1D (see Sect. 6.4.1). For completeness, how-
ever, the values estimated from GRACE, EnOL, EnKF 1D,
and precipitation are also provided. The trends in the TWSV,
SMSV, and GWSV for the four basins, as well as the areally
averaged values for the entire Hexi Corridor, are given in Ta-
ble 7. The average EnKF 3D trends are all negative: approx-
imately −0.2, −0.1, and −0.1 cm yr−1 for TWSV, SMSV,
and GWSV, respectively. This reduction in the water storages
is observed despite the increased amount of rainfall, which
shows a positive trend of about 0.4 (mm month−1) yr−1. The

water storage reductions can likely be attributed to the extrac-
tion of groundwater to meet irrigation demands. In Sect. 6.6,
it will be shown that groundwater extractions are essential
for that purpose in the Hexi Corridor.

Focusing on individual river basins provides additional in-
sight into the water storage issue, as the influence of the large
desert area is removed. The water storage losses in the indi-
vidual basins outside the desert are even more pronounced,
particularly in the Shiyang River basin. This basin had the
greatest TWS loss (approximately 0.4 cm yr−1), which was
entirely caused by the reduction of GWS. This can be ex-
plained by groundwater abstraction to meet the irrigation de-
mand in the region. The Heihe and Shule River basins also
experienced a TWS loss of ∼ 0.2 cm yr−1, which came from
a reduction of both soil moisture and groundwater storages.
Again, the negative GWS trend was likely caused by sig-
nificant pumping of groundwater to maintain crop produc-
tion. This is consistent with the extreme water stress over the
Heihe River basin between 2001 and 2010, which was doc-
umented in Table 11.7 of the study by Chen et al. (2014). In
the desert region, in contrast to other basins, the minor de-
creasing TWS trend of −0.1 cm yr−1 was dominated by loss
of SM storage. This was likely caused by inaccurate model
parameter calibration over the desert region (i.e. an SC value
that is too large). Separation of the TWS into groundwater
and soil moisture store was likely incorrect. As such, the an-
nual signal in GWS is much less than in SM there. Therefore,
the GRACE update was mostly attributed to the SM compo-
nent, so that a groundwater-pumping signature (Jiao et al.,
2015) was seen in the SM instead of the GWS layer.

6.6 Connection to agriculture activity

Figure 15 shows the monthly averaged groundwater head
measurements at wells W1 to W5 in the Shiyang River basin
(Fig. 1c). Monthly averaged precipitation and NDVI values
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Figure 15. The monthly averaged groundwater head measurement (left), total precipitation (middle), and NDVI (right) for five groundwater
well locations. Precipitation and NDVI data are reported as the average values within the circular areas of the 10 km radius. The long-term
average values between January 2007 and December 2010 are shown in the grey shading, and the values in 2007, 2008, 2009, and 2010 are
shown as blue, green, red, and black lines, respectively. The period is chosen based on the availability of the well data.

are shown as well. Since extracted water can be used to sup-
port agriculture not only at the well location but also in the
nearby area, precipitation and NDVI are reported as the aver-
age values within a circular area of the 10 km radius. These
data will be used to ascertain if groundwater extractions to
support agriculture might be the source of the negative GWS
trends observed in Fig. 12 and Table 6. From Fig. 14, it is
noticed that the growing period is approximately between
May and October, where the amount of rainfall is higher than
15 mm month−1 and the NDVI is typically greater than 0.2.
By observing well measurements, precipitation, and NDVI
together, some groundwater extraction signatures can be ex-
plained by the extension of the growing period over the dry
season. For example, at station W1, the groundwater in 2010
was lower than the average, showing a gradual decrease in
summer (Fig. 15a). One may attribute this to the shortage
of rainfall in July and August 2010, which was lower than
the average (Fig. 15b). However, the NDVI value was higher
than the average during summer 2010 (Fig. 15c), which im-
plies that water from other sources than precipitation was
probably used to maintain the growing period. This addi-
tional water was likely extracted from the ground, and such

an activity led to a decreased groundwater table during sum-
mer 2010. A similar explanation can be applied to station
W2, where low groundwater head, low rainfall, and high
NDVI were observed in summer 2007 and summer 2008
(Fig. 15d, e, f). At station W3, the behaviour is similar to
station W1: the extension of the growing period was ob-
served in summer 2010, where the GWS and precipitation
were lower than the average, while NDVI was significantly
higher (Fig. 15g, h, i). Groundwater pumping signatures were
not present at stations W4 and W5.

7 Conclusions

This study was focused on the estimation of water resources
dynamics in the Hexi Corridor by assimilating GRACE-
derived TWSV into the PCR-GLOBWB hydrological model.
Validating against well data showed that DA led to noticeable
improvement in the state estimates in terms of correlation,
RMSD, and long-term trend. Furthermore, GRACE DA esti-
mates revealed the reduction of water storages between 2002
and 2010. The Shiyang River basin – the southeastern part
of the Hexi Corridor area – suffered the most from the water
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loss, which was likely caused by the overuse of the ground-
water for irrigation. Due to inaccurate groundwater abstrac-
tion information, PCR-GLOBWB alone could not properly
capture the downward trend of water storages. This high-
lights the value of the GRACE DA in this situation. It should
be emphasized that GRACE does not fix a technical problem
of the hydrological model, but rather it provides information
which is not available otherwise. Note that, in principle, the
model may predict any long-term behaviour of water storage,
but that information should be brought in “by hand” (e.g. via
the groundwater abstraction parameter). As soon as that in-
formation is not available, reliable long-term predictions on
the basis of hydrological modelling alone are conceptually
impossible. GRACE DA acts as a provider of a missing puz-
zle piece here. Of course, the performance of GRACE DA
needs to be further investigated in other geographical loca-
tions and with different hydrological models to confirm its
benefits.

A substantial decrease in the water storage in the Hexi Cor-
ridor between 2002 and 2010, particularly over the Shiyang
River basin, took place in spite of the increased precipita-
tion. The amount of water from rainfall was likely insuffi-
cient to support irrigation water requirements. Irrigation wa-
ter demands increased significantly to maintain the crop pro-
duction and, as a result, the region was under extreme water
stress. Water consumption from all available sources was es-
sential for bridging the deficit, including a sizeable amount
of groundwater extraction. This study illustrates how ground
observations and remote sensing data may reveal the connec-
tion between groundwater pumping and agricultural activity.

The conversion approach between the groundwater head
measurement and groundwater storage is proven feasible
over the Shiyang River Basin. The scale factor estimates
produced with this approach are consistent with the spe-
cific yield estimated from the field observations. However,
it is noted here that the results of the conducted validation
might be over-optimistic, since the well data processed with
the adopted conversion procedure are not fully independent
of the assimilated GRACE data. The specific yield from the
field observation must be used when available.

Furthermore, we demonstrate how the error covariance
matrix R of GRACE-derived TWSV can be obtained from
the error covariance matrix of GRACE SHCs (which is cur-
rently provided together with the SHCs themselves). This
study shows that it is necessary to use the R matrix in or-
der to properly take into account the error correlations in the
DA scheme. To come to that conclusion, we considered two
variants of the error variance–covariance matrix in the data
assimilation: excluding and including error correlations. Val-
idating against well data showed that ignoring error corre-
lations in DA tended to over-fit results to the observations,
and in many cases led to less-accurate state estimates. This
finding is in agreement with the recommendation in Schu-
macher et al. (2016). We explain this finding by the fact that
GRACE errors at the neighbouring 0.5◦× 0.5◦ grid cells are

highly correlated. As such, the simultaneous consideration
of GRACE data at multiple neighbouring cells does not re-
duce data noise, as it would be the case if noise were white.
In other words, the white-noise assumption may severely
overestimate the information content of GRACE data. We
recognize that the derivation of GRACE-derived TWSV er-
ror variance–covariance matrices is very computationally de-
manding. Still, we believe that this is a reasonable price to
pay as deriving the error variance–covariance matrix from
the full (and only full) error covariance matrix noticeably im-
proves the results of GRACE data assimilation.

To further improve the DA performance, an extended or
an alternative DA framework can be considered. One of the
points of attention is only a minor improvement in stream-
flow estimates, which is caused by an insufficient temporal
and spatial resolution of GRACE data. A promising way to
go is to improve the runoff scheme at a conceptual level,
e.g. by extending GRACE DA with a simultaneous param-
eter calibration. To that end, the state vector should be ex-
tended to also include selected model parameters (Eicker et
al., 2014; Wanders et al., 2014). This allows for the adjust-
ment of the storage size and might lead to a more accurate
estimate of model states, including streamflow (Wanders et
al., 2014). Alternative ensemble-based DA approaches, such
as particle filters (Weerts and El Serafy, 2006), can also be
considered. Particle filters estimate a sample from the realis-
tic posteriori distribution, which is not necessarily Gaussian,
like in the EnKF. The approach has been shown very effec-
tive for the parameter calibration (Dong et al., 2015).

Finally, the usage of improved gravity solutions to be
available after the launch of the GRACE Follow-On mission
(Flechtner et al., 2014) will probably further increase the ac-
curacy of the GRACE DA estimates.
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