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Abstract A method is introduced for the identifica-
tion of the nonlinear governing equations of dynam-
ical systems in the presence of discontinuous and
nonsmooth nonlinear forces, such as the ones gener-
ated by frictional contacts, based on noisy measure-
ments. The so-called Physics Encoded Sparse Iden-
tification of Nonlinear Dynamics (PhI-SINDy) builds
upon the existing RK4-SINDy identification scheme,
incorporating known physics and domain knowledge
in three different ways (biases). In this way, it addresses
the discontinuous behavior of frictional systems when
stick–slip phenomena are observed, which can not
be captured by existing state-of-the-art approaches.
The potential of PhI-SINDy is highlighted through a
plethora of case studies, starting from a simple yet rep-
resentative Single Degree of Freedom (SDOF) oscil-
lator with a Coulomb friction contact under harmonic
load, using both synthetic and experimental noisy mea-
surements. An alternative friction law, namely the
Dieterich-Ruina one, is also considered as well as a
more realistic excitation time series, which was gen-
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erated based on the Jonswap spectrum. Lastly, a Multi
Degree of Freedom system with single and multiple
friction contacts is used as a testbed, showcasing the
applicability of PhI-SINDy to more complicated sys-
tems and/or multiple sources of discontinuous nonlin-
earities.

Keywords System identification · Sparse regression ·
Dynamical systems · Friction damping · Stick–slip
motion · Machine learning

1 Introduction

An ongoing problem in structural engineering is the
characterizationof frictiondamping in structural dynam-
ics. Frictional joints appear in most applications and
industries, including aerospace, automotive, and con-
struction. However, the friction force identification is
hindered by its discontinuous nature, which is respon-
sible for the non-smooth response of engineering sys-
tems, and frequently leads to stick–slip phenomena. To
this end, alternative constitutive laws have been sug-
gested as a solution [1,2], and experimental data has
been used to validate proposed friction models [2,3],
[4].

The identification of the underlying differential
equations of physical problems based on noisy obser-
vations has been rendered more feasible through the
rapid growth in data availability and the recently devel-
oped tools for system identification. The identification
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of smooth localized nonlinearities has already been car-
ried out in [5–7] by using the promising framework
known as Sparse Identification of Nonlinear Dynamics
(SINDy), which was developed in [8]. Nevertheless,
frictional problems may call for the discovery of dis-
continuous non-smooth physical laws, more often than
not, based on sparse and noisy observations collected
during stick–slip events [9]. An efficient way to treat
such nonlinearities has been developed in [10] where
a switching Gaussian Process Latent Force Model
(GPLFM) is utilized, however, such an approach can
not be extended to Multi Degree of Freedom (MDOF)
systems with multiple nonlinearities in a straightfor-
ward manner. The use of stick and slip temporal con-
straints alongwith SINDywas explored in [11] to iden-
tify the governing equation of SDOF oscillators with
friction, facing limitations though when it comes to
more complex MDOF systems or when considerable
noise levels intervened in the differentiation of mea-
sured data. A further enhancement of SINDy, known
as RK4-SINDy, was presented in [12], where a numeri-
cal constraint, namely the 4th-order Runge–Kutta inte-
gration scheme, was implemented and demonstrated to
more effectively handle noise in the data. This method
was explored for the identification of friction regarding
continuousmotion in [13], pointing towards the need to
further develop this approach to tackle stick–slip phe-
nomena and MDOF systems.

An ever-important challenge when applying the
aforementioned identification techniques is the gener-
alization of the derived equation. Purely data-driven
modelsmayfit noisy observations adequately, however,
extrapolation and the underlying observational biases
often lead to inconsistent predictions, and in general,
a poor generalization performance, as described thor-
oughly in [14]. Promising results were also produced in
[15] when no prior knowledge about physics, kinemat-
ics, or geometry, was used, emphasizing on the other
hand that the inclusion of physical laws accelerated
the identification of complex systems. This is why, the
inclusion of domain knowledge and/or physical laws
in the employed identification techniques is a crucial
issue, to produce explainable and generalizable gov-
erning equations.

The current paper introduces a modified version
of RK4-SINDy, where physics biases are included.
The Physics Encoded Sparse Identification of Non-
linear Dynamics (PhI-SINDy), is presented and its
applicability to identify the governing equation of fric-

tional systems in the discontinuous motion regime is
tested. A variety of case studies are explored, start-
ing from a Single Degree of Freedom (SDOF) oscil-
lator with a Coulomb friction contact under harmonic
loading, using both synthetic and experimental noisy
measurements. Additionally, a different friction law is
accounted for, i.e. theDieterich-Ruina (DR)model pre-
sented in [16,17], a more complex excitation, namely
the Jonswap spectrum [18], and lastly anMDOFsystem
with single and multiple friction contacts are explored.

2 Sparse identification with Runge–Kutta
constraint (RK4-SINDy)—review

The goal of sparse identification is to identify a non-
linear model using the fewest terms possible to cap-
ture the temporal evolution of the measurement data.
The so-called RK4-SINDy, a Runge-Kutta-inspired
sparse identification approach, was proposed in [12]
and focuses on determining the underlying nonlinear
differential equations of dynamical systems from cor-
rupted and/or sparsely gathered data. RK4-SINDy was
formed by coupling sparse identification with a clas-
sical numerical integration tool, in particular, SINDy
[8] was combined with the fourth-order Runge–Kutta
integration scheme applied to a mathematical model of
the physical system.

Let us consider an n-dimensional dynamical system
that is described by the following equation:

ẋ(t) = d

dt
x(t) = f(x(t), t) (1)

where the n×1 vector x(t) = [
x1(t) x2(t) . . . xn(t)

]T

corresponds to the system’s state at time t , and the func-
tion f(x(t)) : Rn → Rn describes the functional rela-
tionship between x(t) and its derivatives. This f(x(t)) is
often referred to as the vector field, in other words, the
set of candidate functions that formulate the equations
of motion of the system. A key observationmade by [8]
states that formany systemsof interest, only a few terms
are necessary to formulate f , underlining its sparsity in
the space of possible functions. Sparse regression facil-
itates the derivation of the non-zero terms contained in
f without an exhausting brute-force search [8]. Hence,
the sought vector fields can be expressed as the product
of a dictionary of N candidate functions, θ(x(t)), and
a sparse matrix of coefficients, � = [

ξ1, ξ2, . . . ξn
]
,

that determines which features should be dropped and
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which ones should be included in the final solution, and
to what extent they contribute to it:

f
(
x(t)

) =
[
θ
(
x(t)

) · �
]T

(2)

Each ξi is an N × 1 vector, where N is the number
of the assumed features of the θ(x(t)) dictionary, and
refers exclusively to the i-th state of x(t). Thus the
dimensions of θ(x(t)) and � are 1 × N and N × n
respectively.

The dictionary of features, θ(x(x)), can contain var-
ious nonlinear functions, e.g. polynomials, trigonomet-
ric, exponential, etc. For any given state vector x(t) it
can take the following form:

θ
(
x(t)

) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
x(t)
xP2(t)
xP3(t)

...

cos(x(t))
cos(2 x(t))

...

e−x(t)

...

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

T

(3)

in which, xPi (t) denotes polynomials of the i-th order,
for instance:

xP2 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

x21 (t)
x1(t)x2(t)

...

x1(t)xn(t)
x22 (t)

x2(t)x3(t)
...

xn−1(t)xn(t)
x2n (t)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

T

(4)

It is essential to note the training data evolution over
time may be accurately described by the use of polyno-
mials. However, since the terms of the equationwill not
be generalizable, this could result in overfitting, hence,
in poor predictions when a new dataset is employed, as
shown in [13].

The coefficients in each sparse column vector ξ j
act as weights for the candidate features that should
be included in the right-hand side for the equation
ẋ j = f j (x(t)). � is determined through a nonlin-
ear and likely non-convex optimization leading to a

sparse solution. This requires defining an appropriate
loss function, usually including a sparsity-promoting
parameter. Finally, each equation of the unknown vec-
tor field is:

ẋ j (t) = f j (x(t)) = θ(x(t)) · ξ j (5)

Considering discrete time instances tk, k = 1, 2,
. . . ,m, the following matrix is formed, which contains
the state vector x(t) at different times:

X =

⎡

⎢
⎢⎢
⎣

xT(t1)
xT(t2)

...

xT(tm)

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)

⎤

⎥
⎥⎥
⎦

(6)

The column entries of X can also be interpreted as
time series of the individual state variables, x j (tk), k =
1, 2, . . . ,m.

The feature library θ(x(t)) can now be re-written as
a matrix:

�(X) =

⎡

⎢⎢⎢
⎣

θ(x(t1))
θ(x(t2))

...

θ(x(tm))

⎤

⎥⎥⎥
⎦

(7)

transforming also Eq. (2) into:

Ẋ =
[
�(X) · �

]T
(8)

Within the RK4-SINDy [12], the Runge–Kutta
scheme is used to relate the measurement at tk+1 with
the previous one at tk via:

x(tk+1) = x(tk) +
∫ tk+1

tk
f(x(τ))dτ (9)

Therefore, reducing the solution space, such that:

x(tk+1) ≈ RK4(f(x(tk)), x(tk), hk) (10)

where RK4 indicates:

RK4(f(x(tk)), x(tk), hk) = x (tk)

+1

6
hk (k1+2 · k2+2 · k3+k4) , hk = tk+1−tk (11)

where

k1 = f (x (tk)) k2 = f
(
x (tk) + hk

k1
2

)

k3 = f
(
x (tk) + hk

k2
2

)
k4 = f (x (tk) + hkk3)

(12)
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The RK4 scheme can propagate also backward in time,
using a negative time step hk , meaning that predictions
both for x(tk+1) and x(tk−1) can be made.

A loss function, L, needs to be formulated to deter-
mine the optimal matrix of coefficients, �. This can be
theMean Squared Error or any other loss criterion, that
considers the similarity between themeasurements,X∗
and the obtained predictions through Eq. (10), Xpred:

argmin
�

L
(
X∗,Xpred

)
(13)

To arrive at a parsimonious solution that will not
include redundant terms, the promotion of sparsity is
necessary, through an l1-regularization term:

argmin
�

L
(
X∗,Xpred

)
+ α || � ||l1 (14)

where α is a regularizing parameter.
However, as noted in [12], the optimization prob-

lem denoted by Eq. (14) is not convex, making it inef-
ficient to employ conventional methods for linear opti-
mization problems, such as LASSO [19,20]. Hence,
the fixed cut-off thresholding algorithm, introduced in
[12], is used with minor adjustments also for the cur-
rent work. To be more precise, the Stochastic Gradi-
ent Descent (SGD) method is used to update the ξ

coefficients to minimize the mismatch between mea-
surements and predictions. In this procedure, a cut-off
value λ is selected, and after each passing of the mea-
surements (a single time series, which ideally includes
both transient and steady-state responses, to provide
more information which might improve the accuracy
of the sparse identification), all the coefficients whose
absolute values are less than λ are set to zero, pro-
ceeding with the non-zero ones to the subsequent iter-
ation. In Algorithm 1 the exact step-by-step procedure
is described.

The choice of the cut-off value is a disadvantage of
such amethod. In an ideal scenario, an iterative process
is required in which several values ofλ are selected and
their respective performances are assessed.

3 Physics encoded RK4-SINDy - PhI-SINDy for
dynamical systems with discontinuous
nonlinearities

In [12] it was indicated that finding governing equa-
tions may be made considerably more effective when
physics knowledge was included, however, it was not

Algorithm 1 Fixed Cut-off Thresholding
Input: Measurement dataX∗, Feature dictionary θ(x(t)), Cutoff
parameter λ,
Number of training epochs M
1: Initialize coefficient matrix � with 0 values
2: for i ← 1 to M do
3: Xpred ← RK4 (�(X) · �,X∗)
4: Solve

argmin
�

L
(
X∗,Xpred

)

using SGD
5: inds =| � |< λ � The indices of the coefficients
6: smaller than λ

7: �[inds] ← 0
Output: The sparse coefficient matrix �

further investigated. This is especially crucialwhen dis-
continuous nonlinearities are present in dynamical sys-
tems because state-of-the-art identification techniques
cannot effectively capture them. A more generalizable
solution would be produced by using physics, espe-
cially in situations with limited data availability. Incor-
porating physics might resolve overfitting concerns
(which consequently diminish the predictive power
of the resultant governing equation) seen with solely
data-driven systemswhen conducting the identification
using noisy and/or sparse data. Elaborating on the thor-
ough review of physics-informed machine learning by
[14] there are four different methods that can be used
to add physics knowledge:

• Observational bias:
Provide training data that obey the underlying
physics and/or using advanced data augmentation
procedures

• Learning bias:
Include loss functions, optimization constraints,
and inference algorithms that facilitate the conver-
gence toward the underlying physics

• Inductive bias:
Modify the algorithm architecture, by incorporat-
ing prior assumptions and physical constraints

• Model form/discrepancy bias:
Incorporate known terms describing the partially
known physics-based model

In the current work, PhI-SINDy is introduced to
tackle the more general case of identifying the non-
linear differential equations of a non-autonomous sys-
tem in the presence of discontinuous nonlinearities by
including three of the four biases mentioned above.
Applying this physics-enhanced framework to noisy
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measurements, the sought differential equations are
derived in a deterministic fashion.

A discrepancy bias is introduced by decomposing
the set of governing equations into a known part and a
part that needs to be identified.

ẋ(t) = f(t, x(t))︸ ︷︷ ︸
part to be
identified

+ g(t, x(t))
︸ ︷︷ ︸
known part

(15)

Thevectorg(t, x(t)) is deterministic, knownbefore-
hand, and provided in a hardcoded manner for the
derived solution. Particular care must be taken when
setting this bias since providing the wrong physics
can lead to inaccuracies regarding the identified vec-
tor fields, as showcased in [13]. The f(t, x(t)) vec-
tor, i.e. the part of the equation to be identified, is
expressed as shown in Eq. (2). In other words, Eq. (15)
assumes that the functional form of the part of the equa-
tion to be identified and its parameters are determinis-
tic but unknown because of lack of knowledge (epis-
temic uncertainty), while other forms of uncertainty
(e.g. parameter uncertainty, noise uncertainty, andother
aleatoric uncertainties) are not accounted for.

The solution provided by RK4-SINDy relies on the
initial assumption of the candidate functions, as sum-
marised in Sect. 2. This decision along with the fact
that, for the sake of sparsity, terms whose contribution
is minor to the final solution are dropped, shrink the
solution space, and act as constraints to the identified
governing equation. Such aspects of the method can
be interpreted as an inductive bias that shifts the end
results according to user-provided information. Setting
this bias requires special attention since an uneducated
choice of these factorsmight produce an accurate result
with low generalizability, for instance when only lin-
ear polynomial functions are considered, as shown in
[13]. Moreover, in the case of dynamical systems that
include discontinuous behavior (such as a system with
friction where stick–slip phenomena occur) or that are
described by stiff governing equations, it is essential
to include an event condition in the learning process,
which will handle measurements that comply with this
condition in a different manner. This necessity emerges
from the fact that the sought differential equations usu-
ally refer to continuous motion described by smooth
functions, while the available measurements might
exhibit also discontinuous and non-smooth trends. This
physical constraint, which acts as an additional induc-
tive bias, is defined as c(x∗(tk)) = 0, k = 1, . . . ,m.

Lastly, a learning bias is introduced by modify-
ing the learning algorithm, specifically by modify-
ing Eqs. (9)–(12) to explicitly account for the known
physics and the physical constraints:

x(tk+1)=x(tk) +
∫ tk+1

tk

(
f(τ, x(τ)) + g(τ, x(τ))

)
dτ

(16)

x(tk+1) ≈ RK4(f(tk, x(tk)), g(tk, x(tk)),

c(x(tk)), x(tk), hk) (17)

RK4(f(tk, x(tk)), g(tk, x(tk)), c(x(tk)), x(tk), hk)

= x (tk) + 1

6
hk (k1 + 2 · k2 + 2 · k3 + k4) (18)

where

k1 = f (tk, x(tk)) + g (tk, x(tk))

k2 = f
(
tk, x(tk) + hk

k1
2

)) + g
(
tk, x(tk) + hk

k1
2

)

k3 = f
(
tk, x(tk) + hk

k2
2

)) + g
(
tk, x(tk) + hk

k2
2

)

k4 = f (tk, x(tk) + hkk3)) + g (tk, x(tk) + hkk3)

(19)

It should be noted that the known physics and the
physical constraint can be applied to both vectors
and matrices of measurements, g(t, x(t)), c(x(t)) and
G(t, X), c(X), respectively, with the following trans-
formation in their dimensions.

g(t, x(t)) =

⎡

⎢⎢⎢
⎣

g1(t, x(t))
g2(t, x(t))

.

.

.

gn(t, x(t))

⎤

⎥⎥⎥
⎦

(20)

G(t, X) =

⎡

⎢⎢⎢
⎢
⎣

gT(t1, x(t1))
gT(t2, x(t2))

.

.

.

gT(tm , x(tm ))

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎣

g1(t1, x(t1)) g2(t1, x(t1)) · · · gn(t1, x(t1))
g1(t2, x(t2)) g2(t2, x(t2)) · · · gn(t2, x(t2))

.

.

.
.
.
.

. . .
.
.
.

g1(tm , x(tm )) g2(tm , x(tm )) · · · gn(tm , x(tm ))

⎤

⎥⎥⎥
⎦

(21)

c(X) =

⎡

⎢
⎢⎢
⎣

c(x(t1))
c(x(t2))

.

.

.

c(x(tm ))

⎤

⎥
⎥⎥
⎦

(22)

The complete step-by-step framework is presented in
Algorithm 2.
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Algorithm 2 PhI-SINDy learning algorithm
Input: Measurement data X∗, � A single time series of inputs
and outputs
Known physics g(t, x(t)), � Discrepancy bias
Feature dictionary θ(x(t)), � Inductive bias
Physical constraint c(x(t)), � Inductive bias
Cutoff parameter λ, Number of training epochs M � Training

hyperparameters
1: Initialize coefficient matrix � with 0 values
2: for i ← 1 to M do
3: Xpred ← RK4 (�(X) · �, G(t, X∗), c(X∗), X∗)

� Learning bias
4: Solve

argmin
�

L
(
X∗,Xpred

)

using SGD
5: inds =| � |< λ � The indices of the coefficients
6: smaller than λ

7: �[inds] ← 0
Output: The sparse coefficient matrix �

It is worthmentioning that instead of a learning bias,
i.e. incorporating the event condition in the learning
process, filtering of the datamight be considered, there-
fore introducing an observational bias. For example,
prior to the learning part of the algorithm, a segrega-
tion of the initial data, X∗, could be carried out, as
performed in [11], discarding the measurements that

correspond to discontinuities.

X∗
filt =

{
X∗ | c(X∗) = 0

}
(23)

However, the calculation of the four intermediate
derivatives within the RK4 scheme (Eq. (19)) would
render the process unstable, since these intermediate

points, x(tk)+hk
ki
2
, need to be included in the learning

process even if they refer to discontinuous parts of the
motion.

The accuracy of the part to be identified espe-
cially of a nonlinear discontinuous term depends on
the choice of measurement variables, the sampling fre-
quency of the measurements, the known part of the
equation, physical constraints, and candidate functions
used to sparsely represent the dynamics. Unfortunately,
depending on the application, it might be difficult to
know in advance how to make these selections. More-
over, the presence of noise in the measurements as well
as other confounding sources may affect the unique-
ness of the identified sparse terms. These problems are
discussed in Sect. 4 for a specific application. More-
over, recommendations on pre-processing, choosing
the learning architecture, and validation are provided
in Sect. 5. Lastly, it should be noted that the current
formulation does not account for uncertainties in the

Table 1 Case studies investigated

Case ID System Type of motion Friction law Excitation

1a Synthetic SDOF Stick-slip (2 stops) Coulomb Harmonic

1b Synthetic SDOF Stick-slip (2 stops) Dieterich-Ruina (DR) Harmonic

2a Synthetic SDOF Stick-slip (4 stops) Coulomb Harmonic

2b Synthetic SDOF Stick-slip (4 stops) DR Harmonic

3 Synthetic SDOF Stick-slip (2 stops) Coulomb/DR Harmonic

4 Synthetic SDOF Stick-slip Coulomb Jonswap spectrum

5 Synthetic MDOF Stick-slip Coulomb Harmonic

one nonlinearity

6 Synthetic MDOF Stick-slip Coulomb + Coulomb Harmonic

two nonlinearities

7 Synthetic MDOF Stick-slip Coulomb + DR Harmonic

two nonlinearities

8 Experimental SDOF Continuous Coulomb Harmonic

9a Experimental SDOF Stick-slip (2 stops) Coulomb Harmonic

9b Experimental SDOF Stick-slip (2 stops) Dieterich-Ruina (DR) Harmonic

10 Experimental SDOF Stick-slip (4 stops) Coulomb Harmonic
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parameters of the governing equations - nor for the
known part or for the part to be identified.

4 Applicability of PhI-SINDy to friction problems

PhI-SINDywill be applied to both synthetic and exper-
imental cases. Although experimental results are avail-
able only for a SDOF oscillator, the applicability of
PhI-SINDy is explored also in MDOF systems when it
comes to synthetic cases. To present the different case
studies and the corresponding results in a streamlined
manner, they are numbered and summarized in Table 1.

4.1 Synthetic cases

4.1.1 Single degree of freedom (SDOF) oscillator

Consider a SDOF oscillator, as illustrated in Fig. 1,
which consists of a mass m, a spring of stiffness k,
and a dashpot with a viscous damping coefficient c.
An external forcing F(t) is applied to the mass, while
a nonlinear friction force Ffr is generated through its
contact with a fixed wall. Such a system’s Equation of
Motion (EoM) is:

m ẍ(t) + c ẋ(t) + k x(t) + Ffr(t) = F(t) (24)

⇒ ẍ(t) + 2 ζωn ẋ(t) + ω2
n x(t) + Ffr(t)

m
= F(t)

m
(25)

where ζ = c/(2
√
k m) is the damping ratio, and ωn =√

k

m
the natural frequency.

By using the state-space representation of Eq. (25)
a coupled system of first-order differential equations is
derived:
⎧
⎨

⎩

ẋ(t) = y(t)

ẏ(t) = −2 ζωn y(t) − ω2
n x(t) − Ffr(t)

m
+ F(t)

m

(26)

As a first case study, a monochromatic loading is con-
sidered, of the following form:

F(t) = F0 cos(� t) (27)

Regarding the discontinuous friction term, this is gener-
ically written as:

Ffr(t) = γ(ẋ(t)) sgn(ẋ(t)) (28)

Fig. 1 SDOF schematic representation with γ (ẋ(t)) = μN

where the term γ(ẋ(t)) is defined according to the
selected friction law and the signum function, sgn(ẋ),
is defined as:
⎧
⎪⎨

⎪⎩

1 if ẋ > 0

[ − 1, 1] if ẋ = 0

−1 if ẋ < 0

(29)

Taking into consideration these assumptions for the
forcing and friction terms, the EoM, i.e. Eq. (26), takes
the following form:

ẏ(t) = −2 ζωn y(t) − ω2
n x(t) − γ(y(t))

m
sgn(y(t))

+ F0
m

cos(� t) (30)

There are two distinct phases in the motion of the
oscillator, namely continuous motion and stick–slip.
A continuous (smooth) motion of the mass, which is
described by Eq. (30), is observed when the velocity
is non-zero and the difference between the forcing and
the spring force is greater than the friction force. On the
other hand, stick phenomena occur when the velocity
of themass is zero, and the friction force is so dominant
that counter-balances the rest of the forces acting on the
mass. Thus the sticking condition can be formulated as
follows:
{
ẋ(t) = 0

|F(t) − k x(t)| ≤ |Ffr(t)|
(31)

During stick–slip, the friction force is equal to the static
friction:

Ffr, static(t) = F(t) − k x(t) (32)

Owing to its non-smooth nature, this type of prob-
lem is often referred to as stiff, meaning that standard
integration methods perform poorly. To this end, the
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Table 2 SDOF oscillator general properties

Quantity Description Value Units

m Mass 1 kg

c Viscous damping coefficient 0.1 Ns/m

k Stiffness 1 N/m

F0 Forcing amplitude 1 N

� Forcing frequency (2 stops per cycle) 0.3 rad/s

� Forcing frequency (4 stops per cycle) 0.15 rad/s

x0 Initial displacement (at t = 0) 0.1 m

ẋ0 Initial velocity (at t = 0) 0.1 m/s

event condition of Eq. (31) is included explicitly in the
Runge–Kutta method of order 5(4), to account for the
transition between the sticking and the sliding regimes.

It should be noted that the latter of the two conditions
in Eq. (31) is sensitive to noise, and enforcing it in the
presence of noisy measurements might lead to wrong
characterizations of the oscillator’s motion. Thus, the
physics constraints reduce to:

c(x(t)) = ẋ(t) = 0 (33)

The friction-to-forcing ratio and the ratio of the exci-
tation frequency over the natural one are the parameters
that dictate whether the oscillator will follow a smooth
continuous motion or stick–slip phenomena will be
observed. More information regarding these two quan-
tities and their values in the case of stick–slip is pro-
vided in [21]. In the current work, two different forcing
frequencies are considered, which will result in stick–
slip motion with two and four stops per cycle.

The systemproperties, which are present in Eq. (30),
are summarized in Table 2.

The values above are used to generate the displace-
ment and velocity time histories,Xtrue, with the explicit
Runge-Kutta method of order 5(4) [22], which are then
contaminated with noise, according to Eq. (34) to yield
the noisy data given as input to PhI-SINDy.

X∗ ∼ N (Xtrue, σnoise · Xtrue) (34)

In other words each entry of X∗ (displacement and
velocity time series) is contaminated by an independent
zero mean Gaussian distribution with standard devia-
tion σnoise.

It should be mentioned that in [13], various noise
levels were examined for the continuous motion of
a synthetic SDOF oscillator. The worst-case scenario

of those cases is considered in the current work, i.e.
σnoise = 10%.

Taking into consideration the aforementioned assump-
tions and rewriting Eq. (26) using matrix notation, it
holds:

x(t) =
[
x(t)
y(t)

]
(35)

[
ẋ(t)
ẏ(t)

]
=
[

0 1
−ω2

n −2 ζ ωn

]
·
[
x(t)
y(t)

]
+
⎡

⎣
0

F(t)

m

⎤

⎦

−
⎡

⎣
0

Ffr(t)

m

⎤

⎦

⇒ d

dt
x(t)

=
[

0 1
−ω2

n −2 ζ ωn

]
· x(t) +

⎡

⎣
0

F0
m

cos(� t)

⎤

⎦

︸ ︷︷ ︸
known physics, g(t, x(t))

−
⎡

⎣
0 0

0
γ(y(t))

m

⎤

⎦ · sgn(x(t))

︸ ︷︷ ︸
part to be

identified, f(t, x(t))

(36)

In this paper it is assumed that the system parameters in
the known physics part are deterministic, even though
in more complex applications the damping value might
be highly uncertain.

In what follows (apart from case 8), the dependency
of the friction force on the moving direction of the
mass, i.e. the sign of the velocity, is considered as part
of the known physics (inductive bias), therefore the
signum function is always explicitly defined indepen-
dently of the friction model assumed. Thus, the candi-
date features, weighted by � as explained in Sect. 2,
are then multiplied by sgn(y(t)) aiming to identify the
γ(y(t))/m coefficient accurately. The final identified
vector field is formulated as:

f(t, x(t)) =
[
θ(x, y) · � · sgn(y(t))

]T
(37)

The loss function chosen for the cases explored in
the current work is the Mean Squared Error (MSE)
between the RK4 predictions and the measurements.
4.1.1.1 Case 1: Two stops per cycle - Harmonic exci-
tation

In this case, a harmonic excitation is accounted
for, with a unit amplitude and a forcing frequency
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Fig. 2 Nonlinear friction force versus velocity for different fric-
tion laws

� = 0.3 rad/s to create measurements with two stops
per cycle. Two friction laws, namely Coulomb (Case
1a) and steady-state Dieterich-Ruina (DR) [9,16,17]
(Case 1b), are considered - both schematically illus-
trated in Fig. 2, where the nonlinear friction force is
plotted against the velocity when considering arbitrary
friction laws parameter values.

Within the Coulomb friction law, the friction term
is explicitly dependent on the direction of movement,
i.e. the sign of the velocity, when the mass is sliding.
With its amplitude equal to the product of the friction
coefficient μ between the two surfaces in contact and
the normal force N , and denoting the friction force
according to Coulomb law as FC , it holds:

Ffr(t) = FC(ẋ(t)) = μ N sgn(ẋ(t)) (38)

According to Eq. (29), the magnitudes of static and
kinetic friction forces are considered equal. Moreover,
in the case of sticking (when the velocity is zero), its
value lies in the range of [−1, 1], since the mass is in
equilibrium, so the friction force is counterbalanced by
the sum of the spring and external forces. For this fric-
tion model, a friction-to-forcing ratio μ N/F0 = 0.5 is
chosen.

Denoting the friction force as FDR, the steady-state
formulation of DR [9] is:

Ffr(t) = FDR(ẋ(t)) =
[
F∗ + a ln

( |ẋ(t)| + ε

V∗

)

+b ln
(
c + V∗

|ẋ(t)| + ε

)]
sgn(ẋ(t)) (39)

where F∗ and V∗ correspond to the steady-state fric-
tion force and sliding velocity reference values, a and

Table 3 Steady-state Dieterich-Ruina (DR) friction law proper-
ties

F∗ [N] a [–] b [–] c [–] V∗ [m/s] ε [m/s]

0.5 0.07 0.09 0.022 0.003 10−6

b are dimensionless model parameters, and parame-
ter c which was originally proposed in [23], accounts
for a residual strength at high sliding velocities. These
parameters, of the steady-stateDR law, are summarized
in Table 3.

As indicated by [24], the θ(x) dictionary should not
include an abundance of candidate functions. The prior
knowledge of the most suitable friction law is therefore
used to guide their selection, as indicated in what fol-
lows.
Case 1a: Coulomb friction law
The employed feature dictionary is:

θ(x, y) = [
1, x, y, x2, x y, y2

]
(40)

The hyperparameters of the analysis are summarized
in Table 4.

The displacement and velocity fields identified by
PhI-SINDy are plotted over time and illustrated in
Fig. 3, where it is possible to observe a perfect agree-
ment with the ground truth results.

The case where the event condition is not included -
denoted in what follows as “PhI-SINDy without event
condition” - is equivalent to applying the RK4-SINDy
with the addition of the discrepancy bias. The compar-
ison with PhI-SINDy is displayed in Fig. 4, where it is
possible to observe the need to explicitly include the
event condition to ensure accurate results.

Table 4 Hyperparameters for the synthetic cases (both SDOF
and MDOF systems)

Quantity Description Value

M Number of epochs 3 × 1000

lr Learning rates 1e − 1, 1e − 2, 1e − 3

λ Cutoff threshold 5e − 2


t Time step 0.01 s

σnoise Measurement noise 10%

The number of epochs is expressed as 3 × 1000, because every
1000 epochs the learning rate is decreased, hence the three dif-
ferent lr values included

123



C. Lathourakis, A. Cicirello

Fig. 3 Case 1a: Coulomb
friction law Identified
displacement and velocity
fields

Fig. 4 Case 1a: Coulomb
friction law Identified
displacement and velocity
fields, w/wo event condition

The governing equation identified bothwhen includ-
ing or not the event condition is the following:

Ground truth: ẏ = −0.1 y − x − 0.5 sgn(y) + cos(0.3 t)

PhI-SINDy (with condition): ẏ = −0.1 y − x − 0.502 sgn(y) + cos(0.3 t)
(41)

PhI-SINDy (without condition): ẏ=−0.1 y−x − 0.354 sgn(y)+cos(0.3 t)
(42)

The identified EoM is parsimonious in both cases,
even when the event condition to address stick–slip
is not accounted for. This is attributed mainly to the
appropriate terms that were included in the dictionary

of functions. However, the identified coefficient of the
friction term, as well as the plotted vector fields, when
the event condition is included, highlight the superior-
ity of the proposed framework when it comes to dis-
continuous nonlinearities.

In what follows, the comparison with PhI-SINDy
without including the event condition will not be car-
ried out, owing to its poor accuracy that is displayed
in Fig. 4. The use of the term “PhI-SINDy” will imply
that the sticking event condition is accounted for.
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Case 1b: Dieterich-Ruina friction law
Assuming the dependency of the friction force to the
sign of the velocity as part of the known physics, the
candidate features include the possibility of choosing
either or both Coulomb and DR coefficients:

θ(x, y) =
[

1, x, y, ln(
|y| + ε

V∗
), ln(c + V∗

|y| + ε
)

]

(43)

The identified displacement and velocity vector fields
are presented in Fig. 5, showing also in this case an
excellent agreement with the ground-truth results.
For presentation purposes, only the identified nonlin-
ear friction term will be presented, compared with the
ground truth.

Ground truth:

[
0.5 + 0.07 ln

( |y| + 10−6

0.003

)

+ 0.09 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y)

PhI-SINDy:

[
0.493 + 0.049 ln

( |y| + 10−6

0.003

)

+ 0.058 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y) (44)

It is observed that also for this case PhI-SINDyman-
ages to identify accurately the governing equation of
the oscillator, with higher accuracy when it comes to
the more dominant terms, such as F∗, and a slight devi-
ation in the case of the smaller valued correction terms,
a and b.
Comparison between Cases 1a and 1b
It is worthmentioning that PhI-SINDy can yield results
of excellent agreement with the ground truth in both
cases. A key difference between Cases 1a, and 1b,
is the employed dictionary of functions, with second-
order polynomial terms, and first-order polynomials
together with two logarithmic terms, chosen in the case
of Coulomb and DR friction law respectively, as shown
in Eqs. (40) and (43). PhI-SINDy successfully picks the
correct terms as part of the EoM and drops the redun-
dant ones. It should be noted that the friction lawparam-
eters, a and b, employed in these cases, lie in a region
of the parameter space where the two models lead to
a similar but not identical response. To investigate the
inverse problem where the responses are indistinguish-
able and the friction law is unknown, different parame-

ters a, b, and a dictionary including terms for both laws
will be considered in Case 3.
4.1.1.2Case 2: Four stops per cycle -Harmonic exci-
tation

Using the same set of hyperparameters, a lower
forcing frequency is accounted for, i.e. � = 0.15 to
increase the occurrence of stops per cycle to four.
Case 2a: Coulomb friction law
Using also the same dictionary of functions, presented
in Eq. (40), the learned global response of the oscillator,
which is in complete accordance with the ground truth,
is displayed in Fig. 6.
The identified governing equation is:

Ground truth: ẏ = −0.1 y − x − 0.5 sgn(y) + cos(0.15 t)

PhI-SINDy: ẏ = −0.1 y − x − 0.5 sgn(y) + cos(0.15 t)
(45)

Based both on the plotted time series as well as
the identified acceleration field, it is obvious that the
learned solution is identical to the ground truth, for a
problem with more frequent sticking.
Case 2b: Dieterich-Ruina friction law
The same system is now examined considering the DR
friction law as ground truth, and the feature dictionary
of Eq. (43). The obtained displacement and velocity
plots, which showcase the convergence of the identified
solution with the ground truth, are shown in Fig. 7.

The identified EoM of the oscillator for a friction
force generated according to the DR law is:

Ground truth:

[
0.5 + 0.07 ln

( |y| + 10−6

0.003

)

+ 0.09 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y)

PhI-SINDy:

[
0.503 + 0.077 ln

( |y| + 10−6

0.003

)

+ 0.099 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y) (46)

These results highlight the ability of PhI-SINDy
to address more complex friction laws, even when
more excessive sticking occurs. Additionally, it can be
observed thatwhenmore stops per cyclewere present, a
more accurate governing equation was identified (com-
pared with Eq. (44)).
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Fig. 5 Case 1b:
Dieterich-Ruina friction law
Identified displacement and
velocity fields

Fig. 6 Case 2a: Coulomb
friction law Identified
displacement and velocity
fields

Fig. 7 Case 2b:
Dieterich-Ruina friction law
Identified displacement and
velocity fields
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Table 5 Frition laws’ properties that yield a similar response

F0 [N] � [rad/s] μ N/F0 [–] F∗/F0 [–] a [–] b [–] c [–] V∗ [m/s] ε [m/s]

1.0 0.3 0.5 0.5 0.05 0.07 0.022 0.003 10−6

Fig. 8 Mass displacement
(a) and velocity (b) along
forcing for two different
friction laws

Comparison between Cases 2a and 2b
Similar conclusions, as for Cases 1a and 1b, can be
drawnwhen comparing the two friction lawswithmore
occurrences of sticking per cycle. The correct terms
are kept in the identified EoM, while the coefficients
referring to redundant terms are set to zero, leading
ultimately to convergence with each ground truth.
4.1.1.3 Case 3: Inverse problem

An inverse problem in the identification of frictional
systems is investigated. As elaborated in [9], there are
regions in the (a) - (b − a) parameter space, where
the two friction models, i.e. Coulomb and DR, are
almost indistinguishable under harmonic excitation of
an SDOF. This similarity poses an additional obstacle
to the identification problem and constitutes an inter-
esting challenge for PhI-SINDy. Thus, a new set of
parameters is considered, which are summarized in
Table 5 along with the harmonic excitation parame-
ters, that yield the forcing-displacement and forcing-
velocity plots of Fig. 8. The dictionary of functions used
is the general one reported in Eq. (43).

Initially, the noisy measurements are generated by
considering the Coulomb friction law. The identified
governing equation is:

Ground truth: ẏ = −0.1 y − x − 0.5 sgn(y) + cos(0.3 t)

PhI-SINDy: ẏ = −0.1 y − x − 0.502 sgn(y) + cos(0.3 t)
(47)

On the other hand, when the noisy measurements
are generated using the steady-state DR friction law,
the identified friction term is:

Ground truth:

[
0.5 + 0.05 ln

( |y| + 10−6

0.003

)

+ 0.07 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y)

PhI-SINDy:

[
0.507 + 0.04 ln

( |y| + 10−6

0.003

)

+ 0.056 ln
(
0.022 + 0.003

|y| + 10−6

)]
sgn(y)

(48)

It is possible to observe that PhI-SINDy is able to
identify the correct friction law even for parameters that
yield an almost identical system response.
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Table 6 Jonswap spectrum parameters

Hs [m] Tp [s] ωp [r/s] σp(ω < ωp) σp(ω ≥ ωp)

10 0.5 2π/Tp 0.07 0.09

4.1.1.4 Case 4: Jonswap spectrum excitation
To check the robustness of the proposed methodol-

ogy, a more complicated loading is also examined, in
particular a random phase multi-sine whose amplitude
is generated using the JONSWAP spectrum [18,25],
and the parameters included in Table 6, which is illus-
trated in Fig. 9a:

S(ω) = 320
(Hs

T 2
p

)2 1

ω5

exp

(

−1.25
(ωp

ω

)4
)

3.3
exp

⎛

⎝−
(ω − ωp)

2

2 σ 2
p ω2

p

⎞

⎠

(49)

In this forcing scenario, modified system parameters
are used, to produce vector fields in a similar order
of magnitude as the rest of the cases. In particular, a
mass m = 1 kg, a viscous damping coefficient c =
5 Nsm−1, a stiffness k = 500 Nm−1, and a friction
coefficient μ = 0.2 are considered.

In such a case, the exact forcing time series is pro-
vided as part of the known physics, in a similar fashion,
as with the monochromatic loading. Using the feature
dictionary of Eq. (40), the identified displacement and
velocity fields are indistinguishable from the ground
truth, and are displayed in Fig. 10.

Denoting the external forcing as F(t), the identified
EoM is:

Ground truth: ẏ = −5 y − 64 x − 0.2 sgn(y) + F(t)

PhI-SINDy: ẏ = −5 y − 64 x

− 0.198 sgn(y) + F(t) (50)

It is apparent that the identified governing equation
converges to the ground truth, highlighting the high
accuracy of the proposed identification scheme, even
when the excitation, and subsequently the response, of
the system is not an ideal harmonic input, as long as it
is provided as part of the inductive bias. It should be
noted, that in cases where a more complex excitation
is present, even though it is explicitly provided to PhI-
SINDy, an increase in the computational cost might be
observed.

4.1.2 Multi degree of freedom (MDOF) system with
one source of nonlinearity

Let us now consider a MDOF system, consisting of
two massesm1,m2, that are connected with each other
and with a fixed vertical wall with two springs and two
dashpots, of stiffness k1, k2 and viscous damping coef-
ficient c1, c2 respectively. The first mass is excited by
an external force F1(t) and is able to slide in the hori-
zontal direction through a roller, while the secondmass
is in contact with a fixed wall that generates the non-
linear friction force, Ffr,2. The configuration described
above is illustrated in Fig. 11, and the EoMs of each
mass are formulated as follows:

Fig. 9 Jonswap spectrum
mass excitation
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Fig. 10 Case 4: Jonswap
spectrum excitation
Identified displacement and
velocity fields

Fig. 11 MDOF system with one friction contact

m1 ẍ1 + (c1 + c2) ẋ1 − c2 ẋ2 + (k1 + k2) x1

− k2 x2 = F1(t) (51)

m2 ẍ2 + c2 ẋ2 − c2 ẋ1 + k2 x2 − k2 x1 + Ffr,2(t) = 0
(52)

In a similar way as for the SDOF case, the EoMs are
transformed in a state-space form, yielding the follow-
ing coupled system of first-order differential equations:

ẋ1 =y1 (53)

ẋ2 =y2 (54)

ẏ1 = 1

m1

[
−(c1 + c2) y1 + c2y2 − (k1 + k2) x1

+ k2 x2 + F1(t)
]

(55)

ẏ2 = 1

m2

[
−c2 y2 + c2 y1 − k2x2 + k2 x1 − Ffr,2(t)

]

(56)

Denoting the ratio of the twomasses as m̄ = m2/m1,
Eqs. (55)–(56) are rewritten as:

ẏ1 = −(2 ζ1 ω1 + 2 m̄ ζ2 ω2) y1

+ 2 m̄ ζ2 ω2 y2 − (ω1 + m̄ ω2) x1

+ m̄ ω2 x2 + F1(t) (57)

ẏ2 = −2 ζ2 ω2 y2 + 2 ζ2 ω2 y1 − ω2 x2 + ω2 x1

− Ffr,2(t) (58)

where ω1, ω2 and ζ1, ζ2 are the natural frequency and
the damping ratio.

A simple harmonic force is considered to be applied
at massm1, while Coulomb’s law describes the friction
force generated due to the mass-wall contact. So, F1(t)
and Ffr,2 are:

F1(t) = 1.0 cos(0.6 t) (59)

Ffr,2(t) = 0.3 sgn(ẋ2(t)) (60)

The true displacement and velocity time series,Xtrue

for both masses are once more calculated using the
explicit Runge–Kutta method of order 5(4) [22], and
the systemproperties that are included inTable 7, incor-
porating an event condition to handle the transition
between the sticking and sliding regimes. The noisy
measurements X∗ are generated according to Eq. (34),
using the chosen noise level, σnoise.

The sticking of m2 is accounted for by considering
the following event condition as a learning bias:
{
ẋ2(t) = 0

|c2 ẋ1(t) + k2 x1(t) − k2 x2(t)| ≤ |Ffr,2(t)|
(61)
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As explained also for the SDOF oscillator, only the
former of the two conditions is included in PhI-SINDy,
owing to the noise sensitivity of the latter one.

Rewriting Eqs. (53), (54), (57), and (58) in a matrix
format enables for a clearer distinction between the
known, and unknown parts of the described system.

x =

⎡

⎢⎢
⎣

x1
x2
y1
y2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ẋ1
ẋ2
ẏ1
ẏ2

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−(ω1 + m̄ ω2) m̄ ω2 −(2 ζ1 ω1 + 2 m̄ ζ2 ω2) 2 m̄ ζ2 ω2

ω2
2 −ω2

2 2 ζ2 ω2 −2 ζ2 ω2

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

ẋ1
ẋ2
ẏ1
ẏ2

⎤

⎥⎥
⎦ +

⎡

⎢⎢⎢⎢
⎣

0
0

F1(t)

m1
0

⎤

⎥⎥⎥⎥
⎦

−

⎡

⎢⎢⎢⎢
⎣

0
0
0

Ffr,2(t)

m2

⎤

⎥⎥⎥⎥
⎦

(62)

⇒ d

dt
x(t) = g(t, x(t))

︸ ︷︷ ︸
known
physics

−

⎡

⎢⎢
⎢⎢
⎣

0
0
0

Ffr,2(t)

m2

⎤

⎥⎥
⎥⎥
⎦

︸ ︷︷ ︸
part to be
identified

(63)

g(t, x(t)) =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−(ω2
1 + m̄ ω2

2) m̄ ω2
2 −(2 ζ1 ω1 + 2 m̄ ζ2 ω2) 2 m̄ ζ2 ω2

ω2
2 −ω2

2 2 ζ2 ω2 −2 ζ2 ω2

⎤

⎥⎥
⎦ · x(t) +

⎡

⎢⎢⎢
⎢
⎣

0
0

F1(t)

m1
0

⎤

⎥⎥⎥
⎥
⎦

(64)

Also in this case, the systemparameters in the known
physics part are assumed to be deterministic.

4.1.2.1 Case 5: MDOF with one nonlinearity
(Coulomb)

For this system a more specific dictionary of func-
tions is needed, including only first-order polynomials:

θ(x1, y1, x2, y2) = [
1, x1, y1, x2, y2

]
(65)

The identified displacement and velocity vector
fields for both masses, using the same hyperparame-
ters presented in Table 4, are identical to the ones cor-
responding to the ground truth and are illustrated in
Fig. 12.

Also for this case, a comparisonbetweenPhI-SINDy
when an event condition is included and when not is
investigated and plotted in Fig. 13. The corresponding
identified governing equations are:

Ground truth: ẏ1 = −0.2 y1 + 0.1 y2

− 2 x1 + x2 + cos(0.6 t)

ẏ2 = 0.1 y1 − 0.1 y2 + x1 − x2 − 0.5 sgn(y2)

Table 7 MDOF system general properties

Quantity Description Value Units

m1 Mass 1 kg

m2 Mass 1 kg

c1 Viscous damping coefficient 0.1 Ns/m

c2 Viscous damping coefficient 0.1 Ns/m

k1 Stiffness 1 N/m

k2 Stiffness 1 N/m

x1(0) Initial displacement of m1 (at t = 0) 0.0 m

x2(0) Initial displacement of m2 (at t = 0) 0.0 m

ẋ1(0) Initial velocity of m1 (at t = 0) 0.0 m/s

ẋ2(0) Initial velocity of m2 (at t = 0) 0.0 m/s
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Fig. 12 Case 5: MDOF
with one nonlinearity
(Coulomb) Identified
displacement and velocity
fields

PhI-SINDy (with condition):

ẏ1= − 0.2 y1+0.1 y2 − 2 x1 + x2 + cos(0.6 t)

ẏ2 = 0.1 y1 − 0.1 y2 + x1 − x2 − 0.5 sgn(y2)

PhI-SINDy (without condition:

ẏ1= − 0.2 y1+0.1 y2 − 2 x1 + x2 + cos(0.6 t)

ẏ2 = 0.1 y1 − 0.1 y2 + x1 − x2 − 0.389 sgn(y2)
(66)

Both the displacement and velocity fields and the
identifiedEoMs, confirm that including a sticking event
condition leads to a more accurate identification.

4.1.3 Multi degree of freedom (MDOF) system with
two sources of nonlinearity

To highlight the potential of the proposed framework, a
system with multiple sources of discontinuous nonlin-
earity is accounted for. In particular, the same MDOF
system is considered, with bothmasses being in contact

with an immovable wall, thus each being subjected to
an independent nonlinear friction force, as displayed in
Fig. 14.

The system properties are the same as before, with
the only difference being the additional friction force.
Thus, Eqs. (57) and (58), are transformed into:

ẏ1 = − (2 ζ1 ω1 + 2 m̄ ζ2 ω2) y1 + 2 m̄ ζ2 ω2 y2

− (ω1 + m̄ ω2) x1 + m̄ ω2 x2 − Ffr,1(t) + F1(t)
(67)

ẏ2 = −2 ζ2 ω2 y2 + 2 ζ2 ω2 y1 − ω2 x2 + ω2 x1

− Ffr,2(t) (68)

Therefore, the vector containing known physics,
g(x(t)) stays as is, and only the part to be identified
changes into:

123



C. Lathourakis, A. Cicirello

Fig. 13 Case 5: MDOF
with one nonlinearity
(Coulomb) Identified
displacement and velocity
fields, w/wo event
condition)

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0
0

Ffr,1(t)

m1
Ffr,2(t)

m2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(69)

Concerning the stick–slip phase of the system, a dif-
ferent event condition for each mass is included in the
learning process:

Mass m1

⎧
⎪⎨

⎪⎩

ẋ1(t) = 0

|F1(t) + c2 ẋ2(t) + k2 x2(t)

−(k1 + k2) x1(t)| ≤ |Ffr,1(t)|
(70)

Mass m2

{
ẋ2(t)=0

|c2 ẋ1(t)+k2 x1(t)−k2 x2(t)| ≤ |Ffr,2(t)|
(71)

It should be noted that due to the presence of noise,
only the zero-velocity condition of both masses are uti-
lized as PhI-SINDy’s physics constraint.
4.1.3.1 Case 6:MDOFwith two nonlinearities (both
Coulomb)

Firstly, both friction forces are assumed to be
described by Coulomb’s law, and expressed as:

Ffr,1(t) = 0.5 sgn(ẋ1(t)) (72)

Ffr,2(t) = 0.3 sgn(ẋ2(t)) (73)

Using the same feature dictionary as in Eq. (65), and the
same hyperparameters presented in Table 4, the identi-
fied displacement and velocity fields are illustrated in
Fig. 15.

It is apparent that the identified vector fields are iden-
tical to the ground truth. Furthermore, the identified
EoM for each of the masses, along with the ground
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Fig. 14 MDOF system with two friction contacts

truth formulation are:

Ground truth: ẏ1 = −0.2 y1 + 0.1 y2 − 2 x1

+ x2 − 0.5sgn(y1) + cos(0.6 t)

ẏ2 = 0.1 y1 − 0.1 y2 + x1 − x2 − 0.3 sgn(y2)

PhI-SINDy: ẏ1 = −0.2 y1 + 0.1 y2 − 2 x1

+ x2 − 0.501sgn(y1) + cos(0.6 t)

ẏ2 = 0.1 y1 − 0.1 y2 + x1 − x2 − 0.3 sgn(y2) (74)

It is observed that PhI-SINDy is capable to produce
results that converge to the ground truth. Redundant
terms are not included in the final solution, and the
identified friction coefficients approach their true val-
ues.

4.1.3.2 Case 7: MDOF with two nonlinearities
(Coulomb andDieterich-Ruina)Let us now consider,
the same MDOF system, but different friction laws to
describe the discontinuous forces generated by the con-
tact of the masses with the immovable walls. To elab-
orate, the two friction forces are expressed as:

Ffr,1(t) = 0.3 sgn(y1(t)) (75)

Ffr,2(t) =
[
0.3 + 0.07 ln

( |y2| + 10−6

0.003

)

Fig. 15 Case 6: MDOF
with two nonlinearities
(both Coulomb) Identified
displacement and velocity
fields
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+0.09 ln
(
0.022 + 0.003

|y2| + 10−6

)]
sgn(y2)

(76)

The employed dictionary of candidate function for
this case is:

θ(x) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1, x1, x2, y1, y2,

ln

( |y1| + ε

V∗

)

,

ln

( |y2| + ε

V∗

)

,

ln

(

c + V∗
|y1| + ε

)

, ln

(

c + V∗
|y2| + ε

)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(77)

The identified displacement and velocity vector
fields for each of the masses are plotted in Fig. 16.

It is observed that the solution yielded byPhI-SINDy
is less accurate compared to the ground truth, which
is further highlighted by the identified friction forces
where one of the logarithm terms is dropped in favor
of polynomial terms:

Ground truth:

Ffr,1 = 0.3sgn(y1)

Ffr,2 = V

[
0.3 + 0.07 ln

( |y2| + 10−6

0.003

)

+0.09 ln
(
0.022+ 0.003

|y2|+10−6

)]
sgn(y2)

PhI-SINDy:

Ffr,1 = 0.302sgn(y1)

Ffr,2 =
[
0.294 + 0.22 x1 − 0.145 x2 − 0.131 y1

− 0.11 y2

−0.034 ln
(
0.022+ 0.003

|y2|+10−6

)]
sgn(y2)

(78)

In this case, expert knowledge can be further supplied,
since the presence of one of the logarithm terms in the
second friction force identified is pointing toward a DR
friction law, rather than a Coulomb friction one. This
can be achieved by specifying a restricted number of
candidate functions for the second friction force iden-
tification, and/or by setting a different cutoff thresh-
old parameter. For the case at hand, a more specific
set of candidate functions is chosen, to highlight the

importance of supplying further domain knowledge in
the identification process. In particular, the first-order
polynomial terms are removed, so the feature dictio-
nary used is:

θ(x1, x2, y1, y2) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1, ln

( |y1| + ε

V∗

)

,

ln

(

c + V∗
|y1| + ε

)

,

ln

( |y2| + ε

V∗

)

,

ln

(

c + V∗
|y2| + ε

)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(79)

This additional bias improves significantly the accu-
racy of PhI-SINDy, which yields the following EoMs,
and the identified vector fields displayed in Fig. 17.

Ground truth:

Ffr,1 = 0.3sgn(y1)

Ffr,2 =
[
0.3 + 0.07 ln

( |y2| + 10−6

0.003

)

ln
(
0.022 + 0.003

|y2| + 10−6

)]
sgn(y2)

PhI-SINDy:

Ffr,1 = 0.3sgn(y1)

Ffr,2 =
[
0.286 + 0.062 ln

( |y2| + 10−6

0.003

)

74 ln
(
0.022 + 0.003

|y2| + 10−6

)]
sgn(y2)

(80)

It is apparent that both in terms of the governing
equations’ functional form and the plotted displace-
ment and velocity fields, the identified solution con-
verges to the ground truth. To elaborate, given addi-
tional expert knowledge PhI-SINDy yields a parsimo-
nious solution with no redundant terms, and the coeffi-
cients of the included terms approach their true values.

4.2 Experimental cases

Let us consider the laboratory configuration [21] of
an SDOF oscillator illustrated in Fig. 18. This setup
constitutes the experimental counterpart of the SDOF
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Fig. 16 Case 7: MDOF
with two nonlinearities
(Coulomb and
Dieterich-Ruina) Identified
displacement and velocity
fields

system introduced in Sect. 4.1.1, meaning that the pre-
sented EoM, friction laws, and the distinction between
sticking and sliding are still valid for this case.

It is essential for such a case to provide the correct
physics to the framework. Contrary to the synthetic
cases, where the ground truth values can be tuned or
modified, the system properties in a real-life setup can
only be estimated. In case the wrong physics (or none
at all) is provided, this discrepancy with the true val-
ues will be encapsulated in the sought nonlinear terms.
Thus, insteadof an analytical formof the forcing,which
is not available, the base excitation, u(t), is used. Both
the forcing data and the response to it, x(t), are mea-
sured with laser displacement sensors as indicated in
Fig. 18. For the derivation of the corresponding velocity
time series, ẋ(t) and u̇(t), a smooth automatic differ-
entiation is utilized, and Eq. (25) is transformed into:

ẍ(t) = −2 ζ ωn ẋ(t) − ω2
n x(t) − Ffr(t)

+2 ζ ωn u̇(t) + ω2
n u(t) (81)

Table 8 Experimental setup properties

Quantity Description Value Units

m Mass 3.080 kg

c Viscous damping coefficient 0.203 Ns/m

k Stiffness 1190 N/m

μ Friction coefficient 0.278 [–]

M Mass of sliding disc 0.097 kg

N = M g Normal force 0.950 N

The identification of the governing equation of
the system at hand is first attempted by assuming
Coulomb’s friction law. The properties of the system
aremeasured or estimated and they are listed in Table 8.
By allowing the system to vibrate freely with and with-
out the contact on top and postprocessing its fading
oscillation, the harder-to-calculate damping and fric-
tion coefficients, c and μ were estimated.
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Fig. 17 Case 7: MDOF
with two nonlinearities
(Coulomb and
Dieterich-Ruina) Identified
displacement and velocity
fields including user
knowledge

Fig. 18 Experimental setup of an SDOF with friction contact
obtained with a counter-weight system mounted on a fixed wall
subject to a harmonic-based excitation [21]

Substituting these values in Eq. (81), the ground
truth for this experimental case study is:

ẍ(t) = −0.0658 ẋ(t) − 386.36 x(t)

−0.0856 sgn(ẋ(t))

+0.0658 u̇(t) + 386.36 u(t) (82)

Lastly, regarding the discrepancy bias, similar to the
synthetic SDOF case, it holds:

x(t) =
[
x(t)
y(t)

]
=
[
x(t)
ẋ(t)

]
, u(t) =

[
u(t)
u̇(t)

]
⇒ d

dt
x(t) (83)

=
[

0 1
−ω2

n −2 ζ ωn

]
· x(t)+

[
0 0

−ω2
n −2 ζ ωn

]
· u(t)

︸ ︷︷ ︸
known physics, g(t, x(t))

−
⎡

⎣
0

Ffr(t)

m

⎤

⎦

︸ ︷︷ ︸
part to be
identified

(84)

Different hyperparameters are employed in this
case, which are summarized in Table 9.
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Table 9 Hyperparameters for the experimental case

Quantity Description Value

M Number of epochs 3 × 2000

lr Learning rates 1e − 1, 1e − 2, 1e − 3

λ Cutoff threshold 1e − 2


t Time step 5e − 4 s

4.2.1 Case 8: Experiment with a friction contact -
Continuous motion

To elaborate on the importance of including the exact
measurements of the base excitation, three different
cases are examined, for the continuous motion of the
oscillator, namely (a) including the measured base dis-
placement, (b) omitting any system knowledge about
forcing (data-driven approach), and (c) assuming a per-
fect harmonic excitation. For all three cases, it is again
assumed that the friction is dependent on the direction
of movement. Apart from first-order polynomial terms,
multiplied by sgn(y(t)), harmonic terms are also con-
sidered candidate features. Five different frequencies,
�i , are accounted for, surrounding the excitation one,
which is determined through the Fast Fourier Trans-
form. Thus, the dictionary of functions is:

θ(x, y) =
[
sgn(y), x sgn(y(t)), y sgn(y(t)),
cos(�i t)

]
(85)

The identified governing equations for each of the three
approaches are:

Truth: ẏ = −0.0658 y − 386.36 x − 0.0856 sgn(y)

+ 0.0658 u̇ + 386.36 u

(a): ẏ = −0.0658 y − 386.36 x − 0.0876 sgn(y)

+ 0.0658 u̇ + 386.36 u (86)

(b): ẏ = −66.88 y − 305.34 x − 0.120 sgn(y)

+ 3.419 cos(13.5 t) (87)

(c): ẏ = −12.10 y − 206.79 x − 0.102 sgn(y)

+ 0.722 cos(13.5 t) (88)

All three variations yield results that converge to the
ground truth response when plotting the displacement
and velocity fields. For presentation purposes, since it
would be visually confusing to plot three overlapping
curves, only (b) is presented along the measurements
and the ground truth in Fig. 20.

It should be noted that for all three approaches,
the terms −0.0658 y−386.36 x are considered known
(inductive bias), and in case (a) also the terms0.0658 u̇+
386.36 u. To elaborate, the inclusion of the exact exci-
tation led to dropping any linear x and y terms, while
in (b) and (c), apart from the additional harmonic terms
that represent the forcing, there are also considerable
residual stiffness and damping terms. Even though the
data is fitted efficiently, only including the measured
base motion resulted also in a generalizable governing
equation.

4.2.2 Case 9a: Experiment - Two stops per cycle -
Coulomb

Using the same laboratory setup but with a lower base
excitation frequency, the measured system’s response
contains stick–slip phenomena with two stops per
cycle. Regarding the employed dictionary of functions,
second-order polynomial features are considered, as
in Eq. (40), and the exact forcing measurements are
included in the scheme, based on the superior findings
that were presented above. Its performance is displayed
in Fig. 20.
The identified EoM is:

Ground Truth: ẏ = −0.0658 y − 386.36 x

− 0.0856 sgn(y) + 0.0658 u̇

+ 386.36 u

PhI-SINDy: ẏ = −0.0658 y − 386.36 x

− 0.082 sgn(y) + 0.0658 u̇

+ 386.36 u (89)

The solution generated by PhI-SINDy converges to
the ground truth, both in terms of plots and the underly-
ing EoM, also for a real-life oscillator with nonsmooth
and nonlinear behavior.

4.2.3 Case 9b: Experiment - Two stops per cycle -
Dieterich-Ruina

For the same set of excitation and response measure-
ments, the more generic dictionary of candidate func-
tions is considered (Eq. (43)), yielding the results pre-
sented in the plot of Fig. 21.
The identified nonlinear friction force is:

PhI-SINDy:

[
0.083 + 0.100 ln

( |y| + ε

V∗

)
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Fig. 19 Case 8:
Experiment with a friction
contact - Continuous motion
Identified displacement and
velocity fields

Fig. 20 Case 9a:
Experiment - Two stops per
cycle - Coulomb Identified
displacement and velocity
fields

Fig. 21 Case 9b:
Experiment - Two stops per
cycle - Dieterich-Ruina
Identified displacement and
velocity fields
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Fig. 22 Case 9a and 9b: Identified nonlinear force over velocity

+0.108 ln
(
0.022 + V∗

|y| + ε

)]
sgn(y) (90)

Even though there is no estimation available for the
correction terms a and b of the employed friction law,
their identified values yield vector fields that fit accu-
rately the measurement. In the case of the F∗ term,
its identified value, 0.083, converges to the estimated
friction term coefficient.
Comparison between Cases 9a and 9b
It should be mentioned that even though in both cases
PhI-SINDy fits themeasured data, when both Coulomb
andDRcandidate features are considered (Case 9b), the
logarithmic terms are kept in the final solution, hinting
that the DR friction law is the most appropriate for
the dataset at hand. The friction force in both cases
is plotted over the velocity in Fig. 22, to illustrate the
identified friction laws.

4.2.4 Case 10: Experiment - Four stops per cycle -
Coulomb

For the last case, let us consider more occurrences
of sticking per cycle, namely four. The candidate fea-
tures of Eq. (40) are accounted for, yielding the results
illustrated in Fig. 23, which coincide with the ground
truth, and the following governing equation:

Ground Truth: ẏ = −0.0658 y − 386.36 x

− 0.0856 sgn(y) + 0.0658 u̇

+ 386.36 u

PhI-SINDy: ẏ = −0.0658 y − 386.36 x

− 0.0855 sgn(y) + 0.0658 u̇

+ 386.36 u (91)

It is observed that PhI-SINDy identifies accurately
the EoM and the displacement and velocity fields,
also for the case where more sticking occurrences are
present.

5 Recommendations

Based on a large number of case studies investigated,
the following recommendations on the use of PhI-
SINDy can be drawn:

1. Data pre-processing step

• There is a need to perform a quality check on the
noisymeasurements at hand.An important issue
is the selection of an appropriate sampling fre-
quency able to capture in sufficient detail the rel-
evant frequency content of the phenomena being
investigated.
Another issue is the involuntary presence of
confounding sources (e.g. environmental con-
ditions, unsuitable operating conditions, inap-
propriate setup of the monitoring system).

• It has been observed that providing measure-
ments that include both transient and steady-
state responses led to increased accuracy in the
sparse identification for some cases. However,
it is not possible to suggest a rule-of-thumb on
the length of transient and steady-state portions,
since this is heavily case-dependent.

• In the examined experimental cases only the dis-
placementmeasurementswere available, imply-
ing that velocity needs to be calculated from
noisy displacement data, which is not a trivial
task. It is advised, if possible to use directly
velocity measurements. Alternatively, if only
displacement measurements are available, a dif-
ferentiation step is necessary. The derived veloc-
ity measurements need to be checked, as the
selection of the most suitable differentiation
algorithm relies heavily on the dataset at hand,
and especially on the dataset noise level. For
instance, in the experimental cases of the cur-
rent paper, the differentiation step is performed
using the spectral method.

2. Selecting learning architecture step

• A preliminary run of RK4-SINDy with a suf-
ficiently broad dictionary of functions is rec-
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ommended, especially in cases where there are
doubts regarding the known physics. In thisway,
the important features are determined, and the
function space is reduced, improving the accu-
racy of PhI-SINDy.

• In the presence of discontinuous nonlinear terms
the identified governing equationmight not con-
verge to the ground truth, owing to the lack of an
appropriate constraint being specified. When-
ever known, physics-based constraints should be
specified to reduce the space of possible sparse
solutions.

3. Validation step

• Having chosen the learning architecture, multi-
ple datasets of the same dynamical system, that
do not refer to the same excitation and response,
should be examined. For instance, for problems
with friction, one dataset could refer to an exci-
tation leading to continuousmotion, and another
to stick–slip. These runs would act as a cross-
validation step on the identified sparse solution.

Finally, it is worth stressing again three key points
that require further attention: (i) in its current setup,
PhI-SINDy identifies the unknown terms of the govern-
ing equation without quantifying any remaining uncer-
tainty; (ii) including one or more wrong physics biases
would result in exploring awrong region of the solution
space, hindering the accuracy of the sparse solution;
(iii) the selection of the cut-off value is still manually
tuned, and should be automated.

6 Conclusions

An extension to RK4-SINDy has been proposed to effi-
ciently identify the nonsmooth response of dynamical
systems when discontinuous nonlinearities are present.
Theproposedmethod, namelyPhysicsEncoded. Sparse
Identification of Nonlinear Dynamics (PhI-SINDy)
requires: (i) a single set of input and output measure-
ments of sufficient length, e.g. the excitation and the
response of a system to it (ideally including both tran-
sient and steady-state responses); (ii) a selection of can-
didate functions that can possibly describe the sought
EoM (inductive bias); (iii) part of the known physics,
which shifts the focus on the identification of the more
cumbersome discontinuous terms (discrepancy bias);
(iv) an event condition that acts as a physical constraint
and addresses the discontinuous behavior of the under-
lying functions (inductive bias); (v) the modification
of the learning algorithm, and especially the fourth-
order Runge–Kutta integration scheme, to incorporate
the provided known physics and physical constraints
(learning bias).

PhI-SINDy was applied to a variety of systems,
using both synthetic and experimental data. An SDOF
oscillator with Coulomb friction, under harmonic exci-
tation,was considered at first,movingon tomore elabo-
rate friction laws,more complicated forcing, andfinally
to an MDOF with multiple sources of nonlinearity.

PhI-SINDy achieved an improved identification of
the underlying governing equations based on noisy
input and output measurements compared with meth-
ods that do not utilize domain knowledge. A signif-

Fig. 23 Case 10:
Experiment - Four stops per
cycle - Coulomb Identified
displacement and velocity
fields
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icant achievement was the system identification in a
discontinuous regime, i.e. in the occurrence of stick–
slip phenomena, where the inclusion of an event con-
dition in the learning process proved to be a key fea-
ture of the framework. It is worth mentioning that, as
shown in [13], providing known terms of the sought
vector field in the form of a discrepancy bias, improved
the accuracy of the method, yielding a generalizable
EoM. When such a bias does not correspond to the
true physics, even though a sufficient fitting of the
data is observed, its generalizability is poor, as show-
cased when an ideal harmonic motion was provided for
the experimental cases. Therefore, ongoing investiga-
tions are focusing on quantifying the various sources of
uncertainty involved in PhI-SINDy, including the epis-
temic uncertainty due to a lack of knowledge about the
correct physics bias.
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