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Usage of AI Tools

In recent years the usage of tools using Artificial Intelligence has increased. During this project the
large language model ChatGPT-3.5 developed by OpenAI has been utilized in several ways.

ChatGPT has been employed through its integration into GitHub CoPilot. In my experience it is
not (yet) able to make good suggestions when writing a unique function. However, it serves well as
an advanced version of autocomplete, which speeds up the process of writing boilerplate code and
documentation. Additionally, the online chat has been utilized to generate ideas when brainstorming,
like figuring out how to name a code variable. Even this process of having to explain something supports
your own thought process.

It has also been utilized in rephrasing certain paragraphs. This enhances readability and spots
typos, like Grammarly or a regular spell checker, and it introduces a greater variation in language, like
Thesaurus. When rephrasing a paragraph I used the following workflow. Initially, I could provide a
summarized version of the desired paragraph in bullet points. ChatGPT’s response generally is a long
text, which is mostly worthless except that I could use its vocabulary to enrich my own. Next, I would
write my own version of the paragraph and provide it to ChatGPT to rephrase it correcting possible
spelling errors and improving its readability. Based on this proposal I could improve the paragraph and
if necessary do a second or third iteration.
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Abstract

Bicycles have been studied extensively over the past 200 years, with mathematical models providing
valuable insights into various aspects of bicycle dynamics and rider control. However, the lack of a
common framework for creating and sharing bicycle-rider models hinders the development of advanced
models, research reproducibility, and dissemination. This thesis addresses this gap by introducing
BRiM1: an open-source modular and extensible framework for creating Bicycle-Rider Models.

Themodular setup ofBRiM relies on a systematic approach to define amodel and form the analytical
EOMs. For the involved analytical computations BRiM utilizes SymPy [44], a Computer Algebra Sys-
tem. The systematic approach consists of four stages. The first stage defines the objects in the system,
such as symbols and bodies. Secondly, the kinematic relationships between the objects, such as an-
gular velocities between reference frames, are established. The third and the fourth stages, which are
order-independent, specify the loads and constraints acting upon the system. The decoupling BRiM
required to achieve modularity is enabled through this systematic approach, because computations
within a stage are mostly order-independent.

The core of BRiM employs the systematic approach within a unified framework for modeling me-
chanical systems in general. It describes a model using a tree representation, in which a model is
defined as an aggregation of smaller submodels. The relationships between submodels are estab-
lished by parent models, using interchangeable connections to accommodate complex relations, such
as tyre models between the ground and a wheel. This application of submodels enables swapping and
adding submodels, making the overarching model both modular and extensible. Actuation within BRiM
can either be specified by attaching prespecified groups of loads to models and connections, or by
utilizing the interface provided by the mechanics module in SymPy, which offers the flexibility to even
manipulate equations in detail.

BRiM applies this generalized framework to create modular bicycle-rider models. Both a station-
ary bicycle and a modular bicycle based on Moore’s convention [49] of the Carvallo-Whipple bicycle
[11, 90] have been constructed. These bicycle models are extensible to bicycle-rider models by in-
cluding an upper and/or lower body. Within the rider models each joint can be actuated by a linear
torsional spring-damper. BRiM integrates parametrization of models, which provides mappings be-
tween symbolic quantities used in equations and experimentally determined values, using the existing
open-source BicycleParameters library [47]. Additionally, SymMePlot [79], a visualization package for
symbolically defined mechanical systems, has been developed and integrated within BRiM to visualize
the created bicycle-rider models.

The effectiveness of BRiM is demonstrated through optimization and simulation tasks. Firstly, a
real-time forward simulation of a torque-driven upper body bicycle-rider is performed. Secondly, an
optimization problem is solved, involving the tracking of a rolling disc along a sinusoidal trajectory while
minimizing the control torques. These demonstrations highlight the seamless integration of BRiM with
other scientific tools and BRiM’s potential for practical applications.

In conclusion, BRiM fills the gap in bicycle dynamics research by providing a modular and extensible
framework for creating and sharing bicycle-rider models. Its systematic approach, unified framework,
and integration capabilities enable efficient model development, research reproducibility, and further
advancement in bicycle research.

1BRiM is available at: https://github.com/TJStienstra/brim.
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1
Introduction

In the 200 years of the existence of bicycles, numerous researchers have developed mathematical
models to investigate various aspects of bicycle dynamics and rider control [69]. These models have
provided valuable insights into self-stability [41], active and passive rider control [49, 70, 75], and the
identification of specific eigenmodes [74]. These insights have not only contributed to a better under-
standing of bicycle behavior but have also informed the development of bicycles with improved stability,
handling, and comfort [57]. One of the novel examples using such a mathematical model is a balance
assist system to aid riders by providing an assistive steering torque [1].

However, despite the extensive research in this field, a common challenge remains the creation of
a mathematical bicycle model. As pointed out by Schwab and Meijaard [69], multiple of the historically
developed models actually have had mistakes in their derivation. Nowadays, most researchers seem
to use the linearizedWhipple model [42] as starting point and extend it to incorporate additional features
such as tyre models [36, 40, 57, 69] or rider attachments [49]. This approach is error prone [69], time
consuming, hinders the development of more complex models, and reduces research dissemination
and reproducibility. To bridge this gap, this project sets out the following goal:

Develop an open-source modular and extensible framework for creating symbolic Bicycle-Rider
Models, called BRiM.

In this goal, the framework is an abstract piece of software, which provides generic functionality
that can be used by users. The functionality is that a user can describe a model in multiple levels of
detail. A component level, where components can be chosen (modular) and where also new compo-
nents can be attached (extensible). Two examples of modularity are changing the knife-edge wheel
approximation of the rear wheel to a toroidal shape and changing the entire bicycle in a bicycle-rider
model. An example of extensibility is that a bicycle can be modeled solely, but can also be extended
with a rider model resulting in a bicycle-rider model. An intermediate level of describing a model allows
the modification of a model using a joints and bodies interface. And a low level, where researchers
can examine and manipulate the equations describing a model. A last property of this framework is
that it will use symbolics resulting in symbolic Equations of Motion (EOMs). Symbolics refers to the
use of mathematical expressions represented by symbols instead of numerical values. While the core
of this framework can be applied to mechanical models in general, it will be specifically developed to
create Bicycle-Rider Models. Therefore, the package will also include the implementation of multiple
bicycle-rider models and additional utilities, which make use of already existing scientific tools.

This final aim is achieved by means of four intermediate objectives:

• Formulate a systematic approach to describe a mechanical model.
• Design a modular and extensible framework to describe mechanical models in general.
• Apply this framework to create a library of bicycle-rider components.
• Demonstrate the usage of BRiM.

1
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The objectives are sorted in chronological order. The first aim is to formulate a systematic approach,
which acquires the necessary background knowledge for designing the framework. It provides an
overview of howBRiM fits into a simulation or optimization and identifies the systematic steps of defining
a model to form symbolic EOMs. This analysis and approach are required to design an algorithmic
approach, which is closely related to the second objective. The second objective is obtained by first
creating the requirements of this core framework. Secondly, several architectural designs are proposed,
which satisfy these requirements. After analyzing the concepts on their strong and weak sides, a
final design is proposed and implemented forming the core of the BRiM. The third goal utilizes this
novel core framework to implement various bicycle-rider components resulting in bicycle-rider models.
Components are interchangeable parts of the model with which a user can choose what aspects are
taken into account, like the type of wheel. To further improve the bicycle-rider models a simple model
is benchmarked against laborious manual implementations. Based on these results optimizations of
the implemented components are done, while immediately measuring BRiMs performance. The fourth
intermediate objective further proves the usefulness and versatility of BRiM. It shows some of the
models that can easily be generated for simulation and optimization tasks.

The outline of this thesis follows the intermediate objectives. Chapter 2 lays the foundation by de-
scribing a systematic approach to form the EOMs symbolically using Kane’s method in a simulation task.
Chapter 3 builds upon this systematic approach to propose a framework to define models modularly,
which is the core of BRiM. Next, chapter 4 utilizes the framework describing how it can be applied to
create bicycle-rider models. Chapter 5 demonstrates BRiM by solving a trajectory tracking problem of
a rolling disc following a periodic sinusoidal path and by forward simulating an advanced bicycle-rider
model. Lastly, chapters 6 and 7 wrap up the thesis with future recommendations and conclusions.



2
Universal Simulation Workflow

This chapter presents a workflow to systematically formulate a model and form its EOMs in a symbolic
form using SymPy. The primary objective is to provide a foundational understanding of the steps
involved in generating the EOMs in a symbolic form. This understanding is crucial for the design
of the modular modeling framework inherent to BRiM. By decoupling the model formulation process,
BRiM enables modularity and extensibility, allowing individually-defined models to be combined into a
cohesive bicycle-rider model.

As the entire framework uses a symbolic approach, section 2.1 starts with an explanation of sym-
bolics. It discusses what is meant by symbolics and what are the advantages and disadvantages of
forming symbolic EOMs. Next, section 2.2 identifies and describes the steps in which a model can be
formulated using SymPy. Section 2.3 briefly continues on the derivation of the EOMs using SymPy’s
existing version of Kane’s method. Followed by section 2.4, which explains how the generated EOMs
are utilized in the simulation. The final section, section 2.5, summarizes the findings and insights of
this chapter.

2.1. Usage of Symbolic Equations
Symbolics refers to the use of mathematical expressions represented by symbols instead of numerical
values. In the context of bicycle-rider modeling, symbolic equations allow for exact mathematical rep-
resentations of the system dynamics. To work with symbolic equations, researchers utilize Computer
Algebra System (CAS), which is software designed for algebraic manipulation, simplification, and evalu-
ation of expressions. Popular CASs includeMaple [39],Mathematica [24], Symbolics.jl [21] and SymPy
[44]. In the approaches of simulating multibody systems, symbolics contrasts numerics. While most
bicycle researchers rely on handcrafted EOMs [69], most physics engines actually use fast numeric
algorithms [19], which compute the EOMs every timestep [82].

The distinction between symbolics and numerics lies in the nature of the final results obtained before
evaluation. Symbolic computations yield sets of analytically exact expressions, while numerics yield
numerical results. Symbolics offer several advantages. Firstly, symbolic expressions enable further
expression manipulation, value substitution, expression reuse, and differentiation. Differentiation is es-
pecially useful for optimization tasks, as the analytic computation of the gradient allows for higher-order
optimization methods. Secondly, Rosenthal and Sherman [64] also argue that handcrafted symbolic
EOMs have the highest reachable computational performance.

Recent advancements however are blurring the boundaries between symbolics and numerics. With
algorithmic differentiation one can compute the partial derivatives of a piece of code [20]. This is, among
others, used in the creation of differentiable physics engines, which also offer gradients of the EOMs
allowing for faster optimization and usage within neural networks [23, 89]. The accuracy of these gradi-
ents, particularly in scenarios involving contact dynamics, continues to be an area of improvement [95].
An additional disadvantage seen in algorithmic differentiation is the added computation and memory
costs when running the simulation [45]. Similarly, symbolics has additional computation costs when
formulating the model. As for the difference in computation speed, Todorov, Erez, and Tassa [82] argue
in their comparison between MuJoCo and SD/Fast that modern-day compilers mostly seem to bridge

3
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this gap. Despite the closing gap in performance and features, the choice to use symbolics is motivated
by a few additional factors. First, symbolics offers transparency, allowing for a clear understanding of
the underlying equations and enabling greater flexibility in manipulating and interpreting the resulting
expressions. The last of which leads to the second advantage, namely that there is a scope for the
symbolic approach to result in more performant code [21].

Out of the several CASs mentioned before, SymPy [44] has been chosen as backend for BRiM,
because it has several advantages. Firstly, it is open-source, which aligns with the open-source values
of BRiM. Secondly, it provides a large feature set, including a dedicated module for defining mechanical
problems. Thirdly, it is implemented in Python, which is both easy to learn and widely used. Additionally,
its compatibility with various scientific libraries facilitates seamless integration with existing tools. This
overall empowers researchers to publicly develop and share models to be combined with numerical
solvers, visualization tools, optimization libraries, and other bicycle or biomechanical research tools.

2.2. Model Formulation Workflow
In order to write a modular framework to formulate a model using SymPy, it is necessary to explore
a systematic approach to define a model. This involves breaking down the process into smaller de-
coupled steps. This division makes an implementation of a model easier to understand, develop and
maintain. Additionally, it aids brainstorming on how BRiM can allow more decoupling, control, and
customization of models.

Literature showcases several systematic approaches for automatic model formulation and deriva-
tion of the EOMs. Rosenthal and Sherman [64] employ Kane’s method to form the EOMs symbolically.
Featherstone [19] discusses various algorithms to form the EOMs, both implicitly and explicitly, as is
used by several numeric physics engines [60, 82]. Casius, Bobbert, and Van Soest [12] use Newton-
Euler to form the EOMs. They focus more closely on the actual formulation of the model itself in 2D
using a human sprint cycling model as an example. However, for biomechanical simulations in 3D they
do advise using Kane’s method, which is also backed up by Yamaguchi [93]. The rest of this section
explains a systematic approach to formulate a model with SymPy, such that in section 2.3 the EOMs
can be formed using Kane’s method [26].

To explain each of the steps in formulating the model, a rolling disc will be used as an example,
shown in figure 2.1. The rolling disc is defined as an infinitesimally thin disc, rolling on the groundwithout
lateral and longitudinal slip. The disc itself is defined with respect to the ground with a subsequent yaw-
roll-pitch body-fixed rotation. Its contact point is defined to be in the ground plane at q1n̂x + q2n̂y from
the origin. As for the generalized speeds used in Kane’s method, those are defined as ui = q̇i for
i = 1, . . . , 5. While the ground is treated as the Newtonian body, the disc has a specified mass, inertia
and radius. To control the disc three time-varying torques are used: Tdrive acts about the rotation axis
of the disc, Tsteer acts about the axis going through the contact point and the center of the disc, and
Troll acts about the axis perpendicular to both the normal of the ground and the rotation axis.

q2

n̂x
n̂y

n̂z

q4

q1

q3

q5

ây

âx

m, Ixx, Iyy, r

Figure 2.1: Free body diagram of a rolling disc.
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Define objects Define kinematics

v = 0

v
T

Define loads Define constraints

no slip

Figure 2.2: Illustration of the identified steps in formulating a model in SymPy. The image shows a simplified example of a
rolling disc. The first step defines the ground and the disc. The second creates the kinematic relationships by defining the

velocities. The third defines a torque acting upon the disc. And the fourth defines a no-slip constraint between the ground and
the disc.

The steps that were identified in formulating a model are illustrated in figure 2.2. Each of those
steps are further elaborated on in the subsections.

2.2.1. Define Objects
The first step is to define all objects. A first set of objects are symbols to represent various quantities.
Within the mechanics module of SymPy, sympy.physics.mechanics, there are two kinds of symbols:
symbols and dynamic symbols. Symbols denote constants, like mass, dynamic symbols denote time-
varying functions, like generalized coordinates. In the code snippet below each of these quantities is
created for the rolling disc.

1 # Import the sympy and its mechanics module under the aliases sm and me
2 import sympy as sm
3 import sympy.physics.mechanics as me
4

5 g, m, r, Ixx, Iyy = sm.symbols("g m r Ixx Iyy")
6 q1, q2, q3, q4, q5, u1, u2, u3, u4, u5 = me.dynamicsymbols("q1:6 u1:6")
7 T_drive, T_steer, T_roll = me.dynamicsymbols("T_drive T_steer T_roll")

Listing 2.1: Code defining the symbols used in the rolling disc model.

Other objects to be created are the reference frames, points and bodies. The code snippet below
constructs the reference frames and points manually. This clearly shows that a rigid-body is mainly a
data object keeping references to its intertial properties, frame, and center of mass. They can also be
instantiated automatically when creating a body.

8 N = me.ReferenceFrame("ground_frame")
9 A = me.ReferenceFrame("disc_frame")

10 O = me.Point("origin")
11 P = me.Point("disc_center")
12 CP = me.Point("contact_point")
13 disc = me.RigidBody(
14 name="disc",
15 masscenter=P,
16 frame=A,
17 mass=m,
18 inertia=me.Inertia.from_inertia_scalars(P, A, Ixx, Iyy, Ixx)
19 )
20 ground = me.RigidBody("ground", O, N)

Listing 2.2: Code defining the reference frames, points, and bodies of the rolling disc model.

These objects together form the building blocks of the mechanical system. Therefore, all other
stages depend on the define objects stage. As SymPy uses graph representations for its symbolic
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expressions1 as well as for the relationships between reference frames and points, this step can be
seen as creating the nodes of all the graphs2. The edges ought to be defined in the next stages.

2.2.2. Define Kinematics
Where the define objects step only creates the two base components, namely reference frames and
points, the define kinematics stage defines the edges in the graphs they are used in. To store the
kinematic relationships, the sympy.physics.mechanics module makes use of six graphs in total: three
for describing the orientation, angular velocity, and angular acceleration of the reference frames, and
three for describing the position, velocity, and acceleration of the points. An edge in a graph describes
the relationship between two nodes. In the case of the points position graph, an edge describes the
position of one point with respect to another.

orientation

angular velocity

angular acceleration

d
dt

d
dt

Figure 2.3: Visualization of the kinematic relations structure used in sympy.physics.mechanics for the reference frames. The
image shows three graphs, which are related by the time derivative. The circles represent the nodes, i.e. reference frames and
the edges represent the existing relationships. An edge in the top graph describes the orientation between two frames using a
Direct Cosine Matrix (DCM). An edge in the middle graph represents the angular velocity of one frame with respect to another.

The bottom graph shows the defined angular accelerations between frames.

These graphs are also interrelated, as illustrated in figure 2.3 for the reference frames. The ref-
erence frames use three bidirectional graphs. Notable in this case, is the fact that only the graph
describing the orientation between reference frames ought to be connected and acyclic. Connectivity
is a required property, as the orientation from each frame with respect to the Newtonian frame ought
to be defined. The graph must be acyclic to ensure its consistency. On the other hand, the angular
velocity and angular acceleration graph can both be disconnected and cyclic. The reason is that both
can be derived from another graph: the angular velocity from the orientation graph and the angular ac-
celeration from the angular velocity by taking the time derivative. Points use a similar graph structure,
where a bidirectional connected acyclic graph is used for the positions between points. The velocity of
points is stored with respect to reference frames. Consequently, a point’s velocity in a frame can only
be computed if and only if there is a connected point, whose velocity is already known in the particular
frame. The acceleration again equals the time derivative of the velocity.

From these graph descriptions, several important conclusions can be drawn. First and foremost
that it does not matter in what order relationships are defined within a graph, as long as the final result
of the graphs is as follows:

• The orientation graph of the reference frames must be connected and acyclic.
• The position graph of the points must be connected and acyclic.
• The velocity of a least one point must be defined in the Newtonian reference frame.

This implies that one can work on different parts of the same graph separately in random order without
requiring any knowledge about the other parts, which is generally advantageous for decoupling. How-
ever, there is an order-dependency between graphs. The position graph of the points is dependent on
the orientation graph of the reference frames, because it defines its relations by means of the reference
frames’ unit vectors. The orientation graph of the reference frames on the other hand is entirely inde-
pendent of any other graph3. Another important conclusion with respect to biomechanical modeling

1Checkout the SymPy documentation on Advanced Expression Manipulation for more details.
2The implications of these insights will be discussed in section 2.2.2.
3The future recommendations, chapter 6, propose to split up the “define kinematics” step into a “define orientations” and

“define positions” step because of this dependency structure.

https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.html
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is that the actual formulation of the kinematics matches closely to the mobilizer formulation proposed
by Seth et al. [72], which is used in Simbody [76]. This can be seen in the usage of DCMs for the
orientation between frames and position vectors between points4.

The code snippet below establishes the minimal required definition of the kinematics of the rolling
disc.

21 A.orient_body_fixed(N, (q3, q4, q5), "ZXY")
22 CP.set_pos(O, q1 * N.x + q2 * N.y)
23 P.set_pos(CP, r * me.cross(A.y, me.cross(A.y, N.z)).normalize())
24 O.set_vel(N, 0)

Listing 2.3: Code establishing the kinematic relationships between the rolling disc and the ground.

2.2.3. Define Loads
With the kinematics defined, the next step is to define the loads. The term loads is used as a general
term for both forces and torques. A load within SymPy is defined as a vector, which is associated with
a location. For a force this location must be a point5 and for a torque the location must be a frame,
because points are used to describe changes in position and reference frames to describe rotations.

The reason for loads to be after the “define kinematics” step, is that loads may make use of rela-
tionships between points and frames and not the other way around. An example of a load depending
on a kinematic relationship is a spring between two moving points. However, if one were to be using
non-contributing loads, like a normal force in the model, then it is required in Kane’s method to also
introduce an auxiliary speed in the direction the load is acting. In this case, it is best to introduce this
speed in the define kinematics step, as it should propagate through the kinematic relationships.

The process of defining loads is illustrated in the code below. Here the total applied torque and the
force due to gravity acting upon the disc are computed.

25 torque = me.Torque(
26 frame=A,
27 torque=(T_drive * A.y
28 + T_steer * P.pos_from(CP).normalize()
29 + T_roll * me.cross(A.y, N.z).normalize())
30 )
31 force = me.Force(P, m * g * N.z)

Listing 2.4: Code computing the force and torque acting upon the rolling disc.

2.2.4. Define Constraints
The last step in the model formulation is the definition of the constraints. Within the field of dynam-
ics, one generally distinguishes two types of constraints: holonomic and nonholonomic constraints.
Holonomic constraints are defined as equations that are functions of the generalized coordinates and
possibly time. Nonholonomic constraints are non-integrable equations that are linear functions in both
the independent and dependent generalized speeds [50]. Generally, constraints can be seen as equa-
tions, which would create some sort of a cycle in some of the graphs used by reference frames and
points. A clear example is the closing joint of a four-bar linkage. In this example, the constraints define
“an extra positional relation” between two points, which are already connected via the open-loop chain.

Listing 2.5 shows that the nonholonomic constraints are computed by subtracting two alternative
computations of the velocity of the wheel’s center. However, it is important to note that this computation
should not use the points velocity graph6, because the velocity of some points can be computed based
on different theoretical constructs. An example of such a point is the contact point. In pure-rolling it can

4An initial step towards a mobilizer implementation in the joints framework in sympy.physics.mechanics can be found in
#23920

5SymPy uses a point, while it is in fact a line to which the vector is bounded.
6The assumption is here that the previously made definitions are not known.

https://github.com/sympy/sympy/pull/23920
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be defined as having a velocity in the ground’s frame7, but also as having zero velocity8.

32 N_v_P1 = P.pos_from(O).dt(N)
33 N_v_P2 = me.cross(A.ang_vel_in(N), P.pos_from(CP))
34 nonholonomic_constraints = [
35 (N_v_P1 - N_v_P2).dot(N.x),
36 (N_v_P1 - N_v_P2).dot(N.y),
37 ]

Listing 2.5: Code computing the nonholonomic constraints ensuring pure-rolling of the rolling disc.

As the constraint definition step depends the strongest on the previous steps, it has been chosen
as the last step. However one should note that the “define loads” and “define constraints” steps are not
dependent on each other, so they could be swapped.

2.3. Kane's Method
The mechanics module in SymPy offers multiple automated methods, which can form the EOMs of a
system. One of which is Kane’s method. There are two major advantages of Kane’s method over clas-
sical methods such as Newton-Euler, Lagrange and Hamilton. Firstly, it is designed to be systematic,
while also resulting in simpler EOMs. Secondly, it can directly deal with nonholonomic systems without
having to use Lagrange multipliers [26].

Due to the systematic implementation and integration of Kane’s method in SymPy, the user only
requires to specify its inputs. For the rolling disc example from the previous section these are shown in
listing 2.6. An important remark is that Kane’s method not only uses generalized coordinates but also
generalized speeds, which are defined as linear functions of the derivatives of the generalized coordi-
nates. Generalized speeds are used to specify the velocity of the system, like generalized coordinates
are used to specify its configuration. For more information on Kane’s method and its implementation
in SymPy see appendix A.

38 t = me.dynamicsymbols._t # Symbol for time utilized by dynamicsymbols
39 kane = me.KanesMethod(
40 frame=N, # Inertial frame
41 q_ind=[q1, q2, q3, q4, q5], # Independent generalized coordinates
42 u_ind=[u3, u4, u5], # Independent generalized speeds
43 kd_eqs=[u1 - q1.diff(t), u2 - q2.diff(t), u3 - q3.diff(t),
44 u4 - q4.diff(t), u5 - q5.diff(t)], # Kinematic differential equations
45 u_dependent=[u1, u2], # Dependent generalized speeds
46 velocity_constraints=nonholonomic_constraints, # Velocity constraints
47 bodies=[disc, ground], # Bodies within the system
48 forcelist=[force, torque], # Loads acting upon the system
49 )
50 kane.kanes_equations() # Forms the EOMs

Listing 2.6: Code utilizing SymPy’s Kane’s method to compute the EOMs.

2.4. Code Generation and Integration
The result of Kane’s method are the analytically exact EOMs. For simulation it is necessary to effi-
ciently evaluate these to obtain the acceleration. Therefore, it is required to generate compilable and
executable code from the analytical EOMs of the system. SymPy contains several functions for code
generation to different languages, such as C, Fortran, Octave and Python9. An important optimization
within code generation is Common Subexpression Elimination (CSE). CSE determines what subex-
pressions are used in multiple locations and replaces them by a temporary variable, which only has

7The contact point’s location changes with respect to time, which can be computed by differentiating the position vector w.r.t.
to the origin in the ground’s frame.

8The contact point is also the instantaneous center of rotation and has therefore a zero velocity in both the ground’s as well
as the disc’s frame.

9For more information refer to the Code Generation page in the online SymPy documentation.

https://docs.sympy.org/latest/modules/codegen.html
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to be computed once. Thereby the number of operations, e.g. summations and multiplications, in the
EOMs can be significantly reduced.

After code generating the EOMs, the function can be passed to an integrator with the initial condi-
tions and inputs to simulate the system. There are many integrators available in Python, two popular
libraries are SciPy and scikits.odes. Integrators from both of these libraries are utilized in this project.

2.5. Summary
This chapter offers several insights into developing a modular framework by identifying a systematic
approach to define a model. Based on which the EOMs can be computed using an algorithmic imple-
mentation of Kane’s method in SymPy. The systematic approach consists of four steps:

1. “Define objects” (section 2.2.1). Creates the objects, such as symbols and reference frames,
without defining any relationships between them.

2. “Define kinematics” (section 2.2.2). Establishes relationships between the objects’ orientations/-
positions, velocities, and accelerations.

3. “Define loads” (section 2.2.3). Specifies the forces and torques acting upon the system.
4. “Define constraints” (section 2.2.4). Computes the holonomic and nonholonomic constraints to

which the system is subject.

From the perspective of the graphs, it can also be seen that these steps are decoupled and internally
mostly order-independent10. “Define objects” corresponds to the creation of the nodes. “Define kine-
matics” corresponds to the creation of the edges. And both “define constraints” and “define loads” only
make use of the graphs to define additional properties of the system.

A last consequence of the graph perspective is the identification of three properties that a valid
system must satisfy:

• The orientation graph of the reference frames must be connected and acyclic.
• The position graph of the points must be connected and acyclic.
• The velocity of a least one point must be defined in the Newtonian reference frame.

10The reason why it is not entirely order-independent is further clarified in chapter 6.



3
Modular Mechanics Modeling

BRiM Core

To aid the development of a modular framework to create bicycle-rider models, a universally applicable
framework is proposed forming the core of BRiM. This chapter focuses on this framework which allows
for multiple levels of describing a model. At a high level, models can be specified using components,
providing the modularity to select a specific wheel or tyre model in a single statement. For features
not supported at the component level, an intermediate level allows the use of joints and bodies to
represent the model. The framework also allows for a low-level description, enabling the manipulation
of expressions and the use of custom DCMs between frames. The combination of these three is
possible, as they all form symbolic building blocks defined using SymPy, while building upon the model
formulation workflow, as discussed in the previous chapter. This chapter focuses on the explanation
of the high level, while building upon and supporting the other two levels. Though this project did also
involve redesigning the bodies and joints interface and introducing a special System object in SymPy’s
mechanics module, it has been excluded from this report. An explanation of the joints framework is
available in SymPy’s online documentation1. An explanation of the System object has not been made
public yet2.

Different physics engines use different formats to describe models. A popular format to describe
robots is the Unified Robot Description Format (URDF) [83], but it suffers from several limitations such
as the lack of support for musculotendons. Alternative file formats like the XML-based osim format in
OpenSim [17] andMJCF inMuJoCo [82] have been introduced to address some of these limitations and
optimize for their respective physics engines. However, creating model files in either of these formats
is challenging [83]. All of these file formats primarily focus on the intermediate-level description using
joints, bodies, and actuators. Although MJCF can be considered a hybrid between a modeling format
and a programming language, it lacks the full power and versatility of a general-purpose programming
language [16].

This chapter is structured as follows. Section 3.1 explains the requirements of a modular framework.
After which section 3.2 explains how modularity, in general, can be viewed from a physics perspective.
Building upon this understanding, section 3.3 proposes two architectures with a discussion of their
advantages and disadvantages. Based on these proposals a new design is derived consisting of three
fundamental components, further explained in section 3.4. Finally, the application of the proposed
design is exemplified in section 3.5, where the framework is utilized to model the dynamics of a rolling
disc.

1The joints framework explanation page can be found at: https://docs.sympy.org/dev/modules/physics/mechanics/
joints.html. The API reference is available at: https://docs.sympy.org/dev/modules/physics/mechanics/api/joint.
html.

2I have written a full description in its docstring. However, the object is not publicly available at the time of writing this thesis,
due to it still being experimental.
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3.1. Requirements
To investigate the solution space for the required modular framework, it is necessary to define a set of
requirements. These requirements were identified by informally interviewing researchers and users of
SymPy. The requirements, also called features, have been classified into three categories:

• Functional requirements (section 3.1.1): These describe desired functionalities of the framework.
• Performance requirements (section 3.1.2): These specify aspects that the framework should be
optimized.

• Constraints (section 3.1.3): These identify limitations and restrictions to which the framework
should be subjected.

The prioritization of the requirements is further classified using the agile method, called MoSCoW [14],
where each of the capital letters stands for a different category:

• M (Must): Requirements that are deemed essential and must be satisfied for the framework’s
success.

• S (Should): Requirements that are important and should be satisfied to meet the framework’s
objectives.

• C (Could): Requirements that are desirable and could be satisfied if resources permit.
• W (Won’t): Requirements that will not be satisfied in the current scope of the framework.

To enhance clarity and understanding of the requirements, user stories are utilized. User stories provide
concise explanations of the wishes and needs expressed by different stakeholders. The identified
stakeholders for the framework are:

• Developers: Individuals who work at the core ofBRiM, responsible for maintaining and developing
the framework.

• Modelers: Users who utilize the core of BRiM to create new models, such as a new bicycle-rider
model. They possibly contribute to the other modules in BRiM.

• End-users: Users who use and combine the models created within BRiM for their specific pur-
poses.

3.1.1. Functional Requirements
The following functional requirements for the core have been identified:

• It must be possible to create a library of components.

As a modeler I want to be able to create a set of components like a knife edge wheel and
toroidal-shaped wheel, which can be easily reused in different systems.

• It must be modular.

As an end-user I want to be able to relatively simply change out the model of a wheel from
a knife edge wheel to a toroidal-shaped wheel.

• It must be extensible.

As an end-user I want to add the model of a rider on top of a bicycle, after modeling a bicycle
and rider separately.

• It must be possible to create a new component of a type, which is automatically compatible with
other models.

As a modeler I want my newly created flexible rear frame to automatically be compatible with
the bicycle models which the rigid rear frame is also compatible with.

• It must be compatible with the existing sympy.physics.mechanics objects.

As an end-user I want the option to add other loads like gravity to the model using the
sympy.physics.mechanics Application Programming Interface (API).
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• It must be possible to choose what set of prespecified loads should be applied.

As an end-user I want the option to specify in a single statement set of musculotendons
should be applied to the model.

• It should support choosing a different convention for the same model

As a modeler I want to be able to implement a Whipple bicycle model according to Moore’s
convention and to Meijaard’s convention, which can be instantiated from theWhipple bicycle
class.

• It should have a method to get a description of symbols.

As an end-user I want to easily be able to figure out a description of a symbol used in the
EOMs.

• It could have the possibility to customize symbols.

As an end-user I want the ability to use the same symbol for the radius for the front and the
rear wheel.

• It could have smart methods to find suitable components.

As an end-user I want to be able to easily find what wheel models I can use in a certain
bicycle model as the rear wheel.

3.1.2. Performance Requirements
The following performance requirements for the core have been identified:

• It must strive for decoupling of models.

As a developer I aim for decoupling, because it solves problems where objects have to be
made compatible.

• It should be as intuitively as possible to follow the general principles and thought processes used
in defining a unique model and forming the EOMs.

Everyone wants the framework to be as intuitive as possible.

• It should minimize the amount of boilerplate code when defining a component.

As a modeler I want to write as less code as possible and only write those things which
actually characterize my model.

• It shouldminimize the number of operations in the EOMswithout sacrificing computation speed3.

As an end-user I want my EOMs to be as efficient as possible.

• It could minimize the computation time for defining the model and forming the EOMs.

As an end-user I want my equations to be formed as fast as possible.

3.1.3. Constraints
• It must use SymPy and specifically build upon its module sympy.physics.mechanics.

As a developer I have chosen for SymPy and want full compatibility with its mechanics mod-
ule, because everyone wants to utilize its functionality.

• Symbols used by different components must be unique.

As an end-user I want the rear wheel and front wheel radius to have a unique symbol by
default, even though they may be instances of the same model.
As a modeler I want an easy method to make sure the symbols between different models
are different, while still using sensible names for each symbol.

3The reason to constrain the number of operations with the computation speed is to avoid the use of time-consuming simpli-
fication routines.
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3.2. Moving System Boundaries
An important concept in each design of the framework as well as in modeling systems in general is
the definition of a system boundary. A system boundary represents a demarcation line that separates
the system under consideration from the world. It defines the scope and extent of the system, encom-
passing all the components and interactions that are relevant to the specific analysis or modeling task.
Choosing a good system boundary is seen as a crucial step, as it can vastly simplify the modeling
process by abstracting away unnecessary details.

Furthermore, a system boundary enables modular modeling by facilitating the decomposition of
complex systems into smaller, more manageable subsystems. Each subsystem can be treated inde-
pendently within its respective system boundary, simplifying the modeling of individual components.
Once the subsystems have been defined separately, they can be merged to form the complete sys-
tem. This modular approach not only enhances the understanding and organization of the model but
also promotes reusability and flexibility in system design. A visual representation of system boundaries
applied to a bipedal robot model is depicted in figure 3.1.

system boundary

pin joint

ground

pelvis

left
leg

right
leg

Figure 3.1: Illustration of how system boundaries can be drawn differently to split up a model into different parts. The bipedal
robot is split up into a separate ground, pelvis, left leg, and right leg system. Thereby each smaller system can be modeled

separately before combining them later on when drawing a system boundary, which unites all of the smaller systems.

In practical applications, it is important to consider interactions that occur at the system boundaries.
For instance, if a system boundary represents a single link of a pendulum, it becomes necessary to
specify the loads applied by the pin joints on the link. These loads can be treated as unknowns within
the subsystem. However, another subsystem will be having the same unknown loads in the opposite
direction. Therefore, both subsystems do not need to model these interactions. The system which
unites the subsystems will have to specify the exact interaction.

3.3. Graph Structure
From the concept of defining separate subsystems using system boundaries, which can be united, fol-
lows a graph structure. Graphs come in different types with varying properties. This section proposes
two new designs: a tree graph (section 3.3.1) and a bi-directional cyclic graph, called a flat graph for
simplicity (section 3.3.2). Both of these graphs have several advantages and disadvantages. Sec-
tion 3.3.3 concludes with a discussion to make a decision on what parts of the designs to proceed.
To aid in the description of both designs, the bipedal robot presented in figure 3.1 will be used as an
example.

3.3.1. Tree Structure
A tree structure is an acyclic directional graph with a hierarchical organization. In this design, a model
(parent) is composed out of smaller submodels (children). So each submodel will define its system
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within its own system boundary and the overarching parent model will define their interactions. An
illustration of the tree structure applied on the bipedal robot is depiced in figure 3.2.

BipedalRobot

GroundPelvis LeftLeg RightLeg

Figure 3.2: Visualization of the tree graph design for the bipedal robot shown in figure 3.1. The BipedalRobot is the parent
model composed of four submodels.

3.3.2. Flat Graph Structure
In contrast, a flat graph structure represents a bi-directional cyclic graph without a direct hierarchical
relationship between the systems. This design choice aligns with the notion that connections between
systems in the physical world often describe interactions rather than strict hierarchies. To achieve a
flat graph structure, a registry can be employed to automatically establish the connections between
components. If one would specify that there should be a connection between the ground and the left
leg, then the registry finds a connection that is able to do so. However, while this design does remove
the explicit hierarchical relationship, it still necessitates some kind of grouping utility to automatically
specify which components should be connected with each other. Figure 3.3 provides a visualization of
the flat graph design for the bipedal robot.
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Figure 3.3: Visualization of the flat graph design for the bipedal robot shown in figure 3.1. Each of the models is connected to
each other bi-directionally using a connection as an edge.

3.3.3. Concept Evaluation
The decision between a tree structure and a flat graph structure depends on various factors. Both de-
signs offer a method to decouple the different submodels. They also use graph structures for which a
wide variety of well-documented algorithms are available including methods to visualize them. Though
it must be mentioned that the visualization of trees is more readable and easier to implement. A dis-
advantageous property shared by both designs is that the choice of the system boundaries is partially
subjective. However, the flat graph is more forgiving here, because it can more easily work around the
problem by introducing new connections.

The tree graph offers several additional advantages. It aligns with a natural conceptualization by
modelers through an intuitive compositional representation. Through its hierarchical structure it also
provides a lot of clarity and structure. What on its turn results in improved ease in debugging and
maintaining. Overall, the tree structure offers a very user-friendly design.
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There are however also several disadvantages. Most of these are found when pairing two submod-
els with a complex interaction, which relies on several model-unique properties. An example is the
interaction between the wheel and the ground. Firstly, it relies on unique properties of how the shape
of each is described in order to compute the contact point. If it is a knife-edge wheel, only the radius is
utilized. However, if it is a toroidal-shaped wheel, also the transverse radius must be taken into account
with a slightly different computation. These are only two examples for the wheel, but the ground may
also not be flat giving even more combinations. The second problem already notable in this example
is that the computation is complex and should therefore be reusable among different parent models.
Thirdly, the exact interaction between the two submodels may in itself also be modular. In the case of
the interaction between the wheel and the ground, there is also the definition of the tyre model, which
must be modular. A last disadvantage is that some models may require the creation of new properties
for compatibility with other models. An example is the addition of a rider lean axis, when adding a rider
on top of a rear frame.

The flat graph structure offers other advantages. Contrary to the tree structure, it aligns with the
physics perspective, because interactions between systems are similarly defined to interactions within
systems. Additionally, it provides greater flexibility, as every model can be connected to another model
by introducing a new connection. A huge advantage, which actually solves most of the disadvantages
of the tree structure. Lastly, the registry introduced by the flat graph also greatly improves the users’
workflow in aiding the search for suitable connections.

However, all of these advantages come at a cost. Because connections are utilized for every in-
teraction, the code base grows exponentially. Also, the increased flexibility is sensitive to cluttering
of the code base, since a new connection can be introduced to solve every problem, though this can
be reduced by introducing a strict set of guidelines4. The last problem is that connections, i.e. edges,
are designed to model the interaction only between two models, while one may prefer to describe an
interaction between multiple models or between two groups of models and connections.

All in all, it can be seen that there are many advantages on either side. While the tree structure
is more user-friendly and intuitive, the flat graph manages to solve several of the issues of the tree
structure. However, this comes at the cost of various disadvantages mainly revolving around the prob-
lem that it needs a lot of different connections. An optimal solution is created by incorporating strong
aspects of both to provide a comprehensive modeling approach. The new design utilizes the tree struc-
ture as basis, but reworks the connectors from the flat graph into, so-called connections (section 3.4.2).
Additionally, the concept of using a registry to assist users in finding suitable models and connections
can also be adopted from the flat graph design.

3.4. Core Components
The core design principles discussed in section 3.3 and the identified requirements outlined in sec-
tion 3.1 are implemented in BRiM through three fundamental components: models (section 3.4.1), con-
nections (section 3.4.2), and load groups (section 3.4.3). The models are the main components, where
each model describes a system or subsystem following the tree structure explained in section 3.3.1.
The connections can be seen as an utility in of parent models to describe a modular interaction be-
tween submodels resembling many characteristics with the connectors from the flat graph structure.
The load groups are predefined sets of actuators and loads, which are commonly associated with a
specific model or connection.

4A discussion of a version of the flat graph structure involving various of these strict guidelines can be found in #16 of BRiM

https://github.com/TJStienstra/brim/issues/16
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abc.ABCMeta

BrimBase

ConnectionMetaModelMeta

ConnectionBase

instance

ModelBase LoadGroupBase

LoadGroupMeta

instance instance

Inheritance

Figure 3.4: UML diagram of the main core components of BRiM. The UML diagram shows the three abstract classes5:
ModelBase, ConnectionBase and LoadGroupBase. Each of these classes has a separate metaclass, which processes the class
definition and registers the class in the registry. To increase the similarity between each and remove code duplication, each of

the classes also inherits from BrimBase.

A Unified Modeling Language (UML) diagram of the core components is shown in figure 3.4. In
line with the principles of object-oriented programming BRiM uses classes to create models, connec-
tions, and load groups. Such that one can instantiate KnifeEdgeWheel to create a model of a wheel.
These three base classes inherit from BrimBase, because they share the four define steps, discussed
in section 2.2. Metaclasses6 are used to improve the modeler’s interface by reducing boilerplate and
automatically adding the defined classes to the registry. Another option to preprocess a class definition
would have been the usage of decorators, similar as in the dataclasses library. However, utilizing a
metaclass offers two main advantages over using a decorator. Firstly, metaclasses align more closely
with the principles of object-oriented programming. Secondly, the application of a metaclass automati-
cally occurs through inheritance, whereas a decorator needs to be manually applied to each class.

3.4.1. Models
A model in BRiM is an object that represents a specific system within defined system boundaries. A
model can be composed out of multiple submodels, in this case the composed model is called a parent
model with respect to the submodels. Each model encapsulates the relations and behaviors of the
system, allowing for a modular and hierarchical representation where the parents do not know the
details of their submodels. An example of encapsulation is the usage of a rotation axis property in the
case of a wheel, as it hides information on how and why it chooses a certain vector.

While the usage of an abstract class for a component ensures a default interface, it is common for
bicycle models to have multiple conventions. To accommodate this variability, an addition is made to
the core design of BRiM. A class method called from_convention is introduced, utilizing the registry
(see section 3.3.2) to locate the appropriate model based on the class property convention.

3.4.2. Connections
A connection object in BRiM serves as a utility used by a parent model to establish relationships be-
tween two or more submodels. It offers three key features that enhance the modeling framework.
Firstly, a connection enables a parent model to define interactions between multiple submodels in a
modular manner. For instance, consider a robot arm connected to its base. The type of connection

5abc.ABCMeta is a metaclass to create abstract base classes.
6A metaclass is a special class in Python, which defines how classes are created and behave, allowing customization of

attributes, methods, and inheritance.
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between the arm and the base can be modular, allowing the parent to choose between fixation, a pin
joint, or other options. Secondly, connections enable the modular reusability of complex interactions.
An example is the complex interaction between a wheel and the ground. This interaction should not
be described separately in each model containing a wheel interacting with the ground. Also creating a
separate submodel is not possible, as it would break the tree structure by requiring the same submodel
to be used by different parent models. A visualization of this problem is shown in figure 3.5.

bicycle

ground front wheelrear wheel

rear tyre ... front tyre

Figure 3.5: Visualization of a broken tree structure caused by the usage of a tyre model object to describe the interaction
between a wheel and the ground.

Thirdly, connections provide the capability to incorporate new properties into a model. While the
rider’s lean axis property may not be necessary when solely modeling a bicycle’s rear frame, it becomes
a valuable addition when considering the interaction between the bicycle and a rider. By utilizing a
connection this property can be easily included in both the rear frame and the rider7. This flexibility in
adding additional properties to a model contributes to the versatility of the modeling framework. As can
be noticed from these features. The problems found in the tree structure, in section 3.3.3, are solved
by the connection object.

3.4.3. Load Groups
Most models are by themselves not by definition associated with certain load, but there are set of loads
which are commonly applied to certain models. Therefore, it is advantages to introduce a separate
object called load groups. A load group allows adding a set of actuators and loads to a model or
connection. An example where it is advantageous to use load groups is for a leg, see illustration in
figure 3.6. Consider a leg consisting of three bodies: a thigh, shank, and foot. Each of these bodies
is connected using a pin joint. The simplest load group would be to use a torque actuator applying
a time-dependent torque Ti(t) to each of the pin joints about the rotation axis. A bit more advanced
option is to replace this scalar with a linear torsional spring-damper. A further step would be to model
musculotendons. Each of these three options can be defined using a load group, which can be applied
to the model of the leg. Note that it is also possible to add multiple load groups in parallel, e.g. the
time-dependent torque and the linear torsional spring-damper could be applied simultaneously.

7In the current implementation, these properties are added to connection objects rather than the model objects themselves.
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thigh

shank

foot

Figure 3.6: Illustration of different load groups one can use for the leg. The left uses time-dependent torques, the middle linear
torsional spring-dampers, and the right musculotendons.

3.4.4. Model Definition Workflow
The definition of a model starts with the end-user defining the model’s structure. The user specifies
the aggregation of each model, i.e. out of what submodels, connections, and load groups each model
exists. Having this structure defined the user starts the model definition process:

1. Associate the submodels with the connections. The end-user specified the submodels with re-
spect to the parent models. In this phase the parent models associate the submodels with the
connections, to ensure that the connections have access to the required information in the next
stages.

2. Run the define steps in order. The four steps key steps identified in section 2.2 were: defining
objects, specifying kinematic relationships, determining the loads acting within a system, and
imposing constraints on a model. A definition step involves the following sub-steps starting from
the root model:

(a) Define submodels. A model first calls the define step for each of the submodels, causing a
depth-first traversal. A depth-first traversal is required as parent models may use properties
of submodels and not the other way around.

(b) The model defines itself. If applicable it triggers the define step of connections. The define
steps in connections are initiated by the parent models manually, as there can be depen-
dence from the connection to the parent model and vice versa. An example is that the disc
should be oriented before the location of the wheel center with respect to the ground can be
computed.

(c) Define load groups. The model calls the define step for each of the load groups associated
with it.8

Upon completion of the above steps, all relationships within the model are defined. At this stage, the
end-user can export the model to a system instance of sympy.physics.mechanics.

3.5. Rolling Disc Example
The rolling disc is a model posing most of the problems one may encounter when designing such
a framework. This section discusses the implementation of a rolling disc model in BRiM. The same
formulation of a rolling disc is used as in section 2.2. The description of the model is found above
the free body diagram of a rolling disc, figure 2.1. This section starts with a general overview of all
the components in section 3.5.1. The subsections that follow explain each type of component: the
models, connections, and loads. A more detailed explanation including exemplifying code is provided
in appendix C. Section 3.5.5 finishes by building the model and giving a step-by-step overview of the
model definition workflow.

8Note that connections and load groups never initiate a define step of a model.
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3.5.1. Components Overview
As depicted in figure 3.7, the rolling disc model (RollingDisc) consists of two models, one connection
and a set of load groups. Each body is represented by a separate model, as the bodies are expected
to be modular. In this case, the ground is modeled as a flat ground (FlatGround), but one can also use
a ground with a slope. The wheel model describes the inertial properties and the shape of the disc, in
this case a knife-edge wheel (KnifeEgeWheel). To describe the interaction between the wheel and the
ground, a non-holonomic tyre model (NonHolonomicTyre) is utilized. Reasons for this have also been
discussed in section 3.4.2. A load group is used to apply a driving, rolling, and steering torque. Gravity
is applied after creating the final system instance.

RollingDisc

disc: WheelBase

ground: GroundBase

tyre: TyreBase

load_groups

KnifeEdgeWheelFlatGround

GroundBase

TyreBase

WheelBase

NonHolonomicTyre

ground: GroundBase

wheel: WheelBase

ModelBase

ConnectionBase

Inheritance

Aggregation

Class

Class and attributes

Figure 3.7: UML diagram of the rolling disc.

3.5.2. Models
The flat ground inherits from the abstract class GroundBase, which defines the interface for every ground
model. This approach allows the rolling disc and other models to interact with different ground models
in a similar manner. Each ground shares three attributes and three methods, as shown in figure 3.8a.
The three attributes, namely a body, frame and origin, are defined by GroundBase, such that subclasses
only have to implement three methods. A first method gets the positional dependent normal vector
(get_normal), another gets the positional dependent tangent vectors (get_tangent_vectors) and the
last sets the position of a point on the ground. One may denote that a normal vector is by definition
enough to define a plane locally. However, the tangent vectors method is included to ease the interface
for other classes, which may also result in simpler equations.

The flat ground implements these three methods accordingly. Its get_normal method returns the
unit vector in the negative Z-direction as normal for every position. The X- and Y-unit vectors are always
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returned as tangent vectors. In set_pos_point the position of a point is set in the XY plane.
Similar to the flat ground, the knife-edge wheel inherits from the abstract class WheelBase, shown

in figure 3.8b. This abstract class has already created a body and a body-fixed frame to represent the
wheel. Besides those, it prescribes two properties to be implemented by subclasses: the rotation axis,
and the wheel center. The knife-edge wheel implements both of these with the rotation axis being the
Y-unit vector and the center being the center of mass. To describe the shape, the knife-edge wheel
only defines a symbol representing the radius. The actual computation involving the shape to compute
the contact point is done within the tyre connection.

GroundBase

body: RigidBody
frame: ReferenceFrame
origin: Point

get_normal(position): Vector
get_tangent_vectors(position):

tuple[Vector, Vector]
set_pos_point(position): None

(a) Properties of the ground base model.

WheelBase

body: RigidBody
frame: ReferenceFrame
center: Point
rotation_axis: Vector

(b) Properties of the wheel base model.

Figure 3.8: Overview of classes’ additional attributes and methods. The top cell shows the class name, the second the
attributes, and the third the methods.

3.5.3. Connections
TyreBase is the abstract base class to describe the interaction between the ground and the wheel. The
abstract class to describe the interaction between the ground and wheel is TyreBase. It creates for
both the ground and wheel a property, which accepts any type of ground and wheel. It also creates a
property for the contact point assuming a single contact point by default. Since the computation of the
contact point is shared among all tyre models, the abstract class also implements a method to set the
position of the wheel’s center with respect to the contact point. This method takes into account what
type of wheel and ground has been specified. A last property that is specified by the abstract tyre class
is one to specify whether the contact point is defined to be in the ground plane by the parent model, in
this case the rolling disc model.

With the implementation of TyreBase the nonholonomic tyre only has to update some of the define
steps. In the method for defining the kinematics it computes the contact point utilizing the implemented
method for it from TyreBase. The constraints to ensure pure-rolling are set in the “define constraints”
method utilizing the properties of the wheel and ground models to perform the computations.

TyreBase

ground: GroundBase
wheel: WheelBase
contact_point: Point
on_ground: bool

_set_contact_point(): None

Figure 3.9: Overview of the additional attributes and methods of the tyre abstract base class. The top cell shows the class
name, the second the attributes, and the third the methods.

3.5.4. Loads
The load group to apply the control torques to the rolling disc has a straightforward implementation. It
only specifies the parent’s type, as the parent property has already been implemented in the abstract
class for load groups. Additionally, it defines the symbols representing the torque quantities when
defining the objects and the torques acting upon the wheel in the loads’ definition phase.
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RollingDiscControl

parent: RollingDisc

Figure 3.10: Overview of the additional attributes and methods of the rolling disc control load group. The top cell shows the
class name, the second the attributes, and the third the methods.

The most convenient method to apply gravity on the system is to use the apply_gravity method
within System, as implemented in sympy.physics.mechanics. This does not result in any problems, as
there is no dependency on gravity of other model definitions. In most cases, it does actually not form
any problems to define a load after exporting the model of BRiM to a single system instance, which
relates to the fact that the “define loads” stage could be chosen as the last phase (see section 2.2.4).
In this case, the torques applied within a load group could also just have been applied afterward.

3.5.5. Model Definition Steps
The user can set up the model using the code below:

1 # Import the required objects
2 from appendix import FlatGround, KnifeEdgeWheel, NonHolonomicTyre, RollingDisc, RollingDiscControl
3

4 rolling_disc = RollingDisc("rolling_disc")
5 rolling_disc.ground = FlatGround("ground")
6 rolling_disc.wheel = KnifeEdgeWheel("wheel")
7 rolling_disc.tyre = NonHolonomicTyre("tyre")
8 rolling_disc.add_load_groups(RollingDiscControl("control"))

Listing 3.1: Code configuring the rolling disc model.

The model is further defined, by calling the define method on the rolling disc model:

9 rolling_disc.define_all()

Listing 3.2: Code defining the rolling disc.

This expands to the following traversal:

1. Call rolling_disc.define_connections.

(a) Perform a depth-first traversal of the submodels to define their connections. In this case,
none of the submodels has any connections, so nothing happens.

(b) The rolling disc model specifies the wheel and ground property of the tyre connection.

2. Call rolling_disc.define_objects.

(a) The ground and wheel model define their objects, such as bodies and symbols.
(b) The rolling disc defines its own objects and calls the tyre to also define its objects. It also

sets the on_ground property of the tyre to true, as it will define the contact point to be in the
ground plane by definition.

(c) The control load group defines its objects, which are only symbols in this case.

3. Call rolling_disc.define_kinematics.

(a) The ground and wheel model define their own kinematic relationships. Only the known points
fixed to their frames are set to zero.

(b) The rolling disc defines the orientation of the disc with respect to the ground and locates the
contact point in the ground plane. Afterward, it manually calls the tyre to define its kinematics.
i. The tyre sets the position of the wheel’s center with respect to the contact point.
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(c) The control load group has no kinematic relationships to define.

4. Call rolling_disc.define_loads.

(a) The ground and disc have no loads to define.
(b) The rolling disc defines no loads and calls the tyre to define its loads, which are also none.
(c) The load group defines the control loads on the disc.

5. Call rolling_disc.define_constraints.

(a) The ground and disc have no constraints to define.
(b) The rolling disc model has no constraints of its own and calls the tyre connection to define

its constraints.
i. The rolling disc defines the nonholonomic constraints to ensure no slip between the disc
and the ground.

(c) The load group has no constraints to define.

Once the model has been defined, it can be exported to an instance of System. Gravity can be
applied to the system, and the EOMs can be formed using the following code:

10 from sympy import Symbol
11

12 system = rolling_disc.to_system()
13 system.apply_gravity(Symbol("g") * system.z)
14 system.form_eoms()

Listing 3.3: Code exporting the model to a single system and forming the EOMs.

This concludes forming the EOMs for the rolling disc using the core of BRiM.

3.6. Summary
This chapter proposes a generally applicable framework to formulate a model fulfilling several identified
requirements. The most important requirements can be summarized as that the framework must allow
for defining and reusing models, each of which can describe a system in varying complexity in an
encapsulated manner, such that the models can be attached together to describe a bigger system.

The previous chapter identified how to work independently on different parts of the graphs describing
a system. The framework utilizes this principle by dividing a model into smaller modular submodels
creating a tree structure. To get the full required functionality, three core components must be used:
models to describe (sub)systems, connections to describe modular and reusable interactions between
subsystems, and load groups to define sets of forces and torques acting upon a (sub)system.

Overall, the framework is both intuitive as well as useful also for other applications. It is intuitive
because dynamicists are used to thinking of complex systems in parts. For example, an excavator
consists out of an arm and a moving base, each of which can be further subdivided. And it is useful, as
it is a novel method to algorithmically describe a system with multiple layers of accessible abstractions.
Thereby forming a strong basis to expand BRiM to implement bicycle-rider models.
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Bicycle-Rider Modeling

BRiM Models

Over the past 150 years, numerous bicycle models have been proposed [36, 69]. These models have
been instrumental in research across various areas, including investigations into bicycle stability [57,
71, 73], control strategies [22, 88], and more. However, creating new bicycle models or extending
existing ones to account for specific aspects can be a laborious task. As highlighted by Schwab and
Meijaard [69], formulating the EOMs for a bicycle model is prone to errors. To assist researchers in
finding and creating their own models more easily, it is beneficial to leverage the general framework
proposed in chapter 3 to develop bicycle-rider models. Another advantage of using such a modular
framework is that it allows to more easily incorporate more complex rider models, which are currently
missing in literature.

Where chapter 3 introduces a modular framework for modeling mechanical systems in general, this
chapter focuses on utilizing this framework as the core for creating Bicycle-Rider Models (BRiM). In
summary, the modular framework employs a tree representation for modeling, allowing a bicycle-rider
model to be split into separate models for the bicycle and the rider. Each of these models represents
a mechanical system on its own and can be further divided into smaller, more manageable models.
Parent models can employ connections to define modular interactions between submodels if desired.
Additionally, load groups are utilized to define additional loads for the system.

Building upon this modular framework, this chapter proposes a set of modular models to be im-
plemented including some additional features to improve the usage of BRiM. Section 4.1 starts with
the additional requirements to BRiM, when implementing bicycle-rider models for research purposes.
Followed by a description of what methods are used in developing BRiM to satisfy the development
method requirements in section 4.2. Section 4.3 provides an explanation on which models have been
implemented. The two additional features on parametrization and visualization are discussed in sec-
tions 4.4 and 4.5. To test the model’s performance section 4.6 creates a benchmark comparing BRiM
to manually generated EOMs using SymPy. Finally, section 4.7 summarizes the chapter.

4.1. Requirements
As the bicycle-rider modeling modules of BRiM build upon the core, the requirements set in section 3.1
automatically apply. However, there are additional functional requirements for the bicycle-rider model-
ing modules:

• BRiM must have a component library that includes pre-implemented models for bicycles in
combination with riders. The specifics on the required models is discussed in section 4.3.

As an end-user I want pre-implemented models that I can combine to create my desired
bicycle-rider models.

• BRiM should have an utility to import parametrization sets of models.

23



4.1. Requirements 24

As an end-user I want to be able to get a dictionary mapping all bicycle and rider parameters
to a value, based on a bicycle parameter data set.

• BRiM could incorporate a visualization utility to depict the model.

As an end-user I want to easily visualize my bicycle and rider, for example using matplotlib.

There are also several requirements from a researcher’s perspective on how BRiM should be devel-
oped. The user stories in the following list also include researchers as stakeholders combining the
stakeholder groups of end-users and modelers. This last set of requirements aims to set the values
used in the development of BRiM:

• BRiM must be open-source.

As a researcher I want to be able to share my models and use other researchers’ models.
This would improve research dissemination and reproducibility.

• BRiM must be as easy as possible to install.

As researcher I want to install BRiM without any hassle.

• BRiM should be backward compatible.

As a researcher I want my code to produce the keep working across different versions of
BRiM.

• BRiM should have a contributing guide.

As a new developer I want to know how I can contribute to BRiM.
As a researcher I want to contribute my new models to expand the component library of
BRiM.

• BRiM could use issue templates.

As a researcher I want to know how to best format my bug report or feature request.
As a developer I want the issues to be properly formatted, such that it is easy to classify and
understand an issue.

• BRiM could use pull-request templates.

As a developer I want the pull-requests to be properly formatted providing a clear overview
what is being modified.

• BRiM’s development method must aim to reduce bugs and other errors.

As a researcher I want no bugs, because those may also lead to incorrect results.

• BRiM’s models must be as verified as possible.

As a researcher I want the models within BRiM to be valid.

• BRiM’s code base should be as readable as possible.

As a researcher I want to be able to understand the code defining my model.
As a developer I want the code base of BRiM to follow proper formatting guidelines.

• BRiM should be as well documented as possible.

As a developer I want to understand the code.
As a researcher I want to understand the models and know what model I should use.
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4.2. Development Method
BRiM encompasses several development tools and values to satisfy the development requirements
proposed in section 4.1. Most inspiration has been drawn from the articles about setting up a Python
project by Jolowicz [25] and Schmidt [67].

To improve BRiM’s availability it has been released open-source on GitHub1, while only utilizing
other open-source tools. BRiM uses Poetry [58], a modern package management system, to simplify
installation. An open request to make BRiM available on the Python Package index (PyPi)2 should
further improve BRiM’s ease of installation in the future. Because it is highly inefficient to support
backwards compatibility for software that is still in an experimental phase, BRiM will prefix a zero in its
version number as long as it cannot guarantee backward compatibility.

BRiM also has several automated workflows in its Continuous Integration and Continuous Delivery
(CI/CD). These workflows ensure that only code, which satisfies various requirements, can be added
to BRiM. A first workflow checks the code quality using Ruff [65], a fast Python linter. This checks
the code on simple errors, consistent code style, documentation, and much more. Another workflow
runs all of the automated unit tests for different Python versions. These tests are also required to
result in a 100% line coverage, such that there is no line in BRiM’s code base which is not tested.
This is the major method to reduce the number of bugs in BRiM. This at the same time impacts the
verification of BRiM’s models, which is further improved by also numerically testing the Whipple bicycle
implementation against literature.

BRiM also automatically builds its documentation using Sphinx in one of the workflows and deploys
it online3, such that it can be used as a reference when creating models using BRiM. The online API
reference is fully auto-generated based on the source code, as the linter already makes sure that
everything is documented. To reduce the learning curve of BRiM, a separate repository brim-examples4
has been created to provide users of examples on how to use BRiM.

4.3. Models
This section discusses the several models that have been implemented in BRiM. The bicycle-rider
model can be split up into two submodels: a bicycle model and a rider model. Section 4.3.1 first
discusses why and how the Whipple bicycle model according to Moore’s convention [49] has been
implemented. Followed by an overview of the division of the implemented rider model in section 4.3.2.
Section 4.3.3 finishes on how these two sets of models, namely the bicycle and the rider, are combined
to form a bicycle-rider model.

4.3.1. Bicycle Models
The Carvallo-Whipple bicycle model [11, 91] is widely recognized as the lowest order bicycle model
with reasonable experimental validation [31, 49, 69, 75]. To align with previous research BRiM must
implement a Carvallo-Whipple bicycle. Meijaard et al. [42] introduced a specific parameter set for a
linearized Whipple bicycle which is used widely throughout the bicycle industry. However, Peterson
[56] points out that there are several problems with using this specific parametrization. When forming
the EOMs for a linearized model it is sensible to express the parameters with respect to the reference
configuration. However, using the same parameter choice for nonlinear EOMs is cumbersome with the
requirements of several intermediate quantities to be introduced. Besides that there is also a coupling
between the parameters, meaning that a change of the front wheel radius will also result in changes
to other parts of the bicycle. Therefore, it is best to choose a parametrization that is configuration
independent and more suitable for nonlinear EOMs. The chosen convention which satisfies these
conditions is the one presented by Moore [49].

1BRiM’s repository is: https://github.com/TJStienstra/brim.
2https://github.com/TJStienstra/brim/issues/37 is the open issue in BRiM on releasing it on PyPi.
3BRiM’s online documentation is available at https://tjstienstra.github.io/brim/.
4The brim-examples is available at: https://github.com/TJStienstra/brim-examples.

https://github.com/TJStienstra/brim
https://tjstienstra.github.io/brim/
https://github.com/TJStienstra/brim-examples
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Figure 4.1: General configuration of the Whipple bicycle model based on Moore’s convention [49].

An illustration of the general configuration of the Whipple bicycle model, based on Moore’s conven-
tion, is shown in figure 4.1. The default Whipple bicycle model consists of a ground and four bodies:
rear wheel, rear frame, front frame, and front wheel. Each body is assumed to be rigid and intercon-
nected by pin joints. The rear wheel’s contact point is defined within the ground plane, and the rear
frame is oriented in yaw-roll-pitch rotation relative to the ground. The front wheel’s contact point is con-
strained to the ground using a holonomic constraint, and nonholonomic constraints are applied to both
wheels to assume no-slip conditions. Further details on the default Whipple bicycle model’s definition
are found in [49]. Literature provides several extensions for the Whipple bicycle model. An overview
of the most regular modifications is given by Schwab and Meijaard [69] and Limebeer and Sharp [36].
These extensions include effects of among others structural flexibility of the front and rear frame, the
transverse radius of a wheel by approximating the wheel with a torus, and tyre models.
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FrontFrameBaseRearFrameBase
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FlatGround
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Abstract class
Model or Connection
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Figure 4.2: Visualization of the components of the Whipple bicycle model according to Moore’s convention in BRiM.

To facilitate amodular approach it is advantageous to split the bicyclemodel into separatemodels for
each body, similar to the rolling disc example discussed in section 3.5. This division not only aligns with
intuitive modeling but also provides practicality, as most extensions are defined at the body level. For
instance, the toroidal wheel extension modifies the wheel shape, and modeling the structural flexibility
of the rear frame is best achieved within a rear frame model. This division results in a total of five
submodels: ground, rear wheel, front wheel, rear frame, and front frame. Both the rear wheel and
front wheel models are wheel models. The interaction between the wheels and the ground can be
addressed using a tyre connection. As the connections between the bicycle’s four parts consist of
simple pin joints, which do not require modification for common extensions, these connections are
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handled by the overarching Whipple bicycle model. A visual overview of the division of the Whipple
bicycle model is shown in figure 4.2.

4.3.2. Rider Models
The rider models found in literature can overall be subdivided in two categories: upper-body models
and pedaling models. Upper-body models generally range in complexity from an inverted pendulum,
like [57, 68], to a passive rider model including the arms to incorporate inertial effects on the stability,
like [49, 70]. Differently from the upper body models, the pedaling models generally use a stationary
bicycle. The pedaling models can be classified into two categories: planar models, like [8, 13, 27, 28,
32, 52, 54, 66, 78, 61, 80, 84, 86], and non-planar models, like [7, 33, 38, 43, 53, 63, 77, 81, 92,
96]5. Planar models focus solely on leg movements within a single plane, whereas non-planar models
account for leg movements that extend beyond a single plane.

A visual overview of the division of the rider model is shown in figure 4.3. The rider is composed
of six segments: pelvis, torso, left leg, right leg, left arm, and right arm. This segmentation is intuitive
and allows enough freedom to highly simplify parts of the model if required. Modeling the pelvis and
torso separately has several reasons. The models in literature show that the lower and upper body
are commonly modeled separately. However, if a full-body model is desired, then it is useful to have a
single shared component, which is the pelvis. Additionally, OpenSim also uses the pelvis as root node
in its model description, which follows a tree topology approach [19].
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Figure 4.3: Visualization of the components of the rider model in BRiM. A legend is shown in figure 4.2.

Connections are used for various joints: hips, shoulders, and one between the pelvis and torso.
The reason behind most of them is that information on both models is required, while it is at the same
time desirable to have each of these joints modular. An example is the hip joint, which uses the pelvis
as well as the leg. It also can be modeled in vastly different ways: a simple pin joint only allowing hip
flexion, a spherical joint, or even a custom joint incorporating the translation as well.

5Notable is that most of these non-planar pedaling models are created in OpenSim [7, 33, 43, 53, 63, 77, 81, 92].
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HipBase

LeftHipBaseRightHipBase SphericalHipMixin

SphericalRightHip SphericalLeftHip

Figure 4.4: UML diagram of the spherical hip joints, to illustrate how symmetry within the rider is modeled.

Due to symmetry of the human body, it has been chosen to use the class design shown in figure 4.4.
This UML diagram shows the inheritance of the left and right spherical hip joints from their respective
base classes, along with the implementation of shared details through a mixin. To ease the connections
between the various body parts and the bicycle, a consistent orientation of the reference frames has
been adopted. Specifically, all frames align with the ground frame, with the Z-axis oriented in the inferior
direction and the X-axis in the posteroanterior direction.

4.3.3. Bicycle-Rider Models
The bicycle-rider model combines both a bicycle model and a rider model using three connections:
one to connect the pelvis with the saddle, one for the pedals and feet, and a last one for the steer and
hands. This is also visualized in figure 4.5. As the kinematic chain of the full model should always
be connected and acyclic, as explained in section 2.2.2, only one of the connections should describe
the orientation and position of the rider with respect to the bicycle. The optimal connection is the one
between the rear frame and the pelvis, as the pelvis is included in both lower and upper body models
of the rider6.

Rider

WhippleBicycle

HolonomicHandGrip

HandGripBase

HolonomicPedalsToFeet

PedalsToFeetBase

BicycleBaseSideLeanSeat
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Figure 4.5: Visualization of the components of the bicycle-rider model in BRiM. A legend is shown in figure 4.2.

The other two connections can be made in different ways. Two approaches that can be seen in
literature to connect the feet to the pedals are: via holonomic constraints [8, 13, 84] and springs [54],
possibly including dampers. These same approaches can also be used for connecting the hands to

6The other connections could also be used to connect the two kinematic chains.
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the front frame. Optionally, additional holonomic constraints can be added to force the arms to hang
down [49].

4.4. Parametrizations
As mentioned in the requirements (section 4.1), the integration of parameter sets derived from bicycle-
rider measurements is highly advantageous in BRiM. Because the EOMs generated by BRiM require
numerical values of various parameters such as masses and lengths for simulation. While it is possi-
ble to manually set each of these parameters, it is common practice to utilize parameter sets based
on experimental measurements. One notable library that facilitates this process is the open-source
BicycleParameters Python library [47] developed by Moore [49]. This library is based on several ex-
perimental methods [30, 31, 51] and offers a convenient way to obtain parameter values for bicycles.
The BicycleParameters library incorporates an object-oriented implementation of Yeadon’s model [18],
which estimates the inertial properties of human body segments using a geometric method with rea-
sonable accuracy [94].

In BRiM, a tree traversal over all objects is performed to obtain a dictionary that maps the symbols to
their respective values. During this traversal, each node is provided with the corresponding parameter
set object obtained from the BicycleParameters library and outputs a mapping. These mappings are
combined, populating the dictionary with constants that map to their respective values. This approach
allows each model or connection in BRiM to implement an independent mapping that aligns with the
modularity of the framework.

4.5. Visualization
To facilitate the visual inspection of generated models or simulations, BRiM incorporates a simple vi-
sualization utility. This utility builds upon SymMePlot, an open-source Python package specifically
designed and enhanced during this project to visualize mechanical systems created using the mechan-
ics module of SymPy. SymMePlot utilizes the lightweight and widely used libraryMatplotlib as backend
with a tree-based architecture, as depicted in figure 4.6. The root of the tree is a plotter to which various
objects can be added, such as bodies, frames, and points. Each of these so called plot objects can
utilize other plot objects as children. An example is a frame, which uses three plot objects to represent
its unit vectors. The leaf nodes of the tree are artists from Matplotlib, which are added to the plot to
visualize the system. Overall, this results in a simple and expandable design, which leverages tree
traversals for code generation of expressions and computation of coordinates.
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plot point
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Figure 4.6: Illustration of the tree structure utilized in SymMePlot. The double-lined rectangle is the root plotter instance. The
single-lined rectangles are the children associated with certain mechanical objects. Their visual representation, the dashed

rectangles, are artists from Matplotlib.

SymMePlot offers several advantages that make it an ideal choice for BRiM. Firstly, it features an
intuitive and minimal interface, ensuring a user-friendly experience. Secondly, it leverages the widely-
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used and well-supported Matplotlib library as its backend, providing robust and versatile plotting capa-
bilities. Thirdly, it employs a tree structure to organize all objects, aligning well with the tree structure
utilized in BRiM. While there are additional advantages to using SymMePlot, these three are the most
notable ones.

To integrate SymMePlot into BRiM, a dedicated plotter utility has been developed. This plotter inher-
its the plotter object from SymMePlot and extends its functionality to support the inclusion of BRiM’s
models in the visualization tree. Currently, BRiM employs a centralized setup, where a single func-
tion defines for each model how it should be visualized. While this approach offers the advantage of
considering other models on the same level of the tree during plotting, it does not align with the decen-
tralized structure utilized by BRiM. Therefore, a feature request7 is open to switch to a decentralized
design, where each model and connection describe how it can be visualized. Resulting in a similar
implementation to the parametrization.

4.6. Benchmark
As stated in the performance requirements ofBRiM in section 3.1, the number of operations in the EOMs
and their computation time should be minimized. The most important of these is the reduction of the
number of operations, because that directly impacts the simulation and optimization time. On the other
hand, the computation time to form the EOMs is a cost, which is only paid once. When benchmarking
the number of operations in the EOMs it is crucial to not only consider the number of operations before
CSE, but especially after CSE. This is because the evaluation and manipulation is optimally based on
CSEd expressions. While this section does not review the weighted cost of operations or the numeric
stability of the equations, these aspects are important to keep in mind as well.

This benchmark section focuses on two models. Section 4.6.1 benchmarks the implementation of
the rolling disc in BRiM against several manually generated EOMs using sympy.physics.mechanics.
This initial benchmark has been utilized to improve the implementation of the tyre connections in BRiM
to make it more closely match the performance of the best manually generated EOMs. Optimizing
the rolling disc is advantageous, because the definition of the rear wheel highly influences the number
of operations of the Whipple bicycle model. Section 4.6.2 benchmarks the Whipple bicycle model
following Moore’s parametrization convention for various implementations, including the one in BRiM.

4.6.1. Rolling Disc
The increased number of operations in the EOMs generated using BRiM can be attributed to two main
reasons. First, certain model simplifications that are applicable only to specific model compositions
cannot bemade. For instance, modeling a rolling disc requires five generalized coordinates and speeds
if the tyre model is not known. However, if it is known that the wheel is modeled as pure-rolling, then
only three generalized coordinates and speeds are required. Second, some information is unknown by
models, due to decoupling. An example is that a tyre connection does not know all details on how the
velocity of the wheel has been set with respect to the ground, therefore it is restricted to mainly depend
on the position graph of the points.

The rolling disc benchmark, of which the model is described in section 2.2, identifies three major
factors influencing the number of operations after CSE89:

1. The usage of an intermediate yaw-roll frame with respect to the ground to compute the position
of the disc’s center from the contact point, instead of a normalized double cross product. This
reduces the number of operations in the CSEd EOMs from 445 to 180.

2. Manually setting the velocity of the disc’s center in the ground frame based on the instantaneous
center of rotation, instead of computing the derivative of the position vector. This further reduces
the number of operations in the CSEd EOMs further from 180 to 107.

3. The usage of only three generalized coordinates and speeds in combination with an efficient
7#66 is the open feature request in BRiM
8Significant reductions in the number of operations, as discussed by Mitiguy and Kane [46], can be achieved by choosing

efficient generalized speeds, but this reduction is observed only if no intermediate frame is used to determine the position of the
disc’s center relative to the contact point.

9The number of operations mentioned in this list is computed using manually generated EOMs for which the code can be
found in the benchmarks/test_rolling_disc.py file.

https://github.com/TJStienstra/brim/issues/66
https://github.com/TJStienstra/brim/blob/main/benchmarks/test_rolling_disc.py
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choice of the generalized speeds, instead of five generalized coordinates and speeds. This re-
duces the number of operations in the CSEd EOMs from 107 to 5210.

To account for the first influence an additional property has been added to TyreBase, by which
the parent can optionally specify the axis from the contact point to the disc’s center. The second
reduction can also be implemented, as the computation of the nonholonomic constraints has been
made independent of the velocity graph of the points. The third has not been implemented. Both,
because it is system specific, as explained earlier. And, because it would alter the system size in terms
of number of generalized coordinates and speeds, which could be counterintuitive and inconvenient for
the end-user when comparing multiple models. An overview of the benchmark results is presented in
table 4.1.

Model
(applied optimizations)

Computation time
µ± σ (ms)

Number of operations
before CSE

Number of operations
after CSE

Manual () 1152± 33 19643 445
Manual (1) 244± 13 680 180
Manual (1, 2) 216± 28 511 107
Manual (1, 2, 3) 135± 8 85 52
BRiM (1,2) 278± 23 505 103

Table 4.1: Benchmark results for the rolling disc over 50 runs on a Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz and BRiM
commit: ec02a0a7852b15de2f37e0630e2af962f69bba9d.

4.6.2. Whipple Bicycle
This benchmark uses the Whipple bicycle model following Moore’s, as explained in section 4.3.1, con-
vention in all cases. The implementation of the model in BRiM is compared to two other implemen-
tations, each of which also has been validated using the values computed by Basu-Mandal [2]. The
first is the manual implementation by Moore [48] himself using sympy.physics.mechanics. In this im-
plementation, Moore uses the minimal number of generalized coordinates (4) and speeds (6) required.
The second implementation was written by myself at the beginning of this project. This implementation
utilizes eight generalized coordinates and speeds, like BRiM, while also aiming for EOMs with a low
number of operations.

Model Computation time
µ± σ (s)

#Operations
before CSE

#Operations
after CSE

Manual by Moore [48] 3.5± 0.2 230789 2198
Manual by myself 6.6± 0.3 390554 2389
BRiM 5.8± 0.2 468290 2176

Table 4.2: Benchmark results for the Whipple bicycle model over 50 runs on a Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
and BRiM commit: ec02a0a7852b15de2f37e0630e2af962f69bba9d.

The benchmark results of BRiM for the Whipple bicycle model, as presented in table 4.2, reveal
interesting insights. While the implementation by Moore [48] emerges as the top performer in most
aspects of the benchmark, BRiM reaches matching performance in terms of the number of operations
after CSE. This outcome holds significant importance, as the number of operations after CSE directly
impacts the per-evaluation cost of the EOMs in optimization and simulation. Moreover, BRiM achieves
this despite having approximately double the number of operations before CSE11. Additionally, while
the implementation by Moore [48] outperforms BRiM in computation speed, it is noteworthy that BRiM
surpasses my own manual implementation from the beginning of the project, which is most probably
due to a strong correlation between the number of operations in the EOMs and the computation time.
Overall, these results indicate that while BRiM may have a slightly longer computation time than an
optimized script for forming the EOMs, it excels in reducing the number of operations after CSE, closely
approaching the efficiency of the manual implementation.

10In this case, the efficient choice for the generalized speeds is significant, as it causes an extra reduction from 72 to 52.
11The reason for this significant difference has not yet been identified.
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4.7. Summary
This chapter applies the core of BRiM proposed in the previous chapter to create bicycle models, which
are extendable with riders. The implemented bicycle model is the Carvallo-Whipple bicycle following
the convention by Moore [49]. The bicycle model is broken down into five models: a ground, rear
frame, front frame, rear wheel, and front wheel. The tyre models defining the interaction between the
wheels and the ground are implemented as connections. The rider model to be attached to the bicycle
is composed of six models: pelvis, torso, two legs, and arms. To offer both modularity and increased
decoupling between the models, the shoulders and hips are implemented as connections. To combine
both the bicycle and rider model into a bicycle-rider model a total of three connections are employed:
a connection between the rear frame and pelvis, between the feet and pedals, and between the hands
and steer.

To optimize the implementation of thesemodels a benchmark has been created. Through the bench-
mark of a simple rolling disc the weak spots of the formulation in BRiM’s models were identified and
solved. The final benchmark of the Whipple bicycle model shows BRiM’s excellent performance in gen-
erating EOMs having the same level of efficiency of manually optimized equations. These results show
how BRiM with its bicycle-rider models offers a great potential for solving simulation and optimization
tasks.



5
Optimization and Simulation with

BRiM

This chapter showcases the effectiveness of BRiM for academic research purposes by solving a trajec-
tory tracking problem for a rolling disc and simulating several models including an advanced bicycle-
rider model. The basis of the models utilized in this chapter is presented in chapter 4, which applied
the framework from chapter 3 to propose a modular structure for defining bicycle-rider models.

This chapter is structured as follows. Section 5.1 starts by simulating the Whipple bicycle, while
showing the various features from chapter 4. Section 5.2 expands on this by simulating an advanced
upper-body bicycle-rider model, showcasing the comprehensive capabilities of BRiM in modeling and
analyzing complex mechanical systems. Finally, section 5.3 presents a trajectory tracking problem for
a rolling disc. The model of the rolling disc is created using BRiM and solved using the direct collocation
library Pycollo.

5.1. Whipple Bicycle Simulation
Previous studies [2, 49] have shown various derivations of the nonlinear EOMs for the Carvallo-Whipple
bicycle model [11, 90]. Basu-Mandal [2] verifies the equivalence of his two derivations of the EOMs by
computing the acceleration for arbitrary generalized coordinates and speeds. This section showcases
the workflow of deriving the EOMs of the Whipple bicycle using BRiM and using them in a forward
simulation. The model is also being verified in the test suite of BRiM against the values used by Basu-
Mandal [2] to prove its mathematical equivalency.

Contrary to the derivation of the EOMs usingmanual methods, the derivation usingBRiM is relatively
easy. The used model structure is described in section 4.3.1. Listing 5.1 shows the code to compute
the EOMs. It starts with importing the necessary objects and configuring the bicycle model. The next
step is to establish all relations within the bicycle model and export it to a single instance of System.
Next, it specifies gravity and a steer torque between the rear and front frame. The only required step
before forming the EOMs is to choose which generalized coordinates and speeds are independent and
which are dependent. Now that everything is defined Kane’s method [26] can be employed to form the
EOMs1.

1The implementation of Kane’s method in SymPy solves the velocity constraints. The default solve method is LU solve.
However, as this method is sensitive to zero divisions, due to the usage of symbolics, it is advisable to use a solver based on
Cramer’s rule. For more information see #24780.

33
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1 # Import required objects, * imports all objects from the specified module
2 from brim import *
3 import sympy as sm
4 import sympy.physics.mechanics as me
5

6 # Configure the bicycle model
7 bicycle = WhippleBicycle("bicycle")
8 bicycle.front_frame = RigidFrontFrame("front_frame")
9 bicycle.rear_frame = RigidRearFrame("rear_frame")

10 bicycle.front_wheel = KnifeEdgeWheel("front_wheel")
11 bicycle.rear_wheel = KnifeEdgeWheel("rear_wheel")
12 bicycle.front_tyre = NonHolonomicTyre("front_tyre")
13 bicycle.rear_tyre = NonHolonomicTyre("rear_tyre")
14 bicycle.pedals = SimplePedals("pedals") # Used to beautify the visualization
15 bicycle.ground = FlatGround("ground")
16 # Define the model
17 bicycle.define_all()
18

19 # Create a sympy system object of the model
20 system = bicycle.to_system()
21 # Apply additional forces and torques to the system
22 g = sm.symbols("g")
23 system.apply_gravity(-g * bicycle.ground.get_normal(bicycle.ground.origin))
24 steer_torque = me.dynamicsymbols("steer_torque")
25 system.add_actuators(me.TorqueActuator(
26 torque=steer_torque, axis=bicycle.rear_frame.steer_axis,
27 target_frame=bicycle.front_frame.frame,
28 reaction_frame=bicycle.rear_frame.frame))
29 # The dependent and independent variables need to be specified manually
30 system.q_ind = [*bicycle.q[:4], *bicycle.q[5:]]
31 system.q_dep = [bicycle.q[4]]
32 system.u_ind = [bicycle.u[3], *bicycle.u[5:7]]
33 system.u_dep = [*bicycle.u[:3], bicycle.u[4], bicycle.u[7]]
34

35 # Simple check to see if the system is valid
36 system.validate_system()
37 system.form_eoms(constraint_solver="CRAMER") # LU solve may lead to zero divisions

Listing 5.1: Code building the default Whipple bicycle model and forming its EOMs.

As explained in section 4.4 BRiM integrates support for the BicycleParameters [47] library to param-
eterizemodels. Its usage is shown in the code below, where themodel parameters are determined. The
currently used parameterization set is that of the Batavus Browser, a Dutch style city bicycle. However,
one can easily change it to the Batavus Stratos Deluxe, a Dutch style sport city bicycle, by changing
the string "Browser" to "Stratos". Both of these bicycles have been measured by Moore [49].

38 # Import required libraries under an alias
39 import bicycleparameters as bp
40 import numpy as np
41

42 data_dir = r"./data" # Path to the parametrization data
43 # Load in the parametrization set of the Batavus Browser bicycle
44 bike_params = bp.Bicycle("Browser", pathToData=data_dir)
45 # Determine a mapping from the symbols to the numerical values of the bicycle
46 constants = bicycle.get_param_values(bike_params)
47 # Add missing values
48 constants.update({
49 g: 9.81,
50 # Assign random small values to the pedals, as they are just used for plotting
51 bicycle.symbols["gear_ratio"]: np.random.random() * 1E-10,
52 **{sym: np.random.random() * 1E-10 for sym in bicycle.pedals.symbols.values()},
53 })

Listing 5.2: Code determining a mapping of the bicycle parameters. Parameterization data has been measured by Moore [49]
and can be downloaded from the BicycleParameters repository.

https://github.com/moorepants/BicycleParameters
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The only data, which is now required are the initial conditions and the control inputs. In the code
below the initial conditions are set such that the bicycle starts in a rolled position with a forward velocity
of 3ms−1. The steering torque is specified as a simple proportional gain controller based on the roll
rate. The maximum torque is set to 10Nm, which gets applied when the absolute roll rate equals
0.2 rad s−1 or higher.

54 # Set all generalized coordinates and speeds to zero
55 initial_conditions = {xi: 0 for xi in system.q[:] + system.u[:]}
56 # bicycle.q[4] and bicycle.u[0] are both set to improve the initial guess, when solving
57 # the constraints.
58 initial_conditions.update({
59 bicycle.q[3]: 0.2, # Roll angle of the rear frame.
60 bicycle.q[4]: 0.314, # Pitch angle of the rear frame.
61 bicycle.u[0]: 3, # Rear contact point velocity in the X-direction.
62 bicycle.u[5]:
63 -3 / constants[bicycle.rear_wheel.radius], # Rear wheel angular velocity.
64 })
65

66 # Specify control as a function in the form f(t, x), where t is time and x is the state.
67 roll_rate_idx = len(system.q) + system.u[:].index(bicycle.u[3])
68 max_roll_rate = 0.2
69 max_torque = 10
70 controls = {
71 steer_torque:
72 lambda t, x: max_torque * max(-1, min(x[roll_rate_idx] / max_roll_rate, 1))
73 }

Listing 5.3: Code specifying the initial conditions and the control input.

While there has not been added an appropriate object within BRiM’s utilities to run a simulation
of a model, an experimental version has been implemented as a utility in the examples repository of
BRiM2. In the code below this object is utilized to solve the initial conditions during the initialization
phase and integrate the system over a time span of 2.5 seconds using SciPy’s solve_ivp function as
backend. However, one could also select a DAE solver, like IDA, implemented in scikits.odes by using
simulator.solve(np.arange(0, 2.5, 0.01), solver="dae").

74 # Import Simulator from the utilities at brim-examples
75 from utilities import Simulator
76

77 # Setup simulator
78 simulator = Simulator(system)
79 simulator.constants = constants
80 simulator.initial_conditions = initial_conditions
81 simulator.controls = controls
82 # Initialize simulator: code generates the equations and solves the initial conditions.
83 simulator.initialize()
84 # Integrate system with a timestep of 0.01 seconds to get smoother plots.
85 simulator.solve((0, 2.5), t_eval=np.arange(0, 2.5, 0.01))

Listing 5.4: Code integrating the EOMs of the Whipple bicycle model.

With the system solved visualizations can be created. Due to the development of SymMePlot and
its integration within BRiM (see section 4.5), it is easy to create an animation of the simulation as the
code below shows. A time-lapse version of the resulting animation is shown in figure 5.1a.

2BRiM examples repository is available at: https://github.com/TJStienstra/brim-examples.

https://github.com/TJStienstra/brim-examples
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86 # Import required funtions to create the animation
87 import matplotlib.pyplot as plt
88 from matplotlib.animation import FuncAnimation
89 from brim.utilities.plotting import Plotter
90 from scipy.interpolate import CubicSpline
91

92 def animate(fi):
93 """Update the plot for frame i."""
94 plotter.evaluate_system(x_eval(fi / n_frames * simulator.t[-1]), p_vals)
95 return *plotter.update(),
96

97 # Create a cubic spline to interpolate the state variables.
98 x_eval = CubicSpline(simulator.t, simulator.x.T)
99 # Create the figure and the plotter object.

100 fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
101 plotter = Plotter.from_model(ax, bicycle)
102 # Set up the plotter for evaluating the coordinates and plot the initial state.
103 p, p_vals = zip(*simulator.constants.items())
104 plotter.lambdify_system((system.q[:] + system.u[:], p))
105 plotter.evaluate_system(simulator.x[:, 0].flatten(), p_vals)
106 plotter.plot()
107 # Plot the ground plane.
108 X, Y = np.meshgrid(np.arange(-1, 6.5, 0.5), np.arange(-1, 6.5, 0.5))
109 ax.plot_wireframe(X, Y, np.zeros_like(X), color="k", alpha=0.3, rstride=1, cstride=1)
110 # Orient the figure and set the limits.
111 ax.set_xlim(X.min(), X.max())
112 ax.set_ylim(Y.min(), Y.max())
113 ax.view_init(-157, -143)
114 ax.set_aspect("equal")
115 ax.axis("off")
116 # Create the animation using the animate function.
117 fps = 30
118 n_frames = int(fps * simulator.t[-1])
119 ani = FuncAnimation(fig, animate, frames=n_frames, blit=False)
120 ani.save("animation.gif", dpi=300, fps=fps)
121 plt.show()

Listing 5.5: Code creating an animation of the simulated Whipple bicycle model.

Figure 5.1 shows the results of the simulation, which are conform to the expected. The bicycle starts
with a roll angle to the right and the P controller quickly stabilizes the bicycle resulting in a steady-state
turn to the right. The offset in the yaw rate and roll angle is sensible, because the P controller aims for
a zero roll rate, not for a straight path. If one were to add a term in the control of the steering torque
based on the yaw rate or roll angle, then it should stabilize the bicycle to follow a straight path.

(a) Time lapse of a 2.5 seconds simulation. (b) Plots of the state and steer torque.

Figure 5.1: Results of the simulation of the default Whipple bicycle model with the parametrization set of the Batavus Browser.



5.2. Upper-Body Bicycle-Rider Simulation 37

The process of defining and simulating the default Whipple bicycle is relatively easy and has a
smooth integration with third-party libraries. However, the strength of BRiM comes also in modifying
and extending the bicycle model. Modifying the bicycle to take into account a toroidal shape of the
wheels instead of the knife-edge shape is as simple as changing the utilized class for the wheel from
KnifeEdgeWheel to ToroidalWheel. The only other change is that the constants for the radius and
transverse radius of the wheel have to be specified manually3. Further extension of the model to
include a rider are discussed in the next section.

5.2. Upper-Body Bicycle-Rider Simulation
While the previous section exemplifies the use of BRiM to generate the Whipple bicycle model, this
section takes a step further by demonstrating the application of BRiM to extend it to a sophisticated
bicycle-rider model. The model in this section builds upon the rider arms extension by Moore [49].
In his rider extension he rigidifies the torso to the rear frame and models the arms with additional
constraints such that their configuration is fully determined by the steer angle. The model utilized in
this section goes a step further by introducing side lean of the rider and using linear torsional spring-
dampers to control the joints of the rider. By conducting a forward simulation of this advanced model,
BRiM showcases its versatility and capabilities in handling complex and detailed models. Thereby,
highlighting the potential of BRiM in generating models that lead to valuable insights into the behavior
and control of bicycle-rider models.

5.2.1. Model Description
The model presented in this section combines the Whipple bicycle model, as discussed in section 4.3.1,
with an upper-body model. An overview of the components of the model is shown in figure 5.2. The
connection between the rear frame and the pelvis of the rider is established through pure side lean,
actuated by a spring-damper. The arms of the upper body consist of two bodies: the upper arm and
the forearm. The shoulder is modeled as a spherical joint, while the elbow is represented as a pin joint.
Both joints are actuated using spring-dampers. Additionally, six holonomic constraints are employed
to connect the hands to the steer. The resulting model has a total of ten Degrees of Freedom (DOF),
seven holonomic constraints, four nonholonomic constraints, and nine linear torsional spring-dampers
for actuation. The torque Ti exerted by each spring-damper is defined as:

Ti(t) = −ki(t)(qi(t)− qeq,i(t))− ci(t)q̇i(t) (5.1)

where ki denotes the stiffness coefficient, ci the damping coefficient, qi the joint angle and qeq,i the
equilibrium angle. Each of these values is set by the controller. The controller used in the forward
simulation is simple, with constant stiffness and damping coefficients. Also, the equilibrium angles of
the spring-dampers for shoulder abduction and rotation are set at constant values. The equilibrium
angle for the side lean equals the opposite of the roll angle of the bicycle, such that the rider tries to
stay upright. As for the shoulder and elbow flexion, those are controlled based on the roll angle such
that they steer the bicycle toward the falling direction.

5.2.2. Workflow
To generate the results, the model is first built using BRiM, which takes approximately 85 seconds.
Next, the model parameters are retrieved using a parameter set from BicycleParameters, and the initial
conditions are determined. To perform the forward simulation and evaluate the EOMs, it is essential
to convert the symbolic expressions into numeric functions for fast evaluation. This process takes
around 390 seconds4. An additional method to accelerate the evaluation is to compile this function
using Numba, which converts the native Python function into machine code, taking an additional 435
seconds5. For numerical integration, the widely used function solve_ivp6 from SciPy is employed,
which utilizes an explicit Runge-Kutta method of order 5(4) with adaptive time-stepping by default. The

3The parameterization by Moore [49] does not measure the transverse radius and is therefore together with the radius not
obtained when running get_param_values.

4The code generation utilized is integrated within SymPy itself and creates a standard Python function with NumPy.
5The compilation using Numba enhanced the forward simulation speed by approximately four times.
6For longer simulations, it is recommended to use a DAE solver to mitigate the accumulation of constraint violations. However,

in this short simulation, the constraint errors remain sufficiently low.
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forward simulation following this setup, while covering a time span of 2.5 seconds, requires only 0.7
seconds to complete7.

RigidRearFrame

PlanarTorso

PlanarPelvis

SideLeanSeat

RigidFrontFrame

HolonomicHandGrip

FixedPelvisToTorso

SpericalShouders

PinElbowStickArms

KnifeEdgeWheel

FlatGround

NonHolonomicTyre

KnifeEdgeWheel

NonHolonomicTyre

Aggregation
Model or Connection
Connection

Figure 5.2: Visualization of the components of the simulated upper-body bicycle-rider model in BRiM.

5.2.3. Results
The results of the forward simulation of the bicycle are depicted in figure 5.3. The simulation begins
with the bicycle in a rolled position and a relatively low velocity of only 3.4 m/s. As anticipated, the
rider steers into the fall direction to stabilize the bike. However, due to the use of a poorly calibrated
proportional gain controller, the rider over-steers and ends up having to steer toward the opposite side
as it becomes the falling direction. Another observation is that the rider manages to maintain an upright
posture for the most part. As figure 5.3c shows, all of this control is accomplished within reasonable
torque margins, which is exertable by a human. Overall, these results highlight the value of BRiM in
facilitating real-time simulations, supporting further research in also rider control and stability.

(a) Time-lapse of the bicycle-rider, created using SymMePlot.

Figure 5.3: Results of the forward simulation of a bicycle-rider model.

7The approximate computation time of each step of this workflow has been measured in a Jupyter Notebook on an Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz.
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(b) State angles. (c) Control torques using spring-dampers.

Figure 5.3: Results of the forward simulation of a bicycle-rider model (cont.).

5.3. Trajectory Tracking of a Rolling Disc
Biomechanical simulation studies are frequently formulated as Optimal Control Problems (OCPs) [9,
85], an example of which are data tracking problems [37, 54]. This section illustrates how BRiM can be
used to solve OCPs. In particular, a trajectory tracking problem of a rolling disc following a sinusoidal
path, because it is an intuitive and relatively cheap problem to solve. Solving this problem not only
demonstrates the seamless integration of BRiM with other scientific tools, but also lays a foundation
for solving similar problems for bicycle or bicycle-rider models.

The numerical methods to solve an OCP can be classified into two categories: indirect methods
and direct methods [4, 6]. Indirect methods define optimality conditions, which get discretized and
solved numerically [29]. Direct methods on the other hand directly discretize the OCP converting it to
a nonlinear programming problem [62]. While indirect methods give a more accurate solution, they are
more difficult to construct and solve [29].

Direct methods can be further subdivided into direct shooting and direct collocation methods [62].
Direct shooting methods discretize the control and use forward simulation to evaluate the objective
function every iteration, while direct collocation methods discretize both the control and state using
polynomial splines [10]. Direct shooting methods are most effective for OCPs with simple control tra-
jectories while requiring high dynamic accuracy [29, 62], but they are sensitive to the initial conditions
[9]. In contrast, direct collocation is considered more powerful [62] and has been shown to have faster
convergence for complex problems, like those in biomechanical simulations [59].

There are several OCP software programs implementing direct collocation [3, 5, 10, 55, 87]. Pycollo
stands out among these packages as it has been developed with biomechanical modeling in mind [10].
Pycollo is an open-source direct orthogonal collocation library in Python. Direct orthogonal collocation
is a type of direct collocation which uses higher order polynomial splines resulting in better accuracy
and computational performance [15, 29]. Another huge advantage of Pycollo is its integrated support
for SymPy.

5.3.1. Problem Description
The objective in the OCP is to find the minimal control torques to follow a periodic sinusoidal path with
a rolling disc. The rolling disc itself is modeled as a knife-edge wheel subject to pure rolling on flat
ground. To control the disc three torques are applied: a driving torque (Tdrive) about the rotation axis,
a steering torque (Tsteer) about the axis going through the contact point and the center of the disc, and
a roll torque (Troll) about an axis perpendicular to both the normal of the ground and the rotation axis.
A further explanation of its implementation in BRiM is provided in section 3.5.

Lin and Pandy [37] and Park, Caldwell, and Umberger [54] both formulated the objective function
of their data tracking problem as multi-objective, namely as the weighted sum of the squared control
and squared tracking error. In case of the rolling disc the multi-objective function is defined as:
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(5.2)

where q1 and q2 are the x and y-position of the contact point in the ground plane, and wt and wc are the
tracking and control weights. sin (q1(t))− q2(t) is the description of the path that the disc should follow.

The difficulty with multi-objective functions is the selection of the weights. A too low weight for the
tracking would result in a straight line with no torques being applied. And a too high weight on the
tracking would result in high tracking accuracy, but also excessive control torques. In the case of the
rolling disc the tracking weights have been selected such that wc equals the aimed tracking term and
wt equals the expected control term. The aimed tracking term wt can simply be computed by choosing
a mean tracking error, which is squared and integrated over time8. The tracking weight wt can either
be estimated or experimentally determined as it should approximately be equal to the control term.

5.3.2. Workflow
The OCP has been implemented in the following steps. Firstly, BRiM forms the EOMs of the rolling
disc model. Next, Pycollo solves the OCP using the EOMs as path constraints9. Path constraints are
constraints that are applied throughout the time interval of an OCP. Finally, Matplotlib plots the results,
while SymMePlot creates an animation to visualize the result10.

5.3.3. Results
The results of the solved OCP are presented in figure 5.4, yielding the following observations. Firstly,
the disc follows the sinusoidal path closely and smoothly. Secondly, both figures are anti-symmetric,
as is expected when following a periodic sinusoidal path. Additionally, the driving torque remains close
to zero as the disc does not require acceleration in the forward direction. Fourthly, a high roll angle is
used, which is in line with intuition when taking a sharp turn at high speed. A last observation, which
is consistent with the control literature on bicycles, is that the steering torque is the main contributing
load. Even so, that if the optimization is performed with no drive and roll torque, then all graphs will
remain highly similar.

(a) Contact point trajectory and a time-lapse of the rolling disc, created using SymMePlot.

Figure 5.4: Results of the trajectory tracking problem of a rolling disc following a periodic sinusoidal path. For reference, the
disc has a radius of 0.3m and is modeled with a uniformly distributed mass of 1.0 kg. The duration of following a single period

of the sinusoidal is 1.0 s with an aimed mean tracking error of 0.01m.

8The integration of the squared mean tracking error over time equals the squared mean tracking error multiplied by the
integration interval.

9The main reason for using path constraints is that solving the analytic EOMs for the accelerations is rather costly resulting
is a significant increase in the number of operations. This is especially a problem for more complex systems like a bicycle.

10An animation of the results can be found in the brim-examples repository on GitHub.

https://github.com/TJStienstra/brim-examples
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(b) Graphs of the state. The upper graph shows the yaw (q3) and roll
(q4) angle. The rotation angle of the disc about its rotation axis (q5) is
left out for improved readability of the figure. The lower graph shows

the yaw rate (u3), roll rate (u4), and rotation speed (u5).

(c) Control torques.

Figure 5.4: Results of the trajectory tracking problem of a rolling disc following a periodic sinusoidal path. For reference, the
disc has a radius of 0.3m and is modeled with a uniformly distributed mass of 1.0 kg. The duration of following a single period

of the sinusoidal is 1.0 s with an aimed mean tracking error of 0.01m (cont.).
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Future Recommendations

BRiM is a novel design that I have made from scratch within a year. Starting with the identification of
the requirements to the implementation and demonstration of BRiM. Within this process I have had to
resolve various problems. Some of which were within SymPy, but also many within the design and
implementation of BRiM.

However, there are still several areas in which improvement can be made. The best method to
identify these is through the usage of BRiM within research projects, but there are already multiple that
I would like to highlight. This chapter categorizes these in three groups. The first group is those, which
consider the design and implementation within BRiM itself. The second is within SymPy and the third
is towards third-party tools.

6.1. Recommendations for BRiM
While I have had various fruitful discussions with other researchers along the way, I would still highly
recommend critical reviews from more researchers. These reviews should incorporate both the core
as well as the models.

Though the core offers a flexible framework, which contributes to the high performance on the bench-
marks discussed in section 4.6, it has become more complex than my initial aim. When explaining the
structure and implementation of BRiM to others, I have noticed that people find it hard to understand.
This complexity could be problematic, because it increases the learning curve and is more likely to
cause mistakes leading to dysfunctional models. A main cause of the increased complexity is the aim
to decouple models, as this requires both an unusual way of thinking by modelers and more code to
implement to define a model. I especially experienced decoupling to be a challenge in the implementa-
tion of models when applying the optimization of components as discussed in the benchmark section,
section 4.6.

When implementing the models I have made various decisions some of which I am still questioning.
Within the division of the models there are strong arguments for both implementing the shoulder and
the hip as connections as well as for implementing them as part of the arm or leg model. A number of
arguments pro the usage of connections are discussed in section 4.3.2. However, my overall prefer-
ence is to use a model over a connection if possible, which is here the case. Another design choice
that I would revise is the choice of the default orientation of reference frames within the rider model.
Jason Moore also issued in a review that it would be recommendable to follow the convention used in
biomechanics for the orientation of the frames within the rider1.

Related to reviewing is the further improvement of the test and benchmark suite. I would recommend
to refactor the test suite by developing a set of test classes, which simplify and speed up the process
of writing tests and thus also prevent possible mistakes by modelers. It would also be valuable to
add benchmarks comparing the accuracy of models to experimental data. These benchmarks should
rate models on various aspects2. This not only increases the validation of the models, but also helps
researchers to assemble the perfect bicycle-rider model to fit their needs. To further aid researchers in

1#91 is the open issue requesting the change in the orientation of the reference frames within the rider components.
2An example is that one can neglect tyre slip on low speed [31].

42

https://github.com/TJStienstra/brim/issues/91
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this choice it is also advisable to enhance the documentation with recommendations on when to use
which model.

BRiM currently lacks various common bicycle extensions, as I have focused on enhancing the struc-
ture of BRiM. Therefore, it is still required to implement several common bicycle extensions such as
various tyre models, rear and front frame flexibility, and aerodynamic forces. Especially the implemen-
tation of tyre models may bring additional challenges as auxilary forces are required to compute the
normal force. This should be possible to implement, as BRiM allows the computation of auxilary forces
due to its decoupling. However, I have not implemented it due to time restrictions. Another important
set of components that are currently missing in BRiM are load groups representing musculotendons,
because those are still in development within SymPy.

A blindside I discovered late in this project is that it might be more advantageous to split the “define
kinematics” step into a separate “define orientations” and “define positions” step. The graph representa-
tion in section 2.2.2 shows that the definition of the relations between frames is order-independent and
independent of the point graphs. The position of points is also order-independent, but does rely on the
definition of the frames. Therefore, it seems that invoking the definition of relationships between frames
(“define orientations”) before invoking the definition of relationships between points (“define positions”)
leads to complete order-independence. This would mean that the define steps of connections can be
called in an automated traversal instead of manually by the parent model. However, this complete
order-independence only upholds as long as relationships are not defined based on other relationships
out of the same step. Nonetheless, this is possibly violated when redefining (angular) velocities or
accelerations to reduce the final number of operations in the EOMs3.

Another suboptimal design choice has been the centralized integration of SymMePlot within BRiM,
i.e. the description of how each model should be plotted is in a single location. This does not align
with the decoupling and extensibility values of BRiM. Therefore, I want to change the integration of
SymMePlot within BRiM to decentralized, where each object describes its own visualization4.

BRiM is aimed at computing the nonlinear EOMs. However, linearized equations are more suitable
for some research projects. Therefore, it would be valuable to investigate the usage of BRiM in forming
linearized EOMs. This can be done by linearizing the nonlinear EOMs5, but this will result in suboptimal
equations compared to literature as those will have been optimized manually. Therefore, it is more
recommendable to research if a similar design can be utilized to define a model optimal for forming
linearized EOMs.

6.2. Recommendations for SymPy
Within SymPy there are multiple ongoing projects from which BRiM would highly benefit. The first is the
implementation of a separate biomechanics module6. This project aims to implement several objects
mainly involving the implementation of a symbolic musculotendon model. Once this model and the
accompanying objects have been implemented, I would recommend to start using those in BRiM.

A second is the integration of a numeric solver within Kane’smethod. Asmentioned in appendix A.0.3,
Kane’s method performs a linear solve for the velocity constraints. This gives rise to two problems.
Firstly, solving a symbolic linear system can easily cause zero divisions, because it is difficult to deter-
mine whether an expression could be zero7. The second problem is that solving big systems becomes
too expensive. To counter the first problem a solver based on Cramer’s rule has been implemented,
which does not cause a zero division unless the matrix is singular8. However, only a numeric solver
also solves the second problem by postponing the actual solve to the stage of evaluation.

My last recommendation is to implement the mobilizer joint proposed by Seth et al. [72] to model
complex human joints. The current setup I have made in the joints framework within SymPy already
uses several of the required concepts, like intermediate reference frames for each joint and DCMs to
store the orientation. A main topic of research before implementing a mobilizer joint within SymPy is
whether the entire mechanics module is compatible with the usage of splines within DCM or whether
there is a better method to translate the experimentally measured joint movement.

3An example is the usage of the velocity one point or two point theorem[26].
4#81 is an open draft pull-request to implement this redesign.
5SymPy has already a linearizer implemented for Kane’s method.
6#24240 is the active issue tracker of this project in SymPy.
7For more information see #24780 within SymPy
8This is true if and only if a division-free method is used to compute the determinant.

https://github.com/TJStienstra/brim/pull/81
https://github.com/sympy/sympy/issues/24240
https://github.com/sympy/sympy/issues/24780
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6.3. Recommendations for Third Party Tools
With already several third-party tools integrated in BRiM, the most important one which is still missing
is a Simulator object9. This object must aim to bridge the gap between the EOMs within SymPy’s
System object and its usage in third-party tools. The simulator must be able to solve the initial conditions
automatically and provide numerical functions for third-party tools to evaluate the constraint violations
and the EOMs. These functions should be as fast as possible with a variable choice in compilation
time.

9The reason to call it a Simulator is that an initial version has been used for the forward simulations in section 5.2.



7
Conclusions

Bicycle dynamics research has faced the challenge of creating accurate mathematical models for in-
vestigating various aspects of bicycle behavior. The main existing approaches seem to either reuse
the same well-documented but relatively simple models or to extend or define new models laboriously.
Both of these approaches hinder the development of advanced bicycle-rider models and reduce re-
search reproducibility and dissemination. To address this gap, the package BRiM has been developed,
providing a modular and extendable framework to create symbolic Bicycle-Rider Models.

BRiM offers a comprehensive solution by leveraging a modular and extendable design to define a
model. It uses SymPy, an open-source Computer Algebra System, to symbolically describe the model
and form the EOMs using Kane’s method. With SymPy researchers can manipulate equations and
modify a model with bodies and joints. BRiM also introduces a component-level description by adopt-
ing a tree structure, which divides the bicycle-rider model into smaller submodels, e.g. in a bicycle
model and a rider model which are both subdivided further. These submodels define relations of the
model parts within their respective system boundaries, such as the position of a body with respect to
another. Through this design decision it is possible to easily change submodel types, for example from
a knife-edge wheel to a toroidal shaped wheel, resulting in a modular overarching parent model. The
relations between submodels are defined by the parent model, while utilizing connections to establish
the complex relationships in a reusable and modular manner. Additionally, the framework introduces
separate load groups, allowing modular choices of loads. Due to the usage of the tree structure, re-
searchers can also extend a model to take into account another aspect, like adding a rider to an already
existing bicycle model.

To prevent clashes when algorithmically defining a model BRiM utilizes an identified systematic
approach to define the relations in and between models. The approach divides the description of a
model into four stages, which are run in a depth-first traversal. The first step is to define all objects, like
symbols and reference frames. The second phase is to establish the kinematic relationships, such as
the position of a body. The third is to define the forces and torques acting on the system. The final step
is the employment of the (non)holonomic constraints.

The implemented bicyclemodel is the Carvallo-Whipple bicycle [11, 90] followingMoore’s parametriza-
tion convention [49]. BRiM divides this model into five submodels: a ground, rear frame, front frame,
rear wheel, and front wheel. Connections are utilized for the tyre models, as the interaction between a
wheel and the ground has a relatively complex description, which should be both reusable and modular
to support different tyre models. The rider model is divided into six submodels: pelvis, torso, and two
arms and legs. Additional modularity is offered by using connections for both the shoulders and hips.
Together the bicycle and rider model can be combined to form a bicycle-rider model by the employment
of three connections: one between the rear frame and pelvis, another between the hands and steer,
and a last one between the feet and pedals.

The effectiveness of BRiM has been demonstrated in several ways. Firstly, by using benchmarks
showing that BRiM has comparable performance to laboriously manually optimized scripts, which form
the EOMs. Secondly, by successfully solving a trajectory tracking problem of a rolling disc with the
objective to minimize the applied torques. And thirdly, by showcasing forward simulations of bicycle-
rider models. An advanced model even combines the Whipple bicycle model with a leaning upper
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body model, which actuates the steer using linear torsional spring-dampers. The real-time simulation
of these models and the seamless integration of BRiM with other scientific tools show the effectiveness
of BRiM for simulation and optimization tasks.

Overall, the development of BRiM represents a significant advancement in the field of bicycle dy-
namics research. Its modular and extendable design, combined with its computational efficiency and
integration capabilities, addresses the limitations of existing approaches and offers researchers a pow-
erful tool for creating, sharing, and advancing bicycle-rider models. The application of BRiM promises
to drive further insights into bicycle behavior and contribute to the development of improved bicycle
models and rider control strategies.
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A
Kane's Method

There were several reasons for Kane’s method to be developed. The major one is that classical meth-
ods such as Newton-Euler, Lagrange, and Hamilton are labor intensive resulting in computationally
expensive EOMs for complex systems. Contrary Kane’s method has been designed to be systematic,
while resulting in simpler EOMs. With the additional advantage of it being able to directly deal with
nonholonomic systems without having to use Lagrange multipliers [26]. This appendix will briefly dis-
cuss the implementation of Kane’s method within SymPy, which has drawn strong inspiration from the
implementation in AUTOLEV [35].

The EOMs formed by Kane’s method are second-order Ordinary Differential Equations (ODEs) in
the following form.

fk(q, q̇,u) = Mkq̇ − gk = 0 (A.1)
fd(q,u, u̇) = Mdu̇− gd = 0 (A.2)

A.0.1. Kinematic Differential Equations
The first set of equations (equation (A.1)) are the kinematic differential equations. While methods
like Lagrange simply use the identity matrix as the kinematic mass matrix Mk and the generalized
coordinates q as the kinematic forcing vector gk, Kane’s method also makes use of generalized speeds.
Generalized speeds (u) are used to specify the velocity of the system, similarly to how the generalized
coordinates are used to specify its configuration. These generalized speeds must be chosen such
that they are linear functions of the time derivatives of the generalized coordinates (q̇), which can be
uniquely solved for the q̇. Therefore, they can be written in the following form:

fk(q, q̇,u) = 0 = Jfk,uu+ Jfk,q̇q̇ + fk (q,0,0)) (A.3)
Jfk,q̇︸ ︷︷ ︸
Mk

q̇ = − (Jfk,uu+ fk (q,0,0)))︸ ︷︷ ︸
gd

(A.4)

where Jf ,x is defined as the Jacobian of f with respect to x.
The advantage of using generalized speeds is that they can simplify the EOMs. Mitiguy and Kane

[46] provide several guidelines on choosing the generalized speeds and show an example where it
reduces the number of operations of the EOMs by a factor three.

A.0.2. Dynamic Differential Equations
The second set of equations (equation (A.2)) are the dynamic differential equations. These equations
equal the sum of the generalized inertia forces (F ∗

r ) with the generalized active forces (Fr), shown in
equation (A.5). The generalized inertia forces are computed by dotting the derivatives of the momenta
of the bodies with the corresponding partial velocities. Similarly, the generalized active forces are
computed by dotting the external loads with the corresponding partial velocities. Both dot products can
be seen as projections unto the plane representing all possible configurations, called the configuration
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tangent space by Lesser [34]. This also closely relates to the well-known D’Alembert’s principle. Amore
detailed explanation of how to compute the generalized forces using SymPy is provided by Moore [50].

F ∗
r + Fr = 0 (A.5)
JF ∗

r ,u̇u̇ = −F ∗
r

∣∣
u̇=0

− Fr (A.6)

A.0.3. Constraints
Instead of using holonomic and nonholonomic constraints, Kane’s method uses configuration and ve-
locity constraints. Configuration constraints are all constraints in the configuration space making them
equivalent to the holonomic constraints. The velocity constraints are all the constraints in the velocity
space, thus the velocity constraints comprise the time derivative of the holonomic constraints and the
nonholonomic constraints. Within the implementation of Kane’s method in sympy.physics.mechanics
the velocity constraints (fvc) are solved creating a matrix Asr

1.

fvc(q,u) = 0 = Jfvc,us
us + Jfvc,ur

ur + fvc(q,0) (A.7)
us = −J−1

fvc,us
Jfvc,ur︸ ︷︷ ︸

Asr

ur − J−1
fvc,us

fvc(q,0) (A.8)

This matrixAsr is used to map the dependent generalized forces to the independent generalized forces,
shown in equations (A.9) and (A.10). Notably −J−1

fvc,us
fvc(q,0) is eliminated during the computation

of the partial velocities.

Fr =

Fr,1

...
Fr,p

+Asr

Fr,p+1

...
Fr,n

 (A.9)

F ∗
r =

F
∗
r,1
...

F ∗
r,p

+Asr

F
∗
r,p+1
...

F ∗
r,n

 (A.10)

The velocity constraints are further incorporated into the EOMs by adding the time derivative of the
velocity constraints, known as the acceleration constraints, as additional EOMs. See the equations
below. [

Fr + F ∗
r

ḟvc(q,u, u̇)

]
= 0 (A.11)[

JF ∗
r ,u̇

J ḟvc,u̇

]
︸ ︷︷ ︸

Md

[
u̇s

u̇r

]
︸ ︷︷ ︸

u̇

=

[
−F ∗

r

∣∣
u̇=0

− Fr

−ḟvc

∣∣
u̇=0

]
︸ ︷︷ ︸

gd

(A.12)

1In the implementation of KanesMethod the inverse is actually computed and called _Ars.



B
Auto-Generation of Properties

The metaclasses in combination with the base classes, shown in figure 3.4, reduce the boilerplate
when writing a new model in BRiM. One of the methods to reduce boilerplate and possible errors
by modelers is the auto-generation of properties. A metaclass can automatically specify a required
property upon class definition. One can specify these required properties by setting class attributes
like required_model and required_connections. In the code below, a modeler specifies that MyModel
only requires a ground as submodel.

122 from brim.bicycle import GroundBase
123 from brim.core import ModelBase, ModelRequirement
124

125

126 class MyModel(ModelBase):
127 required_models: tuple[ModelRequirement, ...] = (
128 ModelRequirement("ground", GroundBase, "Ground model."),
129 )

Listing B.1: Code defining a simple model, which requires a ground as submodel.

Upon running this code, the ground property is automatically defined as shown in the code below.

130 class MyModel(ModelBase):
131 required_models: tuple[ModelRequirement, ...] = (
132 ModelRequirement("ground", GroundBase, "Ground model."),
133 )
134

135 def __init__(self, name: str):
136 super().__init__(name)
137 # The ModelBase.__init__ sets the protected attributes to None.
138 self._ground = None
139

140 @property
141 def ground(self) -> GroundBase:
142 """Submodel of the ground."""
143 return self._ground
144

145 @ground.setter
146 def ground(self, model: GroundBase) -> None:
147 if not (model is None or isinstance(model, GroundBase)):
148 raise TypeError(
149 f"Ground should be an instance of an subclass of GroundBase, but "
150 f"{model!r} is an instance of {type(model)}.")
151 self._ground = model

Listing B.2: Simplified representation of the resulting code, when specifying a required model.
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C
Rolling Disc Implementation

This appendix provides a simplified implementation of the rolling disc model described in section 2.2.
The implementation is simplified for explanation purposes. A more advanced implementation is avail-
able in BRiM. While section 3.5 gives an overview of each component to create the rolling disc model,
this appendix gives a more in-depth explanation including code. The required imports to run the code
in this appendix is provided in listing C.1.

Appendix C.1 starts with an explanation of the implementation of both the abstract base class of
the ground model as well as the implementation of the flat ground. Appendix C.2 continues with the
implementation of the knife-edge wheel, while inheriting the abstract base class from BRiM. The im-
plementation of the tyre connection is explained in appendix C.3. Followed by appendix C.4 with the
overarching rolling disc model class. After which appendix C.5 introduces a load group to control the
rolling disc. Finally, appendix C.6 shows how the code created in this appendix can be utilized to form
the EOMs of the rolling disc.

1 from abc import abstractmethod
2 from typing import Any
3

4 from sympy import Expr, Matrix, Symbol, symbols
5 from sympy.physics.mechanics import (
6 Point, ReferenceFrame, RigidBody, System, Torque, Vector, cross, dot,
7 dynamicsymbols, inertia)
8

9 from brim.bicycle import TyreBase, WheelBase
10 from brim.core import ConnectionRequirement, LoadGroupBase, ModelBase, ModelRequirement

Listing C.1: Code with the required imports to run the code in appendix C.

C.1. Ground Model Implementation
The flat ground inherits from the abstract class GroundBase, which makes sure that each ground shares
a total of three properties and three methods. The three attributes, namely a body, frame and origin,
are defined by GroundBase, such that subclasses only have to implement three methods. One returns
the normal vector, another the tangent vectors of the plane and a last one sets the position of a point
in plane w.r.t. the origin1.

When implementing the define steps in a model, connection or load group, then a leading under-
score is added: _define_<step>. The reason is that these only run the define step for the component
itself without traversing the submodels and the load groups. BrimBase contains the implementation of
the define methods including traversal, which ought to be called by the user. These methods follow the
format define_<step>.

1As explained in section 3.5.2 the normal and tangent vectors method should be position dependent. However, this example
simplifies the problem a little by assuming them as position independent.
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11 class GroundBase(ModelBase):
12 """Base class for the ground."""
13

14 def _define_objects(self) -> None:
15 """Define the objects of the ground."""
16 # When overwriting a method from a parent class, it is good practise to call
17 # the parent method first. In this case, the _define_objects method of the
18 # ModelBase class is called.
19 super()._define_objects()
20 # Create a rigid body to represent the ground.
21 self._body = RigidBody(self.name)
22 self._body.masscenter = Point(self._add_prefix("origin"))
23 # Create the system object of the ground.
24 self._system = System.from_newtonian(self.body)
25

26 def _define_kinematics(self) -> None:
27 """Define the kinematics of the ground."""
28 super()._define_kinematics()
29 # Fixate the origin in the ground frame.
30 self.origin.set_vel(self.frame, 0)
31

32 @property
33 def body(self) -> RigidBody:
34 """The body representing the ground."""
35 return self._body
36

37 @property
38 def frame(self) -> ReferenceFrame:
39 """Frame fixed to the ground."""
40 return self.body.frame
41

42 @property
43 def origin(self) -> Point:
44 """Origin of the ground."""
45 return self.body.masscenter
46

47 # The abstractmethod decorators make sure that subclasses have to implement these
48 # methods.
49 @property
50 @abstractmethod
51 def normal(self) -> Vector:
52 """Normal vector of the ground."""
53

54 @property
55 @abstractmethod
56 def tangent_vectors(self) -> tuple[Vector, Vector]:
57 """Tangent vectors of the ground plane."""
58

59 @abstractmethod
60 def set_pos_point(self, point: Point, position: tuple[Expr, Expr]) -> None:
61 """Locate a point on the ground."""

Listing C.2: Code defining a simplified version of the GroundBase model class.

The flat ground implements the abstract methods accordingly. The normal vector is the unit vector
in the negative Z-direction. The X- and Y-unit vectors are tangent vectors, which are also used to set
the position of a point in the XY plane.
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62 class FlatGround(GroundBase):
63 """Flat ground."""
64

65 @property
66 def normal(self) -> Vector:
67 """Normal vector of the ground."""
68 return -self.frame.z
69

70 @property
71 def tangent_vectors(self) -> tuple[Vector, Vector]:
72 """Tangent vectors of the ground plane."""
73 return self.frame.x, self.frame.y
74

75 def set_pos_point(self, point: Point, position: tuple[Expr, Expr]) -> None:
76 """Set the location of a point on the ground."""
77 point.set_pos(self.origin,
78 position[0] * self.frame.x + position[1] * self.frame.y)

Listing C.3: Code defining a simplified version of the FlatGround model class.

C.2. Wheel Model Implementation
Similar to the flat ground, the knife-edge wheel inherits from the abstract class WheelBase. This ab-
stract class has already created a body (body) and a body-fixed frame (frame) to represent the wheel.
Besides those, it prescribes the implementation of two properties using the abstractmethod decorator:
the rotation axis (rotation_axis), and the wheel center (center). In the code below it can be seen
that the knife-edge wheel implements these two properties by returning its center of mass as the cen-
ter of the wheel and the Y-axis of the body-fixed frame as the rotation axis. In the implementation it
can also be seen that the wheel uses a dictionary to keep track of its symbols2. This symbols dictio-
nary is used to satisfy the wish that a user is able to change a symbol after the define object stage.
Besides that the descriptions property, predefined in BrimBase, is used to store a description of each
symbol. The reason for this feature is that an end-user can easily track down the meaning of each
symbol using the BrimBase.get_description method3. The default definition of each symbol utilizes
BrimBase._add_prefix to add the name of the instantiated model before each symbol. This way it
is ensured that symbols will always be unique as long as every model is given a unique name by the
end-user. One should denote that the knife-edge wheel only has to define the symbols to describe
its shape, not the shape itself. The actual computation based on the shape to get the contact point
position is done within the tyre connection.

2The dictionary is defined in BrimBase such that every component will be using a similar interface.
3The get_description uses a breadth-first search through the models, connections, and loads groups.
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79 class KnifeEdgeWheel(WheelBase):
80 """Knife-edge wheel."""
81

82 @property
83 def descriptions(self) -> dict[Any, str]:
84 """Descriptions of the attributes of the wheel."""
85 return {
86 **super().descriptions,
87 self.symbols["r"]: """Radius of the wheel.""",
88 }
89

90 def _define_objects(self) -> None:
91 """Define the objects of the wheel."""
92 super()._define_objects()
93 # Change inertia to account for the symmetry of the wheel.
94 self.body.central_inertia = inertia(
95 self.body.frame, *symbols(self._add_prefix("ixx iyy ixx")))
96 self.symbols["r"] = Symbol(self._add_prefix("r"))
97

98 @property
99 def center(self) -> Point:

100 """Point representing the center of the wheel."""
101 return self.body.masscenter
102

103 @property
104 def rotation_axis(self) -> Vector:
105 """Rotation axis of the wheel."""
106 return self.body.y

Listing C.4: Code defining a simplified version of the KnifeEdgeWheel model class.

C.3. Tyre Connection Implementation
The abstract class for the connection between the ground and wheel is TyreBase. It creates for both the
ground and wheel a property, which accepts any type of ground and wheel. It also creates a property
for the contact point assuming a single contact point by default. Since the computation of the contact
point is shared among all tyre models, the abstract class also implements a method to set the position
of the wheel’s center with respect to the contact point (_set_pos_contact_point). This method takes
into account what type of wheel and ground has been specified. A last property that is specified by the
abstract tyre class is one to specify whether the contact point is defined to be in the ground plane by
the parent model, in this case the rolling disc model.

A tyre connection, which enforces pure-rolling using nonholonomic constraints, is implemented in
the code below. It inherits from TyreBase and re-specifies the class attribute required_models. This
attribute is processed by themetaclass ConnectionMeta. Based on this class attribute it auto-generates
properties for the ground and wheel. These were already defined by TyreBase, but here they are
overwritten to make sure that only an instance of FlatGround can be assigned to the ground attribute
and similarly for the wheel. Refer to appendix B for more information on the auto-generation of these
properties. The method _define_kinematics makes use of _set_pos_contact_point to define the
position of the contact point4. In _define_constraints the nonholonomic constraints are defined, as
explained in section 2.2.4, and a holonomic constraint is defined if the wheel can be off the ground.

4_set_pos_contact_point is redefined in NonHolonomicTyre to show its implementation and to make sure that you can run
this code yourself.
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107 class NonHolonomicTyre(TyreBase):
108 """Tyre model connection based on nonholonomic constraints."""
109

110 required_models: tuple[ModelRequirement, ...] = (
111 ModelRequirement("ground", FlatGround, "Ground model."),
112 ModelRequirement("wheel", KnifeEdgeWheel, "Wheel model."),
113 )
114

115 def _set_pos_contact_point(self) -> None:
116 """Compute the contact point of the wheel with the ground."""
117 if isinstance(self.ground, FlatGround):
118 if isinstance(self.wheel, KnifeEdgeWheel):
119 self.wheel.center.set_pos(
120 self.contact_point, self.wheel.symbols["r"] * cross(
121 self.wheel.rotation_axis, cross(
122 self.ground.normal, self.wheel.rotation_axis)).normalize())
123 return
124 raise NotImplementedError(
125 f"Computation of the contact point has not been implemented for the "
126 f"combination of {type(self.ground)} and {type(self.wheel)}.")
127

128 def _define_kinematics(self) -> None:
129 """Define the kinematics of the tyre model."""
130 super()._define_kinematics()
131 self._set_pos_contact_point()
132

133 def _define_constraints(self) -> None:
134 """Define the constraints of the tyre model."""
135 super()._define_constraints()
136 # Get the normal and tangent vectors of the ground at the contact point.
137 normal = self.ground.normal
138 tangent_vectors = self.ground.tangent_vectors
139 # Compute the velocity of wheel center using two different constructs.
140 v1 = self.wheel.center.pos_from(self.ground.origin).dt(self.ground.frame)
141 v2 = cross(self.wheel.frame.ang_vel_in(self.ground.frame),
142 self.wheel.center.pos_from(self.contact_point))
143 # Compute and add the nonholonomic constraints.
144 self.system.add_nonholonomic_constraints(
145 dot(v1 - v2, tangent_vectors[0]), dot(v1 - v2, tangent_vectors[1]))
146 # Add a holonomic constraint if the wheel is not defined to be on the ground.
147 if not self.on_ground:
148 self.system.add_holonomic_constraints(
149 self.contact_point.pos_from(self.ground.origin).dot(normal))

Listing C.5: Code defining a simplified version of the NonHolonomicTyre connection class.

C.4. Rolling Disc Model Implementation
When implementing a new model like the rolling disc, which combines multiple of BRiM’s components,
it is required to write a class. This process is similar to that of a component like a wheel, as the
rolling disc model itself is also seen as a component. Listing C.6 implements the rolling disc based on
the previously stated implementations. It starts by defining what models and connections it requires
through class attributes, see appendix B for more information. This automatically creates properties
for the ground, wheel, and tyre. Similar to the knife-edge wheel’ssymbols dictionary, see appendix C.2,
the rolling disc uses a q and u mutable matrix to store its generalized coordinates and speeds.

The RollingDisc class has to implement all five define steps. In _define_connections it sets
the ground and wheel attribute of the tyre connection. In _define_objects it first initializes a system
with the same reference as the ground submodel. After which it lets the tyre connection define its
objects and tells it that the contact point will be in the ground plane by definition5. Lastly, it also creates
matrices to store its generalized coordinates and speeds. In _define_kinematics the wheel is oriented
and positioned w.r.t. the ground, while adding the generalized coordinates, speeds and kinematic
differential equations to the system instance. The last two steps only have to call the tyre to set its
loads and constraints.

5An example where this is not the case is the front wheel of the Whipple bicycle.
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150 class RollingDisc(ModelBase):
151 """Rolling disc model."""
152

153 required_models: tuple[ModelRequirement, ...] = (
154 ModelRequirement("ground", GroundBase, "Ground model."),
155 ModelRequirement("wheel", WheelBase, "Wheel model."),
156 )
157 required_connections: tuple[ConnectionRequirement, ...] = (
158 ConnectionRequirement("tyre", TyreBase, "Tyre model."),
159 )
160

161 @property
162 def descriptions(self) -> dict[Any, str]:
163 """Dictionary of descriptions of the rolling disc's attributes."""
164 desc = {
165 **super().descriptions,
166 self.q[0]: "Perpendicular distance along ground.x to the contact point.",
167 self.q[1]: "Perpendicular distance along ground.y to the contact point.",
168 self.q[2]: "Yaw angle of the disc.",
169 self.q[3]: "Roll angle of the disc.",
170 self.q[4]: "Pitch angle of the disc.",
171 }
172 desc.update({ui: f"Generalized speed of the {desc[qi].lower()}"
173 for qi, ui in zip(self.q, self.u)})
174 return desc
175

176 def _define_connections(self) -> None:
177 """Define the connections between the submodels."""
178 super()._define_connections()
179 self.tyre.ground = self.ground
180 self.tyre.wheel = self.wheel
181

182 def _define_objects(self) -> None:
183 """Define the objects of the rolling disc."""
184 super()._define_objects()
185 # Define the system instance with the same reference as the ground.
186 self._system = System(self.ground.system.origin, self.ground.frame)
187 # Setup the tyre model.
188 self.tyre.define_objects()
189 self.tyre.on_ground = True
190 # Define the generalized coordinates and speeds.
191 self.q = Matrix([dynamicsymbols(self._add_prefix("q1:6"))])
192 self.u = Matrix([dynamicsymbols(self._add_prefix("u1:6"))])
193

194 def _define_kinematics(self) -> None:
195 """Define the kinematics of the rolling disc."""
196 super()._define_kinematics()
197 # Define the yaw-roll-pitch orientation of the disc.
198 self.wheel.frame.orient_body_fixed(self.ground.frame, self.q[2:], "zxy")
199 # Define the position of the contact point in the ground plane.
200 self.ground.set_pos_point(self.tyre.contact_point, self.q[:2])
201 # Define the kinematics of the tyre model.
202 self.tyre.define_kinematics()
203 # Add coordinates, speeds and kinematic differential equations to the system.
204 self.system.add_coordinates(*self.q)
205 self.system.add_speeds(*self.u)
206 self.system.add_kdes(*(self.q.diff(dynamicsymbols._t) - self.u))
207

208 def _define_loads(self) -> None:
209 """Define the loads of the rolling disc."""
210 super()._define_loads()
211 self.tyre.define_loads()
212

213 def _define_constraints(self) -> None:
214 """Define the constraints of the rolling disc."""
215 super()._define_constraints()
216 self.tyre.define_constraints()

Listing C.6: Code defining a simplified version of the RollingDisc model class.
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C.5. Control Load Group Implementation
A method to apply a drive, roll and steer torque to the wheel of the rolling disc is by utilizing a load
group. To define a load group the first step is to set the required type of the parent. In this case, the
rolling disc is chosen as parent. Through this definition LoadGroupBase automatically makes sure that
this load group can only be added to an instance of the RollingDisc model, which is accessible in the
load group using the parent attribute. Another definition by LoadGroupBase is that the system attribute
refers to the system of the parent component.

The loads within a load group are defined in the define steps. _define_objects creates the torque
quantities for which a description is given in the descriptions property. _define_loads actually com-
putes the directions of the torques and adds them to the system. The exemplifying code of this load
group is shown in listing C.7.

217 class RollingDiscControl(LoadGroupBase):
218 """Rolling disc control load group."""
219 required_parent_type = RollingDisc
220

221 @property
222 def descriptions(self) -> dict[Any, str]:
223 """Dictionary of descriptions of the rolling disc's controls."""
224 return {
225 **super().descriptions,
226 self.symbols["T_drive"]: "Drive torque.",
227 self.symbols["T_roll"]: "Roll torque.",
228 self.symbols["T_steer"]: "Steer torque.",
229 }
230

231 def _define_objects(self) -> None:
232 """Define objects."""
233 super()._define_objects()
234 self.symbols.update({
235 name: dynamicsymbols(self._add_prefix(name)) for name in (
236 "T_drive", "T_roll", "T_steer")
237 })
238

239 def _define_loads(self) -> None:
240 """Define loads."""
241 super()._define_loads()
242 roll_axis = cross(self.parent.ground.normal, self.parent.wheel.rotation_axis)
243 upward_radial_axis = cross(self.parent.wheel.rotation_axis, roll_axis)
244 self.system.add_loads(
245 Torque(self.parent.wheel.frame,
246 self.symbols["T_drive"] * self.parent.wheel.rotation_axis +
247 self.symbols["T_roll"] * roll_axis +
248 self.symbols["T_steer"] * upward_radial_axis,
249 )
250 )

Listing C.7: Code defining a load group to control the rolling disc using three torques.

C.6. Build Rolling Disc
With all components defined the rolling disc model is built, as shown in listing C.8. It starts with configur-
ing the model by describing out of which components the rolling disc is composed. Next, it defines the
entire model using rolling_disc.define_all(), refer to section 3.5.5 for a summarizing overview of
what happens in each step. With the model defined it is exported to a single system instance on which
gravity is applied. The last step before generating the EOMs based on the system is to specify which
generalized speeds are independent and which are dependent. The system.validate_system() is
an optional feature to verify the system for any mistakes, like having a different number of velocity
constraints then dependent generalized speeds.



C.6. Build Rolling Disc 64

251 # Configure the model by describing the components it consists out of.
252 rolling_disc = RollingDisc("disc")
253 rolling_disc.wheel = KnifeEdgeWheel("wheel")
254 rolling_disc.ground = FlatGround("ground")
255 rolling_disc.tyre = NonHolonomicTyre("tyre")
256 rolling_disc.add_load_groups(RollingDiscControl("controls"))
257 # Run all define steps.
258 rolling_disc.define_all()
259 # Export the model to a single instance of System.
260 system = rolling_disc.to_system()
261 # Apply gravity.
262 system.apply_gravity(-Symbol("g") * rolling_disc.ground.normal)
263 # Define which generalized speeds are indepedent and dependent
264 system.u_ind = rolling_disc.u[2:]
265 system.u_dep = rolling_disc.u[:2]
266 # Run some basic validation of the system before forming the equations of motion.
267 system.validate_system()
268 system.form_eoms()

Listing C.8: Code building the rolling disc model and forming its EOMs.
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