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Chapter 1

Introduction

1.1 Motivation and Objectives

Lifelong learning has been widely recognized as an important social issue. As
indicated by UNESCO, one objective stated in the Education 2030 Frame-
work for Action is to “promote lifelong learning as the leading educational
paradigm for achieving inclusive and sustainable learning societies” [153].
Learning used to be largely restricted to formal education in schools. With
the development of technology, people now have more options to receive ed-
ucation and learn. Massive Open Online Courses (MOOCs), as one of the
available options, are endowed with the mission to educate the world [121].
MOOCs refer to online courses that are designed for an unlimited number of
participants. In MOOCs, the learning materials are distributed over the Web,
which can be accessed by learners with internet connections anytime and any-
where [112]. There are two types of MOOC platforms: topic-agnostic and
topic-specific. Topic-agnostic platforms (e.g., edX1 and Coursera2) provide
courses covering a wide range of topics, while topic-specific MOOC platforms
(e.g., Duolingo3 and Codeacademy4) focus on courses in one specific topic.
UNESCO regards MOOCs as an essential tool to “promote lifelong learn-
ing opportunities for all” [121]. In fact, MOOCs are becoming increasingly
popular. According to Class Central [141], by the end of 2017, there have
been more than 81 million learners enrolled in 9,400 MOOCs in 33 MOOC
platforms including edX, Coursera, etc.

1https://www.edx.org/
2https://www.coursera.org/
3https://www.duolingo.com/
4https://www.codecademy.com/

1



2 Chapter 1. Introduction

To better support MOOC learners, there have been many works on inves-
tigating MOOC learning. Typically, these works employed the data traces
generated by learners within MOOC platforms to investigate their behavior
during the running of a course, such as course navigation patterns of learners
of various demographics [63], the impact of different video types on learner
engagement [66], the sentiment expressed by learners in forum posts [163],
the effect of instructor involvement [149]. Still, there are many other aspects
of MOOC learning to be explored.

In this thesis, we focus on (i) learner modeling and (ii) generation of edu-
cational material for both topic-agnostic and topic-specific MOOC platforms.
For learner modeling in the topic-agnostic platforms, as there have been a lot
of works utilizing the learner traces generated within the MOOC platforms,
we hypothesize that we can better understand learners by moving beyond the
MOOC platforms and exploring other data sources on the wider Web, espe-
cially the Social Web. Nowadays, hundreds of millions of users are heavily
using Social Web platforms with different purposes, such as microblogging
(Twitter5), professional networking (LinkedIn6), Q&A (StackExchange7)
and collaborative programming (GitHub8). Previous research demonstrated
that abundant data traces in the Social Web platforms can be used to reveal
detailed information about users such as age [113], occupation [127], language
proficiency [159] and professional experience [26]. Therefore, we investigate
what attributes can be revealed for modeling MOOC learners with the aid
of the Social Web, not only during a MOOC but also before and after the
MOOC. With regard to the topic-specific MOOC platforms, given that there
are only a few works on modeling learners [63, 66, 163], we investigate what
approaches can be used to enable a better understanding of learners in these
platforms.

For generation of educational material, previous research demonstrated
that certain Social Web data (e.g., code snippets in GitHub, Q&A pairs
in StackExchange) can be reused by users of similar interests and needs
[41, 130]. Therefore, we investigate what Social Web data can be used to
generate educational material and potentially benefit MOOC learners.

5https://twitter.com/
6https://www.linkedin.com/
7https://stackexchange.com/
8https://github.com/
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1.2 Research Questions and Contributions

In the following, we present the research questions investigated in Chapters
2-6. Each chapter explores different data sources (MOOC platforms and
Social Web platforms), and focuses on different MOOC stages (before, dur-
ing and after a MOOC), which are summarized in Figure 1.1. In total, we
consider two MOOC platforms and eight Social Web platforms in our thesis,
and most of our works focus on the stage of during a MOOC.

Figure 1.1: An overview of the MOOC stages and data sources investigated in Chapters
2-6. The number in a cell represents the corresponding chapter, which focuses
on the MOOC stage specified in the column and the MOOC platform or the
Social Web platform specified in the row.

To explore whether the Social Web can be used to enable learner model-
ing beyond the topic-agnostic MOOC platforms, in Chapter 2 we first verify
whether MOOC learners are active on Social Web platforms and investigate
how to reliably identify these learners. As people tend to be attracted by dif-
ferent Social Web platforms and correspondingly leave various data traces
in those platforms, it is a non-trivial task to identify MOOC learners across
multiple platforms and further gather information relevant to their learn-
ing activities in MOOCs. Specifically, we investigate the following research
questions:
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RQ 1.1 On what Social Web platforms can a significant fraction of MOOC
learners be identified?

RQ 1.2 Are learners who demonstrate specific sets of traits on the Social
Web drawn to certain types of MOOCs?

RQ 1.3 To what extent do Social Web platforms enable us to observe (spe-
cific) user attributes that are highly relevant to the online learning experi-
ence?

To answer those questions, we consider over 320,000 learners from eigh-
teen MOOCs in edX and propose a systematic methodology to reliably iden-
tify these learners across five popular Social Web platforms, i.e., Gravatar9,
Twitter, LinkedIn, StackExchange and GitHub. Furthermore, we explore
what valuable data traces can be gathered from the considered platforms and
used to investigate MOOC learning. In particular, we find that over one-third
of learners from a MOOC teaching functional programming are actively en-
gaged with GitHub, the most popular social coding platform in the world to
date, and have left abundant coding traces in the specific platform. More im-
portantly, this enables a first investigation on learning transfer, which refers
to the application of knowledge or skills gained in the learning environment
to another context [10].

Based on the observation of the active engagement of learners from a
programming MOOC in GitHub in Chapter 2, in Chapter 3, we zoom in on
the coding traces of these learners in GitHub and continue the investigation of
their learning transfer, as a perspective to examine the influence of the course
on the learners. Concretely, we investigate the following research questions:

RQ 2.1 To what extent do learners from a programming MOOC transfer
the newly gained knowledge to practice?

RQ 2.2 What type of learners are most likely to make the transfer?

RQ 2.3 How does the transfer manifest itself over time?

To answer those questions, we conduct a longitudinal analysis on both
the MOOC platform data and the GitHub data. We find that only a small
fraction of engaged learners (about 8%) display transfer. To our knowledge，
this analysis has been the first to introduce the use of the Social Web to
model learners’ knowledge application beyond the learning platform.

9https://gravatar.com/
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As indicated before, only a few works attempted to model learners in
topic-specific MOOC platforms like Duolingo and Codeacademy. The main
reason for this is the lack of public available datasets from these platforms
to enable further research. In the Second Language Acquisition Modeling
challenge [140] organized by Duolingo, which is the largest language-learning
MOOC platform in the world, three large-scale datasets collected from its
learners over the first 30 days of language learning were released. With the
datasets, we are able to gain more insights about learners in topic-specific
MOOC platforms.

In Chapter 4, we use the three released datasets to analyze learners’
behavior in Duolingo and model their mastery of the taught knowledge over
time (i.e., knowledge tracing [125]). Concretely, we investigate the following
research question:

RQ 3.1 What factors are correlated with learners’ language learning perfor-
mance?

To answer the question, we analyze the three Duolingo datasets to iden-
tify a range of features that are correlated with learners’ performance and fur-
ther investigate their effectiveness in predicting learners’ future performance.
We demonstrate that the learning performance, which is measured by learn-
ers’ accuracy in solving exercises and the amount of vocabulary learned, is
correlated with not only learners’ engagement with a course but also contex-
tual factors like the devices being used.

In Chapter 3, we have shown that learners transfer the acquired knowl-
edge to practice. In Chapter 5, we investigate whether learners could apply
the acquired knowledge to solve real-world tasks, i.e., paid tasks which are
retrieved from online marketplaces and can be solved by applying the knowl-
edge taught in a course. If learners are able to solve such tasks, ultimately,
we envision a recommender system that presents learners with paid relevant
tasks from online marketplaces. By solving these tasks, learners, who cannot
spend a large amount of time in learning because of the need to work and
earn a living, could earn money and thus gain more time for learning with the
MOOC. To investigate the feasibility of the proposed recommender system,
we investigate the following questions:

RQ 4.1 Are MOOC learners able to solve real-world (paid) tasks from an
online work platform with sufficient accuracy and quality?

RQ 4.2 How applicable is the knowledge gained from MOOCs to paid tasks
offered by online work platforms?
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RQ 4.3 To what extent can an online work platform support MOOC learn-
ers (i.e., are there enough tasks available for everyone)?

RQ 4.4 What role do real-world (paid) tasks play in the engagement of
MOOC learners?

To answer those questions, we consider a MOOC teaching data analysis
in edX and manually select a set of paid tasks from Upwork10, one of the most
popular freelancing marketplaces in the world, and present the selected tasks
to learners and observe how learners interact with these real-world tasks. We
find that these tasks can be solved by MOOC learners with high accuracy
and quality. This demonstrates the potential of using freelancing paid tasks
to enrich MOOC content.

Questions are recognized as essential not only for assessment but also for
learning because questions allow learners to not only assess their understand-
ing of concepts but also to reflect on their knowledge state and then better
direct their learning efforts [8, 128]. However, designing a suitably large
question bank to meet the needs of MOOC learners is a time-consuming and
cognitively demanding task for course instructors. To ease the burden of the
instructors, automatic question generation has been proposed and investi-
gated by researchers to automate the question creation process with the aid
of machine learning techniques [69, 110, 136]. Ideally, we can construct a
question generator, which takes an article of any learning topic as input and
generates a set of questions that are relevant to the article and useful for
assessment or discussion. To this end, two challenges need to be overcome.
Firstly, a large-scale dataset covering questions of various cognitive levels
from a set of diverse learning topics should be collected. With the collected
dataset, we are able to discover common question-asking patterns and inform
the construction of the question generator. Secondly, given that an article
often contains a limited number of sentences that are worth asking questions
about, i.e., those carrying important concepts, we need to develop effective
strategies to identify question-worthy sentences from the article before us-
ing them as input to the question generator. To deal with the challenges,
we turn to education-oriented Social Web platforms (e.g., TED-Ed11, Khan
Academy12, Codecademy) because these platforms typically have accumulated
a substantial amount of high-quality questions generated by instructors and
learners. Therefore, in Chapter Chapter 6, we investigate whether we can

10https://www.upwork.com/
11https://ed.ted.com/
12https://www.khanacademy.org/
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use the education-oriented Social Web platforms to collect a large-scale ed-
ucational question dataset and further use the dataset to develop effective
strategies to identify question-worth sentences from an article. Correspond-
ingly, we investigate the following research questions:

RQ 5.1 Can a large-scale and high-quality educational question dataset be
collected from the Social Web?

RQ 5.2 What are effective strategies in identifying question-worthy sen-
tences from an article?

To answer those questions, we rely on TED-Ed and Khan Academy to re-
trieve an educational question dataset, LearningQ, which contains over 230K
document-question pairs generated by both instructors and learners. To the
best of our knowledge, LearningQ is the largest dataset that can be used for
educational question generation. We demonstrate that LearningQ consists
of high-quality questions covering not only all cognitive levels in the Bloom’s
Revised Taxonomy [104] but also various learning topics. We show that it
is a challenging task to automatically generate educational questions, even
with sufficient training data and state-of-the-art question generation tech-
niques. Besides, we develop and compare a total of nine strategies to select
question-worthy sentences from an article and demonstrate that questions in
learning contexts usually are based on source sentences that are informative,
important, or contain novel information.

In summary, this thesis makes the following research contributions.

• We contribute a systematic methodology to reliably identify learners
across five popular Social Web platforms and derive a set of valuable
learner attributes to investigate MOOC learning.

• We contribute a novel approach to use GitHub to complement data
traces within MOOC platforms as a means to investigate learner be-
havior (i.e., learning transfer) beyond the MOOC platform.

• We contribute an analysis to identify factors (e.g., learners’ engage-
ment with a course, the learning devices being used) that are related
to learners’ performance in second language acquisition.

• We contribute a study to demonstrate that learners can apply the
knowledge acquired from a MOOC to solve real-world tasks with high
accuracy and quality.
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• We contribute a large educational dataset (LearningQ) for automatic
question generation and investigate nine strategies in selecting question-
worthy sentences from an article.

1.3 Thesis Outline and Origin of Chapters

This thesis consists of seven chapters. The current chapter describes the
motivation, objectives, and research questions as well as contributions. All
the main chapters (Chapter 2-6) are based on full research papers published
in conferences or journals, except for Chapter 4, which is published as a
workshop paper.

• Chapter 2 is based on the paper published at the ACM Conference
on Web Science [31].

• Chapter 3 is based on the paper published at the ACM Conference on
Learning at Scale [30], where the paper received the Honorable Mention
Award.

• Chapter 4 is based on the paper published at the Workshop on Inno-
vative Use of NLP for Building Educational Applications [32].

• Chapter 5 is based on the paper published at the IEEE Transactions
on Learning Technologies [28].

• Chapter 6 is based on the paper published at the International AAAI
Conference on Web and Social Media [33] and includes new research
work.

Lastly, Chapter 7 concludes this thesis by summarizing the main findings
and contributions. Furthermore, we provide an outlook on future research
directions in relevant fields.



Chapter 2

Learner Identification across
Social Web Platforms

In this chapter, we first conduct an exploratory study to verify whether
MOOC learners are active in the Social Web and how to reliably identify
their accounts across various Social Web platforms. This study is intended
to serve as a foundation to collect learner traces beyond the MOOC plat-
form and investigate questions that cannot be answered by solely utilizing
the data traces learners leave within the MOOC platform. To this end, we
consider over 320,000 learners from eighteen MOOCs in edX. Notice that not
every Social Web platform attracts a large number of learners and is open
for user identification and data retrieval, we eventually consider five popu-
lar Social Web platforms in our study, i.e., Gravatar, Twitter, LinkedIn,
StackExchange and GitHub. Furthermore, we investigate what data traces
can be collected from these platforms and used to derive learner attributes
that are relevant to their learning activities in the MOOC setting. The con-
tributions of this chapter have been published in [31].

9
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2.1 Introduction

Online education recently entered a new era of large-scale, free and open-
access which has revolutionised existing practices. This new era dates from
2011, when the University of Stanford released its initial three MOOCs. To-
day, a wide range of courses in the humanities, business and natural sciences
are offered for free with millions of learners taking advantage of them.

At the same time, however, the initial predictions of the “MOOC revo-
lution” (universities will become obsolete) have not come to pass. On the
contrary, MOOCs today generally suffer from a lack of retention [82, 95] —
many learners sign up, but on average less than 7% complete a course.

Examining the current nature of MOOCs reveals an important clue as to
why they, as yet, fail to realize their full potential. Although the “MOOC
revolution” changed online education with respect to scale and openness, it
did not involve any truly novel pedagogical approaches or education tech-
nologies. Currently, many MOOCs revolve around a set of videos, a set of
quizzes and little else (the so-called “xMOOCs”). Instead, new approaches
are necessary that support learning under the unique conditions of MOOCs:
(i) the extreme diversity among learners (who come from diverse cultural,
educational and socio-economic backgrounds [64]), and, (ii) the enormous
learner-staff ratio, which often exceeds 20,000:1.

In order to improve the learning experience and retention, MOOC data
traces (i.e. learners’ clicks, views, assignment submissions and forum entries)
are being employed to investigate various aspects of MOOC learning, such
as the effect of lecture video types on learner engagement [66], the introduc-
tion of gamification [37], the impact of instructor involvement [149] and the
significance of peer learning [38].

Few data-driven research works go beyond the data learners generate
within a MOOC platform. We argue that we can potentially learn much
more about MOOC learners if we move beyond this limitation and explore
the learners’ traces on the wider Web, in particular the Social Web, to gain a
deeper understanding of learner behavior in a distributed learning ecosystem.
Hundreds of millions of users are active on the larger Social Web platforms
such as Twitter and existing research has shown that detailed user profiles
can be built from those traces, covering dimensions such as age [113], interests
[1], personality [7], location [68] and occupation [127].

While MOOC learners are usually invited to participate in pre-course
surveys that include inquiries about their demographics and motivations, not
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all of them do (and those who do may fill in non-credible or false information),
with return rates hovering around 10%1. In addition, these surveys can only
provide a very limited view of the learners as the return rate drops with every
question that is added to the questionnaire and, finally, questionnaires offer us
only a snapshot-based perspective as learners cannot be polled continuously
across a period of time.

We hypothesize that the Social Web can provide us with a source of
diverse, fine-grained and longitudinal learner traces we can exploit in order to
(i) derive more extensive learner profiles for a larger learner population than
is possible through pre/post-MOOC surveys, and, (ii) investigate questions
that cannot be investigated solely based on the traces learners leave within
MOOC environments (e.g. the uptake of learned concepts in practice).

In this work we provide a first exploratory analysis of more than 329,000
MOOC learners and the Social Web platforms they are active on, guided by
the following three Research Questions:

RQ 1.1 On what Social Web platforms can a significant fraction of MOOC
learners be identified?

RQ 1.2 Are learners who demonstrate specific sets of traits on the Social
Web drawn to certain types of MOOCs?

RQ 1.3 To what extent do Social Web platforms enable us to observe (spe-
cific) user attributes that are highly relevant to the online learning experi-
ence?

Our contributions can be summarized as follows:

• We provide a methodology to reliably identify a subset of learners from
a set of five Social Web platforms and eighteen MOOCs. Depending on
the MOOC/platform combination, between 1% and 42% of the learners
could reliably be identified.

• We show that it is indeed possible to derive valuable learner attributes
from the Social Web which can be used to investigate learner experience
in MOOCs.

1An estimate we derived based on the MOOCs we consider in this work. This percentage
drops to 1% or less when considering post-course surveys, i.e. questionnaires conducted at
the end of a MOOC.
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• We show that the tracking of learners over time (in the case of GitHub
we consider three years of data traces) enables us to investigate the
impact of MOOCs in the long-term.

2.2 Social Web & MOOCs

The wider Web is starting to be viewed as a source of useful information in
MOOC learning analytics — the field concerned with the understanding and
optimization of learning in massive open online courses. Existing works focus
on the analysis of Social Web platforms during the running of a MOOC in
order to learn more about the interactions and processes occurring within
a MOOC. These analyses are not conducted on the individual learner level,
but on the aggregated group level, without the explicit matching of MOOC
learners to Social Web profiles.

Alario et al. [5] investigate the learners’ engagement with two built-in
MOOC platform components (Q&A and forum) and three external Social
Web portals (Facebook, Twitter and MentorMob) during the running of a
single MOOC. Learners’ MOOC and Social Web identities are not matched
directly, instead, learners are asked to join a specific Facebook group and use
a course-specific Twitter hashtag. The authors find that despite the active
encouragement of the platforms’ usage to exchange ideas and course materi-
als, after the initial phase of excitement, participation quickly dropped off.
Similarly, van Treeck & Ebner [156] also rely on Twitter hashtags to iden-
tify the microblog activities surrounding two MOOCs. They (qualitatively)
analyse the tweet topics, their emotions and the extent of actual interactions
among learners on Twitter and find a small group of MOOC participants
(6%) to have generated more than half of all microblog content.

Garcia et al. [59] analysed the concurrent Twitter activities of students
taking a "Social Networking and Learning" MOOC to track their engagement
and discussion beyond the MOOC environment by designating and tracking
hashtagged conversation threads. In the same MOOC, [42] presented a gen-
eralisable method to extend the MOOC ecosystem to the Social Web (in this
case Google+ and Twitter) to both facilitate and track students’ collabora-
tions and discussions outside of the immediate context of the course.

[80] tracked Twitter interactions among MOOC students to understand
the dynamics of social capital within a connectivist [142] MOOC environ-
ment, which is inherently decentralised and distributed across platforms.
This work was primarily concerned with learner-learner relationships in the
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context of a MOOC—not individual learner traits. And, more broadly, [81]
explored the types and topics of conversations that happen in the Social Web
concurrent to a MOOC.

Four observations can be made based on these studies: existing works
(i) analyze one or two Social Web platforms only, (ii) are usually based on
experiments within a single MOOC, (iii) do not require a learner identification
step (as an intermediary such as a Twitter hashtag is employed), and (iv)
focus on learner activities exhibited during the running of a MOOC that
are topically related to the MOOC content (e.g. ensured through the use of
moderated Facebook group).

In contrast, we present a first exploratory analysis across eighteen MOOCs
and five Social Web platforms exploring the learners’ behaviours, activities
and created content over a considerably longer period of time.

2.3 Approach

In this section, we first describe our three-step approach to locate a given set
of MOOC learners on Social Web platforms, before going into more detail
about the analyses performed on the learners’ Social Web traces.

2.3.1 Locating Learners on the Social Web

On the edX platform, a registered learner li is identified through a username,
his or her full name and email address (as required by the platform), i.e. li =

(logini,namei, emaili). On a Social Web platform Pj , the publicly available
information about a user uj usually consists of (a subset of) username, full
name, email address and profile description. The profile description is often
semi-structured and may also contain links to user accounts on other Social
Web Platforms Px, ..Pz. A common assumption in this case (that we employ
as well) is that those accounts belong to the same user u.

For each Social Web platform Pj we attempt to locate li through a three-
step procedure:

Explicit If Pj enables the discovery of users via their email address, we use
emaili to determine li’s account uji on Pj . If available, we also crawl the
profile description of uji , the profile image (i.e. the user avatar) and extract
all user account links to other Social Web platforms under the assumption
stated before.



14 Chapter 2. Learner Identification across Social Web Platforms

Direct This step is only applied to the combination of learners and Social
Web platforms (li, Pj) for which no match was found in the Explicit step.
We now iterate over all extracted account links from the Direct step and
consider li’s account on Pj to be found if it is in this list.

Fuzzy Finally, for pairs (li, Pj) not matched in the Direct step, we employ
fuzzy matching: we rely on li’s namei & logini and search for those terms on
Pj . Based on the user (list) returned, we consider a user account a match for
li, if one of the following three conditions holds:

(i) the profile description of the user contains a hyperlink to a profile
that was discovered in the Explicit or Direct step,

(ii) the avatar picture of the user in Pj is highly similar to one of li’s
avatar images discovered in the Explicit or Direct step (we measure
the image similarity based on image hashing [143] and use a similarity
threshold of 0.9), or,

(iii) the username and the full name of the user on Pj and li are a
perfect match.

2.3.2 Social Web Platforms

Our initial investigation focused on ten globally popular Social Web plat-
forms, ranging from Facebook and Twitter to GitHub and WordPress. We
eventually settled on five platforms, after having considered the feasibility of
data gathering and the coverage of our learners among them. Concretely, we
investigate the following platforms:

Gravatar2 is a service for providing unique avatars to users that can be em-
ployed across a wide range of sites. During our pilot investigation, we found
Gravatar to be employed by quite a number of learners in our dataset. Given
that Gravatar allows the discovery of users based on their email address, we
employ it as one of our primary sources for Explicit matching. We crawled
the data in November 2015. We were able to match 25,702 edX learners on
Gravatar.

StackExchange3 is a highly popular community-driven question & answering
site covering a wide range of topics. The most popular sub-site on this
platform is StackOverflow, a community for computer programming related
questions. StackExchange regularly releases a full “data dump” of their
content that can be employed for research purposes. We employed the data
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release from September 2015 for our experiments. We were able to match
15,135 edX learners on StackExchange.

LinkedIn4 is a business-oriented social network users rely on to find jobs,
advertise their skill set and create & maintain professional contacts. The
public profiles of its users can be crawled, containing information about their
education, professional lives, professional skills and (non-professional) inter-
ests. We crawled the data in November 2015. We were able to match 19,405
edX learners on LinkedIn.

Twitter5 is one of the most popular microblogging portals to date, used by
hundreds of millions of users across the globe. Twitter allows the crawling of
the most recent 3, 200 tweets per user. We crawled the data in December 2015
and January 2016. We were able to match 25,620 edX learners on Twitter.

GitHub6 is one of the most popular social coding platforms, allowing users
to create, maintain and collaborate on open-source software projects. The
GitHub platform creates a large amount of data traces, which are captured
and made available for research through two large initiatives: GitHub Archive7

and GHTorrent8. For our work, we rely on all data traces published between
January 1, 2013 and December 31, 2015. We were able to match 31,478 edX
learners on GitHub。

In addition, we are interested in how many learners are observed across
more one platform. The numbers of learners that can be matched across 2,
3, 4, 5 platforms are 14824, 6980, 3129, 1125, respectively.

2.3.3 Social Web Data Analysis

As our work is exploratory in nature, we employ a range of data analysis
approaches that enable us to explore our gathered data traces from various
angles.

t-SNE. Many of our user profiles are high-dimensional: a LinkedIn user
may be represented through a vector of his or her skills9 and a Twitter user
profile may be encoded as a vector of the entities or hyperlinks mentioned
in his or her tweets. If we are interested to what extent those user profiles

7https://www.githubarchive.org/
8http://ghtorrent.org/
9The dimension of the vector space depends on the number of unique skills in the

dataset, with a single skill being encoded in binary form.

https://www.githubarchive.org/
http://ghtorrent.org/


16 Chapter 2. Learner Identification across Social Web Platforms

are similar or dissimilar for users (learners) that are taking different kinds
of MOOCs, we can visualize these similarities using t-SNE (t-Distributed
Stochastic Neighbor Embedding [154]), a visualization approach for high-
dimensional data that computes for each datapoint a location on a 2D (or
3D) map. t-SNE10 creates visualizations that reveal the structure of the
high-dimensional data at different scales and has been shown to be superior
to related non-parametric visualizations such as Isomaps [9].

Age and gender prediction. Predicting certain user attributes based on
a user’s Social Web activities is an active area of research. It has been shown
that attributes such as age [113], gender [11], personality [79], home loca-
tion [106] and political sentiments [14] (to name just a few) can be predicted
with high accuracy from Social Web data sources.

In our work we focus on the prediction of age and gender, as those two
attributes can be inferred of Social Web users with high accuracy. We also
have intuitions concerning the age and gender (in contrast to, for instance,
their personalities) of the learners that take our MOOCs (e.g. a computer
science MOOC is likely to have a larger pool of male participants), enabling
us to judge the sensibility of the results.

The main challenge in this area of work is the collection of sufficient and
high-quality training data (that is, Social Web users with known age, gender,
location, etc.). Once sufficient training data has been obtained, standard
machine learning approaches are usually employed for training and testing.

In our work, we make age and gender predictions based on tweets and
employ the models provided by [139]11, who utilized the English language
Facebook messages of more than 72,000 users (who collectively had written
more than 300 million words) to create unigram-based age & gender predic-
tors based on Ridge regression [77]. The age model Mage contains 10,797
terms and their weights wi. To estimate the age of a user u, we extract all
his English language tweets (excluding retweets), concatenate them to create
a document Du and then employ the following formulation:

ageu = w0 +
∑

t∈Mage

wt ×
freq(t,Du)

|Du|
. (2.1)

10In this work, we utilize t-SNE’s scikit-learn implementation: http://scikit-learn.
org/.

11The models are available at http://www.wwbp.org/data.html

http://scikit-learn.org/
http://scikit-learn.org/
http://www.wwbp.org/data.html
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Here, |Du| is the number of tokens in Du, w0 is the model intercept and
freq(t,Du) is the term frequency of t in Du. Only terms in Du that appear
in Mage have a direct effect on the age estimate. The model is intuitively
understandable; the five terms with the largest positive weights (indicative
of high age) are {grandson, daughter, daughters, son, folks}. Conversely, the
five terms with the largest negative weights (indicative of a young user) are
{parents, exams, pregnant, youth, mommy}.

The gender prediction is derived in an analogous fashion based on model
Mgender, which consists of 7, 137 terms and their weights. In contrast to
the age estimation (which provides us with a continuous estimate), we are
interested in a binary outcome. Thus, after the regression stage, classification
is performed: if the estimation is ≥ 0, the user is classified as female and
otherwise as male. Once more, the model is intuitive; the largest negative
weights (indicating maleness) are {boxers, shaved, ha3ircut, shave, girlfriend}.

Learning Transfer. Existing investigations into student learning within
MOOC environments are commonly based on pre- & post-course surveys
and log traces generated within those environments by the individual learn-
ers [74]. With a crude, binary measure of learning, the success (pass/no-pass)
of the learner could be labeled. While learning is an important success mea-
sure, we also believe that the amount of learning transfer [94] that is taking
place should be considered: do learners actually utilize the newly gained
knowledge in practice? Are learners expanding their knowledge in the area
over time or do they eventually move back to their pre-course knowledge
levels and behaviours? While most Social Web platforms do not offer us in-
sights into this question, for MOOCs (partially) concerned with the teaching
of programming languages (such as Functional Programming) we can rely on
the GitHub platform to perform an initial exploration of this question.

GitHub provides extensive access to data traces associated with public
coding repositories, i.e. repositories visible to everyone12. GitHub is built
around the git distributed revision control system, which enables efficient
distributed and collaborative code development. GitHub not only provides
relevant repository metadata (including information on how popular a repos-
itory is, how many developers collaborate, etc.), but also the actual code that
was altered. As the GitHub Archive13 makes all historic GitHub data traces
easily accessible, we relied on it for data collection and extracted all GitHub

12Data traces about private repositories are only available to the respective repository
owner.

13https://www.githubarchive.org/

https://www.githubarchive.org/
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data traces available between January 1, 2013 and June 30, 2015 (five months
after the end of the programming MOOC in our dataset). We then filtered
out all traces that were not created by the 31, 478 learners we identified on
the GitHub platform. Of the more than 20 GitHub event types14, we only
consider the PushEvent as vital for our analysis.

Every time code is being updated (“pushed” to a repository), a PushEvent
is triggered. Figure 2.1 contains an excerpt of the data contained in each
PushEvent. The most important attributes of the event are the created_at
timestamp (which allows us to classify events as before/during/after the run-
ning of the programming MOOC), the actor (the user doing the “push”) and
the url, which contains the URL to the actual diff file. While the git pro-
tocol also allows a user to “push” changes by another user to a repository
(which is not evident from inspecting the diff file alone), this is a rare oc-
currence among our learners: manually inspecting a random sample of 200
PushEvents showed 10 such cases.

{
"_id" : ObjectId("55b6005de4b07ff432432dfe1"),
"created_at" : "2013-03-03T18:36:09-08:00",
"url" : "https://github.com/john/

RMS/compare/1c55c4cb04...420e112334",
"actor" : "john",
"actor_attributes" : {

"name" : "John Doe",
"email" : "john@doe.com"

},
"repository" : {

"id" : 2.37202e+06,
"name" : "RMS",
"forks" : 0,
"open_issues" : 0,
"created_at" : "2011-09-12T08:28:27-07:00",
"master_branch" : "master"

}
}

Figure 2.1: Excerpt of a GitHub PushEvent log trace.

A diff file shows the difference between the last version of the repository
and the new one (after the push) in terms of added and deleted code. For each
of the identified PushEvents by our learners, we crawled the corresponding
diff file, as they allow us to conduct a more fine-grained code analysis. As
a first step in this direction, we identified the number of additions and dele-
tions a user conducts in each programming language based on the filename
extensions found in the corresponding diff file.

14https://developer.github.com/v3/activity/events/types/

https://developer.github.com/v3/activity/events/types/
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2.4 MOOC Learners & the Social Web

As a starting point for our investigation we utilize eighteen MOOCs that
have run between 2013 and 2015 on the edX platform — the largest MOOCs
conducted by the Delft University of Technology (situated in the Netherlands)
to date; the courses cover a range of subjects in the natural sciences, computer
science and the humanities and were all taught in English. An overview of
the MOOCs can be found in Table 2.1; we deemed the MOOC titles not to
be self-explanatory, so we also added the MOOC’s “tag line”. Apart from the
Pre-universiy Calculus (specifically geared towards pre-university learners)
and the Topology in Condensed Matter (aimed at MSc and PhD physics
students) courses, the MOOCs were created with a wide variety of learners
in mind. All courses follow the familiar MOOC recipe of weekly lecture videos
in combination with quizzes and automatically (or peer-) graded assignments.

The MOOCs vary significantly in size. The largest MOOC (Solar Energy
2013) attracted nearly 70,000 learners, while the smallest one (Topology in
Condensed Matter 2015) was conducted with approximately 4,200 learners.
While the majority of learners register for a single MOOC only, a sizable
minority of learners engage with several MOOCs and thus the overall number
of unique learners included in our analysis is 329,200.

To answer RQ 1.1, Table 2.1 summarizes to what extent we were able to
identify learners across the five Social Web platforms, employing the three-
step procedure described in Section 2.3.1. Note that the numbers reported
treat each course independently, i.e. if a learner has registered to several
courses, it will count towards the numbers of each course.

The percentage of learners we identify per platform varies widely across
the courses between 4-24% (Gravatar), 1-22% (StackExchange), 3-42% (GitHub),
4-11% (LinkedIn) and 5-18% (Twitter) respectively. Functional Program-
ming is the only MOOC we are able to identify more than 10% of the reg-
istered learners across all five Social Web platforms. While this finding
by itself is not particularly surprising — two of the five Social Web plat-
forms are highly popular with users interested in IT topics (i.e. GitHub and
StackExchange) and those users also tend to be quite active on Social Web
platforms overall — it can be considered as an upper bound to the fraction
of learners that are active on those five platforms and identifiable through
robust and highly accurate means.

In Table 2.2 we split up the matches found according to the type of
matching performed (Explicit, Direct or Fuzzy). On Gravatar, we relied ex-
clusively on Explicit matching, while the vast majority of learners on GitHub
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MOOC Year #Learners Gravatar Stack- GitHub LinkedIn Twitter
Exchange

Solar Energy 2013 67,143 †3,510 1,570 †3,677 2,997 †3,828
Solar Energy 2014 34,524 †1,923 874 †2,229 1,625 †2,152
Solar Energy 2015 26,178 1,147 435 1,184 1,181 †1,557
Introduction to
Water Treatment 2013 34,897 1,559 508 1,198 1,362 1,741

Introduction to
Drinking Water Treatment 2014 10,458 457 129 430 427 †548

Introduction to
Water and Climate 2014 9,267 †561 154 †510 452 †558

Technology for
Biobased Products 2014 9,811 †545 149 †511 452 †547

Next Generation
Infrastructures1 2014 20,531 †1,438 583 †1,451 †1,155 †1,447

Functional Programming2 2014 38,682 ‡9,087 ‡8,477 ‡16,220 ‡4,274 ‡6,801
Data Analysis3 2015 33,547 †2,392 1,165 ‡4,432 †2,469 †2,800
Pre-university Calculus 2015 28,015 †1,928 960 †2,477 †1,406 †2,064

Introduction to
Aeronautical Engineering 2014 20,481 †1,134 605 †1,373 921 †1,192

Introduction to
Aeronautical Engineering 2014 13,197 †699 318 †837 609 †788

Topology in
Condensed Matter4 2015 4,231 †277 †292 †600 201 †302

Framing5 2015 34,018 †2,838 1,034 †2,597 †2,211 †2,657
Solving Complex Problems6 2014 32,673 †2,803 1,620 ‡3,928 †1,934 †2,647
Delft Design Approach7 2014 13,543 †1,319 514 ‡1,376 †1,085 †1,124
Responsible Innovation8 2014 10,735 †877 274 †800 †713 †753
Unique Users 329,200 25,702 15,135 31,478 19,405 25,620

1 Explores the challenges of global & local infras-tructure (ICT, energy, water and transportation).
2 Teaches the foundations of functional programming & how to apply them in practice.
3 Teaches data analysis skills using spreadsheets and data visualization.
4 Provides an overview of topological insulators, Majoranas, and other topological phenomena.
5 Analyzes how politicians debate and what the underlying patterns are framing and reframing.
6 How to solve complex problems with analytics based decision-making & solution designs.
7 How to design meaningful products & services.
8 How to deal with risks and ethical questions raised by the development of new technologies.

Table 2.1: Overview of the edX MOOCs under investigation, the number of learners regis-
tered to those MOOCs and the number of learners that could be matched (with
either Explicit/Direct or Fuzzy matching) to our five Social Web platforms.
Marked with † (‡) are those course/platform combinations where we were able
to locate > 5% (> 10%) of the registered learners. The final row contains the
unique number of users/learners (a learner may have taken several MOOCs)
identified on each platform.

and StackExchange were also identified in this manner, with Direct and
Fuzzy matching contributing little. On these platforms, users’ email ad-
dresses are either directly accessible (Gravatar and GitHub) or indirectly
accessible (StackExchange provides the MD5 hash of its users’ email ad-
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dresses15). In contrast, the LinkedIn and Twitter platforms do not publish
this type of user information and thus the majority of matches are fuzzy
matches. Overall, the Direct approach has the least impact on the number
of matches found.

To verify the quality of our matchings, for each platform, we sampled
50 users identified through any matching strategy and manually determined
whether the correct linkage between the learner’s edX profile and the Social
Web platform was found (based on the inspection of user profile information
and content). We found our matching to be robust: of the 100 samples,
we correctly linked 93 (StackExchange), 87 (GitHub), 97 (Twitter) and 95
(LinkedIn) respectively.

Explicit Direct Fuzzy Overall

Gravatar 7.81% — — 7.81%
StackExchange 4.32% 0.01% 0.25% 4.58%
GitHub 9.04% 0.02% 1.23% 10.29%
LinkedIn — 0.48% 5.41% 5.89%
Twitter — 0.67% 7.12% 7.78%

Table 2.2: Overview of the percentage of MOOC learners (329,200 overall) identified
through the different matching strategies on the five selected Social Web plat-
forms. A dash (—) indicates that for this specific platform/strategy combina-
tion, no matching was performed.

2.5 Results

In this section, we present an overview of our findings. As we collected
different types of data (tweets vs. skills vs. source code) from different
Social Web platforms, we describe the analysis conducted on each platform’s
data traces independently in the following subsections.

2.5.1 Learners on Twitter

Our Twitter dataset consists of 25,620 unique users having written 12, 314, 067

tweets in more than 60 languages, which offers many insights into RQ 1.2.
The majority language is English (68.3% of all tweets), followed by Spanish

15Note that StackExchange stopped the release of MD5 hashes in September 2013, thus
we use the 2013 data dump for email matching and the September 2015 data dump for our
content analysis.
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(7.3%), Dutch (3.1%), Portuguese (3.1%) and Russian (2.2%)16. The popu-
larity of the Dutch language among our Twitter users can be explained by
the fact that all MOOCs we consider in this analysis are offered by a Dutch
university.

For each Twitter user with at least 100 English language tweets we esti-
mated their age according to the approach described in Section 2.3.3. The
results for our Twitter user set overall and three exemplary MOOCs (that is,
we only consider users that participated in a particular MOOC) are shown
in Figure 2.2: we have binned the estimations into six age brackets17. The
average MOOC learner is between 20 and 30 years of age, though we do
observe that different types of courses attract slightly different audiences: In
the Functional Programming MOOC, the 20-40 year old learners are overrep-
resented (compared to the “Overall” user set — computed across all eighteen
MOOCs), while Framing and Responsible Innovation engage older learners
to a larger than average degree.

We conduct an analogous analysis of our users’ gender distribution; the
results are shown in Figure 2.318. The majority of MOOCs we investigate are
anchored in engineering or the natural sciences, which traditionally attract a
much larger percentage of male learners (in most parts of the world). This
is reflected strongly in our Twitter sample: across all users with 100 or more
English speaking tweets, 89% were identified as male. The MOOC with
the highest skew in the distribution is Functional Programming with more
than 96% of users identified as male. In contrast, the Framing and Robust
Innovation exhibit the lowest amount of skewness: in both MOOCs, more
than 20% of the users in our sample are classified as female.

The results we have presented provide us with confidence that microblog-
based user profiling in the context of massive open online learning yields
reliable outcomes. Future work will investigate the derivation of more com-
plex and high-level attributes (such as personalities and learner type) from
microblog data and their impact on online learning.

16We generated these numbers based on Twitter’s language auto-detect feature.
17Based on the ground truth data provided by 20, 311 edX learners, the prediction pre-

cision is 36.5%.
18The prediction precision is 78.3% based on the ground truth provided by 20, 739 edX

learners.
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Figure 2.2: Percentage of our Twitter users across eight age brackets. The “Overall”
user set contains all users independent of the specific MOOC(s) taken, the
remaining three user sets are MOOC-specific.

Figure 2.3: Percentage of our Twitter users of each gender. The “Overall” user set con-
tains all users independent of the specific MOOC(s) taken, the remaining
three user sets are MOOC-specific.

2.5.2 Learners on LinkedIn

LinkedIn user profiles are often publicly accessible, containing information
about a user’s education, past and current jobs as well as their interests and
skills. As shown in Table 2.1, for each of the MOOCs we were able to identify
between 200 (Topology in Condensed Matter) and 2, 997 (Solar Energy 2013)
learners on the LinkedIn platform. To explore RQ 1.2 we focus on two types
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of information in those profiles: job titles and skills. In our dataset, among
the 19, 405 collected LinkedIn profiles, 17, 566 contain a job title (with on
average 5.89 number of terms) and 16, 934 contain one or more skills (37.42
skills on average).

Figure 2.4: Overview of the most frequent job title bigrams among the learners of the
Data Analysis (top), Delft Design Approach (middle), and Responsible Inno-
vation (bottom) MOOCs.
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In Figure 2.4, exemplary for three MOOCs (Data Analysis, Responsi-
ble Innovation, and Delft Design Approach), we present the most frequently
occurring bigrams among the job titles of our learners. Interestingly, the
Data Analysis MOOC attracts a large number of self-proclaimed “software
engineers” and “business analysts,” despite the fact that it covers elemen-
tary material (it is an introduction to spreadsheet-based data analysis &
Python) which we consider users in this area to be already familiar with.
In contrast, the Delft Design Approach and Responsible Innovation job title
bigram distributions are more in line with our expectations — the most fre-
quent bigrams are “project manager” and “co founder” respectively, positions
for which knowledge about the risks and ethical questions of new technolo-
gies (Responsible Innovation) and the design of new products (Delft Design
Approach) are very relevant to.

Figure 2.5: Fraction of learners displaying n numbers of MOOC certificate.

As prior works [176] have indicated extrinsic factors such as recognition-
by-others to play an important motivating role for MOOC learners, an ex-
planation for the observed discrepancy between expected learners and ac-
tual MOOC participants, we also investigate to what extent our learners on
LinkedIn present their MOOC achievements to the outside world. In Fig-
ure 2.5 we present a distribution of the number of MOOC certificates our
users in the LinkedIn dataset list on their profile page. Each certificate rep-
resents a successfully completed MOOC. We limit our investigation to any
certificate issued by the edX or Coursera platforms, as they offer a verifiable
certificate interface to LinkedIn. We manually checked a random sample of
100 DelftX edX certificates listed by LinkedIn users to check whether each
was actually issued to this specific user via edX. This was indeed the case
for all sampled certificates. Overall, 9% of our users list one or more MOOC
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certificates on their public profile with the majority of users (57%) having
achieved one or two certificates only. A small fraction of learners (2%) is
highly active in the MOOC learning community, having collected more than
15 certificates over time. Future work will investigate the impact of MOOC
certificates on professional development through the lense of LinkedIn.

Lastly, we investigate to what extent the users’ listed skills on their
LinkedIn profiles can be considered indicative of their course preferences
(to enable course recommendations for instance). A user can list up to 50
skill on his profile — skills are not restricted to a pre-defined set, any key-
word or short phrase can be added as a skill. Across all LinkedIn users in our
dataset (19,405 users in total), the five most frequently mentioned skills are
management (5,847 times), project management (4,894 times), java (4,087
times), microsoft office (4,073 times) and leadership (3,971 times). Thus,
most of the users in our dataset present skills of themselves that are required
for higher positions. We created a skill vocabulary by considering all skills
mentioned at least once by a user in our dataset and then filtering out the
fifty most frequent skills overall, leaving us with 28, 816 unique skills. We
create a user-skill matrix, where each cell represents the presence or absence
of a skill in a user’s profile. We then applied truncated SVD [52] to reduce
the dimensions of the matrix to 50 and then employed t-SNE (described in
Section 2.3.3) to visualize the structure of the data in a two dimensional
space.

In Figure 2.6 we present the t-SNE based clustering of user skills ex-
emplary for three pairs of MOOCs: Delft Design Approach vs. Topology of
Condensed Matter, Data Analysis vs. Solar Energy 2015, and, Functional
Programming vs. Framing. Recall, that a point in a plot represents a skill
vector; t-SNE visually clusters data points together that are similar in the
original (high-dimensional) skill space. The most distinct clustering can be
observed for the final course pairing — users interested in functional pro-
gramming are similar to each other, but different in their skill set from users
interested in the analyses of political debates. This is a sensible result, which
highlights the suitability of t-SNE for this type of data exploration. For the
other two course pairings, the plots show less separation. In particular, for
the Data Analysis vs. Solar Energy 2015 pairing, we observe a complete over-
lap between the two sets of users, i.e. there is no distinct set of skills that
separates their interests. The pairing Delft Design Approach vs. Topology of
Condensed Matter shows that the users of the design course have a larger
spread of skills than those taking the physics MOOC. Still, the overlap in the
skill set is considerable.
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Figure 2.6: t-SNE based visualization of LinkedIn skill vectors for pairs of MOOCs. Each
data point represents one skill vector (i.e. one user).
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2.5.3 Learners on StackExchange

Our StackExchange dataset consists of 86, 672 questions (1% of all StackExchange
questions posted), 197, 504 answers (1.2% of all answers) and 418, 633 com-
ments, which were contributed by the 31, 478 unique users we identified as
MOOC learners among our courses. Given that 51.5% of the identified
users registered for the Functional Programming MOOC, we focus our at-
tention on the StackOverflow site within StackExchange (the Q&A site
for programming-related questions), where our learners contributed 71, 344

questions, 177, 780 answers and 358, 521 comments.

Driven by RQ 1.3, we first explored to what extent (if at all) MOOC
learners change their question/answering behaviour during and after a MOOC.
We restricted this analysis to the learners of the Functional Programming
MOOC as those were by far the most active on StackOverflow. Among
the 38, 682 learners that registered for that MOOC, 8, 068 could be matched
to StackExchange. Of those users, 849 attempted to answer at least one
question related to functional programming.

In Figure 2.7 (top) we plot month-by-month (starting in January 2014)
the number of questions and answers by our learners that are tagged with
“Haskell”, the functional language taught in the MOOC. Two observations
can be made: (i) a subset of learners was already using Haskell before the
start of the MOOC (which ran between 10/2014 and 12/2014), and, (ii) the
number of Haskell questions posed by MOOC learners after the end of the
MOOC decreased considerably (from an average of 32 questions per month
before the MOOC to 19 per months afterwards), while the number of answers
provided remained relatively stable. Figure 2.7 (bottom) shows that this
trend is specific to the subset of MOOC learners: here we plot the frquency of
“Haskell”-tagged questions and answers across all StackExchange users and
observe no significant changes in the ratio between questions and answers.
Finally, in Figure 2.7 (middle) we consider our learners’ uptake of functional
programming in general, approximated by the frequency of questions and
answers tagged with any of the nine major functional language names19. We
again find that over time, the ratio between questions & answers becomes
more skewed (i.e. our learners turn more and more into answerers).

Finally, we also explored whether our MOOC learners have a similar
expertise-dispensing behaviour as the general StackOverflow user popula-
tion. To this end, we make use of the two expertise use types proposed
in [169]: sparrows and owls. In short, sparrows are highly active users that

19Scala, Haskell, Common Lisp, Scheme, Coljure, Racket, Erlang, Ocaml, F#
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Figure 2.7: Overview of the number of StackOverflow questions and answers posted on a
monthly basis between January 2014 and July 2015 by (i) our MOOC learners
[top and middle], and (ii) all StackExchange users [bottom] for Haskell [top,
bottom] and the nine major functional languages [middle]. Marked in gray
is the time period of the Functional Programming MOOC. The dashed green
line indicates the ratio of Questions

Answers in each month.

contribute a lot but do not necessarily increase the community’s knowledge.
Their answers, while relevant, might be of low quality or low utility as they
are motivated by reputation scores, and gamification elements of the plat-
form. Owls on the other hand are users that are motivated to increase the
overall knowledge contained in the platform. Owls are experts in the dis-
cussed topic, and they prove their expertise by providing useful answers to
important and difficult questions. [169] proposed the mean expertise con-
tribution (MEC) metric to capture measure expertise, based on answering
quality, question debatableness and user activeness. Based on this metric,
they determined 10.0% of the StackOverflow users to be owls. We derived
MEC for our set of Functional Programming MOOC learners that are ac-
tive on StackOverflow and found 21.0% of them to be owls. Thus, the
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average MOOC learner is not only interested in gathering knowledge, but
also in distributing knowledge to others, on a deeper level than the average
StackExchange user.

2.5.4 Learners on GitHub

Figure 2.8: Month-by-month GitHub contributions in the Haskell language by the Func-
tional Programming MOOC learners identified on GitHub.

Finally, with respect to RQ 1.3, we consider the concept of learning
transfer, introduced in Section 2.3.3. As a social coding platform, GitHub is
most suitable to explore programming-heavy MOOCs, thus we restrict our
analysis (as in the previous section) to the Functional Programming MOOC.
We are particularly interested in the extent of the learners’ functional pro-
gramming after the end of the MOOC — our MOOC learners ask fewer
topic-related questions (on StackExchange) over time, but does it also mean
they program less in the language? To his end, we explored th 6, 371, 518

PushEvents we extracted from our MOOC learners between January 1, 2013
and June 30, 2015. Figure 2.8 provides a first answer to this question. The
amount of Haskell programming by our learners was increasing slowly over
time even before the start of the MOOC. A spike is visible in November 2014
(weeks 3-6 of the Functional Programming MOOC) and immediately after
the end of the MOOC the contributions increase. However, by March 2015,
i.e. three months after the end of the MOOC, the contributions are beginning
to decline again towards nearly pre-MOOC levels.

In contrast to Haskell, we observe a sharp rise in “Scala” (the main func-
tional language in industry) activities after the end of the MOOC which peak
in November 2015. These functional activities are not evenly spread across
all users though, only 32% of the users we identified on GitHub exhibited
any type of functional language activities after the end of the Functional
Language MOOC.
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In the future, we will not only consider the addition of lines of codes in a
particular language, but also perform fine-grained code analyses to investigate
which specific concepts the learners picked up on in the MOOC and later
employed in their own works.

2.6 Conclusion

In this chapter, we have provided a first exploratory analysis of learners’
Social Web traces across eighteen MOOCs and five globally popular Social
Web platforms. We argue that MOOC-based learning analytics has much
to gain from looking beyond the MOOC platform and accounting for the
fact that learning events frequently happen beyond the immediate course
environment. This study embraces the data traces learners leave on various
Social Web platforms as integral parts of the distributed, connected, and
open online learning ecosystem.

Focusing on RQ 1.1, we have found that on average 5% of learners
can be identified on globally popular Social Web platforms. We observed
a significant variance in the percentage of identified learners; in the most
extreme positive case (Functional Programming/GitHub) we were able to
match 42% of learners. We also found that learners with specific traits prefer
different types of MOOCS (RQ 1.2) and we were able to present a first
investigation into user behaviours (such as learning transfer over time) that
are paramount in the push to make MOOCs more engaging and inclusive
(RQ 1.3).

In this work we were only able to explore the possible contributions of each
Social Web platform to enhance massive open online learning on a broad level.
In future work, we will zoom in on each of the identified platforms and explore
in greater detail how learners’ behaviours and activities can be explored to
positively impact our understanding of massive open online learning and
improve the learning experience.





Chapter 3

Learning Transfer

In this chapter, we follow Chapter 2, in which we have observed that over
one-third of learners from a Functional Programming MOOC used GitHub
to maintain their programming activities. While course completion is indeed
an important measure of learning, we argue that another key measure is
learning transfer : do learners actually use the newly acquired knowledge and
skills to solve problems in practice? To answer the question, we combine the
data traces from both edX and GitHub for analysis. The contributions of this
chapter have been published in [30].

33
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3.1 Introduction

The rising number of MOOCs enable people to learn & advance their knowl-
edge and competencies in a wide range of fields. Learning, though, is only
the first step; the application of the taught concepts is equally important, as
knowledge that is learned but not frequently applied or activated is quickly
unlearned [166, 18, 148].

Existing investigations into student learning within MOOC environments
are commonly based on pre- & post-course surveys and log traces generated
within those environments by the individual learners [74]. While student
learning is indeed an important measure of success, we argue that another
key measure is the amount of learning transfer [94] that is taking place:
do learners actually utilize the newly gained knowledge in practice? Are
learners expanding their knowledge in the area over time or do they eventually
move back to their pre-course knowledge levels and behaviours? These are
important questions to address in the learning sciences, and their answers will
enable us to shape the MOOCs of the future based on empirical evidence.

The main challenge researchers face in answering these questions is the
lack of accessible, large-scale, relevant and longitudinal data traces outside
of MOOC environments. While learners can be uniquely identified within a
MOOC platform, at this point in time we have no general manner of capturing
their behavioural traces outside of these boundaries.

Not all is lost though. Social Web platforms (Twitter being the prime
example) have become a mainstay of the Web. They are used by hundreds of
millions of users around the world and often provide open access to some — if
not all — of the data generated within them. While most of these platforms
are geared towards people’s private lives, in the past few years social Web
platforms have also begun to enter our professional lives.

One such work-related social Web platform is GitHub1; it is one of the
most popular social coding platforms world-wide with more than 10 million
registered users. Hobbyists and professional programmers alike use GitHub
to collaborate on programming projects, host their source code, and organize
their programming activities. As GitHub was founded in 2007, we have po-
tential access to log traces reaching several years into the past; moreover, its
continuously increasing popularity will enable us to observe our learners over
years to come. The potential of GitHub for behavioural mining has long been
recognized by the software engineering research community where GitHub is

1https://github.com/

https://github.com/
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one of the most popular data sources to investigate how (groups of) people
code.

Thus, for MOOCs with a strong focus on programming concepts, we con-
sider GitHub to be one of the most detailed and openly accessible sources of
learners’ relevant behavioral traces outside of the MOOC environment itself.
Concretely, we analyze FP101x2, an edX MOOC covering basic functional
programming concepts. Of the 37,485 learners that registered for FP101x
we matched 12,415 (33.1%) to their respective GitHub accounts, enabling a
first large-scale analysis of the uptake of taught programming concepts in
practice.

Here, we are foremost interested in exploring to what extent the course
affects learners after it has ended. We are guided by the following three
Research Questions:

RQ 2.1 To what extent do learners from a programming MOOC transfer
the newly gained knowledge to practice?

RQ 2.2 What type of learners are most likely to make the transfer?

RQ 2.3 How does the transfer manifest itself over time?

Based on these guiding questions we have formulated seven research hy-
potheses which build on previous research efforts in work-place and classroom
learning. In contrast to our work though, in these settings, the investigations
are mostly based on questionnaires and interviews instead of behavioural
traces. To the best of our knowledge, learning transfer has not yet been
investigated in the context of MOOCs. Gaining deeper insights about the
(lack of) learning transfer in MOOCs will lead to more informed discussions
on the practical purposes and benefits of MOOCs. The main contributions
of our work can be summarized as follows:

• We investigate to what extent learning transfer insights gained in work-
place and classroom settings hold in the MOOC context. We find that
the majority of findings are also applicable in the case of MOOCs.

• We introduce the use of external social Web-based data sources to com-
plement learner traces within MOOC environments as a means to cap-
ture much more information about MOOC learners.

2https://www.edx.org/course/introduction-functional-programming-delftx-fp101x

https://www.edx.org/course/introduction-functional-programming-delftx-fp101x
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• We introduce GitHub as a specific large-scale data source to mine rele-
vant longitudinal behavioural traces about learners before, during and
after a programming-oriented MOOC.

3.2 Background

Meaningful, robust educational experiences transcend rote memorization of
facts and leave the learner empowered to take on new problems and practice
novel ways of thinking. In tracking student activity from the learning context
(edX) to a real-world, practical one (GitHub) over a period of three years, the
present study observes the first two of the three criteria of robust learning as
outlined in [94]: (i) application in new situations different from the learning
context, (ii) retained over the long-term, and (iii) prepares for future learning.
Gaining a better understanding of how students apply what they learn in
online learning environments over an extended time frame enables instructors
to design future courses that induce more robust learning.

Some researchers [162, 158] have begun to look beyond traces generated in
online learning environments, by utilizing post-course surveys or conducting
post-course interviews with MOOC students.

Although the early studies of transfer stemmed from educational issues,
the majority of recent learning transfer research literature is concerned with
work-place training in Human Resource Development (HRD) [19]. With
the recent influx of student activity data generated from digital learning
environments, we can now empirically measure not only the rate of transfer,
but other contributing factors as well. That, in tandem with the established
surveying strategies used by HRD, promises to fundamentally change the
way we think about measurable learning outcomes.

Learning transfer is the application of knowledge or skills gained in a
learning environment to another context [10]. While training situations in
professional environments have a clear target context (the job), this is not
the case with most academic learning situations. Students are generally
taught a broad set of skills and knowledge which they may apply in countless
ways. This deliberately broad definition encapsulates both near transfer (to
similar contexts) and far transfer (to dissimilar contexts) [13] and avoids the
subjective question of how similar or different the learning context is from the
target context, as we are only concerned with whether the student transferred
the learned skills or knowledge beyond the learning context.
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Due to their rising popularity as a professional development tool and their
roots as an educational resource, MOOCs serve as an ideal source of informa-
tion to gain new insights on learning transfer. Studies have begun to discuss
the learners’ intention to apply what they’ve learned in MOOCs but do not
continue to track student activity beyond the learning platform [55]. The
present research aims to reoperationalize [45] the understanding of learning
transfer given the emerging possibilities of user modeling and learning analyt-
ics from the current standard of reported learning transfer towards observed
learning transfer.

Yelon & Ford [173] offer a key distinction in transfer that differentiates
open and closed skills. Open skill training programs include “leadership
and interpersonal skills training,” and typical closed skill trainings include
“various technical training and computer software training.” This emerges as
an important distinction. In a study in which Blume et al. [19] found post-
training knowledge (PTK) and post-training self-efficacy (PTSE) to have
similar correlations with learning transfer, PTK and PTSE for closed skills
resulted in lower correlation coefficients than for open skills. Independent
of performance, self-efficacy is a person’s self-reported ability to successfully
complete a future task [12]. Knowledge is measured as a result of a task—
answering a quiz question correctly indicates possession of that knowledge
[19].

Regarding the maintenance and persistence of learning transfer over time,
Blume et al. [19] analyzed how the amount of time (the “lag”) between the
end of training and the beginning of the transfer study affects learning trans-
fer. They found that in studies with at least some lag time between training
and testing, learners exhibited significantly lower post-training knowledge
and post-training self-efficacy than those that tested students immediately
following training.

In their survey of training professionals from 150 organizations, [138]
report that 62% of employees in their organization “effectively apply what
they learned in training” to their job immediately, 42% after six months,
and 34% after one year. Other studies directly survey students in gathering
self-reported data about learning transfer [99]. Another manner by which
researchers have measured transfer is through assessment questions following
instruction that, in order for students to answer correctly, would have to apply
what they learned to a new context or problem [101, 2]. The present study
examines transfer as a more naturally occurring, un-elicited phenomenon that
the learners undertake and exhibit on their own accord.
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3.3 FP101x

Introduction to Functional Programming (or short FP101x) is a MOOC of-
fered on the edX platform. The course introduces learners to various func-
tional programming concepts; all programming is performed in the functional
language Haskell.

The first iteration of the course ran between October 15, 2014 and De-
cember 31, 2014. As is common in MOOCs today, learners were invited to
participate in a pre-course and a post-course survey containing questions on
the motivation of the learners, the perceived quality of the course, etc. In
August 2015 we approached a subset of learners for an additional post-course
survey.

The course was set up as an xMOOC [134]: lecture videos were dis-
tributed throughout the 8 teaching weeks. Apart from lectures each week,
exercises (“homeworks” and “labs”) were distributed in the form of multi-
ple choice (MC) questions. While homework questions evaluated learners on
their understanding of high-level concepts and code snippets (e.g., “What is
the result of executing [...]?”), labs required learners to implement programs
themselves. To enable fully automatic evaluations, all lab work was also as-
sessed through MC questions. Each of the 288 MC questions was worth 1
point & could be attempted once. Answers were due 2 weeks after the release
of the assignment. To pass the course, ≥ 60% of all MC questions had to be
answered correctly.

Overall, 37,485 users registered for the course. Fewer than half (41%)
engaged with the course, watching at least one lecture video. The completion
rate was 5.25%, in line with similar MOOC offerings [95]. Over 75% of the
learners were male and more than 60% had at least a Bachelors degree.

3.4 Methodology

We first outline and justify the seven research hypotheses upon which we
ground our work. Next, we describe in detail how to verify them empirically
based on course questionnaire data, edX logs and GitHub data traces.

3.4.1 Research Hypotheses

Based on prior work we can make the following hypothesis associated with
RQ 2.1:
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H1 Only a small fraction of engaged learners is likely to exhibit learning
transfer.
While previous works, e.g. [138], note transfer rates of up to 60%, we
hypothesize our rate to be much lower, due to the natural setting we
investigate, the difficulty of the topic (closed skills) and the generally
low retention rate of MOOCs.

A large part of existing literature has focused on the different dimensions
of a learner that may be indicative of a high or low transfer rate. Thus, the
following research hypotheses are all related to RQ 2.2, which focuses on
the type of learner exhibiting transfer.

H2 Intrinsically motivated learners with mastery goals are more likely to
exhibit learning transfer than extrinsically motivated learners.

[129] found that, in academic settings, mastery goals are more con-
sistently linked to transfer success than performance goals. This was
measured by instructors guiding students through either mastery- or
performance-oriented experimental conditions and comparing their as-
sessment scores. In line with intrinsic motivation, mastery goals are
characterized by a learner’s intention to understand and develop new
knowledge and abilities. Performance goals, extrinsically motivated,
are those sought after in order to obtain positive judgements from oth-
ers [43].

H3 Learners expressing high self-efficacy are more likely to actively apply
their trained tasks in new contexts.
In other words, in both academic and professional settings, if you be-
lieve that you are able to do something, you are more likely to try
it [56, 73, 78, 129].

H4 Experienced learners (high ability levels) are more likely to transfer
trained skills and knowledge in order to maintain and improve per-
formance levels [56].

H5 Learners reporting a high personal capacity (time, energy and mental
space) for transfer are more likely to actually exhibit learning trans-
fer [78].

H6 Learners exhibiting a high-spacing learning routine are more likely to
exhibit learning transfer than learners with a low-spacing learning rou-
tine.
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Here, high-spacing refers to a larger number of discrete learning ses-
sions than low-spacing with few learning sessions each lasting a long
time (i.e. “cramming”) [111, 49, 17].

Finally, for RQ 2.3 we investigate the following hypothesis:

H7 The amount of exhibited transfer decreases over time [138].

3.4.2 From Hypotheses To Measurements

Table 3.1 shows an overview of the data sources used to investigate each
research hypothesis.

Pre Post edX GitHub
CS CS Logs Logs

H1 ✓ ✓
H2 ✓ ✓ ✓
H3 ✓ ✓
H4 ✓ ✓
H5 ✓ ✓
H6 ✓ ✓
H7 ✓

Table 3.1: Overview of the different data sources used to investigate each research hy-
pothesis. CS refers to the conducted Course Surveys (before and after the
course).

To explore H1 we relate learners’ performance during the course (as found
in the edX logs) to their development activities on GitHub.

To determine the impact of learners’ motivation on learning transfer
(H2), we distinguish learners based on their answers to several pre/post-
course survey questions we manually established as being motivation-related.
To determine intrinsic motivation we identified six question-answer pairs in-
cluding the following two3:

• What describes your interest for registering for this course?; Answer: My
curiosity (in the topic) was the reason for me to sign up for this course [Pre
CS, 5-point Likert]

3Due to space constraints, only a subset of the identified question/answer pairs are
shown.
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• Express your level of agreement with the following statement.; Answer: Course
activities piqued my curiosity. [Post CS, 5-point Likert]

Similarly, for extrinsic motivation we determined nine appropriate question-
answer pairs, including:

• What describes your interest for registering for this course? Choose the one
that applies to you the most; Answer: My current occupation motivated me
to enroll in the course. [Pre CS, 5-point Likert]

• Considering your experience in this, how much do you agree with the following
statement?; Answer: The course was compulsory for me [Post CS, Multiple
choice]

Learners’ belief in their ability to complete a task (H3), can be inferred
based on a question asking the learners to express their level of agreement
with a set of statements from the validated General Self-Efficacy Scale [29]:

• I can describe ways to test and apply the knowledge created in this course.
[Post CS, 5-point Likert]

• I have developed solutions to course problems that can be applied in practice.
[Post CS, 5-point Likert]

• I can apply the knowledge created in the course to my work or other non-class
related activities. [Post CS, 5-point Likert]

The prior expertise of learners (H4) can both be inferred from survey
questions as well as from the GitHub logs. The questions utilized are:

• Is your educational background related to (Functional) Programming? [Pre
CS, 5-point Likert]

• Do you have professional experience in this field? [Pre CS, 5-point Likert]

The personal capacity (H5) of a learner is inferred based on two questions:

• Did any of the following negatively affect your participation in the course?
[Post CS, 5-point Likert]

• Considering your experience in this course, how much did each of the technical
issues affect your participation? [Post CS, 5-point Likert]

Responses to these questions allow learners to share which factors in-
hibited and distracted them from engaging with the course. Examples of
responses to these questions range from personal problems, such as family
obligations and medical issues, to technical trouble, such as slow Internet or
hardware problems.
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H6 considers the manner in which learners learn and can be inferred
solely based on edX log traces which will be explained in more detail in the
section below. Finally, H7, the extent to which functional programming is
employed and applied by the learners over time can be inferred from GitHub
logs alone.

edX Logs

For each learner, we collect all available traces (between October 1 and De-
cember 31, 2014), such as the learner’s clicks & views, provided answers to
MC questions as well as forum interactions. Using the MOOCdb toolkit4 we
translate these low-level log traces into a data schema that is easily queryable.

To investigate H6, for each learner the learning routine is determined
based on their edX logs. We partition the learners into low-spacing and high-
spacing types following [111]. Initially, all learners are sorted in ascending
order according to their total time on-site. Subsequently they are binned
into ten equally-sized groups. Within each group, the learners are sorted
according to the number of distinct sessions on the site and based on this
ordering divided into two equally-sized subgroups: learners with few sessions
(low-spacing) and learners with many sessions (high-spacing). In this man-
ner, learners spending similar amounts of time (in total) on the course site
can be compared with each other.

GitHub Logs

We identify edX learners on GitHub through the email identifiers attached
to each edX and GitHub account. A third of all learners that registered to
FP101x are also active on GitHub: 12,415 learners in total5. This is likely
to be an underestimate of the true number of GitHub users (people generally
have multiple email accounts), as we did not attempt to match accounts
based on additional user profile information.

GitHub provides extensive access to data traces associated with public
coding repositories, i.e. repositories visible to everyone6. GitHub is built

4http://moocdb.csail.mit.edu/
5Note that the number is different from the one (16,220) we presented in Table 2.1 in

Chapter 2. This is because: (i) we only consider learners registered before the end of the
MOOC; (ii) Chapter 2 used GitHub Archive to match learners and we use GHTorrent here
as it provides a more fine-grained record about users’ coding traces.

6Data traces about private repositories are only available to the respective repository
owner.

http://moocdb.csail.mit.edu/
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around the git distributed revision control system, which enables efficient
distributed and collaborative code development. GitHub not only provides
relevant repository metadata (including information on how popular a repos-
itory is, how many developers collaborate, etc.), but also the actual code that
was altered. As the GitHub Archive7 makes all historic GitHub data traces
easily accessible, we relied on it for data collection and extracted all GitHub
data traces available between January 1, 2013 and July 21, 2015. We then
filtered out all traces that were not created by our edX learners, leaving us
with traces from 10, 944 learners. Of the more than 20 GitHub event types8,
we only consider the PushEvent as vital for our analysis.

{
"_id" : ObjectId("55b6005de4b07ff432432dfe1"),
"created_at" : "2013-03-03T18:36:09-08:00",
"url" : "https://github.com/john/

RMS/compare/1c55c4cb04...420e112334",
"actor" : "john",
"actor_attributes" : {

"name" : "John Doe",
"email" : "john@doe.com"

},
"repository" : {

"id" : 2.37202e+06,
"name" : "RMS",
"forks" : 0,
"open_issues" : 0,
"created_at" : "2011-09-12T08:28:27-07:00",
"master_branch" : "master"

}
}

Figure 3.1: Excerpt of a GitHub PushEvent log trace.

Every time code is being updated (“pushed” to a repository), a PushEvent
is triggered. Figure 3.1 contains an excerpt of the data contained in each
PushEvent. The most important attributes of the event are the created_at
timestamp (which allows us to classify events as before/during/after the run-
ning of FP101x), the actor (the user doing the “push”) and the url, which
contains the URL to the actual diff file. While the git protocol also allows
a user to “push” changes by another user to a repository (which is not evi-
dent from inspecting the diff file alone), this is a rare occurrence among our
learners: manually inspecting a random sample of 200 PushEvents showed
10 such cases. A diff file shows the difference between the last version of the
repository and the new one (after the push) in terms of added and deleted
code. An example excerpt is shown in Figure 3.2. For each of the identified
1, 185, 549 PushEvents by our learners, we crawled the corresponding diff

7https://www.githubarchive.org/
8https://developer.github.com/v3/activity/events/types/

https://www.githubarchive.org/
https://developer.github.com/v3/activity/events/types/
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file, as they allow us to conduct a fine-grained code analysis. As a first step,
we identified the additions and deletions a user conducts in each program-
ming language based on the filename extensions found in the corresponding
diff file. We consider code updates in the following nine functional languages
as clear evidence for functional programming: Common Lisp, Scheme, Clo-
jure, Racket, Erlang, Ocaml, Haskell, F# and Scala. We also log changes
made in any of the other 20 most popular programming languages found on
GitHub in the same manner. Any filename extension not recognized is first
checked against a blacklist (which includes common filename extensions for
images, compressed archives, audio files, etc.) and if not found, the change
is classified as Other.

diff --git a/viewsA.rb b/viewsA.rb
index e37bca1..3ad75e4 100644
--- a/viewsA.rb
+++ b/viewsA.rb
@@ -26,6 +26,16 @@ def new
@shift = Shift.new
end
...
diff --git a/config/routes.rb b/config/routes.rb
index e576929..27ce68f 100644
--- a/config/routes.rb
+++ b/config/routes.rb
@@ -29,6 +29,7 @@
put ’secondary’
...

Figure 3.2: Excerpt of a diff file. Two files were changed (viewsA.rb and routes.rb). The
extension *.rb indicates code written in Ruby.

3.5 Results

We first present some basic characteristics of FP101x, before delving into the
analyses of our research questions and hypotheses.

3.5.1 FP101x Overview

We partition our set of all registered FP101x learners according to two dimen-
sions: (i) learners with and without a GitHub account, and (ii) learners with
and without prior expertise in functional programming. In the latter case, we
consider only those learners that could be identified on GitHub. We define
Expert learners as those who used any of our nine identified functional
programming languages before the start of the course to a meaningful degree



3.5. Results 45

(i.e. more than 25 lines of functional code being added). The characteristics
of these learner cohorts are listed in Tables 3.2 and 3.3.

When considering the GitHub vs. non-GitHub learners, we observe sig-
nificant differences along the dimensions of engagement and knowledge:

• GitHub learners are on average more engaged with the course ma-
terial (significantly more time spent on watching lecture videos and
significantly more questions attempted).

• GitHub learners exhibit higher levels of knowledge (significantly
more questions answered correctly).

Zooming in on the GitHub learners and their functional programming
expertise, we find the differences to be enlarged: Expert learners have a higher
completion rate (more than double that of non-Expert learners), attempt
to solve significantly more problems and are significantly more accurate in
answering. Experts are also more engaged in terms of forum usage - 8% post
at least once compared to 4% of the non-Expert learners.

Finally, we note that we repeated this analysis on the subset of engaged
learners only, where we consider all learners that attempted to solve at least
one MC question or watched at least one video. While the absolute numbers
vary, the trends we observe for the different partitions of learners in Tables 3.2
and 3.3 remain exactly the same.

3.5.2 Learning Transfer

Let us first consider the general uptake of functional programming languages.
We can split each learner’s GitHub traces into three distinct sequences accord-
ing to their timestamp: traces generated before, during and after FP101x.
We are interested in comparing the before & after and will mostly ignore the
activities generated during FP101x.

Expert Learners.

Overall, 1,721 of all GitHub learners have prior functional programming
experience (our Expert learners). 1,165 of those are also engaged with
FP101x (the remainder registered, but did not engage), leading to nearly a
third (29.4%) of all engaged GitHub learners having pre-FP101x functional
programming experience.

Most of our GitHub learners though are not continuously coding func-
tionally: Figure 3.3 shows for each month of GitHub logs (January 2013 to



46 Chapter 3. Learning Transfer

All GH Non-GH
Learners Learners Learners

#Enrolled learners 37,485 12,415 25,070
Completion rate 5.25% 7.71% 4.03%
%Learners who watched
at least one video 40.84% 50.58% 36.02%

Avg. time watching
video material (in min.) † 31.87 44.56 25.59

%Learners who tried
at least one question 23.28% 31.94% 18.99%

Avg. #questions learners
attempted to solve † 22.07 31.29 17.51

Avg. #questions
answered correctly † 18.30 26.54 14.22

Avg. accuracy of
learners’ answers † 16.36% 23.41% 12.86%

#Forum posts 8,157 3,726 4,431
%Learners who posted
at least once 2.84% 4.27% 2.13%

Avg. #posts per learner † 0.22 0.30 0.18

Table 3.2: Basic characteristics across all learners and their partitioning into GitHub
(GH) and non-GitHub learners. Significant differences (according to Mann-
Whitney) between GH and non-GH learners are marked with †(p < 0.001).

July 2015) the unique number of GitHub learners programming functionally -
while in 2013 less than 250 of our GitHub learners were active per month, by
2015 this number has increased to nearly unique 600 active users a month.
Thus, the trend to functional programming is generally increasing. Most
learners though are not actively using functional languages on a monthly
basis.

How much functional code do our engaged Expert learners produce over
time? An answer to this question delivers Figure 3.4: here, for each month,
the functional coding activities (calculated as the additions made in func-
tional languages as a fraction of all additions made in recognized program-
ming languages) are averaged across all engaged Expert learners. Again we
observe that over the years functional programming has become more pop-
ular. By September 2014 (right before the start of FP101x), on average
more than 36% of coding activities are functional. What is surprising (and
somewhat counter-intuitive) is the steady decline of functional activities af-
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Expert Non-Expert
Learners Learners

#Enrolled learners 1,721 10,694
Completion rate 15.05% 6.53%
%Learners who watched
at least one video 64.44% 48.35%

Avg. time watching
video material (in min.) † 69.61 40.53

%Learners who tried
at least one question 48.69% 29.24%

Avg. #questions learners
attempted to solve † 57.86 27.02

Avg. #questions
answered correctly † 50.24 22.73

Avg. accuracy of
learners’ answers † 37.96% 21.06%

#Forum posts 1,612 2,114
%Learners who posted
at least once ‡ 7.55% 3.74%

Avg. #posts per learners 0.94 0.20

Table 3.3: Basic characteristics when partitioning the GitHub learners according to prior
functional programming expertise. Significant differences (according to Mann-
Whitney) between Expert and Non-Expert learners are marked with †(p <
0.001) and ‡(p < 0.01).

ter the end of FP101x. If we restrict our engaged Expert Learners to those
542 learners with functional traces before and after FP101x (Figure 3.5), the
results are more in line with our expectations: functional programming is
continuously gaining in popularity and a peak in activities is observed in the
two months following FP101x9. Thus, 46.5% of engaged Expert learners did
continue to program functionally after the end of FP101x.

Novice Learners.

Most interesting to use are the Novice Learners: to what extent do
learners that did not program (meaningfully) in functional languages before
FP101x take it up afterwards? We find 522 such learners — 4.3% of all
GitHub learners. If we restrict ourselves to engaged GitHub learners, we are
left with 336 Novice learners (8.5% of all engaged GitHub learners). Fig-

9The drop in July 2015 is explained by the non-complete log coverage of July (the log
ends on July 21, 2015).
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ure 3.6 shows the evolution of their functional programming usage over time:
the uptake after the end of FP101x is substantial, on average more than 35%
of all activities are conducted subsequently in functional languages! While
there is no substantial increase after the initial uptake over time, there is also
no significant drop. Since the average can only provide limited insights, we
drill down to the individual user level in Figure 3.7: the usage of functional
programming is highly varied; 50% of the Novice Learners use it for less than
10% of their programming activities, while some learners almost exclusively
code in functional languages. Finally, we also consider which functional lan-
guages these Novice learners code in. Figure 3.8 shows that a month after
FP101x ended (January 2015), Haskell contributions made up 48% of all
contributions, but continued dropping to a low of 14.5% in June 2015. Scala
on the other hand (the most popular functional language in industrial set-
tings) slowly rises in popularity over time and by June 2015 makes up roughly
half of the functional contributions. Other functional languages play less of
a role. Conducting a similar analysis on our engaged Expert learners (not
shown here), we find that on average across all months, 47% (σ = 7.4) of
all functional activities are in Scala, whereas 24.0% (σ = 5.5) are in Haskell.
The distribution of functional languages is stable over time. The only outliers
can be found in the three months of FP101x, where Haskell contributions rise
significantly.

Figure 3.3: Number of unique users actively using a functional language. FP101x ran
during the highlighted region.

Transfer Learning Hypotheses

On which learners should (or can) we investigate our seven research hy-
potheses? Ideally, we rely on all learners that engaged with the course and
for whom GitHub traces are available. However, for Expert learners we are
unable to determine the amount of transfer: since our analysis of functional
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Figure 3.4: Fraction of functional programming activities among the 1,165 engaged Ex-
pert Learners. FP101x ran during the highlighted region.

coding is based on activities in functional languages (instead of a more fine-
grained analysis of the type of functional concepts employed), we are not able
to determine whether learners that programmed functionally before acquired
knowledge in FP101x and applied it in practice (a direction of future work).
Only for the engaged Novice learners can we be confident that FP101x actu-
ally impacted their programming practice and that the observed transfer is
likely a result of FP101x.

Considering H1, we observe a transfer rate of at least 8.5% (i.e.
among the 3,965 engaged GitHub learners we found 336 Novice learners that
began programming functionally after FP101x). This percentage can be
considered as a lower bound, as we (due to the reasons listed above) do
not consider engaged Expert learners here. Only a minority (70) of the 336
engaged Novice learners did pass FP101x, indicating that transfer and pass
rate are related but not synonymous. In fact, while the 70 Novice learners
that successfully completed the course remained mostly active until the final
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Figure 3.5: Fraction of functional programming activities among the 542 engaged Expert
Learners with functional activities before & after FP101x. FP101x ran during
the highlighted region.

course week (Figure 3.9), nearly 40% of all engaged Novice learners became
inactive after week 1.

To investigate H2, H3, H4, H5 and H6, for each hypothesis, we parti-
tion our 336 engaged Novice Learners who made the transfer according to the
investigated dimensions (e.g. intrinsic vs. extrinsic motivation). Recall that
the partitioning of the learners relies on their self-reported abilities in the
pre- and post-course surveys. Similar to the retention rate, the return rate
for such questionnaires is very low and many learners do not participate in
these surveys for a variety of reasons. Table 3.4 shows the partitioning of our
engaged Novice learners based on their survey data. The majority of learners
cannot be assigned to a dimension due to a lack of data. Despite the low
numbers, we do observe that the transfer learning hypotheses seem to hold
in FP101x (for those learners for which it is possible to measure their effect):
learners are more likely to make the transfer if (i) they are intrinsically mo-
tivated, (ii) have high self-efficacy, (iii) are more experienced programmers,
and (iv) report a high personal capacity. Even though the number of learners
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Figure 3.6: Fraction of functional programming activities among the 336 engaged Novice
Learners with functional activities after FP101x. FP101x ran during the
highlighted region.

we were able to investigate are small, we consider this as first evidence that
transfer learning hypotheses also hold in the MOOC setting.

Dimensions N/A

H2 Motivation Extr.: 12 Intr.: 28 296
H3 Self-efficacy High: 23 Low: 5 308
H4 Experience A lot: 42 Little: 25 269
H5 Personal capacity High: 22 Low: 10 304

Table 3.4: Partitioning of the 336 Novice learners according to several dimensions. The
last column shows the number of learners that could not be assigned (N/A) to
a dimension.

To answer H6 (high-spaced learners are more likely to transfer), we
binned all GitHub learners according to their total time and number of dis-
tinct sessions in the FP101x edX environment, as outlined earlier. This cre-
ates 10 groups, with learners in Group 0 spending the least amount of time
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Figure 3.7: Distribution of functional programming activities among the 336 engaged
Novice Learners with functional activities after FP101x. FP101x ran during
the highlighted region.

Groups Low spacing High spacing

0 2 2
1 9 9
2 6 16
3 10 20
4 21 21
5 19 16
6 19 22
7 20 22
8 16 29
9 27 30

Table 3.5: The number of Novice Learners falling into spacing groups.

and learners in Group 9 spending the most amount of time on the course
site. Thus, each group contains those learners that roughly spent the same
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Figure 3.8: Functional languages used by the 336 engaged Novice Learners during and
after FP101x. Best viewed in color.

amount of time on the site. Further, within each group, learners are divided
according to the number of distinct sessions. In Table 3.5 we report how
many engaged Novice learners fell into each group and which part of the
group — the high-spacing or the low-spacing one. While 187 engaged Novice
learners are classified as high-spacing, 149 are classified as low-spacing. Thus,
there is some indication that H6 holds. However, the observed difference is
rather small.

To conclude this section, we lastly consider H7. In contrast to the hypoth-
esis (transfer decreases over time), we neither observe a significant decrease
nor increase after the initial uptake as evident in Figures 3.6 and 3.7.

3.5.3 A Qualitative Analysis

We have found similarities and differences between transfer in classroom
learning and our MOOC. Instead of speculating about the reasons for these
differences, we designed a follow-up survey (containing 10 questions about
learners’ functional programming experiences before and after FP101x) and
distributed it to subsets of GitHub learners in August 201510. A second
purpose of this questionnaire is to verify whether GitHub logs offer a good

10All contacted learners had consented to additional contact.
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Figure 3.9: Fraction of the 336 engaged Novice learners remaining active in each course
week. 70 Novice learners completed FP101x successfully, 266 did not complete
it.

approximation of our learners’ true behaviour. We partitioned the engaged
GitHub learners into eight categories:

A Novice learners that completed the course but did not transfer (i.e. we
did not observe functional GitHub traces after FP101x). #Survey responses:
131 (32% return rate).

B Expert learners that completed the course but did not transfer. #Survey
responses: 15 (39%).

C Novice learners that completed the course and transferred (i.e. we ob-
served functional GitHub traces after FP101x). #Survey responses: 11 (61%).

D Novice learners that did not complete the course, but transferred. #Sur-
vey responses: 1 (3%).

E Expert learners that completed the course and continued programming
functionally (did they transfer?). #Survey responses: 20 (56%).

F Expert learners that did not complete the course but did program func-
tionally after FP101x. #Survey responses: 8 (16%).



3.6. Conclusion 55

G Novice learners that were engaged in the course (but not completed) and did
not transfer. #Survey responses: 93 (6%).

H Expert learners that were engaged in the course (but not completed) and did
not transfer. #Survey responses: 4 (7% return rate).

How accurate are GitHub traces as approximation of learners’
functional programming activities? Of those learners we had identified
as Novices, 63% also self-reported as such. Of the learners we estimated to
have some prior functional programming experience, 77% self-reported prior
experience. In particular, the latter number is intriguing: based on our strin-
gent methodology, we can be confident that all of our identified Expert learn-
ers did indeed functionally program before FP101x, though about a quarter
self-reports otherwise. Of the learners we identified as having demonstrated
learning transfer, 88% also self-reported as doing so. Of those we identi-
fied as not having demonstrated learning transfer, only 37% self-reported of
not having applied anything they had learnt. An explanation for this dis-
crepancy is based on the non-exclusive use of GitHub: while 73% indicated
that they use GitHub for either work or personal coding projects, 65% use a
Private/Employer’s repository service, and 39% use BitBucket. While 73%
is promising in that it accounts for nearly three quarters of all learners, we
could only detect users who use the same email address for both their edX
and GitHub account.

What are the main reasons for learners not to transfer their
acquired functional programming skills? 80% of learners reporting a
reason for not transferring their acquired skills report a lack of opportunities.
Many learners go on to explain that the programming language standards
in their work-place do not allow them to practice what they have learned.
Another common sentiment is that it is difficult for some experienced pro-
grammers to suddenly change their ways. For example, when asked why
they did not apply what they learned in FP101x to either work or personal
projects, one respondent shared, “It takes time and effort to change old pro-
gramming habits.” And another shared a similar sentiment: “[It’s] hard to
think functionally after 25 years of imperative [programming] experience.”

3.6 Conclusion

We have investigated the extent of learning transfer in the MOOC setting
and introduced the use of a social-Web based data source (i.e. GitHub) to
complement the learner traces collected within MOOC environments. Focus-
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ing on one-third of FP101x learners we were able to link to GitHub, we made
several important findings:

(1) Most transfer learning findings from the classroom setting translate
into the MOOC setup; large discrepancies were only found for H1: the
amount of observed transfer and H7: the development of transfer over time.

(2) The observed transfer rate in MOOCs is low. We found that 8.5%
of engaged learners were indeed exhibiting transfer to varying degrees in our
GitHub traces. We acknowledge that a substantial amount of programming
occurs outside of GitHub (e.g. in private employer repositories). While the
traces we gather offer many new insights by following learners beyond the
MOOC platform for an extended period of time, considering one external
data source alone is a limiting factor.

(3) The amount of transfer, operationalized as the fraction of functional
coding is varying highly: about 50% of the learners transferring code less
than 10% of the time functionally, while a small minority almost exclusively
turns to functional languages.

(4) After the end of FP101x, learners making the transfer quickly identi-
fied the most industrially-relevant functional language at this moment (Scala).
Over time their activities in Scala increased significantly, while their activi-
ties in Haskell (the language of FP101x) decreased. Overall though, after the
initial uptake of functional programming, the fraction of functional activities
(between 35%-40%) of all coding activities remained constant.

The limitations of the current study (only 33% of learners could be cou-
pled to a GitHub account and our exploratory analysis has been conducted
on the programming language type level) naturally lead to three directions
for future work: (i) instead of focusing on the amount of code added per
language, a more detailed analysis will determine the particular functional
concepts employed and match them with the course material, (ii) program-
ming languages are taught in a variety of MOOCs, it is an open question
whether the same methodology is applicable across a variety of courses, and
lastly, (iii) we will move beyond the GitHub platform and consider alternative
external data sources.



Chapter 4

Second Language Acquisition
Modeling

In this chapter, we focus on investigating the problem of knowledge tracing
in the setting of topic-specific MOOC platforms. Knowledge tracing, which
uses computational algorithms to model learners’ mastery of knowledge being
taught over time, is a well-established problem in computer-supported edu-
cation. However, due to the lack of available datasets, this problem remains
largely unexplored in the topic-specific MOOC platforms. With the three
large-scale language learning datasets released by Duolingo [140], now we
can gain a better understanding of learners in the topic-specific MOOC plat-
forms. In particular, we investigate factors that are correlated with learners’
performance and then apply a machine learning technique to predict learners’
future performance. The contributions of this chapter have been published
in [32].

57
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4.1 Introduction

Knowledge tracing plays a crucial role in providing adaptive learning to learn-
ers [123]: by estimating a learner’s current knowledge state and predicting her
performance in future interactions, learners can receive personalized learn-
ing materials (e.g. on the topics the learner is estimated to know the least
about).

Over the years, various knowledge tracing techniques have been proposed
and studied, including Bayesian Knowledge Tracing [40], Performance Factor
Analysis [122], Learning Factors Analysis [27] and Deep Knowledge Tracing
[125]. Notable is that most of the existing works focus on learning perfor-
mance within mathematics in elementary school and high school due to the
availability of sufficiently large datasets in this domain, e.g. ASSISTment
and OLI [125, 168, 175, 86]. The generalization to other learning scenarios
and domains remains under-explored.

Particularly, there are few studies attempted to explore knowledge trac-
ing in the setting of Second Language Acquisition (SLA) [15]. Recent stud-
ies showed that SLA is becoming increasingly important in people’s daily
lives and should gain more research attention to facilitate their learning pro-
cess [97]. It remains an open question whether the existing knowledge trac-
ing techniques can be directly applied to SLA modeling—the release of the
Duolingo challenge datasets now enables us to investigate this very question.

Thus, our work is guided by the following research question: RQ 3.1
What factors are correlated with learners’ language learning per-
formance?

To answer the question, we first formulate six research hypotheses which
are built on previous studies in SLA. We perform extensive analyses on the
three SLA Duolingo datasets [140] to determine to what extent they hold.
Subsequently, we engineer a set of 23 features informed by the analyses and
use them as input for a state-of-the-art machine learning model, Gradient
Tree Boosting [172, 34], to estimate the likelihood of whether a learner will
correctly solve an exercise.

We contribute the following major findings: (i) learners who are heavily
engaged with the learning platform are more likely to solve words correctly;
(ii) contextual factors like the device being used and learning format are
correlated with learners’ performance considerably; (iii) repetitive practice is
a necessary step for learners towards mastery; (iv) Gradient Tree Boosting
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is demonstrated to be an effective method for predicting learners’ future
performance in SLA.

4.2 Data Analysis

Before describing the six hypotheses we ground our work in as well as their
empirical validation, we first introduce the Duolingo datasets.

4.2.1 Data Description

To advance knowledge modeling in SLA, Duolingo released three datasets1,
collected from learners of English who already speak Spanish (EN-ES), learn-
ers of Spanish who already speak English (ES-EN), and learners of French
who already speak English (FR-EN), respectively, over their first 30 days of
language learning on the Duolingo platform [140]. The task is to predict what
mistakes a learner will make in the future. Table 4.1 shows basic statistics
about each dataset. Interesting are in particular the last two rows of the
table which indicate the unbalanced nature of the data: across all languages
correctly solving an exercise is far more likely than incorrectly solving it.
Note that the datasets contain rich information not only on learners, words
and exercises2 but also on learners’ learning process, e.g., the amount of
time a learner required to solve an exercise, the device being used to access
the learning platform and the countries from which a learner accessed the
Duolingo platform.

FR-EN ES-EN EN-ES

#Unique learners 1,213 2,643 2,593
#Unique words 2,178 2,915 2,226
#Exercises 326,792 731,896 824,012
#Words in all exercises 926,657 1,973,558 2,622,958
#Avg. words / exercise 2.84 2.7 3.18
%Correctly solved words 84% 86% 87%
%Incorrectly solved words 16% 14% 13%

Table 4.1: Statistics of the datasets.

1http://sharedtask.duolingo.com/#task-definition-data
2An exercise usually contains multiple words.

http://sharedtask.duolingo.com/#task-definition-data


60 Chapter 4. Second Language Acquisition Modeling

In our work, we use learning session to denote the period from a learner’s
login to the platform until the time she leaves the platform. We use learning
type to refer to the “session” information in the original released datasets,
whose value can be lesson, practice or test.

4.2.2 Research Hypotheses

Grounded in prior works we explore the following hypotheses:

H1 A learner’s living community correlates with her language acquisition
performance.
Previous works, e.g., [48] demonstrated that the surrounding living commu-
nity is a non-negligible factor in SLA. For instance, a learner learning English
whilst living in an English-speaking country is more likely to practice more
often and thus more likely to achieve a higher learning gain than a learner
not living in one.

H2 The more engaged a learner is, the more words she can master.
Educational studies, e.g., [24], have shown that a learner’s engagement can
be regarded as a useful indicator to predict her learning gain, which is the
number of mastered words in our case.

H3 The more time a learner spends on solving an exercise, the more likely
she will get it wrong.

H4 Contextual factors such as the device being used (e.g. iOS or Android),
learning type (lesson, practice or test) and exercise format (such as transcrib-
ing an utterance from scratch or formulating an answer by selecting from a
set of candidate words) are correlated with a learner’s mastery of a word.
We hypothesize that, under specific contexts, a learner can achieve a higher
learning gain due to the different difficulty level of exercises. For instance,
compared to transcribing an utterance from scratch, a learner is likely to solve
more exercises correctly when being provided with a small set of candidate
words.

H5 Repetition is useful and necessary for a learner to master a word [174,
62, 98].

H6 Learners with a high-spacing learning routine are more likely to learn
more words than those with a low-spacing learning routine.
Here, high-spacing refers to a larger number of discrete learning sessions.
Correspondingly, low-spacing refers to relatively few learning sessions, which
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usually last a relatively long time. In other words, learners with a low-spacing
routine tend to acquire words in a “cramming” manner [111, 49, 17].

4.2.3 Performance Metrics

We now define four metrics we use to measure a learner’s exercise perfor-
mance.

Learner-level Accuracy (Lear-Acc) measures the overall accuracy of a
learner across all completed exercises. It is calculated as the ratio between
the number of words correctly solved by a learner and the total number of
words she attempted.

Exercise-level Accuracy (Exer-Acc) measures to what extent a learner
answers a particular exercise correctly. It is computed as the number of
correctly solved words divided by the total number of words in the exercise.

Word-level Accuracy (Word-Acc) measures the percentage of times of
a word being answered correctly by learners. For a word, it is calculated as
the number of times learners provided correct answers divided by the total
number of attempts.

Mastered Words (Mast-Word) measures how many words have been
mastered by a learner. As suggested in [174], it takes about 17 exposures for
a learner to learn a new word. Thus, we define a word being mastered by a
learner only if (i) it has been exposed to the learner at least 17 times and (ii)
the learner answered the word accurately in the remaining exposures.

4.2.4 From Hypotheses To Validation

To verify H1, we use the location (country) from where a learner accessed
the Duolingo platform as an indicator of the learner’ living community. We
first bin learners into groups according to their locations. Next, we calcu-
late the average learner-level accuracy and the number of mastered words of
learners in each group. We report the results in Table 4.2. Here we only
consider locations with more than 50 learners. If a learner accessed the plat-
form from more than one location, the learner would be assigned to all of the
identified location groups. In contrast to our hypothesis, we do not observe
the anticipated relationship between living community and language learn-
ing (e.g. Spanish-speaking English-learners living in the US do not perform
better than other learners).
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Datasets Locations Lear-Acc Mast-Word

FR-EN

Avg. 83.57 3.37
CA 84.12 3.13
US 83.01 3.40
GB 83.66 3.46
AU 85.69 3.70

ES-EN

Avg. 85.91 2.74
CA 84.89 3.26
US 86.22 2.58
AU 85.82 3.50
GB 83.94 * 3.30
NL 87.15 2.86

EN-ES

Avg. 87.62 4.39
CO 87.49 4.14
US 87.98 5.02
ES 87.85 5.66 *
MX 86.92 * 3.71 *
CL 88.95 4.42
DO 87.26 4.40
AR 89.58 4.75
VE 89.47 * 4.99
PE 88.83 4.37

Table 4.2: Avg. learner-level accuracy (%) and the number of mastered words of learners
living in different locations (approximated by the countries from which learn-
ers have finished the exercises). Significant differences (compared to Avg.,
according to Mann-Whitney) are marked with ∗ (p < 0.001).

Lear-Acc Mast-Word

FR-EN ES-EN EN-ES FR-EN ES-EN EN-ES
# Exercises Attempted -0.05 * -0.09 * -0.08 * 0.85 * 0.87 * 0.79 *
# Words Attempted -0.06 * -0.08 * -0.08 * 0.85 * 0.86 * 0.80 *
Time Spent -0.13 * -0.14 * -0.22 * 0.73 * 0.79 * 0.61 *

Table 4.3: Pearson Correlation between learner engagement (measured by # attempted
exercises/words and the amount of time spent in learning) and learner-level
accuracy as well as # mastered words. Significant differences are marked with
∗ (p < 0.001).

For H2 (learner engagement), we consider three ways to measure engage-
ment with the platform: (i) number of attempted exercises, (ii) number of
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attempted words and (iii) amount of time spent learning. To quantify the
relationship between learners’ engagement and their learning gain, we re-
port the Pearson correlation coefficient between the three engagement met-
rics and Lear-Acc as well as Mast-Word (Table 4.3). We note a consistent
negative correlation between accuracy and our engagement metrics. This
is not surprising, as more engagement also means more exposure to novel
vocabulary items. When examining the number of mastered words, we can
conclude that—as stated in H2—higher engagement does indeed lead to a
higher learning gain. This motivates us to design engagement related features
for knowledge tracing models.

FR-EN ES-EN EN-ES

Correlation -0.16 * -0.18 * -0.18 *

Table 4.4: Pearson Correlation between the amount of time spent in solving each exercise
and exercise-level accuracy. Significant differences are marked with ∗ (p <
0.001).

To determine the validity of H3, in Table 4.4 we report the Pearson
correlation coefficient between the amount of time spent in solving each ex-
ercise and the corresponding exercise-level accuracy. The moderate negative
correlation values indicate that the hypothesis holds to some extent.

For H4, we investigate three types of contextual factors: (i) device used
(i.e., Web, iOS, Android); (ii) learning type (i.e., Lesson, Practice, Test)
and (iii) exercise format (i.e., Reverse Translate, Listen, Reverse Tap). To
verify whether these contextual factors are correlated with learners’ exercise
performance, we partition exercises into different groups according to the
contextual condition in which they were completed and calculate the aver-
age of their exercise-level accuracy within each group. Table 4.5 shows the
results. Interestingly, learners with iOS devices perform better than those
using Web or Android. Learners’ learning accuracy is highest in the Lesson
type. Learning formats are also likely to have a positive effect: Reverse Tap
achieves the highest accuracy followed by Reverse Translate and then Lis-
ten. This result is not surprising as active recall of words is more difficult
than recognition. Finally, we note for English learners who speak Spanish
(EN-ES) and Spanish learners who speak English (ES-EN), the accuracy of
Reverse Translate is considerably higher than Listen, which is not the case in
FR-EN (where both are comparable). These results suggest that contextual
factors should be taken into account in SLA modeling.
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FR-EN ES-EN EN-ES

Avg. 84.29 86.31 87.96

Client

Web 80.64 * 85.44 * 85.68 *
iOS 86.45 * 87.90 * 88.10 *

Android 83.92 * 84.88 * 88.92 *

Session

Lesson 85.43 * 87.23 * 88.76 *
Practice 80.94 * 83.92 * 84.19 *

Test 82.19 * 84.34 * 84.66 *

Format

Reverse Translate 77.92 * 85.88 * 85.42 *
Listen 78.30 * 77.01 82.78 *

Reverse Tap 92.51 * 94.84 * 95.48 *

Table 4.5: Average exercise-level accuracy (%) in different contextual conditions. Signifi-
cant differences (compared to Avg., according to Mann-Whitney) are marked
with ∗(p < 0.001).

We investigate H5 from two angles. Firstly, we investigate whether words
with very different exposure amounts will differ from each other in terms of
word-level accuracy as they are practiced by learners to different degrees.
For this purpose, we only retain words with more than n exposures (with
n being ≥ 1, ≥ 10, ≥ 20, ≥ 50, ≥ 100) and calculate Pearson correlation
coefficient between the word-level accuracy and their number of exposures
(Table 4.6). As expected, the more low-exposure words we filter out, the
higher the average word-level accuracy and the stronger the correlation scores
(albeit at best these are moderate correlations).

Secondly, we believe that whether a learner will solve a word correctly
(0 mean solving correctly and 1 incorrectly) is correlated with two factors
that are related to word repetition. One factor is the number of previous
attempts that a learner has for a word, and the other is the amount of time
elapsed since her last attempt at the word. Therefore, we compute Pearson
correlation coefficient between learners’ performance on exercises and the
two repetition related factors (Table 4.7). The resulting correlations are even
weaker than in our preceding analysis, though they do point towards a (very)
weak relationship: if a learner gets more exposed to a word or practices the
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# Words Word-Acc Correlation

FR-EN

≥ 1 2,178 72.30 -0.08 *
≥ 10 1,007 75.01 0.13 *
≥ 20 756 75.78 0.15 *
≥ 50 756 76.41 0.19 *
≥ 100 580 77.47 0.25 *

ES-EN

≥ 1 2,915 75.33 -0.10 *
≥ 10 1,798 77.10 0.12 *
≥ 20 1,511 77.29 0.19 *
≥ 50 1,163 77.92 0.25 *
≥ 100 900 78.67 0.31 *

EN-ES

≥ 1 2,226 75.58 0.00
≥ 10 1,587 77.12 0.25 *
≥ 20 1,401 77.88 0.28 *
≥ 50 1,171 78.90 0.28 *
≥ 100 963 79.57 0.34 *

Table 4.6: Avg. word-level accuracy (%) of words with different number of exposures.

FR-EN ES-EN EN-ES

# Previous attempts -0.05 * -0.04 * -0.07 *
Time elapsed 0.05 * 0.06 * 0.07 *

Table 4.7: Pearson Correlation between learner performance and the number of previous
attempts and the amount of time elapsed since the last attempt for a word.

word more frequently, she is more likely to get it correct. Clearly, the results
indicate that other factors at play here too.

Lastly, to study H6, we partition all learners into low-spacing and high-
spacing groups according to [111]. Initially, all learners are sorted in as-
cending order according to their total time spent in learning words. Subse-
quently, these learners are binned into ten equally-sized groups labeled from
0 (spending the least amount of time) to 9 (spending the most amount of
time). Therefore, we can regard learners from the same group as learning
roughly the same amount of time. Next, within each group, the learners



66 Chapter 4. Second Language Acquisition Modeling

Figure 4.1: The average learner-level accuracy, i.e., Lear-Acc (Top), and the average num-
ber of mastered words, i.e., Mast-Word (Bottom), of learners in high-spacing
and low-spacing groups.
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are sorted based on their number of distinct learning sessions3, and we fur-
ther divide them into two equally-sized subgroups: learners with few sessions
(low-spacing) and learners with many sessions (high-spacing). In this way,
learners spending similar total amounts of time can be compared with each
other. We plot the average learner-level accuracy as well as the number of
mastered words within each low-spacing and high-spacing subgroup in Fig-
ure 4.1. We do not observe consistent differences between low-spacing and
high-spacing groups. Therefore, we conclude H6 to not hold.

4.3 Knowledge Tracing Model

We now describe the machine learning model we adopt for knowledge tracing
and then introduce our features.

4.3.1 Gradient Tree Boosting

Various approaches have been proposed for modeling learner learning. Two
representatives are Bayesian Knowledge tracing [40] and Performance Factor
Analysis [122], both of which have been studied for years. Inspired by the
recent wave of deep learning research in different domains, deep neural nets
were also recently applied to track the knowledge state of learners [125, 168,
175]. In principal, all of these methods can be adapted to predict learners’
performance in SLA. As our major goal is to investigate the usefulness of
the designed features, we selected a robust model that is able to take various
types of features as input and works well with skewed data. Gradient Tree
Boosting (GTB) is a machine learning technique which can be used for both
regression and classification problems [172]. It is currently one of the most
robust machine learning approaches that is employed for a wide range of
problems [34]. It can deal with various types of feature data and has reliable
predictive power when dealing with unbalanced data (as in our case). We
selected it over a deep learning approach as we aim to built an interpretable
model.

4.3.2 Feature Engineering

Based on the results in Section 4.2, we designed 23 features. The features
are categorized into two groups: features directly available in the datasets (7

3Here we consider all learning activities occurring within 60 minutes as belonging to
the same learning session.
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given features) and features derived from the datasets (16 derived features).
Note that the features differ in their granularity—they are computed per
learner, or per word, per exercise or a combination of them, as summarized
in Table 4.8.

Features Granularity Level
User Word Exercise

Learner ID
√

Word
√

Countries
√

Format
√

Type
√

Device
√

Time spent (exercise)
√

# Exercises attempted
√

# Words attempted
√

# Unique words attempted
√

# sessions
√

Time spent (learning)
√

# Previous attempts
√ √

# Correct times
√ √

# Incorrect times
√ √

Time elapsed
√ √

Word-Acc
√ √

Std. timestamps (exercise)
√ √

Std. timestamps (word)
√ √

Std. timestamps (session)
√

Std. timestamps (word-session)
√ √

Std. timestamps (word-correct)
√ √

Std. timestamps (word-incorrect)
√ √

Table 4.8: Granularity levels on which each feature is retrieved or computed. Features
marked with b are used as input in the baseline provided by the benchmark
organizers.

Given features:

• Learner IDb: the 8-digit, anonymized, unique string for each learner;

• Wordb: the word to be learnt by a learner;
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• Countries: a vector of dimension N (N denotes the total number of
countries) with binary values indicating whether a learner complete an
exercise in one or multiple countries;

• Formatb: the exercise format in which a learner completed an exercise,
i.e., Reverse Translate, Reverse Tap and Listen;

• Type: the learning type in which a learner completed an exercise, i.e.,
Lesson, Practice and Test;

• Device: the device platform which is used by a learner to complete an
exercise, i.e., iOS, Web and Android;

• Time spent (exercise): the amount of time a learner spent in solving
an exercise, measured in seconds;

Derived features:

• # Exercises attempted: the number of exercises that a learner has
attempted in the past;

• # Words attempted: the number of words that a learner has attempted
in the past;

• # Unique Words attempted: the number of unique words a learner has
attempted in the past;

• # Sessions: the number of learning sessions a learner completed;

• Time spent (learning): the total amount of time a learner spent learn-
ing, measured in minutes;

• # Previous attempts: a learner’s number of previous attempts at a
specific word;

• # Correct times: the number of times that a learner correctly solved a
word;

• # Incorrect times: the number of times that a learner incorrectly solved
a word;

• Time elapsed: the amount of time that elapsed since the last exposure
of a word to a learner;

• Word-Acc: the word-level accuracy that a learner gained for a word in
the training dataset;
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• Std. timestamps (exercise): the standard deviation of the timestamps
that a learner solved exercises;

• Std. timestamps (word): the standard deviation of the timestamps that
a learner solved a word;

• Std. timestamps (session): the standard deviation of timestamps that
a learner logged in to start a learning session;

• Std. timestamps (word-session): the standard deviation of session
starting timestamps that a learner solved a word;

• Std. timestamps (word-correct): the standard deviation of timestamps
that a learner answered a word correctly;

• Std. timestamps (word-incorrect): the standard deviation of times-
tamps that a learner answered a word incorrectly.

Finally, we note that none of the features in our feature set make use of
external data sources. We leave the inclusion of additional data sources to
future work.

4.4 Experiments

In this section, we first describe our experimental setup and then present the
results.

4.4.1 Experimental Setup

Each of the three Duolingo datasets consists of three parts: TRAIN and DEV
sets for offline experimentations and one TEST set for the final evaluation.
We use the TRAIN and DEV sets to explore features that are useful in
predicting a learner’s exercise performance and then combine TRAIN and
DEV sets to train the GTB model; we report the model’s performance on
the TEST set.

We trained the GTB model using XGBoost, a scalable machine learning
system for tree boosting [34]. All model parameters4 were optimized through
grid search and are reported in Table 4.9.

4For a detailed explanation of the parameters, please refer to https://github.com/dmlc/
xgboost/blob/v0.71/doc/parameter.md.

https://github.com/dmlc/xgboost/blob/v0.71/doc/parameter.md
https://github.com/dmlc/xgboost/blob/v0.71/doc/parameter.md
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We also report the official baseline provided by the benchmark organizers
as comparison. The baseline is a logistic regression model which takes six
features as input, which include learner ID, word, format and three morpho-
syntactic features of the word (e.g., Part of Speech). As suggested by the
benchmark organizers, we use the AUC and F1 scores as our evaluation
metrics.

FR-EN ES-EN EN-ES

learning_rate 0.4 0.5 0.6
n_estimatorss 800 1100 1550
max_depth 6 6 5
min_child_weight 7 8 13
gamma 0.0 0.0 0.1
subsample 1.0 1.0 1.0
colsample_bytree 0.7 0.7 0.85
reg_alpha 4 6 5

Table 4.9: Model parameters of the GTB model; determined by using grid search per
dataset.

4.4.2 Results

In order to investigate the features described in Section 4.3.2, we report in
Table 4.10 different versions of GTB training, starting with three features
(Learner ID, Word, Format) and adding additional features one at a time.
We incrementally added features according to the order presented in Section
4.3.2 and only kept features that boost the prediction performance (i.e. the
AUC score improves on the DEV set). Among all 23 evaluated features,
seven are thus useful for SLA modeling. Here, we only report the results in
the ES-EN dataset; we make similar observations in the other two datasets.
In contrast to our expectations, a large number of the designed features did
not boost the prediction accuracy. This implies that further analyses of the
data and further feature engineering efforts are necessary. The extraction
of features from external data sources (which may provide insights in the
difficulty of words, the relationship between language families and so on) is
also left for future work.

In our final prediction for the TEST set, we combine the TRAIN and DEV
data to train the GTB model with the nine features listed in Table 4.10 and
learner ID as well as the word as input. The results are shown in Table 4.11.
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TRAIN DEV

Learner ID & Word & Format 0.8095 0.7758
Mode 0.8111 0.7780
Client 0.8137 0.7790
Time spent (exercise) 0.8270 0.7828
# Previous attempts 0.8323 0.7835
# Wrong times 0.8348 0.7871
Std. time (word-session) 0.8348 0.7871

Table 4.10: Experimental results reported in AUC on ES-EN. Each row indicates a feature
added to the GBT feature space; the model of row 1 has three features.

Compared to the logistic regression baseline, GTB is more effective with a
6% improvement in AUC and 83% improvement in F1 on average.

Methods AUC F1

FR-EN Baseline 0.7707 0.2814
GTB 0.8153 * 0.4145 *

ES-EN Baseline 0.7456 0.1753
GTB 0.8013 * 0.3436 *

EN-ES Baseline 0.7737 0.1899
GTB 0.8210 * 0.3889 *

Table 4.11: Final prediction results on the TEST data. Significant differences (compared
to Baseline, according to paired t-test) are marked with ∗ (p < 0.001).

4.5 Conclusion

Knowledge tracing is a vital element in personalized and adaptive educa-
tional systems. In order to investigate the peculiarities of SLA and explore
the applicability of existing knowledge tracing techniques for SLA model-
ing, we conducted extensive data analyses on three newly released Duolingo
datasets. We identified a number of factors relating to learners’ learning per-
formance in SLA. We extracted a set of 23 features from learner trace data
and used them as input for the GTB model to predict learners’ knowledge
state. Our experimental results showed that (i) a learner’s engagement plays
an important role in achieving good exercise performance; (ii) contextual
factors like the device being used and learning format should be taken into
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account for SLA modeling; (iii) repetitive practice of words and exercises
are related to learners’performance considerably; (iv) GTB can effectively
use some of the designed features for SLA modeling and there is a need for
further investigation on feature engineering. Apart from the future work
already outlined in previous sections, we also plan to investigate deep knowl-
edge tracing approaches and the inclusion of some of our rich features into
deep models, inspired by [175]. Also, instead of developing a one-size-fits-
all prediction model, it will be interesting to explore subsets of learners that
behave similarly and develop customized models for different learner groups.





Chapter 5

Enabling MOOC Learners to
Solve Real-world Paid Tasks

In this chapter, we focus on investigating whether learners can apply the
knowledge acquired from a MOOC to solve real-world tasks, e.g., freelancing
tasks collected from online marketplaces like Upwork or witmart1, which can
be solved with the knowledge taught in the MOOC. If learners are capable of
solving such tasks, it becomes possible that learners can learn with a MOOC
and apply the newly acquired knowledge to earn money at the same time.
Ultimately, we envision a recommender system that automatically retrieves
paid tasks relevant to a MOOC from online marketplaces and presents these
tasks to learners to solve, as a possible means to help learners, who do not
have a large amount of time for learning because of the need to work and
earn a living, to benefit from MOOCs. To investigate the potential of the
proposed vision, we consider the specific case of Data Analysis: Take It to the
MAX() (a MOOC teaching data analysis in edX). We manually select a set of
relevant tasks from Upwork and offer them to learners in the MOOC as bonus
exercises to solve. Based on our experimental design, we also investigate the
impact of real-world tasks on the MOOC learners. The contributions of this
chapter have been published in [28].

1http://www.witmart.com

75
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5.1 Introduction

In 2011, the first MOOCs started out with the promise of educating the world.
To this day, this promise remains largely unfulfilled, as MOOCs struggle
with student engagement and retention rates — on average, only 6.5% of
MOOC learners complete a course and those who do often already have a
higher degree [82]. At the same time though, the potential reach of MOOCs
was visible from the very beginning: learners from 162 different countries
engaged with the very first MOOC (Circuits and Electronics) offered on the
edX platform [21].

Among the many reasons for learners’ disengagement from a course are
also financial ones: learning is superseded by the need to work and earn a
living. Our ultimate vision is to pay learners to take a MOOC, thus enabling
learners from all financial backgrounds to educate themselves. But how can
we achieve this at scale? We believe that online work platforms such as
Upwork and witmart can be an important part of the solution; if we were
able to automatically recommend paid online work tasks to MOOC learners
which are related and relevant to the MOOC content, the financial incentive
would enable more learners to remain engaged in the MOOC and continue
learning.

Figure 5.1 shows a high-level overview of our vision: online work task
platforms are continuously monitored for newly published work tasks; a rec-
ommender system maintains an up-to-date course model of every ongoing
MOOC and determines how suitable each work task is for every ongoing
course and course week. At any given moment, the suitable open work tasks
are shown alongside the course material on the MOOC platform, together
with the possible financial gain and their level of difficulty.

While we do not claim this vision as the solution for MOOCs to single-
handedly “lift ... people out of poverty,” [57], we strongly believe this to be
a step in the right direction and something to build upon.

To lay the groundwork, we investigate the feasibility of letting MOOC
students solve real world tasks from an online work market place. In a pilot
study presented here, we manually selected a number of paid tasks from
Upwork and offered them to learners of the EX101x MOOC (Data Analysis:
Take It to the MAX(), offered on edX) as bonus exercises. We illustrate that
it is indeed feasible to expect students to be able to earn money while taking
a MOOC.
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Figure 5.1: Paying MOOC learners — a vision.

Based on these encouraging initial results we then expand our investiga-
tion and analyse the realm of online work platforms and their suitability for
our vision along a number of dimensions including payments, topical coverage
and task time.

Lastly, it is worth nothing that our experimental setup not only allows
us to investigate learning enabling methods (i.e. paying learners), but
also learner motivations: we expect that real-world tasks (as shown in the
bonus exercises) engage learners more than artificially created course tasks.

The work we present in this chapter is guided by the following four
Research Questions:

RQ 4.1 Are MOOC learners able to solve real-world (paid) tasks from an
online work platform with sufficient accuracy and quality?

RQ 4.2 How applicable is the knowledge gained from MOOCs to paid tasks
offered by online work platforms?

RQ 4.3 To what extent can an online work platform support MOOC learn-
ers (i.e., are there enough tasks available for everyone)?

RQ 4.4 What role do real-world (paid) tasks play in the engagement of
MOOC learners?
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By answering these questions, we expect to provide solid evidence to
the feasibility of the proposed design, i.e., automatically retrieving relevant
tasks from online marketplaces and recommend them to learners, we expect
to financially enhance MOOC learners and help them achieve professional
development in the long run.

5.2 Background

This study represents a movement towards MOOCs truly living up to their
name with respect to their openness. The current demographic of MOOC
participants is predominantly educated males from developed countries [36,
44, 74, 132, 90]. Simply putting the content out there on the Web may not be
enough to justify calling it “open”. Although it is available, it is not readily
accessible to everyone. Based on both survey and student activity data,
Kizilcec and Halawa found that “the primary obstacle for most [MOOC]
learners was finding time for the course” [90]. By conducting post-course
surveys, [90] found that 66% of students struggled to keep up with course
deadlines and 46% reported that the course required too much time.

Self-regulated learning

Providing income to students in exchange for real-world tasks can serve
as a support mechanism in encouraging students to better self-regulate their
study and engagement habits. The study of Self-Regulated Learning (SRL)
has a rich history in the traditional classroom setting [126, 179], but now
the new challenge arises of how to support and enable non-traditional and
disadvantaged students to practice effective SRL habits in online/distance
learning endeavors. SRL is defined as a student’s proactive engagement with
his or her learning process by which various personal organization and man-
agement strategies are used in order to control and monitor one’s cognitive
and behavioral process towards a learning outcome [157, 178]. Many SRL
tactics hinge on effective time management skills [22, 117]. Although, with
proper coaching, many students can be taught to find and make time for
studies [105, 117], this is simply not plausible for others who do not have
enough time in a day to introduce a new challenge–no matter how well they
manage their time. These learners are the primary target of our vision. By
introducing these opportunities to earn money while completing a course, we
hope that they can essentially “buy time.”

For the group of students who complete the paid tasks in order to make
“extra” money, the compensation can be viewed as a reward mechanism and
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an incentive to prioritize the MOOC over other less important tasks [54, 90].
For the other group, the money earned from the extra tasks is a required
means for them to commit time. Whereas reward-seeking students would no
longer have a reason to complete the extra tasks if the monetary prize was
removed, the other group of students would no longer have the time or the
ability.

Using rewards to motivate learning

One of the leading critiques of reward programs in traditional education
settings is that their prize pool is finite, and once that is exhausted, student
motivation will dwindle [165]. In our setup, however, this is not an issue,
as online work platforms are consistently replenished with new tasks to rec-
ommend to our MOOC learners. This model thus shows the potential for
sustainability at scale.

The existing literature on paying or rewarding students with material
goods is concerned with young students in traditional classroom settings
[46, 58, 67, 165], however the people who stand to benefit the most from the
inclusion of freelance projects and tasks into the MOOC environment are
predominantly non-traditional students.

[58] approaches the dilemma of incentivising student performance with
money through an economic lens. In order to test how financial incentives im-
pact student performance in historically-disadvantaged and under-performing
school districts in the United States, this study compared the effectiveness
of input-driven versus output-driven reward systems. It was found that in-
centives based on student input, such as completing assignments or reading
books, are more effective than those based on output, such as test scores and
grades [6, 46, 58]. In line with the concept of instructional scaffolding, this
finding suggests that incentivising and rewarding intermediate tasks along
the path to a larger learning goal or objective is more effective than reward-
ing only the goal itself. Likewise, one of these intermediate tasks especially
challenging to open learning is that of allocating and committing time, and
we hope the potential to get paid for this time will support learners in doing
so.

Incentives for underprivileged learners

We also see the introduction of opportunities for learners to contribute to
online work market places while taking a MOOC as a potential manner by
which we can mitigate belonging uncertainty for under-privileged learners [87,
160]. This is characterized by stigmatized or minority group members feeling
uncertain and discouraged by their social bonds in a given environment [160].
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If a student sees his or her participation in the course with an immediately
clear and relevant purpose—learning the necessary skills to complete this real-
world task—then it should thus mitigate any uncertainty or doubt about the
students belonging. Walton and Cohen found that interventions designed
to reduce/remove feelings of belonging uncertainty can have great effects
on students’ subjective experiences in academic settings which can therefore
boost academic performance. Learners of low socio-economic status are not
the only ones who stand to benefit from this. Other major demographics,
such as women (particularly in STEM courses), are currently outnumbered,
and often outperformed [74], by their male student counterparts [44, 132, 90].

Using extra credit to motivate learning

Many studies have examined the effect that offering extra credit assign-
ments to students can have on overall class performance. [25] found that extra
credit assignments can be used to motivate students to read journal articles;
[20] found extra credit, in the form of an in-class token economy, to increase
course participation; [164] saw increases in course attendance stemming form
the offering of extra credit assignments; and [116] found that extra credit
assignments can facilitate mastery of course material and strongly predict
final exam performance.

Similarly, in a study that specifically targeted students on the verge
of failing a college course, researchers found that an intervention in the
form of a skills-based extra credit assignment increased these students’ fi-
nal exam grades, increased and diversified their engagement, and decreased
their dropout/incompletion rate [84].

In December 2015, edX, one of the most popular MOOC platforms an-
nounced a new policy which rescinds the free honor code course completion
certificates previously made available to any student who earned a passing
grade in the course. Instead, according to the announcement on the edX blog
[4], "all of edX’s high-quality educational content, assessments and forums
will continue to be offered for free, but those learners who want to earn a
certificate upon successful completion of the course will pay a modest fee for
a verified certificate." While both edX and its partner institutions will offer
various levels of financial aid to students who apply, the design introduced
in this work has the potential to reduce the burden of supporting students.
Simply by completing one task from an online marketplace (of high enough
value), a student can offset the cost of the verified course certificate.

To the best of our knowledge, this effort to pay students in an open
learning environment in order to encourage and enable student engagement
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is the first of its kind. Research findings in this area promise to help narrow
the established achievement gap we currently observe among MOOC learners.

5.3 EX101x

To investigate our research questions, we inserted bonus exercises, drawn
from paid tasks posted on Upwork, into the MOOC Data Analysis: Take It
to the MAX(), or in short: EX101x. EX101x is a MOOC offered on the edX
platform; its first edition (the one we deployed this study in) ran between
March 31, 2015 and June 18, 2015. The core objective of EX101x is to
learn to conduct data analysis using spreadsheets. Throughout the first six
course weeks, the following set of skills are taught (using Excel as specific
spreadsheet instance): string manipulation and conditional statements (Week
1), lookup and search functions (Week 2), pivot tables (Week 3), named
ranges (Week 4), array formulas (Week 5) and testing in spreadsheets (Week
6). Week 7 is dedicated to the programming language Python and its use
within spreadsheets, while the final week (Week 8) introduces the graph
database Neo4j.

As is common in MOOCs today, learners were invited to participate in a
pre-course and a post-course survey containing questions on the motivation
of the learners, the perceived quality of the course, etc. In September 2015
we approached a selected subset of all learners for an additional post-course
survey.

The course was set up as an xMOOC [134]: lecture videos were distributed
throughout the 8 teaching weeks. Apart from lectures, each week exercises
were distributed in the form of multiple choice and numerical input questions.
Each of the 136 questions was worth 1 point and could be attempted twice.
Answers were due 3 weeks after the release of the respective assignment.
To pass the course, ≥ 60% of the questions had to be answered correctly.
Each week, alongside the usual assignments, we posted one additional bonus
exercise.

Overall, 33,515 users registered for the course. Less than half of all learn-
ers (45%) engaged with the course, watching at least one lecture video. The
completion rate was 6.53% in line with similar MOOC offerings [95]. Over
65% of the learners were male and more than 76% had at least a Bachelor
degree.
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5.4 Approach

The design of our experiments was guided by our research questions. As we
aim to determine whether learners can solve real-world tasks that are related
to the course material with high accuracy and high quality (RQ 4.1), for
the six weeks of EX101x that cover data analysis topics in spreadsheets, we
manually selected appropriate paid tasks from the Upwork platform — one
task per course week. No bonus exercises were posted in weeks 6 and 8 due to
the topics covered that week: testing in spreadsheets and the graph database
Neo4J. We chose Upwork (which at that time was still called oDesk) as it is
one of the largest online work platforms in the English speaking world (cf.
Table 5.4); for each course week, we chose an Upwork task that was strongly
related to that week’s course content by extensively scanning the currently
active Upwork tasks worth up to $50. We chose this price limit to provide
tasks that can be solved in a reasonable amount of time. We kept the task
description intact, and added a short introduction to provide the necessary
context to our learners (i.e. a clear disclaimer that this is a real-world task).
A concrete example of a bonus exercise derived in this manner is shown in
Figure 5.2; it was posted in week 4 of EX101x.

To answer RQ 4.2 and RQ 4.3, we explored the suitability of Upwork as
a source of paid tasks along several dimensions including the covered topics,
the task longevity, and the financial gain. In order to investigate RQ 4.1 and
RQ 4.4 we require exact definitions of a number of metrics (i.e. accuracy,
coverage, quality and engagement). In the following section, we describe
them in detail.

5.4.1 Measurements

Accuracy. For each bonus exercise, we developed a gold standard solution
in collaboration with the course instructor and verified whether the submit-
ted learner solutions matched the gold standard solution, thus measuring
their accuracy. We considered a submitted spreadsheet a match to our gold
standard if it contained the required solution columns with the correct cell
content; additional columns were ignored; slight deviations from the gold
standard (e.g. an empty string or “N/A” instead of an empty cell in the gold
standard) were allowed. We iteratively refined our automated grading script
by randomly sampling 20 submission in each iteration (and manually veri-
fying the correctness of the grading script) until all samples were classified
correctly.
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Have you ever sold anything on Amazon.com? For this real-world task (again
derived from an actual oDesk task), we put you in the shoes of an Amazon seller
who is selling accessories for pets. The seller himself buys these accessories from
a supplier. The seller currently has a five star feedback rating on Amazon. To
keep it this way, only items that the seller can immediately ship should appear
in the seller’s Amazon storefront (i.e., those items that the supplier has in
stock).
The seller has this Excel sheet which stores the ID of all products to be posted
on his Amazon.com storefront and the number of units available, as illustrated
in the example below.

It is your job to update the Stock column based on the information the seller
receives from the supplier.
Every day, the seller receives an Excel sheet from his supplier, which contains
the supplier’s inventory. An example is provided below. Note that the supplier’
s column Product corresponds to the seller’s column ID.

To keep his customers satisfied, the seller uses the following two rules to set the
Stock column:

• If the supplier’s inventory of a product is less than 30, Stock should be
set to 0;

• If the supplier’s inventory of a product is more than or equal to 30,
Stock should be set to 20.

Applying these two rules to our example files above, yields the following result:

Please send your solutions to ...

Figure 5.2: Bonus exercise posted in week 4 of EX101x. The original task was posted
with a price of $35 to Upwork (note that at the time of posting this exercise,
Upwork was still called oDesk).

Coverage. Besides accuracy, we also measured the coverage of learner solu-
tions. We operationalize coverage as the percentage of cells that the learner
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solution shares with the gold standard. As for accuracy, we ignored addi-
tional columns and allowed minor deviations in the cells such as additional
white spaces or minimal numeric differences to account for floating point in-
accuracy on different computers. Coverage can be seen as an indicator of
how close the solution is to the gold standard solution.

Quality. To investigate the quality of the submissions, we turned to the
concept of code smells [155], an established measure of quality in the field of
Software Engineering: code smells are specific to particular programming
languages; spreadsheets code smells include standard errors (e.g., #N/A!,
#NAME?), high conditional complexity (e.g., involving too many nested IF
operations), hidden rows/columns/worksheets, etc. We adopted the code
smells for spreadsheets proposed in [71] and rank the solutions by the num-
ber of smells they exhibit - the fewer smells a solution has, the higher its
quality.

Engagement. Finally, based on our experimental setup, we are also able to
investigate the effect of real-world tasks on student engagement (RQ 4.4).
We hypothesize that learners who view the bonus exercises and realize that
those are real-world tasks that could earn them money, will become more
engaged with the course material than learners who did not view the bonus
material. To this end, we only consider the subset of active learners LnoBonus
that did not submit any solutions to the bonus exercises.

We group learners together that are similarly engaged in the course up to
the point of either viewing a bonus exercise or not. If our hypothesis holds,
then after that point in time, those learners that viewed the bonus exercise
should, on average, exhibit higher engagement than those that did not.

We operationalize this experiment as follows: we measure a learner’s
engagement through his or her amount of video watching. In week 1, we
partition the learners in LnoBonus in two groups: we sort the learners in video
watching time order and then split them in two equally sized groups - the
lower half is the low engagement, and the upper half is the high engagement
group. We then compute for each learner the amount of video watching in
all following weeks and determine for the low and high engagement groups
separately whether there is a statistically significant difference between those
learners that did view and those that did not view the bonus exercise. In
week 2, we repeat this analysis by taking as starting point only the subset
of learners in LnoBonus that viewed the bonus exercise in 1. We repeat those
steps until week 7 (in each week resorting the remaining learners into the
low and high engagement groups). While we expect significant differences
based on bonus exercise viewing in the early weeks of the course, we should
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not observe significant differences towards the end of the course — in week
n we only include learners that up to that point in time have viewed all
n − 1 bonus exercises. At some point, bonus exercises should not provide
additional engagement anymore.

5.5 Results

Before we discuss our results for each of the four research questions in turn,
we provide a first global view of our learner population in EX101x.

All
Engaged
Learners

BE
Learners

Non-BE
Learners

#Learners 15,074 2,020 13,054
Completion rate 14.02% 44.11% 9.36%
Avg. time watching
video material (in min.) ‡ 58.78 133.48 47.21

%Learners who tried
at least one question 59.89% 98.56% 53.91%

Avg. #questions learners
attempted to solve ‡ 24.06 67.41 17.36

Avg. #questions
answered correctly ‡ 19.56 55.60 13.98

Avg. accuracy of
learners’ answers ‡ 53.40% 90.09% 47.73%

#Forum posts 10,106 4,341 5,765
%Learners who posted
at least once 16.20% 43.61% 11.96%

Avg. #posts per learner ‡ 0.67 2.15 0.44

Table 5.1: Basic characteristics across all learners and their partitioning into those who
attempted to solve at least one Bonus Exercise (BE) and those who did not
(Non-BE). Where suitable, significance tests between the BE/Non-BE groups
were performed according to Mann-Whitney. All performed tests exhibited
significant differences - indicated with ‡ (significant difference with p < 0.001).

We classified our set of engaged learners, i.e., those who watched at least
one video2 (a definition also employed for instance in [65]), according to two

2We note, that we also evaluated two alternative definitions of engagement: (1) learners
that watched at least 15 minutes of video material (i.e. at least two videos), and (2) learners
that submitted at least five quiz questions. While the absolute values reported in Tables 1
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dimensions: (i) whether learners attempted to solve at least one bonus exer-
cise (BE) or not (Non-BE) and (ii) the number of bonus exercises learners
attempted to solve. In the latter case, we consider only the BE learners.
We mark learners as dedicated bonus exercise solvers (DBE) if they at-
tempted to solve more than two bonus exercises, the remaining learners are
non-dedicated (Non-DBE). The basic statistics of both learner cohorts are
presented in Tables 5.1 and 5.2. It is evident that learners who solved at
least one bonus exercise are more engaged than learners who did not - across
all important characteristics (average time spent watching videos, average
number of questions answered, accuracy of answers) the BE learners perform
significantly better than the Non-BE learners. Among the cohort of BE learn-
ers, this trend continues with the dedicated learner group being significantly
more engaged and successful than the non-dedicated learner group.

We note that these results are not surprising — they are dictated by com-
mon sense and our manner of classifying learners. Importantly, we do not
claim a causal relationship between bonus exercise presence and learner en-
gagement based on these results (in Section 5.5.3 we explore the relationship
between engagement and bonus exercises in greater detail).

As our goal is to improve the ability of learners from the developing
world to engage and successfully complete the course, we also investigate to
what extent they are already capable of doing so now. For each country, we
computed the percentage of learners that completed the course (based on all
registered learners). Shown in Figure 5.3 is the completion rate of EX101x
across countries, split into developed countries according to the OECD (in
blue) and developing countries (in red). We observe, that in general, the
completion rate of learners from developed countries is higher than those
of developing countries (with the exception of Russia and Malaysia). This
confirms one of our assumptions that learners from developing countries are
facing issues that learners in developed countries do not face. This result is
in line with previous findings in [36].

5.5.1 RQ 4.1: Can learners solve real-world tasks well?

Across all weeks, we received a total of 3, 812 bonus exercise solutions from
2, 418 learners. Since the edX platform has very limited solution uploading
capabilities, we asked learners to email us their solutions and then matched
the email addresses of the learners to their edX accounts. 352 of the learners

& 2 change depending on the definition employed, we did observe the same trends and the
same significant differences for all three engagement definitions and thus only report one.
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DBE Non-DBE
Learners Learners

#Enrolled learners 314 1,706
Completion rate 86.31% 36.34%
Avg. time watching
video material (in min.) ‡ 189.45 123.18

%Learners who tried
at least one question 100.00% 98.30%

Avg. #questions learners
attempted to solve ‡ 110.52 59.47

Avg. #questions
answered correctly ‡ 93.99 48.53

Avg. accuracy of
learners’ answers ‡ 94.83% 89.22%

#Forum posts 1,626 2,715
%Learners who posted
at least once 59.87% 40.62%
Avg. #posts per learners ‡ 5.18 1.59

Table 5.2: Basic characteristics of BE learners partitioned into dedicated BE learners
(DBE) solving 3+ bonus exercises and non-dedicated BE learners. Where
suitable, significance tests between the DBE/Non-DBE groups were performed
according to Mann-Whitney. All performed tests exhibited significant differ-
ences - indicated with ‡ (significant difference with p < 0.001).

could not be matched to an edX account (i.e. these learners used a different
email when signing up for edX) and had to be excluded from the subsequent
analyses of edX log traces (they are included though in all results analyzing
the accuracy/quality of the solutions).

Table 5.3 lists the main results of our accuracy and quality analyses.
Between 1% (in week 7) and 15% (in week 1) of active learners participated
in the bonus tasks each week. The percentage of accurate solutions varies
widely between tasks and is not correlated with the amount of pay for a task.
In fact, the two tasks with the lowest pay ($20 in weeks 3 & 5) resulted in
the lowest percentage of accurate solutions (11% and 17% respectively). The
low accuracy for the seemingly simple (as cheaply priced task) is intriguing.
We sampled 50 of the incorrect solutions and found most of them to miss a
required final step in the task. Both tasks require students to carefully read
and understand the assignment to be successful. In week 3, learners needed
to implement an equation containing an absolute value. As the equation
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Figure 5.3: Developed countries according to the OECD are shown in blue, developing
countries are shown in red. The color shade indicates the overall comple-
tion rate of learners from that country. A darker shade indicates a higher
completion rate.

text is fairly long, students tended to miss this vital piece of information;
78% of all wrong answers that week show this misconception. In week 5,
the solutions had a similar issue, often missing a final re-ranking step of the
result columns as required in the task description.

An alternative view of submission accuracy is presented through the av-
erage coverage of all submissions, that is the fraction of gold standard result
cells, that were also present in the submissions. Coverage is 1.0 for the correct
submissions, but usually lower for incorrect ones (note that it is possible for
an incorrect solution to reach a coverage of 1.0 if it contains all gold standard
result cells as well as additional result cells - this happens rarely though). In
Table 5.3 we observe that the coverage across all submitted solutions is rather
high (with the exception of week 3), thus even solutions that are not correct
are at least sensible.

Having considered accuracy and coverage, we now turn to the quality of
the solutions. Among the correct solutions, a large fraction (between 38%
and 96%) are of high quality, that is they exhibit zero code smells as shown
in Table 5.3. Again, we do not observe a correlation between the price of
a task and the quality of the solutions. The quality of the accurate and
inaccurate solutions (as measured in code smells) is comparable. Across all
weeks and submitted solutions, the median number of code smells is less than
10, indicating that most learners were able to code high-quality solutions.
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The vast majority of solutions across all weeks have less than 50 reported
code smells.

Overall, we can positively answer RQ 4.1: it is indeed possible for MOOC
learners to provide correct and high-quality solutions to selected real-world
tasks from an online work platform.

Week # Active
learners

# Bonus
(% from active)

Task
payment

# Accurate
(% of active)

# High quality
(% of accurate)

Coverage
(SD)

1 13,719 2,145 (15.64%) $ 25 1,731 (80.70%) 1,230 (71.06%) 0.88 (0.32)
2 8,228 594 ( 7.22%) $ 50 227 (38.22%) 87 (38.33%) 0.91 (0.27)
3 5,825 390 ( 6.70%) $ 20 44 (11.28%) 28 (63.64%) 0.54 (0.32)
4 4,270 414 ( 9.70%) $ 35 354 (85.51%) 296 (83.62%) 0.95 (0.22)
5 3,709 231 ( 6.23%) $ 20 39 (16.88%) 16 (41.03%) 0.69 (0.24)
7 3,059 38 ( 1.24%) $ 35 26 (68.42%) 25 (96.15%) 0.73 (0.68)

Table 5.3: Learners’ performance on real-world tasks. The second column shows the
number of active learners. The third column shows the number of students
taking the bonus exercise. The fourth column shows the task payment offered
at UpWork. Accurate submissions are those matching our gold standard (with
the additional requirement of the correct order for tasks 3 and 5). High-quality
submissions are those correct submissions without code smells. The coverage
column reports the average (and standard deviation) fraction of cells covered
by all of a week’s submissions.

5.5.2 RQ 4.2 & RQ 4.3: An exploratory analysis of UpWork

We first note that Upwork is only one of multiple large online work platforms
in the English speaking world as shown in Table 5.4. Together those compa-
nies facilitated more than 2.5 billion dollars in worker payments. Important
for us, some of these platforms (including Upwork) provide API access to
their content, thus enabling a recommender system as we envision.

For our analysis, we took a snapshot of all available tasks on Upwork on
September 15, 2015 leading to a total of 56,308 open tasks. Each task is
assigned to one or more topical categories, e.g. Translation or IT & Net-
working. Additionally, tasks can be tagged with particular required skills
such as excel or python. Tasks either pay per hour or have a fixed budget.
We focus on the latter, as the budget is a direct indicator for the amount of
work required. A task pays on average $726 (SD: $3,417) and stays 27 days
on the platform (SD: 34 days) before being solved or canceled. Among all
tasks, we found 574 spreadsheet tasks (potentially relevant for EX101x) in
the budget range from $1 - $50. A task in this (budget) subset stayed 25 days
on the platform on average (SD: 40 days).
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To estimate the proportion of tasks that may be suitable recommenda-
tions for EX101x learners, we analysed a random sample of 80 tasks of the
budget set. An expert classified these tasks into three categories:

1. lecturable are tasks that would make them suitable as course material
for a specific lecture (e.g. a task that requires knowledge of a spread-
sheet’s VLookUp function);

2. relevant are tasks that fit the topic yet do not fit into a specific lecture
(e.g. a task that requires the use of spreadsheets but otherwise does
not rely on knowledge taught in the course);

3. unrelated are all other tasks that do not fit in the courseware in general.

Among the 80 tasks we found 34 unrelated tasks, 39 relevant tasks and 7
lecturable tasks. Based on these numbers and the average time a task stays
online we can estimate how many tasks are added every day to Upwork that
fit our criteria (i.e. have a price between $1 and $50 and require spreadsheet
knowledge): 10 unrelated tasks, 11 relevant tasks, and 2 lecturable tasks.
These numbers indicate that there are not yet enough budget tasks avail-
able to provide individual MOOC learners with weekly opportunities to earn
money whilst learning — at least for the EX101x MOOC.

Company Paid worker fees API

Upwork $ 1,000 M yes
witmart $ 1,000 M no
freelance $ 462 M no
Guru $ 200 M yes
Envato $ 200 M yes
Topcoder $ 72 M yes

Table 5.4: Paid total worker fees by company in Million US Dollar. These numbers are
self reported by the companies and are not given for a specific year.

One limiting factor in our design is the budget limit we set ourselves ($50).
The majority of tasks have a higher budget as shown in Figure 5.4 and future
experiments will investigate the question up to which budget level learners
are able to solve tasks in a reasonable amount of time, with high accuracy
and high quality.

Tasks that have a higher budget (on the topic of spreadsheets) are usually
more intricate and instead of solving one specific problem in a spreadsheet
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Figure 5.4: From the 56,308 Upwork tasks available on 15/09/2015 a total of 8,153 have
a fixed budget (the remaining tasks are paid by the hour). Budgeted tasks
are binned according to the budget they have.

(as less pricey tasks, cf. Figure 5.2) they often require the development of a
complete solution as exemplified in the three task examples priced between
$100 and $500 at Upwork:

$500 “We are commercial real estate brokers and are looking for an expert
in Microsoft Excel to create an interactive Excel worksheet(s) for rental com-
parison purposes.”

$250 “I need to have financial calculations for a customer equity/lifetime
value model integrated into an excel workbook. (...)”

$100 “I currently plot support and resistance zones manually on a chart like
the attached image. (...) I need to calculate these support and resistance
levels within MS Excel programmatically or using some sort of algorithm.
(...)”

In contrast to the budget, the longevity of tasks on Upwork is beneficial
for our vision. Figure 5.5 shows that many tasks remain available for at least
20 days, which is beneficial in the MOOC setting where assignments also
commonly have a grace period of 2-3 weeks.

Recall, that additionally to a general category each task is tagged with a
set of required skills. Table 5.5 shows Excel (the comon tag for spreadsheet
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Figure 5.5: The 56,308 Upwork tasks available on 15/09/2015 are binned according to the
number of days they have been “online” (i.e. the task is open).

tasks) to be a relatively popular task. More general skills such as proficiency
in HTML and CSS occur more often than specific skills such as proficiency
in R. Overall, programming tasks only make up a small percentage of all
available tasks, as shown in Table 5.6. Indeed, the breadth of tasks offered
on Upwork indicates the tremendous potential of online work platforms for
suggesting paid tasks to learners across a range of MOOCs.

To conclude, we observe that, indeed, the knowledge gained during EX101x
can be used to solve paid tasks (RQ 4.2), though the number of tasks posted
per day that fit our criteria is rather low: we estimate that, an average, 13
tasks a day are posted in the $1-$50 category, requiring spreadsheet knowl-
edge fitting the course topic of EX101x.

This result also provides an answer to RQ 4.3 in the context of EX101x:
as per day, on average, only 13 MOOC students stand to benefit from these
paid tasks (i.e., can earn money from them), there are not sufficient tasks
available to sustain a standard MOOC population of learners throughout an
entire run of EX101x — at least at the current rate of online work tasks
being posted to Upwork.
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#Tasks Skill Tag

5,443 HTML5 & HTML
5,034 PHP
3,928 Javascript
2,731 Excel

616 Python
559 Ruby & Ruby-on-Rails
537 Objective-c
450 Java
26 Perl
34 R

Table 5.5: Overview of programming tasks among our crawl of 56,308 Upwork tasks on
15/09/2015.

Category #Tasks Days Online (SD) Payment (SD)

Customer Service 986 74.76 (83.24) $1,817 ($6,692)
Engineering & Architecture 1,432 53.70 (61.50) $1,699 ($6,640)
Translation 2,109 53.02 (74.64) $1,156 ($3,710)
Admin Support 5,961 50.33 (89.14) $ 982 ($4,855)
Accounting & Consulting 1,095 49.37 (77.77) $ 997 ($4,642)
IT & Networking 2,182 39.60 (52.38) $ 854 ($4,356)
Data Science & Analytics 1,156 37.29 (45.94) $ 777 ($3,308)
Writing 8,448 32.31 (58.54) $ 418 ($ 832)
Legal 333 27.97 (33.67) $ 377 ($2,055)
Web, Mobile & Software Dev 16,328 25.39 (46.02) $ 376 ($2,028)
Design & Creative 9,667 24.60 (45.70) $ 274 ($ 710)
Sales & Marketing 6,724 21.54 (34.31) $ 263 ($2,124)

Table 5.6: The 56,308 Upwork tasks available on 15/09/2015 are partitioned according
to their category. Shown are the number of tasks per category, the average
number of days online and the average task payment (for the subset of 8,153
tasks with a fixed budget).

5.5.3 RQ 4.4: Learner engagement

We hypothesize that our bonus exercises, in particular the realization that
those are real-world tasks with which money could be earned, are beneficial
for learner engagement.

In Figure 5.6 we present the results of our experiment, comparing the
amount of video watching between learners who did view and did not view
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the bonus exercises (computed separately for low and high engagement learn-
ers). Let’s consider week 1: in the low engagement group, the learners that
did not view the bonus exercise spent on average 0.08 hours (5 minutes) in
subsequent weeks on video watching, while the learners that did view the
bonus exercise spent 1.3 hours in subsequent weeks on videos. This differ-
ence is statistically significant (p < 0.001, Mann-Whitney test). Similarly,
in the high engagement group, learners that did not view the bonus exercise
continued to spend 0.4 hours (24 minutes) on video watching, while learners
that did view the bonus exercise spent 1.7 hours on the course. Across both
engagement groups, the low amount of overall time spent in watching videos
can be explained by the fact that over time, more and more learners drop
out of a course. In week two, we only consider the subset of learners that
viewed the bonus exercise in week 1, and again we observe significant differ-
ences in engagement between those that viewed the second bonus exercise
and those that did not. As the weeks go on, the difference in video watching
time between learners viewing and not viewing the bonus exercise of the week
tends to decrease—also evident in the fact that in weeks 5 and 7, we find no
significant differences in engagement for the high engagement learners. We
consider these results as a first confirmation of RQ 4.4: our bonus exercises
(real-world tasks) are likely to have a positive effect on engagement. We real-
ize that this experiment can only be considered as first evidence: we observed
that similarly engaged learners diverge in their behavior after having (not)
viewed our real-world bonus tasks. We assume that this divergent behavior
is caused by the action of (not) viewing the task, but this assumption can-
not be directly verified. We attempt to verify it (among others) through a
post-course survey, outlined next.

5.5.4 Post-course survey

We sent a follow-up survey with 11 questions (about success & engagement
in EX101x, financial incentives in MOOC learning and the bonus tasks in
EX101x) to a subset of learners who expressed their willingness to be con-
tacted after the course had completed. An overview of all questions can be
found in Table 5.7.

We partitioned the set of contacted learners into four groups according to
their origin (developed vs. developing country) and their engagement with
the bonus exercises (submitted vs. not submitted):

• from developed nations & submitted at least one bonus exercise (126
learners contacted, 26 replied);
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Success & engagement

1. How engaged were you
in EX101x?

Completed
successfully

Stopped mid-
way

Stopped in
weeks 1 or 2

Registered,
but nthg. else

- -

75|87|67|45% 14|10|16|23% 11|0|14|27% 0|3|3|5% - -

2.
To what extent did
you engage with the
bonus exercises?

Submitted
3+ exercises

Submitted 1-
2 exercises

Attempted
1+ exercises,
but not
submitted

Looked at
1+ exercises,
but not
attempted

Knew
about
exercises,
did not
look at
any

No
knowl-
edge of
exercises

48|52|8|0% 41|38|25|32% 11|3|20|45% 0|7|20|9% 0|0|19|9% 0|0|8|5%

3.

In case you did not
complete EX101x suc-
cessfully, were finan-
cial reasons a major
factor?

Not applica-
ble

No
Yes, a minor
factor

Yes, a major
factor

- -

74|71|62|35% 26|18|32|50% 0|11|0|10% 0|0|6|5% - -

Financial incentives in general

4.

If you require finan-
cial incentives to com-
plete a MOOC, how
much (in US dollar)
would you need to
earn per week via real-
world freelance tasks
in order to complete a
MOOC?

No financial
incentive re-
quired

$0-$9 $10-$29 $30-$49 $50-$99 $100+

80|52|77|64% 0|7|0|5% 0|10|6|9% 8|7|11|13% 4|14|3|9% 8|10|3|0%

5.

If earning that much
money per week, how
many hours per week
would you commit to a
MOOC?

Open-answer form

6.

Would you consider
this income essential
to your well-being or
more like extra spend-
ing money?

Not applica-
ble

1 (Essential) 2 3 4 5 (Extra)

80|48|66|55% 4|10|3|9% 0|4|9|5% 8|17|6|23% 0|14|8|9% 8|7|8|0%

Bonus exercises in EX101x

7.
How many hours per
week did you actually
commit to EX101x?

Open-answer form

8.

Did the bonus exer-
cises increase your mo-
tivation to engage with
the course (beyond the
standard course mate-
rial)?

1 (Not at
all)

2 3 4
5 (Very
much)

-

8|7|33|11% 12|0|23|21% 28|24|17|31% 32|41|20|26% 20|28|7|10% -

9.
How difficult did you
find the bonus exer-
cises?

1 (Too easy) 2 3 4
5 (Too
difficult)

-

0|0|7|0% 4|4|7|6% 56|31|61|50% 36|62|21|31% 4|3|4|13% -

10.
Why did you begin
attempting the bonus
exercises?

Open-answer form

11. Why did you stop? Open-answer form

Table 5.7: Overview of the 11 questions in our post-course survey. For presentation pur-
poses, some questions and answers appear slighlty condensed. For all closed-
form questions, we provide the distribution of answers (in %) across the four
learner partitions in the form A | B | C | D%: (A) from developed nations +
at least one bonus exercise submitted, (B) from developing nations + at least
one bonus exercise submitted, (C) from developed nations + no bonus exercise
submitted, and, (D) from developing nations + no bonus exercise submitted.



96 Chapter 5. Enabling MOOC Learners to Solve Real-world Paid Tasks

Figure 5.6: The average amount of time (in hours) that learners spent in watching video
after viewing (but not submitting) the bonus exercises. The numbers of
learners within each group are given in brackets. Results marked with *
(p < 0.001) are significantly different (Viewed vs. Not viewed) according to
the Mann-Whitney U-test.

• from developing nations & submitted at least one bonus exercise (114
learners contacted, 29 replied);

• from developed nations & did not submit a bonus exercise (357 learners
contacted, 34 replied);

• from developing nations & did not submit a bonus exercise (271 learners
contacted, 22 replied);

Besides the questions and answer options, in Table 5.7 we also report the
distribution of given answers for all closed-form questions and each learner
partition. We note that a small number of learners who we classified as not
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having submitted a bonus solution self-reported having done so. The converse
is also true: a small number of learners that we have received bonus exercise
submissions from reported not having submitted any. These self-reporting
errors could be explained by the amount of time (12 weeks) passed between
the end of EX101x and the release of the survey. Overall though, the vast
majority of learners were remembering their (lack of) submissions for our
bonus exercises correctly.

Students from developing nations who did not attempt any of the bonus
exercises report that if they could earn somewhere between $10 and $100 per
week through such online work platform tasks, they would commit up to six
more hours to the course per week. In this same group, 45% of respondents
attempted one or more bonus exercises but did not submit it to the course
instructor. In contrast, of the survey respondents from developed nations who
did not submit a bonus exercise to the instructor, only 20% reported having
attempted to solve any. This difference suggests that learners from developing
nations are more motivated and eager to engage with course material, but
there seems to be a barrier stopping them from fully engaging as much as
they would like. Providing an opportunity for them to gain income in the
process could be a key factor in enabling them to fully commit to a MOOC.

In question 9 we asked students how difficult they found the bonus ex-
ercises to be on a five-point Likert scale—“1” being too easy and “5” being
too difficult. Of the entire group of learners (across all partitions) that re-
sponded, the average score was 3.48. As bonus exercises, they are expected
to be slightly more difficult than the rest of the course material, and the
students seem to generally view them as such—slightly more difficult, yet
accessible. This sentiment is also echoed in the students’ comments in the
survey when asked why they chose to engage with the bonus exercises in
the first place; the three most common words to appear in the responses, in
order, are “challenge," “real," and “test." To synthesize, students generally
see these activities as an added challenge in which they test their ability to
apply what they learned in the course to a real-world problem.

Also interesting is that learners from developing countries perceived the
bonus exercises as being more difficult than learners in developed countries
(Mann-Whitney U-test with U = 781, Z = −2.13 and p < 0.05). This
discrepancy underlines the importance for learners in developing countries to
be able to commit the necessary time for these types of tasks, as a higher
perceived difficulty would require more time from the learner to understand
and/or master the content.
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Finally, we also explored the effect of the bonus exercises on learners’
motivation to engage with the course (survey question 8). These responses,
also on a five-point Likert scale, ranged from “Not at all” (1) to “Very much”
(5). A difference emerged in the way learners from different backgrounds
are affected by the presence of the bonus exercises. Learners from developing
nations report that bonus exercises increased their motivation to engage with
the course significantly more than learners from developing countries (Mann-
Whitney U-test with U = 617.5, Z = 2.61 and p < 0.05).

5.6 Freelance Recommender System Design

Based on our analyses presented in the previous sections, we have to take the
following two requirements into account when designing our freelance task
recommender:

• The recommender should support multiple task platforms, as we have
found Upwork (at this point in time) to only offer a very limited number
of tasks in our specified price range and on our specific MOOC’s topic
each day.

• Once we recommend learners tasks on Upwork and other similar plat-
forms, we need to continuously track the tasks’ status (are they still
available?) as well as the number of times we have recommended them
to different learners (to avoid hundreds of learners trying to “bid” for
the same task — only one of them can get the job and be paid).

Figure 5.7 shows our designed recommender system, which — for any given
MOOC — will automatically retrieve real-world tasks relevant to the topics
covered in the MOOC and recommend them to our learners. We briefly
discuss the different layers in turn:

• MOOC. The MOOC layer serves as the playground for learners to
interact with course components and our freelance task recommender
system.

• Data layer. This layer is responsible for collecting learners’ activity
data and gathering real-world tasks from freelance platforms. To be
specific, the component MOOC data collector collects data of learn-
ers’ interactions with course components (e.g., watching lecture videos,
viewing forum posts, submitting quiz answers) and the recommender
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Figure 5.7: Overview of the freelance work task recommender system’s design.

system (e.g., viewing recommended freelance tasks, dwell time). On
the other side, the component Freelance task collector retrieves course-
relevant tasks from multiple freelance platforms including Upwork, witmart,
Guru and Envato. As some of the discovered freelance tasks may not be
suitable for our setting of “earning whilst learning” (high budget tasks
often require deep knowledge of several fields), the Task filtering com-
ponent filters out unsuitable tasks by applying rule-based strategies
(e.g., by setting the maximun budget). In addition, the Task avail-
ability tracker component regularly checks whether the recommended
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freelance tasks are still open & available before generating the recom-
mendations for our learners.

• Analysis layer. In this layer, the Learner profiling component ana-
lyzes learners’ interaction patterns with the recommender system and
how/whether learners’ course engagement can be influenced by free-
lance task recommendations. The Task relevance estimation compo-
nent computes the relevance of the discovered tasks with respect to the
specific MOOC as well as (potentially) the learner profile.

• Intervention layer. At last, the intervention layer makes task rec-
ommendations to our learners. The Recommendation diversification
component is responsible for presenting a diverse selection of recom-
mendations (to avoid hundreds or thousands of learners competing for
the same freelance tasks).

In future work we will implement this design and test its influence in
various MOOCs by exploring its effect on MOOC learners.

5.7 Conclusion

Can MOOC learners be paid to learn? We set out to provide a first answer
to this question in the context of the EX101x MOOC. We found that indeed,
work tasks of up to $50 can be solved accurately and in high quality by a
considerable percentage of learners that attempt it. We also explored the
suitability of the online work platform Upwork in providing tasks to MOOC
learners - while there are many budget tasks available (between $1 and $50),
those specific to EX101x are rather low in number; at the moment we expect
no more than 13 suitable tasks (i.e. specific to taught course material) to
be posted per day. Finally, we investigated the matter of engagement: does
knowing that real-world tasks may be solved with course knowledge increase
learners’ engagement? Our evidence suggests that this is may indeed be the
case. We note that while we did observe correlational relationships between
learners’ bonus exercise engagement and in-course behavior, the present re-
search cannot yet claim any causality.

Based on the work presented here, we will explore several promising di-
rections (beyond the development and deployment of the presented recom-
mender design) in the future. We will investigate (i) experimental setups
that allow us to further investigate the causal relationship between real-world
tasks and learner engagement, (ii) the suitability of more complex tasks (i.e.
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tasks with a budget greater than $50) for MOOC learners, (iii) the acceptance
of the “learners can be earners” paradigm in different populations, and (iv)
setups that aid MOOC learners to take the first steps in the paid freelance
task world, inspired by [146].





Chapter 6

LearningQ for Educational
Question Generation

In this chapter, we focus on the collection of a large-scale and high-quality
educational question dataset, as the first step to construct an automatic
question generator to ease the burden of instructors in manually creating a
suitably large question bank. To this end, we examine the learning material
accumulated in two mainstream education-oriented Social Web platforms,
i.e., TED-Ed and Khan Academy, and present LearningQ, which consists of a
total of 230K document-question paris, whose questions are of all cognitive
levels in the Bloom’s Revised Taxonomy [104] and covering various learning
subjects. To show the research challenges in generating educational ques-
tions, we use LearningQ as a testbed to examine the performance of two
state-of-the-art approaches in automatic question generation and investigate
possible strategies to select question-worthy sentences from an article. The
contributions of this chapter have been published in [33].

103
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6.1 Introduction

In educational settings, questions are recognized as one of the most impor-
tant tools not only for assessment but also for learning [128]. Questions allow
learners to apply their knowledge, to test their understanding of concepts and
ultimately, to reflect on their state of knowledge. This, in turn, enables learn-
ers to better direct their learning effort and improve their learning outcomes.
Previous research has shown that the number of questions learners receive
about a knowledge concept is positively correlated with the effectiveness of
knowledge retention [8]. It is thus desirable to have large-scale question banks
for every taught concept to better support learners.

Designing a suitably large set of high-quality questions is a time-consuming
and cognitively demanding task. Instructors need to create questions of vary-
ing types (e.g., open-ended, multiple choice, fill-in-the-blank), varying cogni-
tive skill levels (e.g., applying, creating) and varying knowledge dimensions
(e.g., factual, conceptual, procedural) that are preferably syntactically differ-
ent yet semantically similar in order to enable repeated testing of a knowledge
concept. To ease instructors’ burden, automatic question generation has been
proposed and investigated by both computer scientists and learning scientists
to automate the question creation process through computational techniques
[110, 136, 137, 69].

Typically, automatic question generation has been tackled in a rule-based
manner, where experienced teachers and course instructors are recruited to
carefully define a set of rules to transform declarative sentences into inter-
rogative questions [161, 3, 69]. The success of these rule-based methods is
heavily dependent on the quality and quantity of the handcrafted rules, which
rely on instructors’ linguistic knowledge, domain knowledge and the amount
of time they invest. This inevitably hinders these methods’ ability to scale
up to a large and diverse question bank.

Data-driven methods, deep neural network based methods, in particular,
have recently emerged as a promising approach for various natural language
processing tasks, such as machine translation, named entity recognition and
sentiment classification. Inspired by the success of these works, Du et al.
[51] treated question generation processes as a sequence-to-sequence learning
problem, which directly maps a piece of text (usually a sentence) to a ques-
tion. In contrast to rule-based methods, these methods can capture complex
question generation patterns from data without handcrafted rules, thus being
much more scalable than rule-based methods. As with most data-driven ap-
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proaches, the success of neural network based methods is largely dependent
on the size of the dataset as well as its quality [131].

Source Document-Question pairs

SQuAD

Doc: ... after Heine’s German birthplace of
Düsseldorf had rejected, allegedly for anti-
Semitic motives ...
Q: Where was Heine born?

RACE
Doc: ... There is a big supermarket near Mrs.
Green’s home. She usually ...
Q:: Where is the supermarket?

LearningQ

Doc: ... gases have energy that is proportional
to the temperature. The higher the temperature,
the higher the energy the gases have. The crazy
thing is that at the same temperature, all gases
have the same energy ...
Q: If you were given oxygen (molecular mass
= 18 AMU) and hydrogen (molecular mass =
1 AMU) at the same temperature and pressure,
which has more energy?

Table 6.1: Examples of document-question pairs.

Exiting datasets, such as SQuAD [131] and RACE [96], though containing
a large number of questions (e.g., 97K questions in SQuAD), are not suitable
for question generation in the learning context. Instead of being aimed at
educational question generation, these datasets were originally collected for
reading comprehension tasks. They are often limited in their coverage of
topics—the questions in SQuAD for example, were generated by crowdwork-
ers based on a limited number (536) of Wikipedia articles. More importantly,
these questions seek factual details, and the answer to each question can be
found as a piece of text in the source passages; they do not require higher-level
cognitive skills to answer them, as exemplified by the SQuAD and RACE ex-
ample questions in Table 6.1. We speculate, as a consequence, question gen-
erators built on these datasets cannot generate questions of varying cognitive
skill levels and knowledge dimensions that require a substantial amount of
cognitive efforts to answer, which unavoidably limits the applicability of the
trained question generators for educational purpose.

To address these problems, we investigate the research question: RQ
5.1 can a large-scale and high-quality educational question dataset
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be collected from the Social Web? Specifically, we present LearningQ,
which consists of more than 230K document-question pairs collected from
mainstream online learning platforms. LearningQ does not only contain ques-
tions designed by instructors (7K) but also questions generated by students
(223K) during their learning processes, e.g., watching videos and reading
recommended materials. It covers a diverse set of educational topics rang-
ing from computing, science, business, humanities, to math. Through both
quantitative and qualitative analyses, we show that, compared to existing
datasets, LearningQ contains more diverse and complex source documents;
moreover, solving the questions requires higher-order cognitive skills (e.g.,
applying, analyzing). Specifically, we show that most questions in LearningQ
are relevant to multiple source sentences in the corresponding document,
suggesting that effective question generation requires reasoning over the re-
lationships between document sentences, as shown by the LearningQ question
example in Table 6.1. Besides, we evaluate both rule-based and state-of-the-
art deep neural network based question generation methods on LearningQ.
Our results show that methods which perform well on existing datasets can-
not generate high-quality educational questions, suggesting that LearningQ
is a challenging dataset worth of significant further study.

Have you ever dropped your swimming goggles in the deepest
part of the pool and tried to swim down to get them? It can be
frustrating because the water tries to push you back up to the
surface as you’re swimming downward. The name of this
upward force exerted on objects submerged in fluids is
called the buoyant force.

Table 6.2: Question-worthy sentence in a paragraph.

After presenting LearningQ, we further investigate the problem of iden-
tifying question-worthy content (i.e., sentences used as input for the ques-
tion generator) from an article, which is largely ignored by existing studies
[51, 69]. Formally, we direct our efforts in answering the research question:
RQ 5.2 what are effective strategies in identifying question-worthy
sentences from an article? To be specific, given a paragraph or an article,
often there are only a limited number of sentences that are worth asking ques-
tions about, i.e., those carrying important concepts. An example is shown in
Table 6.2, where the last sentence defines the most important concept “buoy-
ant force”. We, therefore, argue that selecting question-worthy sentences is of
critical importance to the generation of high-quality educational questions.
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To this end, we aim at achieving a better understanding of the effec-
tiveness of different textual features in identifying question-worthy sentences
from an article and proposing a total of nine strategies for question-worthy
sentence selection, which cover a wide range of possible question-asking pat-
terns inspired by both low-level and high-level textural features. For in-
stance, we represent our assumption that informative sentences are more
likely to be asked about by leveraging low-level features such as sentence
length and the number of concepts as informativeness metrics; our assump-
tion that important sentences are more worth asking about is represented by
leveraging semantic relevance between sentences, which can be measured by
using summative sentence identification techniques [53, 23]. To evaluate the
effectiveness of the proposed strategies, we apply them to identify question-
worthy sentences on five question generation datasets, i.e., SQuAD [131],
TriviaQA [83], MCTest [133], RACE [96] and LearningQ presented in this
chapter. We use the sentences identified by the proposed strategies as input
for a well-trained question generator and evaluate the effectiveness of sentence
selection strategies by comparing the quality of the generated questions.

To the best of our knowledge, LearningQ is the first large-scale dataset
for educational question generation. It provides a valuable data source for
studying cross-domain question generation patterns. The distinct features
of LearningQ make it a challenging dataset for driving the advances of au-
tomatic question generation methods. Also, our work is the first to system-
atically study question-worthy sentence selection strategies across multiple
datasets. Through extensive experiments, we find that the most question-
worthy sentences in Wikipedia articles are often the beginning ones. In con-
trast, questions collected for learning purposes usually feature a more diverse
set of sentences, including those that are most informative, important, or con-
tain the largest amount of novel information. We further demonstrate that
LexRank, which identifies important sentences by calculating their eigenvec-
tor centrality in the graph representation of sentence similarities, gives the
most robust performance across different datasets among the nine selection
strategies.

6.2 Related Work

6.2.1 Question Generation

Automatic question generation has been envisioned since the late 1960s [135].
It is generally believed by learning scientists that the generation of high-
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quality learning questions should be based on the foundations of linguistic
knowledge and domain knowledge, and thus they typically approach the task
in a rule-based manner [161, 3, 69, 109]. Such rules mainly employ syn-
tactic transformations to turn declarative sentences into interrogative ques-
tions [35]. For instance, Mitkov and Ha [109] generated multiple-choice ques-
tions from documents by employing rules of term extraction. Based on a set
of manually-defined rules, Heilman and Smith [69] produced questions in a
overgenerate-and-rank manner where questions are ranked based on their lin-
guistic features. These methods, however, are intrinsically limited in scalabil-
ity: rules developed in certain subjects (e.g., introductory linguistics, English
learning) cannot be easily adapted to other domains; the process of defining
rules requires considerable efforts from experienced teachers or domain ex-
perts. More importantly, manually designed rules are often incomplete and
do not cover all possible document-question transformation patterns, thus
limiting rule-based generators to produce high-quality questions.

Entering the era of large-scale online learning, e.g., Massive Open On-
line Courses [119], the demand for automatic question generation has been
increasing rapidly along with the largely increased number of learners and
online courses accessible to them. To meet the need, more advanced com-
putational techniques, e.g., deep neural network based methods, have been
proposed by computer scientists [51, 50]. In the pioneering work by Du et al.
[51], an encoder-decoder sequence learning framework [144] incorporated with
the global attention mechanism [103] was used for question generation. The
proposed model can automatically capture question-asking patterns from the
data, without relying on any hand-crafted rules, thus has achieved superior
performance to rule-based methods regarding both scalability and the quality
of the generated questions.

These methods, however, have only been tested on datasets that were
originally collected for machine reading comprehension tasks. Noticeably,
these datasets contain a very limited number of useful questions for learning,
as we will show in the following sections. Therefore, it remains an open
question how deep neural network methods perform in processing complex
learning documents and generating desirable educational questions.

6.2.2 Datasets for Question Generation

Several large-scale datasets have been collected to fuel the development of
machine reading comprehension models, including SQuAD [131], RACE [96],
NewsQA [150], TriviaQA [83], NarrativeQA [93], etc. Though containing



6.2. Related Work 109

questions, all of these datasets are not suitable for educational question gen-
eration due to either the limited number of topics [131, 96] or the loose depen-
dency between documents and questions, i.e., a document might not contain
the content necessary to generate a question and further answer the question.
More importantly, most questions in these datasets are not specifically de-
signed for learning activities. For example, SQuAD questions were generated
by online crowdworkers and are used to seek factual details in source doc-
uments; TriviaQA questions were retrieved from online trivia websites. An
exception is RACE, which was collected from English examinations designed
for middle school and high school students in China. Though collected in a
learning context, RACE questions are mainly used to assess students’ knowl-
edge level of English, instead of other skills or knowledge of diverse learning
subjects.

Depending on different teaching activities and learning goals, educational
questions are expected to vary in cognitive complexity, i.e., requiring different
levels of cognitive efforts from learners to solve. Ideally, an educational ques-
tion generator should be able to generate questions of all cognitive complexity
levels, e.g., from low-order recalling factual details to high-order judging the
value of a new idea. This requires the dataset for training educational ques-
tion generators to contain questions of different cognitive levels. As will be
presented in our analysis, LearningQ covers a wide spectrum of learning sub-
jects as well as cognitive complexity levels and is therefore expected to drive
forward the research on automatic question generation.

6.2.3 Question-worthy Sentence Selection

Existing studies, however, pay little attention to the selection of question-
worthy sentences: they either assume that the question-worthy sentences
have been identified already [51] or simply take every sentence in an article as
input for the question generator. For instance, [69] assume that all sentences
in an article are question-worthy and thus generate one question for each
sentence and select high-quality ones based on their linguistic features. To
our knowledge, [50] is the only study that explicitly tackles the question-
worthy sentence selection problem. It uses a bidirectional LSTM network [75]
to simultaneously encode a paragraph and calculate the question-worthiness
of a sentence in the paragraph. However, training such a network relies on a
large amount of ground-truth labels of question-worthy sentences (e.g., tens
of thousands). Obtaining these labels is a long, laborious, and usually costly
process. Furthermore, the proposed deep neural network was only validated
in short paragraphs instead of the whole article. Considering that reading
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materials can be much longer and deep neural networks can fail at processing
long sequence data due to the vanishing gradient problem [76], it remains an
open question whether the proposed method can handle long articles.

Instead of developing a novel neural network architecture that simulta-
neously does sentence selection and question generation (like [50] does), we
take one step back and focus extensively on question-worthy sentence selec-
tion. We propose heuristic strategies which exploit different textual features
in selecting question-worthy sentences from an article, so as to clarify the
main criteria in the selection process, and to adequately inform educational
question generator design.

6.3 Data Collection

6.3.1 Data Sources

To gather large amounts of useful learning questions, we initially explored
several mainstream online learning platforms and finally settled on two after
having considered the data accessibility and the quantity of the available
questions as well as the corresponding source documents. Concretely, we
gathered LearningQ data from the following two platforms:

TED-Ed1 is an education initiative supported by TED which aims to spread
the ideas and knowledge of teachers and students around the world. In
TED-Ed, teachers can create their own interactive lessons, which usually
involve lecture videos along with a set of carefully crafted questions to assess
students’ knowledge. Lesson topics range from humanity subjects like arts,
language, and philosophy to science subjects like business, economics and
computer technology. Typically, a lesson, covering a single topic, includes
one lecture video, and lasts from 5 to 15 minutes. Due to the subscription-
free availability, TED-Ed has grown into one of the most popular educational
communities and served millions of teachers and students every week. As
questions in TED-Ed are created by instructors, we consider them to be high-
quality representations of testing cognitive skills at various levels (e.g., the
LearningQ question in Table 6.1 is from TED-Ed). We use TED-Ed as the
major data source to collect instructor-crafted learning questions.

Khan Academy2 is another popular online learning platform. Similar to TED-Ed,
Khan Academy also offers lessons to students around the world. Compared to

1https://ed.ted.com/
2https://www.khanacademy.org/
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TED-Ed, the lessons are targeted at a wider audience. For example, the math
subjects in Khan Academy cover topics from kindergarten to high school. In
addition, the lessons are organized in alignment with typical school curricu-
lum (from the easier to the more advanced) instead of being an independent
collection of videos as is the case in TED-Ed. Another distinction between
the two platforms is that Khan Academy allows learners to leave posts and
ask questions about the learning materials (i.e., lecture videos and reading
materials) during their learning. For instance, the chemistry course Quantum
numbers and orbitals3 includes one article (titled The quantum mechanical
model of the atom) and three lecture videos (titled Heisenberg uncertainty
principle, Quantum numbers and Quantum numbers for the first four shells)
and learners can ask questions about any of them. More often than not, learn-
ers’ questions express their confusion about the learning material—e.g., “How
do you convert Celsius to Calvin?”—and thus are an expression of learners’
knowledge gaps that need to be overcome to master the learning material.
We argue that these questions can promote in-depth thinking and discussion
among learners, thus complementing instructor-designed questions. We use
those learner-generated questions as part of LearningQ.

We implemented site-specific crawlers for both Khan Academy and TED-Ed
and collected all available questions and posts in English as well as their
source documents at both platforms that were posted on or before December
31, 2017, resulting in a total of 1,146,299 questions and posts.

6.3.2 Question Classification for Khan Academy

Compared to instructor-designed questions collected from TED-Ed, learner-
generated posts in Khan Academy can be of relatively low quality for our
purposes since they are not guaranteed to contain a question (a learner may
for example simply express her appreciation for the video), or the contained
question can be off-topic, lack the proper context, or be too generic. Exam-
ples of high- and low-quality questions are shown in Table 6.3.

Originally, we gathered a total of 953,998 posts related to lecture videos
and 192,301 posts related to articles from Khan Academy. To distill useful
learning questions from the collected posts, we first extracted sentences end-
ing with a question mark from all of the posts, which resulted in 407,723 such
sentences from posts on lecture videos and 66,100 on reading material. To fur-
ther discriminate useful questions for learning from non-useful ones, we ran-

3https://www.khanacademy.org/science/chemistry/electronic-structure-of-
atoms/orbitals-and-electrons/
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domly sampled 5,600 of these questions and recruited two education experts
to annotate the questions: each expert labeled 3,100 questions (600 questions
were labeled by both experts to determine the inter-annotator agreement) in
a binary fashion: useful for learning or not. Based on the labeled data,
we trained a convolutional neural network [88] on top of pre-trained word
embeddings [108] to classify the remaining Khan Academy questions. In the
following, we describe the labeling process in more details.

ID Questions Topic Label

a) What is the direction of current
in a circuit? S

√

b) Why can’t voltage-gated channels
be placed on the surface of Myelin? S

√

c) Is there a badge for finishing
this course? E

d)
Have you looked on your badges
page to see if it is one of the
available badges?

T

e) Why do each of them have navels? H

f) Does it represent phase difference
between resistance and reactance? S

g) What should the graph look like
for higher voltages? S

√

h)
What if some of the ideas come
from different historical perspectives,
giving inaccurate information?

H

i) What if the information is wrong ? M
j) Can someone please help me? C
k) Could you be more specific ? T
l) Are you asking what geometric means? M
m) Are you talking about the frequency? E

n)
What programming language or how
much of coding I need to know to
start learning algorithms here?

C

o) Can I do algorithms or should I do
programming first? C

Table 6.3: Examples of useful (marked with
√

) and non-useful questions from Khan
Academy. S/H/M/C/E/T denote Science, Humanities, Math, Computing, Eco-
nomics and Test Preparation, respectively.
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Question Annotation. We consider a user-generated question to be as
useful for learning when all of the following conditions hold: (i) the question
is concept-relevant, i.e., it seeks for information on knowledge concepts taught
in lecture videos or articles; (ii) the question is context-complete, which means
sufficient context information is provided to enable other learners to answer
the question; and (iii) the question is not generic (e.g., a question asks for
learning advice). To exemplify this, two concept-relevant learning questions
are shown in Table 6.3 (a and b), accompanied by two concept-irrelevant
ones (c and d). Question e and f in the same table are also concept-relevant.
However, as they don’t provide enough context information, e.g., lack of
references for “they” and “it”, we consider them as non-useful. As a counter-
example, we consider question g in the table as useful since the reference
for “the graph” can be easily inferred. This comes in contrast to question
h and i, where the references for “the idea” and “the information” are too
vague thus failed to to provide sufficient context information. Finally, generic
questions expressing the need for help (j and k), asking for clarification (l
and m) or general learning advice (as exemplified by n and o), are not useful
for learning the specific knowledge concepts.

Annotation & Classification Results. Of the 5,600 annotated ques-
tions, we found 3,465 (61.9%) to be useful questions for learning. The inter-
annotator agreement reached a Cohen’s Kappa of 0.82, which suggests a
substantially coherent perception of question usefulness by the two annota-
tors. To understand the performance of the classifier trained on this labeled
dataset, we randomly split the dataset into a training set of size 5,000, a vali-
dation set of size 300, and a test set of size 300. We iterated the training and
evaluation process 20 times to obtain a reliable estimation of classification
performance. Results show that the model reaches an accuracy of 80.5% on
average (SD=1.8%), suggesting that the classifier can be confidently applied
for useful/non-useful question classification. With this classifier, we retain
about 223K unique useful questions in Khan Academy, which will be used for
our following analysis.

6.3.3 Final Statistics of LearningQ

An overall description of LearningQ is shown in Table 6.4 (rows 1—4). As
a means of comparison, we also provide the same statistics for the popular
question generation datasets (though not necessarily useful for education and
learning) SQuAD and RACE. Compared to these two datasets, LearningQ (i)
consists of about 230K questions (versus 97K in SQuAD and 72K in RACE)
on nearly 11K source documents; (ii) contains not only useful educational
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questions carefully designed by instructors but also those generated by learn-
ers for in-depth understanding and further discussion of the learning subject;
(iii) covers a wide range of educational subjects from two mainstream online
learning platforms. To highlight the characteristics of LearningQ, we also
include SQuAD and RACE in the data analysis presented next.

6.4 Sentence Selection Strategies

In the following, we describe in detail our proposed sentence selection strate-
gies based on different question-asking assumptions and sentence properties
measured by different textual features.

• Random sentence (Random). As the baseline, we randomly select
a sentence and use it as input for the question generator.

• Longest sentence (Longest). This strategy selects the longest sen-
tence in an article. The assumption is that people tend to ask questions
about sentences containing a large amount of information, which, intu-
itively, can be measured by their lengths.

• Concept-rich sentence (Concept). Different from Longest, this
strategy assumes that the amount of information can be better mea-
sured by the total number of entities in a sentence. The more entities
a sentence contains, the richer information it has.

• Concept-type-rich sentence (ConceptType). This strategy is a
variant of Concept. It calculates the total number of entity types in a
sentence to measure the informativeness of a sentence.

The above three strategies approximate question-worthiness of a sentence
by informativeness, which is further measured by different textual features.
In contrast, the following two strategies approximate question-worthiness of
a sentence by difficulty and novelty, respectively.

• Most difficult sentence (Hardest). This strategy is built on the
assumption that difficult sentences can sometimes bring the most im-
portant messages that should be questioned and assessed. Therefore, it
chooses the most difficult sentence in an article as the question-worthy
sentence. We calculate the Flesch Reading Ease Score [39] of sentences
as their difficulty indicators.
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• Novel sentence (Novel). Unlike Hardest, this strategy believes that
sentences with novel information that people do not know before are
more question-worthy. We calculate the number of words that never
appear in previous sentences as a sentence’s novelty score [151] and
select the most novel one.

Finally, we introduce three strategies that approximate question-worthiness
of a sentence by the relative importance of the sentence concerning the re-
maining ones in an article. The importance is either measured by the relative
position of a sentence or its centrality represented by semantic relevance with
other sentences.

• Beginning sentence (Beginning). In the research of text summa-
rization, one common hypothesis about sentence positions is the im-
portance of a sentence decreases with its distance from the beginning
of the document [115], and therefore less question-worthy. This strat-
egy selects the first sentence in an article as the most question-worthy
sentence.

• Centroid based important sentence (LexRank). In line with
Beginning, this strategy also believes that question-worthy sentences
should be selected from those of greater importance. The difference
here is that the sentence importance is measured by the centroid-based
method, LexRank [53], which calculates sentence importance based on
eigenvector centrality in a graph of sentence similarities.

• Maximum marginal relevance based important sentence
(MMR). Different from LexRank, this strategy computes sentence im-
portance by considering a linear trade-off between relevance and re-
dundancy [23], i.e., selecting the sentence that is most relevant but
shares least similarity with the other sentences as the most important
sentence.

6.5 Data Analysis on LearningQ

The complexity of questions concerning the required cognitive skill levels and
knowledge dimensions is a crucial property that can significantly influence
the quality of questions for learning [104]. We thus believe that this factor
should be studied when building efficient question generators. However, to



6.5. Data Analysis on LearningQ 117

our knowledge, there is no work attempting to characterize this property of
questions in datasets for question generation.

In this section, we characterize the cognitive complexity of questions in
LearningQ and other existing question generation datasets (i.e., SQuAD and
RACE as two representatives) along several dimensions: (i) low-level docu-
ment and question attributes related to cognitive complexity [167, 170], e.g.,
the number of sentences or words per document or per question; (ii) docu-
ment and question properties that can affect human perception of cognitive
complexity, which include topical diversity, document and question readabil-
ity [39, 147], etc.; and (iii) cognitive skill levels in accordance with Bloom’s
Revised Taxonomy [104].

6.5.1 Document & Question Lengths

Table 6.4 (rows 5—9) presents statistics on document and question lengths.
It can be observed that while, on average, the number of words per sentence
in the documents of LearningQ are not larger than in SQuAD/RACE, doc-
uments from both TED-Ed and Khan Academy are more than twice as longer
than those from SQuAD and RACE. In particular, SQuAD documents are on
average nearly ten times shorter than Khan Academy documents. The same
observation holds for the questions in LearningQ, where question length is
twice as long as that of SQuAD and RACE. Compared with those in Khan
Academy, documents in TED-Ed are shorter. This is mainly due to the fact
that TED-Ed encourages shorter videos on a single topic.

6.5.2 Topics, Interrogative Words, and Readability

To gain an overview of the topics, we applied Named Entity Recognition to
obtain statistics on the entities. The results are shown in rows 10 and 11 of
Table 6.4. To gain more insights into the semantics of the documents and
questions, we report the most frequent terms (after stopword removal) in
Table 6.5 across both documents and questions. To gain insights into the
type of questions, we separately consider interrogative terms (such as who
or why) in the rightmost part of Table 6.5 by keeping most stopwords but
filtering out prepositions and definite articles.

We observe in Table 6.4 that documents in LearningQ on average con-
tains 160% more entities than SQuAD and RACE, which is expected because
LearningQ documents are longer. Yet, the number of entities in LearningQ
questions are not significantly larger than SQuAD and RACE. In particular,
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questions in SQuAD contain 40% more entities than those in LearningQ. This
is despite the fact that SQuAD documents are shortest overall, as we showed
earlier. To eliminate the influence of question lengths and refine the analy-
sis, we further observe that the percentage of entities among all the words
(row 12) in SQuAD questions is higher than that in LearningQ questions.
The same observation holds when comparing RACE with LearningQ. These
observations imply that, on the one hand, documents in LearningQ are more
complex concerning the number of involved entities; on the other hand, fewer
questions related to entities, i.e., fewer factual questions, exist in LearningQ
than the other datasets.

This interpretation is also supported by the top-k words shown in Ta-
ble 6.5. We observe that while both documents and questions in SQuAD fa-
vor topics related to time and location (e.g., time, year, century, city, state),
all data sources in LearningQ have fewer questions on these topics; more of-
ten in LearningQ questions, we find abstract words such as mean, difference,
function, which are indicative of higher level cognitive skills being required.
In line with this observation, we note that more interrogative words seeking
factual details such as who and when rank high in the list of starting words of
questions in SQuAD, while questions in LearningQ sources start much more
frequently with why. This suggests that answering LearningQ questions often
requires a deeper understanding of learning materials. Interestingly, one can
observe in TED-Ed questions (in the middle part of the table) frequent words
such as think and explain, which explicitly ask learners to process learning
materials in a specific way. These required actions are directly related to
learning objectives defined by Bloom’s Revised Taxonomy, as we will analyze
later. In addition to the above, another interesting observation from Table 6.5
is that learners frequently ask questions for the clarification of videos using
words such as know, Sal (the name of the instructor who initially created
most videos at Khan Academy in the early stage of the platform), and mean.

Readability. Readability is an important document and question property
related to learning performance. Table 6.4 (rows 13—14) reports the Flesch
readability scores of documents and questions in the compared datasets [39].
A piece of text with larger a Flesch readability score indicates it is easier
to understand. Questions found alongside both Khan Academy videos and
article possess similar readability scores, despite the different sources. This
confirms our previous finding on the similarity between the two subsets of
Khan Academy data. We, therefore, do not distinguish these two subsets in
the following analyses focused on questions.
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6.5.3 Cognitive Skill Levels

It is generally accepted in educational research that a good performance
on assessment questions usually translates into “good learning” [72]. We
first use Bloom’s Revised Taxonomy to categorize the questions according
to the required cognitive efforts behind them [104]. The taxonomy provides
guidelines for educators to write learning objectives, design the curriculum
and create assessment items aligned with the learning objectives. It consists
of six learning objectives (requiring different cognitive skill levels from lower
order to higher order):

• Remembering: questions that are designed for retrieving relevant
knowledge from long-term memory.

• Understanding: questions that require constructing meaning from
instructional messages, including oral, written and graphic communi-
cation.

• Applying: questions that ask for carrying out or using a procedure in
a given situation.

• Analyzing: questions that require learners to break material into con-
stituent parts and determine how parts relate to one another and to an
overall structure or purpose.

• Evaluating: questions that ask for make judgments based on criteria
and standards.

• Creating: questions that require learners to put elements together to
form a coherent whole or to re-organize into a new pattern or structure.

To exemplify, we select one question example for each category that we
collected from TED-Ed and Khan Academy, as shown in Table 6.6. Among the
different learning objectives defined by Bloom’s Revised Taxonomy, analyzing
is an objective closely related to the task of automatic question generation.
analyzing questions require the learner to understand the relationships be-
tween different parts of the learning material. Existing question generation
methods [51], however, can usually only take one sentence as input. To cope
with analyzing questions, state-of-the-art methods first need to determine the
most relevant sentence in the learning material, which is then used as input
to the question generator. This inevitably limits the ability of trained ques-
tion generators to deliver meaningful analyzing questions covering multiple
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knowledge concepts scattered in the source documents. To understand the
complexity of the LearningQ questions specifically from the point of view of
training question generators, we also include in our analyses an exploration
of the proportion of questions at various Bloom levels that require knowledge
from multiple source document sentences.

Data Annotation. To facilitate our analysis, we recruited two experienced
instructors to label 200 randomly sampled questions from each of the com-
pared datasets according to Bloom’s Revised Taxonomy. The Cohen’s Kappa
agreement score between the two annotators reached 0.73, which is a substan-
tial agreement. In a second labeling step, we labeled the selected questions
with their sentence(s) based on which they are generated.

Comparative Results. Table 6.7 shows the results of question classifi-
cation according to Bloom’s Revised Taxonomy. SQuAD only contains re-
membering questions, suggesting that it is the least complex dataset among
all compared datasets regarding required cognitive skill levels. In general,
we note a trend of decreasing percent of remembering questions (and in-
creasing percentage of understanding questions) from SQuAD, RACE, to
TED-Ed and Khan Academy. We can conclude that questions in LearningQ
demand higher cognitive skills than those in SQuAD and RACE. Interest-
ingly, among the two different LearningQ sources, we can observe that there
are more understanding and applying questions in Khan Academy than in in
TED-Ed, while there are more evaluating and creating questions in TED-Ed
than in Khan Academy. This shows the inherent differences related to the
corresponding learning activities between instructor-designed questions and
learner-generated questions. The former is mainly used for assessment pur-
pose and thus contains more questions of higher-order cognitive skill levels;
the latter is generated during students’ learning process (e.g., watching lec-
ture videos and reading recommended materials) and is usually used to seek
for a better understanding of the learning material. Note that 26.42% Khan
Academy questions were labeled as either irrelevant or unknown due to being
not useful for learning or missing enough context information for the labeler
to assign a Bloom category. This aligns with the accuracy of the useful
question classifier we reported in the data collection section.

In Table 6.8 we report the results of our source sentence(s) labeling ef-
forts. From the statistics of # words in source sentences, we can observe an
increasing requirement for reasoning over multiple sentences from SQuAD
and RACE to TED-Ed and Khan Academy. Compared to the 98.5% of single
sentence related questions in SQuAD, questions in TED-Ed (Khan Academy)
are related to 3.53 (6.65) sentences on average in source documents. In par-
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SQuAD RACE TED-
Ed

Khan
Academy

Remembering 100 82.19 61.86 18.24
Understanding 0 18.26 38.66 55.97

Applying 0 0.46 9.79 12.58
Analyzing 0 8.22 14.95 15.09
Evaluating 0 1.37 4.12 1.89
Creating 0 0 1.55 0.63

Unknown/
Irrelevant 0 3.20 0 26.42

Table 6.7: Distribution of Bloom’s Revised Taxonomy Labels.

SQuAD RACE TED-Ed KA

# Words 32.39 46.02 76.57 128.23
# Sent. 1.01 2.87 3.53 6.65

% ONE 98.53 37.10 28.63 9.43
% MULTIPLE 1.47 62.90 52.42 23.27
% EXTERNAL 0 0 18.95 38.99

Table 6.8: Results of Source Sentence Labelling. # Words/Sent. denote the average
words/sentences in the labelled source sentences. % ONE/MULTIPLE/EX-
TERNAL refer to the percentage of questions related to ONE single sentence,
MULTIPLE sentences or require EXTERNAL knowledge to generate, respec-
tively. KA denotes Khan Academy.

ticular, Table 6.8 (the last row) further shows that a large portion of the
questions in LearningQ, especially in Khan Academy, cannot be answered by
simply relying on the source document, as exemplied by the evaluating/cre-
ating question from TED-Ed in Table 6.6 and thus require external knowledge
to generate.

6.6 Experiments and Results

In this section, we first conduct experiments to evaluate the performance of
rule-based and deep neural network based methods in question generation
using LearningQ. We aim to answer the following questions: 1) how effective
are these methods at generating high-quality educational questions; 2) to
what extent is their performance influenced by the learning topics; and 3) to
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what extent does the source sentence(s) length affect the question generation
performance.

Then, we evaluate the performance of the strategies for question-worthy
sentence selection as proposed in Section 6.4 across the five datasets.

6.6.1 Experimental Setup

Comparison Methods for LearningQ Evaluation. We investigate a rep-
resentative rule-based baseline and two state-of-the-art deep neural networks
in question generation:

• H&S is a rule-based system which can be used to generate questions
from source text for educational assessment and practice [69]. The
system produces questions in a overgenerate-and-rank manner. We
only evaluate the top-ranked question.

• Seq2Seq is a representative encoder-decoder sequence learning frame-
work proposed for machine translation [144]. It automatically learns
the patterns of transforming an input sentence into an output sentence
based on training data.

• Attention Seq2Seq is the state-of-the-art method proposed in [51],
which incorporates the global attention mechanism [103] into the encoder-
decoder sequence learning framework during the decoding process. The
attention mechanism allows the model to mimic humans problem-solving
process by focusing on relevant information in the source text and using
this information to generate a question.

We implemented the two neural network based methods on top of the
OpenNMT system [92]. In accordance with the original work [144, 51], Bi-
LSTM is used for the encoder and LSTM for the decoder. We tune all hyper-
parameters using the held-out validation set and select the parameters that
achieve the lowest perplexity on the validation set. The number of LSTM
layers is set to 2, and its number of hidden units is set to 600. The dimension
of input word embedding is set to 300 and we use the pre-trained embeddings
glove.840B.300d for initialization [124]. Model optimization is performed by
applying Adam [89]; we set the learning rate to 0.001 and the dropout rate
to 0.3. The gradient is clipped if it exceeds 5. We train the models for 15
epochs in mini-batches of 64. When generating a question, beam search with
a beam size of 3 is used, and the generation stops when every beam in the
stack produces the <EOS> (end-of-sentence) token.
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LearningQ Preparation. We use the NLTK tool [16] to pre-process Learn-
ingQ: lower-casing, tokenization and sentence splitting. To account for the
fact that existing methods can only process a small number of sentences as
input, we need to decide the source sentences that each question corresponds
to before the evaluation. Instead of applying the nine sentence selection
strategies we propose in Section 6.4, which are evaluated and compared in
Section 6.6.3, here for each question, we use the following strategy inspired
by approaches for text similarity [60] to locate the source sentences in the
corresponding document most relevant to the question. If the target question
contains a timestamp—e.g., “in 10:32, what does the Sal mean ...”—indicating
the source sentence(s) location from which the target question is generated,
we then choose that sentence as the starting sentence and compute the co-
sine similarity with the target question. We then go forwards and backwards
in turns to determine whether including a nearby sentence would increase
the cosine similarity between the target question and the source sentences.
If yes, the nearby sentence is added. Otherwise, the search process stops.
If a target question does not contain timestamp information, we select the
sentence with the largest cosine similarity to the question to start our search
the same way as described above to locate the source sentences. Due to the
vanishing gradient problem in recurrent neural networks [76], we only keep
data with source sentences containing no more than 100 words.

Notice that deep neural network based methods usually require a substan-
tial amount of training data. The quantity of instructor-crafted questions in
TED-Ed is not sufficient (7K). We, therefore, train the selected methods only
on learner-generated questions. Concretely, we first merge all of the ques-
tions posted by Khan Academy learners on both lecture videos and reading
materials, then randomly select 80% for training, 10% for validation and 10%
for testing. At the same time, we also use all of the instructor-crafted ques-
tions as a second test set to investigate how effective the models built on
learner-generated questions are in delivering instructor-crafted questions.

Unified Question Generator for Sentence Selection Evaluation. We
also use Attention Seq2Seq as our testbed to evaluate the effectiveness of
the proposed sentence selection strategies. To our knowledge, SQuAD is the
only reading comprehension dataset with ground-truth labels of question-
worthy sentence labels. Therefore, we use the labeled input sentences and
the corresponding questions in SQuAD for training the question generator.
We set the hyper-parameters as suggested in [51].

Notice that articles can be of different lengths and thus possibly contain
different numbers of question-worthy sentences. During experiments, we be-
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lieve the number of selected sentences should be dependent on the number
of ground-truth questions gathered about an article: different ground-truth
questions are seeking for different details about the article, i.e., based on
different question-worthy sentences. We, therefore, evaluate the each of the
questions generated by different selected sentences against all the ground-
truth questions of the article and consider the result with the best perfor-
mance as an indication of the selected sentence matched with the ground-
truth question.

Datasets for Sentence Selection Evaluation. Generally, all reading com-
prehension datasets, i.e., those with questions and the corresponding docu-
ments which the questions are about, can be used to evaluate the selection
strategies. We expect that the generated questions should be useful for learn-
ing purposes. Therefore, we select experimental datasets that contain natural
questions designed by humans instead of search queries [114] or cloze-style
questions [70]. With such consideration, we include five datasets for experi-
ments: SQuAD [131], TriviaQA [83], MCTest [133], RACE [96], and Learn-
ingQ [33]. TriviaQA contains questions from trivia and quiz-league websites
and evidence documents gathered from web search and Wikipedia. Here we
only consider questions with evidence documents collected from Wikipedia,
which results in 138K question-document pairs. MCTest consists of 660 sto-
ries written by crowd-workers and 2K associated questions about the stories.
Recall that LearningQ contains both instructor-designed questions gathered
from TED-Ed and learner-generated questions gathered from Khan Academy.
As the learner-generated questions can be redundant about the same knowl-
edge concepts (i.e., same sentences), to avoid concept bias, we only include
the 7K instructor-designed questions for experiments on sentence selection.

Questions in SQuAD and TriviaQA mainly seek for factual details and the
answers can be found as a piece of text in the source paragraph/article from
Wikipedia. Questions in MCTest are designed for young children. RACE
and LearningQ are collected in learning contexts: RACE questions are mainly
used to assess students’ knowledge level of English, whereas LearningQ covers
a diverse set of educational topics, more complex articles, and the questions
require higher-order cognitive skills to solve.

Evaluation Metrics. Similar to [51], we adopt Bleu 1, Bleu 2, Bleu 3, Bleu
4, Meteor and RougeL for evaluation. Bleu-n scores rely on the maximum
n-grams for counting the co-occurrences between a generated question and a
set of reference questions; the average of Bleu is employed as final score [118].
Meteor computes the similarity between the generated question and the refer-
ence questions by taking synonyms, stemming and paraphrases into account
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[47]. RougeL reports the recall rate of the generated question concerning the
reference questions based on the longest common sub-sequence [100].

Methods Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor RougeL

Khan
Academy

H&S 0.28 0.17 0.13 0.10 3.24 6.61
Seq2Seq 19.84 7.68 4.02 2.29 6.44 23.11

Attn. Seq2Seq 24.70 11.68 6.36 3.63 8.73 27.36

TED-Ed
H&S 0.38 0.22 0.17 0.15 3.00 6.52

Seq2Seq 12.96 3.95 1.82 0.73 4.34 16.09
Attn. Seq2Seq 15.83 5.63 2.63 1.15 5.32 17.69

Table 6.9: Performance of rule-based and deep neural network based methods on Learn-
ingQ.

6.6.2 Evaluation on LearningQ

Results. Table 6.9 reports the performance of the selected methods on
learner-generated questions from Khan Academy and instructor-designed ques-
tions from TED-Ed. We can observe that across all different evaluation met-
rics, the rule-based method H&S is outperformed by both deep neural net-
work based methods. This confirms previous findings in the new context of
learning that data-driven methods are a better approach for question genera-
tion. Among the two deep neural network based methods, Attention Seq2Seq
consistently outperform Seq2Seq (p-value < .001, Paired t-test). This veri-
fies that the attention mechanism is an effective approach for boosting the
performance of educational question generation.

By comparing the performance of the selected methods on Khan Academy
and on TED-Ed, we find that the performance of rule-based method H&S
varies across different evaluation metrics. The performance measured by Bleu
scores are higher on learner-generated questions than on instructor-designed
questions, while it is low as measured by Meteor and RougeL. On the other
hand, deep neural network based methods consistently reach a higher perfor-
mance on learner-generated questions than on instructor-designed questions.
Considering the fact that recurrent networks are less effective in handling
long sentences, this could be due to two reasons: 1) the majority of questions
in TED-Ed are related to multiple sentences as we found (Table 6.8); and 2)
the questions generated by learners are generally shorter than those designed
by instructors (Table 6.4). In later analysis, we further describe how the
length of source sentences would affect question generation performance.
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The performance of the state-of-the-art methods is much lower on Learn-
ingQ than on existing datatsets. Attention Seq2Seq achieves a Bleu 4 score
> 12 and a Meteor score > 16 on SQuAD, while on LearningQ it only
achieves Bleu 4 scores of < 4/< 2 and Meteor scores of < 9/< 6 on learner-
generated questions/instructor-designed questions, respectively. Similar re-
sults also hold for the other metrics.

Economics
College Admissions

Computing
Test Preparation

Humanities
Science

Math

0

10

20

30

Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor Rouge_L

Figure 6.1: Results of question generation on different learning subjects in Khan Academy.

Impacts of Subjects and Source Sentence Lengths. We now investigate
the performance of Attention Seq2Seq in generating educational questions as
affected by different subjects and different lengths of input source sentences.

The impact of the source document topic on question generation perfor-
mance is shown for Khan Academy in Figure 6.1. We observe that question
generation performance varies across subjects. In particular, Bleu 4 varies
from < 2 to > 5 for learner-generated questions and from 0.38 to 0.92 for
instructor-designed questions. Compared to Economics and College Admis-
sions, question generation for Math and Science can usually achieve higher
performance. A similar variation is also observed on TED-Ed. These results
indicate that topics can affect question generation performance. Fully un-
derstanding the co-influence of topics and other document properties (e.g.,
difficulty) however requires more studies, which we leave to future work.

As we showed before (Table 6.8), educational questions are related to mul-
tiple source sentences in the documents. However, existing neural network
methods usually take only one or two source sentences as input to generate
questions. To further investigate the effectiveness of existing methods when
taking source sentences of different lengths as input, we divide the testing set
according to the length of their source sentences. The results are shown in
Figure 6.2. In general, question generation performance decreases when the
length of source sentences increases across all metrics for both Khan Academy



6.6. Experiments and Results 129

and TED-Ed. This strongly suggests that the performance of the state-of-the-
art method is significantly limited by long source sentences.
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20
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Bleu 1 Bleu 2 Bleu 3 Bleu 4 MeteorRouge_L
(a) Khan Academy
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(b) TED-Ed

Figure 6.2: Results of question generation with different source sentence lengths.

6.6.3 Evaluation on Sentence Selection Strategies

Table 6.10 reports the results of the proposed sentence selection strategies on
four datasets. We do not show results on the SQuAD dataset, as we found
that the performance of different sentence selection strategies on SQuAD
shows little variance, owing to the small number of sentences in the SQuAD
documents (Wikipedia paragraphs, with five sentences on average). For the
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other datasets, we highlight the top-3 strategies for each dataset. Based on
these results, several interesting findings are observed as follows.

For the TriviaQA dataset, Beginning achieves the best performance, in-
dicating that most questions in TriviaQA are about the first sentence in the
source document. Considering that the articles of TriviaQA are collected
from Wikipedia, such a result can be interpreted by the fact that the first
sentences of Wikipedia paragraphs/articles often contain the most important
information worth asking about [171]. This observation can be further ver-
ified by the well-performing results given by LexRank and MRR – ranking
at the 2nd and 3rd position, respectively – which also identifies important
sentences but uses a different method. Overall, these results show that im-
portance based strategies are more effective than informativeness based (e.g.,
Longest, Concept), difficulty based (i.e., Hardest), or novelty based ones (i.e.,
Novel).

For the two datasets collected in learning contexts, namely RACE and
LearningQ, Longest, LexRank, and Novel generally show better performance
than the other strategies. Such a result suggests that questions in learning
related datasets are relevant to a more diverse set of sentences, i.e., those
informative, important, or contain novel information, a result we believe is
due to the diverse learning goals related to the questions. We further observe
big gaps between these three strategies and the remaining ones. For exam-
ple, Longest, LexRank, and Novel are the only strategies achieving Blue 1
scores greater than 5 and Meteor scores greater than six on RACE. This ob-
servation reveals that sentence selection strategies based on similar sentence
properties however measured through different textual features (e.g., Longest
vs. Concept and LexRank vs. Beginning) can have big variance in terms of
performance. This highlights the importance of selecting appropriate textual
features in question-worthy sentence selection.

Similar results also hold on the MCTest dataset: Longest, LexRank, and
Novel generally achieve good performance, which suggests that questions
in MCTest are also relevant to a diverse set of sentences. On the other
hand, strategies such as Beginning and ConceptMax also perform well on
several metrics, signifying that different measures of sentence properties (e.g.,
informativeness using Longest and ConceptMax) do not necessarily lead to
highly different sentence selection results on MCTest. Despite this, we can
observe that LexRank is the only sentence selection strategy consistently
ranking in top-3 across all the five considered datasets, demonstrating its
superior robustness against all the other compared strategies.
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6.7 Conclusion

In this chapter, we present LearningQ, a large-scale dataset for automatically
generating educational questions by applying the state-of-the-art deep neural
network approaches. It consists of 230K document-question pairs produced
by both instructors and learners. To our knowledge, LearningQ is the first
dataset that covers a wide range of educational topics, and the questions
require a full spectrum of cognitive skills to solve. Extensive evaluation of
state-of-the-art question generation methods on LearningQ shows that Learn-
ingQ is a challenging dataset that deserves significant future investigation.
Moreover, we propose nine sentence selection strategies inspired by different
question-asking heuristics and experiments on multiple datasets show that
the beginning sentence is often worth questioning about for Wikipedia arti-
cles, while questions in learning contexts feature source sentences that are
informative, important, or contain novel information.

As an implication for future research on question generation, deep neural
network based methods can be further enhanced by considering the relation-
ships among multiple source sentences and combining different strategies for
selecting question-worthy sentences in question generation.



Chapter 7

Conclusion

MOOCs have been recognized as an important tool to achieve inclusive and
equitable quality education and promote lifelong learning opportunities for
people all over the world [121]. Typically, there are two types of MOOC
platforms: topic-agnostic MOOC platforms like edX and Coursera provide
courses covering various topics, while topic-specific MOOC platforms like
Duolingo and Codeacademy focus on courses in one single topic. Existing re-
search on MOOCs mainly used learner traces (e.g., video clicks, quiz submis-
sions, forum entries) generated within the topic-agnostic MOOC platforms
to investigate MOOC learning [37, 38, 66, 149]. In this thesis, we focused on
(i) learner modeling and (ii) generation of educational material for both of
the topic-agnostic and topic-specific MOOC platforms. In this chapter, we
summarize the main contributions made in this thesis and provide an outlook
on future research directions.

133
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7.1 Summary of Contributions

To employ the Social Web to model learners from the topic-agnostic MOOC
platforms, we investigated whether MOOC learners are active in Social
Web platforms and how to reliably identify these learners across multiple
platforms. Concretely, in Chapter 2 we answered the following research
questions:

RQ 1.1 On what Social Web platforms can a significant fraction of MOOC
learners be identified?

RQ 1.2 Are learners who demonstrate specific sets of traits on the Social
Web drawn to certain types of MOOCs?

RQ 1.3 To what extent do Social Web platforms enable us to observe (spe-
cific) user attributes that are highly relevant to the online learning experi-
ence?

To answer those questions, we investigated to what extent learners from
eighteen MOOCs in edX could be discovered across five popular Social Web
platforms (i.e., Gravatar, Twitter, LinkedIn, StackExchange and GitHub)
and further derived a set of learner attributes from these platforms to in-
vestigate learners’ behaviors in MOOCs. Depending on the MOOC-platform
combination, we identified between 1% and 42% of learners (5% on average)
in the five considered platforms (RQ 1.1). In the most extreme case, 42%
of learners from a Functional Programming MOOC could be identified in
GitHub. We also showed that learners with specific traits were attracted to
different types of MOOCs (RQ 1.2). In particular, we presented a first in-
vestigation into the knowledge application behavior of learners, i.e., learning
transfer, beyond the MOOC platform over time (RQ 1.3). We provided a
reliable methodology to gather information about learners by moving from
the MOOC platform to the wider Social Web. More importantly, we demon-
strated that a set of valuable learner attributes relevant to MOOC learning
can be derived from the Social Web. The data-driven approaches used in
our work can be applied in not only the MOOC setting but also other edu-
cational settings like e-learning courses as well as campus-based courses, as
long as the learners can be identified in the Social Web.

After observing that learners of programming courses actively engaged
with GitHub, we considered the Functional Programming MOOC as a spe-
cific case and continued the investigation of learning transfer. Concretely, in
Chapter 3 we answered the following research questions:
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RQ 2.1 To what extent do learners from a programming MOOC transfer
the newly gained knowledge to practice?

RQ 2.2 What type of learners are most likely to make the transfer?

RQ 2.3 How does the transfer manifest itself over time?

To answer those questions, we conducted a large-scale longitudinal anal-
ysis, in which both the learning traces generated within the MOOC platform
and the coding traces collected from GitHub were used. We observed that
about 8% of engaged learners, who had no prior knowledge in functional pro-
gramming, began programming functionally after the MOOC (RQ 2.1). In
addition, learners were more likely to make the transfer if they had (i) intrin-
sical motivation, (ii) high self-efficacy, (iii) prior experience in programming,
and (iv) a high personal capacity (RQ 2.2). Lastly, neither a significant
transfer increase nor decrease was observed over half a year after the course
(RQ 2.3). By examining programming learners’ uptake of knowledge af-
ter the MOOC, instructors can not only gain a better understanding of the
course influence on learners but also evaluate the current course and design
future courses to induce more knowledge transfer.

Most existing research focused on investigating learner behaviors in topic-
agnostic MOOC platforms. We used the three large-scale language learning
datasets, which were released by Duolingo in the Second Language Acquisi-
tion Modeling challenge, to enable a better understanding of learners in the
topic-specific MOOC platforms. Concretely, in Chapter 4 we answered the
following research question:

RQ 3.1 What factors are correlated with learners’ language learning perfor-
mance?

To answer the question, we conducted an analysis on the three Duolingo
datasets and demonstrated that factors like the amount of time spent in
learning and the devices being used were related to learners’ accuracy in
solving exercises and the amount of vocabulary learned. Furthermore, based
on the results, we designed a set of features and examined their effectiveness
in predicting learners’ future performance in the setting of second language
acquisition.

As demonstrated in Chapter 3, learners indeed transferred the knowledge
acquired from a MOOC to practice. We further investigated whether learners
could apply the acquired knowledge to solve real-world tasks, i.e., paid tasks
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collected from online marketplaces which can be solved by learning with the
course. If learners are capable of solving such tasks, ultimately, we envision
to construct a recommender system to suggest learners solve paid freelancing
tasks relevant to the course, as a possible means to earn money when learn-
ing with the course. Concretely, in Chapter 5 we answered the following
research questions:

RQ 4.1 Are MOOC learners able to solve real-world (paid) tasks from an
online work platform with sufficient accuracy and quality?

RQ 4.2 How applicable is the knowledge gained from MOOCs to paid tasks
offered by online work platforms?

RQ 4.3 To what extent can an online work platform support MOOC learn-
ers (i.e., are there enough tasks available for everyone)?

RQ 4.4 What role do real-world (paid) tasks play in the engagement of
MOOC learners?

To answer those questions, we designed a study, in which we manually
selected a set of tasks from Upwork and deployed them into a MOOC teach-
ing data analysis as bonus exercises for learners to solve. We demonstrated
that learners could solve the paid tasks with the knowledge gained from the
course with high accuracy and quality (RQ 4.1 & RQ 4.2). However, there
were not sufficient tasks available on Upwork to sustain the learner popula-
tion throughout the entire run of the course (RQ 4.3). We also observed
that real-world tasks were likely to have a positive effect on learners’ course
engagement (RQ 4.4). Our study contributed the first step to develop a
paid task recommender systems that we envisioned to help learners earn
money when learning with a MOOC. With more online marketplace plat-
forms considered and a larger number of paid tasks retrieved, we hypothesize
the proposed system can truly help learners, especially learners who suffer
from poor financial situations and consequently have a limited amount of
time for learning because of the need to work and earn a living, to gain more
time to learn with MOOCs.

Driven by the importance of questions in learning and the need of easing
instructors’ burden in manually creating a large question bank to meet the
needs of various learners, we explored the Social Web to collect a large-scale
educational question dataset. With the collected dataset, we investigated
whether an educational question generator could be constructed and how to
effectively select question-worthy sentences from an article. Concretely, in
Chapter 6 we answered the following research questions:
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RQ 5.1 Can a large-scale and high-quality educational question dataset be
collected from the Social Web?

RQ 5.2 What are effective strategies in identifying question-worthy sen-
tences from an article?

To answer those questions, we turned to education-oriented Social Web
platforms. Specifically, we targeted TED-Ed and Khan Academy as our main
data sources and collected a large-scale educational question dataset (Learn-
ingQ), which consists of over 230K document-question pairs generated by
both instructors and learners (RQ 5.1). In particular, the questions con-
tained in LearningQ vary in all cognitive levels in the Bloom’s Revised Tax-
onomy and cover a wide range of learning topics. With LearningQ as a
testbed, we demonstrated the research challenges in constructing an educa-
tional question generator and examined the effectiveness of nine strategies in
selecting question-worthy sentences from an article for educational question
generation (RQ 5.2).

7.2 Future Work

This thesis has contributed novel technical approaches to model learners
and generate educational material for both topic-agnostic and topic-specific
MOOC platforms. However, there is still space for improvements. In this
section, we provide an outlook on interesting research directions in MOOCs
opened up by the research conducted in this thesis.

7.2.1 Adaptive Learning in MOOCs

Adaptive learning is an educational approach which employs computational
algorithms to decide what learning materials should be presented to a learner
so as to address the unique needs of the learner [85, 107, 120, 152]. Though
being recognized as essential by instructors, adaptive learning has not been
fully supported and investigated in MOOCs yet. One key step before enabling
effective adaptive learning is to construct learner models, which are built
based on learner data. However, there is no data about learners available
in the learning platform at the beginning of a course unless they have been
active in the platform before and, even then, the learners’ knowledge on the
course topic might still be unknown to the instructors.
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Our works presented in Chapters 2-3 have demonstrated that it is possible
to enhance the construction of a learner model by mining the Social Web.
To further the learner model construction in MOOCs, in addition to the eight
Social Web platforms investigated in this thesis, it will be valuable to explore
other Social Web platforms (e.g., YouTube, Instagram, Quora) to reveal a
more diverse set of learner attributes in the future. These attributes could
be learners’ interests, prior knowledge, learning preferences, personal goals,
social relations, and so on. Building upon the enhanced learner models, future
work can also focus on developing effective adaptive algorithms to personalize
learner experiences in MOOCs. For instance, what learner attributes should
be considered to generate a personalized learning path for a MOOC learner?
What are the influences of prior knowledge on learners’ learning paths? How
can personalized learning strategies (e.g., tips in time management [91]) be
generated based on the learner models? How can the temporal dynamics of
learner behaviors be captured and used to provide adaptive learning supports
(e.g., recommended learning paths, personalized learning strategies)?

7.2.2 Interactive Learning in MOOCs

Interactive learning is a pedagogical model which encourages learners to in-
teract with each other instead of passively absorbing the knowledge taught
in the course [102]. In the classroom setting, interactive learning occurs in a
variety of forms such as hands-on group projects and class discussions. How-
ever, in the MOOC setting, learning takes place in an asynchronous manner,
and learners’ interaction with instructors and peers are mostly limited to
the discussion forum. Thus, learners cannot gain a wealth of experience in
interactive learning.

Future research on developing interactive tools for MOOC learners can
be built on the works presented in this thesis. Specifically, with the data col-
lected from the Social Web, e.g., the LearningQ in Chapter 6, an intelligent
personal assistant can be constructed and used to help MOOC learners by
providing the support they need. The support could be: discussing questions,
scheduling time for learning, providing emotional support, and so on. Future
research can first work on investigating what learning support is needed in
the MOOC setting. For each kind of support, it will be valuable to explore
what data and techniques can be used to enable the support. Furthermore,
how should the interface of the assistant be designed so as to engage learners?
What are effective strategies to allow the assistant to interact with learners?
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7.2.3 Content Enrichment in MOOCs

Most existing MOOCs in the major topic-agnostic platforms adopt the one-
size-fits-all approach, i.e., providing the same set of learning materials to
all learners in a MOOC. However, these learners are often of high diversity
(e.g., their demographics [36, 74, 177]) and likely to have different learning
needs, which demand the MOOC to contain a larger and more diverse set
of learning materials instead of only a limited number of videos and quizzes
to meet their needs. To enrich MOOC content, there have been several
studies working on Learnersourcing [61], i.e., employing the intelligence of
learners enrolled in a MOOC to gather or create more content for the MOOC.
However, Learnersourcing faces the problem of lacking enough responses from
learners as such content gathering and creation process is very cognitively
demanding and time-consuming.

Our works presented in Chapters 5-6 demonstrated the potential of the
Social Web in enriching MOOCs. Building on the work presented in Chap-
ter 5, future research can focus on developing techniques to automatically
retrieve relevant freelancing tasks and determine their relevance and suit-
ability to a course. Considering that a large number of freelancing tasks are
with high payment and more challenging to solve, it will be interesting to
investigate how to enable the partition of a high-payment task across several
learners. Ideally, such partition can motivate the learners to learn and solve
the task together and then the learners can share the payment. In Chapter 6,
we focused on generating text-based questions with the aid of LearningQ. In
addition to text-based questions, future research can also work on the gener-
ation of questions consisting of not only text but also plots and images, which
are necessary for course topics like math and physics. Furthermore, how can
the answers provided by learners to the generated questions be automatically
assessed? As demonstrated in Chapter 6, educational content creation is a
cognitively demanding task, which we believe cannot be achieved by simply
exploiting the power of machines in the near future. We hypothesize that
MOOC content enrichment can be greatly enhanced by combining the power
of humans and machines, e.g., using human intelligence as a means to re-
fine low-quality questions generated by the algorithms. How can learners
effectively assist machines to create course content? What are the effects on
learning by enabling learners to create course content? How can the useful-
ness of the created content be measured? How can the feedback provided
by learners in the process of content creation be effectively utilized (e.g., by
applying reinforcement learning [145]) to further improve the performance of
algorithms?
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Summary

MOOC Analytics: Learner Modeling and Content
Generation

Massive Open Online Courses (MOOCs), as one of the popular options
for people to receive education and learn, are endowed with the mission
to educate the world. Typically, there are two types of MOOC platforms:
topic-agnostic and topic-specific. Topic-agnostic platforms such as edX and
Coursera provide courses covering a wide range of topics, while topic-specific
MOOC platforms such as Duolingo and Codeacademy focus on courses in one
specific topic. To better support MOOC learners, many works have been pro-
posed to investigate MOOC learning in the past decade. Still, there are many
other aspects of MOOC learning to be explored.

In this thesis, we focused on (i) learner modeling and (ii) generation of
educational material for both topic-agnostic and topic-specific MOOC plat-
forms.

For learner modeling in the topic-agnostic platforms, as there have been
a lot of works utilizing the learner traces generated within the MOOC plat-
forms, we proposed that we can better understand learners by moving beyond
the MOOC platforms and exploring other data sources on the wider Web,
especially the Social Web. As an exploratory but necessary step, in Chap-
ter 2, we first investigated whether MOOC learners are active in the Social
Web and how to reliably identify their accounts across various Social Web
platforms. To this end, we considered over 320,000 learners from eighteen
MOOCs in edX and made efforts to identify their accounts across five popular
Social Web platforms, i.e., Gravatar, Twitter, LinkedIn, StackExchange
and GitHub. Furthermore, we investigated what data traces could be col-
lected from these platforms and used to derive learner attributes that are rel-
evant to their learning activities in the MOOC setting. We found that on av-
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erage 5% of learners could be identified on globally popular Social Web plat-
forms and learners with specific traits preferred different types of MOOCs.
Based on the observations we had in Chapter 2, in which we have observed
that over one-third of learners from a Functional Programming MOOC used
GitHub to maintain their programming activities, we further combined the
data traces generated by those learners in both edX and GitHub to investigate
learning transfer in Chapter 3: do learners actually use the newly acquired
knowledge and skills to solve problems in practice? Our analyses revealed
that (i) more than 8% of engaged learners transferred the acquired knowl-
edge to practice, and (ii) most existing transfer learning findings from the
classroom setting are indeed applicable in the MOOC setting as well. For
learner modeling in the topic-specific platforms, in Chapter 4, we focused
on investigating the problem of knowledge tracing, which remained largely
unexplored in previous studies due to the lack of available datasets from
such platforms. With three large-scale language learning datasets released
by Duolingo, we investigated factors that are correlated with learners’per-
formance and then applied a machine learning technique (i.e., Gradient Tree
Boosting) to predict learners’future performance. We demonstrated that
the learning performance was correlated with not only learners’engagement
with a course but also contextual factors like the devices being used. In
Chapter 5, we further investigated whether learners could apply the acquired
knowledge to solve real-world tasks, i.e., paid tasks which are retrieved from
online marketplaces and can be solved by applying the knowledge taught in
a course. For this purpose, we considered a MOOC teaching data analysis in
edX and manually selected a set of paid tasks from Upwork, one of the most
popular freelancing marketplaces in the world, and presented the selected
tasks to learners and observed how learners interacted with these real-world
tasks. We observed that these tasks could be solved by MOOC learners with
high accuracy and quality.

For generation of educational material, in Chapter 6, we focused on the
generation of educational questions, as they are widely recognized as essen-
tial for learning. To build an effective automatic question generator, two
challenges need to be overcome. Firstly, a large-scale dataset covering ques-
tions of various cognitive levels from a set of diverse learning topics should
be collected. Secondly, effective strategies for identifying question-worthy
sentences (i.e., those carrying important concepts) from an article, should be
developed before using those sentences as input to the question generator.
To deal with these challenges, we relied on TED-Ed and Khan Academy to re-
trieve an educational question dataset, LearningQ, which contains over 230K
document-question pairs generated by both instructors and learners. We
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showed that LearningQ consists of high-quality questions covering not only
all cognitive levels in the Bloom’s Revised Taxonomy but also various learn-
ing topics. We showed that it is a challenging task to automatically generate
educational questions, even with sufficient training data and state-of-the-art
question generation techniques. Besides, we developed and compared a to-
tal of nine strategies to select question-worthy sentences from an article and
demonstrated that questions in learning contexts usually are based on source
sentences that are informative, important, or contain novel information.





Samenvatting

MOOC Analyse: Modelleren van studenten en gener-
eren van content

Massive Open Online Courses (MOOC’s) zijn, als een van de populaire
manieren waarop mensen onderwijs krijgen en leren, verbonden met de missie
om de wereld te onderwijzen. Karakteristiek zijn er twee typen van MOOC-
platforms: onderwerp-onafhankelijk en onderwerp-specifiek. Onderwerp-onafhankelijke
platforms zoals edX en Coursera bieden cursussen aan over een breed spec-
trum van onderwerpen, terwijl onderwerp-specifieke MOOC-platforms zoals
Duolingo en Codeacademy zich richten op cursussen in een specifiek onder-
werp. Om MOOC-studenten beter te ondersteunen is er in het afgelopen
decennium veel onderzoek gedaan naar het leren in MOOC’s. Desondanks
zijn er nog veel aspecten van het leren in MOOC’s die nog moeten worden
onderzocht.

In dit proefschrift richten we ons op (i) modelleren van studenten en (ii)
genereren van educatieve content voor zowel onderwerp-onafhankelijke als
onderwerp-specifieke MOOC-platforms.

Voor het modelleren van studenten in de onderwerp-onafhankelijke plat-
forms, hebben we voorgesteld dat we studenten beter kunnen begrijpen door
verder te kijken dan de MOOC-platforms en andere databronnen op het wi-
jdere Web te verkennen, speciaal het Social Web; dit omdat een heleboel
onderzoek al de student-logs hebben benut die door de MOOC-platforms zelf
worden gegenereerd. Als een verkennende maar noodzakelijke stap, hebben
we in hoofdstuk 2 eerst onderzocht of MOOC-studenten actief zijn in het
Social Web en hoe we betrouwbaar hun accounts op verschillende Social
Web platforms kunnen identificeren. Hiertoe hebben we meer dan 320.000
studenten van achttien MOOC’s in edX onderzocht en gekeken hoe we hun
accounts op vijf populaire Social Web platforms kunnen identificeren, i.c.,
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Gravatar, Twitter, LinkedIn, StackExchange en GitHub. Verder hebben
we onderzocht welke logs van deze platforms kunnen worden verzameld en
benut om student-attributen af te leiden die relevant zijn voor hun leer-
activiteiten in de MOOC-context. We stelden vast dat gemiddeld 5% van
de studenten konden worden geïdentificeerd op globaal populaire Social Web
platforms en dat studenten met specifieke eigenschappen voorkeur hebben
voor verschillende typen van MOOC’s. Gebaseerd op de observaties van
Hoofdstuk 2, waar we observeerden dat meer dan een derde van de studen-
ten van een Functional Programming MOOC GitHub gebruikten voor hun
programmeer-activiteiten, combineerden we de logs gegenereerd door die stu-
denten in zowel edX als GitHub om zogenoemde learning transfer te onder-
zoeken in Hoofdstuk 3: gebruiken studenten daadwerkelijk de nieuw verwor-
ven kennis en vaardigheden voor problemen in de praktijk? Onze analyses
toonden aan dat (i) meer dan 8% van betrokken studenten inderdaad de ver-
worven kennis benutten in de praktijk, en (ii) de meeste bestaande inzichten
over transfer van de klassieke klas-context inderdaad ook van toepassing zijn
in de MOOC-context. Voor het modelleren van studenten in onderwerp-
specifieke platforms, hebben we ons in Hoofdstuk 4 gericht op het onder-
zoeken van het probleem van kennis-herleiding, dat grotendeels niet is onder-
zocht in eerdere onderzoeken vanwege het gebrek aan beschikbare datasets
van zulke platforms. Met drie grootschalige datasets rond taalverwerving
beschikbaar gesteld door Duolingo hebben we factoren onderzocht die gecor-
releerd zijn met de performance van studenten en dan een machine learning-
techniek toegepast (namelijk Gradient Tree Boosting) om de toekomstige
performance van studenten te voorspellen. We hebben aangetoond dat de
performance van de studenten was gecorreleerd met niet alleen de betrokken-
heid van de student met de cursus maar ook met contextuele factoren zoals
de apparaten die werden gebruikt. In Hoofdstuk 5 hebben we verder on-
derzocht of studenten de verkregen kennis zouden kunnen toepassen in echte
realistische taken, i.c. betaalde taken verkregen van online marktplaatsen die
kunnen worden volbracht door de kennis toe te passen uit de cursus. Voor dit
doel hebben we een data-analyse van MOOC-onderwijs in edX beschouwd en
handmatig een set van betaalde taken geselecteerd van Upwork, een van de
populairste freelance marktplaatsen ter wereld, en de geselecteerde taken aan
studenten aangeboden en gezien hoe de studenten met deze echte realistis-
che taken omgaan. We hebben geconstateerd dat deze taken konden worden
volbracht door MOOC-studenten met hoge accuratesse en kwaliteit.

Voor het genereren van educatieve content hebben we ons in Hoofdstuk
6 gericht op het genereren van educatieve vragen, aangezien die algemeen
als essentieel worden beschouwd voor leren. Om een effectieve automatische
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vraag-generator te bouwen, moeten twee uitdagingen worden overwonnen.
Ten eerste moet er een grootschalige dataset worden verzameld van vra-
gen van verschillende kennisniveau’s voor verschillende onderwerpen. Ten
tweede moeten effectieve strategieën worden ontwikkeld voor het identificeren
van zinnen in een artikel die een vraag waard zijn (i.c. zinnen die belangri-
jke concepten bevatten), voordat deze zinnen worden gebruikt als input voor
een vraag-generator. Om met deze uitdagingen om te gaan, hebben we ons
gebaseerd op TED-Ed en Khan Academy om een educatieve dataset van vra-
gen te verkrijgen, LearningQ, met meer dan 230K document-vraag-paren
gegenereerd door zowel docenten als studenten. We hebben aangetoond dat
LearningQ bestaat uit vragen van hoge kwaliteit die niet alleen alle kennis-
niveau’s van Bloom’s Revised Taxonomy beslaan maar ook verschillende
onderwerpen. We hebben laten zien dat het een uitdagende taak is om au-
tomatisch educatieve vragen te genereren, zelfs met voldoende trainingsdata
en state-of-the-art technieken voor vraag-generatie. Daarnaast hebben we in
totaal negen strategieën ontwikkeld en vergeleken om uit een artikel zinnen te
selecteren die een vraag waard zijn en aangetoond dat vragen in leercontex-
ten doorgaans gebaseerd zijn op bronzinnen die informatief zijn, belangrijk
zijn en nieuwe informatie bevatten.
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