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Abstract

Modelling natural phenomena via Dynamical System Theory has become common-

place amongst mathematicians, physicists, engineers, and the like. As such, research

in this field is currently underway, with a notable focus on chaos. The Competitive

Modes Conjecture is a relatively new approach in the field of chaotic Dynamical Sys-

tems, aiming to understand why a strange attractor is chaotic or not. Up till now,

the Conjecture has only been used to study multipolynomial systems because of their

simplicity. As such, the study of non-multipolynomial systems is sparse, filled with am-

biguity, and lacks mathematical structure. This paper strives to rectify this dilemma,

providing the mathematical background needed to rigorously apply a large set of non-

multipolynomial systems to the Competitive Modes Conjecture. Examples of this new

theory include application of Lorenz System, the Chua System, and the Wimol-Banlue

System. As far as the authors are aware, any previous application of the latter two

systems to the Conjecture has not been attempted. Therefore, this paper presents the

first applications of a whole new set of dynamical systems to the Conjecture.
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I. Introduction

Change: people embrace it, societies struggle with it, and politicians promise it. Whatever

the case may be, one can not deny its overwhelming control. ”Times change, and so must

I” as the old saying goes. In fact, many of the processes governing the universe can be

described by how they change. Perhaps one could ascertain the behavior of a process given

its current state and a set of rules governing how the process must change with time. This

basic ideology is the cornerstone of the mathematical theory of dynamical systems.

Dynamical systems are an essential part of the modern mathematical and physical commu-

nity. Their popularity can be attested to in almost all aspects of science. As an example,

consider the system of differential equations describing the 1-dimensional motion of an object

under the influence of some constant acceleration (or deceleration).
ȧ(t) = 0

v̇(t) = a(t)

ṗ(t) = v(t)

Here, p : R → R describes the position of the object, v : R → R describes its velocity, and

a : R → R describes its acceleration, all with respect to time t ∈ R. Assuming that the

acceleration (or deceleration) has a constant value β ∈ R, this system differential equation

can easy be solved as follows.

a(t) = β, v(t) = βt+ v(0), p(t) =
1

2
βt2 + v(0)t+ p(0) (1)

What are these equations used for? Imagine a car manufacturer that is specifically research-

ing the effectiveness of its automotive braking systems. The brakes will apply a deceleration

to slow the velocity of a moving vehicle to zero. However, the deceleration needs to be strong

enough to stop the car before it collides into a potential obstacle in its path. How strong

would the deceleration then need to be?

Imagine a vehicle traveling to the right starts to apply its brakes at time t = 0. The vehicle

at this moment is at position p(0) and traveling with a velocity of v(0) > 0. As the brakes

exert a constant deceleration of β < 0, the vehicle’s velocity slows down. Then the time

needed for the vehicle to come to a complete stop tstop as well as the distance traveled while

doing so p(tstop)− p(0) can be calculated using Equation (1).

tstop = −v(0)/β > 0, p(tstop)− p(0) =
1

2
βt2stop + v(0)tstop > 0

Is this breaking distance small enough? That of course depends on the situation. But

automotive manufacturers can use Equation (1) to mathematically model each situation in-

dependently and ensure the quality of their vehicles’ brakes. Perhaps through this process,
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a manufacture of automotive brake pads discovers its products perform less than adequately

in rainy weather. The manufacturer can now adjust its products accordingly and in doing

so protect the safety of motorists.

The set of solutions in Equation (1) is officially referred to as a dynamical system. Through

our exemplary thought-experiment we see the purpose of dynamical systems: describing the

solutions of differential equations so that society can better understand, predict, and respond

to the processes being modeled. We state this more formally with the following definition.

Definition I.1. Dynamical System

Say we have an autonomous1 continuous system of differential equations ẋ = F(x) with

F : S → S, where S is some open subset of Rn. Please note that ẋ is shorthand notation for

the vector [∂x1/∂t, · · · , ∂xn/∂t]
T .

The dynamical system δ : S × R → S with δ(x0, 0) = x0 is a continuously differentiable

mapping that defines the solution of our system of differential equations (also known as a

trajectory or orbit) that passes through the point x0 ∈ S at t = 0 [27][36].

Some dynamical systems are much more complicated than Equation (1) and require numeri-

cal integration techniques in order to be approximated (direct solutions are often impossible

to find). A particularly famous example of such a dynamical system is that of the Lorenz

System [31]. 
ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(2)

Here, σ, ρ, and β ∈ R, and x, y, z are real functions of t ∈ R.

We can numerically approximate the solution to the Lorenz System using an explicit Runge

Kutta method (for example, see [16] and [17]). Choosing a specific set of parameters and ini-

tial conditions, we plot approximations to specific solution curves in the x,y,z-graph (called

a phase space) in Figure 1. As a result, we see a very curious structure forming in the phase

space: it seems that the solution curves we plotted endlessly twist and wind around each

other, converging to some bounded set in the phase space resembling the wings of a butterfly.

This set is called the Lorenz Attractor.

The Lorenz Attractor is a classic example of the more general concept of a strange attractor

[27]. Because of their complicated structures and ability to describe steady-state situations,

understanding strange attractors is a topic of great interest in the modern dynamical sys-

tems community. However, strange attractors can be difficult to analyze. Some dynamical

systems do not contain any strange attractor at all, and some systems only contain strange

1This paper will focus primarily on autonomous systems of differential equations. Non-autonomous

systems can be trivially represented as autonomous ones.
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Figure 1: The Lorenz Attractor, where σ = 10, ρ = 28, and β = 8/3. The attractor was approxi-

mated using an adaptive explicit RK4 numerical integration technique over a time span

of 60 time units using an initial position of (10.383, 16.824, 19.325). See Appendix C

for coding details.
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attractors for certain values of parameters. Even if the existence of a strange attractor is

possible, the location of the attractor can be difficult to pin down.

As such is the case, this document has three purposes. The first few sections are devoted to

mathematically describing what a strange attractor is. Furthermore, this paper will go into

detail about a property many strange attractors seem to possess: chaos.

From there, this document will move on into underlining some of the current methods used

to localize strange attractors. The reason for this is two-fold. Localization techniques require

a certain level of understanding; if the attractor can be localized, then it must be because

of our understanding of some of its properties. Hopefully these techniques can then provide

some more mathematical insight. The second reason for researching localization techniques

is understanding their application. It is the authors’ opinion that these techniques are com-

plex, and although they can provide results of noteworthy quality, their application can be

situational. Perhaps something better can be developed.

This will lead us to the Competitive Modes Conjecture, which is a new attempt at under-

standing chaotic strange attractors. The latter half of this paper will focus on unpacking this

conjecture, providing it a more rigorous mathematical structure, and applying it to systems

of differential equations that have never been analyzed in this way before2. Furthermore,

previous literature has proven that this conjecture can be used of sorts as a more general

and easily applicable localization technique.

2That is, as far as the authors are aware of as of the writing of this paper
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II. Strange Attractors

In Section I, we loosely explained some basic concepts concerning dynamical systems but

refrained from concretely defining them. Let us first rectify this.

Definition II.1. Attracting Set

Say we have the dynamical system δ : S × R → S of a system of differential equations. A

closed, invariant set A ⊆ S is called an attracting set of our system if there exists some

neighborhood N of A such that for any point x ∈ N , δ(x, t) ∈ N for all t ≥ 0. Furthermore

δ(x, t) limits to A as t limits to infinity. [27]. The maximal neighborhood Nmax of A where

this is the case is called the basin of attraction of A.

Definition II.2. Attractor

Say we have the dynamical system δ : S × R → S of a system of differential equations.

Suppose A is an attracting set of our system. The set A is an attractor if it contains a dense

orbit; that is, there exists a trajectory that passes through or comes infinitely close to every

point in A. This ensures that A is not the union of two or more distinct attracting sets

[27][33].

Attractors are not an uncommon sight in dynamical systems: stable equilibrium points,

stable limit cycles, and stable limit tori are all examples of attractors that can occur in a

dynamical system. However, defining whether an attractor is strange or not takes some more

effort, and it all has to do with the concept of dimension.

Say we have a non-empty set B in Rn. The topological dimension of B is simply the formal

name for the well-known, everyday concept of dimensionality. According to topological di-

mensionality, a point is 0-dimensional, a line is 1-dimensional, a plane is 2-dimensional, and

so on. Notice that the topological dimension of B is always an integer value greater or equal

to 0, and no greater than n [25].

We must define another concept of dimensionality before we can proceed. Suppose we have

the set B defined as before. We define the s-dimensional Hausdorff measure of B as follows

[15]:

Hs(B) = lim
ε→0

inf

{
∞∑
i=1

||Ci||s : {Ci} is a ε-cover of B

}
Here, a ε-cover of B is a countable set {Ci} so that sup{||x − y|| : x, y ∈ Ci} ≤ ε ∀i and

B ⊆
⋃∞
i=1 Ci. Using this measure, we can define the Hausdorff dimension (or Hausdorff-

Besicovitch dimension) of B as follows [15]:

dimH(B) = inf{s ≥ 0 : Hs(B) = 0} (3)

Now that we have defined the concepts of topological and Hausdorff dimensionality, we can

move on to the defining of a fractal, which are essential structures in strange attractors.
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Definition II.3. Fractal

Say we have a non-empty set B in Rn. The set B is a fractal if the Hausdorff dimension

of B is strictly greater than the topological dimension of B [25]. Often, this is described as

self-similarity: the fractal is constructed of parts that in turn resemble (not necessarily copy)

the whole structure [15].

Finally, we can define a strange attractor very simply.

Definition II.4. Strange Attractor

Say we have the dynamical system δ : S × R → S of a system of differential equations.

Suppose A is an attractor of our system. The set A is a strange attractor if its attracting

set is fractal in nature. In layman’s terms, this means that A has a much more complicated

geometric structure than, for example, an equilibrium point, a limit cycle, or limit torus

[3][33].

We can further classify strange attractors in two categories: self-excited and hidden. How-

ever, in order to formally define these two categories, we must first provide a few more

definitions.

Definition II.5. Equilibrium Point

Say we have the system of differential equations ẋ = F(x). An equilibrium point xe of this

system is a point in the phase space where F(xe) = 0. In order words, the equilibrium point

is invariant under the corresponding dynamical system. [27].

Definition II.6. Manifolds of Equilibrium Points

Say we have the dynamical system δ : S × R → S of a system of differential equations that

contains the equilibrium point xe. Then the equilibrium point has two corresponding sets of

S called manifolds [3]:

• A stable manifold of the equilibrium point W+(xe) = {x ∈ S : limt→+∞ δ(x, t) = xe}
• A unstable manifold of the equilibrium pointW−(xe) = {x ∈ S : limt→−∞ δ(x, t) = xe}.

We can now define self-excited and hidden strange attractors.

Definition II.7. Classification of Strange Attractors

Say we have a system of differential equations that contains equilibrium points. Suppose A

is a strange attractor, then

• A is self-excited if its basin of attraction contains at least one equilibrium point [22].

• A is hidden if its basin of attraction contains no equilibrium points [22].

Per definition, self-excited strange attractors can be easily visualized by simply plotting the

unstable manifolds of the equilibrium points. At least one of the unstable manifolds will flow

into the strange attractor and, given enough time, will show how the attractor behaves. On
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the other hand, finding hidden attractors is much more difficult since they can be located

anywhere and are not accessible through the unstable manifolds of equilibrium points. Much

more work and time is required to investigate if a hidden attractor is even present in the

dynamical system, let alone how it is structured and where it is located. Currently, research

is being done on how to locate hidden attractors more easily [21][22][23].

We present a few examples of strange attractors in the following subsection, most of which

are self-excited attractors and thus easy to visualize.

i. Lorenz Attractor

As we have seen before in Section I, the Lorenz System is one of the most famous dynamical

systems that can contain a strange attractor. For the reader’s convenience, we again give

the Lorenz System below [12][31]. 
ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(4)

Here, σ, ρ, and β are all real valued parameters.

The first thing we want to do is present a lemma about the symmetrical nature of the Lorenz

System.

Lemma II.1 (Symmetries of the Lorenz System). Each of the differential equations in

the Lorenz System is odd under the transformation (x, y, z)→ (−x,−y, z) [27].

Proof. The proving this lemma is extremely simple and can be done using the following

equivalent statements [27]..

ẋ(−x,−y, z) = σ((−y)− (−x)) = −ẋ(x, y, z)

ẏ(−x,−y, z) = (−x)(ρ− z)− (−y) = −ẏ(x, y, z)

ż(−x,−y, z) = (−x)(−y)− βz = ż(x, y, z)

This means that if a structure appears in the subsection {(x, y, z) ∈ R : x, y > 0} of the

phase space, then that same structure will appear in the subsection {(x, y, z) ∈ R : x, y < 0}.
Similarly, any structure that appears in {(x, y, z) ∈ R : x > 0, y < 0} of will have an equiva-

lent in {(x, y, z) ∈ R : x < 0, y > 0}. This is specifically true for any equilibrium points that

the Lorenz System might have.

Speaking of equilibrium points, the Lorenz System under very weak conditions has the

following equilibrium points.
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Lemma II.2 (Equilibrium Points of the Lorenz System). The equilibrium points

{(xe, ye, ze)} of the Lorenz System given in Equation (4) with σ 6= 0, β > 0, and ρ > 1

are

(0, 0, 0) and (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

Proof. In the first equation, ẋe = σ(ye − xe) = 0, meaning that xe = ye.

In the second equation, ẏe = xe(ρ− ze)− ye = 0, meaning that ye = xe(ρ− ze).
In the third equation, że = xeye − βze = 0, meaning that βze = xeye.

Combining these three equations, we see that βye = ye(βρ− y2
e), meaning that either ye = 0

or ye = ±
√
β(ρ− 1) ∈ R.

Thus, any equilibrium point of the Lorenz System where β 6= 0 must be either (0, 0, 0)

or (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

Because of this lemma, we will set the parameter σ = 10, β = 8/3, and ρ = 28; indeed, these

are the values that Lorenz himself used when he was first studying this system [12][31]. With

these parameters, the equilibrium points are (0, 0, 0), (6
√

2, 6
√

2, 27), (−6
√

2,−6
√

2, 27).

The question is, what is the stability of the equilibrium points under Equation (4)? Lin-

earizing the system around any arbitrary point (xe, ye, ze) ∈ R3 results in the matrix-vector

equation. ẋẏ
ż

 =

 σ(ye − xe)
xe(ρ− ze)− ye
xeye − βze

+

 −σ σ 0

ρ− ze −1 −xe
ye xe −β

x− xey − ye
z − ze

 (5)

Setting (xe, ye, ze) equal to the first equilibrium point (0, 0, 0), this equation reduces toẋẏ
ż

 =

−10 10 0

28 −1 0

0 0 −8/3

xy
z


Therefore the eigenvalues and corresponding eigenvectors of the matrix are

λ1 = −8/3 vλ1 = [0, 0, 1]T

λ2 =
− 11 +

√
1201

2
vλ2 =

[
10,

9 +
√

1201

2
, 0

]T

λ3 =
− 11−

√
1201

2
vλ3 =

[
10,

9−
√

1201

2
, 0

]T
Thus the origin is a saddle point, with a 2-dimensional stable manifold and a 1-dimensional

unstable manifold.
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Setting (xe, ye, ze) equal to (6
√

2, 6
√

2, 27), Equation (5) reduces toẋẏ
ż

 =

−10 10 0

1 −1 −6
√

2

6
√

2 6
√

2 −8/3

x− 6
√

2

y − 6
√

2

z − 27


The eigenvalues and corresponding eigenvectors of the matrix are

λ1 ≈ −13.85458 vλ1 = [60
√

2, (60 + 6λ1)
√

2,−λ1(λ1 + 11)]T

λ2 ≈ 0.09396 + 10.19451i vλ2 = [60
√

2, (60 + 6λ2)
√

2,−λ2(λ2 + 11)]T

λ3 ≈ 0.09396− 10.19451i vλ3 = [60
√

2, (60 + 6λ3)
√

2,−λ3(λ3 + 11)]T

Similarly, setting (xe, ye, ze) equal to (−6
√

2,−6
√

2, 27), Equation (5) reduces toẋẏ
ż

 =

 −10 10 0

1 −1 6
√

2

−6
√

2 −6
√

2 −8/3

x+ 6
√

2

y + 6
√

2

z − 27


The eigenvalues and corresponding eigenvectors of the matrix are again

λ1 ≈ −13.85458 vλ1 = [−60
√

2,−(60 + 6λ1)
√

2,−λ1(λ1 + 11)]T

λ2 ≈ 0.09396 + 10.19451i vλ2 = [−60
√

2,−(60 + 6λ2)
√

2,−λ2(λ2 + 11)]T

λ3 ≈ 0.09396− 10.19451i vλ3 = [−60
√

2,−(60 + 6λ3)
√

2,−λ3(λ3 + 11)]T

Thus, the equilibrium points (±6
√

2,±6
√

2, 27) are saddle-focus points, with 2-dimensional

unstable manifolds and 1-dimensional stable manifolds.

Now that we understand some of the behavior in the Lorenz System, it is time to visualize

the attractor. One of the easiest ways of seeing this fascinating structure is by plotting the

unstable manifolds of the origin. The other two equilibrium points simultaneously attract

and repel the origin’s unstable manifolds; as a result, the unstable manifolds are tossed back

and forth between the two saddle-foci in a never-ceasing dance of continuity.

Figure 2 gives a visual representation of the Lorenz Attractor. As one can see, the attractor

per definition is invariant under the dynamical system: a trajectory inside the attractor will

forever remain inside it. But it is the shape of the attractor that makes it strange. The

Lorenz Attractor’s structure is much more complicated that a simple attracting point or

limit cycle; since the Lorenz Attractor was concretely proven to be a strange attractor in

2002, it can be concluded that the attractor is indeed fractal in nature [34].
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Figure 2: The Lorenz self-excited Attractor, revolving around two of the three equilibrium points,

which in this case are (6
√

2, 6
√

2, 27) and (-6
√

2, -6
√

2, 27). Here σ = 10, ρ = 28, and

β = 8/3. The attractor was approximated using an adaptive explicit RK4 numerical

integration technique over a time span of 60 time units using an initial position of

(10.383, 16.824, 19.325). See Appendix C for coding details.
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ii. Chua Attractors

Chua’s attractors occur in a system of differential equations describing the current and volt-

age flowing through a simple electronic circuit consisting of two capacitors, one inductor,

one nonlinear resistor, and a Chua diode [30]. The system was named after its founder Leon

Chua, who introduced the system in the mid 1980’s [7][26].

We will simply treat the Chua System as a mathematical one without paying too much

attention to the physical interpretation of it. The most common formulation of the Chua

System is the one presented in Matsumoto’s paper from 1984 [26] and later in Chua, Komuro,

and Matsumoto’s paper in 1986 [7].
ẋ = α(y − x− f(x))

ẏ = x− y + z

ż = −βy
(6)

Here, f is a nonlinear function that describes the change in resistance versus current in the

Chua diode [26][30]. Mathematically, multiple sources of literature simply define the function

as follows [7][21][22][23][26][30].

f(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|)

=


m1x+ (m1 −m0) x ∈ (−∞,−1)

m0x x ∈ [−1, 1]

m1x+ (m0 −m1) x ∈ (1,∞)

(7)

Now we define the system’s equilibrium points.

Lemma II.3 (Equilibrium Points of the Chua System). The equilibrium points {(xe, ye, ze)}
of the Chua System given in Equation (6) with nonlinearity function f defined in Equation

(7) with α, β 6= 0 are

(0, 0, 0) m0 6= −1

(±γ, 0,∓γ) where γ ∈ [0, 1] m0 = −1(
±

(
m1 −m0

m1 + 1

)
, 0,∓

(
m1 −m0

m1 + 1

))
(m0 + 1)(m1 + 1) < 0

(±γ, 0,∓γ) where γ ∈ (1,∞) m0,m1 = −1

Proof. In the first equation, ẋe = α(ye − xe − f(xe)) = 0, meaning that ye = xe + f(xe).

In the second equation, ẏe = xe − ye + ze = 0, meaning that ye = xe + ze.

In the third equation, że = −βye = 0, meaning that ye = 0.
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Combining these three equations, we immediately see that any equilibrium point of the Chua

System is (xe, 0,−xe) where xe + f(xe) = 0. Therefore, it is crucial to calculate xe.

We must first prove that the function f as defined in Equation (7) is an odd function; that

is, f(x) = −f(−x).

−f(−x) =


−m1(−x)− (m1 −m0) −x ∈ (−∞,−1)

−m0(−x) −x ∈ [−1, 1]

−m1(−x)− (m0 −m1) −x ∈ (1,∞)

=


m1x+ (m0 −m1) x ∈ (1,∞)

m0x x ∈ [−1, 1]

m1x+ (m1 −m0) x ∈ (−∞,−1)

= f(x)

In this case, we can keep focus primarily on positive values of x. If there exists some point

xe so that xe + f(xe) = 0, then −xe will also be a valid solution. Now we must separate our

analysis into a number of cases and investigate them individually.

Suppose xe ∈ [0, 1].

Then f(xe) = m0xe. It is trivial to conclude that if m0 6= −1, then xe + f(xe) = 0 if and

only if xe = 0. If m0 = −1, then xe can be any value in [0, 1].

Suppose xe > 1.

Then f(xe) = m1xe+(m0−m1). If m1 6= −1, then the only possible solution to xe+f(xe) = 0

is (m1 −m0)/(m1 + 1). The question is whether this value falls in the range (1,∞).

For ease of analysis, let us define a new function g : R2 → R, defined as

g(m0,m1) = (m1 −m0)/(m1 + 1)

The function g is almost everywhere differentiable, with the exception being when m1 = −1.

∂g

∂m0

=
− 1

m1 + 1
,

∂g

∂m1

=
m0 + 1

(m1 + 1)2

Suppose xe > 1 and m0 < −1.

Then ∂g/∂m1 < 0 for all m1 ∈ R\{−1}. Furthermore, notice the following limit is constant

for all values of m0 < −1.

lim
m1→∞

g(m0,m1) = lim
m1→−∞

g(m0,m1) = 1
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As a result, function g takes on a value less than 1 only for m1 < −1; in the same way,

the function g takes on a value greater than 1 only for m1 > −1. We can conclude that the

only viable solution to xe + f(xe) = 0 with xe > 1 is xe = g(m0,m1) = (m1 −m0)/(m1 + 1)

when m1 > −1.

And what of m1 = −1? If m1 = −1, then xe+f(xe) = 0 is equivalent to m0 = −1. However,

this is a contradiction to our assumption that m0 < −1.

Suppose xe > 1 and m0 > −1.

Then ∂g/∂m1 > 0 for all m1 ∈ R\{−1}. Again, notice the following limit is constant for all

values of m0 > −1.

lim
m1→∞

g(m0,m1) = lim
m1→−∞

g(m0,m1) = 1

As a result, function g takes on a value greater than 1 only for m1 < −1; in the same way,

function g takes on a value less than 1 only for m1 > −1. We can conclude that the only

viable solution to xe + f(xe) = 0 with xe > 1 is xe = g(m0,m1) = (m1−m0)/(m1 + 1) when

m1 < −1.

As before if m1 = −1, the expression xe + f(xe) = 0 is equivalent to m0 = −1. However,

this is a contradiction to our assumption that m0 < −1.

Suppose xe > 1 and m0 = −1

Then xe + f(xe) = 0 is equivalent to (m1 + 1)xe = (m1 + 1). From this we must conclude

that m1 = −1 since xe > 1. However, if m1 = −1 then xe can be any value in (1,∞).

In summary, the only solutions for xe ≥ 0 are

xe = 0 m0 6= −1

xe ∈ [0, 1] m0 = −1

xe =

(
m1 −m0

m1 + 1

)
(m0 + 1)(m1 + 1) < 0

xe ∈ (1,∞) m0,m1 = −1

However, we proved previously that that the function f(x) is odd. Therefore, we can imme-

diately conclude that the only solutions for xe ≤ 0 are

xe = 0 m0 6= −1

xe ∈ [−1, 0] m0 = −1

xe =

(
m0 −m1

m1 + 1

)
(m0 + 1)(m1 + 1) < 0

xe ∈ (−∞,−1) m0,m1 = −1
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In conclusion, the equilibrium points of the Chua System are

(0, 0, 0) m0 6= −1

(±γ, 0,∓γ) where γ ∈ [0, 1] m0 = −1(
±

(
m1 −m0

m1 + 1

)
, 0,∓

(
m1 −m0

m1 + 1

))
(m0 + 1)(m1 + 1) < 0

(±γ, 0,∓γ) where γ ∈ (1,∞) m0,m1 = −1

The Chua System contains a number of attractors. For example, with parameters α = 8.4562,

β = 12.08, m0 = −0.1768, and m1 = −1.1468, the Chua dynamical system contains two

hidden attractors pressed against each other [21][23]. Let us first provide a routine analysis

of the system with these parameters.

The equilibrium points of the system are approximately (0, 0, 0), (6.607629, 0, -6.607629),

and (-6.607629, 0, 6.607629). Linearizing the system around any arbitrary point (xe, ye, ze) ∈
R3 with xe 6= ±1 results in the matrix-vector equation.ẋẏ

ż

 =

α(ye − xe − f(xe))

xe − ye + ze
−βye

+

−α
(

1 + ∂f(xe)
∂x

)
α 0

1 −1 1

0 −β 0


x− xey − ye
z − ze

 (8)

Linearizing the system about the origin reduces Equation (8) to approximatelyẋẏ
ż

 =

−6.961144 8.4562 0

1 −1 1

0 −12.08 0

xy
z


The eigenvalues and corresponding eigenvectors of the matrix are

λ1 ≈ −7.958741 vλ1 = [−λ1(1 + λ1)− 12.08,−λ1, 12.08]T

λ2 ≈ −0.001201 + 3.25051i vλ2 = [−λ2(1 + λ2)− 12.08,−λ2, 12.08]T

λ3 ≈ −0.001201− 3.25051i vλ2 = [−λ3(1 + λ3)− 12.08,−λ3, 12.08]T

Therefore, the origin is a stable focus-node with a 3-dimensional stable manifold.

Similarly, linearizing the system about the equilibrium points (±6.607629, 0,∓6.607629) re-

duces Equation (8) to approximatelyẋẏ
ż

 =

1.24137 8.4562 0

1 −1 1

0 −12.08 0

x∓ 6.607629

y

z ± 6.607629


17



The eigenvalues and corresponding eigenvectors of the matrix are

λ1 ≈ 2.217218 vλ1 = [−λ1(1 + λ1)− 12.08,−λ1, 12.08]T

λ2 ≈ −0.987924 + 2.405686i vλ2 = [−λ2(1 + λ2)− 12.08,−λ2, 12.08]T

λ3 ≈ −0.987924− 2.405686i vλ2 = [−λ3(1 + λ3)− 12.08,−λ3, 12.08]T

Thus, both equilibrium points (±6.607629, 0,∓6.607629) are saddle-foci, with 2-dimensional

unstable manifolds and 1-dimensional stable manifolds.

As stated before, the system contains two hidden attractors pressed against each other as

shown in Figure 3. These attractors can not be visualized by plotting the unstable manifolds

of the equilibrium points. Instead, the attractors simply loop around and around an area

centered roughly around the origin. Despite the attractors’ much more simple and oscillatory

structure, these attractors are indeed strange; numerical evidence of the fact is presented in

Section III.
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Figure 3: The Chua Hidden Attractors, revolving in an oscillatory, almost periodic manner. No-

tice that the first hidden attractor (in red) and the second hidden attractor (in blue) are

disjoint. Here α = 8.4562, β = 12.08, m0 = −0.1768, and m1 = −1.1468. The attractor

was approximated using an adaptive explicit RK4 numerical integration technique over

a time span of 60 time units using an initial position of (6.230364, 0.331478, -8.772180)

for the red attractor, and an initial position of (-6.230364, -0.331478, 8.772180) for the

blue attractor. See Appendix C for coding details.
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iii. Wimol-Banlue Attractor

Up till now, this paper has only shown examples of multipolynomial (or piecewise multi-

polynomial) dynamical systems. Now we focus a somewhat less-known non-multipolynomial

system: the Wimol-Banlue Attractor described in [29]. The original Wimol-Banlue System

is given by 
ẋ = y − x
ẏ = −z tanh(x)

ż = −α + xy + |y|
(9)

where α ∈ R.

Lemma II.4 (Equilibrium Points of the Wimol-Banlue System). The equilibrium

points {(xe, ye, ze)} of the Wimol-Banlue System given by Equation (9) is given by

(±(1−
√

1 + 4α)/2,±(1−
√

1 + 4α)/2, 0) when α > 0

and

(0, 0, γ) where γ ∈ R when α = 0

Proof. In the first equation, ẋe = ye − xe = 0, meaning that ye = xe.

In the second equation, ẏe = −ze tanh(xe) = 0, meaning that ze = 0 or xe = 0.

In the third equation, że = −α + xeye + |ye| = 0.

Let us first combine the equations ẋe = 0 and że = 0. The resulting expression is

x2
e + |xe| − α = 0 (10)

This is almost a purely quadratic expression. Furthermore, the expression x2
e + |xe| − α is

even since (−xe)2 + | − xe| − α = x2
e + |xe| − α. As such, if xe is a solution to Equation

(10), then so is −xe. Therefore, we will only be focusing on solutions for Equation (10) for

non-negative values of xe.

If xe ≥ 0, then Equation (10) becomes

x2
e + xe − α = 0

which, according to the quadratic formula, has only one potentially non-negative solution.

xe =
− 1 +

√
1 + 4α

2

This solution can only be real and non-negative when
√

1 + 4α ≥ 1 and 1 + 4α ≥ 0. These

expressions together are equivalent to α ≥ 0.
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Thus, when α ≥ 0, xe = ye = ±(1 −
√

1 + 4α)/2. But what about ze? Recall equation

ẏe = 0; since tanh(xe) 6= 0 for α > 0, ze must be equal to 0. Therefore, for α > 0, the only

two equilibrium points are (±(1−
√

1 + 4α)/2,±(1−
√

1 + 4α)/2, 0).

What about when α = 0? Then Equation (10) only has xe = 0 as its solution. If ye = xe = 0,

then equations ẋe = 0, ẏe = 0, że = 0 are already satisfied, meaning that ze can take on

any value it wants. Thus for α = 0, the Wimol-Banlue System has the equilibrium points

(0, 0, γ) where γ ∈ R.

Because of Lemma II.4, we set parameter α = 2 in order to restrict the number of equilib-

rium points; which in this case are (1, 1, 0) and (-1, -1, 0) [29].

As before, we also wish to analyze the stability of the equilibrium points. Linearizing the

system around any arbitrary point (xe, ye, ze) ∈ R3 with ye 6= 0 results in the matrix-vector

equation.ẋẏ
ż

 =

 ye − xe
−ze tanh(xe)

−α + xeye + |ye|

+

 −1 1 0

−ze sech2(xe) 0 − tanh(xe)

ye xe + ∂
∂y
|ye| 0

x− xey − ye
z − ze

 (11)

Setting (xe, ye, ze) equal to equilibrium point (±1,±1, 0) reduces this matrix-vector equation

to ẋẏ
ż

 =

−1 1 0

0 0 ∓ tanh(1)

±1 ±2 0

x∓ 1

y ∓ 1

z


Therefore the eigenvalues and corresponding eigenvectors of the matrix are

λ1 ≈ −1.247346 vλ1 = [± tanh(1),±(λ1 + 1) tanh(1),−λ1(λ1 + 1)]T

λ2 ≈ 0.123673 + 1.347746i vλ2 = [± tanh(1),±(λ2 + 1) tanh(1),−λ2(λ2 + 1)]T

λ3 ≈ 0.123673− 1.347746i vλ2 = [± tanh(1),±(λ3 + 1) tanh(1),−λ3(λ3 + 1)]T

Thus both equilibrium points (±1,±1, 0) are saddle-foci, with a 2-dimensional unstable man-

ifolds and 1-dimensional stable manifolds.

The Wimol-Banlue Attractor is again easy to visualize since it is a self-excited attractor;

plotting the unstable manifolds of either eqilibrium point will visualize the attractor. Figure

4 shows that the attractor certainly seems to be very similar to Lorenz’s attractor in Figure

2; in fact the authors W. San-Um and B. Srisuchinwong intended for their attractor to be

a modification of Lorenz’s system. In any case, the authors also numerically proved the

attractor is in fact strange [29].
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Figure 4: The Wimol-Banlue self-excited Attractor, revolving around both equilibrium points,

which in this case are (−1,−1, 0) and (1, 1, 0). Here α = 2. The attractor was ap-

proximated using an adaptive explicit RK4 numerical integration technique over a time

span of 500 time units using an initial position of (-1.21739, -1.48448, 0.18485). See

Appendix C for coding details.
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III. Chaos

All the strange attractors featured in the previous section have been chosen specifically, as

they also exhibit a very interesting phenomenon: chaos. Chaos in essence has to do with

how microscopic differences in initial conditions can lead to macroscopic differences in the re-

sulting trajectories. There is, in a sense, a separating force between trajectories in a strange

attractor, no matter how close these trajectories first were.

The Oseledec Multiplicative Ergodic Theorem

How does one mathematically define this? We will need some material from Probability and

Ergodic Theory to define a rigid mathematical background for this.

Definition III.1 (σ-Algebra [35]). A σ-Algebra Σ on a set X is a subset of P(X) (the power

set of X) where

• X ∈ Σ

• A ∈ Σ⇒ X\A ∈ Σ

• A1, A2, · · ·An ∈ Σ⇒
⋃n
i=1Ai ∈ Σ

Definition III.2 (Probability Space [35]). The Probability Space is given by (Ω,Σ, ρ). The

sample space Ω is the set of all possible events, and Σ is a σ-algebra on Ω. The probability

measure ρ : Σ→ [0, 1] on the measurable space (Ω,Σ) is a map that assigns a probability to

an event in Σ in such a way that

• ρ(∅) = 0

• ρ(Ω) = 1

• For {Ei ∈ Σ : i ∈ N} where Ei ∩ Ej = ∅ for all i ∈ N and j ∈ N\{i},

ρ

(⋃
i∈N

Ei

)
=
∑
i∈N

ρ(Ei)

Now the question arises: how do we apply this to strange attractors? Well, by setting the

sample space Ω equivalent to attractor A ⊂ Rn and the σ-algebra Σ to P(A) (the power set

of A), we have a measurable space. Can we define a probability measure as well? For this,

we will need a theorem.

Theorem III.1. If the compact set A ∈ Rn is invariant under a dynamical system, then there

is a probability measure ρ invariant under the dynamical system and with support contained

in A. One may choose this ρ to be ergodic; that is, ρ can be chosen to be indecomposible into

constituent probability measures [13].

Why ergodic probability measures are important in dynamical systems becomes clear in the

next theorem.
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Theorem III.2 (Ergodic Theorem [13]). Say A ⊂ Rn is an attractor a dynamical system

δ : S × R → R. If ρ : P(A) → [0, 1] is ergodic, then for ρ-almost all initial conditions x0,

the following limit holds.

ρ(a) = lim
T→∞

1

T

∫ T

0

({
1 δ(x0, t) ∈ a
0 δ(x0, t) 6∈ a

)
dt for a ∈ P(A)

With the preliminaries out of the way, we can now finally get to the main theorem used in

defining chaos. It would be preferable to define some mathematical structure that would

reduce to a simple ”Yes” when an attractor is chaotic and a ”No” when an attractor is not.

The following theorem, though abstract and complex, provides the mathematical rigor for

such a structure.

Theorem III.3 (The Multiplicative Ergodic Theorem of Oseledec [13]). Let ρ be a probability

measure on a measurable space (Ω,Σ) and f : Ω→ Ω a measure-preserving map (i.e. ∀a ∈ Σ,

ρ(f−1(a)) = ρ(a)) such that ρ is ergodic. Let T : Ω→ Rn×n be a measurable map such that∫
x∈Ω

max(log(||T (x)||), 0)ρ′(x)dx <∞

If Tmx =
∏0

i=m−1 T (f i(x)) and Tm∗x is the adjoint of Tmx , then for ρ-almost all x ∈ Ω,

lim
m→∞

(Tm∗x Tmx )1/2m = Λx

The logarithm of the eigenvalues of Λx are called the Lyapunov or Characteristic Exponents

and are ρ-almost everywhere constant. Together, the set of Lyapunov Exponents form what

is called the Lyapunov Spectrum.

As a quick summary, the Lyapunov Exponents are the logarithm of the eigenvalues of some

matrix Λx that can be computed over a specific probability space (Ω,Σ, ρ). Whats more,

these Lyapunov Exponents are ρ-almost everywhere constant, meaning there is a one-to-one

correspondence between Ω and its Lyapunov Exponents. Calculating these exponents can

be done with the following corollary.

Corollary III.4 (Calculation of Lyapunov Exponents [13]). Suppose ρ and Ω are defined

as in Theorem III.3, and Tmx ,Λx ∈ Rn×n are defined for ρ-almost all x ∈ Ω as in Theorem

III.3. Suppose the eigenvalues {λ1, λ2, · · · , } of Λx are sorted in descending order, ignoring

multiplicity. Let Ei
x be the subspace of Rn corresponding to the eigenvalues of Λx that are

less than or equal to exp(λi). Then Rn = E1
x ⊃ E2

x ⊃ · · · and for ρ-almost all x ∈ Ω,

lim
m→∞

1

m
log (||Tmx u||) = λi if u ∈ Ei

x\Ei+1
x

Eckmann and Ruelle describes this process as a filtration for the different exponential growth

rates between trajectories of the dynamical system [13].
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That may be all well and good, but how can we apply this more directly to an attractor in

a dynamical system δ : S × R→ R? Since we have defined Ω and Σ, all that is needed is a

ergodic probability measure ρ. For this, we need a measure-preserving map f : Ω→ Ω. We

can define f and ρ simultaneously.

f(x) = δ(x, τ) for τ ∈ R>0

ρ(A) = lim
T→∞

1

T

∫ T

0

({
1 δ(x0, t) ∈ A
0 δ(x0, t) 6∈ A

)
dt

Eckmann and Ruelle show in their paper that the following probability measure ρ is ergodic

and f is a measure-preserving map. This is because in an attractor, ρ is invariant under the

flow of the dynamical system δ [13]. As such, we can define matrices Tmx and Λx, and in

doing so calculate the Lyapunov Exponents λ1, λ2, · · ·

Tmx =


∂δ(x0,mτ)1/∂x1 ∂δ(x0,mτ)1/∂x2 · · · ∂δ(x0,mτ)1/∂xn
∂δ(x0,mτ)2/∂x1 ∂δ(x0,mτ)2/∂x2 · · · ∂δ(x0,mτ)2/∂xn

...
...

. . .
...

∂δ(x0,mτ)n/∂x1 ∂δ(x0,mτ)n/∂x2 · · · ∂δ(x0,mτ)n/∂xn


Λx = lim

m→∞
(Tm∗x Tmx )1/2m

λi = lim
m→∞

1

m
log (||Tmx u||) if u ∈ Ei

x\Ei+1
x

With this all in mind, we can finally define what most mathematicians see as chaos.

Definition III.3 (Chaos). A attractor A ⊂ Rn in a dynamical system exhibits chaos if the

corresponding maximal Lyapunov Exponent λ1 is strictly positive [3].

Now, using the Multiplicative Ergodic Theorem of Oseledec to calculate Lyapunov Exponents

is a little like using an elephant gun to shoot a pidgeon. In light of this, the most common

algorithm for computing the maximal Lyapunov Exponent of an attractor is by using the

following expression [3].

λ1 = lim
t→∞

lim
||x2−x1||→0

1

t
log

(
||δ(x2, t)− δ(x1, t)||

||x2 − x1||

)

Other, more complicated expressions exist for the computation of the other Lyapunov Ex-

ponents, but are not given in this paper. For more information, see [3][13][33].

Using Definition III.3, one can easily provide their own evidence that the Lorenz Attractor,

the Chua Attractors, and the Wimol-Banlue Attractor are all chaotic by calculating the

Lyapunov Exponents of each system [3][33].

25



The approximated Lyapunov Spectrum of the Lorenz Attractor using parameters σ = 10,

ρ = 28, and β = 8/3 is given in Figure 5. From this, the maximal Lyapunov Exponent is

roughly 0.877648, a positive number. Thus we can safely conclude the Lorenz Attractor is

indeed chaotic.

Figure 5: The convergence of the Lyapunov Spectrum of the Lorenz Attractor using parameters

σ = 10, ρ = 28, and β = 8/3 (the same parameter values as used in Figure 2). According

to our calculations, the spectrum is approximately (0.877648, 0.007993, -14.552204).

See Appendix C for coding details.
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The same analysis can be provided for the two hidden attractors in Figure 3; their Lyapunov

Spectra is shown in Figure 6. The maximal Lyapunov Exponent for both hidden attractors

is 0.219717, proving both attractors are indeed chaotic.

Figure 6: The convergence of the Lyapunov Spectrum of both hidden Chua Attractors using pa-

rameter values α = 8.4562, β = 12.08, m0 = −0.1768, and m1 = −1.1468 (the same

parameter values as used in Figure 3). According to our calculations, both spectra are

identically equal to (0.219717, 0.019772, -1.224210). See Appendix C for coding details.
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Finally, we approximate the Lyapunov Spectrum for the Wimol-Banlue Attractor using

parameter α = 10 in Figure 7. Here maximal Lyapunov Exponent is roughly 0.244054, a

positive number. As before, we can safely conclude the Wimol-Banlue Attractor is once

again chaotic.

Figure 7: The convergence of the Lyapunov Spectrum of the Wimol-Banlue Attractor using pa-

rameter values α = 2. According to our calculations, the spectrum is approximately

(0.244054, 0.001476, -1.245531). See Appendix C for coding details.
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Other Formulations of the Definition of Chaos

Some mathematicians define chaos using a different approach, and its worth taking a look

at what they say. In doing so, we get a much more in-depth understanding of what chaos

is and what it is not. Robert Devaney in his book ”An Introduction to Chaotic Dynamical

Systems” defined chaos in this way [11].

Definition III.4 (Chaos). Let Ω be a set. f : Ω→ Ω is said to be chaotic on Ω if

• Sensitive Dependence on Initial Conditions: ∃ε > 0 such that for any x ∈
Ω and any neighborhood N ⊆ Ω of x, there exists y ∈ N and n ≥ 0 such that

||fn(x)− fn(y)|| > ε

• Topological Transitivity: ∀U, V ⊆ Ω there exists n ≥ 0 such that fn(U) ∩ V 6= ∅
• Periodic points are dense in Ω: The closure of the set {x ∈ Ω : ∃n ≥ 0 such that

fn(x) = x} is equal to Ω

In this definition, chaos is stronger than just sensitive dependence to initial conditions. As

Devaney describes it, there needs to be a sense ”unpredictability, indecomposability, and an

element of regularity” [11].

Let us take a look at each one of these conditions expressed in the Lorenz System defined in

Equation (4) with the same parameters declared in Figure 2, starting with ”unpredictability”.

Say we approximate two trajectories x1(t) and x2(t), where ||x1(0)−x2(0)|| = O(10−5), using

an extremely accurate 14th order RK14(10) numerical integration technique (see Appendix

C for details) [16][17]. Figure 8 then shows the dimension-wise progression of x1(t) and x2(t).

One can easily notice the difference between x1(t) and x2(t) grows as time increases. The

difference between the trajectories is the result of the chaotic nature of the Lorenz Attractor.

Devaney’s second condition of chaos is ”indecomposability”, which can also be exemplified

the Lorenz Attractor. Suppose 100 points are randomly distributed throughout subset of

the phase space near the origin with a volume of O(10−2). Let us denote this subset as

U ⊂ R3. Suppose each of these points is an initial condition for a trajectory, and that the

position of each of these trajectories is recorded at certain intervals of time. Figure 9 shows

this exact scenario. As time progresses, the trajectories experience chaos and are pulled

and stretched apart, scattering throughout the attractor. Topologically, this means that if

δ : R3 × R → R is the Lorenz dynamical system, then for every subset V of the Lorenz

Attractor and every time step τ > 0, there must exist a n ∈ N so that δ(U, nτ) ∩ V 6= ∅.
This is a perfect example of what Devaney described as transitive topology[11]. Any subset

of a chaotic attractor, under the influence of the corresponding dynamical system, will at

some point intersect every other subset of the attractor.

The third aspect of Devaney’s definition is ”an element of regularity” and is much more

difficult to prove for the Lorenz Attractor, at least numerically. However, Sparrow wrote a
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Figure 8: The component-wise progression of x1(t) (in red) and x2(t) (in blue) in the Lorenz

system when σ = 10, ρ = 28, and β = 8/3. These plots were generated with an

RK14(10) integration method using a time step of 0.001 [16][17]. See Appendix C for

details.
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Figure 9: The transitive topology of the Lorenz Attractor (projected onto the xz-plane), shown

through the progression of 100 points moving through the Lorenz dynamical system. The

points at time T = 0 are at most 1.73205 × 10−2 apparent, but as time T progresses,

positions of the points become more and more evenly spread through the attractor.
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collection of papers concerning specifically Lorenz’s attractor and provided some fascinating

detail on how the periodic orbits of the Lorenz Attractor are born, interact, and behave. For

more information, please see [27] and [31].

Lorenz’s attractor is a textbook example of chaos emerging from strange attractors. In fact,

both the Chua Attractors from Equation (6) and Wimol-Banlue Attractor from Equation

(9) have been proven (either algebraically or numerically) to be chaotic [7][29]. The nat-

ural question then arises: do all strange attractors exhibit chaos? Are strange attractors

synonymous with chaotic attractors? This is unfortunately not the case, as can be proven

by a simple counter example: the discrete Feigenbaum Attractor. Research shows that this

attractor is a Cantor set, which in itself is a fractal [3]; the Feigenbaum Attractor is therefore

a chaotic attractor. However, it can also be shown that the Feigenbaum Attractor does not

exhibit chaos [3][13]. For more information, see [18].

Nevertheless, chaos is present in many strange attractors. Because of their intriguing be-

havior and occurrence in many areas of science, chaotic strange attractors are phenomena

that are on the foreground of modern mathematical research. One of the current topics in

this field of research is the localization of these attractors: determining which subsets of the

phase space could contain an attractor and which sets cannot. In the next section, we will

be exploring some current localization techniques currently in use. The reason for this is

that localization requires some inherent knowledge of the attractors themselves. Therefore,

localizing an attractor may provide insight into some of its properties.

Analyzing localization techniques also provides an appropriate transition into introducing

the main theory of this paper: the Competitive Modes Conjecture. Not only is the conjecture

a new attempt at understanding chaotic strange attractors, but it also can serve as a more

generally applicable localization technique of sorts.
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IV. Localization Methods

Localization is the narrowing down of the location of a strange attractor, should it exist

[6][28]. The usefulness of localization can be explained with a thought experiment. Say we

have a dynamical system and we wish to investigate whether this system under a certain

set of parameters contains a strange chaotic attractor. Instead of searching the entire n-

dimension phase space, we apply a localization analysis over our dynamical system. In

this way, we only need to investigate the regions permitted by the localization analysis to

potentially contain a chaotic attractor, and ignore the rest. This can speedup the search for

a chaotic attractor significantly. Here we present an overview of a number of localization

techniques.

i. Localization through Unstable Manifolds of Equilibrium Points

The easiest method of localizing a chaotic attractor is by simply plotting a trajectory with

an initial condition in the basin of attraction of the attractor itself. Chaos may force the

trajectory to lose accuracy to the true solution, but for localization this hardly posses a prob-

lem; the trajectory will still give a clear picture of the structure and location of the attractor.

The issue then is determining the basins of attraction for each attractor. In general, this is

not an easy task. Basins of attraction can be frustratingly small and difficult to find. One

could brute-force the issue by plotting a large number of trajectories scattered throughout

the phase space, but this is extremely costly; the number of trajectories needed for this

approach would be too enormous for this method to be considered viable.

In light of this, remember Definition II.7. A self-excited attractor has a basin of attraction

that includes an equilibrium point. Localizing a self-excited attractor therefore only requires

plotting the unstable manifolds of an equilibrium point in its basin of attraction; at least

one of the manifolds will enter the attractor after a transient period of time, thus showing

the location and structure of the attractor.

Of course, this does not guarantee that a self-excited attractor will exist at all; the method

is useful only if there is a self-excited attractor to begin with, which is not always known to

be the case. Moreover, this method is only efficient for dynamical systems with relatively

few equilibrium points. Plotting a large number of unstable manifolds over a (potentially

very long) transient period of time can be quite costly.

Unfortunately, this approach does not work at all for locating hidden attractors. These can

in theory be located anywhere in the phase space without an equilibrium point to ”anchor”

them down. Localizing these attractors efficiently requires more complex algorithms. All in

all, plotting the unstable manifolds of equilibrium points can be a useful albeit rudimentary

localization technique but should not and can not be used in many situations.
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ii. Localization of Oscillatory Hidden Attractors

Unlike self-excited attractors, hidden attractors are somewhat more difficult to pin down.

Methods have been developed for localizing certain hidden attractors, such as the one pre-

sented in this subsection. This method is described entirely in [21] and [23], where the

authors of the article apply their technique to differential systems of the form

ẋ = Px + φ(x) (12)

Here, x(t) ∈ Rn, P ∈ Rn×n is a constant matrix, and φ : Rn×n → Rn×n is a continuous

vector function with φ(0) = 0 [21][23].

Now, say there exists some matrix K ∈ Rn×n so that P0 = P +K has two purely imaginary

eigenvalues called ±iω0 with ω0 ∈ R>0, and that the rest of the eigenvalues of P0 all have

negative real parts. We can then rewrite Equation (12) into the following form.

ẋ = P0x + εϕ(x)

where ϕ(x) = φ(x)−Kx
(13)

For purposes that we shall explain later, we also introduce a new variable ε ∈ [0, 1]. Notice

that if ε = 1, the Equation (12) and Equation (13) are equivalent.

Let us say for ε = 0 that our system contains a periodic attractor, one that we can ana-

lytically compute. We can then increase ε by a sufficiently small increment, resulting in a

dynamical system that has been slightly augmented. We assume, since this augmentation

was small, that the periodic attractor has been slightly augmented as well, resulting in a

new (pseudo-) periodic attractor. If the increase to ε was sufficiently small, then it stands to

reason that any point x0 on our original periodic attractor will be in the basin of attraction

of this new (pseudo-) periodic attractor. Thus, we can plot a trajectory from x0 and with it

plot our new attractor after a transient period of time [21][23].

Please note that it is very possible that increasing ε beyond a certain value may result in

a bifurcation in our dynamical system that destroys our attractor. We have no guarantees

that our attractor will stay intact by slowly permuting ε from 0 to 1.

According to the technique, we increase ε over and over, using the attractor found in the

previous permutation step to locate the new attractor in the current permutation step. This

can be continued until one of two scenarios happens. The first outcome is that any increase

in ε augments the system of equations enough to where the (pseudo-) periodic attractor dis-

integrates entirely. The second outcome occurs when ε = 1. If the latter happens, then we

have found an attractor for Equation (12). If this attractor does not contain any equilibrium

points in its basin of attraction, then it must be a hidden attractor. Please note that this

does not guarantee that this attractor is chaotic or even strange [21][23].
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We show this process in more detail with an example taken from [21] and [23]. Suppose we

have the following system 
ẋ = α(y − x− f(x))

ẏ = x− y + z

ż = −βy − γz
(14)

where α = 8.4562, β = 12.0732, γ = 0.0052, and f(x) is defined as in Equation (7) with

m0 = −0.1768 and m1 = −1.1468. Notice that this system is very similar to that defined in

Equation (6). Therefore, we shall refer to this system as a form of Chua System [21][23].

Following the form presented in Equation (12), we can rewrite our Chua System into the

following form [21][23].

ẋ = Px + qφ(rTx)

where φ(rTx) = (m0 −m1)
(
||rTx + 1|| − ||rTx− 1||

)
/2

P =

−α(m1 + 1) α 0

1 −1 1

0 −β −γ

 , q =

−α0
0

 , r =

1

0

0

 (15)

Now let us use Equation (15) to define a new system of differential equations following the

form represented in Equation (13). For k ∈ R

ẋ = P0x + εqϕ(rTx) where

P0 = P + kqrT =

−α(m1 + 1 + k) α 0

1 −1 1

0 −β −γ

 ,

ϕ(rTx) = φ(rTx)− krTx

(16)

where k is chosen so that the eigenvalues of P0 are equal to iω0, −iω0, and −d, where

ω0 ∈ R>0 and Re(d) ∈ R>0 [21][23]. Notice that Equation (15) and Equation (16) are

equivalent when ε = 1.

In order to compute the variables ω0, k, and d, we introduce a concept from System and

Control Theory: the transfer function3. In this case, the transfer function can be defined as

WP (p) = rT (P − pI)−1q with p ∈ C (17)

Then [21] and [23] state that Im(WP (±iω0)) = 0 and k = −Re(WP (±iω0))−1, giving a

method of at least approximating the values of ω0 and the corresponding values of k. Using

some linear algebra, we can conclude that

d =
det(P0)

−ω2
0

=
α(m1 + k + 1)(β + γ)− αγ

ω2
0

3The physical interpretation of this function is not important for this document and therefore is omitted

here. For an introduction into transfer functions, see [1]
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Now that k, ω0, and d can be calculated, the next step is to find a periodic trajectory

in Equation (16). This can be difficult; therefore, [21] and [23] apply the invertible linear

transformation x = Sy, where

S =


1 0 −h

m1 + k + 1
− ω0

α

h

α
(d− α(k +m1 + 1))

m1 + k −
ω2

0

α
−ω0

(
m1 + k + 1 +

1

α

)
h

α
(α + (d− α(m1 + k + 1))(1− d))


where

h =
α (α2(m1 + k + 1)2 + α + ω2

0)

ω2
0 + d2

b1 = h− α

b2 =
dh− α2(m1 + k + 1)

ω0

This propagates through Equation (16), transforming it into the following equivalent system

of differential equations [21][23].

ẏ = Ay + εbϕ(cTy)

where ϕ(cTy) = (m0 −m1)
(
||cTy + 1|| − ||cTy − 1||

)
/2− kcTy

A = S−1P0S =

 0 −ω0 0

ω0 0 0

0 0 −d


b = S−1q =

b1

b2

1

 , c = rTS

1

0

h


(18)

Then the following theorem can be applied.

Theorem IV.1. Say we have the system defined in Equation (16) with ε = 0, and where ω0

and k are concretely defined. If there exists an a0 ∈ R so that

Φ(a0) =

∫ 2π/ω0

0

ϕ(a0 cos(ω0t)) (b1 cos(ω0t) + b2 sin(ω0t)) dt = 0

and that Φ′(a0) < 0, then there exists a periodic solution in Equation (16) with ε = 0 with

initial condition [x(0), y(0), z(0)]T = S[a0, 0, 0]T [23].

We will use this periodic solution to hopefully construct a hidden attractor in Equation (15),

if one exists.
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Having completely defined every variable in Equation (18), we can finally try to localize

the hidden attractor(s) in Equation (14). The most pivotal step is defining ω0 and the

corresponding value for k using the transfer function given in Equation (17), and then ap-

proximating the corresponding value for a0 from Theorem IV.1 if it exists. There exists one

set of appropriate parameters, numerically calculated to be

ω0 = 2.0392, k = 0.2099, a0 = 5.8561

Therefore, at most one hidden attractor for Equation (14) can be found using this method.

From Theorem IV.1, we see that the system defined in Equation (16) with ε = 0 has a

periodic solution with the initial condition x(0) = (5.856145, 0.369332,−8.366536). This

periodic solution is given in Figure 10.

We can take any point along the periodic orbit shown in Figure 10 and use it as the initial

condition of a trajectory in Equation (16), increasing ε incrementally. If ε is increased by

a sufficiently small amount, this new trajectory should start somewhere in the basin of at-

traction of the new (pseudo-) periodic attractor, should it exist. We chose to incrementally

increase ε by 0.2. Figure 11 then shows the progression of the periodic attractor (for ε = 0)

into the hidden attractor (for ε = 1).

The resulting chaotic attractor when ε = 1.0 is portrayed in in Figure 12. To provide evi-

dence that this is indeed a chaotic attractor, we also quickly analyze its Lyapunov Spectrum,

a summary of which is provided in Figure 13. The maximal Lyapunov Exponent is approx-

imately 0.158770, which is positive. According to Definition III.3, this hidden attractor is

therefore chaotic.

Notice that this method is generally applicable to all systems that can be described by

Equation (12), making this method very generally applicable. However, this method gives

no guarantees that an attractor will exist in a particular system, only that if it exists there is

the potential of approximating it incrementally. These increments are dependent on ε, and

thus great care must be taken in increasing ε during every step of the algorithm. Further-

more, the resulting attractor still needs to be analyzed to confirm that it is indeed strange

in nature and chaotic in behavior.

On a different note, we saw that the initial step in this method required a considerable

amount of analytic prowess. Our differential system of equations needed to be transformed

multiple times, each transformation having its advantages and disadvantages. Perhaps it

would be better to use a different method that is not as academically taxing.

In conclusion, this method of localizing potential chaotic strange attractors can be very

generally applicable, but as a trade-off is academically dense and does not always conclude
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Figure 10: A periodic solution of the system described in Equation (16) using parameters α =

8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, m1 = −1.1468, and ε = 0.

The attractor was approximated using an adaptive explicit RK4 numerical integration

technique over a time span of 100 time units using an initial position of (5.856145,

0.369332, -8.366536). See Appendix C for coding details.
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Figure 11: The progression of the periodic attractor into chaotic hidden attractor by incrementally

increasing ε from 0.0 to 1.0. The attractors were approximated using an adaptive

explicit RK4 numerical integration technique over a time span of 100 time units each.

See Appendix C for coding details.
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Figure 12: An attractor of the Chua System described in Equation (14) using parameters α =

8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, and m1 = −1.1468. The attractor

was approximated using an adaptive explicit RK4 numerical integration technique over

a time span of 100 time units using an initial position of (5.389790, -0.341422, -

8.255775). See Appendix C for coding details.
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Figure 13: The convergence of the Lyapunov Spectrum of the hidden Chua Attractor from Equa-

tion (14) using parameters α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768,

and m1 = −1.1468. According to our calculations, the spectrum is approximately

(0.158770, -0.010016, -1.178385). See Appendix C for coding details.
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in desirable results. One can now begin to understand the gravity of finding a generally-

applicable, numerically-light, and user-friendly algorithm for attractor localization; doing so

is not an easy task.

iii. Localization through Nambu Hamiltonians

Instead of using individual trajectories of the dynamical system, this method uses Nambu

mechanics, a generalization of Hamiltonian mechanics which are commonplace in mechanical

physics. We first give the definition for a Hamiltonian System. Then we expand upon it

using the Nambu formalism, but only focusing on the 3-dimensional case for simplicity’s

sake; for a more complete definition, see [32].

Definition IV.1. Hamiltonian System

Say A,B ⊆ Rn so that x(t) ∈ A and y(t) ∈ B are differentiable for t ∈ T ⊆ R, where T

is open. Suppose there exists a function H : A × B → R with H ∈ C1(A,B) so that the

following 2n-dimensional system of equations holds.
ẋ =

∂H

∂y
=

(
∂H

∂y1

, · · · ,
∂H

∂yn

)T

ẏ = −
∂H

∂x
= −

(
∂H

∂x1

, · · · ,
∂H

∂xn

)T

This is known as a Hamiltonian System with n-degrees of freedom, where H is the Hamilto-

nian of the system [27].

Notice that in a Hamiltonian System,

Ḣ =
∂H

∂x
· ẋ +

∂H

∂y
· ẏ = −ẏ · ẋ + ẋ · ẏ = 0

We can conclude that H(x(t),y(t)) = H(x(0),y(0)) for all t ∈ T . This means that for any

trajectory in a continuous dynamical system, the value of H remains constant.

This can also be seen it a different way. The equation H(x(t),y(t)) = H(x(0),y(0)) gener-

ally defines a (n-1)-dimensional surface in the n-dimensional phase plane. If a trajectory of

the corresponding dynamical system were to have the initial condition (x(0),y(0)), then the

trajectory would have to remain on this surface for all t ∈ R.

As one can see, using the Hamiltonian is an incredibly efficient way to localize the trajec-

tories of a system. However, it is not always possible to find a Hamiltonian function. Even

when it is possible, calculating a suitable Hamiltonian is usually a very difficult task.
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We now expand on the concept of a Hamiltonian System by introducing what is called a

Nambu System. For simplicity, we only focus on 3-dimensional Nambu Systems; for a more

complete definition, see [32].

Definition IV.2. Nambu System for 3 Dimensions

Suppose A ⊆ R3 so that (x(t), y(t), z(t)) ∈ A is differentiable for all t ∈ T ⊆ R. Suppose

there exist functions H1, H2 : A→ R with H1, H2 ∈ C1(A) so that the following 3-dimensional

system of equations holds. 

ẋ =
∂H1

∂y

∂H2

∂z
−
∂H1

∂z

∂H2

∂y

ẏ =
∂H1

∂z

∂H2

∂x
−
∂H1

∂x

∂H2

∂z

ż =
∂H1

∂x

∂H2

∂y
−
∂H1

∂y

∂H2

∂x

We call this a 3-dimensional Nambu System, where H1 and H2 are the ”Nambunians” of

the system (this naming is a personal choice by the authors and is not reflected in other

literature). Notice that we can reduce this definition significantly into the equation ẋ =

∇H1 ×∇H2, where ”×” signifies the cross-product [28][32].

We now introduce and prove a few lemmas for 3-dimensional Nambu Systems.

Lemma IV.2. Suppose we have a Nambu System as described in Definition IV.2. Then

Ḣ1 = Ḣ2 = 0 [28][32]

Proof. We prove this for H1 only. The proof for H2 is extremely similar.

Ḣ1 = ∇H1 · ẋ

=
∂H1

∂x

(
∂H1

∂y

∂H2

∂z
−
∂H1

∂z

∂H2

∂y

)

+
∂H1

∂y

(
∂H1

∂z

∂H2

∂x
−
∂H1

∂x

∂H2

∂z

)

+
∂H1

∂z

(
∂H1

∂x

∂H2

∂y
−
∂H1

∂y

∂H2

∂x

)

=
∂H1

∂x

∂H1

∂y

∂H2

∂z
−
∂H1

∂x

∂H1

∂z

∂H2

∂y

+
∂H1

∂y

∂H1

∂z

∂H2

∂x
−
∂H1

∂x

∂H1

∂y

∂H2

∂z

+
∂H1

∂x

∂H1

∂z

∂H2

∂y
−
∂H1

∂y

∂H1

∂z

∂H2

∂x

= 0
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Just as before with Hamiltonian Systems, we can use Lemma IV.2 to conclude that

H1(x(t), y(t), z(t)) = H1(x(0), y(0), z(0))

H2(x(t), y(t), z(t)) = H2(x(0), y(0), z(0))

Generally, both equations describe 2-dimensional surfaces in the 3-dimensional phase space.

As a result, ifH1 andH2 are distinct sets, the trajectory with initial condition (x(0), y(0), z(0))

must lie in the intersection of these two surfaces. Therefore, if one knows the Nambunians

of a Nambu System, they are able to very accurately predict where any trajectory will be in

the phase space [28].

In order to show the power of Nambu Systems and provide a concrete example as to how

they can be used to localize strange attractors, we focus yet again on the Lorenz System

as described in Equation (4) with σ = 10, ρ = 28, and β = 8/3. This example is handled

in far greater detail in [28]. We simplify the mathematics here, focusing on understandability.

First of all, the Lorenz System cannot be written as a 3-dimensional Nambu System; the

reason for this is that only divergence-free systems have the possibility of being a Nambu

System [28]. However, the divergence of the Lorenz System is ∇ · ẋ = −(σ + β + 1).

Therefore, we must split the system into a ”dissipative” (meaning ”divergence-containing”)

part (xd, yd, zd) and a ”non-dissipative” (meaning ”divergence-free”) part (xnd, ynd, znd) [28].
ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

=


ẋnd = σynd

ẏnd = xnd(ρ− znd)
żnd = xndynd

+


ẋd = −σxd
ẏd = −yd
żd = βzd

(19)

We will focus on the non-dissipative part for now, later reconnecting it with the dissipative

part and drawing conclusions from that.

For the non-dissipative part of the Lorenz System, the Nambunians are calculated to be the

following [28].

H1(x, y, z) =
1

2
y2 +

1

2
(z − ρ)2 − 1

2
ρ2, H2(x, y, z) = −1

2
x2 + σz (20)

From Lemma IV.2, we are able to conclude that a trajectory starting at (xnd(0), ynd(0), znd(0))

will always lie in the intersection of

H1(xnd(t), ynd(t), znd(t)) = H1(xnd(0), ynd(0), znd(0))

H2(xnd(t), ynd(t), znd(t)) = H2(xnd(0), ynd(0), znd(0))
(21)

This phenomenon is shown in Figure 14 by setting the initial condition arbitrarily to (xnd(0), ynd(0), znd(0)) =

(1, 5,−1) and plotting the corresponding non-dissipative trajectory along with the surfaces

from Equation (21).
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Figure 14: The non-dissipative part of the Lorenz System as the intersection between the surfaces

defined in Equation (21). The parameters here are σ = 10, ρ = 28, and β = 8/3.

The trajectory was approximated using an adaptive explicit RK4 numerical integration

technique over a time span of 10 time units using an initial position of (10.383, 16.824,

19.325). The 3-dimensional surfaces were approximated using an adaptive Marching

Cube Algorithm. See Appendix C for coding details.
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How does these Nambunians impact the original Lorenz System? Let us recombine the

dissipative and non-dissipative parts and see what conclusions we can make. The following

analysis is based on [28], which we refer to for a more complete overview. We start by

focusing on the Nambunian H1.

The Nambunian H1

The formula for the Nambunian H1 found in Equation (20) can be rewritten.

H1(x, y, z) =
1

2
y2 +

1

2
(z − ρ)2 − 1

2
ρ2

⇔
y2 + (z − ρ)2 = 2H1(x, y, z) + ρ2

If H1(x, y, z) is set to some value k ∈ R, then this expression describes some sort of surface

in the phase space; in the case of k > −ρ2/2, a cylinder with radius
√

2k + ρ2 is formed

around the x-axis.

Let us say there exists some trajectory δ(x0, t) ∈ R3 of the Lorenz System. For any t ∈ R,

the surface

S1(x0, t) =
{

(x, y, z) ∈ R3 : y2 + (z − ρ)2 = 2H1(δ(x0, t)) + ρ2
}

(22)

must contain the point δ(x0, t) per construction.

Things get interesting when analyzing the derivative of H1 with respect to t.

Ḣ1(x, y, z) = −y2 − β(z − ρ/2)2 + βρ2/4

Notice that Ḣ1(x, y, z) ≤ 0 for all points in the phase space where y2 +β(z− ρ/2)2 ≥ βρ2/4.

This result has some very interesting implications. Suppose there exists some k > −ρ2/2 so

that Ḣ1(x, y, z) < 0 for all points in the phase space outside the cylinder

Sk =
{

(x, y, z) ∈ R3 : y2 + (z − ρ)2 = 2k + ρ2
}

Proving that such a k exists is relatively straight-forward. The only impact k has on Sk is

the size of its radius: any increase in k will increase radius
√

2k + ρ2. As a result, there

must exist some k sufficiently large so that every point in Sk is completely outside the cylin-

der y2 + β(z − ρ/2)2 = βρ2/4. Thus, there must exist some k sufficiently large so that

Ḣ1(x, y, z) < 0 for every point in Sk.

We can conclude that if trajectory δ(x0, t) has its initial condition outside of Sk, then there

must exist a τ ∈ R>0 ∪ {∞} so that Ḣ1(δ(x0, t)) < 0 for all 0 ≤ t < τ 4. This means that

4It is to be noted that τ is specific for each trajectory.
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for all 0 ≤ t < τ , S1(x0, t) will shrink in radius. However, since δ(x0, t) is always found on

S1(x0, t) per construction, this is equivalent to saying that for all 0 ≤ t < τ , δ(x0, t) will get

closer and closer to some subset inside or on the cylinder Sk.

Assume without loss of generality that Ḣ1(δ(x0, τ)) = 0. Then δ(x0, τ) must be inside or

on the cylinder Sk. However, we know then that δ(x0, t) cannot return back to the exterior

of Sk since we just saw that any trajectory with any initial condition outside of Sk must be

unequivocally drawn towards Sk. Therefore, δ(x0, t) will stay inside or on Sk for all t ≥ τ .

In conclusion, we have proven that δ(x0, t) will be attracted to some subset of the surface

or interior of Sk. Since we have not specified the trajectory δ(x0, t), we can conclude that

all attractors, global or otherwise, are found inside or on Sk, including the Lorenz Attractor

itself.

Therefore, the Lorenz Attractor must be found inside the set of the phase space where{
(x, y, z) ∈ R3 : y2 + (z − ρ)2 ≤ 2k + ρ2, k > −ρ2/2, Ḣ1(x, y, z) ≤ 0

}
However, we now hope to find the optimal k in order to localize the Lorenz Attractor as

efficiently as possible. In essence, we wish to find

kmin = min

{
k > −1

2
ρ2 : Ḣ1(x, y, z) ≤ 0 ∀(x, y, z) where y2 + (z − ρ)2 ≥ 2k + ρ2

}
This is a constrained optimization problem that can be solved using the Lagrange’s Multiplier

Method (see [10]). Sparing the extraneous details, we see that the Lorenz Attractor must be

found somewhere in the set

Skmin
=
{

(x, y, z) ∈ R3 : y2 + (z − ρ)2 ≤ 2kmin + ρ2
}

where

kmin = H1

(
0,
± βρ

2− 2β

√
β − 2,

ρ(2− β)

2− 2β

)
=
ρ2

2

(β − 2)2

4(β − 1)

(23)

It is trivial to conclude that kmin > −ρ2/2 when β > 1.

Figure 15 plots the Lorenz Attractor along with boundary of the localizing set defined in

Equation (23).
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Figure 15: The Lorenz Attractor, nestled comfortably within the localizing set defined in Equation

(23) (projected onto to the yz-plane). The parameters here are σ = 10, ρ = 28, and

β = 8/3. The 2-dimensional projection of the set defined in Equation (23) was ap-

proximated using an adaptive Marching Square Algorithm. See Appendix C for details.
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The Nambunian H2

Just as with H1, the formula for the Nambunian H2 from Equation (20) can be rewritten.

H2(x, y, z) = −1

2
x2 + σz

⇔
2σz = x2 + 2H2(x, y, z)

If H2(x, y, z) is set to some vale of k ∈ R, then this expression describes a paraboloid.

Let us say there exists some trajectory δ(x0, t) ∈ R3 of the Lorenz System. Like for S1(x0, t),

for any t ∈ R, the surface

S2(x0, t) =
{

(x, y, z) ∈ R3 : 2σz = x2 + 2H2(δ(x0, t))
}

(24)

must contain the point δ(x0, t).

The derivative is again of great importance.

Ḣ2(x, y, z) = σ(x2 − βz)

Notice that Ḣ2(x, y, z) ≥ 0 for all points in the phase space where σx2 ≥ βσz. Again,

suppose there exists some k ∈ R so that Ḣ2(x, y, z) > 0 for all points in the phase space

”below” the paraboloid

Sk =
{

(x, y, z) ∈ R3 : 2σz = x2 + 2k
}

Proving such a k exists is simple. Under the assumption that 2σ ≥ β > 0 and k < 0, the

following inequality always holds.

σx2 ≥ σx2 + 2σk = 2σ2z ≥ βσz

Thus, every point in Sk is completely ”underneath” the paraboloid σx2 ≥ βσz. Thus, for

2σ ≥ β > 0 there must exist a k so that Ḣ2(x, y, z) > 0 for every point in Sk.

Similar to our analysis with the Nambunian H1, we can conclude that if trajectory δ(x0, t)

has its initial condition below Sk, then there must exist a τ ∈ R>0∪{∞} so that ∀0 ≤ t < τ ,

Ḣ2(δ(x0, t)) > 05. This means that for all 0 ≤ t < τ , S2(x0, t) will shift upwards in the

positive z-direction. However, since δ(x0, t) is always found on S2(x0, t) per construction,

this is equivalent to saying that δ(x0, t) will get closer and closer to some subset above or on

the paraboloid Sk ∀0 ≤ t < τ .

5It is to be noted that τ is specific for each trajectory.
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Again assume without loss of generality that Ḣ2(δ(x0, τ)) = 0. Then δ(x0, τ) must be

”above” or on the paraboloid Sk. However, we know then that δ(x0, t) cannot return to the

area underneath Sk since we just saw that any trajectory with any initial condition under-

neath Sk must be unequivocally drawn towards Sk. Therefore, δ(x0, t) will stay above or on

Sk for all t ≥ τ . In conclusion, we have proven that δ(x0, t) will be attracted to some subset

of the surface or area above Sk. Since we have not specified δ(x0, t), we can conclude that

all attractors, global or otherwise, are found above or on Sk, including the Lorenz Attractor.

Thus, the Lorenz Attractor must be found inside the set of the phase space{
(x, y, z) ∈ R3 : 2σz ≥ x2 + 2k, k ∈ R, Ḣ2(x, y, z) ≥ 0

}
However, we now hope to once again find the optimal k in order to localize the Lorenz

Attractor as efficiently as possible. In essence, we wish to find

kmax = max
{
k ∈ R : Ḣ2(x, y, z) ≥ 0 ∀(x, y, z) where 2σz ≤ x2 + 2k

}
Once again, this is a constrained optimization problem that can be solved using Lagrange’s

Multiplier Method (see [10]). Sparing the extraneous details and under the assumption that

2σ ≥ β > 0, we see that the Lorenz Attractor must be found somewhere in the set

Skmax =
{

(x, y, z) ∈ R3 : 2σz ≥ x2 + 2kmax
}

where

kmax = H2(0, 0, 0) = 0

(25)

Figure 16 plots the Lorenz Attractor along with boundary of the localizing set defined in

Equation (25).

Using both Nambunians H1 and H2, the Lorenz Attractor can be localized very efficiently.

We represent these results in Figure 17 by plotting the Lorenz Attractor along with boundary

of the localizing sets defined in Equations (23) and (25).
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Figure 16: The Lorenz Attractor, nestled comfortably within the localizing set defined in Equation

(25) (projected onto to the xz-plane). The parameters here are σ = 10, ρ = 28, and

β = 8/3. The 2-dimensional projection of the set defined in Equation (25) was ap-

proximated using an adaptive Marching Square Algorithm. See Appendix C for details.

51



Figure 17: The Lorenz Attractor, nestled comfortably within the localizing sets defined in Equa-

tions (23) and (25). The parameters here are σ = 10, ρ = 28, and β = 8/3. The

surfaces were approximated using an adaptive Marching Cube Algorithm. See Appendix

C for details.
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As a concluding note, we introduce a useful lemma.

Lemma IV.3. Suppose we have a Nambu System as described in Definition IV.2. Suppose

H1 and H2 are continuously differentiable functions of H1 and H2, where the corresponding

Jacobian has a determinant of 1. Then H1 and H2 can be used instead of H1 and H2 in

Definition IV.2 [28][32].

Proving this lemma only requires a basic understanding of linear algebra and thus will not

be presented here. For more details, see [28] and [32].

Using this lemma, an infinite number of Nambunian pairs H1 and H2 can be constructed,

and in-so-doing an infinite number of different localizing sets just like those constructed in

Equations (23) and (25). Therefore, a more intensive analysis using multiple pairs of local-

izing sets could lead to a very efficient localization of the Lorenz Attractor indeed.

Of course, this method is only applicable to systems of differential equations that have a

non-zero non-dissipative part, for which the Nambunians can be found (which is a difficult

task in and of itself). The analysis that follows is also rather lengthy and may not even be

possible. It all depends on how the Nambunians behave and interact with the system, which

can make analysis difficult if not impossible. In conclusion, this method can be very efficient

in localizing strange attractors, but can only be applied effectively to a limited number of

dynamical systems due to the cost of finding the appropriate Nambunian functions.
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V. The Competitive Modes Conjecture

The previous sections’ focus has been to understand chaotic strange attractors and the

properties thereof. Even the localization methodologies presented in the section beforehand

attempt to make use of special properties found among certain sets of dynamical systems,

with varying success. This section will introduce a somewhat new methodology, one that

may provide great insight into the very nature of chaos itself. All knowledge presented in

this section comes from sources [4], [5], [6], [9], [14], and [37].

Given is a general n-dimensional autonomous system of differential equations ẋ = F(x) with

x : R→ Rn. We can easily transform this system into a system of second-order differential

equations as follows

ẍi = Ḟi(x)

= ∇Fi(x) · ẋ

=
n∑
j=1

∂Fi

∂xj
(x)Fj(x)

≡ fi(x)

(26)

This of course only works if Fi is xj-differentiable for all i, j ∈ {1, 2, · · · , n}.

Definition V.1 (Splitting of a Function). In previous literature, function fi : Rn → R can

be split with respect to xi if it can be rewritten as

fi(x) = hi(x1, · · · , xi−1, xi+1, · · · , xn)− xigi(x) (27)

We name function hi : Rn−1 → R the ith forcing function. We name function gi : Rn → R
the ith squared frequency function.

For simplicity, let us establish the notation of a particular operator function that we will use

often. Say we have x ∈ Rn. Then function pi : Rn → Rn−1 is defined as follows.

pi(x) = [x1, · · · xi−1, xi+1, · · · xn]T (28)

If Equation (26) holds and the resulting functions fi can all be split, then we can rewrite

our original system of differential equations into the form

ẍ1 + g1(x)x1 = h1(p1(x))

ẍ2 + g2(x)x2 = h2(p2(x))

· · ·
ẍi + gi(x)xi = hi(pi(x))

· · ·
ẍn + gn(x)xn = hn(pn(x))

(29)
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In a sense, we have turned our system of differential equations into a system of interconnected,

nonlinear ”oscillators”.

Definition V.2 (Competitive Modes). Say we have the n-dimensional autonomous system

of differential equations ẋ = F(x). If Equation (26) holds for this system and the resulting

functions fi can all be split, then the system can be transformed as shown into Equation (29).

The solutions xi for Equation (29) are then known as the competitive modes of the system,

with gi and hi being the corresponding squared frequency functions and forcing functions,

respectively.

Currently, there is an open conjecture connecting chaos and competitive modes together,

and it is presented as follows.

Conjecture V.1 (Competitive Modes Conjecture). The necessary conditions for a dynami-

cal system to exhibit chaotic are given below (assuming Equation (26) holds and the resulting

functions fi can all be split):

• the dimension n of the dynamical system is greater than 2;

• at least two distinct squared frequency functions gi and gj are competitive or nearly

competitive; that is, there exists t ∈ R so that gi(t) ≈ gj(t) and gi(t), gj(t) > 0;

• at least one squared frequency function gi is not constant with respect to time;

• at least one forcing function hi is not constant with respect to some system variable xj.

Notice that the conjecture specifically states necessary conditions, not sufficient ones. That

is, if an attractor exhibits chaos, then the stated conditions are met, not the other way

around. It describes what properties a chaotic system will have; it does not describe a

guaranteed approach for constructing them. The authors find the particular wording of the

conjecture to be a bit confusing and difficult to understand, and therefore wanted to place

specific emphasis on explaining exactly how the conjecture works.

The conjecture gets its name from its most important condition: two competitive modes

must compete with each other, which is equivalent to saying that the corresponding squared

frequency functions must intersect. We can group these intersections into sets: say we have

squared frequency function gi and gj where i 6= j. We can then define intersection set Gij as

Gij = {x ∈ Rn : gi(x) = gj(x)} (30)

Furthermore,

G+
ij = {x ∈ Rn : gi(x) = gj(x) > 0} (31)

This then means that if the conjecture is correct, for a chaotic attractor A ⊂ Rn there must

exist some i, j ∈ {1, 2, · · · , n} where i 6= j so that A ∩ G+
i,j 6= ∅. This phenomenon is the

focus of Reference [6] and serves to localize chaotic attractors.
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As in [6], let us exemplify this localization technique using the Lorenz Attractor (Equation 4

from Section II). Differentiating the Lorenz System with respect to time and then splitting

each of the equations into their respective forcing and squared frequency functions, we obtain

the following [6]6.

hx(y, z) = −σ(σ + 1)y

gx(x, y, z) = σ(z − σ − ρ)

hy(x, z) = (σ + β + 1)xz − ρ(σ + 1)x

gy(x, y, z) = x2 + σz − σρ− 1

hz(x, y) = ρx2 − (σ + β + 1)xy + σy2

gz(x, y, z) = x2 − β2

Let us go through each of the conjecture’s necessary conditions individually before going

forward[6].

• The dimension of the Lorenz System is 3, which is greater than 2.

• As least one squared frequency function (for example gx(x(t), y(t), z(t)) is not constant

with respect to time t.

• As least one of the forcing functions (for example hy(x(t), z(t)) is not constant with

respect to both x and z.

The only condition left to be verified is whether at least two squared frequency functions

intersect for some point (x(t∗), y(t∗), z(t∗)) in the Lorenz Attractor. Plotting a random tra-

jectory inside of the Lorenz Attractor (with the correct set of parameters) does reveal this to

be indeed true; verification can be found in Figure 18 [6]. As a result, the Lorenz Attractor

is an example of where the Competitive Modes Conjecture predict accurate results about

chaos, meaning that the conjecture could be true [31][34].

In fact, the subsets of the phase space where the three squared frequency functions intersect

each other form the continuous 2-dimensional surfaces Gxy, Gxz, and Gyz. These surfaces

are plotted in Figure 19. As one can see, the attractor concretely intersects Gyz. Figure 18

provides evidence that not only does the attractor intersects Gyz, it specifically intersects

G+
yz. Thus, the Competitive Modes Conjecture can be used as a localization technique of

chaotic attractors: if the conjecture is true, it indicates if a chaotic attractor could exist and

where it would reside in the phase space [6].

Unfortunately, the Competitive Modes Conjecture is surprisingly vague in how to math-

ematically define forcing functions and squared frequency functions. For multipolynomial

systems, previous literature seems to indicate an unspoken rule: splitting a multipolyno-

mial function in terms of variable xi results in the forcing function being equal the sum of

all terms that do not include xi [4][5][6][9][14][37]. However, this relatively straightforward

6Calculations are performed in detail in Section VII
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”definition” is only applicable to functions that are at least polynomial in xi. As far as the

authors know, no research has been done on an actual mathematically rigorous counterpart

to Definition V.1. The latter half of this paper is aimed towards rectifying this oversight.

Figure 18: The squared frequency functions gx (in red), gy (in green), and gz (in blue) applied

to a random trajectory in the Lorenz Attractor, where σ = 10, ρ = 28, and β = 8/3.

Notice that gy and gz intersect on a regular basis, and that all intersections occur when

gy and gz take on positive values.
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Figure 19: The visualization of the intersection set Gxy (an empty set), the intersection set Gxz
(in green), and the intersection set Gyz (in blue). The surfaces were approximated

using an adaptive Marching Cube Algorithm. See Appendix C for coding details.
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VI. Splitting of Functions

This section is devoted to providing a new definition for the splitting of a function. Through-

out this paper, we shall refer to domain Dn
i (v, r1, r2), which is the n-dimensional region of

space dependent on center v ∈ Rn and radii r1, r2 ∈ R>0 ∪ {∞} defined as

Dn
i (v, r1, r2) ≡

{
x ∈ Rn :

∑
j 6=i

(xj − vj)
2 < r2

1, |xi − vi| < r2

}
(32)

It is important to see that Dn
i (v, r1, r2) is a nonempty set that resembles an open cylinder-

like object. In the i-th dimension, Dn
i (v, r1, r2) is restricted between vi − r2 and vi + r2,

while in the other dimensions it is restricted to a (n− 1)-dimensional ball of radius r1. If for

example n is 3, D3
1(v, r1, r2), D3

2(v, r1, r2), and D3
3(v, r1, r2) are all exactly open cylinders,

each with a different axis. As a note of special interest, Dn
i (v,∞,∞) ≡ Rn for all v ∈ Rn.

For reading ease, we often denote Dn
i (v, r1, r2) simply as Dn

i since center v and radii r1, r2

are presumed to be suitably chosen for each situation.

Definition VI.1 (Splitting of a Function). We now say that for some v ∈ Rn and r1, r2 ∈
R>0 ∪ {∞}, function f : Dn

i (v, r1, r2) → R can be split with respect to the i-th dimension

and splitting parameter c ∈ (vi − r2, vi + r2) if over Dn
i , f can be rewritten as

f(x) = h(pi(x); c)− (xi − c)g(x; c) (33)

where

• i ∈ {1, 2, · · ·n};
• f is continuous in xi for all x ∈ Dn

i ;

• the subset {x ∈ Dn
i : xi = c} is not empty;

• h is constant and finite in xi, given x1, · · · , xi−1, xi+1, · · · , xn;

• g is continuous with respect to xi in R, given x1, · · · , xi−1, xi+1, · · · , xn

Here, h is the forcing function and g is the squared frequency function as before.

The necessity of the first requisite in this new definition is obvious: index i refers to a spe-

cific dimension in vector x ∈ Rn and therefore must be a natural number between 1 and n.

The second requisite is simply to ensure we are dealing with well-behaved functions. The

third requisite is to guarantee that forcing function h is well-defined (this will be discussed

in greater detail in Section VIII). The fourth requisite is an assumption carried over from

previous literature on the subject and involves somewhat abstract oscillatory dynamical sys-

tem theory. The last requisite from Definition VI.1 is to ensure that the squared frequency

functions are well-behaved.

As a result, the following lemma is possibly the simplest lemma in this entire paper, but also

arguably the most crucial.
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Lemma VI.1. Say function f : Dn
i → R can be split with respect to the i-th dimension and

splitting parameter c ∈ R into forcing function h and squared frequency function g. Then

h(pi(x); c) = f(x)|xi=c.

Proof. Say function f : Dn
i → R can be split with respect to the i-th dimension and splitting

parameter c ∈ R into forcing function h and squared frequency function g. Then for all

x ∈ Dn
i , since g is continuous in xi,

g(x)|xi=c = lim
xi→c

(
h(pi(x); c)− f(x)

xi − c

)
∈ R

Because of this, limxi→c (h(pi(x); c)− f(x)) = 0. Otherwise, limxi→c g(x) would surely be

infinite or undefined. Thus, we can conclude that, since f is continuous in xi,

0 = lim
xi→c

(h(pi(x); c)− f(x)) = h(pi(x); c)− lim
xi→c

f(x) = h(pi(x); c)− f(x)|xi=c

This lemma is important, as it symbolizes the ideology behind Definition VI.1. Our re-

search started by trying to rigorously define the forcing function h, and then defining the

squared frequency function g as a direct result. The realization came that in multipolyno-

mial systems, Lemma VI.1 was always true. In fact, it seemed that previous literature had

specifically defined h so that the lemma would always hold for c = 0 [4][5][6], [9][14][37]. We

decided to expand this idea to general continuous functions and build the rest of our theory

on this principle.

Lemma VI.2 (Uniqueness Lemma). Say function f : Dn
i → R can be split with respect

to the i-th dimension and splitting parameter c ∈ R into forcing function h and squared

frequency function g. Then h and g are uniquely defined over Dn
i .

Proof. Say function f : Dn
i → R can be split with respect to the i-th dimension and splitting

parameter c ∈ R into forcing function h1 and squared frequency function g1, and also into

forcing function h2 and squared frequency function g2. Then for all x ∈ Dn
i ,

f(x) = h1(pi(x); c)− (xi − c)g1(x; c) = h2(pi(x); c)− (xi − c)g2(x; c)

Using Lemma VI.1, we can immediately conclude that h1 ≡ h2 over Dn
i .

As a result, for all x ∈ Dn
i ,

(xi − c)(g1(x; c)− g2(x; c)) = h1(pi(x); c)− h2(pi(x); c) = 0

We can conclude for all x ∈ Dn
i with xi 6= c, g1(x; c) = g2(x; c).

Furthermore, since g1 and g2 are both continuous in Dn
i ,

g1(x; c)|xi=c = lim
xi→c

g1(x; c) = lim
xi→c

g2(x; c) = g2(x; c)|xi=c

Thus, we have proven that g1 ≡ g2 over Dn
i .
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Lemma VI.3 (Combination Lemma). Say function f1 : Dn
i → R can be split with respect

to the i-th dimension and splitting parameter c ∈ R into forcing function h1 and squared

frequency function g1. Say function f2 : Dn
i → R can be split with respect to the i-th

dimension and c into forcing function h2 and squared frequency function g2.

• For arbitrary α, β ∈ R, the sum (αf1 + βf2) : Dn
i → R can be split with respect to

i-th dimension and c into forcing function (αh1 + βh2) and squared frequency function

(αg1 + βg2).

• The product (f1f2) : Dn
i → R can be split with respect to the i-th dimension and c into

forcing function (h1h2) and squared frequency function (h1g2 + h2g1 − (xi − c)g1g2).

• The quotient (f1/f2) : Dn
i → R can be split with respect to the i-th dimension and c

into forcing function (h1/h2) and squared frequency function ((h2g1 − h1g2)/(h2f2)),

provided both f2(x) and h2(pi(x)) are nonzero for all x ∈ Dn
i and for c

Proof. Say function f1 : Dn
i → R can be split with respect to i-th dimension and c into

forcing function h1 and squared frequency function g1. Then for all x ∈ Dn
i ,

f1(x) = h1(pi(x); c)− (xi − c)g1(x; c)

Say function f2 : Dn
i → R can also be split with respect to i-th dimension and c into forcing

function h2 and squared frequency function g2. Then for all x ∈ Dn
i ,

f2(x) = h2(pi(x); c)− (xi − c)g2(x; c)

Notice that since both f1 and f2 are splittable in Dn
i , i ∈ {1, 2, · · ·n} and the subset

{x ∈ Dn
i : xi = c} is not empty.

Take α, β ∈ R arbitrarily. Then

αf1(x) + βf2(x) = α
(
h1(pi(x); c)− (xi − c)g1(x; c)

)
+ β

(
h2(pi(x); c)− (xi − c)g2(x; c)

)
=
(
αh1(pi(x); c) + βh2(pi(x); c)

)
− (xi − c)

(
αg1(x; c) + βg2(x; c)

)
Notice that

• the linear combination αf1 + βf2 is continuous over Dn
i in xi since f1 and f2 are

continuous over Dn
i in xi;

• the linear combination αh1 + βh2 is constant and finite over Dn
i in xi since h1 and h2

are constant and finite over Dn
i in xi;

• the linear combination αg1 + βg2 is continuous over Dn
i in xi since g1 and g2 are

continuous over Dn
i in xi

Thus we constructed the splitting of (αf1 + βf2) with respect to the i-th dimension and

splitting parameter c.

61



We can also split the product of f1 and f2.

f1(x)f2(x) =
(
h1(pi(x); c)− (xi − c)g1(x; c)

)(
h2(pi(x); c)− (xi − c)g2(x; c)

)
= h1(pi(x); c)h2(pi(x); c)− (xi − c)

(
h1(pi(x); c)g2(x; c) + h2(pi(x); c)g1(x; c)

)
+ (xi − c)2g1(x; c)g2(x; c)

Notice that

• the product f1f2 is continuous over Dn
i in xi since f1 and f2 are continuous over Dn

i in

xi;

• the product h1h2 is constant and finite over Dn
i in xi since h1 and h2 are constant and

finite over Dn
i in xi;

• the function h1g2 + h2g1 − (xi − c)g1g2 is continuous over Dn
i in xi since g1 and g2 are

continuous and h1 and h2 are constant and finite over Dn
i in xi

Thus we constructed the splitting of f1f2 with respect to the i-th dimension and splitting

parameter c.

We can also split the quotient of f1 and f2, provided h2(pi(x); c) 6= 0 and f2(x) 6= 0 for all

x ∈ Dn
i and for c.

f1(x)

f2(x)
=
h1(pi(x); c)− (xi − c)g1(x; c)

f2(x)

=
h2(pi(x); c)

(
h1(pi(x); c)− (xi − c)g1(x; c)

)
h2(pi(x); c)f2(x)

+
(xi − c)h1(pi(x); c)g2(x; c)− (xi − c)h1(pi(x); c)g2(x; c)

h2(pi(x); c)f2(x)

=

(
h1(pi(x); c)

h2(pi(x); c)

)
− (xi − c)

(
h2(pi(x); c)g1(x; c)− h1(pi(x); c)g2(x; c)

h2(pi(x); c)f2(x)

)

Notice that

• the quotient f1/f2 is continuous over Dn
i in xi since f1 and f2 are continuous over Dn

i

in xi, and f2(x) 6= 0 for all x ∈ Dn
i and for c;

• the quotient h1/h2 is constant and finite over Dn
i in xi since h1 and h2 are constant

and finite over Dn
i in xi, and h2(pi(x); c) 6= 0 for all x ∈ Dn

i and for c;

• the function (h2g1 − h1g2) / (h2f2) is continuous over Dn
i in xi since g1 and g2 are

continuous over Dn
i in xi, h1 and h2 are constant and finite over Dn

i in xi, and

h2(pi(x); c), f2(x) 6= 0 for all x ∈ Dn
i and for c

Thus we have constructed the splitting of f1/f2 with respect to the i-th dimension and

splitting parameter c.
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Using Lemma VI.3, functions that may seem difficult to split can be broken into smaller

constituent pieces. As a result, the Competitive Modes Conjecture can analyze systems of

differential equations using a ”divide-and-conquer” methodology on each of the competitive

modes.

The question still remains: when is a function splittable? When does the splitting of a

function according to Definition VI.1 exist? The following theorem is perhaps the most

useful theorem concerning these questions.

Theorem VI.4 (Splittings for Differentiable Functions). Say function f : Dn
i → R is

differentiable over Dn
i with respect to the ith dimension. If for parameter c ∈ R the partial

derivative ∂f/∂xi is continuous over some open neighborhood of {x ∈ Dn
i : xi = c} with

respect to xi, then f can be split with respect to the i-th dimension and splitting parameter c

into forcing function h and squared frequency function g, defined as

h(pi(x); c) = f(x)|xi=c

g(x; c) =


f(x)|xi=c − f(x)

xi − c
xi 6= c

−
∂f(x)

∂xi

∣∣∣∣
xi=c

xi = c

Proof. Say function f : Dn
i → R is differentiable over Dn

i with respect to xi. Notice that

by definition, f must be continuous over Dn
i with respect to xi. Furthermore, let us define

functions h and g as above.

We can see immediately that h is constant with respect to xi. Furthermore, since f is contin-

uous over Dn
i with respect to xi, h is finite with respect to xi given x1, ...xi−1, xi+1, ...xn and c.

Investigating the properties of g takes a bit more work. Let us take xi 6= c, then g is contin-

uous over Dn
i in xi since f is continuous over Dn

i in xi.

Let us take xi = c, then we can conclude the following, using L’Hopital’s Theorem and the

prerequisite that the partial derivative ∂f/∂xi must be continuous over some open neighbor-

hood of {x ∈ Dn
i : xi = ci} with respect to xi.

lim
xi→c

g(x; c) = lim
xi→c

(
f(x)|xi=c − f(x)

xi − c

)

= − lim
xi→c

∂f(x)

∂xi

= −
∂f(x)

∂xi

∣∣∣∣
xi=c

= g(x; c)|xi=c ∈ R
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Thus, we have proven that g is continuous in Dn
i with respect to xi.

Finally, we must prove that

h(pi(x))− (xi − c)g(x) = f(x) ∀x ∈ Dn
i

Take x ∈ Dn
i arbitrarily. We then have to consider two mutually exclusive cases.

Say xi 6= c. Then

h(pi(x); c)− (xi − c)g(x; c) = f(x)|xi=c − (xi − c)

(
f(x)|xi=c − f(x)

xi − c

)
= f(x)|xi=c −

(
f(x)|xi=c − f(x)

)
= f(x)

Say instead xi = c. Then we know that (xi−c)g(x; c)|xi=c = 0 since g(x; c)|xi=c is continuous

and therefore finite in Dn
i with respect to xi. Thus

h(pi(x))− (xi − c)g(x; c) = f(x)|xi=c − 0

= f(x)

Thus, for any x ∈ Dn
i , h(pi(x); c) − (xi − c)g(x; c) = f(x). Therefore, f can be split with

respect to the i-th dimension and splitting parameter c into forcing function h is the forcing

function and the squared frequency function g.

The following corollary connects Definition V.1 to Definition VI.1.

Corollary VI.5 (Splitting of a Polynomial). Say function f : Dn
i → R is a polynomial of

degree m with respect to xi. Then f can be defined as

f(x) =
m∑
j=0

Aj(pi(x))xji

where A1, A2, · · ·An : Rn−1 → R are the coefficient functions of f . Function f can then be

split with respect to the i-th dimension and splitting parameter c = 0 into forcing function h

and squared frequency function g, defined as

h(pi(x); 0) = A0(pi(x))

g(x; 0) = −
m∑
j=1

Aj(pi(x))xj−1
i

Proof. Function f : Dn
i → R can be defined as

f(x) =
m∑
j=0

Aj(pi(x))xji
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where A1, A2, · · ·An : Rn−1 → R are the coefficient functions of f .

Via Theorem VI.4, f can be split with respect to the i-th dimension and splitting parameter

c = 0 into forcing function h and squared frequency function g, defined as

h(pi(x); 0) = f(x)|xi=0 = A0(pi(x))

g(x; 0) =


f(x)|xi=0 − f(x)

xi
xi 6= 0

−
∂f(x)

∂xi

∣∣∣∣
xi=0

xi = 0

Suppose xi 6= 0.

g(x; 0) =
f(x)|xi=0 − f(x)

xi
= −

∑m
j=1Aj(pi(x))xji

xi
= −

m∑
j=1

Aj(pi(x))xj−1
i

Let us say that xi = 0.

g(x; 0) = −
∂f(x)

∂xi

∣∣∣∣
xi=0

= −

(
m∑
j=1

Aj(pi(x))jxj−1
i

)∣∣∣∣
xi=0

= −A1(pi(x))

Thus, the squared frequency function can be simplified to

g(x; 0) = −
m∑
j=1

Aj(pi(x))xj−1
i

Using this corollary, we can see that the splitting of a multi-polynomial always exists, and

that the resulting forcing function and squared frequency function are defined identically to

the forcing functions and squared frequency functions defined in previous literature when the

splitting parameter is zero. [4][5][6][9][14][37]. As a result, the theory of splittings presented

in Definition VI.1 is a direct expansion of Definition V.1.

In fact, due to this expansion, we can use Theorem VI.4 to split a large number of basic

mathematical functions, as denoted in Table 1. Obviously, each function is defined only over

its respective domain. Furthermore, because of Lemma VI.3, we can split combinations of

these basic functions, expanding our knowledge even further.
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f(x) h(pi(x); c) g(x; c) Notes

1 xmi cm −
∑m

j=1(cm−jxj−1
i ) m > 0

2 x−mi c−m
(∑m

j=1(cm−jxj−1
i )

)
/(cmxmi ) m > 0; xi, c 6= 0

3 x
a/b
i ca/b

{(
ca/b − x

a/b
i

)
/(xi − c) xi 6= c

−a
b
ca/b−1 xi = c

b > 0

4 sin(xi) sin(c)

{
(sin(c)− sin(xi)) /(xi − c) xi 6= c

− cos(c) xi = c

5 cos(xi) cos(c)

{
(cos(c)− cos(xi)) /(xi − c) xi 6= c

sin(c) xi = c

6 tan(xi) tan(c)

{
(tan(c)− tan(xi)) /(xi − c) xi 6= c

− sec2(c) xi = c
xi, c 6∈ πZ + π

2

7 αxi αc

{
(αc − αxi) /(xi − c) xi 6= c

− log(α)αc xi = c
α > 0

8 log(xi) log(c)

{
− log(xi/c)/(xi − c) xi 6= c

−c−1 xi = c
xi, c > 0

9 sinh(xi) sinh(c)

{
(sinh(c)− sinh(xi)) /(xi − c) xi 6= c

− cosh(c) xi = c

10 cosh(xi) cosh(c)

{
(cosh(c)− cosh(xi)) /(xi − c) xi 6= c

sinh(c) xi = c

11 tanh(xi) tanh(c)

{
(tanh(c)− tanh(xi)) /(xi − c) xi 6= c

− sech2(c) xi = c

Table 1: Basic Functions and their Splittings. Notice that all functions f : Dn
i → R are split with

respect to the i-th dimension and splitting parameter c
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VII. Examples of Splitting Dynamical Systems

In order to ”get a feel” for how to split dynamical systems and they can apply evidence of

the validity of the Competitive Modes Conjecture, we revisit the three examples portrayed

in Section II.

i. Lorenz Attractor

As described in Equation (4), the Lorenz dynamical system is a multilinear system capable

of producing a chaotic attractor for certain values of its parameters. For consistency’s sake,

the parameters are set to the ever-reoccurring σ = 10, ρ = 28, β = 8/3.

Let us again apply the Lorenz System to the Competitive Modes Conjecture. This has

been done before in previous literature [4][5][6][9][14][37] and in Section V, but we will now

apply our new definition, lemmas, and theorems outlined in Section VI. The first step is to

differentiate the system in terms of time.
ẍ = −σ(σ + 1)y − σ(z − σ − ρ)x

ÿ = (σ + β + 1)xz − ρ(σ + 1)x− (x2 + σz − σρ− 1)y

z̈ = ρx2 − (σ + β + 1)xy + σy2 − (x2 − β2)z

Then we can calculate the proper partial derivatives as follows.
∂ẍ/∂x = σ(σ + ρ− z)

∂ÿ/∂y = σρ+ 1− x2 − σz
∂z̈/∂z = β2 − x2

Since ∂ẍ/∂x, ∂ÿ/∂y, and ∂z̈/∂z are continuous over all of R3, we can use Theorem VI.4

and Lemma VI.5 to split function ẍ : D3
x(0,∞,∞) → R with respect to variable x and

splitting parameter cx, function ÿ : D3
y(0,∞,∞)→ R with respect to variable y and splitting

parameter cy, and function z̈ : D3
z(0,∞,∞) → R with respect to variable z and splitting

parameter cz. As a result,

hx(y, z; cx) = −σ(σ + 1)y − σ(z − σ − ρ)cx

gx(x, y, z : cx) = σ(z − σ − ρ)

hy(x, z; cy) = (σ + β + 1)xz − ρ(σ + 1)x− (x2 + σz − σρ− 1)cy

gy(x, y, z : cy) = x2 + σz − σρ− 1

hz(x, y; cz) = ρx2 − (σ + β + 1)xy + σy2 − (x2 − β2)cz

gz(x, y, z : cz) = x2 − β2

(34)

Proving the first, third, and fourth necessary conditions of the Competitive Modes Con-

jecture (Conjecture V.1) are trivial for this example. The difficulty in proving the second
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necessary condition: that at least two of the competitive modes compete.

So far so good. Notice that gx, gy, and gz do not depend on splitting parameters cx, cy, and

cz at all. Therefore, the intersection surfaces Gxy, Gxy, and Gxy (Equation 30 from Section

V) are independent of splitting parameter selection. Now the next question is: are there re-

gions in the phase space where the squared frequency functions gx, gy, gz intersect each other?

First off, we set gx and gy equal to each other. The result is a simple equation.

Gx,y ≡ {(x, y, z) ∈ R3 : x = ±
√

1− σ2}

Of course, when |σ| ≥ 1, this equation has no real solutions. Perhaps something could be

said about analyzing the complex solutions for this equation, but the authors do not believe

this would result in anything useful. As such, since σ = 10, we conclude that Gxy = ∅ and

thus gx and gy do not intersect in the phase space.

Next, we analyze the intersection between gx and gz. The resulting equation is slightly more

complicated than the previous.

Gxz ≡ {(x, y, z) ∈ R3 : σz = x2 + σ(σ + ρ)− β2} (35)

Solutions to this equation describe a real surface. Later sections will prove that this surface

is a 2-dimensional manifold (see Section IX and Lemma IX.1), but the important detail is

that the surface is path-continuous and 2-dimensional in the 3-dimensional phase space.

Finally, the intersection between gy and gz results in the equation

Gyz = {(x, y, z) ∈ R3 : σz = σρ+ 1− β2} (36)

Again, this equation describes a real, path-continuous, 2-dimensional surface in the 3-

dimensional phase space. Both this surface and the one previously described are portrayed in

Figure 20, along with the Lorenz Attractor. Notice that the attractor does in fact intersect

at least one of these surfaces, indicating that at least two of the competitive modes could

compete on a regular basis.

To prove the additional requirement that these squared frequency functions intersect posi-

tively, we take a single trajectory in the strange attractor and calculate the squared frequency

functions of the Lorenz System over this trajectory, like Figure 18 in Section V. For emphasis

and the reader’s convenience, here we give that figure again in Figure 21. As one can see,

most if not all intersections between each of the three g functions happens when these g

functions take on positive values, thus proving that at least two of the competitive modes

do compete.
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Figure 20: The Lorenz Attractor along with the surfaces Gxz described in Equation (35) (in green)

and Gyz in Equation (36) (in blue). The surfaces were approximated using an adaptive

Marching Cube Algorithm. See Appendix C for coding details.
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Figure 21: The squared frequency functions gx (in red), gy (in green), and gz (in blue) applied to

a random trajectory in the Lorenz Attractor, where σ = 10, ρ = 28, and β = 8/3. The

splitting parameters inn this situation are cx, cy, cz = 0. Notice that gy and gz intersect

on a regular basis, and that all intersections occur when gy and gz take on positive

values. This means that the Lorenz Attractor consistently intersects the intersection

set G+
yz as defined in Equation 31 from Section V.
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In conclusion, the Competitive Modes Conjecture again accurately predicts the properties

of the chaotic Lorenz Attractor, thereby providing further evidence that the conjecture may

indeed be correct and the formulation of Definition VI.1 is a valid, mathematically rigorous

expansion of Definition V.1.

71



ii. Chua Attractors

The Chua System, already described in Equation (6), is a little different from the Lorenz

System in that ẋ can not be differentiated with respect to time. This is because function f

(defined in Equation (7)) is not differentiable in x = ±1 if m0 6= m1. For this, we will need

to introduce a differentiable approximation of f .

For now, let us say fappr : R → R is a C2(x) approximation of f . Then the adjusted Chua

System as detailed in Equation (6) can be differentiated with respect to time as follows.
ẍ = α(x− y + z)− α2(y − x− fappr(x))(1 + f ′appr(x))

ÿ = −(1 + α)x+ (α− β + 1)y − z − αfappr(x)

z̈ = −β(x− y + z)

Then we can calculate the proper partial derivatives as follows.
∂ẍ/∂x = α− α2(y − x− fappr(x))f ′′appr(x) + α2(1 + f ′appr(x))2

∂ÿ/∂y = α− β + 1

∂z̈/∂z = −β

Since ∂ẍ/∂x, ∂ÿ/∂y, and ∂z̈/∂z are continuous over all of R3, we can use Theorem VI.4

and Lemma VI.5 to split the function ẍ : D3
x(0,∞,∞) → R with respect to variable x

and splitting parameter cx, ÿ : D3
y(0,∞,∞) → R with respect to variable y and splitting

parameter cy, and z̈ : D3
z(0,∞,∞) → R with respect to variable z and splitting parameter

cz.

hx(y, z; cx) = α(cx − y + z)− α2(y − cx − fappr(cx))(1 + f ′appr(cx))

gx(x, y, z : cx) =



−α(1 + α)− α2

(
fappr(x)− fappr(cx)

x− cx

)

+α2

(
(y − x− fappr(x))f ′appr(x)− (y − cx − fappr(cx))f ′appr(cx))

x− cx

)
x 6= cx

−α− α2(1 + f ′appr(cx))
2 + α2(y − cx − fappr(cx))f ′′appr(cx) x = cx

hy(x, z; cy) = −(1 + α)x+ (α− β + 1)cy − z − αfappr(x)

gy(x, y, z : cy) = β − α− 1

hz(x, y; cz) = −β(x− y + cz)

gz(x, y, z : cz) = β

(37)

Proving the first, third, and fourth necessary conditions of the Competitive Modes Con-

jecture (Conjecture V.1) are trivial for this example. The difficulty in proving the second
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necessary condition: that at least two of the competitive modes compete.

Now we ask the same question as before: are there regions in the phase space where the

squared frequency functions gx, gy, and gz intersect each other?

Like before, we first set gx and gy equal to each other. The result is then split into two cases.

When x 6= cx, then

α2(f ′appr(x)− f ′appr(cx))y =(α2 + β − 1)(x− cx) + α2(fappr(x)− fappr(cx))
+ α2(x+ fappr(x))f ′appr(x)− α2(cx + fappr(cx))f

′
appr(cx)

(38)

and when x = cx, then

α2f ′′appr(cx)y = β − 1 + α2(cx + fappr(cx))f
′′
appr(cx) + α2(1 + f ′appr(cx))

2 (39)

As such, the intersection gx and gy describes a 2-dimensional real surface in the 3-dimensional

phase space, which we call Gxy. The continuity of this surface depends on fappr, f
′
appr, and

f ′′appr, specifically when x = cx.

Next, we set gx and gz equal to each other, the result again being split into two situations.

When x 6= cx, then

α2(f ′appr(x)− f ′appr(cx))y =(α2 + α + β)(x− cx) + α2(fappr(x)− fappr(cx))
+ α2(x+ fappr(x))f ′appr(x)− α2(cx + fappr(cx))f

′
appr(cx)

(40)

and when x = cx, then

α2f ′′appr(cx)y = α + β + α2(cx + fappr(cx))f
′′
appr(cx) + α2(1 + f ′appr(cx))

2 (41)

As a result, the intersection between gx and gz describes a 2-dimensional real surface in the

3-dimensional phase space, which we call Gxz. Again, the continuity of this surface depends

on fappr, f
′
appr, and f ′′appr, specifically when x = cx.

And finally, we set gy and gz equal to each other, resulting in the simple requisite

α = 1

Generally, α will not meet this requisite. As a result, generally there is no intersection of gy
and gz in the phase space and Gyz = ∅.

Before the surfaces described above can be plotted, fappr needs to be properly defined,

specifically with the requisite that fappr ∈ C2(x). As such, one option is to define fappr as

follows.

fappr(x) =


m1x+ (m1 −m0) x < −2

(m1 −m0)x7

1024
+

3(m0 −m1)x5

128
+

13(m1 −m0)x3

64
+m0x x ∈ [−2, 2]

m1x+ (m0 −m1) x > 2

(42)
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This is a C2(x) function with first derivative

f ′appr(x) =


m1 x < −2

7(m1 −m0)x6

1024
+

15(m0 −m1)x4

128
+

39(m1 −m0)x2

64
+m0 x ∈ [−2, 2]

m1 x > 2

(43)

and second derivative

f ′′appr(x) =


0 x < −2

21(m1 −m0)x5

512
+

30(m0 −m1)x3

64
+

39(m1 −m0)x

32
x ∈ [−2, 2]

0 x > 2

(44)

Notice that (calculations not shown)

∀x ∈ (−∞,−2] ∪ {0} ∪ [2,∞); fappr(x) = f(x), f ′appr(x) = f ′(x), f ′′appr(x) = f ′′(x)

Hence, fappr is an excellent approximation of f defined in Equation (7) in Section II.

Now that fapprox has been defined, one still needs to confirm that this modification to the

Chua System still allows for chaotic attractors to be present. The two hidden attractors from

the original system shown in Figure 3 now merge into a single hidden attractor as shown in

Figure 22. The Lyapunov Spectrum of this attractor is represented in Figure 23, showing

that the maximal Lyapunov Exponent is approximately 0.280920. This attractor is therefore

still chaotic.

The intersection surfaces Gxy and Gxz between the now completely-defined squared frequency

functions can now be plotted. It is easier to understand the behavior of these intersections

from a top-down aerial view (a projection of the 3-dimensional phase space onto the 2-

dimensional x−y plane). This is because Equations (38), (39), (40), and (41) do not include

the variable z. The projected intersections are plotted in Figure 24. The splitting parameters

in this situation are cx, cy, cz = 0.

From Figure 24, we see that the attractor intersects both of the intersection surfaces Gxy

and Gxz. This indicates that at least two of the competitive modes could compete on a

regular basis. To prove the additional requirement that these squared frequency functions

intersect positively, we take a single trajectory in the strange attractor and calculate the

squared frequency functions of the Chua System over this trajectory. The results are given

in Figure 25. As one can see, all intersections between each of the three g functions happens

when these g functions take on positive values, proving that at least two of the competitive

modes do compete on a regular basis.
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In conclusion, the Competitive Modes Conjecture again accurately predicts the properties

of a chaotic attractor, this time focusing on the hidden Chua Attractor through the new

splitting definition (Definition VI.1). This provides evidence that the conjecture may indeed

be correct not only for self-excited attractors, but also for hidden attractors.

Figure 22: The modified hidden Chua Attractor, approximating f with fappr as described in

Equation (42). Parameter values are α = 8.4562, β = 12.08, m0 = −0.1768, and

m1 = −1.1468. The attractor was approximated using an adaptive explicit RK4 nu-

merical integration technique over a time span of 60 time units using an initial position

of (-2.617933, -1.635851, 1.751381). See Appendix C for coding details.
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Figure 23: The convergence of the Lyapunov Spectrum of the modified hidden Chua Attractor, ap-

proximating f with fappr as described in Equation (42). According to our calculations,

the spectrum is approximately (0.280920, -0.037423, -1.231454). See Appendix C for

coding details.
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Figure 24: The modified hidden Chua Attractor, along with the projected intersection surfaces Gxy
(in red) and Gxz (in green). The splitting parameters in this situation are cx, cy, cz = 0.

The surfaces were approximated using an adaptive Marching Square Algorithm. See

Appendix C for coding details.
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Figure 25: The squared frequency functions gx (in red), gy (in green), and gz (in blue) applied to a

random trajectory in the Chua Attractor, where α = 8.4562, β = 12.08, m0 = −0.1768,

and m1 = −1.1468. The splitting parameters in this situation are cx, cy, cz = 0. Notice

that gx intersects gy and gz on a regular basis, and that all intersections occur when gx,

gy, and gz take on positive values. This means that the modified Chua Hidden Attractor

consistently intersects the intersection sets G+
xy and G+

xz as defined in Equation 31 from

Section V.
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iii. Wimol-Banlue Attractor

Equation (9) from Section II describes the lesser-known Wimol-Banlue Attractor. W. San-

Um and B. Srisuchinwong present a simple yet non-multipolynomial and not even differen-

tiable dynamical system able to produce chaotic attractors [29]. Like before, we must first

differentiate the system in terms of time, and that will require a differentiable approximation

of the absolute value function.

In order to really put Theorem VI.4 to the test, let us introduce a somewhat strange ap-

proximation of the absolute value function:

φ(y; β) =
1

β
ln(2 cosh(βy)) =

1

β
ln
(
eβy + e−βy

)
φ′(y; β) = tanh(βy)

(45)

where β > 0. The parameter β will allow φ to get as close to the absolute value function as

possible. To prove this, first notice that φ is even in variable y. That is, φ(y; β) = φ(−y; β).

This will simplify the analysis considerably.

Let us calculate the difference between φ(y; β) and |y| (calculations not show).

φ(y; β)− |y| =


1

β
ln
(
1 + e−2βy

)
y ≥ 0

1

β
ln
(
1 + e2βy

)
y < 0

Using this, we can make the following conclusions.

φ(y; β)− |y| > 0 ∀y ∈ R

lim
y→∞

φ(y; β)− |y| =
1

β
lim
y→∞

ln
(
1 + e−2βy

)
= 0

lim
y→−∞

φ(y; β)− |y| =
1

β
lim

y→−∞
ln
(
1 + e2βy

)
= 0

Moreover, the difference between φ(y; β) and |y| is also almost-everywhere differentiable.

∂

∂y

(
φ(y; β)− |y|

)
=


− 2e−2βy

1 + e−2βy
y > 0

2e2βy

1 + e2βy
y < 0

As a result, the difference φ(y; β) − |y| is strictly decreasing over positive values of y, and

strictly increasing over negative values of y. Hence, the following equation is true.

max
{∣∣φ(y; β)− |y|

∣∣ : y ∈ R, β > 0
}

= φ(0; β)− |0| = ln(2)/β
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Therefore φ is a differentiable approximation of the absolute value function, where the qual-

ity of the approximation can be determined completely by the parameter β.

Now that the validity of φ has been proven, let us modify the original Wimol-Banlue dy-

namical system to include our approximation.


ẋ = y − x
ẏ = −z tanh(x)

ż = −α + xy + 1
β

ln(2 cosh(βy))

(46)

where α > 0 and β = 10. Just like with our modification of the Chua System, we must first

prove that our modified Wimol-Banlue System is still able to produce chaotic attractors. To

this end, Figure 26 shows a trajectory through the phase space, highlighting the attractor

still being present. Furthermore, analysis of the Lyapunov Spectrum of this attractor in

Figure 27 approximates the maximal Lyapunov Exponent at about 0.240112. Thus, this

evidence concludes there is still a chaotic attractor present in our modified Wimol-Banlue

dynamical system.

Differentiating System (46) with respect to time leads to


ẍ = x− y − z tanh(x)

ÿ = sech2(x)(x− y)z + tanh(x)
(
α− xy − 1

β
ln(2 cosh(βy))

)
z̈ = y2 − xy − (x+ tanh(βy)) tanh(x)z

Then we can calculate the proper partial derivatives as follows.


∂ẍ/∂x = 1− z sech2(x)

∂ÿ/∂y = − sech2(x)z − tanh(x) (x+ tanh(βy))

∂z̈/∂z = −(x+ tanh(βy)) tanh(x)

Since ∂ẍ/∂x, ∂ÿ/∂y, and ∂z̈/∂z are continuous over all of R3, we can use Theorem VI.4 to

split ẍ, ÿ, and z̈ using splitting parameters cx, cy, and cz, respectively.
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Figure 26: The Modified Wimol-Banlue Attractor, using a parameter values α = 2 and β = 10.

The attractor was approximated using an adaptive explicit RK4 numerical integration

technique over a time span of 250 time units using an initial position of (-1.21739,

-1.48448, 0.18485). See Appendix C for coding details.
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Figure 27: The convergence of the Lyapunov Spectrum of the modified self-excited Wimol-Banlue

Attractor. According to our calculations, the spectrum is approximately (0.240112,

0.000093, -1.240206). See Appendix C for coding details.
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hx(y, z; cx) = cx − y − z tanh(cx)

gx(x, y, z; cx) =

−1 + z

(
tanh(x)− tanh(cx)

x− cx

)
x 6= cx

−1 + sech2(cx)z x = cx

hy(x, z; cy) = sech2(x)(x− cy)z + tanh(x)

(
α− xcy −

1

β
ln(2 cosh(βcy))

)

gy(x, y, z; cy) =

tanh(x)x+ sech2(x)z +
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
y 6= cy

tanh(x)x+ sech2(x)z + tanh(x) tanh(βcy) y = cy

hz(x, y; cz) = y2 − xy − (x+ tanh(βy)) tanh(x)cz

gz(x, y, z; cz) = (x+ tanh(βy)) tanh(x)

(47)

Proving the first, third, and fourth necessary conditions of the Competitive Modes Con-

jecture (Conjecture V.1) are trivial for this example. The difficulty in proving the second

necessary condition: that at least two of the competitive modes compete.

Now, the intersections between each of the squared frequency functions need to be calcu-

lated. For simplicity, let us say that splitting parameters cx, cy, and cz are all equal to zero.

The resulting intersections are listed below, with the corresponding calculations able to be

found in Appendix A.

The solution for gx(x, y, z; 0) = gy(x, y, z; 0) is

z =


x+ x2 tanh(x)

tanh(x)− x sech2(x)
+

x tanh(x) ln(cosh(βy))

β tanh(x)y − βx sech2(x)y
x, y 6= 0

x+ x2 tanh(x)

tanh(x)− x sech2(x)
x 6= 0, y = 0

(48)

Notice that no solution is defined for x = 0. Thus, the solution is divided into two path-

continuous surfaces: one for x > 0 and one for x < 0. Collectively, we call these surfaces Gxy.

The solution for gx(x, y, z; 0) = gz(x, y, z; 0) is

z =


x

tanh(x)
+ x2 + x tanh(βy) x 6= 0

1 x = 0

(49)

Thus, the solution is a path-continuous surface over all x, y ∈ R2 which we call Gxz.
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The solution for gy(x, y, z; 0) = gz(x, y, z; 0) is

z =

sinh(x) cosh(x)

(
tanh(βy)−

ln(cosh(βy))

βy

)
y 6= 0

0 y = 0

(50)

Thus, the solution is a path-continuous surface over all x, y ∈ R2 which we call Gyz.

Plotting these intersection surfaces results in the Figure 28. Let us focus on just one of

Figure 28: The intersection surfaces Gxy (in red), Gxz (in green), and Gyz (in blue). The surfaces

were approximated using an adaptive Marching Cube Algorithm. See Appendix C for

coding details.

these surfaces, and plot it separately along with the modified Wimol-Banlue Attractor in

Figure 29. This shows that the Wimol-Banlue Attractor repeatedly intersects the surface

Gyz described by Equation (50), indicating at least two of the competitive modes could be
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competing.

To prove the additional requirement that these squared frequency functions intersect posi-

tively, we take a single trajectory in the strange attractor and calculate the squared frequency

functions of the Wimol-Banlue System over this trajectory. The results are given in Figure

30. As one can see, most if not all intersections between each of the three g functions hap-

pens when these g functions take on positive values. This proves that at least two of the

competitive modes do indeed compete.

This provides even more evidence that the Competitive Modes Conjecture using the splitting

defined in Definition VI.1 may indeed be true, not only for multipolynomial dynamical

systems but also other systems as well.
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Figure 29: The modified Wimol-Banlue Attractor (with parameter values α = 2 and β = 10),

along with the surface Gyz described in Equation (50) (in blue). The surface was

approximated using an adaptive Marching Cube Algorithm. See Appendix C for coding

details.

86



Figure 30: The squared frequency functions gx (in red), gy (in green), and gz (in blue) applied to

a random trajectory in the Wimol-Banlue Attractor, where α = 2 and β = 10. The

splitting parameters in this situation are cx, cy, cz = 0. Notice that gx, gy, and gz
intersect on a regular basis, and that most if not all intersections occur when gx, gy,

and gz take on positive values. This means that the modified Wimol-Banlue Attractor

consistently intersects the intersection sets G+
xy, G+

xz, and G+
yz as defined in Equation

31 from Section V.
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VIII. Discussing Issues with the Splitting of Functions

Using Theorem VI.4, we can define the unique splittings of many different basic mathematical

functions, as shown in Table 1. However, the astute reader will immediately recognize

a leering issue: how do we define splitting parameter c? Up till now, c has been taken

arbitrarily, but this approach is rarely worthwhile. There are two requisites to consider.

1. c must be chosen so that forcing function h is well-defined.

2. c must be chosen so that it does not cause issues for the Competitive Modes Conjecture.

This is to say, the choice of c does not affect the validity of the Competitive Modes

Conjecture when a chaotic dynamical system is applied to it (assuming the conjecture

is true).

Let us discuss each of these requisites thoroughly.

Obviously, the first requisite is necessary in order to avoid ill-defined forcing functions and

squared frequency functions. Per Lemma VI.1, requiring that the forcing function h be well-

defined is equivalent to requiring that the set {x ∈ Dn
i : xi = c} is not empty, where Dn

i is

the domain of the function we wish to split as defined in Equation (32).

As simple as this requisite is, fulfilling it can be meddlesome. At first glance, one would

suggest to simply set c equal to 0. Indeed, this choice would have many benefits, as described

below, and the authors suggest to use this assumption if at all possible.

• First of all, this choice in c = 0 would be elegant, which is something that all mathe-

maticians strive for.

• All previous literature on the subject has focused on multipolynomial chaotic dynamical

systems. Corollary VI.5 shows that choosing c to be 0 would result in forcing and

squared frequency functions that are identical to previous literature’s methodology

when applied to multipolynomial systems.

Obviously, we would not be having this discussion if there was not at least one glaring issue:

not all differentiable functions have a domain Dn
i where the subset {x ∈ Dn

i : xi = 0} is

nonempty. For instance, the reciprocal function is not defined on 0.

Now, one could simply mandate that the Competitive Modes Conjecture only deals with

systems that can be split with splitting parameter c = 0. However, mathematicians love to

expound on matters that were previously seen as uncomfortable, impractical, or downright

impossible. No one would have discovered the sheer usefulness of complex numbers if no

one ever thought to take the square root of a negative number. As such, we dare to ask the

question: can we split a function with a splitting parameter c 6= 0 and still acquire useful

results concerning the Competitive Modes Conjecture?
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A simple preliminary question would be: does changing the value of the splitting parameter

change the corresponding forcing and squared frequency functions?

Lemma VIII.1 (Splittings of Multilinear Functions). Suppose function f : Dn
i → R is linear

with respect to the i-th dimension xi of its input variable x. Say f can be split with respect

to i-th dimension and splitting parameter c1 ∈ R into corresponding forcing function h1 and

squared frequency function g1. Say that f can also be split with respect to i-th dimension and

splitting parameter c2 ∈ R\{c1} into corresponding forcing function h2 and squared frequency

function g2. Then g1 ≡ g2.

Proof. Since f is linear in xi, we know that for some continuous functions A : Rn−1 → R
and B : Rn−1 → R,

f(x) = A(pi(x))xi +B(pi(x))

Then using Corollary VI.5,

h1(pi(x); c1) = A(pi(x))c1 +B(pi(x))

g1(x; c1) = −A(pi(x))

h2(pi(x); c2) = A(pi(x))c2 +B(pi(x))

g2(x; c2) = −A(pi(x))

As such, g1 ≡ g2.

Because of this, we know that in certain situations, the choice of splitting parameter c will

never matter. In fact, the Lorenz System, defined back in Section II in Equation (4), is an

example of these situations. Looking at the resulting squared frequency functions in Equa-

tion (34), notice that cx, cy, and cz do not appear in functions gx, gy, and gz, respectively.

Of course, there are a plethora of cases where the choice of splitting parameter does matter.

Take for instance the two simple functions f1 and f2.

f1(x, y) = −x(x2 + y2)

f2(x, y) = −αy, α ∈ R>0

Using Theorem VI.4, let us split these two equations, one with respect to x and splitting

parameter cx ∈ R, and the other with respect to y and splitting parameter cy ∈ R.

f1(x, y) = h1(y; cx)− (x− cx)g1(x, y; cx)

f2(x, y) = h2(x; cy)− (y − cy)g2(x, y; cx)

h1(y; cx) = −cx(c2
x + y2)

h2(x; cy) = −αcy
g1(x, y; cx) = x2 + cxx+ c2

x + y2

g2(x, y; cy) = α
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As a result, functions g1 and g2 are equal to one another when

(x+ cx/2)2 + y2 = α− 3c2
x/4 (51)

Obviously, Equation (51) is similar to the equation of a circle. For convenience, let us define

a new function concerning the radius of such a circle.

R(cx) = α− 3c2
x/4

When R is positive, then the intersection of gx and gy represented in Equation (51) is a real

circle with center (−cx/2, 0) and radius
√
R(cx). This only occurs when |cx| <

√
4α/3.

If |cx| =
√

4α/3, then function R is zero and the intersection of gx and gy represented in

Equation (51) is the single point (−cx/2, 0).

Finally, if |cx| >
√

4α/3, then function R is negative and gx and gy do not intersect at all in

real space.

As one can see, the competitive nature of even a simple example can have wildly vary-

ing behavior. For some values of cx, g1 and g2 intersect on a path-continuous 1-dimensional

closed set in R2. For other values, g1 and g2 only intersect in a single point, and for still other

values, the squared frequency functions do not intersect at all in the real 2-dimensional plane.

The all-important question that then arises from this is: for what values of splitting param-

eter c does one arbitrary competitive mode compete with another? In an attempt to bring

light to this important matter, we will need to delve a little into Differential Geometry.
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IX. Manifold Theory and Basic Differential Geometry

To answer the questions posed at the end of Section VIII, let us first understand some theory

of a different branch of mathematics: Differential Geometry. The concept of a manifold is

crucial here, and as such will be defined thoroughly for future reference; in order to do so,

we must define the concept of a diffeomorphism.

Definition IX.1 (Diffeomorphism). A differentiable map φ : A → B with A ⊆ Rn, B ⊆
Rm is a diffeomorphism if φ is a bijection between A and B and the inverse φ−1 is also

differentiable [19][24].

Now we can define a differentiable manifold.

Definition IX.2 (Differentiable Manifold). Set M ⊆ Rn is a k-dimensional differentiable

manifold if for every point p ∈ M there exists an open neighborhood Np ⊆ M that is diffeo-

morphic to some open set Up ⊆ Rk. If instead for every point p ∈ M there exists an open

neighborhood Np ⊆ M that is diffeomorphic to some open set Up ⊆ {x ∈ Rk : x1 ≥ 0},
then M is called a k-dimensional differentiable manifold with boundary. The diffeomorphism

φp : Up → Np is called the local parameterization of Np, and its inverse φ−1
p is the coordinate

system on Np [19][24].

For the reader’s convenience, we will denote a k-dimensional differentiable manifold simply

as a k-manifold. Furthermore, if M is a manifold with boundary, then ∂M denotes the

boundary of M , while int(M) denotes the interior of M [19][24].

Intuitively, a k-manifold is a piece of the Rk-plane that has been smoothly stretched, curved,

moved, and otherwise molded while inside of a higher dimensional ambient space. This is

a very general definition, and frankly may seem a bit vague. However, this is all what a

manifold is. In fact, any sort of smooth geometric object, regardless of what finite dimension

it is in, can usually be described as a manifold. The important detail is that manifolds have

some semblance of smoothness7, allowing for some concept of differentiation to be defined

over it. But in order to do so, we must define tangent spaces over manifolds [19][24].

Definition IX.3 (Tangent Spaces of a Manifold). Say we have a k-dimensional differentiable

manifold M ⊆ Rn. Take point p ∈ M ; this point per definition has some open neighborhood

Np ⊆ M which is diffeomorphic to some open set Up of Rk (or of the upper halfspace Hk if

M is a manifold with boundary) via local parametrization φ. The tangent space TpM of M

at p is the k-dimensional linear space defined as

TpM ≡ span

{
lim
h→0

(
φ(φ−1(p) + hv)− p

h

)
: v ∈ Up

}
Note that this definition is independent of our choice of φ [19][24]

7The authors realize that most texts refer to smooth functions as being of class C∞. In this text they are

not nearly so restrictive, and simply refer to a smooth function as being of class C1.
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Intuitively, TpN + p is the set of vectors that are locally tangent to M at point p. We can

then use the tangent space of M at p to define the directional derivatives at point p, and

building the calculus associated with manifold M from there on [19][24].

Manifolds can intersect each other, and can do so in a number of ways. Here we discuss the

idea behind manifolds intersecting transversely.

Definition IX.4 (Transversality of Manifolds). Say we have two differentiable manifolds

M1,M2 ⊂ Rn. M1 intersects M2 transversely at p ∈M1 ∩M2 if the span of TpM1 and TpM2

equals the ambient space Rn. If M1 and M2 intersect transversely for all points in M1 ∩M2,

then M1 and M2 are said to be transverse to each other [19][24].

Bringing these mathematical concepts into something a bit more applicable to the everyday

mathematician, we will provide a very useful lemma relating differentiable functions to man-

ifolds. The authors found this lemma in [24] and changed it only slightly to better suit their

purposes.

Lemma IX.1. Say U1 ⊆ Rn and U2 ⊆ Rm are open sets. If f : U1 → U2 is a C1(U1)

function, then Gf = {(x, f(x)) ∈ Rn+m : x ∈ U1} is a n-manifold [24].

Proof. Define function φ : U1 × U2 → U1 with φ(x, f(x)) = x. The inverse of φ|Gf
is

ϕ : U1 → Gf with ϕ(x) = (x, f(x)). Notice that φ|Gf
is a diffeomorphism, since

Dφ|Gf
=


1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . 0

 ∈ Rn×(n+m)

Dϕ =



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xn
∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xn

...
...

. . .
...

∂fm/∂x1 ∂fm/∂x2 . . . ∂fm/∂xn


∈ R(n+m)×n

Thus Gf is entirely diffeomorphic to an open subset of U1, making it a differentiable manifold

with dimension dim(U1) = n.

As a result of this lemma, we have the follow corollary that will become quite useful to us

when studying dynamical systems.

Corollary IX.2 (Solutions to Systems of Differential Equations). Say we have an n-dimensional

autonomous system of differential equations ẋ(t) = F(x(t)) with F ∈ C0(x). Then the solu-

tion {(t,x(t)) ∈ Rn+1 : t ∈ R} of the system with arbitrary initial condition is a 1-manifold.
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This lemma can be useful in certain circumstances, but for our purposes we wish to focus

on specifically the phase space, which excludes the temporal dimension. What can we say

about the nature of a trajectory of the dynamical system when projected onto the phase

space?

Lemma IX.3 (Projected Partial Solutions to Systems of Differential Equations). Say we

have an n-dimensional autonomous system of differential equations ẋ(t) = F(x(t)) with

F ∈ C0(x). Say we have a partial solution {(t,x(t)) ∈ Rn+1 : t ∈ [a, b], a < b} of the system

with initial condition x0 ∈ Rn and a, b ∈ R.

• If x0 is not an equilibrium point and the partial solution is periodic, then the partial

solution projected onto the phase space is a 1-manifold.

• If x0 is not an equilibrium point and the partial solution is aperiodic, then the partial

solution projected onto the phase space is a 1-manifold with boundary.

Proof. Let us begin with the lemma’s first statement. If x0 is not an equilibrium point of

the system and the partial solution is periodic, then the partial solution must be a subset

of a periodic attractor with a period T > 0. Because of its smoothness, periodicity, and

non-self-transversal nature, the partial solution projected onto the phase space is locally

diffeomorphic to the open unit 1-ball in R1 and is thus a 1-manifold.

If however x0 is not an equilibrium point of the system and the partial solution is aperiodic,

then there must exist some minimal Euclidean distance between every pair of distinct points

in the projected partial solution. Because of its smoothness and non-self-transversal nature,

the projected partial solution is locally diffeomorphic to the open unit half 1-ball in R1 and

is thus a 1-manifold with boundary.

This completes the mathematical basis needed to understand the following Theorem.
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Theorem IX.4 (Splitting Parameter Perturbation Theorem). Say we have compact sets

X ∈ Rn and C ∈ Rm with interiors int(X), int(C) 6= ∅. Say we have an n-dimensional

autonomous system of differential equations ẋ(t) = F(x(t)) with x ∈ X, t ∈ R, and F ∈
C1(x). For some initial value x0 that is not an equilibrium point, the partial solution to the

system over temporal domain [0, T ] with T ∈ R>0 is defined as ψ : [0, T ] → X. Then the

partial solution projected onto the phase space is defined as

Ψ ≡ {ψ(t) : t ∈ [0, T ]} ∈ Rn

Assume without loss of generality that Ψ is aperiodic. Furthermore, say we have some other

function G : X × C → R. For arbitrary c ∈ C, define Mc ≡ {x ∈ X : G(x, c) = 0}. If

• ∀c ∈ C, Mc is a connected nonempty (n−1)-dimensional manifold with boundary ∂Mc

• ∀c ∈ C, ∂Mc ∩ int(X) = ∅
• M ≡

⋃
c∈CMc is a path-continuous set.

• Ψ intersects Mc∗ transversely at some point x∗ ∈ int(Ψ) ∩ int(Mc∗) for some c∗ ∈ C

then for small enough r > 0, Ψ will also intersect Mc with ||c− c∗|| < r.

Proof. First, notice that due to Corollary IX.3, Ψ is a 1-dimensional differentiable manifold

with boundary, where ∂Ψ = {x(0),x(T )} ⊂ X.

For reference,

Bn(a, ρ) ≡ {x ∈ Rn : ||x− a|| < ρ} where a ∈ Rn, ρ > 0

Suppose that for some c∗ ∈ C, Ψ intersects Mc transversely at some point x∗ ∈ int(Ψ) ∩
int(Mc) ⊆ int(X). Then there must exist an r1 > 0 so that Bn(x∗, r1) ∩Mc∗ ⊆ int(Mc∗),

Bn(x∗, r1) ∩Ψ ⊆ int(Ψ), and Bn(x∗, r1) ∩Ψ is connected.

Define the set

D(ρ) ≡

 ⋃
x∈Mc∗

Bn(x, ρ)

 ∩Bn(x∗, r1)

Take r2 ∈ (0, r1) so that Ψ intersects ∂D(r2)\
(
∂D(r2) ∩ ∂Bn(x∗, r1)

)
twice, once on one

”side” of Mc∗ and once on the other ”side”. This r2 must exist because of the transversality

of the intersection between Ψ and Mc∗ .

Then due to the continuity of M , there must exist an r3 > 0 so that ∀|ε| < r3, the set

Nc∗+ε ≡Mc∗+ε ∩Bn(x∗, r1) has the following properties.

Nc∗+ε ⊆ int(Mc∗+ε) ∩D(r2)

Nc∗+ε 6= ∅

Because of this, the set Nc∗+ε has no boundaries or holes in Bn(x∗, r1). Furthermore, both

Nc∗+ε and Ψ are path-continuous and entirely enclosed in D(r2) ⊂ Bn(x∗, r1). Thus Ψ must

intersect Nc∗+ε as some point inside D(r2), meaning that Ψ intersects Mc∗+ε.
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We can use Theorem IX.4 to conclude the following. Let us say we have a system of second-

order differential equations ẍ = f(x), where fi : Dn
i → R (Dn

i defined as in Equation (32) in

Section VI). Assume that the corresponding dynamical system has a k-Hausdorff-dimensional

attractor with k > 1 in some compact subset X.

Assume (without loss of generality) that f1 and f2 are differentiable functions. If f1 can be

split with respect to the first dimension and splitting parameter c1 ∈ R, and f2 can be split

with respect to the second dimension and splitting parameter c2 ∈ R, then

f1(x) = h1(p1(x); c1)− (x1 − c1)g1(x; c1)

h1(p1(x); c1) = f1(x)|x1=c1

g1(x; c1) =


f1(x)|x1=c1 − f1(x)

x1 − c1

x1 6= c1

−
∂f1(x)

∂x1

∣∣∣∣
x1=c1

x1 = c1

f2(x) = h2(p2(x); c2)− (x2 − c2)g2(x; c2)

h2(p2(x); c2) = f2(x)|x2=c2

g2(x; c2) =


f2(x)|x2=c2 − f2(x)

x2 − c2

x2 6= c2

−
∂f2(x)

∂x2

∣∣∣∣
x2=c2

x2 = c2

Define the function G(x, c1, c2) ≡ g1(x; c1)−g2(x; c2), and suppose it fulfills the requirements

stated in Theorem IX.4. If a solution in the dynamical system’s attractor intersects the re-

sulting manifold {x ∈ Dn : G(x; c1, c2) = 0}, then for small enough ε1, ε2 ∈ R, the solution

will still intersect the manifold {x ∈ Dn : G(x; c1 + ε1, c2 + ε2) = 0}.

This proves that under small perturbations and under certain conditions, a splitting of a

function as defined in Definition VI.1 will not change the competitive nature of the corre-

sponding squared frequency functions.
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X. Examples of the Splitting Parameter Perturbation

Theorem

Let us visualize the results from Theorem IX.4 with an example. Previously, we looked at

the modified Wimol-Banlue Attractor in Section VII with splitting parameters cx, cy, cz = 0.

However, now we need to analyze the modified Wimol-Banlue System using arbitrary split-

ting parameters. Thankfully, Appendix A provides us with a thorough analysis thereof.

Referring to Equation (46) in Section VII, our modification of the Wimol-Banlue Attractor

is 
ẋ = y − x
ẏ = −z tanh(x)

ż = −α + xy + 1
β

ln(2 cosh(βy))

with α > 0 and β >> 1. The corresponding forcing functions and squared frequency

functions are

hx(y, z; cx) = cx − y − z tanh(cx)

hy(x, z; cy) = sech2(x)(x− cy)z + tanh(x)

(
α− xcy −

1

β
ln(2 cosh(βcy))

)
hz(x, y; cz) = y2 − xy − (x+ tanh(βy)) tanh(x)cz

gx(x, y, z; cx) =

−1 + z

(
tanh(x)− tanh(cx)

x− cx

)
x 6= cx

−1 + sech2(cx)z x = cx

gy(x, y, z; cy) =

tanh(x)x+ sech2(x)z +
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
y 6= cy

tanh(x)x+ sech2(x)z + tanh(x) tanh(βcy) y = cy

gz(x, y, z; cz) = (x+ tanh(βy)) tanh(x)

Using Theorem IX.4, we would like to prove that for some cx, cy, cz ∈ R, the Wimol-Banlue

Attractor will intersect the set {(x, y, z) ∈ R3 : gy(x, y, z; cy) = gz(x, y, z; cz)} transversely.

First let us define out sets.

X ≡ {(x, y, z) ∈ R3}
C ≡ {(cy, cz) ∈ R2}

Mcy ,cz ≡ {(x, y, z) ∈ R3 : gy(x, y, z; cy) = gz(x, y, z; cz)}

M ≡
⋃

cy ,cz∈R

Mcy ,cz
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To use Theorem IX.4, we must first prove that Mcy ,cz is a connected 2-manifold for arbitrary

cy, cz ∈ R. Mcy ,cz can be rewritten as the set

Mcy ,cz ≡ {(x, y,G(x, y, cy, cz)) ∈ R3}

where

G(x, y, cy, cz) =

sinh(x) cosh(x) tanh(βy)−

(
sinh(x) cosh(x)

β(y − cy)

)
ln

(
cosh(βy)

cosh(βcy)

)
y 6= cy

0 y = cy

This follows from the calculations done in Equations (68) and (69) from Appendix A. Func-

tion G is trivially continuous in x and cz. Proving that G is continuous in y and cy is not as

straightforward, but can be relatively easily proven.

Taking cy as fixed, function G is trivially continuous in y 6= cy. So now what remains is

proving that G is continuous in y = cy. Using L’Hopital’s theorem, we see that

lim
y→cy

G(x, y, cy, cz) = sinh(x) cosh(x) lim
y→cy

tanh(βy)

− sinh(x) cosh(x) lim
y→cy

(
ln(cosh(βy)/ cosh(βcy))

β(y − cy)

)
= sinh(x) cosh(x) tanh(βcy)− sinh(x) cosh(x) tanh(βcy)

= G(x, cy, cy, cz)

Similarly, function G is again trivially continuous in cy 6= y for fixed y. So now what remains

is proving that G is continuous in cy = y. Using L’Hopital’s theorem, we again see that

lim
cy→y

G(x, y, cy, cz) = sinh(x) cosh(x) tanh(βy)

− sinh(x) cosh(x) lim
cy→y

(
ln(cosh(βy)/ cosh(βcy))

β(y − cy)

)
= sinh(x) cosh(x) tanh(βy)− sinh(x) cosh(x) tanh(βy)

= G(x, y, y, cz)

Thus, we can conclude G ∈ C0(x, y, cy, cz).
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Function G is also differentiable in x and y, with partial derivatives given by

∂G

∂x
=

cosh(2x) tanh(βy)−

(
cosh(2x)

β(y − cy)

)
ln

(
cosh(βy)

cosh(βcy)

)
y 6= cy

0 y = cy

∂G

∂y
=


sinh(x) cosh(x)

(
β sech2(βy)−

tanh(βy)

y − cy
+

ln(cosh(βy)/ cosh(βcy))

β(y − cy)2

)
y 6= cy

β

2
sinh(x) cosh(x) sech2(βcy) y = cy

Moreover, ∂G/∂x and ∂G/∂y are trivially continuous in x and cz. Proving that both deriva-

tives are continuous in y and cy is a little more involved.

First off, let us prove that ∂G/∂x is continuous in y. Taking cy fixed, ∂G/∂x is trivially

continuous in y 6= cy. Using L’Hopital’s Theorem again, we see that ∂G/∂x is indeed

continuous in y = cy.

lim
y→cy

∂G(x, y, cy, cz)

∂x
= cosh(2x) lim

y→cy
tanh(βy)− cosh(2x) lim

y→cy

(
ln(cosh(βy)/ cosh(βcy))

β(y − cy)

)
= cosh(2x) tanh(βcy)− cosh(2x) tanh(βcy)

=
∂G(x, cy, cy, cz)

∂x

Similarly, function ∂G/∂x is again trivially continuous in cy 6= y for fixed y. Using L’Hopital’s

Theorem again, we see that ∂G/∂x is indeed continuous in cy = y.

lim
cy→y

∂G(x, y, cy, cz)

∂x
= cosh(2x) tanh(βy)− cosh(2x) lim

cy→y

(
ln(cosh(βy)/ cosh(βcy))

β(y − cy)

)
= cosh(2x) tanh(βy)− cosh(2x) tanh(βy)

=
∂G(x, y, y, cz)

∂x

We can conclude that ∂G/∂x ∈ C0(x, y, cy, cz).

We also wish to prove that ∂G/∂y is continuous. We have already concluded that ∂G/∂y is

trivially continuous in x and cz. Proving that the function is continuous in y and cy is not

so easy.

For cy fixed, function ∂G/∂y is continuous over y 6= cy. Proving that ∂G/∂y is continuous
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in y = cy requires L’Hopital’s Theorem as before.

lim
y→cy

∂G(x, y, cy, cz)

∂y
= sinh(x) cosh(x) lim

y→cy

(
β sech2(βy)−

tanh(βy)

y − cy
+

ln(cosh(βy)/ cosh(βcy))

β(y − cy)2

)

= sinh(x) cosh(x)

(
β sech2(βcy)−

β

2
sech2(βcy)

)

=
∂G(x, cy, cy, cz)

∂y

Similarly, function ∂G/∂y is again trivially continuous in cy 6= y for fixed y. Using L’Hopital’s

Theorem again, we see that ∂G/∂y is indeed continuous in cy = y.

lim
cy→y

∂G(x, y, cy, cz)

∂y
= sinh(x) cosh(x) lim

cy→y

(
β sech2(βy)−

tanh(βy)

y − cy
+

ln(cosh(βy)/ cosh(βcy))

β(y − cy)2

)

= sinh(x) cosh(x)

(
β sech2(βy)−

β

2
sech2(βy)

)

=
∂G(x, y, y, cz)

∂y

We can again conclude that ∂G/∂y ∈ C0(x, y, cy, cz).

In conclusion, function G ∈ C0(x, y, cy, cz) that is at least continuous differentiable in x and

y. Since G, ∂G/∂x, ∂G/∂y ∈ C0(x, y, cy, cz), we can conclude that, for arbitrary cy, cz ∈ R,

Mcy ,cz is a connected 2-manifold using Lemma IX.1. Of particular note, since G is defined

over every coordinate pair (x, y) ∈ R2 for arbitrary cy and cz, ∂Mcy ,cz ∩ int(X) = ∅

What is left to prove is that set M is path-continuous. This can also easily be proven since

we can rewrite M as

M = {(x, y,G(x, y, cy, cz), cy, cz) ∈ R5}

Since function G ∈ C0(x, y, cy, cz), set M must be a path-continuous set.

To prove the last condition of Theorem IX.4, recall our previous work on the modified Wimol-

Banlue Attractor in Section VII. It so happened that for splitting parameters cx, cy, cz =

0, the modified Wimol-Banlue Attractor repeatedly intersects the set {(x, y, z) ∈ R3 :

gy(x, y, z; 0) = gz(x, y, z; 0)} (see Figure 29). Moreover, this intersection is transverse for

at least some point in the phase space.

Now we can finally use Theorem IX.4 to conclude that there exists a r > 0 so that for

all ||(cy, cz)|| < r, the Wimol-Banlue Attractor will also intersect the intersection between
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gy(x, y, z; cy) and gz(x, y, z; cz) transversely. In other words, if the squared frequency func-

tions compete for one set of splitting parameters, then they will compete for certain other

sets of splitting parameters as well.
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XI. Conclusions

Chaotic strange attractors have a certain sense of unpredictability in them, proving that the

smallest changes in data can render entire models unreliable. Since the discovery of the first

chaotic attractor by Lorenz [12][31], more and more processes have been discovered to con-

tain a strange attractor. Therefore, to understand chaotic strange attractors is a matter of

great importance for the progress of science as a whole. The Competitive Modes Conjecture

is an attempt at doing just that.

This paper is not meant to prove or disprove the Competitive Modes Conjecture by any

means, but simply to provide an in-depth analysis into what it is, when it can be useful,

and provide mathematical structure to some of the vagueness that previous literature on the

subject has failed to address. The largest contribution this paper has to offer is found in

Section VI, where the concept of the splitting a function is rigorously defined in Definition

VI.1 and proven to exist under a set of basic assumptions in Theorem VI.4.

In light of this, the authors ultimately propose a new formulation for the Competitive Modes

Conjecture.

Conjecture XI.1 (Competitive Modes Conjecture). Suppose we have a autonomous n-

dimensional system of differential equations of the form ẋ = F(x) that can be differentiated

with respect to time into ẍ = f(x). Suppose for all i ∈ {1, 2, · · · , n}, fi can be split with

respect to the ith dimension and splitting parameter ci = 08 according to Definition VI.1

into forcing function hi and squared frequency function gi. Furthermore, suppose this system

produces a chaotic attractor in the phase space. This leads to the following results.

• n > 2;

• For some distinct i, j ∈ {1, 2, · · · , n}, squared frequency functions gi and gj over some

arbitrary trajectory x(·) in the system’s attractor are repeatedly competitive or nearly

competitive

• for some i ∈ {1, 2, · · · , n}, squared frequency function gi over some arbitrary trajectory

x(·) in the system’s attractor is not constant with respect to time;

• for some i ∈ {1, 2, · · · , n}, forcing function hi is not constant with respect to some

variable xj, where j ∈ {1, 2, · · · , i− 1, i+ 1, · · · , n}

This formulation removes much of the ambiguity of the original formulation, allowing for

mathematicians to have a firm footing for any potential future research. Furthermore, the

original was only applicable to multipolynomial systems; this new formulation allows for

many more interesting systems, including many non-multipolynomial ones.

8More research is needed to see what affect varying ci would have the conjecture.
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XII. Future Research

In this section, we briefly discuss future research opportunities into this field of mathematics.

Splitting Parameter C

The main question that still lingers is what the optimal value of splitting parameter c should

be in Definition VI.1 on page 59. Corollary VI.5 seems to suggest that the best option would

be setting c equal to zero, but Table 1 and Section VIII then conclude that not all functions

are splittable. This does not necessarily have to be an issue; there is no universal law that

requires all possible functions to be splittable. Theorem IX.4 on page 94 does try to rectify

this somewhat, but the theorem is rather restrictive and gives no indication as to which

parameter values are optimal.

As such, more research needs to be done into the interdependency between the splitting of a

function and the splitting parameter itself. However, as it stands, it is the authors’ personal

conclusion that the best option is setting the parameter equal to zero and accepting the

consequences: perhaps some functions just can not be split using Definition VI.1.

Difference Systems

Perhaps a much more exciting area of research is applying the Competitive Modes Conjec-

ture to difference systems instead of dynamical systems. As far as the authors are aware,

this is a completely untapped field, and no research has be done whatsoever concerning this

subject. And yet, difference and dynamical systems can be so similar; both types of systems

can even contain chaotic attractors. Perhaps applying the conjecture to difference systems

will reveal something dynamical systems can not.

As a quick example, let us examine the Hénon Attractor. Michel Hénon presented a two-

dimensional nonlinear difference system in 1976 that contains a strange attractor [20]. The

system is given as {
xn+1 = 1− αx2

n + yn

yn+1 = βxn
(52)

Using this, we can conclude the following.{
xn+2 = 1− α(1− αx2

n + yn)2 + βxn

yn+2 = β − αβx2
n + βyn

(53)

In a way similar to Lemma VI.5, we could ”split” this system into its constituent ”forcing”
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functions and ”squared frequency” functions. Here we use splitting parameters cx, cy = 0.

hx(yn; 0) = 1− α− 2αyn − αy2
n

gx(xn, yn; 0) = α3x3
n − β − 2α2xn − 2α2xnyn

hy(xn; 0) = β(1− αx2
n)

gy(xn, yn; 0) = −β

(54)

The solution to the equation gx(xn, yn; 0) = gy(xn, yn; 0) is given by

Gxy ≡ {(xn, yn) ∈ R2 : α2xn = 0, yn = αx2
n/2− 1} (55)

Plotting this intersection set in 2-dimensional phase space in Figure 31 along with the Hénon

Attractor, we see that the attractor and the set do indeed intersect. This is corroborated

with the evidence that gx and gy plotted over a sequence {(xn, yn) ∈ R2 : n ∈ N} do compete

with each other on a regular basis (see Figure 32). What is interesting though is that the two

”squared frequency functions” are only equal to each other when they are strictly negative,

which is markedly different from dynamical systems.

As we can see, this provides evidence that the Competitive Modes Conjecture, or at least

a modified version thereof, may be applicable to difference systems as well as dynamical

systems. Clearly the research in this field is far from complete.
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Figure 31: The Hénon Attractor, along with the expressions in Equation (55). Here, α = 1.4

and β = 0.3 [20]. The trajectory used to plot the attractor has an initial position

(x0 = 0.2929376, y0 = 0.2388).
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Figure 32: The squared frequency functions gx(xn, yn; 0) and gy(xn, yn; 0) from Equation (54)

over a trajectory in the Hénon Attractor with an initial position (x0 = 0.2929376, y0 =

0.2388). Here, α = 1.4 and β = 0.3 [20]. Notice that these two functions do intersect

on a regular basis.

105



Potential Counter Example of the Conjecture

After more research, it has come to the attention of the authors that in defining the Compet-

itive Modes Conjecture more accurately in Definition XI.1, it may have resulted in a counter

example of the conjecture. Let us have a look again at the Chua System defined by Equation

6 in Section II. Under the right set of parameters, the Chua Attractor exhibits a self-excited

attractor around the origin, known as the Chua’s Double Scroll Attractor [7][26][30]. Mod-

ifying the Chua Attractor to smoothly approximate the piece-wise linear function f from

Equation 7 as was done in Section VII preserves this strange attractor.

For the reader’s convenience, the necessary mathematics is succinctly shown below.


ẋ = α(y − x− f(x))

ẏ = x− y + z

ż = −βy

where

fappr(x) =


m1x+ (m1 −m0) x < −2

(m1 −m0)x7

1024
+

3(m0 −m1)x5

128
+

13(m1 −m0)x3

64
+m0x x ∈ [−2, 2]

m1x+ (m0 −m1) x > 2

Then a self-excited attractor is formed around the origin, as shown in Figure 33. The

Lyapunov Spectrum shown in Figure 34, with a maximal Lyapunov Exponent of 0.287532,

reveals that the modified Double Scroll Chua Attractor is indeed chaotic. Differentiating the

system leads to the 2nd order system of differential equations.


ẍ = α(x− y + z)− α2(y − x− fappr(x))(1 + f ′appr(x))

ÿ = −(1 + α)x+ (α− β + 1)y − z − αfappr(x)

z̈ = −β(x− y + z)

Then we calculate the proper partial derivatives.


∂ẍ/∂x = α− α2(y − x− fappr(x))f ′′appr(x) + α2(1 + f ′appr(x))2

∂ÿ/∂y = α− β + 1

∂z̈/∂z = −β
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Figure 33: The modified self-excited Chua Attractor, approximating f with fappr as described in

Equation (42). Parameter values are α = 15.60, β = 28, m0 = −1.15, and m1 =

−0.7 [30]. The attractor was approximated using an adaptive explicit RK4 numerical

integration technique over a time span of 60 time units using an initial position of

(-1.0898, -0.0165, 0.32548). See Appendix C for coding details.
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Figure 34: The convergence of the Lyapunov Spectrum of the self-excited modified Double Scroll

Chua Attractor, approximating f with fappr as described in Equation (42). According

to our calculations, the spectrum is approximately (0.287532, -0.026106, -3.037632).

See Appendix C for coding details.
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Since ∂ẍ/∂x, ∂ÿ/∂y, and ∂z̈/∂z are all continuous over all of R3, we can use Theorem VI.4.

hx(y, z; cx) = α(cx − y + z)− α2(y − cx − fappr(cx))(1 + f ′appr(cx))

gx(x, y, z : cx) =



−α(1 + α)− α2

(
fappr(x)− fappr(cx)

x− cx

)

+α2

(
(y − x− fappr(x))f ′appr(x)− (y − cx − fappr(cx))f ′appr(cx))

x− cx

)
x 6= cx

−α− α2(1 + f ′appr(cx))
2 + α2(y − cx − fappr(cx))f ′′appr(cx) x = cx

hy(x, z; cy) = −(1 + α)x+ (α− β + 1)cy − z − αfappr(x)

gy(x, y, z : cy) = β − α− 1

hz(x, y; cz) = −β(x− y + cz)

gz(x, y, z : cz) = β

Like before, we first set gx and gy equal to each other. The result is then split into two cases.

When x 6= cx, then

α2(f ′appr(x)− f ′appr(cx))y =(α2 + β − 1)(x− cx) + α2(fappr(x)− fappr(cx))
+ α2(x+ fappr(x))f ′appr(x)− α2(cx + fappr(cx))f

′
appr(cx)

(56)

and when x = cx, then

α2f ′′appr(cx)y = β − 1 + α2(cx + fappr(cx))f
′′
appr(cx) + α2(1 + f ′appr(cx))

2 (57)

As such, the intersection gx and gy describes a 2-dimensional real surface in the 3-dimensional

phase space, which we call Gxy. The continuity of this surface depends on fappr, f
′
appr, and

f ′′appr, specifically when x = cx.

Next, we set gx and gz equal to each other, the result again being split into two situations.

When x 6= cx, then

α2(f ′appr(x)− f ′appr(cx))y =(α2 + α + β)(x− cx) + α2(fappr(x)− fappr(cx))
+ α2(x+ fappr(x))f ′appr(x)− α2(cx + fappr(cx))f

′
appr(cx)

(58)

and when x = cx, then

α2f ′′appr(cx)y = α + β + α2(cx + fappr(cx))f
′′
appr(cx) + α2(1 + f ′appr(cx))

2 (59)

As a result, the intersection between gx and gz describes a 2-dimensional real surface in the

3-dimensional phase space, which we call Gxz. Again, the continuity of this surface depends

on fappr, f
′
appr, and f ′′appr, specifically when x = cx.

And finally, we set gy and gz equal to each other, resulting in the simple requisite

α = 1
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Generally, α will not meet this requisite. As a result, generally there is no intersection of gy
and gz in the phase space and Gyz = ∅.

The intersections between the squared frequency functions can be plotted. It is easier to

understand the behavior of these intersections from a top-down aerial view (a projection of

the 3-dimensional phase space onto the 2-dimensional x − y plane). This is because Equa-

tions (56), (57), (58), and (59) do not include the variable z. The projected intersections are

plotted in Figure 35. The splitting parameters in this situation are cx, cy, cz = 0.

Figure 35: The modified self-excited Chua Attractor, along with the projected intersection sur-

faces Gxy (in red) and Gxz (in green). The splitting parameters in this situation are

cx, cy, cz = 0. The surfaces were approximated using an adaptive Marching Square

Algorithm. See Appendix C for coding details.

From Figure 35 something interesting is revealed: although the modified self-excited Chua

Attractor is indeed chaotic, the attractor does not intersect the surfaces Gxy or Gxz. This
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seems to then indicate the the Competitive Modes Conjecture is incorrect.

To see the phenomenon from a different angle , we take a single trajectory in the strange

attractor and calculate the squared frequency functions of the Double Scroll Chua System

over this trajectory. The results are given in Figure 36. As one can see, none of the three g

functions intersect at all.

Figure 36: The squared frequency functions gx (in red), gy (in green), and gz (in blue) applied to

a random trajectory in the Double Scroll Chua Attractor, where α = 15.60, β = 28,

m0 = −1.15, m1 = −0.7. The splitting parameters in this situation are cx, cy, cz = 0.

Notice that gx, gy, and gz do not intersect at all.
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There are several explanations for this phenomenon, indicating there are a few areas of

research yet to be explored.

• There could be an error present in the mathematics of the example that, despite the

authors’ most sincere efforts, has avoided detection. Third party validation can verify

whether this is true or not.

• Our more-rigorous definition of the splitting of a function (Definition VI.1) has some-

how introduced a fatality into the Competitive Modes Conjecture. Our definition

would then have to be reworked to include an as-of-yet unknown requirement that will

save the conjecture. This would require a deep understanding of the origins of the

theory with special application to dynamical systems. Unfortunately, this is beyond

the scope of this paper.

• In the counter example, the squared frequency functions do not compete directly, but

could be considered nearly competitive. Remember that the conjecture does allow for

this. The problem is then discerning what ”nearly competitive” means mathematically.

What is ”near” enough for competition to take place, and do the counter example’s

squared frequency functions compete ”near” enough? This nearness concept is rather

arbitrary and needs further investigation.

• The Competitive Modes Conjecture is simply incorrect and requires revision.

In conclusion, the Chua Double Scroll Attractor seems to be a counter example of the

conjecture; the question is why. Whatever the answer may be, it will provide invaluable

insight into the study of chaos.
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A. Intersections of the G Functions of the Modified

Wimol-Banlue System

In this Appendix, we calculate the intersections between the squared frequency functions

of the modified Wimol-Banlue dynamical system found in Equation (9) in Section II. This

analysis is referenced in Sections VII and X.

The modified Wimol-Banlue dynamical system has the form
ẋ = y − x
ẏ = −z tanh(x)

ż = −α + xy + 1
β

ln(2 cosh(βy))

where α, β > 0. Differentiating this system with respect to time leads to
ẍ = x− y − z tanh(x)

ÿ = sech2(x)(x− y)z + tanh(x)
(
α− xy − 1

β
ln(2 cosh(βy))

)
z̈ = y2 − xy − (x+ tanh(βy)) tanh(x)z

Then we can calculate the proper partial derivatives as follows.
∂ẍ/∂x = 1− z sech2(x)

∂ÿ/∂y = − sech2(x)z − tanh(x) (x+ tanh(βy))

∂z̈/∂z = −(x+ tanh(βy)) tanh(x)

Since ∂ẍ/∂x, ∂ÿ/∂y, and ∂z̈/∂z are continuous over all of R3, we can use Theorem VI.4 to

split ẍ, ÿ, and z̈ using splitting parameters cx, cy, and cz, respectively.

hx(y, z; cx) = cx − y − z tanh(cx)

hy(x, z; cy) = sech2(x)(x− cy)z + tanh(x)

(
α− xcy −

1

β
ln(2 cosh(βcy))

)
hz(x, y; cz) = y2 − xy − (x+ tanh(βy)) tanh(x)cz

gx(x, y, z; cx) =

−1 + z

(
tanh(x)− tanh(cx)

x− cx

)
x 6= cx

−1 + sech2(cx)z x = cx

gy(x, y, z; cy) =

x tanh(x) + sech2(x)z +
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
y 6= cy

x tanh(x) + sech2(x)z + tanh(x) tanh(βcy) y = cy

gz(x, y, z; cz) = (x+ tanh(βy)) tanh(x)

Now we set each other the squared frequency functions gx, gy, and gz equal to each other

and calculate the results.
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gx(x, y, z; cx) = gy(x, y, z; cy) where x 6= cx and y 6= cy

First, we set gx and gy equal to each other for x 6= cx and y 6= cy.

z

(
tanh(x)− tanh(cx)

x− cx
− sech2(x)

)
= 1 + x tanh(x) +

tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
(60)

A natural reaction would be to isolate variable z in the left-hand-side. This is only possible

if tanh(x)− tanh(cx) 6= sech2(x)(x− cx). As a result,

z =
(1 + x tanh(x)) (x− cx)

tanh(x)− tanh(cx)− sech2(x)(x− cx)

+
tanh(x)(x− cx)

β(y − cy)
(

tanh(x)− tanh(cx)− sech2(x)(x− cx)
) ln

(
cosh(βy)

cosh(βcy)

)

If however tanh(x) − tanh(cx) = sech2(x)(x − cx), then x, y, cx and cy must follow the

equation

0 = 1 + x tanh(x) +
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
(61)

for a solution to even exist. The following lemma prohibits this.

Lemma A.1.{
(x, y) ∈ R2 : 0 = 1 + x tanh(x) +

tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
, y 6= cy

}
= ∅ (62)

Proof. First off, notice that

∀x ≥ 0, x tanh(x) ≥ 0

∀x < 0, x tanh(x) = −|x| tanh(−|x|) = |x| tanh(|x|) > 0

Thus, x tanh(x) is greater than or equal to 0 for all real values of x.

Now comes the difficult part: proving that for arbitrary cy ∈ R

ψ(y; cy) ≡
1

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
∈ (−1, 1) ∀y ∈ R\{cy}

Step one is to ascertain the limits of ψ for arbitrary cy. This is a relatively simple calculation,

using L’Hopital’s Theorem to prove that

lim
y→±∞

1

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
= lim

y→±∞
tanh(βy) = ±1
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The only step that remains is to prove that ψ is an increasing function in y, which is equivalent

to proving that the derivative of ψ with respect to y is non-negative for all values of y and cy.

The derivative of ψ with respect to y, defined for arbitrary cy ∈ R and for all y 6= cy, is

∂ψ(y; cy)

∂y
=
β tanh(βy)(y − cy)− ln(cosh(βy)) + ln(cosh(βcy))

β(y − cy)2

Since the denominator is always positive (β > 0), we only have to focus on the numerator,

which consists of two functions. Obviously, to prove that ∂ψ(y; cy)/∂y is non-negative, one

must prove that β tanh(βy)(y − cy) ≥ ln(cosh(βy))− ln(cosh(βcy)).

The first thing one should notice is what is expressed in the limits below.

lim
y→cy

(
β tanh(y)(y − cy)− ln

(
cosh(βy)/ cosh(βcy)

))
= 0

Furthermore, the numerator is a differentiable function, and as such we express the derivative

of the numerator of ∂ψ(y; cy)/∂y as follows.

∂

∂y

[
β tanh(βy)(y − cy)− ln

(
cosh(βy)

cosh(βcy)

)]
= β2 sech2(βy)(y − cy)

Then, since the numerator of ∂ψ(y; cy)/∂y limits to zero at the point y = cy, and the

derivative of the numerator is positive for all y > cy, we can conclude that

∀y > cy, β tanh(y)(y − cy) > ln

(
cosh(βy)

cosh(βcy)

)

Furthermore, since the numerator of ∂ψ(y; cy)/∂y limits to zero at the point y = cy, and the

derivative of the numerator is negative for all y < cy, we can conclude that

∀y < cy, β tanh(y)(y − cy) > ln

(
cosh(βy)

cosh(βcy)

)

Thus, we have concluded that for all y 6= cy, the numerator and concurrently all of ∂ψ(y; cy)/∂y

is non-negative.

Therefore, since limy→−∞ ψ(y; cy) = −1, limy→∞ ψ(y; cy) = +1, and ∂ψ(y; cy)/∂y ≥ 0, we

can conclude that for arbitrary cy ∈ R,

ψ(y; cy) ∈ (−1, 1) ∀y 6= cy
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Now to wrap things up, we go back to Equation (61).

1 + x tanh(x) +
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
> 1 + x tanh(x)− tanh(x)

> 1 + x tanh(x)− 1

≥ 0

Hence, we have proven that Equation (61) has no solutions for arbitrary cy ∈ R if y 6= cy.

Because of Lemma A.1, we can conclude that for x 6= cx and y 6= cy, gx(x, y, z; cx) =

gy(x, y, z; cy) when tanh(x)− tanh(cx) 6= sech2(x)(x− cx).

gx(x, y, z; cx) = gy(x, y, z; cy) where x 6= cx and y = cy

Next, we set gx equal to gy for x 6= cx and y = cy. Under these assumptions, the following

equation is the result.

z

(
tanh(x)− tanh(cx)

x− cx
− sech2(x)

)
= 1 + x tanh(x) + tanh(x) tanh(βcy) (63)

Like before, we would like to isolate variable z in the left-hand-side. This is only possible if

tanh(x)− tanh(cx) 6= sech2(x)(x− cx). As a result,

z =
(x− cx) + x tanh(x)(x− cx) + tanh(x) tanh(βcy)(x− cx)

tanh(x)− tanh(cx)− sech2(x)(x− cx)

If however tanh(x)− tanh(cx) = sech2(x)(x− cx), then for a solution to even exist, variables

x, cx, and cy must follow the equation. The following lemma again prohibits this.

Lemma A.2.

{x ∈ R : 0 = 1 + x tanh(x) + tanh(x) tanh(βcy)} = ∅

Proof. The proof is much simpler than that of the previous subsection.

We have already proven previously that x tanh(x) ≥ 0 for all x ∈ R. We also know that

tanh(x) ∈ (−1, 1) for all x ∈ R and similarly that tanh(βcy) ∈ (−1, 1) for all cy ∈ R. Then

we can finish off this quick proof with the following inequality.

1 + x tanh(x) + tanh(x) tanh(βcy) > 1 + x tanh(x)− 1 ≥ 0

Because of Lemma A.2, we can conclude that for x 6= cx and y = cy, gx(x, cy, z; cx) =

gy(x, cy, z; cy) when tanh(x)− tanh(cx) 6= sech2(x)(x− cx).
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gx(x, y, z; cx) = gy(x, y, z; cy) where x = cx and y 6= cy

Next, we set gx equal to gy for x = cx and y 6= cy. Under these assumptions, an equation is

the result.

0 = 1 + cx tanh(cx) +
tanh(cx)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
(64)

According to Lemma A.1, solutions to this equation do not exist.

gx(x, y, z; cx) = gy(x, y, z; cy) where x = cx and y = cy

Continuing on, we set gx equal to gy for x = cx and y = cy. Under these assumptions, the

result is

0 = 1 + cx tanh(cx) + tanh(cx) tanh(βcy)) (65)

According to Lemma A.2, the equation has no solutions and cannot be solved for any real

selection of cx and cy.

gx(x, y, z; cx) = gz(x, y, z; cz) where x 6= cx

Continuing on this extensive analysis, setting gx equal to gz with x 6= cx results in the

equation

z(tanh(x)− tanh(cx)) = (x− cx) + (x− cx)(x+ tanh(βy)) tanh(x) (66)

Notice that if x 6= cx, then tanh(x) 6= tanh(cx); Equation (66) can be freely rewritten as

z =
x− cx

tanh(x)− tanh(cx)
+

(x− cx)x tanh(x)

tanh(x)− tanh(cx)
+

(x− cx) tanh(x) tanh(βy)

tanh(x)− tanh(cx)

gx(x, y, z; cx) = gz(x, y, z; cz) where x = cx

Next, we set gx equal to gz with x = cx, with the resulting equation as follows.

z sech2(cx) = 1 + cx tanh(cx) + tanh(cx) tanh(βy) (67)

Since sech2(cx) > 0 for all cx ∈ R, this equation can be freely rewritten to

z = cosh2(cx) + cx sinh(cx) cosh(cx) + sinh(cx) cosh(cx) tanh(βy)

gy(x, y, z; cy) = gz(x, y, z; cz) where y 6= cy

Getting close to completing this section of the analysis on the modified Wimol-Banlue system,

we set gy equal to gz with y 6= cy. The resulting equation is equal to

z sech2(x) = tanh(x) tanh(βy)−
tanh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)
(68)
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Since sech2(x) > 0 for all x ∈ R, this equation can be freely rewritten as

z = sinh(x) cosh(x) tanh(βy)−
sinh(x) cosh(x)

β(y − cy)
ln

(
cosh(βy)

cosh(βcy)

)

gy(x, y, z; cy) = gz(x, y, z; cz) where y = cy

Finally, we set gy equal to gz with y = cy. The resulting equation is equal to

z sech2(x) = 0 (69)

Simplifying this equation, regardless of choice for any splitting parameter, concludes in the

simple planer equation in 3-dimensional phase space.

z = 0
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B. Calculations involving the Conic Section Equation

In this Appendix, we relay the proof that for A,C ∈ R, B ∈ R\{0}

Ax2 +Bxy + Cy2 =

(
A+ C

2
+

√
(A− C)2 +B2

2

)
χ2 +

(
A+ C

2
−
√

(A− C)2 +B2

2

)
ω2

(70)

where for cot(2θ) = (A− C)/B

[
χ

ω

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
x

y

]
This transformation is used in constructing the standard canonical form of the conic sections

equation; more information can be found at [2][8].

Please note that to prove the validity of this transformation, we will need the equivalence

relation

cot(2θ) =
A− C
B

⇔ B cos(2θ)− (A− C) sin(2θ) = 0

Let us start with the inverse of the bijective change of variables [8].

[
x

y

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

] [
χ

ω

]

Inserting these equations into Equation (70) results in the following [8].

A
(
χ2 cos2(θ)− 2χω cos(θ) sin(θ) + ω2 sin2(θ)

)
+B

(
χ2 cos(θ) sin(θ) + χω cos2(θ)− χω sin2(θ)− ω2 cos(θ) sin(θ)

)
+ C

(
χ2 sin2(θ) + 2χω cos(θ) sin(θ) + ω2 cos2(θ)

)
Rewriting this expression moves us closer to our desired outcome.(

A cos2(θ) + C sin2(θ) +B cos(θ) sin(θ)
)
χ2

+
(
B cos2(θ)−B sin2(θ) + 2(C − A) cos(θ) sin(θ)

)
χω

+
(
A sin2(θ) + C cos2(θ)−B cos(θ) sin(θ)

)
ω2

The χω-term of the expression above can be simplified to zero [8].

(
B cos2(θ)−B sin2(θ) + 2(C − A) cos(θ) sin(θ)

)
= B cos(2θ)− (A− C) sin(2θ) = 0
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Furthermore, we need to calculate the value of a few trigonometric functions.

sin(2θ) =
B√

(A− C)2 +B2

cos(2θ) =
A− C√

(A− C)2 +B2

sin2(θ) =
1− cos(2θ)

2
=

√
(A− C)2 +B2 − (A− C)

2
√

(A− C)2 +B2

cos2(θ) =
1 + cos(2θ)

2
=

√
(A− C)2 +B2 + (A− C)

2
√

(A− C)2 +B2

sin(θ) cos(θ) =
sin(2θ)

2
=

B

2
√

(A− C)2 +B2

Thus Equation (70) can be rewritten as(
(A+ C)

√
(A− C)2 +B2 + (A− C)2 +B2

2
√

(A− C)2 +B2

)
χ2

+

(
(A+ C)

√
(A− C)2 +B2 − (A− C)2 −B2

2
√

(A− C)2 +B2

)
ω2

which can be further reduced to(
(A+ C)

2
+

√
(A− C)2 +B2

2

)
χ2 +

(
(A+ C)

2
−
√

(A− C)2 +B2

2

)
ω2

which completes the proof [8].
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C. Coding involved in Numerical Calculations

Including the raw code in this paper would increase the page-count significantly; the code is

thousands of lines long. Instead, one can find the necessary python package located in the

Github repository https://github.com/HugoReijm/Toolbox.

The python package, named toolbox, has a simple structure. Besides the obligatory init .py

file, the package includes a number of ”toolbox” files, each files designated for a particular

field of mathematics. Currently, the four toolbox files are

• generaltoolbox, used for general mathematical concepts such as differentiation, inte-

gration, and function plotting

• matrixtoolbox, used for mathematics involving linear algebra, such as calculating the

Jacobian and implementation of several matrix-vector equation solvers

• continuoustoolbox, used specifically for differential systems of equations and continuous

dynamical systems.

• discretetoolbox, used specifically for difference systems

For full clarity, we now give a brief overview of the individual toolbox files. Every method

of each file is described, including each of its arguments.

The code was written was the specific goal in mind of not being heavily dependent on special-

ized packages and modules. Any basic python editor should already have the prerequisites

needed to run the toolbox package code. As such, most of the toolbox code is self-written,

with a structure focusing on understandability.
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generaltoolbox

• colors: returns equidistantly-spaced colors for plotting

– N (integer): number of requested colors

• hammersley: returns pseudo-random Hammersley points

– N (integer): number of requested points

– dim (integer): dimension of requested points

– points (boolean): formats output pointwise, otherwise formats coordinate-wise;

defaults to False

• differentiate: differentiates a function in a point with respect to a dimension

– f (method): function Rn → R to be differentiated

– x (list): point in which f is differentiated

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– h (float): step size of numerical differentiation; defaults to 1e-3

– variableDim (integer): dimension over which f is differentiated in x; defaults to 1

• integrate: integrates a function over a finite domain

– f (method): function R→ R to be integrated

– start (float): lower bound of integration domain

– stop (float): upper bound of integration domain

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– mode (string): selects from the following numerical integration techniques

∗ mode = ”gauss”, ”kronrod” selects the Gauss-Kronrod Quadrature (default)

∗ mode 6= ”gauss”, ”kronrod” selects the Trapezium Quadrature

– maxlevel (integer): sets maximum level of iterations if method is adaptive; de-

faults to 5

– errtol (float): error tolerance used for verification if method is adaptive; defaults

to 1e-3

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to True

• multiIntegrate: integrates a function over a finite multidimensional domain

– f (method): function Rn → R to be integrated

– start (list): lower bounds of integration domain

– stop (list): upper bounds of integration domain

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– N (integer): number of pseudo-random points used for multidimensional Monte-

Carlo numerical integration; defaults to 1e3
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• interpolate: interpolates temporally-advancing data into a temporally-equidistant set

– sol (list of lists): set of n-dimensional temporally-advancing data formatted coordinate-

wise

– t (list): corresponding temporal data

– N (integer): size of resulting interpolated data

• newtonRaphson: generic n-dimensional real root-finding algorithm

– f (method): function Rn → R of which whose roots are requested

– start (list): lower bounds of domain

– stop (list): upper bounds of domain

– delta (list): size per dimension of each subdomain

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f: defaults to {}
– errtol (float): error tolerance used for verification; defaults to 1e-3

– neighborhoodRange (float): tolerance used for determining uniqueness of output

per subdomain; defaults to 1e-2

– maxlevel (integer): sets maximum level of iterations; defaults to 50

– speed (float): weight used to speed up or slow down convergence; defaults to 1.0

• pointplot: determines roots of function using Marching Line Algorithm

– f (method): explicit or implicit function R→ R of which whose roots are requested

– start (float): lower bound of domain

– stop (float): upper bound of domain

– delta (float): size of subdomains

– args (list): extra arguments of f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to True

– maxlevel (integer): sets maximum level of iterations if method is adaptive; de-

faults to 10

– mode (string): selects from the following interpolation techniques

∗ mode = ”cubic” selects the cubic interpolation method

∗ mode = ”quadratic” selects the quadratic interpolation method

∗ mode 6= ”cubic”, ”quadratic” selects the linear interpolation method

– plotbool (boolean): dictates whether output should be plotted; defaults to True

– plotaxis (axis): pre-existing axis to plot the output in if plotbool is True; defaults

to None

– colormap (colormap): colormap to plot output with, if any; defaults to None

– color (list or string): color to plot output with if colormap is None; defaults to

”black”

– alpha (float): alpha value to plot output with; defaults to 1.0
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• plot2D: plots explicit function with 1-dimensional input

– f (method): function R→ R to be plotted

– start (float): lower bound of domain

– stop (float): upper bound of domain

– delta (float): step-size used for plotting through domain

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– limit (list): limits the lower and upper value of function output; defaults to [None,

None]

– dependentvar (string): selects from the following axes corresponds to output

∗ dependentvar = ”x” selects x-axis

∗ dependentvar 6= ”x” selects y-axis (default)

– mode (string): selects from the following types of graphs

∗ mode = ”polar” selects a polar graph

∗ mode 6= ”polar” selects a Cartesian graph (default)

– plotaxis (axis): pre-existing axis to plot output in; defaults to None

– color (list or string): color to plot output with; defaults to ”black”

– alpha (float): alpha value to plot output with; defaults to 1.0

• lineplot: determines the roots of function using Marching Square Algorithm

– f (method): explicit or implicit function R2 → R of which whose roots are re-

quested

– start (list): lower bounds of domain

– stop (list): upper bounds of domain

– delta (list): size per dimension of subdomains

– args (list): extra arguments of f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to True

– maxlevel (integer): sets maximum level of iterations if method is adaptive; de-

faults to 5

– mode (string): selects from the following interpolation techniques

∗ mode = ”cubic” selects the cubic interpolation method

∗ mode = ”quadratic” selects the quadratic interpolation method

∗ mode 6= ”cubic”, ”quadratic” selects the linear interpolation method

– plotbool (boolean): dictates whether output should be plotted; defaults to True

– plotaxis (axis): pre-existing axis to plot the output in if plotbool is True; defaults

to None

– wireframe (boolean): dictates whether to plot output using a wireframe or just

using a point cloud; defaults to True

– colormap (colormap): colormap to plot output with, if any; defaults to None

128



– color (list or string): color to plot output with if colormap is None; defaults to

”black”

– alpha (float): alpha value to plot output with; defaults to 1.0

• plot3D: plots explicit function with 2-dimensional input

– f (method): function R2 → R to be plotted

– start (list): lower bounds of domain

– stop (list): upper bounds of domain

– delta (list): step-size used for plotting through domain per dimension

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– limit (list): limits the lower and upper value of function output; defaults to [None,

None]

– dependentvar (string): selects from the following axes corresponds to output

∗ dependentvar = ”x” selects x-axis

∗ dependentvar = ”y” selects y-axis

∗ dependentvar 6= ”x”, ”y” selects z-axis (default)

– plotaxis (axis): pre-existing axis to plot output in; defaults to None

– wireframe (boolean): plots output using a wireframe, otherwise plots using polyg-

onal surface reconstruction; defaults to False

– colormap (colormap): colormap to plot output with, if any; defaults to None

– color (list or string): color to plot output with is colormap is None; defaults to

”black”

– alpha (float): alpha value to plot output with; defaults to 1.0

• surfaceplot: determines the roots of function using Marching Cube Algorithm

– f (method): explicit or implicit function R3 → R of which whose roots are re-

quested

– start (list): lower bounds of domain

– stop (list): upper bounds of domain

– delta (list): size per dimension of subdomains

– args (list): extra arguments of f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to True

– maxlevel (integer): sets maximum level of iterations if method is adaptive; de-

faults to 3

– mode (string): selects from the following interpolation techniques

∗ mode = ”cubic” selects the cubic interpolation method

∗ mode = ”quadratic” selects the quadratic interpolation method

∗ mode 6= ”cubic”, ”quadratic” selects the linear interpolation method

– plotbool (boolean): dictates whether output should be plotted; defaults to True
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– plotaxis (axis): pre-existing axis to plot the output in if plotbool is True; defaults

to None

– surface (boolean): dictates whether to plot output using a polygonal surface re-

construction or not

– wireframe (boolean): dictates whether to plot output using a wireframe or not

– colormap (colormap): colormap to plot output with, if any; defaults to None

– color (list or string): color to plot output with if colormap is None; defaults to

”black”

– alpha (float): alpha value to plot output with; defaults to 1.0
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matrixtoolbox

• jacobian: calculates the Jacobian of a function at a point

– f (method): function Rn → Rm of which whose Jacobian is requested

– vect (list): point in which the Jacobian of f is calculated

– h (float): step-size of numerical differentiation; defaults to 1e-6

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
• grammSchmidt: orthogonalizes set of vectors

– vectors (list of lists): list of vectors to be orthogonalized

– tol (float): zero tolerance; defaults to 1e-6

– normalize (boolean): normalizes orthogonalized vectors; defaults to True

– clean (boolean): removes vectors whose norm falls under the zero tolerance; de-

faults to True

• jacobi: matrix-vector equation solver using Jacobi iteration

– A (list of lists): matrix in Rn×m of equation A*x=b

– b (list): vector in Rn of equation A*x=b

– errtol (float): error tolerance used for verification; defaults to 1e-6

– maxlevel (integer): sets maximum level of iterations; defaults to 1000

– x0 (list): optional first guess at solution of equation A*x=b; defaults to None

– omega (float): weight for optional weighted Jacobi iterations; defaults to 1.0

– inform (boolean): informs user of convergence and viability of output; defaults to

False

• sor: matrix-vector equation solver using Successive Over-Relaxation

– A (list of lists): matrix in Rn×m of equation A*x=b

– b (list): vector in Rn of equation A*x=b

– errtol (float): error tolerance used for verification; defaults to 1e-6

– maxlevel (integer): sets maximum level of iterations; defaults to 1000

– x0 (list): optional first guess at solution of equation A*x=b; defaults to None

– omega (float): weight for optional weighted Successive Over-Relaxation iterations;

defaults to 1.0

– inform (boolean): informs user of convergence and viability of output; defaults to

False

• cg: matrix-vector equation solver using Conjugate Gradient Algorithm

– A (list of lists): matrix in Rn×m of equation A*x=b

– b (list): vector in Rn of equation A*x=b

– errtol (float): error tolerance used for verification; defaults to 1e-6

– maxlevel (integer): sets maximum level of iterations; defaults to 1000

– x0 (list): optional first guess at solution of equation A*x=b; defaults to None
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– inform (boolean): informs user of convergence and viability of output; defaults to

False

• lu: matrix-vector equation solver using LU-decomposition

– A (list of lists): matrix in Rn×m of equation A*x=b

– b (list): vector in Rn of equation A*x=b

– tol (float): zero tolerance; defaults to 1e-6

– symbol (boolean): allows for symbolic solving of matrix-vector equation

– inform (boolean): informs user of viability of output; defaults to False
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continuoustoolbox

• poincareSection: calculates a Poincare Section of a trajectory of a dynamical system

– sol (list of lists): trajectory of dynamical system formatted coordinate-wise

– planeCoords (list): point on the n-1 dimensional plane used for the Poincare

Section in n-dimensional phase space

– planeParams (list): normal vector of the n-1 dimensional plane used for the

Poincare Section in n-dimensional phase space

• lyapunovSpectrum: calculates the Lyapunov Spectrum of a trajectory of a dynamical

system

– sol (list of lists): trajectory of dynamical system formatted coordinate-wise

– t (list): corresponding temporal data

– f (method): system of differential equations controlling the trajectory of dynam-

ical system

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– dist (float): initial distance between initial positions at each iteration of algorithm;

defaults to 1e-6

– K (integer): number of Lyapunov Exponents to be calculated; defaults to 1

– easy (boolean): dictates whether to use easy RK4 or hard RK14 integration;

defaults to True

– plotbool (boolean): dictates whether output should be plotted; defaults to False

– plotaxis (axis): pre-existing axis to plot the output in if plotbool is True; defaults

to None

– savefigName (string): saves plot of output under savefigName.png if plotbool is

True; defaults to None

• rungeKutta: generic n-dimensional explicit Runge Kutta numerical integration algo-

rithm

– a (list of lists): a matrix of Butcher Tableau

– b (list): b vector of Butcher Tableau

– c (list): c vector of Butcher Tableau

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– args (list): extra arguments for f

– kwargs (dictionary): extra keyword arguments of f

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

133



– inform (boolean): informs user of viability of output

– rev (boolean): reverses the direction of dynamical system

– autonomous (boolean): indicates whether dynamical system is autonomous or not

– adapt (boolean): dictates whether method uses an adaptive algorithm or not

• euler: n-dimensional explicit forward Euler numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False

– autonomous (boolean): indicates whether dynamical system is autonomous or

not; defaults to True

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• rk2: n-dimensional explicit Runge Kutta 2 numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False

– autonomous (boolean): indicates whether dynamical system is autonomous or

not; defaults to True

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• rk4: n-dimensional explicit Runge Kutta 4 numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space
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– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False

– autonomous (boolean): indicates whether dynamical system is autonomous or

not; defaults to True

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• rk12: n-dimensional explicit Runge Kutta 12 numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False

– autonomous (boolean): indicates whether dynamical system is autonomous or

not; defaults to True

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• rk14: n-dimensional explicit Runge Kutta 14 numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False
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– autonomous (boolean): indicates whether dynamical system is autonomous or

not; defaults to True

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• verlet: n-dimensional explicit Verlet numerical integration algorithm

– f (method): system of differential equations controlling dynamical system

– vect0 (list): initial position of trajectory

– start (list): lower bounds of domain in phase space

– stop (list): upper bounds of domain in phase space

– tstart (float): lower bound of temporal domain

– tstop (float): upper bound of temporal domain

– deltat (float): time step used in numerical integration

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments of f; defaults to {}
– inform (boolean): informs user of viability of output; defaults to True

– rev (boolean): reverses the direction of dynamical system; defaults to False

– adapt (boolean): dictates whether method uses an adaptive algorithm or not;

defaults to False

• eulerTableau: forward Euler numerical integration algorithm Butcher Tableau

• rk2Tableau: Runge Kutta 2 numerical integration algorithm Butcher Tableau

• rk4Tableau: Runge Kutta 4 numerical integration algorithm Butcher Tableau

• rk12Tableau: Runge Kutta 12 numerical integration algorithm Butcher Tableau

• rk14Tableau: Runge Kutta 14 numerical integration algorithm Butcher Tableau
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discretetoolbox

• generate: generate a sequence of points dictated by a difference system

– f (method): difference system

– vect0 (list): initial position of sequence

– N (integer): size of outputted sequence

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
• lyapunovSpectrum: calculates the Lyapunov Spectrum of a sequence of a difference

system

– sol (list of lists): sequence of difference system formatted coordinate-wise

– f (method): difference system

– args (list): extra arguments for f; defaults to [ ]

– kwargs (dictionary): extra keyword arguments for f; defaults to {}
– dist (float): initial distance between initial positions at each iteration of algorithm;

defaults to 1e-6

– K (integer): number of Lyapunov Exponents to be calculated; defaults to 1

– plotbool (boolean): dictates whether output should be plotted; defaults to False

– plotaxis (axis): pre-existing axis to plot the output in if plotbool is True; defaults

to None

– savefigName (string): saves plot of output under savefigName.png if plotbool is

True; defaults to None
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