
Improving the Anonymity of Blockchains: The Case of 
Payment Channel Networks with Length-bounded Random 

Walk Insertion

Mehmet Emre Ozkan , Satwik Prabhu Kumble , Stefanie Roos

June 27 2021

Abstract

The LND is currently the most popular routing algorithm used in the Lightning Network, the
second layer solution to Bitcoin’s scalability. Despite its popularity, recent studies demonstrate
that its deterministic nature compromises the anonymity of the Lightning Network. In other
words, threatening parties present in the transaction path can guess the sending and receiving
parties of transactions easier than in the absence of such strong determinism. As a solution, we
propose augmenting the LND with a length bounded random walk insertion to include randomness
into the transaction path and regain anonymity. Most importantly, we found that for generated
network simulations and the snapshot network, including the random walk into the transaction
path improves anonymity. In simulations with LND routing, attackers could identify senders or
receivers for 70% of transactions. For simulations of networks with 100 nodes and an average
of 2 edges per node with the weighted random walk insertion, attackers could identify senders
or receivers around 65% of the time. However, for simulations of networks with 500 nodes and
an average of 10 edges per node with the weighted random walk insertion, attackers could never
identify senders or receivers. Besides, for the snapshot simulation, they could only identify either
in around 4% of transactions. Thus, we overall believe that the random walk insertion into the
LND algorithm addresses the anonymity issue of the unmodified algorithm.

1 Introduction
Lightning Network is a second-layer solution to bitcoin’s scalability problem, which is a payment
channel network. Recent studies discovered that the Lightning Network is not entirely anonymous,
meaning attackers could reveal the senders’ or receivers’ identities. As anonymity is important, this
research will try to improve the anonymity of the Lightning Network with different routing algorithms.
First of all, to understand the problem, the Lightning Network will be introduced. Afterward, some
of the reasons for this anonymity loss will be explained. Lastly, random walk algorithms will be
introduced, which will be used in our method.

1.1 Lightning Network
The Lightning Network is a second-layer solution to Bitcoin’s scaling problem. Bitcoin’s bottleneck is
mainly the number of transactions that can be stored on the blockchain at any given moment. The
Lightning Network, a payment channel network, tackles this issue by eliminating the requirement for
each transaction to be stored on the blockchain.
In the Lightning Network, every transaction passes through the payment channel. The channel is
created by storing the opening transaction on the blockchain, and each node (user) can open a channel
to another node. Each channel has fee-related information, the total balance, and timelock value.

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



The blockchain is only used when creating and removing the channels. When a user wants to send
a payment, the user will compute the path of the transaction and send the payment using the onion
routing protocol through channels [2]. Onion routing protocol hides the route of the transaction from
the adversaries nodes by encapsulating the route[12]. Each user can compute its payment route but in
the Lightning Network around 92% of the network uses LND routing [1]. Lightning transactions are
signed with a new sighash type that allows transfers to occur between untrusted parties. In the event
of uncooperative or hostile participants, lightning transactions are enforceable via broadcast over the
bitcoin blockchain, through a series of decrementing timelocks [2].

1.2 Anonymity Issue
One of the weak points of the Lightning Network is low anonymity, because of the popular routing
algorithms. The most popular routing algorithms in use are focused on reliability and efficiency, be-
cause of that they are mostly deterministic [4]. Since the routing is mostly deterministic, an attacking
node, a node part of the route may identify the sender or the receiver even though onion routing is
being used [1]. This discovery of the path is possible because of two main pieces of information being
available. One of them is publicly available timeclocks, which give information about how much time
the transaction has left. The other one is the routing algorithm, attacking nodes do not know which
routing algorithm is used in the transaction. However, since around 92% of the users use LND routing,
the attacking node can guess many of the senders or receivers [1].
Instead of using those highly deterministic routing algorithms, a routing algorithm with undetermined
characteristics such as random walk insertion can be promising to increase the anonymity in the net-
work.

1.3 Random Walk Algorithms
A random walk describes a path consisting of a succession of random steps in the mathematical space
[6]. Random Walk algorithms are useful algorithms that are used in many scientific fields [6]. There
are 2 main types of Random Walk algorithms. One of them is completely random walk, where each
possible step has an equal probability of being chosen, only depending on the random number gener-
ator. Another way of using random walks is by changing the probabilities of steps. For example, an
ant simulation defines a step as a choice where the ant should go, if a step is chosen by many ants, the
coming ants should be more likely to choose that step too [7], which is a random walk algorithm with
weights, prioritizing the already visited nodes.
So in the case of the Lightning Network, a random walk algorithm would create the path to the re-
ceiver by adding random hops to the path until it finds the receiver node. The big problem with a
completely random walk routing algorithm is the long routes. Unnesecerray long payment paths in-
crease the fee’s for a transaction and increases the network load which makes denial of service attacks
easier [5]. Because of these reasons, a length bounded random walk insertion algorithm will be used
when creating the transaction route, so just adding a small random walk in between the efficient routes.

In the next section, a little about the related work will be mentioned. Afterward, in methodology, the
routing algorithms implemented will be explained, along with the simulation and the attack on the
new routing algorithm. And in the next section, the routing algorithm will be evaluated. After the
evaluation, we will talk about the conclusion.

2 Related Work
There is not a lot of research into the anonymity of the Lightning Network. From recent researches, we
learned that Lightning Network anonymity can be compromised [1]. There are some known ways to

2



increase the anonymity with shadow routing [8] since it hides the timelock information. There is also
research on the cost of attacking the Lightning Network [10], which explains it would cost around 3
million dollars to have 2 percent of the nodes in the network. There is also some research on increasing
the efficiency and the anonymity of the network with different types of routing algorithms [11]. Unfor-
tunately, there was no research into analyzing the anonymity of routing algorithms that use random
walk insertion.

3 Methodology

3.1 Random Walk Insertion Algorithms
This paper considers three different random walk algorithms. All algorithms have a different way of
choosing the route. The first one we will talk about prioritizes efficiency over anonymity, which is
called Random Hop Insertion. The second algorithm (Random Walk Insertion) creates routes that are
much more randomized that improves anonymity but decreases efficiency. And the third algorithm
increases the anonymity even more than the second algorithm, which is called Weighted Random Walk
Insertion. And all of these algorithms are length bounded but in different ways.

Figure 1: Example of Optimum Path

3.2 Algorithm 1: Random Hop Insertion (RHI)
Random Hop Insertion algorithm as the name suggests, adds random hops to the most optimum route.
The sender chooses the length n which is the number of channels used in the route. One by one n many
random hops will be inserted into the path as long as the length of the complete path is smaller than
the input length n. Therefore, if the length given is already smaller than the most optimum route,
there will not be any random hops added. The most optimum route is found by using the LND routing
algorithm. This random hop is inserted from a node that is randomly chosen in the optimum route,
which is called a random source. Then the optimum route is computed from the randomly hoped node
to the receiver. This random hop insertion is repeated until enough hops are added n times or the
path length is equal to n. Each time before choosing a random source, it is not allowed to choose any
of the nodes in the path before the last random source. This restriction gets rid of the possibility of
removing the randomly added hops.

3



Figure 2: Example of Algorithm 1, length 5

3.3 Algorithm 2: Random Walk Insertion (RWI)
Random Walk Insertion algorithm was developed after implementing and testing the Random Hop
Insertion algorithm. The routing algorithm is simple as the name suggests, and the sender chooses the
length n of the random walk. First, it will get the optimum route with the LND routing algorithm.
Then a random node in the path is chosen except the source and the sink. From the chosen node,
a random walk is created with the given length n. Once the length of the random walk finishes, the
optimum route is taken to the target. As the name suggests, it inserts a random walk from a random
node with a given length, and when the random walk is finished, the optimum route to the target is
taken.

Figure 3: Example of Algorithm 2/3, length 3

4



3.4 Algorithm 3: Weighted Random Walk Insertion (WRWI)
Weighted Random Walk Insertion algorithm is just like Random Walk Insertion algorithm, the only
difference being the random walk is weighted. This algorithm works as follows. First, it will get the
optimum route from source to sink with LND. Then a random node in the optimum path is chosen
except the source and the sink. However, this random choice is not completely random, it is weighted
with the degree of the nodes. The degree of nodes is the number of connections a node has, implying
that the more connections a node has, the more likely it is to be chosen. This adds more randomness
to the path as higher degree nodes have more nodes to hop. From the randomly chosen node, a de-
gree weighted random walk with the given length n is inserted. After inserting the random walk, the
optimum route to the sink is taken with LND routing.

All of these algorithms have different ways of adding randomness to the route. While the length
given in the first algorithm bounds the length of the complete path, others only use the length in
the random walk. However, all of them are optimized with LND routing, so they might show the
same weaknesses. And none of the algorithms will add any protection to the receiver’s identity if the
attacking node is after the random insertions.

3.5 Simulation
In this section, the simulation will be explained. Assumptions are made in the simulation and there
are a few different types of simulations being used. The differences between the simulations are only
the starting network.

For testing and understanding, the simulation is preferred on the generated networks, as it has a
shorter computing time. Both generated networks are created with networkx library [14]. The small
graph is created with "networkx.barabasi_albert_graph(100,2,65)" and the bigger network is created
with "networkx.barabasi_albert_graph(500,10,65)". After generating the network each channel is
assigned with random values for the fee, balance, and timelock just like in figure ??.
Algorithm 1: Network generation
1 for edge in EdgesInNetwork do
2 edge.Delay ← 10 * RandomIntegerBetween(1,10)
3 edge.BaseFee ← 0.1 * RandomIntegerBetween(1,10)
4 edge.FeeRate ← 0.0001 * RandomIntegerBetween(1,10)
5 edge.Balance ← RandomIntegerBetween(100,10000)
6 end

After generating the network, attacker nodes are chosen concerning centrality, nodes with the high-
est centrality are chosen as attacking nodes. Central nodes are chosen because they are a better fit to
attack as they are more likely to pass transactions, and the number of attacking nodes depends on the
percentage of attacking nodes wanted, which changes in our experiments.

There are also simulations on the network built from a Snap Shot of the Lightning Network. Which al-
lows the simulation to be as close to the real network as possible. All of the transactions are generated
with random sender and receiver. The amount of the transactions differ a third being smaller than 10,
a third of the transactions has an amount between 10 to 100, and the last third of the transactions have
an amount that is between 100 to 1000. This allows the network to be simulated with transactions
that carry different amounts.

5



Algorithm 2: Transaction Generation
1 iters ← 0 while iters < 100 do
2 source ← pick a random sender node from the network
3 sink ← pick a random sender node from the network
4 amount ← 0
5 if iters mod 3 == 0 then
6 amount ← RandomIntegerBetween(1,10)
7 end
8 if iters mod 3 == 1 then
9 amount ← RandomIntegerBetween(10,100)

10 end
11 else
12 amount ← RandomIntegerBetween(100,1000)
13 end
14 transaction ← Routing(source, sink, amount, length)
15 if transaction successful then
16 iters ← iters + 1
17 end
18 end

One of the main assumptions in the simulation is each transaction is instant, this is mainly related
to the amount being transferred. Meaning normally transactions are not instant, and as the transac-
tions are sent through nodes the amount is locked in the channel. This blocks the channels and the
upcoming transactors choose their routes depending on this traffic. However, in our simulation, since
all transactions are instant, there is nothing such as the locked amount in channels, which is important
as the free amount in channels can fluctuate in the real network [2], making it harder for attacking
nodes to find the sender.
Another assumption is related to the use of shadow routing, which is changing the timelock of the
routing [8]. Hash Time Locked Contract (HTLC) allows the payment to be canceled if the payment
does not get to the target node in the given time. When sending a transaction, the sender can choose
this timelock, it is usually chosen to be the minimum time on the decided route, but by choosing the
timelock bigger, the receiver can be hidden. The remaining timelock is used in the attacks and plays
a big role in finding the target node. In our simulation, shadow routing is not used.

3.6 Attack
First, the same attack as in [1] will be used and evaluated to see how much the new routing algorithm
improved against that attack. Afterward, the attack will be changed to attack the new routing algo-
rithm.

The way the attack on LND routing works is simple. A set of possible destinations are created up
to 4 hops with the information of the left timelock and the amount being transferred.

6



Algorithm 3: Getting the possible receivers
Input : timelock left, Cost function used to calculate the cost, The Network, Amount of the

transaction, Previous, Attacker, and the next Node,
Output: Possible receivers with the possible senders

1 ReceiversToSenders ← dictionary
2 level ← 0
3 Nodes[level] ← [next]
4 flag ← True
5 while flag do
6 Level ← level + 1
7 if level is 4 then
8 break
9 end

10 for current in Nodes[level] do
11 for neighbours of current do
12 if neighbor != previous AND
13 neighbor != adversary AND
14 timelock remaining >= 0 AND
15 transaction is possible then
16 Nodes[level] ADD neighbor
17 Previous[level] ADD current
18 end
19 end
20 end
21 if Nodes[level] IS empty then
22 flag ← False
23 end
24 end
25 level ← level - 1
26 while level >= 0 do
27 for node in Nodes[level] do
28 if timelock of node is 0 then
29 path ← build the path from previouses
30 if there are no duplicate nodes in the path then
31 sources ← GETSENDERS(Network,receiver,path,amount,cost function)
32 if sources is not Empty then
33 ReceiversToSenders[receiver] ← list(sources)
34 end
35 end
36 end
37 end
38 level ← level - 1
39 end
40 RETURN ReceiversToSenders

After having possible receivers, the possible sender set is created by going through the possible
receivers and checking which nodes would have the most optimum path to the possible sink, while the
path includes the attacking, previous, and the next node.

7



Algorithm 4: Getting the possible senders
Input : Possible receiver: target, Cost function used to calculate the cost, The Network,

Amount of the transaction, path,
Output: Possible senders to the given target

1 pque ← priority queue of cost and node
2 pque.put((cost to target,target))
3 while pque is not empty do
4 current cost, current ← pque.get()
5 for neighbours of current do
6 if the transaction to neighbor is possible then
7 cost ← calculate the cost of going to neighbour from current
8 if there is no other route to the neighbor cheaper then cost then
9 Path[current] ← neighbour + Path[current]

10 pque.put((cost,neighbor))
11 end
12 end
13 end
14 current is in path current is attacker flag1 ← 1 if current is sender to the attacker then
15 sources.append(previous)
16 flag2 ← 1
17 end
18 if flag1 is 1 AND flag2 is 1 then
19 if Previous is in Path[current] then
20 for neighbors of current do
21 if neighbor not in Path[current] then
22 sources.append(neighbor)
23 end
24 end
25 end
26 end
27 end
28 RETURN set(sources)

Attack on the new routing algorithm can be improved. The attack on the LND will not be best
suited as the optimum route is mixed with random walks in new routing algorithms. However, since
the routing algorithms still use the LND routing in some ways, if the attacking node is after the in-
serted random walk, the unmodified attack may successfully find the target node. Therefore, we will
consider both attacks, the modified one and the attack used in the LND routing algorithm [1].
The modified attack first gets the potential sources and targets, just like in the existing attack. In the
process creation of the possible sources and targets was changed to be less strict and only considered
if the transaction was possible to send regarding the fee and the amount. However, the less strict
version inflated the possible sender and receiver sets when run on the snapshot in table 4. Therefore,
the strict version of creating the possible senders and receivers is better. After creating a possible set
of sources and targets, the very same routing algorithm is used to generate some paths.
After generating 10 new paths for each source and target combination, each of the possible paths is
added to a list. Then the most popular path that includes the attacking node in it will be chosen
as a guess. If the source and/or the target match with the real sender receiver, then the attack will
succeed. This assumes that the attacking nodes do not share information. However, in reality, there
might be more than 1 attacking node.
Therefore, there is the second part to this attack. The second part assumes that all attacking nodes
share all the information they have. Thus, for a transaction, all attacking nodes in the path of that

8



transaction will share their generated paths with the possible sources and sinks. Afterward, from all
those generated paths, the most popular one including all attacking nodes will be chosen as a guess.
This new attack takes a probabilistic guess by using the information about adversaries, and the
weighted random walk insertion. However, it has some flaws although the first one is it increases
the possible set of sources and targets, this could be overlooked as there is a random walk insertion in
the routing. The modified attack can still be used with the conservative way of choosing the possible
senders and receivers, which performs better in bigger networks which will be mentioned in section 4.1
Results. In the modified attack, possible paths are generated, but for generation, the amount getting
transferred and the length used in the routing algorithm needs to be known. Thus, we will consider
the worst case where the attacker knows the amount and the length that users had used. The length
that is used in the algorithm can not be known, but the amount used in the transaction can easily
be guessed, so it is accurate to assume that the attacker knows the amount. Therefore, this attack
will be evaluated under different scenarios, with different lengths, and with different routing algorithms.

4 Evaluation
For evaluation, what metric is used, and which metric corresponds to which attack need to be explained.

• "Average fee per transaction" is important for the user and depends on the routing algorithm.
Most of the time, the gain in anonymity is paid with the average fee per transaction.

• Another price of anonymity is "Average number of hops per transaction", the higher this number
is the busier the network, which makes it more prone to attacks like denial of service [5].

• "Average anonymity source size" is the average number of possible senders per transaction. As
mentioned in section 3.6 the bigger this average number the harder it is to find the real sender,
since the sender set is used in generating possible paths.

• "Average anonymity sink size" is the same as Average anonymity source size and it is the average
number of possible receivers per transaction.

• "Clean any singular ratio" gives the ratio of how many of the possible senders, or receiver sets
had only 1 node in it. It just means the attacker knows the sender or the receiver with 100%
certainty. This metric is specifically important for the unmodified attack on the LND routing
from [1], because it is essentially the success rate of that attack.

• "Clean all singular ratio" is just like Clean any singular ratio, but instead of success defined
as knowing the sender or the receiver, rather success is defined as knowing the sender and the
receiver.

• Finally our main metrics to evaluate the attack are defined as "single attack and/or", and "com-
bined attack and/or". The single attack is when the attacking nodes do not share information in
between each other and guess the sender and the receiver depending on only their knowledge as
explained in section 3.6. Therefore, "single attack and" is the ratio of correctly guessed sender
and receiver, while "single attack or" is when the single attack guessed the sender or the receiver
correctly. The combined attack is when attacking nodes share their information with each other
and guess together. "Combined attack and" is the ratio of attackers guessing the sender and the
receiver correctly, and "combined attack or" is the ratio of attackers guessing the sender or the
receiver correctly.

9



4.1 Results
First, the modified attack needs to be checked whether it is good against weighted random walk
insertion (WRWI) as it gains most of the anonymity against the LND attack in our simulations on
the small network. The data from this attack is performed on a randomly generated network to ease
the computing. As explained in section 3.6, it is hard for the attacker to guess the length being used
in WRWI routing, so the worst-case scenario is assumed first, the attacker and the user are using the
same length as input.

Table 1: Modified attack on routing algorithm 3, Weighted Random Walk Insertion with different
lengths, attack knowing the length. Simulation on the 100 node network with 10% attacking nodes

Parameter length 2 length 3 length 4 length 10

Clean any singular ratio 0.39% 0.0% 0.0% 0.0%
Clean all singular ratio 0.0% 0.0% 0.0% 0.0%
Average number of hops 5.18 5.83 7.12 11.43

Average fee 2.26 2.39 3.42 5.57
Average anonymity source size 12.63 14.09 15.16 18.00
Average anonymity sink size 5.46 4.54 3.57 1.93

Single attack and 4.25% ±3.95% 3.30% ±3.50% 2.45% ±3.03% 1.35% ±2.26%
Combined attack and 15.53 ±7.10% 5.50% ±4.47% 7.69 ±5.22% 7.69% ±5.22%

Single attack or 38.22% ±9.52% 26.73% ±8.67% 21.80% ±8.09% 10.36% ±5.97%
Combined attack or 61.17% ±9.55% 69.72 ±9.00% 64.42% ±9.38% 56.73% ±9.71%

From Table 1, it can be seen that most of the anonymity gained is diminished with the modified
attack. Overall, when all attackers communicate, attackers know either the sender or the receiver
around 60% of the transactions. It is also clear that when the length increases, anonymity also in-
creases. However, when the length of the routing algorithm is 10 the fee and the network traffic are
double. So, any length longer than 10 might not be preferred or might introduce service problems.
However, having 10% of the network is hard [10], the more realistic scenario is single nodes attacking,
and in that case, 10% to 40% of the transactions had their sender or receiver leaked, depending on the
length that the routing algorithm uses.

In table 1 there was the assumption that the attacker guesses the length the user was using cor-
rectly, so how effective this attack will be with not matching lengths. In table 2, length is the length
that the user used to generate the path with WRWI and the g is the attacker WRWI length which is
used to generate possible paths as explained in section 3.6.

Table 2: Modified attack on routing algorithm 3, Weighted Random Walk Insertion with different
lengths, attack doesn’t know the right length. "g" is the length used in attack. Simulation on the 100
node network with 10% attacking nodes

10



Parameter length 2, g = 3 length 3, g = 2 length 4, g = 2 length 10, g = 4

Clean any singular ratio 0.36% 0.0% 0.0% 0.0%
Clean all singular ratio 0.36% 0.0% 0.0% 0.0%
Average number of hops 5.31 6.35 7.60 11.43

Average fee 2.31 2.69 3.40 5.56
Average anonymity source size 13.53 16.67 15.71 18.00
Average anonymity sink size 5.29 4.15 3.54 1.93

Single attack and 4.30% ±3.98% 2.42% ±3.01% 2.28% ±2.93% 1.35% ±2.26%
Combined attack and 7.41% ±5.13% 6.73% ±4.91% 0.98% ±1.93% 7.69% ±5.22%

Single attack or 32.62% ±9.19% 25.81% ±8.58% 19.29% ±7.73% 10.51% ±6.01%
Combined attack or 75.0% ±8.49% 69.23% ±9.05% 68.63% ±9.09% 45.19% ±9.75%

From table 2 it can be seen that the length used in attack mismatching the length used in the routing
does not affect the success of the attack substantially. As it can be seen as long as the length used
in the attack is close to the length used by the user the anonymity does not get affected much. How-
ever, even when there is a big difference between two lengths, the success of single attacks does not
get affected; and the combined attack can still guess the sender or the receiver with relatively high
probabilities.

From table 2 and 1 it is clear that the anonymity of the WRWI routing algorithm is reduced with
the modified attack. Thus, a solution to this could be making a new routing algorithm that randomly
chooses one of the routing algorithms. In table 3, the anonymity of other routing algorithms against
the modified attack is measured.

Table 3: Modified attack on different routing algorithms, attack uses the Weighted Random Walk
Insertion with length 4. Simulation on the 100 node network with 10% attacking nodes

Parameter Algorithm 0:LND Algorithm 1:RH len 4 Algorithm 2:RWI len 4

Clean any singular ratio 0.65% 1.17% 0.35%
Clean all singular ratio 0.0% 0.0% 0.35%
Average number of hops 3.62 3.75 7.10

Average fee 1.05 1.19 3.41
Average anonymity source size 12.13 11.15 10.87
Average anonymity sink size 5.6 6.15 2.53

Single attack and 3.92% ±3.80% 2.92% ±3.30% 3.52% ±3.62%
Combined attack and 4.95% ±4.25% 6.54% ±4.85% 9.71% ±5.80%

Single attack or 62.75% ±9.47% 62.57% ±9.49% 25.7% ±8.56%
Combined attack or 82.18% ±7.50% 75.7% ±8.41% 59.22% ±9.63%

From table 3 it can be seen that the modified attack is more revealing against other routing algorithms
implemented and LND compared to WRWI. This means that the idea of implementing a routing algo-
rithm that chooses randomly one of the routing algorithms that was talked about would not be effective.

All of these results were generated with a randomly generated network with 100 nodes, instead of
the snapshot of the Lightning Network. In table 4, the results were run on the snapshot of the Light-
ning Network, which is a much bigger network than the randomly generated one. Since this network
is much bigger and the possible sender, receiver sets were created with fewer restrictions, there was
a change in attack, the generated paths were only generated from the first 500 possible senders and
receivers.

11



Table 4: Modified attack on routing algorithm 3, Weighted Random Walk Insertion with different
lengths. Simulated on snapshot of the Lightning Network, with 0.4% attacking nodes

Parameter length 4, g = 10 length 4, g = 4

Clean any singular ratio 4.26% 4.26%
Clean all singular ratio 0.0% 0.0%
Average number of hops 7.42 7.42

Average fee 15.38 15.38
Average anonymity source size 1297.95 1297.95
Average anonymity sink size 525.9 525.9

Single attack and 0.0% 0.0%
Combined attack and 0.0% 0.0%

Single attack or 0.0% 0.0%
Combined attack or 0.0% 0.0%

From table 4 it can be seen that the modified attack did not work, and only 4% of the sources or
sinks were revealed. The main reason for the attack not working is because the connectivity and the
number of nodes in the Lightning Network are much bigger than the randomly generated network. It
should not be forgotten that the anonymity sizes were reduced to get the results with the limited time.
However, the network is huge and highly connected helps anonymity a lot.
This attack did not perform well on the snapshot because it is a highly connected big network. A
simulation on a network with 500 nodes and every node being connected to 10 nodes would be a faster
way to test for the results. When the attack was performed on the snapshot, there were only 20 highly
connected attacking nodes, but the number of these attacking nodes is important too. Thus, by testing
with the different number of attacking nodes on the bigger network, we can make assumptions about
how much of the network is needed to attack the network successfully. In table 5 over 10% adversary
results were generated with the modified attacks, but choosing the anonymity sets conservatively like
in the unmodified attack, as can be seen by the anonymity set size drop.

Table 5: Modified attack on routing algorithm 3, Weighted Random Walk Insertion with different
lengths, Simulated on a 500 node network with a degree of 10. The percentage is the percentage of
attacking nodes

Parameter 2% lnd, g = 4 2% length 4, g = 4 10% length 4, g = 4

Clean any singular ratio 20.07% 0.0% 4.17%
Clean all singular ratio 14.07% 0.0% 14.58%
Average number of hops 2.71 3.28 3.675

Average fee 0.59 0.94 1.11
Average anonymity source size 97.47 100.87 1.94
Average anonymity sink size 144.28 202.05 37.66

Single attack and 0.0% 0.0% 16.67% ±7.31%
Combined attack and 0.0% 0.0% 17.5% ±7.45%

Single attack or 0.0% 0.0% 18.23% ±7.57%
Combined attack or 0.0% 0.0% 23.33% ±8.29%

From table 5 we can see that the attacks are not successful at all on a highly connected network
with a low percentage of adversaries. But considering the high percentage of adversaries anonymity is
compromised, although only around 20%. Also having a 10% adversaries is quite high and expensive
from recent researches [10]. However, these results were on a simulated network because there was not
enough time to test them on the snapshot of the network.

12



5 Conclusion and Future Work
In conclusion, the question was "Could we improve the anonymity of blockchains in the case of pay-
ment channel networks with length-bounded random walk insertions?" From the simulations with the
randomly generated networks that we ran there was not a substantial anonymity gain by using ran-
dom walk insertions. However, from the simulations that were run on the snapshot of the Lightning
Network, it is safe to say that weighted random walk insertion substantially increases the anonymity
of users, as long as the network is large and highly connected. In the beginning, the random walk
insertions gained anonymity against the attacks that were designed to crack LND. However, after mod-
ifying the attack against the weighted random walk insertion routing algorithm, most of the anonymity
gained was diminished in the small randomly generated network. However, these results were not able
to be translated to the snapshot simulation.
Moreover, we hypothesize that anonymity can be gained back with shadow routing [8], where the
sender does not give the expected HTLC value to the transaction. This would help substantially be-
cause the attack is much more effective at finding the target node, then the source and shadow routing
will decrease the chance of finding the target substantially since the available information decreases.
Another way to increase anonymity might be by using different routing algorithms. Instead of more
than 90% of the network using some type of LND, if there were different types of optimum path al-
gorithms, the anonymity could increase. The reasoning behind this is that the random walk insertion
algorithms were using LND, they were open to the same attacks. And we hypothesize that a random
walk insertion algorithm not based on LND, but a different alternative to it could increase anonymity
against this modified attack.
For future work, the anonymity of shadow routing could be tested. Other random walk insertion al-
gorithms based on other efficient routing algorithms, could be tested against the modified attack. But
most importantly a way to simulate the channels getting locked like in the real network would give
more accurate results for these experiments. It is also important to research these anonymity issues
with different types of networks as we saw from the results of the simulation.
In the future, it would also be interesting to research the anonymity with changing percentage of ad-
versaries and consider the costs of possible attacks.
Overall, the Lightning Network must use different routing algorithms, with different cost functions and
shadow routing. However, as it is right now, weighted random walk insertion algorithms are highly
likely to protect your identity as a sender, and likely to protect the identity of the receiver depending
on where the attack is performed. And from our simulations on the snapshot of the network, only
around 4% of the transactions had an identifiable sender or receiver.

6 Responsible Research
This work was done to explore the anonymity of the Lightning Network. In the process, instead of
using the real network, simulation of the network was used. Using the simulation not only helped
to get better results but also protected the network. Creating many transactions in the real network
would cause traffic in the network, and would cost a lot of money because of the fees. The transactions
were all generated, so nobody’s anonymity was diminished. Since everything was simulated, there
was no harm to anyone and the network, however, there were some assumptions in the simulation.
The assumptions were also talked about in section 3.5, but mainly in the real network the anonymity
revelations from the attacks might be lower because of the channels getting locked and routing being
sub-optimal. There is another research about the sub-optimal routes [9].
Another concern of proof-of-work for cryptocurrencies like Bitcoin is the environmental impact, be-
cause of high electricity consumption. From the recent news about how much carbon emission bitcoin
is creating, Layer 2 solution like the Lightning Network is promised to decrease this emission. Since in
lightning not every transaction needs to be saved on the blockchain. Although the routing algorithms

13



we implemented overall increased average hops per transaction, meaning more energy will be used per
transaction, it is a much smaller impact since the transactions on the Lightning Network uses much
less energy than the transactions on the layer one chain.
When it comes to the reproducibility of the results, all the algorithms were explained in detail and the
source code is public [13]. Meaning these results are highly reproducible except for small differences,
because of all the randomness coming from the generations of the networks, transactions, and routing
algorithms. The seed to the randomness could be shared but unfortunately, it was forgotten, and there
was no time left to rerun the simulations. But to compensate for that mistake, we gave 95% of the
confidence interval in the tables, and in the future a mistake like this won’t happen.

References
[1] Kumble, Satwik Prabhu and Epema, Dick and Roos, Stefanie. (2021). How Lightning‘s Routing

Diminishes its Anonymity. Proceedings of the 16th International Conference on Availability, Reli-
ability and Security (pp. 1-10).

[2] Joseph Poon and Thaddeus Dryja. (2016). The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments. https://lightning.network/lightning-network-paper.pdf

[3] Chen Chen* and Adrian Perrig. (2017). PHI: Path-Hidden Lightweight Anonymity Protocol at
Network Layer. https://www.youtube.com/watch?v=aVfTm9U5Qb4

[4] G. D. Stasi, S. Avallone, R. Canonico, G. Ventre. (2018). Routing payments on the Lightning
Network.

[5] Elias Rohrer and Florian Tschorsch. (2020). Counting Down Thunder: Timing Atacks on Privacy
in Payment Channel Networks.

[6] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, Xiangjie Kong. (2020). Random
Walks: A Review of Algorithms and Applications.

[7] Cameron Musco, Hsin-Hao Su, and Nancy A. Lynch. (2017). Ant-inspired density estimation via
random walks.

[8] “BOLT #7: P2P Node and Channel Discovery.”. (2016)
https://github.com/lightningnetwork/lightning-rfc/blob/ master/07-routing-gossip.md

[9] Mihai Plotean, Stefanie Roos, Satwik Prabhu Kumble. (2021). Improving the Anonymity of the
Lightning Network using Sub-Optimal Routes.

[10] S. Tikhomirov, P. Moreno-Sanchez and M. Maffei. (2020). A Quantitative Analysis of Security,
Anonymity and Scalability for the Lightning Network.

[11] C. Grunspan, G. Lehéricy, and R. Pérez-Marco. (2020). Ant Routing scalability for the Lightning
Network.

[12] D. Goldschlag, M. Reedy, and P. Syversony. (1999). Onion Routing for Anonymous and Private
Internet Connections.

[13] “Lightning’s Anonymity with Length Bounded Random Walk Insertions”. (2021).
https://github.com/emre6943/Attacking-Lightning-s-anonymity/blob/main/README.md.

[14] “Networkx Documentation”. (2020). https://networkx.org/documentation/stable/index.html.

14


