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What we observe is not nature itself, but nature exposed to our method of questioning.

Werner Heisenberg
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Summary

This thesis addresses the semantic gap in visual understanding, improving visual mod-

els with semantic reasoning capabilities so they can handle tasks like image captioning,

question-answering, and scene understanding. The main focus is on integrating visual and

textual data, leveraging human cognitive insights, and developing a robust multi-modal

foundation model. The research starts with the exploration of multi-modal data integration

to enhance semantic and contextual reasoning in fine-grained scene recognition. The pro-

posed multi-modal models, which combine visual and textual inputs, outperform traditional

models that rely solely on visuals. This is particularly true in complex urban environments

where visual ambiguities often occur. This method emphasizes the significance of semantic

enrichment through multi-modal integration, which helps resolve visual ambiguities and

improve scene understanding.

To advance visual understanding, the thesis uses a human-in-the-loop approach to

identify and characterize unknown-unknowns in visual models. The Scalpel-HS framework

is introduced, involving humans to compare what models should have learned versus what

they actually know. This framework uses human cognitive abilities to detect and address

semantic gaps, improving the reliability of visual models, which is critical in applications

like medical imaging and autonomous driving. By integrating human insights, the frame-

work further enhances the interpretability and accuracy of visual models. Additionally,

the Perspective tool is developed to identify and characterize atypical images through

human computation. This tool is crucial in detecting instances that current models fail to

recognize, thereby enhancing model performance in diverse and challenging scenarios.

The ability to identify atypical instances is important for improving model robustness and

ensuring reliable performance in real-world applications. These research works underscore

the value of human-computation systems in boosting machine learning models’ abilities.

The thesis concludes with the introduction of GraphFusion, a multi-modal graph neural

network pre-trained on large-scale, unlabeled datasets. GraphFusion captures long-range

dependencies across different modalities, showing improvements in tasks such as cross-

modal retrieval and visual question answering. This model demonstrates the potential of

using large amounts of unlabeled data to train more comprehensive and versatile models.

The success of GraphFusion in various tasks shows its ability to learn unified multi-modal

representations, which are essential for advanced visual understanding.

Overall, the contributions of this thesis emphasize the potential of integrating multi-

modal data and human cognitive insights into visual understanding models. The research

provides valuable methods and tools that enhance the semantic reasoning capabilities of

these models, ensuring they are more aligned with human-like understanding. The findings

and innovations presented in this thesis pave the way for future research in multi-modal

representation learning, highlighting the importance of combining diverse data sources

and human expertise to advance the field of computer vision.
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Samenvatting

Dit proefschrift behandelt de semantische kloof die bestaat in visueel begrip en verbetert

visuele modellen met behulp van semantische redeneervermogens zodat ze taken zoals

beeldbijschriften, vraagbeantwoording en scènebegrip aankunnen. De nadruk ligt op de

integratie van visuele en tekstuele gegevens, het benutten van menselijke cognitieve inzich-

ten en het ontwikkelen van een robuust multi-modaal basismodel. Het onderzoek begint

met de verkenning van multi-modale gegevensintegratie om het semantisch en contextueel

redeneervermogen bij fijne scènedetectie te verbeteren. De voorgestelde multi-modale

modellen, die visuele en tekstuele inputs combineren, presteren beter dan traditionele

modellen die uitsluitend op visuele gegevens vertrouwen, vooral in complexe stedelijke

omgevingen waar visuele ambiguïteiten vaak voorkomen. Deze methode benadrukt het

belang van semantische verrijking door multi-modale integratie, wat helpt bij het oplossen

van visuele ambiguïteiten en het verbeteren van het scènebegrip.

Om het visuele begrip verder te verdiepen, introduceert het proefschrift een ’humanin-

the-loop’-benadering om onbekende onbekenden in visuele modellen te identificeren

en te karakteriseren. Het Scalpel-HS-raamwerk wordt geïntroduceerd, waarbij mensen

worden ingezet om te vergelijken wat modellen zouden moeten hebben geleerd met wat ze

daadwerkelijk weten. Dit raamwerk maakt gebruik vanmenselijke cognitieve vaardigheden

om semantische lacunes op te sporen en aan te pakken, waardoor de betrouwbaarheid

van visuele modellen wordt vergroot, vooral in kritieke toepassingen zoals medische

beeldvorming en autonoom rijden. Door menselijke inzichten te integreren, verbetert het

raamwerk de interpreteerbaarheid en nauwkeurigheid van visuele modellen aanzienlijk,

wat de weg vrijmaakt voor betrouwbaardere AI-systemen. Bovendien wordt het Perspective

instrument ontwikkeld om atypische afbeeldingen te identificeren en te karakteriseren door

middel van menselijke computationele inspanningen. Dit instrument is cruciaal voor het

detecteren van gevallen die huidige modellen niet herkennen, waardoor de prestaties van

modellen in diverse en uitdagende scenario’s worden verbeterd. Het vermogen om atypische

gevallen te identificeren is essentieel voor het verbeteren van de robuustheid van modellen

en het waarborgen van betrouwbare prestaties in realistische toepassingen. Het onderzoek

onderstreept het belang van ’human-computation’-systemen om de mogelijkheden van

machine learning-modellen aan te vullen bij het effectief omgaan met atypische gegevens.

Het proefschrift mondt uit in de introductie van GraphFusion, een innovatief multimo-

daal grafisch neuraal netwerk dat is voorgetraind op grootschalige, niet-gelabelde datasets.

GraphFusion legt langeafstandsrelaties vast tussen verschillende modaliteiten en toont

significante verbeteringen in taken zoals cross-modale retrieval en het beantwoorden van

visuele vragen. Dit model demonstreert het potentieel van het gebruik van grote hoeveel-

heden niet-gelabelde gegevens om uitgebreidere en veelzijdigere modellen te trainen. Het

succes van GraphFusion in verschillende taken benadrukt het vermogen om geïntegreerde

multimodale representaties te leren, wat essentieel is voor geavanceerd visueel begrip.
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Kortom, de bijdragen van dit proefschrift benadrukken het transformerende potentieel

van de integratie van multimodale gegevens en menselijke cognitieve inzichten in visuele

modellen. Het onderzoek levert waardevolle methoden en instrumenten op die de semanti-

sche redeneercapaciteiten van deze modellen verbeteren, waardoor ze beter aansluiten bij

het menselijk begrip. De bevindingen en innovaties in dit proefschrift effenen het pad voor

toekomstig onderzoek in multimodaal representatie-leren en benadrukken het belang van

het combineren van diverse gegevensbronnen en menselijke expertise om het vakgebied

van computer vision verder te brengen.
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1
Introduction

1.1 Background and Motivations
Human cognition relies heavily on visual understanding for recognition, interpretation,

and decision-making based on the visual stimuli in our environment [1]. Over recent years,

the field of computer vision has witnessed substantial advancements, fueled by progress in

deep learning methodologies [2], especially Convolutional Neural Networks (CNNs) [3],

and the availability of extensively annotated image datasets such as ImageNet [4]. This

progress has led to significant breakthroughs in various vision tasks like object recognition,

image classification, and semantic segmentation, subsequently fostering the growth of nu-

merous real-world applications from autonomous vehicles to medical image diagnostics [5].

Despite the remarkable progress in visual recognition tasks, existing models cannot yet

effectively cope with the complexity and diversity of real-world scenarios due to the lack of

semantic reasoning abilities. High-level semantic reasoning is vital in applications such as

autonomous driving systems, which must interpret complex scenes involving objects like

pedestrians, other vehicles, and traffic signs while accounting for contextual information,

including weather conditions and road infrastructure [6]. Similarly, medical image analysis

often necessitates precise diagnosis of diseases and abnormalities contingent on accurately

interpreting subtle visual cues, patient history, and other non-visual data [7]. In both

cases, attaining human-level semantic reasoning is crucial for achieving high accuracy and

robustness in real-world applications.

Nonetheless, existing models often struggle with tasks demanding high-level reasoning,

contextual understanding, or the incorporation of multiple modalities [8]. For instance,

current models frequently exhibit shortcomings in accurately interpreting complex scenes

with occluded objects or when lighting conditions or viewpoint changes lead to significant

alterations in object appearances [9]. Such limitations in contemporary visual understand-

ing models primarily stem from the "semantic gap" between low-level visual features and

high-level human interpretation [10]. These models often fail to capture the rich semantics

and interplay between different modalities, such as textual and auditory information, which

humans seamlessly integrate into their visual understanding [11]. Furthermore, models
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should be able to reason and generalize beyond the specific instances presented in the train-

ing data, adapting to new and previously unseen situations with minimal supervision [12].

This necessitates incorporating semantic reasoning capabilities into learning, empowering

models to utilize their prior knowledge to make more informed predictions and decisions.

One promising avenue to overcome these limitations is the development of multi-modal

models that combine visual and textual features [13]. By incorporating text-based seman-

tic information, multi-modal models can more effectively capture comprehensive visual

content and complex real-world scenes [1, 14], which is particularly crucial for various

domain-specific tasks such as storefront recognition or content moderation, where visual

features alone might be inadequate to distinguish categories [15]. Nonetheless, efficiently

integrating multi-modal semantic information presents several challenges [16]. Fusing

visual and textual features is difficult as these modalities have different statistical properties

and levels of abstraction[17]. This requires specialized techniques to fuse information while

preserving unique characteristics and enabling learning from complementary aspects. Com-

plex architectures are often needed to integrate multi-modal features and learn meaningful

representations leveraging each modality’s strengths[13]. Moreover, the performance of

multi-modal models largely relies on high-quality labeled data, which can be costly and

time-consuming to obtain[18]. Acquiring multi-modal data is particularly challenging due

to the necessity for consistent and accurate annotation of visual and textual components,

demanding substantial human effort and resources.

This thesis endeavors to address the challenges above in pursuing human-level visual

understanding. By exploring novel approaches that minimize reliance on extensive labeled

data and harness the potential of multi-modal information, we aim to develop models that

can better comprehend complex visual concepts and adapt to a vast range of scenarios.

Moreover, incorporating human-in-the-loop strategies will enable us to leverage human

cognition and expertise to identify and bridge the semantic gaps in current models, ulti-

mately enhancing their performance and interpretability.

Pursuing human-level visual understanding is not only of academic interest but also has

far-reaching implications for many real-world applications. Improved visual understand-

ing models can revolutionize our interaction with and benefit from artificial intelligence

systems, from autonomous vehicles and robotics to healthcare and content moderation.

By addressing the limitations of existing models and pushing the boundaries of visual

understanding, this thesis aims to contribute to advancing computer vision research and

its practical applications in our increasingly digitalized world.



1.2 Problem Statement

1

3

1.2 Problem Statement
Developing visual understanding models that can perform at a human level necessitates

addressing several challenges rooted in real-world visual information’s inherent complexity

and variability. These challenges encompass aspects such as the subtleties within visual

appearances, the importance of context, the identification of feature blind-spots, the proac-

tive detection of atypical instances, and the challenges in multi-modal vision-language

representation learning.

Subtleties within Visual Appearances.
In many real-world applications, objects or scenes share similar visual features, making

it difficult for models to accurately recognize and distinguish between them [19]. For

instance, in storefront recognition, as shown in Figure 1.1, the images of two different

business places (pizzeria and bakery) appear very similar. Thus, only textual information

can semantically identify the correct class of business places [20]. Addressing this challenge

is crucial for achieving accurate scene understanding and decision-making, as well as for

the advancement of domain-specific recognition tasks [3].

Figure 1.1: An example of visual ambiguity where the only discriminative feature for recognizing the image class

lies in the semantics of scene text.

The Importance of Context.
Current image recognition models effectively learn image representations, which can be

applied to high-level image analysis tasks like scene classification [3, 21, 22]. However, a

significant difference exists between scene classification and general image classification.

General image classification focuses on object-centric images, where each category is

closely related to an object in the image. In contrast, scene classification involves recog-

nizing multiple objects and their spatial layout within a scene [23]. As shown in Figure

1.2, Object-centric images typically contain a single object, and classification relies on

the object’s features. Scene classification, however, requires recognizing key objects and

understanding their relationships, necessitating higher-level semantic representation [24].

Context plays a vital role in visual understanding, as an object or scene’s meaning often

depends on its environment [25]. Current models frequently struggle to capture and in-

corporate contextual information, leading to misinterpretations and errors in high-level
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Figure 1.2: The difference between image classification and scene classification task. Images for scene

classification are usually not object-centric.

reasoning tasks. For instance, understanding the context of an individual’s actions in

surveillance systems is essential for differentiating between normal behavior and sus-

picious activities [26]. In autonomous vehicle navigation, contextual understanding is

crucial for safe and efficient operation, as the vehicle must interpret other road users’

actions and navigate complex traffic scenarios [27]. Addressing the challenge of contextual

understanding is critical for ensuring accurate and reliable visual understanding in complex

real-world situations [28].

Identifying and Characterizing Feature Blind-Spots.
Visual understanding models may have feature blind-spots (called unknown-unknowns)

that can lead to misclassifications or misinterpretations [29]. The leading cause of these

feature blind-spots is usually rooted in an imbalance of training data, which can cause

models to fail in real-world scenarios where accurate scene recognition is essential, such

as autonomous vehicle navigation, medical image analysis, or surveillance systems [9].

For example, the inability to recognize a specific traffic sign or pedestrian in autonomous

vehicle navigation could result in accidents. At the same time, misinterpreting tumor

features may lead to incorrect diagnosis or treatment plans in medical image analysis.

Similarly, overlooking suspicious activities due to blind-spots may compromise security

measures in surveillance systems. By recognizing and characterizing feature blind-spots,

researchers can better understand the limitations of visual understanding models and

explore opportunities to improve their performance. Leveraging human cognitive abilities

may offer valuable insight into addressing these challenges and enhancing the models’

overall performance [30].
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Figure 1.3: Example of an atypical visual concept where current models fail to interpret correctly.

Proactive Detection of Long-tail Visual Concepts.
Real-world data often contain many infrequent categories, referred to as long-tail visual

concepts. Traditional models struggle to learn and recognize these concepts due to the

scarcity of labeled examples. Developing a scalable human-computational system for

proactive detection of atypical instances unrecognizable by visual models is essential for

improving the robustness and reliability of these models in real-world scenarios [31]. By

identifying such instances, researchers can better understand and address the limitations

of visual understanding models when dealing with poor high-level reasoning. For example,

detecting atypical instances like a truck’s back-side painted to resemble an open road in

autonomous vehicle navigation could significantly impact the vehicle’s ability to recognize

and react appropriately 1.3. In remote sensing applications, detecting atypical instances

might be critical for monitoring environmental changes or identifying areas of interest for

further investigation [32]. In disaster response scenarios, identifying unusual instances of

damage or infrastructure collapse can help allocate resources more effectively and prioritize

rescue efforts. Similarly, detecting atypical animal behavior or habitat changes in wildlife

conservation can inform conservation strategies and help protect endangered species. By

proactively detecting these atypical instances, visual understanding models can better

adapt to real-world challenges and provide more accurate and reliable insights across

various applications.

Exploiting Web-scale Unlabeled Data for Multi-modal Representation Learning.
Multi-modal vision-language understanding involves the integration of visual and linguistic

modalities to enhance the comprehension of complex real-world information [33]. How-

ever, existing methodologies struggle to effectively capture the complex interdependencies

between these modalities, leading to misalignments in their representations and suboptimal

performance in downstream tasks [34]. Additionally, the dependency on high-quality la-

beled training data can hinder the scalability and applicability of these models. Addressing

these challenges, including the effective utilization of large-scale unlabeled datasets, is

essential for advancing vision-language understanding and enhancing the performance

of multi-modal visual understanding models in various real-world applications, such as

image captioning [35], visual question-answering [36], and visual grounding [37].
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1.3 ResearchQuestions
The primary goal of this thesis is to explore the following main research question:

• MRQ: How can we develop visual understanding models that achieve human-like

semantic comprehension of complex visual concepts while minimizing the reliance

on large-scale, high-quality labeled datasets?

Themain research question addresses the challenge of creating advanced semantic-enhanced

visual understanding models. We aim to build models capable of capturing intricate con-

cepts and relationships across different modalities, potentially enabling high-level reasoning

and comprehension in visual models across various applications and tasks. In pursuit of

this goal, we structure our research around the three key aspects that approach the main

research question from different perspectives: 1) Multi-Modal Data Integration, 2) Human-

in-the-Loop Approach, and 3) Foundation Model for Multi-modal Learning. Subsequent

sections will introduce specific sub-research questions that align with these aspects, each

delving into the nuances of their respective domains to support the overarching research

aim.

Multi-Modal Data Integration
This thesis aims to semantically enhance visual understanding models by effectively in-

tegrating visual and textual information within a multi-modal learning framework. This

integration is crucial for complex tasks requiring context sensitivity, cross-modal interac-

tion, and high-level reasoning. Examples of these tasks include scene recognition, visual

question answering, and multi-modal information retrieval. To this end, we formulate the

first sub-research question as follows:

RQ1: How can the integration of multi-modal data, specifically text and visual
information, improve the semantic and contextual reasoning abilities of models in
fine-grained scene recognition?

In Chapter 2, we study the effect of merging textual cues with visual data on the efficacy of

models in fine-grained scene recognition tasks. The hypothesis is that integrating signals

from other modalities can offer more context for correctly interpreting visual scenes. This

method involves extracting textual information from visual data and supplementing the

visual model with additional semantic information. This helps resolve uncertainties in the

visual data and allows the model to differentiate between visually similar but contextually

distinct scenes. By investigating this, we hope to refine visual understanding models and

make them better at handling complex real-world visual recognition tasks, similar to how

humans understand visual information. Chapter 2 is based on the two full conference

papers as listed below:
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• Noorian, Shahin Sharifi, Achilleas Psyllidis, and Alessandro Bozzon. "ST-Sem: A Multimodal
Method for Points-of-Interest Classification Using Street-Level Imagery." International Conference
on Web Engineering. Springer, Cham, 2019. [38]

• Sharifi Noorian, Shahin, et al. "Detecting, classifying, and mapping retail storefronts using
street-level imagery." Proceedings of the 2020 International Conference on Multimedia Retrieval.
2020. [39]

Human-In-the-Loop Approach
Enhancing visual understanding models with semantic capabilities involves recognizing

and addressing semantic gaps and feature blind spots. These gaps can result in certain

errors, referred to as unknown-unknowns, where a model confidently makes incorrect

predictions. Identifying these errors is challenging due to the model’s overconfidence.

Such errors may not be apparent during the model’s development and training but can

lead to critical issues after deployment in production. This poses significant reliability

challenges for visual understanding models, particularly in high-risk tasks like self-driving

or healthcare. Recent research highlights the importance of human-in-the-loop methods

for interpreting machine learning. Human judgment and cognitive abilities can effectively

illuminate what the model has understood and its blind spots - what it should have learned

but didn’t - for a specific visual-semantic task. To this end, we formulate the second

sub-research question as follows:

RQ2: How can we efficiently utilize human cognitive insights to identify and char-
acterize unknown-unknowns in visual models?

To address RQ2 in Chapter 3, we explore the utilization of human-in-the-loop approaches

to deepen the understanding of ’unknown-unknowns’ - errors in machine learning models

due to the model’s overconfidence in its incorrect predictions. We introduce a framework

that employs human semantic analysis to pinpoint and describe the nature of these gaps at

scale. By engaging humans to delineate what the machine is expected to know and contrast

it with its actual knowledge, we propose a novel method of characterizing unknown-

unknowns at the conceptual level. The framework combines information extraction with

machine learning interpretability methods and scales human efforts using data partitioning

and sampling techniques. The resulting characterization of unknown unknowns is rich

and descriptive and paves the way for more efficient detection methods. This research

question investigates the effectiveness of systematically utilizing human cognitive abilities

to identify and characterize semantic gaps in a structured format. Consequently, it can po-

tentially facilitate the creation of more reliable, robust, and semantically enhanced systems.

Chapter 3 is grounded in the following paper on unknown-unknowns characterization in

image recognition:

• Sharifi Noorian, Shahin, et al. "What Should You Know? A Human-In-the-Loop Approach
to unknown-unknowns Characterization in Image Recognition." Proceedings of the ACM Web
Conference 2022. [40]



1

8 1 Introduction

Continuing with the theme of the human-in-the-loop approach, we shift our focus from

examining the semantic capacity of visual models to investigating the characteristics of

atypical data instances with long-tail visual concepts. These instances often cause most

visual recognition models to fail due to their distinct or uncommon visual concepts and

the models’ limited reasoning ability. To this end, our third sub-research question centers

on the proactive identification and description of atypical visual instances, as follows:

RQ3: How can we develop a scalable human-computation system to proactively
identify and characterize atypical instances that visual models often fail to recognize
due to a lack of high-level semantic reasoning?

In Chapter 4, we aim to address RQ3 by examining the effectiveness of a system that com-

bines human intuition with algorithmic efficiency to identify and characterize a wide range

of atypical data instances. This system provides insights into the nature of atypical visual

concepts, thereby enabling the development of benchmarks for evaluating the models’

semantic comprehension and reasoning capability. Chapter 4 is based on the following

research paper on leveraging human understanding for identifying and characterizing

image atypicality:

• Sharifi Noorian, Shahin, et al. "Perspective: Leveraging Human Understanding for Identifying
and Characterizing Image Atypicality." IUI ’23: Proceedings of the 28th International Conference
on Intelligent User Interfaces. [41]

Foundation Model for Multi-modal Learning
In our final attempt to address the main research question, we focus on developing a

foundation model pre-trained with large-scale multi-modal data, which can be generalized

and transfer the learned knowledge to a wide range of downstream cognitive tasks through

fine-tuning. Thus, we formulate the fourth sub-research question as follows:

RQ4: How can we develop and pre-train a foundation model capable of cross-
modal comprehension and reasoning by leveraging large-scale multi-modal unlabeled
datasets?

To address the RQ4, in Chapter 5, we aim to design and train a foundation model capable

of capturing complex interactions and long-range feature dependencies within and across

different modalities. We demonstrate the efficacy of this approach in enhancing compre-

hension and high-level visual-semantic reasoning, which can be generalized to various

downstream cognitive tasks. Chapter 5 is based on the following publication:

• Sharifi Noorian, Shahin, et al. "GraphFusion: Unified Vision-Language Representation Learning
using Heterogeneous Graph Neural Networks." This work has been submitted to the 2025 Inter-
national Conference on Learning Representations (ICLR 2025) conference and is currently under
review. [41]
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In conclusion, these research questions aim to bridge the gap between current visual

understanding models and the nuanced complexities of real-world visual and textual data.

1.4 Original Contribution
In this thesis, we have made several significant original contributions to Visual Understand-

ing models and multi-modal semantic techniques. Our research offers not only valuable

theoretical insights but also presents practical implementations in the form of software

tools, which have been published on GitHub. The following sections outline the original

contributions associated with each thesis chapter.

Enhancing Visual Recognition by Multi-Modal Data Integration
(Chapter 2)
We presented a novel multi-modal method for effectively combining visual and textual

features in Visual Understanding models, specifically for domain-specific scene recogni-

tion tasks. Our approach allowed for integrating textual information from input images

to enrich the visual features, leading to improved model performance. We publish two

accompanying software for the methods we introduced in Chapter 2. All source codes and

scripts corresponding to methods and experiments in Chapter 2 are available on
1
.

Identifying Semantic Gaps with Human-Cognitive Integration
(Chapter 3)
This chapter explored human-in-the-loop methodologies for identifying and addressing

understanding gaps in Visual Understanding models. We developed an innovative approach

leveraging human cognitive capabilities to discover the model’s blind spot and feature

deficiency. Our software implementation, published on
2
, demonstrates the practical appli-

cation of our proposed approach, enabling researchers and practitioners to incorporate

human expertise in their model refinement processes.

DecodingLong-tailVisualConceptsUsingHuman-ComputationalApproach
(Chapter 4)
We presented a scalable human-computational framework designed to detect and char-

acterize atypical instances that current recognition models struggle to recognize due to

a lack of high-level reasoning. This framework contributes to enhancing the robustness

and adaptability of Visual Understanding models. Our software implementation, available

on
3
, showcases the efficiency and effectiveness of our framework, providing a valuable

resource for researchers and practitioners working on similar problems.

1
https://doi.org/10.4121/507f9fdd-a38d-449d-9784-a41eec701899

2
https://doi.org/10.4121/cc6ca9df-ef0d-4af7-8feb-3ee6ecf74d7c

3
https://doi.org/10.4121/90e68f71-d320-42cb-8f60-bb60aae5eaab

https://doi.org/10.4121/507f9fdd-a38d-449d-9784-a41eec701899
https://doi.org/10.4121/cc6ca9df-ef0d-4af7-8feb-3ee6ecf74d7c
https://doi.org/10.4121/90e68f71-d320-42cb-8f60-bb60aae5eaab
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A Graph-based Foundation Model For Multi-modal Learning
(Chapter 5)
This chapter investigated the potential of leveraging large-scale unlabeled datasets for

training semantic-aware visual representation learning models. We developed a method

for effectively utilizing unlabeled data and weak supervision sources, reducing reliance

on high-quality labeled training data and achieving more cost-efficient training processes

in downstream visual understanding tasks. Our software implementation, published on
4
,

demonstrates the practical application of our proposed approach, offering researchers and

practitioners a valuable tool for training better-performing and more interpretable Visual

Understanding models.

These original contributions not only advance the field of Visual Understanding models

and multi-modal semantic techniques but also provide practical software implementations

that can be used by researchers and practitioners alike. By making these resources publicly

available, we hope to foster further exploration and development in this area, ultimately

creating more robust, interpretable, and efficient Visual Understanding models.

4
https://github.com/shahinsharifi/GraphFusion

https://github.com/shahinsharifi/GraphFusion
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1.5 Additional Contribution
In addition to the core contributions of the thesis, we have also engaged in two research

projects in the context of urban analytics. Although these works are not directly related to

the main focus of the thesis, they are noteworthy contributions and have been included

in the appendix. Both projects have their software implementations and provide valuable

insights into the urban analytics domain.

P-median Model for Facility Siting with Live Traffic Data [42]
This research project introduced a novel p-median model for the facility siting problem that

considers live traffic data. Our model can provide more accurate and efficient solutions for

optimal facility location decisions by incorporating real-time traffic information. This work

advances the field of urban analytics and facility location optimization and has practical

implications for urban planners and decision-makers. All associated data and source code

for reproducing our results are publicly available
5 ,6
, demonstrating the effectiveness of

our approach and providing a valuable resource for researchers and practitioners working

on similar problems.

Measuring Subjective Perception in Urban Environments using Street-
level Imagery[43]
In the second research project, we developed an application to measure the subjective

perception of people in urban environments using street-level imagery. By capturing the

opinions and perceptions of individuals, this work provides a valuable understanding of the

factors that contribute to the quality of urban life. The insights gained from this research

can inform urban planners and policymakers in their efforts to create more livable and

sustainable urban environments. All materials for reproducing our experiments are pub-

lished online
7 ,8

, showcasing the functionality of our application and providing a practical

tool for researchers and practitioners interested in subjective perception analysis using

street-level imagery.

These additional research collaborations demonstrate the versatility of our research in-

terests and contribute to the broader field of urban analytics. By making these resources

available on GitHub, we hope to foster further exploration and development in these areas,

ultimately contributing to better urban environments and more effective urban planning

strategies.

1.6 Thesis Outline
This thesis consists of six chapters, including the current chapter (Chapter 1), which consists

of the problem statement, research questions, and the original contributions of this thesis.

The remaining chapters are based on full research papers published at various conferences:

5
https://github.com/shahinsharifi/AGILE2018

6
https://doi.org/10.4121/507f9fdd-a38d-449d-9784-a41eec701899

7
https://doi.org/10.17605/osf.io/aqgxr

8
https://github.com/shahinsharifi/subjectivity.git

https://github.com/shahinsharifi/AGILE2018
https://doi.org/10.4121/507f9fdd-a38d-449d-9784-a41eec701899
https://doi.org/10.17605/osf.io/aqgxr
https://github.com/shahinsharifi/subjectivity.git
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• Chapter 2 is based on two full research papers published at the International Con-

ference on Web Engineering (ICWE 2019) and the International Conference on

Multimedia Retrieval (ICMR 2020), respectively.

• Chapter 3 is based on a full research paper published at the Web Conference (WWW

2022).

• Chapter 4 is based on a full research paper published at the International Conference
on Intelligent User Interfaces (IUI 2023).

• Chapter 5 is based on a full research paper that will be submitted to the International

Conference on Learning Representations (ICLR 2025: Under Review)

• Chapter 6 summarizes the main findings, outlines the core contributions, and

provides an outlook on future works.
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2
Enhancing Visual

Recognition by Multi-Modal
Data Integration

In the field of artificial intelligence and computer vision, a significant challenge remains in

bridging the "semantic gap" - the difference between the computational interpretation of

visual data and the meaningful, human-like understanding of such images. This chapter

explores the complexities of this problem, with a specific focus on the limitations of visual

models that rely solely on visual cues for comprehension.

Real-world visual concepts often require more than traditional image processing tech-

niques can offer, highlighting the need for a more comprehensive approach. To address

this challenge, our research adopts a multi-modal learning framework. This shift involves

integrating textual and visual data to enhance the semantic understanding of visual models.

By incorporating text extracted from images, we can achieve a deeper and more contextual

comprehension of the visual content, significantly reducing the semantic gap. Our ap-

proach does not rely solely on large-scale, high-quality labeled datasets, which is a common

constraint in traditional visual recognition models. Instead, it harnesses the synergy of

multiple data modalities to improve understanding.

In this work, we showcase the practical application and evaluation of our multi-modal

approach by developing an innovative system designed for detecting, recognizing, and

automatically geolocating business stores using street-level imagery. Our system demon-

strates proficiency in identifying storefronts and distinguishing their types—from bakeries

and restaurants to toy shops—by leveraging visual and textual cues extracted from images.

We assess the system’s performance by its accuracy in these tasks, illustrating the substan-

tial advantages of multi-modal learning in practical scenarios. This chapter thoroughly

examines our approach to enhancing the semantic understanding of models, highlighting

the significant potential of multi-modal learning to bridge the semantic gap in computer

vision. Furthermore, this research lays the groundwork for future studies, suggesting that
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our work has broad implications, not just for a specific application such as business store

mapping. It also promotes the development of more advanced, context-aware systems that

can interpret complex visual environments similar to human perception. The content of

this chapter is based on the following papers:

• Noorian, Shahin Sharifi, Achilleas Psyllidis, and Alessandro Bozzon. "ST-Sem: A

Multimodal Method for Points-of-Interest Classification Using Street-Level Imagery."

Web Engineering: 19th International Conference, ICWE 2019, Daejeon, South Korea,

June 11–14, 2019, Proceedings 19. Springer International Publishing, 2019.

• Sharifi Noorian, Shahin, et al. "Detecting, classifying, and mapping retail storefronts

using street-level imagery." Proceedings of the 2020 International Conference on

Multimedia Retrieval. 2020.



2.1 Introduction

2

15

2.1 Introduction
Commercial functions are integral to cities worldwide. These functions’ listings are used

in mapping and location services, recommender systems, search engines, and social media

platforms. For these systems to provide accurate and reliable information to the users, such

listings must be kept up to date. One of the most challenging issues is keeping track of the

frequent changes that characterize this type of business (e.g., a candy shop turning into a

bakery).
1
It is estimated that 10% of establishments go out of business every year, and in

some segments of the market, such as the restaurant industry, the rate is as high as 30% [44].

The traditional way of keeping such listings up to date requires lots of manual work and

often also entails the integration of several third-party resources (e.g., data from the local

chamber of commerce). An opportunity to complement these conventional approaches

arises from the recent advent of street-level images available on various platforms (e.g.,

Google Street View or Mapillary). These frequently updated panoramic views of the urban

environment allow us to retrieve pictures of the storefronts at scale. We argue that the

information included in the storefronts (e.g., commercial logos, names, text, etc.) could help

identify the type of business establishment. Recent studies have used street-level imagery

to analyze various aspects of the urban environment [45–47], and automatically detect

urban objects [47, 48].

The most challenging aspects of automatically detecting, mapping, and classifying

commercial functions from street-level imagery are (1) The high degree of visual variability

in storefronts, which limits the accuracy and generalizability of prediction models; (2) Im-

age acquisition factors such as noise, motion blur, occlusions, lighting variations, specular

reflections, perspective, and geo-location errors; (3) The need for methods with efficient

runtime execution performance, considering the continuous changes and the large number

of businesses in a city.

This chapter introduces a multi-modal late-fusion method for a domain-specific vi-

sual understanding task. Our proposed method combines visual and textual cues from

street-level imagery to make semantically-aware predictions. It can correct semantic ambi-

guities and incorrect digitization of detected textual information. Our proposed method

involves three stages: 1) identifying the physical boundaries of storefronts; 2) recognizing

their respective commercial functions (e.g., restaurant, bakery, clothing store, etc.); and

3) estimating their geo-locations. The late-fusion approach makes our storefront-type

classification module adaptable, allowing us to utilize various pre-trained models. This

feature minimizes the need for training from scratch and broadens the applicability of our

method to different street-level imagery datasets from non-English-speaking countries.

First, we evaluate each component of our proposed method separately. We compare the

detection module with two state-of-the-art methods, Faster R-CNN [49] and SSD [50],

which have shown superior performance in several object detection challenges[51, 52].

Results show that, while having higher precision than Faster R-CNN(2 %) and SSD (9 %),

our approach is considerably faster than the baselines (up to 60%). Furthermore, we show

1
See examples at: https://sites.google.com/view/storefrontsmapping

https://sites.google.com/view/storefrontsmapping
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that our proposed recognition method can outperform state-of-the-art visual-only models

for POI classification – Places365-CNNs [20] – by 16.86%, and multimodal approaches

– Karaoglu et al.[53] by 6.8%. Finally, we ran a crowd-sourcing campaign on Amazon

Mechanical Turk. Our proposed approach achieves almost the same precision and recall as

a human annotator in detecting and classifying retail storefronts. We also investigate our

method’s performance in several edge cases to highlight limitations and suggest future

directions of improvement.

The remainder of the chapter is organized as follows: Section 2 discusses related work.

Section 3 describes the proposed method for updating local business listings from street-

level imagery. Section 4 presents the experimental setup and discusses the obtained results.

Finally, Section 5 summarizes the conclusions and discusses future lines of research.

2.2 Related work
We discuss related work on knowledge extraction using street-level imagery and fine-

grained scene classification.

Knowledge Extraction using Street-level Imagery
Street-level imagery can be a useful data source to extract knowledge about the urban

environment [48], especially for tasks requiring high spatial coverage. Recent work shows

the feasibility of utilizing street-level imagery in assessing structural changes in urban areas

[47], inferring subjective properties of urban areas such as safety, liveliness, and attractive-

ness [54], mapping urban greenery [55–57], geo-locating high-density urban objects [48], or

estimating city-level travel patterns [45]. Other works applied computer vision techniques

to Google Street View images for inferring the socioeconomic attributes of neighborhoods

in the US [58], finding morphological characteristics to distinguish European cities [59],

detection of building entrance in outdoor scenes[60], or detection and classification of

traffic signs[61]. Like our work, Yu et al. [62] address the problem of detecting storefronts

using street-level imagery. The authors trained a deep learning model on a proprietary

dataset(∼ 2M annotated images), however, without addressing the classification issue into

business-related categories. To the best of our knowledge, our work is the first to address the

problem of storefront detection, classification, and geo-localization in an integrated fashion.

Fine-grained Scene Recognition
Deep Convolutional Neural Networks (CNNs) have been successful in various vision-related

tasks such as face detection, image segmentation, and scene recognition [21, 63]. However,

such breakthroughs in visual understanding do not imply that these models are suitable for

fine-grained POI classification based on the visual appearance of storefronts from street-

level imagery. This is due to the high degree of intra-class and the low degree of inter-class

differences in the appearance of storefronts across business categories [53]. Yan et al. [64]

take Spatial Context (i.e., nearby places) into account as complementary information to

boost the performance of CNN models for classifying business places. Text in scene images,

which frequently appears on shop fronts, road signs, and billboards, usually conveys a

large amount of valuable semantic information about the object or the scene in the same

image. Regarding the fine-grained classification of storefronts based on their business type,
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this textual information is crucial in making more accurate predictions [65]. Most similar

to our work is that of Karaoglu et al. [66]. The latter proposed a multimodal approach that

combines visual features and textual information from the imagery data in a single feature

space as input for an SVM classifier. Our work differs from the existing literature in that we

incorporate multilingual word embeddings trained on a large corpus to measure semantic

relatedness between spotted textual information in street-level imagery and the candidate

types of storefronts. Then, we propose a late fusion approach to leverage the obtained

prediction scores of both modalities and generate a final score for each candidate class.

We compare ST-Sem against the approach of Karaoglu et al. [66] in Section 4, showing

improved performance.

2.3 Method
The architecture of our model is depicted in Figure 2.1. It consists of three main modules.

The first and most important module is the storefront detector, which is designed to extract

the physical extent of retail storefronts from street-level imagery. As there is often more

than one storefront in an instance of street-level imagery, the detector module outputs

a list of bounding boxes. In the second step, detected bounding boxes are iteratively fed

into both classification and geo-location estimation modules. The classification module

utilizes the bounding box information to crop the original input image and outputs a

probability distribution over candidate classes (business types). Simultaneously, the geo-
location estimation module calculates the actual latitude and longitude of each detected

bounding box by using the metadata of street-level imagery. In the following paragraphs,

we describe each module in detail.
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Figure 2.1: The architecture of our end-to-end model

2.3.1 Storefront Detection
For fast storefront detection, we rely on a state-of-the-art one-stage object detector YOLOv3

[67]. The YOLOv3 is the third version of YOLO [68]; while not being the most accurate

object detection algorithm, it suits our requirements as it is a very suitable choice for near

real-time detection, with limited loss of required accuracy.

Training. We manually annotated 1200 storefront images, which were randomly collected

from 5 different countries using Google Street View. We divide the dataset into three

parts: training(∼ 1000 images), validation(∼ 100 images), and test(∼ 100 images). We also

augment the labeled training data by adding Gaussian noise, varying Brightness, and

randomly Rotating images, which results in 1000 × 5 = 5000 images in the training set.

Due to the scarcity of well-annotated data for business storefront detection, as previous
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studies suggested [69, 70], we use a Transfer Learning strategy in order to improve the

quality of our detector. As the designer of YOLO has already pre-trained the network using

the OpenImages dataset to extract features [71], we immediately applied the pre-trained

weight values for further training. As storefront objects are often in the middle or large

size, we remove 12 layers from the original YOLOv3 architecture that is responsible for

detecting smaller objects. We empirically observed that by removing these layers, the

training and inference time decreases by 10%. Additional details on the architecture of the

neural network are provided on the companion page.
2

The input training images are resized to 416×416, and the network has been trained

for 5,000 iterations with a batch size of 64. At the end of the training, the loss converges to

less than 0.04 on the validation set. As Georgakopoulos et al.[72] suggested, at a general

improvement for the training process, we initially set the learning rate to 0.001 for the
first 3,000 iterations as we are starting with zero information, and so the learning rate

needs to be high. After 3,000 iterations, we decrease the learning rate to a few steps by a

factor of 0.1. The YOLO network predicts bounding boxes using dimension clusters called

anchor boxes[73]. We calculated anchor boxes for our storefront dataset using the k-Means

algorithm and adapted in our output layers.

Inference. At the inference stage, the final output is delivered as a storefront box, paired

with its corresponding confidence score. Given a 416×416 image, our storefront detector

outputs ((13×13)+ (26×26))×3 = 2,535 bounding boxes. Thus, we must filter boxes based

on their objectness score (objectness score reflects how likely the box contains an object[67])

such that boxes having scores below a threshold are eliminated. Furthermore, we perform

Soft Non-maximum Suppression [74] to eliminate redundant overlapping boxes with lower

confidences.

2.3.2 Storefront Classification
The information captured in street-level imagery is primarily visual. Therefore, storefronts

can be described based on the morphological characteristics of their facades, such as height,

color, materials, and geometry. Business-related storefronts often have signs or visual

labels that display the name, logo, and other relevant information to help people identify

the businesses while navigating physical space. These signs can serve as valuable sources

of information for classifying retail storefronts. Considering the importance of both visual

and textual features, we propose a novel multimodal approach called ST-Sem to improve

the fine-grained classification of business storefronts. ST-Sem leverages visual and textual

features extracted from street-level imagery.

The architecture of ST-Sem is depicted in Fig 2.2, consisting of three main components.

First, the Scene Recognition module predicts the type of storefront at the contextual level

based on the common visual characteristics associated with each storefront type. Next,

the Scene-text Semantic Recognition module detects textual data in the image, transcribes

it into a bag of words, and measures the semantic similarity between the bag of words,

2
Companion page: https://sites.google.com/view/storefrontsmapping

https://sites.google.com/view/storefrontsmapping
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typically representing the storefront type and each candidate type. Finally, the Class Rank

module generates a final score for each candidate class using a Linear Bimodal Fusion (LBF)

method. This method combines the prediction scores from the first and second modules.

In the following paragraphs, we provide a detailed description of each component.
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Figure 2.2: The architecture of ST-Sem, our proposed method for multi-modal storefront classification.

Morphological Classification
We approach identifying storefront types based on visual information as an image classifi-

cation problem. For this task, we utilize the Residual Network (ResNet) as our framework,

as it has demonstrated excellent performance on ImageNet classification [75]. Specifically,

we employ the pre-trained ResNet152-places365 model provided by [20], which can clas-

sify images into 365 classes. However, not all these classes are relevant to our objective

of identifying storefront types, such as cliff or coral. To narrow down the classes, we

select 24 business-related place types as our candidate class labels
3
. We then fine-tune

the pre-trained ResNet152-places365 model by removing its last fully-connected layer and

replacing it with a new fully-connected layer containing 24 neurons. This is followed by

a softmax classifier, which outputs a probability distribution for the 24 storefront types.

To initialize the weights of the added fully-connected layers, we randomly generate them

from a Gaussian distribution with a mean of zero and a standard deviation of 0.01.

Signage-based Classification
The signage-based classification module is composed of three sub-components. In the

following paragraphs, we describe each sub-component in detail.

Scene-text Detection. This sub-module aims to localize and crop text in images as word

boxes. Scene-text detection is challenging because scene texts have different sizes, width-

height aspect ratios, font styles, lighting, perspective distortion, and orientation. This

work incorporates a state-of-the-art method, TextBoxes++ [76], a fast and end-to-end

trainable scene-text detector. The reason for choosing TextBoxes++ is that it outperforms

3
The list of these place types can be found with our code and dataset on the companion page: https://sites.google.

com/view/storefrontsmapping

https://sites.google.com/view/storefrontsmapping
https://sites.google.com/view/storefrontsmapping
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state-of-the-art methods in terms of text localization accuracy and runtime issues of the

IC15 dataset [77] from Challenge 4 of the ICDAR 2015 Robust Reading Competition
4
.

The IC15 dataset comprises 500 test images containing incidental scene text captured by

Google Glass. Therefore, it is a good benchmark dataset to evaluate the required scene-text

detector for storefront-type classification. We adopt the pre-trained model parameters

provided by the authors.

Scene-text Recognition. The task of this sub-module is to transcribe cropped word

images into machine-readable character sequences. However, it is considerably difficult

to accurately recognize scene texts on street-level imagery because of the varying shapes

and distorted patterns of irregular texts. To tackle this problem, we adopt a multi-object

rectified attention network (MORAN), proposed by [78]. MORAN consists of a multi-object

rectification network (MORN) that rectifies images and an attention-based sequence recog-

nition network (ASRN) that reads the text. Regarding reading rotated, scaled, and stretched

characters in different scene texts, this approach outperforms state-of-the-art methods on

several standard text recognition benchmarks [78], including the SVT-Perspective dataset

[79] which contains 645 cropped images from Google Street View. In training the Scene-

text recognition on the MJSynth dataset [80], which is dedicated to Natural Scene Text

Recognition, we set the batch size to 64 and the learning rate to 0.01, as suggested by the

author. The model is trained for 10 epochs.

SemanticMatching. The semantic matching approach follows the assumption that textual

information on the storefront indicates the type of business place. Given this assumption,

the goal of the semantic matching module is to predict the type of storefront based on the

semantic distance between the words extracted from the image and the standard name

of each candidate storefront type, as defined in 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 synset5, such as cafe, bakery
etc. However, not all the words in street-level imagery should necessarily have semantic

relations to the place type. Some words may be similar to one of the candidate classes;

others may be completely irrelevant. For instance, words such as hair , nail, or beauty on

storefront images are likely to be related to a Beauty Salon. On the contrary, OPEN/CLOSE
signs do not give any information about the type of storefront.

The text recognition module could result in some noisy texts, which need to be dis-

carded. Before representing a word spotted by the word vector representation, we use a

spell detection tool employing the Levenshtein Distance algorithm
6
to find permutations

within an edit distance of 2 from the original word, and therefore remove noisy words.

To further remove irrelevant words, we manually curated a blacklist of common – yet

irrelevant – words, including verbs like open,close, push,pull, etc. After reducing potential

noise, we need to detect the language to which the input word belongs. To tackle this

problem, we incorporate in our experiments the polyglot open source tool
7
, which makes

language prediction with a corresponding confidence score. If no language can be identified

4
http://rrc.cvc.uab.es/?ch=4

5
http://www.image-net.org/synset

6
https://github.com/barrust/pyspellchecker

7
https://github.com/aboSamoor/polyglot
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for the input word, English will be chosen as the default language.

Once the target language is determined, the recognized word must be transformed into

a word vector representation. While there can be many implementations for capturing

semantic relatedness[81], previous studies have shown that word embeddings [82, 83] per-
form this task particularly well by measuring the cosine similarity of the word embedding

vectors. These vector-based models represent words in a continuous vector space where se-

mantically similar words are embedded close to one another. In our experiments, we adopt

FastText [84] to transform recognized texts into a word vector representation. The main

reason for incorporating FastText is its promising performance in overcoming the problem

of out-of-vocabulary words by representing each word as a bag of character n-grams.

We use pre-trained word vectors for two languages (English and German), trained on

Common Crawl and Wikipedia
8
. According to the detected language 𝑙, the corresponding

pre-trained word vector 𝑉𝑙 is selected; a pre-trained word vector embedding model encodes

each recognized word as 𝑣𝑖. Finally, we use the method proposed by [85] to align the 𝑉𝑙 in
the same space as the English word vector for multilingual semantic matching. Similarly,

each candidate class of storefront type 𝐶 is represented by a word vector 𝑐𝑗 with an English

word embedding as a reference. Then, we calculate the cosine similarity between each

class label (𝑐𝑗 ) and each spotted text (𝑣𝑖) as follows:

cos(Θ𝑖𝑗) =
𝑣𝑖𝑇 𝑐𝑗
|𝑣𝑖| ||𝑐𝑗 ||

(2.1)

The probability scores 𝑃𝑖 for each candidate storefront type are calculated by averaging

the similarity scores of all spotted words:

𝑃𝑗 =
∑𝐾𝑖=1 cos(Θ𝑖𝑗)

𝐾
(2.2)

Then, a softmax function is used to normalize the probability scores for each candidate

storefront type by the sum of the N candidate ranking scores to sum up to 1. The softmax

function can be formulated as follows:

𝜎 (𝑍)𝑗 =
𝑒𝑍𝑗

∑𝑁𝑛=1 𝑒𝑍𝑛
(2.3)

where 𝑍 is a vector of probability scores, 𝑁 is the number of candidate classes, 𝑗 =
1,2, ...,𝑁 is the index of each probability score in the probability vector 𝑍 , and 𝑖 = 1,2, ...,𝐾
is the index of each spotted text. Similar to the scene recognition module, the scene-text

extraction module results in a probability score for each candidate storefront type between

0 and 1.

Class Rank
Inspired by search re-ranking algorithms in information retrieval, we use a Linear Bimodal

Fusion (LBF) method (here essentially a 2-component convex combination), which linearly

combines the ranking scores provided by the CNNmodel and the semantic similarity scores

8
https://fasttext.cc/docs/en/crawl-vectors.html
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from the scene-text semantic recognition module, as shown in Equation 4.

𝑆𝑚𝑖𝑥𝑒𝑑(𝑑) = 𝑤𝑣 .𝑆𝑣(𝑑)+ (1−𝑤𝑣).𝑆𝑡(𝑑) (2.4)

where 𝑆𝑚𝑖𝑥𝑒𝑑 , 𝑆𝑣(𝑑), and 𝑆𝑡(𝑑) refer to the final ranking score, visual recognition score,

and semantic similarity score for storefront type 𝑑 respectively, 𝑤𝑣 and 𝑤𝑡 are the weights
for the scene recognition component and scene-text extraction component, and 𝑤𝑣 +𝑤𝑡 =
1. The weights are determined according to the relative performance of the individual

components. Specifically, the weight for the scene recognition module is determined using

the following equation:

𝑤𝑣 =
𝑎𝑐𝑐𝑣

𝑎𝑐𝑐𝑣 +𝑎𝑐𝑐𝑡
(2.5)

where 𝑎𝑐𝑐𝑣 and 𝑎𝑐𝑐𝑡 are the measured top@1 accuracy of the scene recognition com-

ponent and scene-text semantic recognition component, respectively.

2.3.3 Geo-location Estimation and Aggregation
We propose a storefront geo-location estimation algorithm working on the street-level

image metadata to geo-locate the storefronts. In previous work [48], the geo-location of an

urban object is calculated using the intersection of the central line (symmetry line) of the

bounding box and the ground-level horizontal plane (i.e., city ground). We adopt [48] by

relying on third-party information about existing buildings, finding which building facade

has an intersection with the given bounding box, and then calculating the geo-location of

the intersection.

We acquire data on all the building facades in a city from OpenStreetMap (OSM).
9
The

map from OSM is composed of nodes and ways, i.e., points and segments. We extract all

the segments with the attribute “building” into a set noted as 𝑆, representing the collection
of all the building facades.

To estimate the geo-location of the storefront from the street-level imagery (Figure

2.3), we trace a ray starting from the location of the camera 𝑙𝑐 and going with the heading

of the bounding box ℎ, where 𝑙𝑐 can be immediately acquired from the metadata of the

street-level image and ℎ can be easily calculated according to the position of the bounding

box on the image [48]. After that, all the segments (facades) close (not farther than 𝑅
meters) to the camera location 𝑙𝑐 are selected into a set 𝑆𝑐 (𝑆𝑐 ⊂ 𝑆). Then, we check if a

segment 𝑠 (𝑠 ∈ 𝑆𝑐) has an intersection with the ray. If the intersection 𝑖𝑠 exists, the distance
𝑑𝑐𝑠 from the camera 𝑙𝑐 to the intersection 𝑖𝑠 is calculated and recorded. The segment with

the minimum 𝑑𝑐𝑠 is the facade having the targeted storefront, noted as 𝑠. The location of

the corresponding intersection 𝑖𝑠 is the estimated geo-location of the storefront.

9
https://www.openstreetmap.org/

https://www.openstreetmap.org/
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Location of the camera  𝑙𝑐

Estimated location of the store  𝑖�̂�

Ray of the bounding box  𝑟

The closest intersected segment  �̂�

Figure 2.3: Estimation of a storefront’s location.

The same storefront might be annotated multiple times from different street-level

images or different crowd workers via either an automatic detection method or crowdsourc-

ing. Therefore, “raw” annotations (bounding boxes with labels) produced by automatic

detection or crowdsourcing are aggregated to acquire a single estimated annotation for

each storefront. We adopt the density-based location aggregation algorithm proposed

by [86], which produces one single estimated geo-location from multiple annotations for

each storefront. Based on this, the label with the highest confidence score from candidate

annotations is selected as the type of storefront.

2.4 Evaluation
In this section, we first describe how datasets are prepared. Then, we separately compare the

performance of our detection and classification methods (Shown in Figure 2.1) with 1) State-

of-the-art approaches and 2)Human annotators. Finally, we provide a qualitative analysis

of the performance of the whole pipeline (detection, classification, and geo-localization).

2.4.1 Dataset
We manually annotated 100 street-level images as a test set for storefront object detection.

The dataset comprises 317 storefront bounding boxes(∼ 3.2 boxes per image). We refer

to this dataset as Store-Obj. We also collected a set of single storefront images manu-

ally classified into 24 categories. The list of categories comprises 24 top business types,
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which are ranked based on their occurrence in popular business listings such as Yelp

10
or Foursquare

11
. We name this dataset as Store-Scene. All images in Store-Scene only

contain a single store, while Store-Obj comprises complex panorama images including

more than one storefront and many more irrelevant urban objects. Ultimately, we created

a small benchmark dataset in Manhattan, New York City. We selected a street about three

kilometers long and iteratively collected 150 panoramic images along the street using

Google StreetView API. Then, we manually verified that ∼ 120 unique businesses exist in
the vicinity of the street mentioned above using Google Places API

12
. We observed that

the type of collected businesses corresponds to 18 categories of Store-Scene dataset. This
dataset is used for evaluating the entire pipeline of our model (detection, classification, and

geo-localization) in comparison to human performance and for qualitative analysis. We

refer to this dataset as Store-location. The properties of each dataset are described in Table

2.1.

Table 2.1: Dataset statistics

Dataset Problem #Categories Training Testing

Store-Obj detection 1 1,000 200

Store-Scene classification 24 - 1,100

Store-Location detection, classification, geo-localization 18 - 150

2.4.2 Implementation Details
All the training and experiments are conducted on an NVIDIA Tesla K80 GPU. Our method

is not trained in an end-to-end manner. Our object detection method is trained using

Darknet framework[87] due to its compatibility with the YOLO architecture. To train the

other components of our system and fine-tune the compared baselines, we use Tensorflow

as a training platform. We perform all experiments using OpenCV, which provides a generic

inference module for various Deep Learning models. The source code of our entire pipeline,

including the scripts for replicating the results, is available on GitHub, and the link to the

repository is provided on the companion page.

2.4.3 Comparison with Object Detectors
We compare our proposed store-front detection approachwith two baseline algorithms(Faster

R-CNN[49] and Single Shot Detector[50]) in terms of both accuracy and runtime efficiency.

Both baseline methods perform superiorly in many general object detection challenges[88].

Therefore, these methods are suitable for evaluating our object detection approach. As

evaluation metrics, we adopt precision, recall, F-score, mean average precision over 0.5

IoU threshold, and average inference time per image. We first finetune both baseline

methods using the training set of Store-Obj dataset. All training images used for tuning

baselines methods are resized to (416×416). Then, we perform experiments using Store-
Obj test set. As shown in Table 2.3, our detection approach outperforms both baseline

10
https://www.yelp.com/

11
https://foursquare.com/

12
https://cloud.google.com/maps-platform/places/

https://www.yelp.com/
https://foursquare.com/
https://cloud.google.com/maps-platform/places/
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methods in precision(∼+2% & ∼+9%) and mAP@0.5(∼+0.5% & ∼+5%). Regarding recall,

Faster R-CNN performs better, but it has a higher inference time (∼+300%) compared to

our method. In addition, we present a second variation of our model with a larger input

size (608 × 608). We observe that increasing input size improves precision and recall by

∼+7.8% and∼+15%, respectively. However, the average inference time also increases by 75%.

Table 2.2: Results of our store-front detector method and the state-of-the-art methods concerning recall (%),

precision (%), F1 score, mean average precision over 0.5 IoU threshold (%), and inference time per image (ms). (∗):
The second variation of our model is only presented to show the impact of input size on the performance.

Method Recall Precision F1 score mAP@0.50 Infer. time

SSD 68.29 72.35 70.26 74.3 220

Faster R-CNN 77.03 79.33 78.16 78.9 325

Ours (yolo-storefront-416) 74 81 77 79.37 100
Ours (yolo-storefront-608)∗ 89.05 88.22 88 91.35 175

2.4.4 Comparison with Scene Classifiers
As explained in Section 2.3.2, we formulate the identification of store-front type as a

fine-grained scene classification problem. First of all, we compare the performance of

our approach with two visual-only scene recognition baselines on the Store-Scene dataset
described in Table 2.1. This comparison mainly aims to show the influence of leveraging

textual information from imagery on the classification of business-related storefronts.

As shown in Table 2.3, our scene classification approach outperforms both visual-only

baselines. Results suggest that it is possible to achieve high performance with limited train-

ing data by considering textual information visible on the outdoor appearance of storefronts.

Table 2.3: Results of our proposed storefront classification method in comparison to the state-of-the-art methods

concerning top@1 accuracy (%), top@5 accuracy (%), and inference time per image (ms).

Dataset Method Top@1 acc. Top@5 acc. Infer. time

Store-Scene

GoogLeNet-places365 21.45 55.42 95
ResNet152-places365 28.15 59.45 125

Karaoglu et al. 38.17 69.56 110

Ours 45.01 89.44 205

We also compare the performance of our classification approachwith Karaoglu et al.[53],

the state-of-the-art multi-modal method that addresses the problem of storefront-type

classification by leveraging textual information from images. We fine-tune the CNNmodels

used in this method for visual feature detection, like our morphological classifier. As shown

in Table 2.3, our proposed classification approach outperforms the state-of-the-art top@1

from 38.17% to 45.01% (∼+6.8%) on the Store-Scene dataset. There is also a remarkable

improvement in Top@5 accuracy from 69.5% to 89.4% (∼+20%).
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2.4.5 Comparison with Human Annotators
When automatically creating or updating business listings, it is crucial to have a system

that performs at human-level accuracy. In other words, the human operator must manually

correct any wrong prediction made by such a system, which would cause much additional

effort. Therefore, we must ensure that the performance of our system is comparable with

the human operator in terms of precision and recall.

We ran our model on the set of collected panorama images and separately conducted a

crowd-sourcing experiment through Amazon Mechanical Turk
13
. In the crowdsourcing

task, workers are asked to draw a bounding box around every visible storefront on the

image and then choose its corresponding category from a given list of 24 business types

(Described in Section 2.4.1). We also added an OTHER category which stands for unknown
or not-in-the-list situations. At least three unique human annotators annotate each image.

By tracking workerId, the back-end system running on our server ensures that each worker

submits at most three tasks to avoid biases due to over-repeated participation.

We published 645 HITs, and 318 unique workers executed our tasks. We manually

check all the HITs and exclude invalid assessments. The aggregated geo-location of anno-

tations, made by crowd workers, is estimated based on the method explained in section

2.3.3. We run our model on the Store-Location dataset, the same street-level images (reso-

lution: 2000×640) used in the crowd-sourcing experiment. Then, we removed duplicate

geo-locations from the list of detections, resulting in 97 unique businesses. Each storefront

bounding box �̂� predicted by our model is considered as True Positive if there are at least

two bounding boxes 𝐵, obtained from the crowd-sourcing task, where IoU (Intersection

over Union) between �̂� and 𝐵 is more significant than 0.5. When �̂� is confirmed as True

Positive, we compare the result of our storefront classifier with the human categorization.

Given 𝐿 is a set of labels, which are assigned to a storefront bounding box by at least three

human annotators. The predicted labels �̂� are sorted based on the classifier’s confidence.

Then, we define the top 𝑘 prediction set �̂�𝑘 as the first 𝑘 elements in �̂�, where 𝑘 ∈ {1,5}. The
prediction of business category �̂�𝑘 is confirmed as True Positive if one label of �̂�𝑘 is agreed
by at least two human annotators, represented by 𝐿. If the best confidence score of top-𝑘
predictions is below 0.4, the label is considered unknown, which is represented by OTHER
on the list of business categories. As depicted in Table 2.4, our automatic method achieved

83.2% precision on detecting storefronts: it got 39 false positives out of the 232 detections.
Then, we manually removed duplicate geo-locations from the list of detections, resulting in

60 in unique businesses. It means a 61.9% recall at 83.2% precision: 60 out of 97 businesses

visible on Street View imagery were correctly detected by our automatic system.

Table 2.4: Results of our model in comparison to human assessment results.

Detection Classification Geo-location Estimation

Precision Recall Top@1 acc. Top@5 acc. Precision Recall

Ours (end-to-end) 83.2% 61.9% 69.1% 92.5% 83.18 61.85

13
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2.4.6Qualitative Analysis
In this section, we discuss examples of real-world scenarios where the proposed approach

provides correct and incorrect predictions on Store-Location. Figure 2.4 illustrates that our
model can detect(∼89%) correctly, classify (∼78%), and geo-locate (∼89%) business-related
storefronts, which are visible in the street-level images. In this example, the storefront (𝑖)
is predicted correctly, even when there is no word having a direct relation to their types

(e.g., 𝑏𝑒𝑎𝑢𝑡𝑦𝑠𝑎𝑙𝑜𝑛); the proposed semantic matching approach can infer that texts such as

𝐻𝑎𝑖𝑟 or 𝑁𝑎𝑖𝑙, are semantically close to beauty salon in the word vector space, thus enabling

correct classification.

Image Location
Ground-truthSelected Image
Estimated Location

(a)

(b)
(d)(c)

(e)

(g)

(f)

(h) (i)

Figure 2.4: Qualitative results of our integrated approach on detecting, classifying, and mapping storefronts

using street-level imagery

Nonetheless, one of the drawbacks of our system is the difficulty in identifying the

correct extent of those storefronts, which are divided into different parts. As Figure 2.4

clearly shows, the storefronts 𝑓 and 𝑔 are detected separately. However, those bounding

boxes belong to the same storefront. As discussed in 2.3.2, due to the high degree of visual

variability, it can be very challenging (if not impossible) to correctly classify the business

type of storefronts only based on the visual features. As depicted in Figure 2.4, the business

types of detected storefronts (𝑐) and (𝑑) are predicted as Bank; however, the correct labels
are Optician and Bar, respectively. The reason for the failure of storefront (𝑑) is likely
to be that there is a sign of an ATM on the facade of the storefront, which is the only

textual feature our model can extract from the image. As the word ’ATM’ usually appears

in the same context as ’Bank’ in the text corpus, our word-vector-based semantic-matching

method made a wrong prediction with very high confidence. Similarly, the storefront (𝑐) is
predicted incorrectly as Bank since the extracted words (’Tax Service’ and ’Income’) are

semantically related. These failures show an obvious limitation of our method, i.e., that
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the textual feature might sometimes be misleading, impacting the overall performance

of the proposed approach. Without textual information, the system relies on visual features.

To further analyze the performance of ST-Sem, our proposed multi-modal classifica-

tion approach, we provide additional examples of individual storefront instances where

ST-Sem provides non-obvious correct (Figure 2.5) and incorrect (Figure 2.6) predictions.

As shown in Figure 2.5 (a) and Figure 2.5 (c), ST-Sem can recognize the type of storefront,

even when there is no word having direct relation to their types (e.g., 𝑏𝑜𝑜𝑘 or 𝑐𝑙𝑜𝑡ℎ𝑒𝑠);
the proposed semantic matching module can infer that texts such as 𝐵𝑎𝑟𝑛𝑒𝑠 & 𝑁𝑜𝑏𝑙𝑒 and
𝐺𝐴𝑃 are, respectively, semantically close to bookstore and clothing in the vector space,

thus enabling correct classification. As depicted in Figure 2.5 (b), the proposed method

can also measure the semantic similarity between different languages. More specifically,

𝐴𝑝𝑜𝑡ℎ𝑒𝑘𝑒 is recognized as a German scene-text on the image, and then, it is transformed

into a multilingual word vector which is semantically similar to 𝑃ℎ𝑎𝑟𝑚𝑎𝑐𝑦.

(a) Bookstore (b) Pharmacy (c) Clothing (d) Beauty Salon

Figure 2.5: Examples of correct classifications, with the Storefront dataset’s ground-truth label (GT) and probability

score. (a) GT: Bookstore, Predicted: Bookstore - 0.71; (b) GT: Pharmacy, Predicted: Pharmacy - 0.83; (c) GT: Clothing,
Predicted: Clothing - 0.75, (d) GT: Beauty Salon, Predicted: Beauty Salon - 0.67

Figure 2.6 shows examples of an incorrect prediction. As shown in Figure 2.6 (a), the

scene-text detector failed to detect textual information on the corresponding image due to

the uncommon font used in the signs. Therefore, the classification is only based on the

visual features. This failure shows an obvious limitation of our method, i.e., the overall

performance is highly dependent on the performance of the scene-text detection module.

Without textual information, the system relies on visual features. Figure 2.6 (b) shows

that the scene-text recognition module recognized two informative words (pharmacy and

beauty) on the image, but the storefront type is not correctly classified. The reason for

failure is likely to be that the semantic similarity scores of pharmacy and Beauty Salon are

almost equal for this particular storefront. Therefore, similarly to the previous failure case,

classification was only based on the morphological features of the storefront, which can

indeed be erroneous.
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(a) Toy Shop (b) Pharmacy

Figure 2.6: Examples of incorrect classification results on the Storefront dataset. (a) GT: Toy Shop, Predicted:
Bookstore - 0.58 (b) GT: Pharmacy, Predicted: Beauty Salon - 0.42

2.5 Conclusion
We introduced a novel approach to detect, classify, and geo-locate retail storefronts using

street-level imagery. Our approach can detect the physical extent of storefront boundaries

even when well-annotated training data is limited. The multi-modal storefront classifier

predicts business categories near human-level accuracy by measuring the semantic similar-

ity between detected textual information and the candidate business categories, in addition

to morphological characteristics of the storefront’s view from the outside. The geo-location

aggregation method improves the overall performance of the system by removing false

positive predictions. In the future, we plan to incorporate additional semantically rich infor-

mation, such as contextual information and semantic relationships between objects, which

are visible in street-level imagery. Furthermore, to show the scalability of our approach,

we plan to extend the scope of our experiments to other cities in non-English-speaking

countries.
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3
Enhancing Image
Recognition with
Human-Cognitive

Integration

In the rapidly evolving landscape of machine learning and image recognition, the integra-

tion of human cognitive capabilities has emerged as a pivotal strategy for overcoming the

limitations of automated systems. This chapter delves into the intricacies of harnessing

human intelligence within image recognition, mainly focusing on the concept of ’unknown-

unknowns’ - errors in machine learning models due to the model’s overconfidence in its

incorrect predictions.

Recent advancements have highlighted the significance of human-in-the-loop approaches

in identifying and addressing these unknown-unknowns. By incorporating human in-

sight, we can bridge the gap between what a machine learning model knows and should

know. This chapter introduces Scalpel-HS, a novel framework that epitomizes this human-

machine collaboration. Scalpel-HS leverages human intelligence for semantic analysis

at scale, effectively characterizing unknown-unknowns and enhancing the reliability of

image recognition models.

This chapter presents the design and implementation of Scalpel-HS, which includes two

essential human computation tasks: outlining the ’Should-Know’ elements that indicate

what a model should learn, and the ’Really-Knows’ elements that reflect the model’s current

knowledge state. The combined effect of these tasks, bolstered by sophisticated data parti-

tioning and sampling techniques, facilitates a thorough and scalable method for identifying

unknown-unknowns.
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Through extensive experimentation and analysis, this chapter will demonstrate how Scalpel-

HS significantly outperforms existing methods in detecting and characterizing unknown-

unknowns. By integrating human cognitive capabilities with machine learning, Scalpel-HS

provides a deeper understanding of model failures and paves the way for more reliable and

efficient image recognition systems.

In summary, this chapter presents a novel approach to enhancing image recognition

accuracy by embracing the unique strengths of human intelligence. We hope the approach

sets the stage for future research and development in human-in-the-loop methodologies,

marking a significant step forward in pursuing harmonious human-machine collaboration

in artificial intelligence. The content of this chapter is based on the following paper:

• Sharifi Noorian, Shahin, et al. "What Should You Know? A Human-In-the-Loop Approach
to unknown-unknowns Characterization in Image Recognition." Proceedings of the ACM Web
Conference 2022. 2022. [40]
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3.1 Introduction
Machine-learned image recognition models are rapidly deployed in many high-stakes

contexts [89]. While largely accelerating and aiding the decision-making process, such

models suffer from a severe issue of reliability—they can just as easily fail and generate

errors that can eventually lead to drastic consequences [90]. Understanding and detecting

such errors has become a key demand for both model developers to debug and improve

the model [91] and for the users to decide when to trust the model output [92–94].Among

image recognition errors, a specific type known as unknown-unknowns is of particular
interest [95, 96]. Unknown-unknowns refer to the images for which a model is highly

confident about its predictions but is wrong. Identifying such errors is challenging due to

the overconfidence of the model.

Recent efforts resort to human-in-the-loop approaches that ask humans to gather data

instances that are potentially difficult for a model to handle [95–97]. An important find-

ing reveals that unknown-unknowns often come with internal consistency, making them

particularly suitable to be described by natural language building on top of conceptual

knowledge [95, 96, 98]. We bring the notion of characterizing unknown-unknowns to allow
us to understand better when the model fails. This lies in contrast to previous work that

has focused largely on identifying unknown-unknowns.

Microwave

Oven

Counter

Sink

(a) Should-Know

Ceiling

Chair

(b) Really-Knows

Figure 3.1: An unknown-unknown example: Kitchen image classified as Conference Room. The model misses

relevant concepts microwave, oven, counter, and sink specified in (a) what the model should know, while picking

up irrelevant concepts chair and ceiling shown in (b) what the model really knows (based on the saliency map

[99]).

For effective characterization of unknown-unknowns, two types of knowledge are

needed: knowledge of what a model has learned, that we henceforth refer to as Really-
Knows, and what a model should have learned, referred to as Should-Know. Recent work on

human-in-the-loop machine learning interpretability [100] has shown the important role

of humans as computational agents to describe Really-Knows by annotating salient image
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areas in image recognition with semantic concepts. In this chapter, we advocate another

view of the role of humans as contributors who can shed light on Should-Know. We envision

that eliciting Should-Know from the perspective of human understanding of a given task,

can lead to a complete and usable characterization of unknown-unknowns. Consider the

example of indoor scene recognition in Figure 3.1, where the model incorrectly classifies a

Kitchen image as a Conference Room: knowing that the model fails by focusing on the chair
and ceiling only tells half the story; knowing that the model should have focused on the

microwave, oven, counter, for instance, presents a deeper understanding that would allow

further identification of similar errors which the model produces by missing such concepts.

With this in mind, we introduce Scalpel-HS, a human-in-the-loop semantic analysis

framework for unknown-unknowns characterization in image recognition. Drawing inspi-

ration from cognitive psychology literature [101–104], Scalpel-HS is designed with two

human computation tasks— for Should-Know specification and Really-Knows description—
that both engage human contributors to operate at the conceptual level. In the Should-Know
task, human contributors identify a set of objects (with attributes) and relations that are

relevant to a given image. In the Really-Knows task, human contributors annotate areas of

an image shown to be relevant for model prediction with semantic concepts (i.e., visual

objects, attributes, and relations). Leveraging the outcome from both Should-Know and

Really-Knows tasks, model unknowns can be characterized by comparing those concepts a

model should have learned with what the model actually learned.

Scalpel-HS builds upon a computational pipeline to provide input to the human com-

putation tasks with minimized cognitive load imposed on human contributors. For the

Should-Know task, we leverage state-of-the-art information extraction techniques to pre-

identify objects and relations in the images, allowing human contributors to primarily focus

on adjudicating the relevance of concepts to a given scene. This cognitively simplifies the

task at hand, in comparison to explicitly synthesizing relevant concepts [105], and results

in a more structured vocabulary. For the Really-Knows task, we leverage machine learning

interpretability methods to highlight important pixels of an image for model prediction

[99, 106]. To minimize human effort, Scalpel-HS employs a semantic data partitioning

and sampling method that identifies representative images for human tasks. To do so,

Scalpel-HS starts off by first learning semantically rich image representations.

We demonstrate the effectiveness, informativeness, and cost-efficiency of Scalpel-HS

on several state-of-the-art machine learning models for scene recognition [3, 21]. This

task is considered to be complex in image recognition for machines, as well as for hu-

mans, as it requires the understanding of context [107, 108]. We show that Scalpel-HS

provides informative, easy-to-understand characterizations of unknown-unknowns that

significantly boost state of the art in unknown-unknown detection by 31%, and can de-

tect 2x to 3x the sizes of unknown-unknowns compared to the number of annotated images.

In summary, we make the following key contributions:

• We introduce a human-in-the-loop framework that orchestrates both automatic and

human computation components for cost-efficient characterization and identification of

unknown-unknowns;
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• We present the design of human computation tasks for both model should-know and

actually-knows descriptions at the conceptual level, with a set of design choices made to

account for the cognitive load and fault-tolerance of human work;

• We introduce computational methods for learning semantically rich image representa-

tions and for image sampling by partitioning the semantic data space for scaling out

human contributions.

3.2 Related Work
Unknown-unknowns. Errors of machine learning fall into two broad categories, namely

known unknowns and unknown-unknowns, denoting low- and high-confidence errors, re-

spectively. Known unknowns have been extensively studied in the literature of active

learning [109]. A set of data sampling strategies have been introduced e.g., query-by-

committee [110], uncertainty sampling [111], expected error reduction [112]. More recent

development concerns with the dynamic selection of optimal strategies in the training

process [113–115]. All those strategies rely on information provided by the model and thus

are not suitable for the identification of unknown-unknowns that the model is unaware of.

Unknown-unknowns are drawing increasing attention recently due to the criticality for

safety and user trust in high-stakes applications. A seminal work by Attenberg et al. [95]
proposes to ask humans to gather publicly accessible instances that are potentially difficult

for a model to handle. This approach has been recently extended by enabling humans access

to more information sources to improve the efficiency of unknown-unknowns detection.

For example, Lakkaraju et al. [97] assume human accessibility to the data and introduce a

bandit algorithm to exploit data similarity for faster detection. Vandenhof et al. [116] on the

other hand assume accessibility to model parameters and propose to engage human contrib-

utors to generate instances that contradict model reasoning. Most work so far has focused

only on the detection task, with the exception of Liu et al. [96] that propose to identify the

“pattern” of unknown-unknowns for detection, bringing implicitly the task of unknown-

unknowns characterization to the horizon. Yet their work does not study characterization

on its own—e.g., effectiveness or informativeness. To the best of our knowledge, we are the

first to present a focused study on unknown-unknowns characterization, considering the

roles of humans in both requirement specification and machine learning behavior interpre-

tation, supported by automatic computational methods for scaling out human contributions.

Automatic and Human Methods. Unknown-unknowns arise from biases in the training

data. As such, methods developed for outlier detection are relevant for unknown-unknowns

detection. Typical methods can be characterized as either parametric [117, 118] or non-

parametric [119–121] i.e., with or without assumptions on the underlying data distributions.

In unknown-unknowns detection, outlier detection methods are limited in that 1) they

assume the accessibility to the reference data (i.e., training data) which is not necessarily

available as in our setting, and 2) they do not take into account what a model has learned

thus is limited to identifying model unknowns as we have shown in our experiment.
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Another closely related line of work is human-in-the-loop (HItL) machine learning,

where human intelligence has been leveraged to address inherent limitations of ML such as

reliability and interpretability. Early work in HItL methods mainly focuses on leveraging

human intelligence for data labeling [4, 122]. More recent work has investigated the

advantage of human computation in debugging ML system components [123] and in

identifying biases and noisy labels in the data [124, 125].

HItL approaches are particularly effective in scenarios where model interpretability and

reliability are paramount. However, as discussed in works such as De Bruijn et al. [126],
implementing HItL frameworks requires careful consideration of practical challenges,

including variability in human input, resource demands, and the potential amplification

of biases inherent in data or human feedback. For example, scalability remains a critical

issue, particularly in high-volume contexts where manual oversight becomes impractical.

Additionally, achieving consistency in human annotations can be challenging due to cogni-

tive differences or fatigue among contributors. Addressing these aspects requires hybrid

frameworks that balance human and machine collaboration, ensuring efficient use of both

resources.

The most closely related work, as we discussed, is Lakkaraju et al. [97] and Liu et
al. [96] that use HItL methods for unknown-unknowns detection. Recent work that has

directly inspired ours is Balayn et al. [100] that propose to use human computation to

interpret the behavior of image classifiers by attaching semantic concepts to the saliency

maps of classification. We employ this method for unknown-unknowns characterization

in image recognition, and take a step further to show that by including human specified

requirements of what a model should know, we can significantly improve unknown-

unknowns characterization.

3.3 The Scalpel-HS Framework
Figure 5.1 presents an overview of Scalpel-HS. Given an image set and a trained image

recognition model, it first 1a extracts the scene graphs of the images and 1b the saliency

maps for the model classification of the given images. It 2a learns the representation of the

images combining both the visual and semantic features and based on that, 2b partitions the

image set and sample representative images for the human tasks. The scene graphs and the

saliency maps of the sampled images are then respectively fed to the human tasks published

in a crowdsourcing platform, 3a the Should-Know task, and 3b the Really-Knows task, to
generate descriptions of what a model should know, and what it actually knows. Output of

the two tasks are then aggregated to obtain a characterization of the unknown-unknowns,

together with a set of corresponding unknown-unknown images through the 4 aggrega-

tion and detection component. In the following, we describe the components in more detail.

Scene Graph Extraction (1a). Understanding a natural scene image usually requires rea-

soning about the relationship between objects in the image. For example, in the recognition

of rooms, a sink next to an oven indicates a kitchen while a sink next to a mirror more likely

indicates a bathroom. To help humans specify the required knowledge in scene recognition,

i.e., Should-Know, we extract scene graphs. A scene graph is a structured representation
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Figure 3.2: The Scalpel-HS framework. It takes as input an image set and a trained image recognition model;

as output, it produces a characterization of unknown-unknowns and identifies the corresponding unknown-

unknown images. To do so, it extracts the (1a) scene graph and (1b) saliency map of model classification of

a subset of images—sampled by (2a) representation learning and (2b) data partitioning—, feeds them to the

(3a) Should-Know and (3b) Really-Knows human computation tasks published on a crowdsourcing platform,

and (4) aggregates the output for unknown-unknowns characterization and detection of more corresponding

unknown-unknown images.

of objects and the relationships between them present in an image. It consists of a set of

relationships, each represented as [𝑜𝑖, 𝑟𝑖𝑗 , 𝑜𝑗 ], where 𝑜𝑖 and 𝑜𝑗 refer to two objects (image

patches usually captured by bounding boxes) in the image, and 𝑟𝑖𝑗 represents the relation
between two objects. Given a scene image, we generate the visual scene graph using

state-of-the-art methods Neural Motifs [127].

Saliency Map Extraction (1b). Understanding machine behavior in scene recognition is

themachine learning interpretability problem. Themost extensively studied interpretability

approach for image classification is saliency, a local interpretability post-hoc method that

highlights the most important pixels of an image for model decisions in what is called

a saliency map [106]. We choose this method to help humans describe what a model

Really-Knows.
We opted for SmoothGrad [99], which is sensitive to the parameters of a model (thus

catering for more accurate capturing of a model behavior) while minimizing noisy results

(i.e., highlighting irrelevant pixels). Our framework is though agnostic to the employed

local interpretability method. To minimize human effort, we sample a subset of represen-

tative images for human annotation. Data sampling is performed via a data partitioning

method based on a new type of image representation.

Representation Learning (2a). Due to the complexity of the scene recognition task,

representative images should be diverse in terms of both the semantic information con-

tained and the visual appearance. Existing methods generally rely on pre-trained models

for visual feature extraction only, which is suboptimal in our context. We propose to fuse

in also the semantic information and introduce a self-supervised learning approach for

learning semantically rich image representations. We describe the details in Section 3.4.1.
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Data Partitioning and Sampling (2b). Prior work has shown that unknown-unknowns

are caused by systematic biases in training data, and reside in specific partitions (i.e.,

blind spots) of the feature space [95, 96]. Following this, we propose a data partitioning

method for sampling, Semantic Space Partitioning (SSP), that identifies the optimal subset

of representative images in the semantic space. Our method partitions the semantic space

and selects candidate images in such a way that (the weighted sum of) cosine distances

from the candidate data points to others in the same region are minimized. As the result,

semantically similar images will be grouped in partitions, centered around the representa-

tive images. Those representative images are then sampled for human annotations. We

describe the details of our SSP method in Section 3.4.2.

The Should-Know Task (3a). For a given set of valid objects and relations pertaining to a

scene, it is crucial to understand the salience of each object and relation in identifying the

scene in the given image. For example, from a human perspective, a bed when compared to

a carpet can be deemed to be relatively more salient in identifying the scene as a bedroom.

In this task, human workers identify the salient objects, their attributes, and the relations

between objects for identifying a given scene in an image. We describe details of the task

design in Section 3.5.1.

The Really-Knows Task (3b). The goal of the task is to find out which objects in the scene

influence the prediction of the machine learning model, and whether this is congruent

with the human mental model. Human workers identify objects and relations found by the

machine and rate their relevance in identifying the scene. Details of the task are described

in Section 3.5.2.

Aggregation & Detection (4). The results of the two human tasks are aggregated to

characterize unknown-unknowns. Denoting the true class and wrongly predicted class as 𝑦
and 𝑦′, respectively, the characterization is represented in the form of the triple ⟨𝑦, (+)𝑐,𝑦′⟩
for False Positive (in terms of 𝑦′) and ⟨𝑦, (−)𝑐,𝑦′⟩ for False Negative (in terms of 𝑦). For
example, ⟨Conference Room, (+)sofa,Living Room⟩ indicates that the model wrongly clas-

sifies a conference room image to be a living room because of the focus on the spurious

concept sofa; ⟨Kitchen, (−)oven,Conference Room⟩ indicates that the model wrongly classi-

fies a kitchen image to be a conference room by missing the concept of the oven in the

kitchen.

Apart from the characterization, this component detects more unknown-unknowns of

the same characteristics utilizing the data partitions: images in the same partition as the

human-annotated (representative) one are likely to be unknown-unknowns sharing the

same missing or spurious concepts. The component, therefore, identifies more images as

unknown-unknowns those on which the model confidence is greater than a threshold.

3.4 Image Representation and Sampling
This section describes our methods for semantically rich image representation learning

and semantic space partitioning.
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3.4.1 Representation Learning
Our representation learning model comprises components for visual feature extraction,

semantic feature extraction, multi-modality fusion, and image representation generation.

Together those components make a representation learning model that can be trained in

an end-to-end fashion. We describe the details in the following.

Visual Feature Extraction. We use the pre-trained model Faster-RCNN [128] to generate

feature vectors for nodes and relationships in the generated scene graph. For each object

node 𝑜𝑖 in the scene graph, a visual feature vector 𝐕𝑜𝑖 is extracted from its corresponding

image region. For each relationship node 𝑟𝑖𝑗 , its visual feature vector 𝐕𝑟𝑖𝑗 is extracted from

the union region of 𝑜𝑖 and 𝑜𝑗 on the image.

Semantic Feature Extraction. Each node, either object node or relationship node, has a

text description generated by the scene graph generator. From such text description, we

obtain the initial semantic features using the pre-trained GloVe embeddings [82]. Those

embeddings are trainable parameters in our representation method. We denote the seman-

tic feature of the node and relationship as 𝐄𝑜𝑖 and 𝐄𝑟𝑖𝑗 , respectively.

Multi-modality Fusion. We fuse the visual and semantic features into a joint multi-modal

representation. Inspired by [129], the visual feature vector and label feature vector are first

concatenated, then fused as follows:

𝐙𝑜𝑖 = tanh(𝐖
𝑇
1 𝐕𝑜𝑖 +𝐖

𝑇
2 𝐄𝑜𝑖) (3.1)

𝐙𝑟𝑖𝑗 = tanh(𝐖
𝑇
1 𝐕𝑟𝑖𝑗 +𝐖

𝑇
2 𝐄𝑟𝑖𝑗 ) (3.2)

, where 𝐙𝑜𝑖 and 𝐙𝑟𝑖𝑗 are joint feature vectors for object and relation nodes, respectively.𝐖1
and𝐖2 are the shared parameters.

Image Representation Generation. To obtain a single vector representation of an image,

we combine the visual-semantic features of all the objects and relationships. Considering

the fact that those objects and relations together make a graph, we employ a multi-layer

graph convolutional networks (GCN) [130] to capture the graph structure while combining

the object and relationship features. Through multiple layers of linear and non-linear

transformation layers, GCN generates new node features that contain structural infor-

mation of the graph. To obtain a global representation of the image, we aggregate the

node representations learned by GCN in different layers—denoted as 𝐔𝑜𝑖 and 𝐔𝑟𝑖𝑗 for object
and relationship nodes respectively—into a graph representation using a graph pooling

operation, known as readout [131, 132]. The entire representation learning model contains

parameters of embedding, the multi-modality fusion layer, and those of the GCN. We

describe the training details in Appendix 3.8.1.

3.4.2 Semantic Space Partitioning
Formally, we denote the distance between the feature vectors 𝑓𝑖, 𝑓𝑗 of two images 𝑖, 𝑗 as
following:
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𝑑𝑖𝑠𝑡(𝑓𝑖, 𝑓𝑗 ) = 1−
𝑓𝑖𝑇 𝑓𝑗
‖𝑓𝑖‖ ‖‖𝑓𝑗 ‖‖

. (3.3)

Given a budget , i.e., the number of representative images to be sampled for human

tasks, our partitioning method finds the representation images by minimizing the following

objective function:

𝑚𝑖𝑛∑
𝑖∈
∑
𝑗∈
𝑑𝑖𝑠𝑡(𝑓𝑖, 𝑓𝑗 )𝑋𝑖𝑗

𝑠.𝑡.∑
𝑗∈
𝑋𝑖𝑗 = 1

𝑋𝑖𝑗 ⩽ 𝑌𝑗
∑
𝑗∈
𝑌𝑗 = 

(3.4)

, where 𝑋𝑖𝑗 indicates the decision of whether image 𝑖 is assigned to partition 𝑗 ; 𝑌𝑗
indicates if image 𝑗 is selected as a representative sample (note that the index 𝑗 is overloaded
to represent both the partition and the representative image of the partition). Due to the

large number of possible solutions that are associated with the problem of finding an

optimal set of representative samples, it is very challenging to provide a deterministic

solution. We employ a meta-heuristic approach based on genetic algorithms (GA). Details

of our algorithm are described in Appendix 3.8.2.

3.5 The Human Computation Tasks
We now describe the human computation tasks for specifying what an image recognition

model Should-Know and what it Really-Knows.

3.5.1 The Should-Know Task
In this task, human workers are presented with a sampled image and the corresponding

scene graph to identify concepts (salient objects, their attributes, and relations) in scene

recognition. The procedure is shown in Figure 3.3 (zoomed figures in Appendix 3.8.3).

Workers are first asked to a validate the automatically generated objects and relations

within the scene graph. Erroneous objects and relations can thereby be identified and

filtered (Neural Motifs performance in object and relation classification are 33%, 59% respec-

Validating relations (correct
or wrong)

Rating the relevance of
relations and giving reasons

Defining the minimum relation set
for scene identification

Defining the minimum object set
for scene identification

e

Adding missing relations

a c db

Figure 3.3: The procedure of the Should-Know task for specifying what a model should know in scene recognition.

(Zoomed in Appendix 3.8.3)
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Drawing bounding boxes to annotate
objecs highlighted by the heatmap

Naming objects and
assigning attributes

Defining relations using the
objects annotated

Adding all the objects and relations
highlighted by the heatmap

Rating the relevance of objects/relations
for identifying the scene

a b c d e

Figure 3.4: The procedure of the Really-Knows task for describing what a model really knows in scene recognition.

(Zoomed in Appendix 3.8.3)

tively [127]). They are then tasked to b rate the relevance of concepts in scene recognition

using a slider ranging from 1 to 20 (not relevant at all to highly relevant).

To further scope down to the highly relevant concepts, workers are asked to identify

the minimum set of concepts that can sufficiently identify the scene. It implicitly requires

humans to first c add missing concepts, and then d,e determine the indispensable concepts

for identifying the scene in the given image. To add missing concepts, workers need to spec-

ify the concept by entering the name and drawing a bounding box in the image. In the case

of the concept being an object attribute or a relationship, the worker needs to further spec-

ify the relations. Indispensable concepts are selected using checkboxes from the concept list.

3.5.2 The Really-Knows Task
While a scene in the human mind is composed of objects possessing clear boundaries and

having intelligible locations in space relative to each other [133], to the machine it is the

composition of pixels rather than objects. To understand machine behavior, we map the

pixels highlighted in warm colors by the saliency map, to actual concepts that humans

can understand. The procedure is shown in Figure 3.4 (zoomed figures in Appendix 3.8.3).

Workers are asked to a draw bounding boxes to annotate objects highlighted by the

saliency map, b name the objects and assign the attributes (e.g., color), c define relations

among the objects, and d add all the objects and relations highlighted by the saliency map

to the list.

By comparing to their own mental models in scene recognition, workers then e rate

the relevance these objects/relations are in identifying the scene, using a slider (ranging

from 1 to 20, meaning not relevant at all to highly relevant). They are also encouraged to

give reasons. Note that with annotations from this task, a characterization of false positive

prediction due to the wrong focus on the spurious concept can already be obtained. We

compare in our experiments unknown-unknowns detection using only the characterization

obtained from this Really-Knows task and that from also the Should-Know task.

3.6 Experimental Setup and Results
We evaluate the performance of Scalpel-HS by investigating the following questions

1
:

Q1: How effective is it in detecting and characterizing unknown unknowns? Q2: how

1
Source code and data are available at https://sites.google.com/view/www22-scalpel-hs

https://sites.google.com/view/www22-scalpel-hs
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informative are those characterization provided by our framework? and Q3: how cost-

efficient is our framework under a limited budget?

For these questions, we further evaluate the contribution of the individual components of

Scalpel-HS and compare them to the state of the art whenever possible.

3.6.1 Experimental Setup
Datasets. We use two image datasets: (1) PLACES: it contains 10 million images divided

into over 400 unique scene classes with 5000 to 30,000 training images and over 100 test

images per class. As not all classes are about scenes, we select a subset of data containing

nine indoor scene classes. (Details provided in the Appendix 3.8.4.) The subset contains

60000 training and 1000 test images equally distributed across the nine classes.

(2) MIT67 : this dataset contains 15620 images in 67 indoor classes. Unlike the PLACES

dataset, the number of images varies across classes, however, there are at least 100 images

per class. We filter images of the same set of scene classes as PLACES and select a subset

consisting of 3224 test images with at least 100 images per class. Note that due to the limited

number of images in MIT67, there are only 3216 images left after filtering; we therefore

only use the training set of PLACES for model training. Test sets from PLACES and MIT67

allow us to experiment with model unknowns exposed in test data of different distributions.

Unknown Unknowns Creation. We consider the unknown unknowns characterization

effective in two senses: it exposes the reasoning of an image recognition model in a high-

confidence yet wrong prediction, and it allows for the detection of unknown unknowns

images of the same type. Note that while the ground truth labels are given in the test

set—hence unknown unknowns images are known by comparing the model output to the

ground truth labels—the ground truth of the model reasoning is in-transparent. To cope

with this issue, inspired by previous work [100], we bias model reasoning by forcing the

model to focus on spurious concepts or to miss relevant concepts through data re-sampling.

To do so, we create unknown unknowns of False Positive by removing concepts from

training images of all classes except those of the class of interest. By doing so, the model

will strongly associate the spurious concept with the class of interest and make wrong

predictions for test images of other classes. Similarly, we create unknown unknowns of

False Negative by removing concepts from the training images of the class of interest (not

other classes). To make sure the concepts are distributed in several classes, we select 15

most frequent concepts (objects and relations) and then those that are distributed across at

least three classes. A co-occurrence matrix between concepts and scene classes is provided

in the companion page. The induced unknown unknowns are summarized in Table 3.1.

Apart from evaluating the effectiveness of our framework in exposing the incorrect

reasoning and in detecting unknown unknowns that are manually induced, we further

look into the informativeness of the characterization for “natural” unknown unknowns,

i.e., those unknown unknown images without the chosen concepts (or missed by the

scene graph extractor). Note that while we cannot make sure that the model makes high-

confidence errors on all images with the identified characteristics, we are sure about the

errors when they occur given the ground truth labels and about model rationales for images

annotated by our framework.
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Table 3.1: Summary of induced unknown unknowns.

Type Index Class of Interest Concept

False Positive

FP1 Kindergarden person
FP2 Bedroom bed
FP3 Conference Room chair

False Negative

FN1 Kitchen oven
FN2 Bathroom sink
FN3 Dining Room wine glass
FN4 Living Room couch/sofa
FN5 Conference Room woman at table
FN6 Kindergarden boy wearing shirt

Scene Recognition Models. We conduct our experiment with two state-of-the-art con-

volution neural networks, ResNet[75] and DenseNet[134], which have shown superior

performance on various classification tasks [135]. We train the two scene classifiers for

50 epochs on the biased training data and confirm that biases are successfully injected

into the scene classifier by observing the overfitting of the performance metrics during the

training phase.

Table 3.2: Performance (P = Precision, R = Recall, and F = F1-score) comparison with baseline methods on detecting

unknown unknowns images. We highlight the best performance for each metric in bold.

Type Comparison Method
ResNet DenseNet

Places MIT67 Places MIT67
P R F P R F P R F P R F

False Positive

Random 0.383 0.187 0.251 0.311 0.158 0.209 0.39 0.161 0.228 0.336 0.120 0.177

Least Average Similarity 0.558 0.272 0.366 0.318 0.161 0.214 0.558 0.272 0.366 0.663 0.218 0.329

Least Maximum Similarity 0.379 0.185 0.249 0.232 0.118 0.156 0.379 0.185 0.249 0.616 0.209 0.312

Most Uncertain 0.348 0.170 0.228 0.44 0.223 0.296 0.351 0.183 0.240 0.53 0.190 0.279

UUB 0.629 0.378 0.472 0.755 0.383 0.509 0.617 0.394 0.480 0.702 0.282 0.402

Scalpel-HS 0.855 0.522 0.648 0.915 0.465 0.616 0.874 0.716 0.787 0.766 0.521 0.620

False Negative

Random 0.21 0.08 0.11 0.28 0.152 0.197 0.293 0.271 0.281 0.33 0.09 0.141

Least Average Similarity 0.542 0.279 0.368 0.663 0.218 0.329 0.542 0.279 0.368 0.589 0.155 0.246

Least Maximum Similarity 0.372 0.185 0.247 0.616 0.209 0.312 0.372 0.185 0.247 0.495 0.135 0.212

Most Uncertain 0.585 0.219 0.319 0.452 0.246 0.319 0.549 0.237 0.331 0.44 0.12 0.188

UUB 0.551 0.634 0.589 0.480 0.376 0.422 0.553 0.649 0.597 0.456 0.271 0.340

Scalpel-HS 0.711 0.525 0.604 0.653 0.435 0.522 0.577 0.678 0.624 0.704 0.364 0.480

Baseline Methods. Following previous work [96, 97], we compare the performance of our

pipeline against the following methods: 1) Random Sampling: Randomly selects instances

from the test data to be queried with humans. 2) Least Average Similarity [136]: Computes

the average Euclidean distance for each test instance to all training instances, and chooses

the instances with the highest distances. 3) Least Maximum Similarity [136]: Computes

the minimum Euclidean distance of test data instances to all training data instances and

chooses instances with the highest distances. 4) Most Uncertain [109]: Ranks the instances

in the test dataset by increasing order of the prediction confidence as assigned by the scene

classification model. 5) UUB [97]: Combines clustering and the bandit algorithm to query

an Oracle. Least Average Similarity and Least Maximum Similarity are popular outlier
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detection methods; Most Uncertain is similar to the uncertain sampling strategy used in

active learning; and UUB is the state of the art unknown unknowns detection method.

Apart from those, we further compare with variations of our own framework considering

only output from the Really-Knows task, and those with other baseline representation

learning and data sampling methods.

Evaluation Metrics. For effectiveness evaluation, we use Precision and Recall to measure

the performance on unknown unknowns identification. We consider detection performance

in both cases when we are sure the unknown unknowns happen due to the injected data

biases and in the entire test set.

Crowdsourcing. We crowdsourced 300 images from each dataset, selected by our feature

space partitioning method. We present the same set of images for both the Should-Know and

Really-Knows tasks. For each task, we recruited 300 workers on Prolific2. For quality control,
only workers whose approval rate was greater than 90% were considered as qualified; to

avoid learning bias between the two tasks, each worker is allowed to perform only a single

task throughout the entire experiment. The authors manually examined the quality of

worker annotations on a random sample, which was found satisfying. Each worker was

paid 1.15 USD (0.8 GBP) for participating in our study, translating to an average hourly

reward of 10.25 USD (7.41 GBP).

3.6.2 Scalpel-HS Performance
Effectiveness. Table 3.2 reports the performance of comparison methods on detecting

unknown-unknown images. Among the baselines, Most Uncertain, widely used in detect-

ing known unknowns, yields low performance (similar to Random), providing evidence

for the important difference between the problems of detecting known unknowns and

unknown-unknowns. Among the two outlier detection methods, Least Average Similarity

generally outperforms Least Maximum Similarity, indicating that unknown-unknowns are

distant to the general image population in the feature space. UUB, which considers model

confidence, gives better performance than all the other baseline methods, showing that

unknown-unknowns are related to not only the data but also what models have learned

from the data. Most importantly, our proposed framework Scalpel-HS achieves the best

performance across all settings (unknown-unknown types, datasets, and metrics), outper-

forming UUB by a significant margin of 31% in F1-score, strong evidence demonstrating the

effectiveness of our framework in unknown-unknowns detection. The relative detection

performance of Scalpel-HS on the two types of unknown-unknowns (False Positive vs.

False Negative) is consistent across datasets given the same model; similarly, it is consistent

across models given the same dataset. Those results show the robustness of our framework

in unknown-unknowns detection.

Informativeness. To gain a deeper understanding of the informativeness of unknown-

unknowns characterization provided by Scalpel-HS, we report in Table 3.3 its performance

on uncovering the exact reasoning of the model on unknown-unknown images. Our frame-

work successfully exposes the characteristics of all manually created unknown-unknowns

2
https://www.prolific.co

https://www.prolific.co
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Table 3.3: Scalpel-HS Performance in uncovering ResNet reasoning on unknown-unknown images (FP = False

Positive, FN = False Negative, # = the number of corresponding unknown-unknown).

Type Index PLACES MIT67
# P R F # P R F

FP

FP1 488 0.896 0.588 0.710 158 0.769 0.443 0.562

FP2 618 0.939 0.629 0.753 545 0.636 0.366 0.465

FP3 9 0.16 0.111 0.13 13 0.0 0.0 0.0

All 1115 0.914 0.607 0.729 716 0.666 0.384 0.487

FN

FN1 45 0.531 0.377 0.441 330 0.628 0.472 0.539

FN2 60 0.275 0.5 0.355 90 0.755 0.453 0.566

FN3 162 0.721 0.623 0.668 166 1 0.282 0.440

FN4 98 1 1 1 76 0.709 0.549 0.619

FN5 16 0.086 0.25 0.129 207 0.166 0.052 0.08

FN6 47 0.095 0.148 0.116 66 0.755 0.486 0.592

All 428 0.516 0.600 0.555 880 0.672 0.455 0.543

Table 3.4: Examples of “natural” unknown-unknowns identified by Scalpel-HS for ResNet. Note that False

Positive is defined w.r.t. Predicted Class and False Negative is defined w.r.t. True Class.)

Type True Class Concept Predicted Class

False Positive Hospital Room (+)sink, (+)counter Bathroom

False Negative

Kitchen (-)oven, (-)counter Bathroom
Conference Room (-)chair at table Kitchen

(except FP3 on MIT67, which corresponds to 13 images only), showing the strong charac-

terizing power of our framework for unknown-unknowns. We find a large variability of

the performance in detecting unknown-unknown images with different characteristics,

showing the specificity of unknown characteristics for detection. As a remark, we note a

discrepancy between the overall performance in Table 3.3 and Table 3.2 due to the presence

of “natural” unknown-unknowns that are not manually induced.

In Table 3.4, we show a few of those additional unknown-unknowns exposed by our

framework, i.e., those that are not manually induced. Those characterizations provide

easy-to-understand reasons for model failures in unknown-unknowns and are thus highly

useful for identifying similar errors. In our experiment, they allow us to detect 19% extra

False Positive natural unknown-unknowns, and 38% extra False Negative natural unknown-

unknowns.

We show examples of manually induced unknown-unknowns detected by our frame-

work in Appendix 3.8.5 and more (including natural ones) on the companion page.

Cost-Efficiency. Figure 3.5 depicts the performance of Scalpel-HS under different budgets.

As expected, precision decreases and recall increases when the budget increases; however,

we observe that the decrease in precision is much slower than the increase in recall. With

300 images annotated, accounting for 3% of the overall test images in PLACES and 20% of
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the unknown-unknowns with the identified characteristics, we reach a recall of over 60%

of all the unknown-unknowns; on MIT67, the 300 annotated images account for 9% of the

overall test images and 19% of the unknown-unknowns with the identified characteristics,

we reach a recall of 42%. Those results show that our framework allows detecting 2x to 3x
unknown-unknowns w.r.t. a given budget, demonstrating that our framework is highly

cost-efficient.
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Figure 3.5: Performance of our framework on unknown-unknowns detection for ResNet under different budgets.

3.6.3 Contribution by Automatic Components
We now evaluate the contribution of our representation learning and image sampling

methods. Figures 3.6 (a,b) compare the performance of our framework with our proposed

semantically-rich representation learning method and the method with visual features

only for representation learning (ResNet152 pre-trained on ImageNet and fine-tuned on

our dataset, the rest components of the framework kept the same). The result shows that

our proposed representation learning method is a better approach in both precision and

recall across almost all budgets, signifying the utility of semantic features in the images for
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image sampling and ultimately for unknown-unknowns characterization and detection.

Figures 3.6 (c,d) compare the performance of our framework with our proposed se-

mantic space partitioning (SSP) and other baseline data partitioning or sampling methods.

These include 1) Random Sampling; 2) DSP [97]: optimizes the overall distances within

data partitions (minimization) and across partitions (maximization), and then randomly

samples representative images. 3) K-means: generates clusters, and the nearest instance to

the center of each cluster (mean) is selected as the anchor of that partition. We observe

that SSP achieves much higher precision with comparable recall (higher when the budget

increases), showing the superiority of our partitioning methods in sampling representative

unknown-unknowns and the effectiveness of joint partitioning and sampling.
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Figure 3.6: Comparing the effects of our proposed representation learning (RL) and data sampling (SSP) with

baseline methods on the performance of our framework under different budgets. Results are obtained on ResNet

using the PLACES dataset.
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3.6.4 Impacts of Should-Know and Really-Knows

We evaluate the effect of including human annotations, and in particular, human specifi-

cation of what a model should know, by comparing the following configurations of our

framework: 1) no human task, 2) including only the Really-Knows task, and 3) including

both the Really-Knows and Should-Know tasks.

Figure 3.7 compares the performance of those configurations under different budgets.

We observe that involving human annotations significantly impacts the precision under any

budget. In addition, we observe that integrating human annotations significantly impacts

recall as the budget increases. Compared to the version of no human tasks, our framework

improves by 26% and 10% in precision and recall, respectively (budget=300). Compared

to Really-Knows only, with Should-Know, the performance of Scalpel-HS improves by 5%

in both precision and recall. We also notice that the Should-Know task is beneficial for

precisely identifying unknown-unknowns when the budget is low.
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Figure 3.7: Impacts of human tasks on the performance of our framework under different budgets.

3.7 Conclusion
We presented Scalpel-HS, a human-in-the-loop, semantic analysis framework for char-

acterizing and detecting unknown-unknowns of image recognition models. It involves

human contributors to specify both what the model should know and describe what it

really knows, while minimizing the cognitive load of the tasks leveraging scene graph

extraction and machine learning interpretability techniques. It scales out human contri-

butions through both a new semantically-rich representation learning and data sampling

method. Our extensive evaluation on multiple models and datasets with different types

of unknown-unknowns demonstrates that characterizations provided by Scalpel-HS are

not only informative but also highly effective and cost-efficient for unknown-unknowns

detection.
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3.8 Appendix
3.8.1 Learning Image Representations
To obtain graph-level representations, we train the graph encoder end-to-end using the

approach proposed by Sun et al. [137], by maximizing the mutual information between

graph-level and patch-level representations. The patch-level representation refers to the

representation of nodes learned by aggregating the features of their neighborhood nodes, at

the last GCN layer, while the graph-level representation is a fixed length vector obtained by

pooling all patch-level representations. To train our graph encoder, we define the following

objective function:

𝑚𝑎𝑥
1
|𝐺|
∑
𝑔∈𝐺[

1
|𝑔 |

|𝑔 |

∑
𝑖=1
𝐷(𝑈𝑖,𝑈𝑔)]

where |𝐺| is the number of graphs in train set, |𝑔 | is the number of nodes in graph 𝑔 , and 𝑈𝑖 ,
𝑈𝑔 are representations of node 𝑖 and graph 𝑔 , respectively. 𝐷 denotes a mutual information

estimator which is modeled as a discriminator to score the agreement between patch-level

and graph-level representations. The agreement score is obtained by simply computing

the dot product between two representations.

Hyperparameter Setting. The number of GNN layers are chosen from {4,8,12}. Initial
learning rate is chosen from the set {0.01,0.001,0.0001}. We set the batch size to 64. The

number of epochs are chosen from {30,60,90}.

3.8.2 Semantic Space Partitioning Algorithm
The input of our GA-based method is a set of data points  = {𝑑1,𝑑2, ..., } where each 𝑑𝑖
consists of (feature vector, weighted concept) pairs, and the number of representative

samples  to be found. Note that the number of generated partitions is equal to the

number of representative samples. We initialize the genetic algorithm by constructing a

population of random chromosomes  = {𝑝1,𝑝2, ..., }, where each chromosome 𝑝𝑖 consists
of  candidate samples. Algorithm 1 implements the fitness function, which corresponds

to the proposed objective function (See Eq.4.1). The fitness function guides the exploration

through the search space towards an optimal solution.

GAs are prone to premature convergence to local optima. Inspired by [138], we address

this problem by adjusting the mutation rate (Pm) while the algorithm explores the search

space. To avoid generating invalid solutions and improve the GA’s performance, we use a

greedy approach to the mutation process, which mutates the offspring only if the mutated

solution gains a lower fitness value.

Hyperparameter Setting. Population, elitism, mutation rate, and cross-over rate are re-

garded as hyperparameters and, therefore, can be found via grid search (𝑁 ∈ {50,100,150,200};
elitism 𝐸 ∈ {5,10,15,20,30}; mutation rate 𝑃𝑚 ∈ {0.0005,0.001,0.005,0.01,0.05}; and cross-

over rate 𝑃𝑐 ∈ {0.5,0.6,0.7,0.8,0.9}). We set 𝑁 = 100;𝐸 = 20%;𝑃𝑚 = 0.005;𝑎𝑛𝑑𝑃𝑐 = 0.7. We

used a stagnation-based termination criterion; following [139], we terminate the algorithm
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Algorithm 1 Fitness algorithm

1: procedure Fitness(𝑅,𝐷,𝐹 ,𝑊 )

2: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠← 0
3: for 𝑑 ∈ 𝐷 do
4: 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ←∞
5: for 𝑟 ∈ 𝑅 do
6: 𝑓𝑟 ← 𝐺𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹 ,𝑊 ,𝑟)
7: 𝑓𝑑 ← 𝐺𝑒𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹 ,𝑑)
8: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝐶𝑜𝑠𝑖𝑛𝑒(𝑓𝑟 , 𝑓𝑑)
9: if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≤ 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 then
10: 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
11: end if
12: end for
13: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠← 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠+𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
14: end for
15: return 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠
16: end procedure

after
√ generations, where  denotes the number of representative samples to be found,

and  is the number of data points.

3.8.3 Annotation Workflow in Large Figures
Figures 3.9 and 3.10 show the zoomed version of our Should-Know and Really-Knows human

computation tasks.

3.8.4 Experimental Setup Details
We filter the two datasets by keeping images of the following scene classes: dining room,
bathroom, conference room, kindergarten, hospital room, kitchen, living room, bedroom, dorm
room.

3.8.5 Examples of Unknown-unknowns Identified by Scalpel-

HS

We show a few examples of unknown-unknown images Scalpel-HS identified and charac-

terized for both False Positive and False Negative. Figure 3.8 illustrates two characterizations

of each type for both the sampled images (i.e., anchors) and two similar ones detected by

our framework.
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Figure 3.8: Example of unknown-unknowns characterized and detected by Scalpel-HS: (upper-row) False Negative

<Living room, (-)sofa, Dorm room> and (lower-row) False Positive <Conference room, (+)person, Kindergarden>.
For each case, we show the sampled representative image with relevant concepts on the left and an additional

similar unknown-unknown image on the right. All images are shown together with a corresponding saliency

map showing where the model is attending to in making the incorrect prediction. Note that in the False Negative

case, the sofa leads to False Negative w.r.t. Living Room yet False Positive w.r.t. Dorm Room.



3

52 3 Enhancing Image Recognition with Human-Cognitive Integration

Validating relations (correct or wrong)

a

(a)

Rating the relevance of relations and giving reasons

b

(b)

Adding missing relations

c

(c)

Defining the minimum relation set for scene
identification

d

(d)

Defining the minimum object set for scene identification

e

(e)

Figure 3.9: The procedure of the Should-Know task zoomed.

Drawing bounding boxes to annotate objecs highlighted
by the heatmap

a

(a)

Naming objects and assigning attributes

b

(b)

Defining relations using the objects annotated

c

(c)

Adding all the objects and relations highlighted by
the heatmap

d

(d)

Rating the relevance of objects/relations for identifying the scene

e

(e)

Figure 3.10: The procedure of the Really-Knows task zoomed.
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4
Decoding Long-tail Visual

Concepts Using
Human-Computational

Approach

In the evolving landscape of image classification, the crux of reliability and precision often

pivots on the quality and diversity of the dataset used. The burgeoning field of machine

learning and computer vision has made significant strides, yet the challenge of correctly

classifying atypical images - those that deviate from standard representations - persists.

This chapter introduces a novel paradigm that blends human intuition with computational

efficiency to address this challenge.

Image classification models, despite their advanced algorithms, falter when confronted with

atypical instances - images that diverge from the norm due to unique attributes or contexts.

The traditional datasets used to train these models often lack the diversity necessary to

encompass the wide spectrum of real-world variability. This gap in training leads to models

that are adept in handling typical instances but are inept when faced with atypicality. It

raises a pivotal question: How can we enhance the ability of these models to recognize and

correctly classify atypical instances?

Our approach leverages human computational skills to identify and characterize these

atypical instances. Humans, with their innate ability to perceive and process complex visual

cues, are adept at recognizing atypicality in images. By incorporating human judgment,

we aim to create a more robust and comprehensive dataset that includes a diverse range

of atypical instances. This human-in-the-loop method is not only more inclusive but also

paves the way for developing more reliable and accurate image classification models.
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In this chapter, we delineate a framework that systematically integrates human perception

with algorithmic processes. The primary objective is to enrich the training datasets with

atypical instances accurately identified and characterized by human annotators. This

enrichment promises to bolster the model’s ability to handle real-world variability, thereby

enhancing its overall accuracy and reliability. The content of this chapter is based on the

following paper:

• Sharifi Noorian, Shahin, et al. "Perspective: Leveraging Human Understanding for Identifying
and Characterizing Image Atypicality." IUI ’23: Proceedings of the 28th International Conference
on Intelligent User Interfaces. [41]
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4.1 Introduction
Data quality is a key factor in the success of image classification systems. Despite their

impressive performance, image classification models remain largely unreliable, especially

in situations slightly different from those captured in their training phase [140, 141]. As

an implication, lack of reliability can lead to negative and sometimes damaging effects,

particularly in critical domains such as transport, finance, or medicine.

Among image recognition errors, a specific type known as unknown unknowns has

gained particular interest [95]. Unknown unknowns refer to the images for which a model

is highly confident about its predictions but is wrong. Unknown unknowns are often

discovered after deployment since identifying such errors is challenging due to the over-

confidence of the model. Thus, high-quality test data has become vital for understanding

and proactively uncovering vulnerabilities in image classification models, as partly demon-

strated by recent efforts from both academia and industry [90, 142], e.g., the Dynabench

platform by Facebook
1
and the CATS4ML data challenge by Google

2
.

A promise of these efforts is the creation of a feedback loop in the lifecycle of an

image classification model, thereby enabling a never-ending learning scenario where

model performance can continuously improve. Existing methods generally consider both

a model-and-human-in-the-loop approach, where human workers identify adversarial

instances that are challenging for certain specific image classification models [95–97].

Those methods, mainly contributed by Human Computation studies, are concordant with

findings from Computer Vision showing that human visual systems are more robust than

machines [143–145].

Little work, however, has addressed deeper questions pertaining to i) the characteristics
of images that lead to difficulty in their classification from a human perspective and ii)
whether such human understanding is aligned with the distribution of data that the machine

perception is built upon [107].

An instrument that can allow us to gain insights into the difficulty of both human

and machine classification of images is the notion of atypicality [102, 103], defined as “the

strength of association between observable properties and concepts”. From the human

perspective, the difficulty in classification has been explained through the difficulty in

recognizing components of the image [146]. When such components deviate from the

norm (either due to their unusual representation, attributes that deviate from our mental

models, the unfamiliar context they are presented, or partial or complete occlusion), we

experience difficulty in the image classification task. From the machine learning point

of view, models that fail in image classification generally learn incorrect or spurious

associations (or correlations) between an image class and the components, arising from

incompleteness, imbalances, or undesired biases in the data. This has mainly been found

to be due to the under-representation of atypical images in the data [40, 97].

To utilize human understanding for identifying and characterizing atypical images

in the context of image classification, a straightforward design for such a task would be

gathering responses about the atypicality of a given image from human annotators on

a subjective rating scale. However, in the context of image classification, the quality of

the resulting insights would depend not only on the cognitive capability of the human

1
https://dynabench.org

2
https://cats4ml.humancomputation.com

https://dynabench.org
https://cats4ml.humancomputation.com
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annotators (and their open world view) but also on their ability to envision the perceived

atypical images with respect to the distribution of data. In other words, the perceived

atypical images from the human point of view may not necessarily represent a rare concept

that the classification model has not encountered during the training phase.

Moreover, cost-efficiency represents another important challenge in real-world settings

of image classification in the wild, where stakeholders (e.g., developers and users) have

access to a large number of images without knowing the model performance on such

images. In such a setting, reducing the number of images for human annotation is of

critical importance to save human effort and hence cost. This chapter, therefore, seeks to

answer the following research questions:

RQ: How to support humans identify and characterize image atypicality in a cost-

efficient manner effectively?

Given the research question, we developedPerspective, an annotation tool that supports

effective and scalable human computation for proactive identification and characterization

of atypical images. Given an image for annotation, Perspective presents users with both a

global view of images in the class of interest – including both random and visually diverse

samples) and a local view of visually similar images in the dataset (possibly from multiple

classes) to support human annotation of atypically. Perspective employs a data sampling

method that accounts for both the atypicality and the redundancy of visual and semantic

information in the sampled images, thereby narrowing down the most likely atypical

images that can be passed along for human annotation. Through controlled crowdsourcing

experiments, we demonstrate that our annotation tool can significantly improve worker

performance in terms of accuracy and speed in atypicality annotation and that the sampling

method is effective in filtering atypical images for annotation.

Through several iterations of annotation (including crowd workers) on 10K images,

we present a coding scheme of 20 distinct characterizations of image atypicality, ranging

from atypicality with respect to the semantic content (e.g., unusual objects or objects

presented in an unusual context), the visibility of objects (e.g., occlusion), to the image

quality (e.g., resolution and lighting) and formation (e.g., vantage point, out of focus).

The coding scheme reveals the diversity of image atypicality characteristics; particularly,

atypical semantic content constitutes the largest category of image atypicality, indicating

the heavy skewness of image atypicality due to the unusual content.

To demonstrate the utility of image atypicality annotation, we test the performance

of several vision APIs from the industry against our identified atypical images. Results

show that atypical images present a strong challenge to state-of-the-art image classifi-

cation services. To gain a deeper understanding of the alignment between human and

machine perception of atypicality, we further fine-tune several image classification models

locally, and manually compare the model rationales (using interpretable machine learning

techniques) with human annotations. Our analysis shows that model rationales match

human-annotated image atypicality to a large extent.
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This highlights the potential of Perspective for not only collecting atypical images to

expose model errors but also for identifying reasons which have important implications for

developing and deploying reliable image classification models. For example, the identified

atypical images can be used to augment the training data in order to improve model

performance; the reasons for atypicality can also be used to defer atypical images where

models are more likely to fail for human takeover in a hybrid human-AI setting [147, 148].

In summary, we make the following key contributions:

• We introduce a scalable human-in-the-loop framework that orchestrates automatic

and human computation components for efficient and effective identification and

characterization of image atypicality.

• We identify 10K atypical images and provide a set of structured characterizations

(code schemes) of atypicality across four atypicality categories: semantic content,

object visibility, image quality, and formation.

• We demonstrate the utility of the collected atypical images by testing against state-of-

the-art computer vision models and exposing their weaknesses through atypicality

characteristics.

• We provide a set of insights into the need for support for data exploration and

navigation in human annotation and the alignment between human and machine

perception of image atypicality.

4.2 Related Work
We discuss related works pertaining to data quality issues and their implications, and others

present methods that tackle concomitant problems from both algorithmic and human com-

putation angles. The term “data quality” in the context of machine learning usually refers

to the coverage or representativeness of data distribution in terms of relevant attributes,

e.g., demographics [149] and location [150], or to the correctness of the label [124].

In image classification, it has been found that state-of-the-art models fail when the

objects are in strange positions [141] or even exhibit slight changes in position [151] not

captured in the training phase. Such a problem remains even with big training data. For

example, studies have shown those image classification models trained on the ImageNet

dataset exhibit misclassifications consistent with racial stereotypes [149], biases towards

textures [19], and limited generalizability to under-representative geo-locations [150].

Those problems are mainly attributed to the inequality of representation in the images

within concepts, hence atypicality [152]. Technically, the coverage or distributional repre-

sentativeness issue in the training data can lead to incomplete models that are prone to

generate high-confidence errors, referred to as unknown unknowns [40, 95, 153]. Due to

the high confidence, such errors are hard to detect and consequently, imply an ever-big

challenge in high-stakes domains with safety, trust, or ethical requirements.

The problem of data quality has been addressed from different perspectives. A large

body of work has focused on reducing undesired bias through data preprocessing or
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posing additional regularization in model training or inference [154, 155]. Work can also

be found on calibrating prediction confidence such that model confidence can become a

reliable signal of error risks [156, 157]. Those ideas, while helping to alleviate the issue, are

suboptimal by ignoring underrepresented instances or by trading off accuracy for fairness

or confidence. We are, instead, more interested in methods that augment the data with

adversarial instances.

A closely related line of research in machine learning is adversarial training, referring

to the class of methods that automatically generate adversarial instances [158, 159]. The

observation mainly drives the idea that human-imperceptible differences in the processed

data can lead to prediction failures. Adversarial training methods are, therefore, often

designed to generate instances similar to existing training instances (with imperceptible

differences) while coming with different ground truth labels. As an implication, those

methods cannot “naturally" generate images with significant deviation from the training

data (e.g., recognizable by humans, often due to the different objects or contexts), rendering

them strongly limited in the types of adversarial instances can be generated.

Human-in-the-loop methods have been developed mainly to address model errors.

Unlike machines that fully rely on knowledge explicitly encoded in predefined training data,

humans excel at leveraging broad, tacit, and contextual knowledge in decision-making and

justification. Human computation has, therefore, emerged as a new, promising approach to

detecting model errors. A seminal work by Attenberg et al. ([95]) proposed to ask humans

to gather publicly accessible instances that are potentially difficult for the model to handle.

Lakkaraju et al. ([97]) introduce a data partitioning technique that first organizes the

data into multiple partitions based on feature similarity and then uses an explore-exploit

strategy to search for difficult instances across these partitions. An important finding in

human computation studies reveals that model errors often come with internal consistency,

making them particularly suitable to be described by human language building on top of

concepts and properties [96].

The potential of human computation is also verified by studies in Computer Vision,

where findings have shown that human visual systems are more robust than machines,

especially to distributional shift [143–145], making humans a promising computational

means to identifying challenging images for machines. Existing human-in-the-loop meth-

ods, however, are specific to address errors of individual models and are hard to generalize

to different tasks. Most importantly, we lack a general understanding of the characteristics

of an image which leads to the difficulty in classifying it from the human perspective. We

set out to fill this gap through our work in this chapter.

In terms of interface design, several studies show the effectiveness of visual analytics

tools in discovering model errors. For instance, DriftVis by [160] addresses concept drift

in data streams, combining a drift detection method and a streaming scatterplot visual-

ization. ConceptExplorer by [161] detects and analyzes concept drift in multi-sourced

time-series data, with visual detection based on prediction models, drift level index, and

consistency judgment. [162] presents a system for processing drift detection and visual-

ization in business process event logs. [163] introduces a visual approach for identifying

and explaining out-of-distribution samples that cause degradation in predictive models.
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It uses an improved ensemble detection method and a grid-based visualization with a

novel kNN-based layout algorithm for better context analysis. Our work complements this

work by introducing a human annotation tool for identifying and characterizing image

atypicality.

4.3 Perspective

This section describes Perspective, our proposed annotation tool for identifying and

characterizing image atypicality. We first present an overview of the tool and then describe

in more detail its components.

Overview.
Perspective takes as input a set of images, samples a subset of images, and feeds them to

an annotation interface for human workers to annotate, concerning atypicality rating and

rationale. Figure 4.1 presents the overall workflow of the tool. It contains four components:

1. Image Representation Learning, to obtain a low-dimensional vector representation of

every image in the input dataset for the following sampling components;

2. Target Images Sampling, to sample a diverse set of potentially atypical images for

atypicality annotation;

3. Auxiliary Images Sampling, to sample visually similar images as well as images

representative of the class of interest for a given target image and class;

4. Atypicality Annotation, to engage human workers in rating the atypicality and

providing rationales for the sampled target images, by referring to the auxiliary

images.

For ease of understanding, we introduce the components in backward order.
3

4.3.1 Image Atypicality Annotation
At the front end of our approach is the atypicality annotation task, which is used to both

develop the codes of atypicality by trained annotators and to annotate images at scale by

crowd workers.

Task Definition & Design.
We consider two types of target image classes, namely object and scene images. Object

images are those that contain a given object, e.g., “bird”, or “muffin”; scene images, on the

other hand, are those that contain multiple objects that together describe a theme, often

being an activity or event, e.g., “graduation”, “thanksgiving”. Atypicality generally means

that to the human perception, the object of interest shows an unusual appearance, in an

unusual context, or the scene of interest contains unusual objects. In image classification,

we further emphasize atypicality with a relative meaning, that is, we consider an object

image to be atypical if the object of interest is present in a context more similar to the

3
Implementation details of all methods in the four components are provided in the companion page: https:

//sites.google.com/view/iui23perspective.

https://sites.google.com/view/iui23perspective
https://sites.google.com/view/iui23perspective
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Figure 4.1: Workflow of Perspective. Images from a given dataset are fed to the 1) Representation Learning

module to obtain image representations, which are then fed to both the 2) Target Images Sampling module to

sample images for annotation and the 3) Auxiliary Images Sampling module to sample three types of auxiliary

images, i.e., representative images of a class, random images of a class, and visually similar images, to assist

the annotation. The selected target image, together with the auxiliary images are sent to the 4) Atypicality

Annotation Interface for human annotation. Note that within Target Images Sampling, images are first filtered by

Diversity Filtering, and then ranked by Atyplicaty Ranking. The top-ranking images are sent to the Auxiliary

Images Sampling module for sampling images visually similar to the target image.

context of any other classes, or a scene of interest is unusual due to the contained objects

being more similar to the context of any other classes.

In atypicality rating, we consider two types of errors that annotators can potentially

make, namely wrong recognition of typical images to be atypical, i.e., type I error, and

the other way around, i.e., type II error. To reduce type I error, human workers need to

have insight into a set of typical images representative of the entire class. To reduce type

II errors, it is useful to show to the worker which classes visually similar images belong

to. We note that both types of auxiliary images are selected from a given dataset that,

while coming with its own limit in terms of coverage, is often available at a large size (e.g.,

publicly available training set or test data in the wild). Methods for sampling those images

will be introduced in the next subsections and validated in our experiments.

Task Interface.
Figure 4.2 shows the task interface. It contains three parts: 1) the target image (left), 2) the

auxiliary images (right), and 3) the questions that workers answer (bottom).

The auxiliary images are organized in different tabs, each displaying one type of the

auxiliary image. In addition to the visually similar images and representative images, we

show a random set of images from a given class to help workers gain an idea of the general

distribution of visual information in a class.

The task starts by confirming if the target image contains a certain object or is about a

scene (initial labels can be obtained from any given image classifiers). Workers are asked

to judge and characterize image atypicality for the given image and the associated label by

analyzing the target image and comparing that to the different types of auxiliary images.

They are asked to rate the level of atypicality using a 7-point Likert-scale (from Highly

Typical to Highly Atypical) and when the judgment is atypical (rating bigger than the

threshold 4), workers are asked to enter their rationales by selecting from a drop-down list

our developed codes of image atypicality (described in Section 4.4).
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1. The Target Image

The target image contains
a certain object or is about
a scene. The initial label
(muffin in this example) is
from the given image
classifiers.

2. The Auxiliary Images

The auxiliary images are
organized in different tabs,
each displaying one type of
the auxiliary images (visually
similar, random sample, or
representative sample).

Workers are asked to judge
and characterize atypicality
by comparing the target
image to the auxiliary
images.3. The Questions

Workers are asked to first
decide whether the image
label is correct. Then they
rate the level of atypicality
using a 7-point Likert-
scale and give their
reasons by choosing the
codes.

Figure 4.2: A screenshot of the worker interface while using the Perspective annotation tool.

4.3.2 Sampling Target Images
We now describe our method for sampling the target images for annotation, in order to

reach a high cost-efficiency for annotation. To design the sampling method, we consider

two requirements of the sampled images: 1) atypicality, i.e., the set should contain as many

as possible the indeed atypical ones; and 2) diversity, i.e., the images show a variety of

the atypicality characteristics. To this end, we introduce a two-stage method that first

filters a subset of images with high visual diversity, and then ranks them according to an

atypicality measure we derived from visual features.

Diversity Filtering.
To sample a subset of diverse images, we use the recently proposed adversarial filtering

method AFLite [164]. The goal of AFLite is to remove “spurious artifacts in data beyond

what humans can intuitively recognize, but those which are exploited by powerful models.”

For that purpose, the method is designed to reduce the bias in the training data by selecting

only a subset of data samples that are the most diverse possible (to avoid spurious artifacts).

Consequently, filtered samples by AFLite contain a rather equal distribution of both highly

typical samples (if it did not contain any, the model would not be able to learn the typical

representations of the target classes of the model) –that we need to exclude through

annotation–, and rarer samples –the ones that are indeed atypical.

AFLite works in an iterative process consisting of model training and evaluation. At

each iteration, the available dataset is randomly partitioned into two subsets for training

and test sets, respectively. The partition is performed 𝑚 times, and a linear classifier is

trained and evaluated independently on each partition. Note that the linear classifier

uses the image representation vector as features, which we introduce in the next subsec-

tion “Representation Learning” –this allows the sampling to consider visually meaningful

features as compared to the low-level, pixel-based features. The evaluations on the 𝑚
test sets are aggregated into a predictability score per sample in the dataset, representing
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the ratio of the number of times the sample received a correct prediction over the total

number of predictions. In the case of no ground truth labels available, we approximate the

predictability score with the agreement among predictions from the linear classifiers. The

top 𝑘 samples with the highest predictability scores are then removed from the dataset, and

then we proceed to the next iteration. The stopping criteria is defined over the number of

samples remaining in the dataset, and over the number of samples that have a predictability

score higher than a pre-defined threshold.

Atypicality Ranking.
Atypical images are a type of outliers, and can be detected through a relevant distribution

of image representations: images that are deviated from the mean/medium of a relevant

distribution are considered atypical. A general approach for outlier detection in non-

parametric distributions is item ranking. In our scenario, we consider leveraging the

distribution of images by model-based image representations [165], i.e., the activation of

the neurons in a given layer of a neural network model. Using the model-based image

representation is favored over the original image representation as it accounts for the

varying contribution of different visual features in classification.

Specifically, for a given image 𝑖 our goal is to find the rank of the image in a subset of

images  randomly sampled from the large dataset (such that the subset keeps the same

distribution as the large image set in the wild). To do so, for each image represented by the

feature vector (introduced in the next subsection), we run it through an independent multi-

layer perceptron model for image classification, record the activation values of neurons in

the last layer before the classification layer, and use that as a new representation of the

image. Images in  are then ordered based on the activation values – multiple orderings

corresponding to multiple neurons are aggregated into one order. We then obtain a similar

representation of image 𝑖 and find its ranking position in the ordered list of  .
The ranking effectiveness is, to a large extent, dependent on the neural network model.

We can start with a given deployed model when available as the initial model. To best

leverage human annotations, we progressively train the model following the active learning

process [166]. Active learning is a way of training a machine learning model using an

optimal subset of the training data, by selecting the most informative instances from the

given dataset in multiple iterations. In each iteration, the model is retrained with the newly

selected instances combined with the existing ones. Informativeness has various forms

that are modeled in different sampling strategies, e.g., uncertainty sampling measures

the informativeness of an instance by the uncertainty of model prediction [167]. In our

scenario, we replace the informativeness criteria with our atypicality (ranking) measure

for sampling.

4.3.3 Sampling Auxiliary Images
Sampling for the auxiliary images is straightforward for random and visually similar images:

when the image representations are available, visually similar images are found through a

nearest neighbor search. For representative image sampling, we develop an optimization-

based approach to ensure that we present the whole spectrum of the visual appearance

of a given class to human annotators. We convert the problem into a data partitioning

problem, where the goal is to split the images of a given class into partitions such that



4.3 Perspective

4

63

Scene Graph

Generator

Scene Graph

Semantic-Concept Extraction
Semantic-concept Vector

Visual Feature Extraction

Ui

c1 cm...
1 01 001

Convolutioanl layers Global Average Pooling

Vi

Global Feature Vector

Concept-enriched
 Feature Vector

Zi
c1 c2

c3

Figure 4.3: The image representation learning model.

images of the same partition are visually similar and those from different partitions are not;

representative images can then be sampled from each of the partitions. Given a budget 
(the number of representative images that can be sampled), we solve the following objective

function for sampling:

𝑚𝑖𝑛∑
𝑖∈
∑
𝑗∈
𝐷(𝑍𝑖,𝑍𝑗 )𝑋𝑖𝑗

𝑠.𝑡.∑
𝑗∈
𝑋𝑖𝑗 = 1

𝑋𝑖𝑗 ⩽ 𝑌𝑗
∑
𝑗∈
𝑌𝑗 = 

(4.1)

, where 𝐷 represents the cosine distance between the feature vectors of two images, i.e.,

𝑍𝑖,𝑍𝑗 ; 𝑋𝑖𝑗 indicates the decision of whether image 𝑖 is assigned to partition 𝑗 ; 𝑌𝑗 indicates
if the image 𝑗 is selected as a representative sample (note that the index 𝑗 is overloaded to

represent both the partition and the representative image of the partition). Due to the large

number of possible solutions that are associated with the problem of finding an optimal set

of representative samples, it is very challenging to provide a deterministic solution. We

employ a meta-heuristic approach based on a genetic algorithm which has proven to be

effective in finding an optimal solution for such partitioning problems [42].

4.3.4 Representation Learning
We now present our approach for generating the image representation that supports all

the previously introduced components. Considering the fact that the atypicality definition

is especially relevant about the content of an image, i.e., objects and contexts, we aim

to generate image representations that not only capture the visual features but also the

semantic concepts in the image. Our representation learning approach is depicted in

Figure 4.3 that extracts both the visual and semantic features, and concatenates them as

the image representation.

Visual Feature Extraction.
We use the convolutional network ResNet-152 [75] to generate a feature vector of the input

image. To be specific, we feed the image to a pre-trained model until the final max-pooling
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layer (prior to the fully-connected layers), and extract the activations at that layer. Then

we flatten the output of the max-pooling layer to obtain a feature vector 𝑉𝑖 ∶ ℝ1×2048 for
each input image 𝑖.

Semantic Feature Extraction.
To extract semantic concepts, we use scene graph, a structured representation of objects and

their relationships in an image. It consists of a set of relationships, which are represented as

⟨𝑜1, 𝑟 ,𝑜2⟩, where 𝑜1 and 𝑜2 refer to two objects in the image, and 𝑟 represents their relation.
We generate scene graphs using the state-of-the-art scene graph generation method Neural

Motifs [127]. After obtaining the scene graphs for a given set of 𝑁 images, we extract a set

of unique objects and relations. Then, for each input image 𝑖, we construct a fixed-length
concept vector 𝑈𝑖 ∶ ℝ1×𝑀 , where 𝑀 corresponds to the number of unique concepts. Given

𝑢𝑐𝑖 ∈ 𝑈𝑖 as the 𝑐-th concept in the concept vector, we set 𝑢𝑐𝑖 to 1 if the concept 𝑐 appears
in image 𝑖, otherwise 0. Finally, for each input image 𝑖, we concatenate 𝑈𝑖 to the visual

feature vector 𝑉𝑖, resulting an enriched image representation 𝑍𝑖.

4.4 Annotation, Evaluation, and Experimentation
Setup

We conduct our annotation and experiments on Open Images [71], a dataset of 9.2M images

with 30.1M image-level labels for 19.8K concepts. Following the CATS4ML data challenge,

we use a subset of 117K images of 23 classes, including Canoe, Lipstick, Bird, Firefighter,

Graduation, etc.
4

We apply diversity filtering and pick the top 10K most atypical images through our

atypicality ranking method. We asked six researchers of our group to act as trusted

annotators and manually annotate the 10K images based on their perceived degree of

atypicality. Each author independently annotated 1K images, and the remaining 4K images

were annotated by crowd workers using the Perspective interface. As a result of this

process, 1925 images were identified as atypical.
5

4.4.1 Developing a Coding Scheme
To characterize image atypicality, we follow the open coding method rooted in grounded

theory [168] and use thematic analysis to develop insights from the images [169]. As a first

step, six authors independently assessed a random subset of 46 atypical images (sampled

from the set of 1925 atypical images, two for each class) using the interface shown in

Figure 4.2. In this round, authors provided detailed explanations for characterizing given

images as atypical based on their understanding of the image class in general and the

distribution of images in the dataset. Authors then iteratively identified different rationales

from their explanations for characterizing image atypicality and assigned codes to represent

them. Next, to refine the coding scheme and resolve any disagreement, all authors discussed

each of the 46 atypical images and iteratively identified and assigned codes to characterize

4
see https://cats4ml.humancomputation.com for the full list.

5
Our annotated dataset will be released on the companion page.

https://cats4ml.humancomputation.com
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image atypicality.
6
For the sake of completeness and to ensure that the resulting coding

scheme can be used by the community for further research, complementary codes which

went beyond what was observed in this sample were added.

4.4.2 Evaluating the Perspective Annotation Tool
Auxiliary Images Sampling.
We conduct a controlled crowdsourcing experiment to evaluate the effectiveness of the

different types of auxiliary images for annotation. We design a between-subject study

across four experimental conditions of the auxiliary images: 1) Random samples from

the dataset; 2) Representative samples; 3) Visually Similar samples; and 4) Combined,
which combines all the three above types of auxiliary images.

We randomly selected equal splits of typical and atypical images annotated by the

authors, resulting in 300 images and at least ten samples per class label. We ensure that

180 common images are used for all four conditions.

We recruited 50 workers on the Prolific crowdsourcing platform for each condition.
7

Only workers whose approval rate was greater than 90% were considered qualified. During

the task execution, each worker is asked to annotate six images, three atypical images,

and three typical images randomly selected. To avoid learning bias, each worker can

perform only one task throughout the experiment. All the tasks across four conditions

were published and completed within the same four-hour period on Prolific to reduce the

bias of worker availability. Each worker was paid 0.90 USD (0.65 GBP) for participating in

our study. According to Prolific, the actual average hourly reward of our experiment that

workers received was 11.75 USD (8.59 GBP).

We measure worker performance in terms of both annotation accuracy and speed.

Precisely, accuracy is calculated using the metrics of precision and recall with respect to

both typical and atypical images (indicated by author annotations). We measure the speed

of worker annotation by the average time spent on identifying each atypical and typical

image. .

Target Images Sampling.
We evaluate the effectiveness of our target image sampling techniques, i.e., diversity

filtering and atypicality ranking. To do so, we compare the precision of the sampling by

diversity filtering alone, atypicality ranking alone, and combined. Precision is measured

by the fraction of truly atypical images sampled. To evaluate diversity filtering, we pick

1K images out of 12K obtained filtered images and measure the precision. We repeat the

experiment ten times and report the average precision. For a fair comparison, we rank the

whole data set using atypicality ranking techniques and select the top 1K images from the

ranked list. Finally, we combine both techniques by ranking the 12K images obtained by

diversity filtering, using the ranking score obtained from the atypicality ranking. Then, we

pick the top 1K instances to calculate the precision.

6
We do not report inter-rater reliability, as the disagreement between the researchers was resolved through

detailed discussions and critical reflections through multiple rounds of iterative coding [170].

7
Note this group of workers is recruited only for evaluating our task design; workers annotating the 4K images

are recruited separately.
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4.4.3 Human vs. Machine Perception
We apply our identified atypical images to evaluate the performance of state-of-the-art

image classifiers on those images. We first test three industrial APIs: Google Vision API
8
,

Amazon Rekognition API
9
, Microsoft Azure Vision API

10
. To gain a deeper understanding

of the alignment between human and machine perceived atypicality, we locally fine-tune

three models pre-trained on ImageNet, namely InceptionV3 [156], a VGG19 [171], and a

DenseNet121 [172], onto a subset of the images in the Open Images dataset, corresponding

to 13 classes containing the largest number of images.
11

To be able to compare the rationales

of model predictions to the human characterization of atypicality, we extract saliency maps

from the three models using SmoothGrad [99] and manually interpret the visual elements

the models highlight.

4.5 Results
4.5.1 Characterizing Atypical Images
The resulting coding scheme from the six authors is presented in Table 4.1. We group

the codes into four categories, namely, Semantic Content, Image Medium Quality, Object
Visibility, and Formation. Semantic Content contains codes that describe the atypicality
of an object in an unusual context (for object images) or a context with unusual objects

presented in (for scene images). This category is different from Image Medium Quality that

describes the atypicality in terms of image resolution, lighting, and color scheme, and from

Formation that describes atypicality on how the image was formed (e.g., photographed)

in terms of the type of medium, vantage point, and focus point. Semantic Content is also
different from Object Visibility in that the former describes the atypicality of the object or

scene itself, e.g., an unusual type of Pizza, whereas the latter concerns the appearance of

typical object or scene, e.g., a normal Pizza partly occluded in the image. As a remark, we

note that many of the codes represent the human perspective of an image while considering

the perceived distribution of other images in the class, as well as other classes in the dataset.

Atypicality Distribution
To understand the distribution of atypical images with varying characteristics in our

dataset (i.e., corresponding to different codes), we considered a uniformly random sample

of 220 atypical images and coded them using the coding scheme. Figure 4.4 presents the

distribution of codes that were observed as a result.

Semantic Content is the largest atypicality category: 60% of the images were assigned

Code#1, suggesting that the most frequent characterization of an atypical image in our

sample corresponded to the object of interest being present in an unusual context; 29%

images were assigned Code#2, i.e., atypical images where the object of interest is presented

in an atypical context, in a relative sense (i.e., the context being more similar to that of

other classes). Object Visibility is another category of atypicality many images are assigned,

especially Code#17 that describes image atypicality from object appearance in terms of

shape or other attributes. Interestingly, Code#18 was assigned to 36% of the atypical images,

8
https://cloud.google.com/vision

9
https://aws.amazon.com/rekognition/

10
https://azure.microsoft.com/services/cognitive-services/computer-vision/

11
Fine-tuning details are provided on the companion page.

https://cloud.google.com/vision
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/services/cognitive-services/computer-vision/
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Type Code Description

Se
m
an

ti
c
C
on

te
nt 1 Object of interest is present in an unusual context in comparison to other images

in the class.

2 Object of interest is present in a context more similar to the context of one or

more other classes.

3 Scene of interest is unusual due to objects in the image being unusual.

4 Scene of interest is unusual due to objects which are more similar to the context

of another class.

Im
ag

e
M
ed

iu
m

Q
ua

li
ty

5 Image is blurry in comparison to other images in the class.

6 Image is blurry, making it more similar to images of another class.

7 Lighting in (a portion of) the image is too dark in comparison to other images

in the class.

8 Lighting in (a portion of) the image is too dark, making it more similar to

images of another class.

9 Lighting in (a portion of) the image is too bright in comparison to other images

in the class.

10 Lighting in (a portion of) the image is too bright, making it more similar to

images of another class.

11 Color scheme of the image is inconsistent with other images in the class.

12 Color scheme of the image is more similar to that of images in other class(es).

O
bj
ec
tV

is
ib
il
it
y 13 Aspect ratio of the object of interest is smaller than other images in the class.

14 Aspect ratio of the object of interest is larger than other images in the class.

15 The majority of the object(s) of interest in comparison to other images in the

class is(are) occluded.

16 Dominant object in the image belongs to another class(es).

17 The shape or other attributes of the object of interest look unusual with respect

to other images in the class.

Fo
rm

at
io
n 18 The type of medium for representing the object of interest is inconsistent with

other images in the class.

19 The vantage point of the image is inconsistent with other images in the class.

20 The object of interest is out of focus in comparison to other images in the class.

Table 4.1: Coding scheme to characterize atypical images (in a given dataset). Multiple codes can be assigned to a

single image.
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Figure 4.4: Distribution of (a random sample of 220) atypical images as characterized using the coding scheme for

image atypicality.

indicating a different medium of representing the object of interest in comparison to other

images of the class. As mentioned earlier, certain complementary codes were added to the

coding scheme for the sake of completeness. Either a small fraction of atypical images or

none were found to correspond to such complementary characterizations (e.g., Code#6,
Code#8, Code#9, Code#10).

Examples of Atypical Images
4.5 presents examples of atypical images and the corresponding codes assigned to them.

4.5 (a) shows an image with the class label Muffin, characterized as being atypical due

to Code#1 the unusual context of the muffin, i.e., presented in a glass, as well as Code#2
since the surrounding context is most similar to the class of Chopsticks where there are
multiple dips nearby the main plate.

Figure 4.5 (b) shows an image with the class label Pizza, characterized as being atypical
due to Codes #9 & #10 the bright lighting, and importantly, the presence of the pizza in

an Code#17 unusual shape due to the close-up angle, which is also related to Code#19 the
inconsistent vantage point.

Figure 4.5 (c) shows a particularly interesting example of an atypical image correspond-

ing to the class label of Bird, which is characterized by a range of codes. We can see that a

Bird in the image is occluded by two children on the photograph held in a person’s hands,

thereby characterizing the atypicality of this image on several different fronts.
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(a) Codes: #1,#2 (b) Codes: #9,#10,#17,#19 (c) Codes: #1,#15,#16,#18,#20

Figure 4.5: Performance of industrial vision APIs on the typical and atypical images.
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Figure 4.6: Estimation plots of worker precision, recall, and annotating speed on atypical and typical images,

respectively, wherein the jitter plots each point represents a worker’s performance value (precision, recall, or

speed).

4.5.2 Effectiveness of Perspective

Auxiliary Images Sampling.
Figure 4.6 shows estimation plots of worker performance (precision, recall, and annotating

speed for atypical and typical images) [173]. In this figure, jitter plots show all the measures

and how they distribute across the four experimental conditions. The estimation plots

also show the effect size by displaying the resampling distributions of the mean difference.

We found that the resulting data on all the measures do not follow normal distributions

(Shapiro-Wilk tests).

Precision & Recall. In terms of precision, the Combined condition outperforms the other

three conditions on both atypical images and typical images (Figures 4.6 (a) and (d)). We

can observe comparatively large effect sizes of the differences between the Combined

condition and the Visually Similar condition. Regarding recall, the Combined condition

also achieves higher performance on atypical images than the other conditions, with rela-

tively large effect sizes. For typical images, the mean recall of Combined, Random, and
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Method Diversity Filtering Atypicality Ranking Combined

Precision 25.06 21.98 29.1

Table 4.2: Precision (%) of different target image sampling methods in identifying atypical images.

Representative conditions are almost equal, while that of the Visually Similar condition

is relatively lower. Note that we found no significant difference in worker precision or

recall (𝑝 > 0.05, Kruskal–Wallis tests), which is likely due to the low number of images

(six) annotated by each worker.

Annotation Speed. We observe that workers in Representative and Visually Similar con-

ditions annotated atypical images faster, as shown in Figure 4.6 (c). In the annotation of

typical images, workers across all the conditions exhibited comparable annotation speeds.

Summary. The Combined condition is most effective for accurate annotation (precision

and recall), especially for identifying atypical images. The result signifies the advantage of

displaying different types of auxiliary images for annotation accuracy. This, however, comes

with the trade-off of longer annotation times on average. The Representative condition

results in relatively high-quality annotations while enabling fast annotation, especially on

typical images, as compared to other conditions. When presented alone, visually similar

images do not allow workers to deliver high-quality annotations, possibly due to the lack

of a global view of the image class. By analyzing worker activity logs in the Combined

condition, we noticed that all the workers who had switched the tabs (32 out of 50) clicked

on visually similar images in the annotation. This suggests the perceived utility of visually

similar images in informing atypicality identification in the Combined condition.

Target Images Sampling.
Table 4.2 reports the precision of our sampling methods in identifying target atypical

images. When diversity filtering and atypicality ranking are used together, we observe a

significant improvement in precision.

4.5.3 Human vs. Machine Perception
Industrial APIs.
Figure 4.7 shows the performance of the three image classification APIs on our identified

typical and atypical images. These APIs classify an image with multiple labels along with

their confidence scores; we, therefore, evaluate the accuracy with respect to the number

of guesses allowed – classification is considered correct if one of the guesses is correct.

Note that the comparison between different APIs is not fair due to the different sizes and

vocabularies of image classes they cover. We resample the typical images according to the

distribution of atypical images, such that the results on typical and atypical images are

comparable. We observe from the figures that the APIs consistently show higher accuracy

on typical images than on atypical ones. In particular, when the number of guesses is five,

the average accuracy on atypical images is 18%, as compared to 27% on typical ones.
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(a) Google Vision API (b) Amazon Rekognition API (c) Microsoft Azure Vision API

Figure 4.7: Performance of industrial vision APIs on the typical and atypical images.

Atypicality DenseNet121 VGG19 InceptionV3

Typical 63.90 55.69 57.65

Atypical 42.77 22.96 39.04

Table 4.3: Percentages (%) of correct predictions of the fine-tuned models on typical and atypical images.

Local Models.
Locally fine-tuned models also consistently show a higher rate of correct predictions on

the typical images than on the atypical ones (see Table 4.3). Due to the high bar of our

atypicality judgment, specific samples annotated as typical with incorrect predictions might

actually be atypical for more lenient characterizations of atypicality, which can further

reinforce the above observations. Those results indicate that, statistically, challenges in

model predictions are generally aligned with human judgments of atypicality.

To gain a deeper understanding of the alignment of atypicality perceived by humans

and machines, we look into the saliency maps as the rationales of model classifications and

compare those to image atypicality characterized by humans.

Typical Images Correctly Classified. The models do not always use a correct rationale

for correctly predicting the labels of typical images. Typicality does not mean that the

models can easily learn the correct reasoning. Potential spurious biases across the typical

images of a training dataset can lead the model to pick up on simpler, incorrect reasons.

For instance, for the class Canoe (see Table 4.4 (1)), the DenseNet121 model has learned to

look at the presence of water when canoes are in the water, but at the presence of a canoe

itself when no water is present in the image.

Atypical Images Incorrectly Classified. The rationale of the models is more frequently

aligned with human judgments for atypical images that the model predicts incorrectly. It

is especially the case when the atypicality code relates to another class. For instance, an

image of an Athlete surfing on the water is predicted as Canoe by the model due to the

presence of water (see Table 4.4 (4)), which follows Code#2 indicating that the background

of this image is more similar to the ones of Canoe images in the dataset.

Typical Images Incorrectly Classified. Only a few typical images receive a wrong pre-
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Typical Atypical

C
or
re
ct

(1) GT: canoe; GT: canoe (2) GT: firefighter; GT: lipstick

In
co

rr
ec
t

(3) Pred.: firefighter, GT: bird; Pred.: child, GT: bird (4) Pred.: canoe, GT: athlete; Pred.: firefighter, GT.: smile

Table 4.4: Example images that received correct or incorrect predictions from the DenseNet121 model and judged

as typical or atypical by humans (in green: alignment between human and machine reasoning, in red otherwise).

The images are associated with their saliency maps on the right and the predicted (Pred.) and ground truth (GT)

labels underneath.

diction from the models. Such misalignment between the model and human reasoning is

the most complex to interpret the images and saliency maps. The most obvious cases are

when the image contains two rather dominant visual cues hinting at two different classes:

one referring to the expected but wrongly predicted class and one potentially referring to

another class. For instance, an image of a Bird on the beach with a red boat is associated

by the model to Firefighter probably due to the red color (see Table 4.4 (3)).

Atypical Images Correctly Classified. Part of the images which received correct pre-

dictions while marked atypical merit their atypicality judgment to be reviewed once the

human judges have further understood the model rationale by analyzing multiple images

and saliency maps. As an example, a Firefighter image showing a small helicopter in a

background of smoke (see Table 4.4 (2)) is marked atypical as firefighter images instead

usually contain a firetruck or individual firefighters. Yet, the model learned to use the

smoke to predict the label Firefighter (e.g., see the image in Table 4.4 (4)). Another image

presents a plastic doll with red lips (see Table 4.4 (2)), that was coded as atypical due to the

medium of representation (doll with simple facial features) that is unusual for Lipstick, yet
the model still correctly focuses on the lipstick to make its predictions. These cases show

that it is not always sufficient to use the atypicality codes to estimate whether a model

prediction will be correct. Still, it also requires an understanding of how important a given

atypicality characterization is concerning other potentially more typical characteristics of

the image that are less obvious from an open-world human perspective (e.g., the smoke

for the firefighter instead of the individual firefighter). This hints at new opportunities

in the coding process: a sequential coding procedure could potentially first allow the

judges to build an understanding of model reasoning by visualizing saliency maps, ground

truth, and predictions and then ask them to characterize image atypicality based on such

understanding of the reasoning.
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4.6 Discussion
4.6.1 Importance of Context Expansion
Results from our controlled crowdsourcing experiments show that workers, when pre-

sented with representative images of a given class and with visually similar images to the

target image, perform significantly better in terms of both annotation quality and speed.

These results verify our initial assumption that human perspectives that rely on annotator

experiences can be limited in envisioning image atypicality; for that, being able to see

image distributions in the dataset (images in the same class but also the other classes).

This is confirmed further by our results from the coding exercise, where many of the

codes represent not only the human perspective but also such perspective conditioned

on the distributions of the images. These results therefore, pose new research questions

on what impacts human perspective, and especially how new experiences gained from

human interactions with new environments (objects, scenes) shape the development of

human perspectives. Such questions are related to the literature on cognitive science and

creativity especially. In this literature, it has been shown that collecting and navigating

through information is an important phase in the creative process, which expands the

current context of the topic (and fosters associative and inspirational learning) [174, 175].

While partly answering the research questions, more research is needed to cross-check the

exact influence of human experience on the perception of atypicality.

4.6.2 Need for Collaboration and Interaction Tools
From the tooling perspective, the results imply that providing adequate support for human

annotation is an important and perhaps indispensable part of human annotation. In our

work, we have mainly explored methods and interfaces for sampling and visualizing images

from certain distributions, while much is left for future studies. An important aspect to be

considered in developing new tools would be to consider the cooperation among human

workers. In our specific task of image atypicality identification and characterization, being

able to communicate with other workers allow further expanding the current context of an

individual worker as constrained by what they observe and their own memory, making it

possible to connect to the new contexts other workers are experiencing. When developing

support for context expansion from either extra information or communication, an essential

type of atypicality that needs to be accounted for is the semantic content atypicality, namely

unusual content and context. This type of atypicality makes the majority and is perhaps the

most complex type given the diversity of objects and scenes. Future work in this direction

can benefit from cognitive science but also more technical domains such as knowledge

management, to link the annotation interface to knowledge bases in the backend that

can offer in real-time new concepts related to the running context. This also calls for

new research on interaction techniques, namely, how to display the increasing amount of

information to workers while not significantly increasing their cognitive load.

4.6.3 Response and Data Sampling Biases
One common issue in most crowdsourced image annotation tasks is "response bias", where

annotators may tend to complete tasks quickly to earn rewards, leading them to choose

the simplest answer without considering answer quality. In our task, workers might have
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the tendency to label images as atypical which does not require characterizing atypicality.

To reduce such a bias, we have employed several approaches such as using “gold standard”

images to filter out unreliable annotations and soliciting multiple annotations per image.

Another potential source of bias in our approach can be the data sampling bias. This

has been a major consideration in the design of our approach, which takes into account

image diversity in addition to atypicality. Perspective however, can potentially be further

improved by integrating alternative data sampling methods, e.g., combined with out-of-

distribution data detection [163].

4.6.4 Implications forMachineLearningand Interdisciplinary
Research

As for the application domain, findings from our study have several implications onmachine

learning (computer vision specifically). An important one is the notion of atypicality as

the proxy of data quality. We showed how easy it is for state-of-the-art machine learning

systems to fail in dealing with atypical images. A direct implication would be the need to

consider atypical images not only in model development but also in model deployment: it

is nearly impossible to collect the perfect set of images covering all possible scenarios in

one shot, yet this can be compensated by the incremental discovery of atypical images in

model deployment, from which the data quality can be gradually improved by integrating

such images. This implication aligns with the current discussions on data-centric AI, which

stresses more the importance of developing higher-quality datasets than models [176].

Our contribution in this sense is showing how human perspectives can be leveraged in

the process of image atypicality identification and characterization. A further implication

from this study is, therefore, the need to better bridge machine learning research and data

science, with the IUI and HCI communities.

There are multiple ways of using Perspective to improve the reliability of image

classification. One approach is augmenting the training data with the identified atypical

images to retrain the model, in an active learning setting where model performance can

be continuously improved with new images [177–180]. Another approach one can also

consider to use Perspective for reliable image classification is a hybrid human-AI setting,

where humans can take over decision-making when model decisions are unreliable. In

such a scenario, the human-identified reasons for image atypicality can be used to build a

decision deferral mechanism that filters images for decision handover [147, 148].

4.7 Conclusions and Future Work
In this chapter, we have presented a study on image atypicality identification and charac-

terization through human annotation. We introduced Perspective, an annotation tool that

increases annotation accuracy and speed by presenting several distinct sets of auxiliary

images, and that increases cost-efficiency by carefully designed sampling techniques. It-

erative coding resulted in a coding scheme for image atypicality, comprising 20 distinct

characterizations of image atypicality. Trusted and crowdsourced annotation resulted in

10K images with atypicality judgments. Experiments show that the identified atypical

images present a strong challenge to state-of-the-art image classification services and

models, and that atypical characteristics can well explain model rationales in instances of
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incorrect classification.

In the imminent future, we will improve the annotation tool to account for model

behavior, explore the integration of model interpretability methods, and study further

the utility of atypical images for improving system performance by, e.g., augmenting the

training data.
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5
A Graph-based Foundation

Model For Multi-modal
Learning

The rapid advancements in artificial intelligence (AI) aim to bridge the gap between hu-

man cognitive capabilities and machine intelligence. In this pursuit, multi-modal learning

emerges as a crucial step, enabling systems to process and understand various forms of data

simultaneously, much like the human brain. In this chapter, we introduce a novel graph-

based foundation model named GraphFusion, designed to harness the power of multi-modal

learning by integrating diverse data types, specifically images and text, through a unified

graph-based framework. Our approach leverages the inherent strengths of graphs to model

complex relationships and dependencies across different modalities, thereby facilitating a

deeper understanding and semantically enriched representation of multi-modal data.

Using self-supervised learning techniques, the proposed foundation model pre-trains

on a large-scale, multi-modal dataset with weak semantic correlations. This approach helps

the model understand the subtle interactions between different data types. The pre-training

enables the model to comprehensively understand the data, which can be fine-tuned for

various tasks in natural language processing and computer vision. Our proposed model

integrates various inductive biases inherent in different data modalities, effectively han-

dling the heterogeneity and complexity of the datasets. Our results showcase significant

performance improvements across multiple benchmarks, highlighting the model’s ability

to comprehend and handle multi-modal data cohesively. The proposed graph-based founda-

tion model emphasizes the benefits of multi-modal learning and demonstrates the efficiency

and adaptability of graph-based architectures. It provides a framework for creating models

proficient in multi-modal representation learning with graphs.



5

78 5 A Graph-based Foundation Model For Multi-modal Learning

5.1 Introduction
The advancement of artificial intelligence toward bridging the gap between human cog-

nitive capabilities and machine intelligence has identified the integration of visual and

textual data as a pivotal challenge [181–183]. Achieving sophisticated multi-modal under-

standing, where systems can process and interpret multiple forms of data simultaneously,

is crucial for various applications. These applications include but are not limited to image

captioning [181, 184], visual question answering [184–186], and more. The importance of

this integration is especially underscored by advancements in technologies that enable

richer interactions between visual elements and textual information [187, 188].

A multitude of strategies have been proposed to address the challenge. Early method-

ologies relied on hand-crafted features and shallow learning models, but these were quickly

found to be insufficient for handling the complexity of the problem [189, 190]. More recent

methodologies have turned to deep learning, using architectures such as Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to learn representations

[191, 192]. However, these methodologies often struggle to effectively model the inter-

actions between the modalities and align their representations [193, 194]. Given these

challenges, attention has turned towards more sophisticated models that can better capture

the complex relationships between visual and linguistic modalities. For instance, attention-

based models have been proposed as a solution, allowing the model to focus on relevant

parts of the input when generating output [195, 196]. These models have shown promise

in tasks such as image captioning, where the model must focus on different parts of the

image when generating each caption word. However, while attention mechanisms have

improved performance, they do not fully solve the problem of aligning visual and linguistic

representations [197].

Addressing this gap, we present GraphFusion, a novel graph-based foundation model

explicitly designed for multi-modal learning. Unlike traditional approaches that struggle

with the heterogeneity and complexity of multi-modal data, GraphFusion leverages a

unified graph-based framework to model the intricate relationships and dependencies

across different modalities, particularly images and text [198, 199]. We use self-supervised

learning techniques to pre-train the GraphFusion model, leveraging large-scale multi-

modal datasets from diverse social media platforms [200, 201]. Each image in these datasets

is paired with several textual descriptions provided by human annotators [202]. This

varied dataset is essential for training GraphFusion to effectively handle and integrate

information from different sources. Our self-supervised approach enables the model to

identify and utilize complex visual and textual data interactions independently [203]. Con-

sequently, GraphFusion develops a sophisticated understanding of the interplay between

these modalities, improving its capability to analyze and interpret complex multi-modal

inputs. This is particularly important for applications that demand advanced comprehen-

sion of intertwined visual and textual content, such as content recommendation engines or

automated content moderation systems [204].

Our results underscore the model’s robust performance across multiple benchmarks,

illustrating its capability to provide a cohesive understanding and handling of multi-modal

data [205]. GraphFusion demonstrates the tangible benefits of multi-modal learning and
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highlights the efficiency and adaptability of graph-based architectures in creating proficient

models for multi-modal representation learning [206]. Through this work, we establish a

compelling framework for future advancements in the field, emphasizing the potential of

graph-based approaches in enhancing AI’s multi-modal learning capabilities, paving the

way for its application across various tasks in natural language processing and computer

vision [207].

In summary, the primary contributions of this work are as follows:

• We introduce GraphFusion, a generic Vision-Language model based on Hetero-

geneous Graph Neural Networks. GraphFusion allows for the learning of unified

multi-modal representations that encapsulate the semantics of both modalities by

representing visual and linguistic data as nodes in a heterogeneous graph.

• We present a novel set of techniques for pretraining the GraphFusion on large-

scale image-text datasets. This design choice fosters alignment and ensures that

the learned representations are semantically rich and well-aligned across the two

modalities.

• We validate the effectiveness of our approach by conducting comprehensive experi-

ments on cross-modal retrieval tasks using various standard benchmark datasets.

5.2 Related Work
5.2.1 Vision-language Pretraining
Self-supervised learning has recently been recognized as a powerful strategy for pretraining

deep neural networks. Within this domain, Vision-language pretraining has garnered

considerable attention. It involves training a model on a substantial dataset of image-text

pairs without manual annotations, enabling it to learn significant visual and textual features

and to understand their interconnections.

One pioneering effort in Vision-Language Pretraining was CLIP [192], which utilized

a contrastive loss function to align semantically related image-text pairs. The studies

demonstrated that, with an adequately large dataset, CLIP could match the performance of

fully supervised models across various vision-language tasks.

Subsequent research has explored numerous facets of Vision-Language Pretraining. For

example, ALIGN [208] enhanced the training methodology by incorporating noisy image

and alt-text pair data to improve the model’s robustness to real-world variability. Other

researchers, such as Li et al. [209] and Chen et al. [210], have employed pre-trained object

detectors to identify visual concepts that aid the training of multi-modal transformers, thus

focusing the model’s attention on more prominent visual features.

Recent developments have also emphasized cross-modal interactions. Models like

ALBEF [211], TCL [212], FLAVA [213], and Florence [214] have integrated multi-modal

fusion layers atop modality-specific transformer encoders, showing substantial efficacy on

diverse vision-language tasks. Additionally, advances in generative modeling for tasks such

as image captioning have been pursued by researchers like Mokady et al. [215], further

enhancing performance on complex tasks like visual question answering.
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In summary, Vision-Language Pretraining is a rapidly evolving research area, producing

significant breakthroughs that leverage the synergy between images and text to develop

more robust and generalizable model representations useful across various applications.

5.2.2 Heterogeneous Graph Neural Networks
Heterogeneous Graph Neural Networks (HGNNs) are increasingly used to model complex

interactions across different domains. Notable examples include R-GCN [216] and HAN

[217], which are designed to manage graphs with diverse node and edge types. In the

vision-language context, Zhou et al. [218] proposed a unified graph neural network that

combines visual and linguistic features within a single graph representation. However,

their approach does not explicitly model the interconnections between visual and linguistic

elements as edges, potentially limiting effective modality alignment. Our HGNN model

addresses this by treating visual and textual data as nodes and explicitly modeling their

interrelations as edges within the heterogeneous graph, enhancing modality alignment.

In summary, our graph-based approach leverages advancements in vision-language

pretraining and heterogeneous graph neural networks to effectively model and align visual

and linguistic modalities. By structuring data as nodes and their relationships as edges in

a heterogeneous graph, our method promotes information transfer and learning of joint

representations that capture both modalities’ semantics. Our empirical results on various

downstream tasks, including image captioning, visual question answering, and visual

grounding, highlight our method’s capability to tackle these challenges and its potential to

push forward vision-language understanding.

5.3 The GraphFusion Framework
The overall architecture of our proposed approach is illustrated in Figure 5.1. This section

presents the methodology and mathematical formulations of our proposed Heterogeneous

Graph Neural Network (HGNN) approach for multimodal vision-language understanding.

The method consists of the following main components: (1) Graph construction, (2) Graph

Neural Network (GNN), (3) Hierarchical Pooling, and (4) Pretraining loss functions, includ-

ing Masked Language Modeling, Image-text Matching, and Masked-Image-Modeling.

5.3.1 Problem Formulation
We formulate the problem of multimodal vision-language understanding as learning a

joint representation space  that effectively fuses information from both the visual and

linguisticmodalities. Given a set of images = 𝑖1, 𝑖2, ..., 𝑖𝑁 and associated textual descriptions

 = 𝑡1, 𝑡2, ..., 𝑡𝑁 , our goal is to learn amapping function 𝑓 (Equation 5.1) such that the learned
joint representations 𝑠 ∈  capture the semantic relationships between the modalities 
and  .

𝑓 ∶  × →  (5.1)

The representation space  should be semantically coherent and well-aligned across

modalities, enabling downstream vision-language tasks that require correlating and amalga-

mating visual and textual data. For instance, in image captioning, 𝑠𝑖 can generate a textual
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Figure 5.1: The input of the network is a pair of image-text. Image and text are separately transformed into

unimodal graphs and passed to separated Graph Neural Networks simultaneously. A graph-matching layer is

adopted for cross-modal context modeling and multi-modal fusion. Masked attention pooling encodes aligned

image and text data into a multi-modal embedding space. Then, a triplet loss function is fed to calculate the loss

in the training phase. The joint embedding is passed to a 2-way prediction head for inference to calculate the

matching score.

description 𝑡𝑖 for image 𝑖𝑖, by conditioning a language generation model on 𝑠𝑖. Similarly,

in visual question answering, 𝑠𝑖 contains information from both the input image 𝑖𝑖 and
question 𝑞𝑖 to predict an answer 𝑎𝑖. We propose GraphFusion, a novel Vision-Language

model based on Heterogeneous Graph Neural Networks. GraphFusion represents visual

and linguistic elements as nodes in a heterogeneous graph, with edges capturing relation-

ships between them. This graph-based representation allows for modeling the complex

interdependencies between modalities and enables information propagation across visual

and textual nodes. Through end-to-end pretraining on large-scale datasets, GraphFusion

can learn fused joint representations 𝑠 ∈  that are semantically rich, well-aligned, and

suitable for many downstream tasks. In what follows, we provide a detailed explanation of

the GraphFusion model architecture and training techniques.

The goal of Vision-Language pretraining is to learn joint representations that effectively

fuse visual and textual modalities. To this end, we propose an HGNN model which deter-

mines relevant relationships between images  and text  by learning a parameterized

mapping function:

𝑓𝜃 ∶  × →  (5.2)

where  = (𝑉 ,𝐸) is a heterogeneous graph comprising: 1) Visual nodes 𝑉 𝐼 ∈ 𝑉 rep-

resenting images  2) Textual nodes 𝑉 𝑇 ∈ 𝑉 representing text  3) Edges 𝐸 connecting
cross-modal nodes. The parameters 𝜃 of 𝑓𝜃 are learned by optimizing a pretraining objective

(e.g. contrastive loss) over large datasets of image-text pairs. By maximizing information

flow across the graph, the HGNN determines relationships that align meaning at an abstract

level and fuse the modalities. For example, given an image 𝑖𝑗 and caption 𝑡𝑘 , the HGNN
may construct edges:
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𝑓𝜃 ∶ 𝑖𝑗 × 𝑡𝑘 → (𝑒𝑖𝑗 ,𝑣𝑘 , 𝑒𝑣𝑗 ,𝑡𝑘 ) (5.3)

, where 𝑒𝑖𝑗 ,𝑣𝑘 connects the visual node for image 𝑖𝑗 to a high-level semantic node 𝑣𝑘 (repre-
senting e.g. objects/events), and 𝑒𝑣𝑗 ,𝑡𝑘 relates 𝑣

𝑘
to the textual node for caption 𝑡𝑘 . Through

Vision-Language pretraining, the HGNN learns these cross-modal relationships across

datasets, developing an abstract understanding necessary to align and fuse visual and tex-

tual modalities into joint representations  = {𝑠1, 𝑠2, ..., 𝑠𝑁 }. These representations encode
high-level semantic concepts that cut across both modalities while retaining modality-

specific attributes. By maximizing information flow across modalities and optimizing an

end-to-end pretraining objective, our methodology determines the relationships required

to solve various downstream vision-language tasks.

5.3.2 Graph Construction
To construct the hierarchical heterogeneous graph, we define the visual and linguistic

graphs at different levels of abstraction.

Visual Graph Construction
We incorporate superpixels of the input image to construct the visual graphs. Each super-

pixel is associated with a node in the RAG, and edges connect nodes if the corresponding

superpixels are adjacent in the image. The similarity between the connected superpixels

determines the weight of each edge. Let 𝐺 = (𝑉 ,𝐸) be the RAG, where 𝑉 = 𝑣1, 𝑣2, ..., 𝑣𝑛
represents the set of nodes corresponding to superpixels, and 𝐸 represents the set of edges

connecting adjacent superpixels. The similarity between two adjacent superpixels, 𝑣𝑖 and
𝑣𝑗 , can be calculated using various features such as color, texture, and location. Let 𝐅(𝑣𝑖)
and 𝐅(𝑣𝑗 ) denote the feature vectors of nodes 𝑣𝑖 and 𝑣𝑗 , respectively. The weight of the edge
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 can then be defined as:

𝑤𝑖,𝑗 = exp(−
𝑑((𝑣𝑖),(𝑣𝑗 ))

𝜎2 ) (5.4)

, where 𝑑(𝐅𝑖,𝐅𝑗 ) represents the Euclidean distance between the feature vectors 𝐅𝑖 and 𝐅𝑗 .
The parameter 𝜎 controls the scale of the exponential kernel. The RAG captures both the

image topology and the similarity between regions, making it useful for various computer

vision tasks such as segmentation and object detection.

Textual Graph Construction
For sentence texts, we follow the recent trends in the community of Natural Language

Processing and utilize the pre-trained BERT [219] model to extract word-level textual rep-

resentations. Similar to visual features processing, we also utilize FC layers to project the

extracted word features into a 𝐷𝑡-dimensional space, denoted as 𝑇 = [𝑡1, 𝑡2,⋯ , 𝑡𝑁 ] , 𝑡𝑗 ∈ ℝ𝐷𝑡 ,
with length 𝑁 .
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To facilitate cross-modal interaction and embedding space consistency, the projected

dimensions are the same (𝐷𝑣 = 𝐷𝑡) for visual and textual representations. For subsequent

local-global (image-word/sentence-object) intermodal interaction and final cross-modal

similarity calculation, we use the average-pooling operation to obtain the global image

feature �̄� for sentence-to-image and the global sentence feature �̄� for image-to-sentence.

Implicit textual graph building and embedding. In contrast to the approaches [38,29,5,26]
of explicitly modeling inter-word dependencies, we construct a fully connected graph for

each sentence, where the semantic features 𝑇 of the words serve as nodes and the semantic

similarities 𝐴𝑡 between words serve as edges. We argue that explicit modeling of sentences

tends to focus only on the words of object and relation and loses the benefit of many

attribute descriptions. Similar to the visual enhancement process, as shown in Figure 2 (2),

we apply GCNs [21, 22] with residuals to reason and get the final textual representations

𝑇 𝑓 with the relationship enhanced, as follows:

𝐴𝑡 = (𝑊 𝑡
𝜑𝑇 )

𝑇
(𝑊 𝑡

𝜙𝑇 ) (5.5)

𝑇 𝑓 = (𝐴𝑡𝑇𝑊 𝑡
𝑔)𝑊𝑟𝑡 +𝑇 (5.6)

, where𝑊 𝑡
𝜑 and𝑊 𝑡

𝜙 denote the mapping parameters,𝑊𝑟𝑡 is the residual weights,𝑊 𝑡
𝑔 is

the weight matrix of the GCN layer.

5.3.3 Multi-scale Heterogeneous Representation Learning
In this section, we present a novel approach for learning multi-scale heterogeneous repre-

sentations that can effectively capture complex patterns in data with diverse characteristics.

Our method incorporates various representation learning techniques to generate a robust

and comprehensive feature set for cross-modal tasks.

Hierarchical Feature Extraction. We first extract hierarchical features from the data

using a series of convolutional and pooling layers. For each data modality, we obtain a set of

multi-scale feature maps  𝑖 = 𝐹𝑖(1), 𝐹 (2)𝑖 ,⋯ , 𝐹
(𝑀)
𝑖 , where 𝑖 ∈ 𝑣, 𝑡 denotes the modality (visual

or textual), and 𝑀 represents the number of scales. Each feature map 𝐹 (𝑚)𝑖 corresponds to

a specific scale and is represented as a matrix in ℝ𝐻𝑚×𝑊𝑚×𝐷𝑖 , where 𝐻𝑚 and𝑊𝑚 denote the

height and width of the map, and 𝐷𝑖 is the feature dimension.

Multi-scale Fusion We employ a fusion strategy to integrate the multi-scale features that

combine the feature maps at different scales. The fused feature map 𝐹𝑖 is computed as

follows:

𝐹𝑖 =
𝑀
∑
𝑚=1
𝛼(𝑚)𝑖 𝐹

(𝑚)
𝑖 , (5.7)
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, where 𝛼(𝑚)𝑖 is a learnable weight parameter that controls the contribution of each scale in

the fused representation. The weights are normalized to sum to one, i.e.,∑𝑀𝑚=1𝛼
(𝑚)
𝑖 = 1.

Heterogeneous Feature Embedding We apply separate, fully connected (FC) layers

for each modality to embed the fused multi-scale features into a common space. These

layers project the features into a 𝐷-dimensional space, where 𝐷 is the desired embedding

dimension:

𝐸𝑖 =𝑊𝑖𝐹∗𝑖 +𝑏𝑖, (5.8)

, where𝑊𝑖 and 𝑏𝑖 are the weight matrix and bias term for the FC layer corresponding to

modality 𝑖.

Hierarchical Pooling After the GNN message passing, we obtain the updated node

features 𝐻𝑣 = ℎ(𝑇 )𝑣 |𝑣 ∈ 𝑉 and 𝐻𝑙 = ℎ(𝑇 )𝑙 |𝑙 ∈ 𝐿 for visual and linguistic nodes, respectively,

where 𝑇 is the total number of GNN iterations. To generate a fixed-size joint representation,

we apply a hierarchical pooling strategy on the node features:

 = Pool(Pool(𝐻𝑣)⊕Pool(𝐻𝑙)) (5.9)

„ where Pool(⋅) is a pooling function, such as mean or max pooling, and ⊕ denotes element-

wise addition.

5.3.4 Pretraining Loss
Intra-Modal Contrastive (IMC). We define Intra-Modal Contrastive loss to learn the

semantic difference between positive and negative samples within the same modality.

Inspired by [220], for each new graph 𝑋 (𝐺𝑀)𝑣 and 𝑋 (𝐺𝑀)𝑙 , we consider two random "views"

of the same graph as a positive pair. We maximize agreement between visual sub-graphs

(𝐼1, 𝐼2) by using the contrastive lossnce (𝐼1, 𝐼2, 𝐼). Similarly, the agreement between textual

sub-graphs are maximized bynce (𝑇 ,𝑇+,𝑇 ). Overall, we minimize the following objective

to guarantee reasonable intra-modal representation learning.

imc =
1
2 [

𝑛𝑐𝑒 (𝑇 ,𝑇+,𝑇 )+𝑛𝑐𝑒 (𝐼1, 𝐼2, 𝐼)] (5.10)

The core idea behind the 𝑖𝑚𝑐 is to enforce the uniformity of the whole representation

space of image and text such that the embeddings are uniformly distributed. Consequently,

it improves the quality of the learned representations in each modality, further facilitating

joint multi-modal learning.

Image-Text Matching (ITM). We adopt ITM, widely used in previous VLP studies, to fuse

vision and language representations. Given an image-text pair, ITM predicts whether they

are matched (positive examples) or not (negative examples), which can be regarded as a

binary classification problem. We use a cross-attention pooling module to generate the joint

representation of the two enriched graphs returned by the Graph Matching module. Then,
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we fed the joint embedding into a fully-connected layer to predict the matching probability

𝜙(𝐼 ,𝑇 ). We assume that each image-text pair (𝐼 ,𝑇 ) sampled from the pre-training datasets

is a positive example (with label 1) and construct negative examples (with label 0) through

batch sampling. The ITM loss is defined as:

𝑖𝑡𝑚 = 𝔼𝑝(𝐼 ,𝑇 )𝐻 (𝜙(𝐼 ,𝑇 ),𝑦(𝐼 ,𝑇 )) (5.11)

, where 𝐻 (; ) is the cross-entropy, 𝑦(𝐼 ,𝑇 ) denotes the label. The overall training objective of

our model is computed as follows:

 = 𝑖𝑡𝑚+imc (5.12)

5.4 Experiments and Resuts
In this section, we report the results of our experiments to evaluate the proposed approach,

GraphFusion. We will introduce the dataset and experimental settings first. Then, we

compare the performance of GraphFusion with state-of-the-art image-text retrieval

approaches quantitatively. In addition, we conduct ablation studies to investigate the

effectiveness of each component of our model. Finally, we provide some qualitative analysis

of the results.

5.4.1 Pre-training Datasets
Following previous experimental protocols [208, 221], we use COCO [52], Visual Genome

(VG) [222], Conceptual Captions (CC) [223], and SBU Captions [224] as the pre-training

dataset in our study, where a total of 4.0M unique images and 5.1M image-text pairs are

covered. We term this dataset a 4M dataset in our study. To prove that our method can be

applied to large-scale datasets, we further use CC12M [225]. Together with the 4M dataset,

we reach large-scale pre-training data with 14.97M unique images and 16M image-text

pairs.

5.4.2 Downstream Tasks
Image-Text Retrieval includes two tasks: (1) image as query and text as targets (TR); (2)

text as query and image as targets (IR). The pre-trained model is evaluated on Flickr30K

[37] and COCO [52] by following fine-tuning and zero-shot settings. For the fine-tuning

setting, the pre-trained model is fine-tuned on the training data and evaluated on the

validation/test data. The pre-trained model is directly evaluated on the test data for the

zero-shot setting. In particular, for zero-shot retrieval on Flickr30K, we follow [208] to

evaluate the model fine-tuned on COCO. Visual Question Answering (VQA) [36] aims

to predict the answer given an image and a question (in text format), which requires an

understanding of vision, language, and common-sense knowledge to answer. This task is

a generation problem following the same setting [208]. Specifically, an answer decoder

is fine-tuned to generate the answer from the 3,192 candidates. Visual Entailment (SNLI-

VE) [226] predicts whether a given image semantically entails a given text, a three-class
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classification problem. Specifically, the class or relationship between any given image-text

pair can be entailment, neutral, or contradictory. Compared with VQA, this task requires

fine-grained reasoning. Visual Reasoning (NLVR
2
) [227] determines whether a natural

language caption is true about a pair of photographs. We evaluate our model on NLVR
2

dataset, which contains 107,292 examples of human-written English sentences paired with

web photographs. Since this task takes the text and two images as input, we extend our

model by following [208].

5.4.3 Implementation Details

Our experiments are performed on 8 NVIDIA A100 GPUs with the PyTorch framework [36].

Our vision encoder is implemented by ViT-B/16 with 12 layers and 85.8Mpa− rameters. A

6-layer transformer implements both the text and the fusion encoder. They are initialized

by the first 6 layers and the last 6 layers of BERT base (123.7M parameters), respectively.

We set 𝐾 = 65,536 and 𝑚 = 0.995. The model is trained for 30 epochs for the pre-training

stage with a batch size of 512. We use a mini-batch AdamW optimizer [31] with a weight

decay of 0.02. The learning rate is initialized as 1𝑒−5 and is warmed up to 1𝑒−4 after
2,000 training iterations. We then decrease it by the cosine decay strategy to 1𝑒−5. For
data augmentation, a 256×256-pixel crop is taken from a randomly resized image and then

undergoes random color jittering, random grayscale conversion, random Gaussian Blur,

random horizontal flip, and RandAugment [9]. During the fine-tuning stage, the image

resolution is increased to 384×384 and the positional encoding is interpolated according

to the number of image patches.

5.4.4 Image-Text Retrieval

Table 5.1 compares our model with state-of-the-art methods on image-text retrieval bench-

marks. Although models with modality-specific encoders usually perform better due to

more parameters and architectural biases, our one-tower model, OneR, achieves the best

zero-shot performance among similar baselines. Notably, GraphFusion achieves competi-

tive results without pre-training or initialization, indicating that once the intermodality

gap is addressed, both modalities can be effectively encoded within a single representation

space with minimal bias. We evaluated the generalizability of our model by transferring

it to downstream tasks without fine-tuning, consistently outperforming state-of-the-art

models with an average improvement of +9.5% on COCO and +12.2% on Flickr30K com-

pared to ViLT. Our approach, similar to ALBEF, shows superior performance with a +2.7%

TR/R@1 and +3.4% IR/R@1 boost on the MSCOCO(5K) subset, likely due to our inclu-

sion of intra-modal supervision. Our model also surpasses ALIGN, which uses extensive

pre-training on 1.8 billion image-text pairs, with a mean of 79.5% vs. 70.9% on COCO and

94.0% vs. 92.2% on Flickr30K, indicating more general and transferable representations.

Furthermore, we outperform other baselines on the Flickr30K dataset and surpass ALBEF

on the MSCOCO(5K) subset by 2.5% absolute TR/R@1 and 2.2% absolute IR/R@1. Although

ALIGN slightly outperforms our model by +0.48% on average across COCO and Flickr30K,

our method’s performance is expected to improve significantly with larger pre-training

datasets.
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Table 5.1: Performance comparison of zero-shot and fine-tuned image-text retrieval on Flickr30K and COCO

datasets. For text retrieval (TR) and image retrieval (IR), we report the average of R@1, R@5, and R@10.

Method #Images

Flickr30K (1K test set) Fine-tuned MSCOCO-5K

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITERlarge 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0

METER-Swin 4M 92.4 99.0 99.5 79.0 95.6 98.0 73.0 92.0 96.3 54.9 81.4 89.3

ALBEF 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2

METER-CLIP 4M 94.3 99.6 99.9 82.2 96.3 98.4 76.2 93.2 96.6 57.1 82.7 90.1

VinVLlarge 5.6M - - - - - - 75.4 92.9 96.2 58.8 83.7 90.5

ALIGN 1.8B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.6 59.9 83.9 89.7

ALBEF 14M 95.9 99.7 99.9 85.6 97.5 98.9 77.4 94.3 97.2 60.7 84.9 90.5

GraphFusion 4M 95.91 99.8 99.9 85.77 96.84 98.22 78.4 94.72 98.3 62.88 85.1 91.06

5.4.5 VQA, VE, and NLVR2
Table 5.2 shows the performance comparison on VQA, VE, and NLVR2, which requires

image+text as inputs. In other words, to be successful in these tasks, the model is supposed

to have the capability to learn joint multi-modal embeddings. Among five out of six

criteria, we deliver competitive results, suggesting that explicitly considering cross-modal

alignment and intra-modal supervision contributes positively to feature fusion. Notably,

VinVL [228] demonstrates superior performance compared to our method. Its pre-training

corpus mainly contains visual QA datasets, including GQA [229], VQA [8], and VG-QAs

[230].

Table 5.2: Performance comparison on vision+language tasks.

Method #Images

VQA NLVR
2

SNLI-VE

test-dev test-std dev test-P val test

OSCAR [209] 4M 73.16 73.44 78.07 78.36 74.02 74.02

UNITER [231] 4M 72.70 72.91 77.18 77.85 78.59 78.28

ViLT [232] 4M 71.26 74.02 75.70 76.13 74.02 74.02

UNIMO [233] 4M 73.29 74.02 74.02 74.02 80.0 79.1

VILLA [234] 4M 73.59 73.67 78.39 79.30 79.47 79.03

ALBEF [211] 4M 74.54 74.70 80.24 80.50 80.14 80.51

VinVL [228] 6M 75.95 76.12 82.05 83.08 74.02 74.02

GraphFusion 4M 77.37 76.92 80.88 81.07 80.79 80.66

5.4.6 Ablation Study
The impact of components.
We evaluate the effect of each component in our proposed method by switching off the

corresponding module. This ablation analysis involves the following components: ViG:
intra-modal visual-relation aggregation; TiG: intra-modal textual-relation aggregation; HiG:
cross-modal relation aggregation; T2V : message passing from textual to visual modality;

V2T : message passing from visual to textual modality; MH : multi-head attention mecha-

nism; The ablation results tested on the Flickr30k dataset are shown in Table 5.3. Removing

visual-relation aggregation significantly degrades image–text retrieval performance, while

deleting textual-relation aggregation also hurts retrieval performance. Graph representa-
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tions are beneficial for modeling objects and relationships efficiently, promoting image–text

retrieval performance. Compared with w/o cross-graph aggregation, the proposed Graph-

Fusionmodel with cross-graph relation aggregation has gained 3.7% and 4.5% improvement

of R@1 score, respectively, evaluated on the text retrieval and image retrieval tasks. This

indicates that integrating cross-graph relations can provide complementary correlation

for fine-grained correspondence learning, further strengthening the semantic interaction

between different modalities and boosting image–text retrieval performances.

Table 5.3: The ablation study on Flickr30K investigated the effect of different relation-aggregation.

Method Image to Text Text To Image

𝐑@1 𝐑@𝟓 𝐑@𝟏𝟎 𝐑@𝟏 𝐑@𝟓 𝐑@𝟏𝟎
w/o ViG 71.05 87.27 90.12 56.56 77.71 82.86
w/o TiG 74.84 88.56 91.46 57.39 78.86 84.08
w/o HiG 76.28 90.26 93.21 58.49 80.37 85.69
w/o V2T 79.26 93.79 96.85 60.78 83.51 89.05
w/o T2V 79.16 93.67 96.73 60.7 83.4 88.93
w/o MH 79.13 93.63 96.69 60.68 83.37 88.9

GraphFusion 𝟖𝟎.𝟐𝟏 𝟗𝟒.𝟖𝟖 𝟗𝟕.𝟗𝟓 𝟔𝟎.𝟒𝟗 𝟖𝟒.𝟓𝟒 𝟗𝟎.𝟏𝟏

The number of neighbors.
In constructing the graph, the number of neighbor nodes K is a hyper-parameter specifying

the feature aggregation range. The optimal value for K depends on the task and the average

size of the input graphs. However, generally, a very high value of K (too many neighbors)

will lead to over-smoothing. On the other hand, very low K (very few neighbors) will cause

a deficiency in exchanging information. We fine-tuned the number of neighbors 𝐾𝑣 in
our visual graph encoder 𝑉 𝑖𝐺 from 3 to 20. Similarly, we finetuned 𝐾𝑐 , from 3 to 15, for

the cross-modal graph encoder 𝐻𝑖𝐺. We observed the optimal number of neighbor nodes

between 9 to 15 for 𝑉 𝑖𝑔 , and between 12 and 15 for 𝐻𝑖𝐺, respectively. To this end, instead

of specifying a fixed number for K, we integrated a range of K, which gradually increases

as the layer goes more profound into the network. We present the effect of the number of

neighbors in Table 5.4.

Through an ablation study, we demonstrate that each component of GraphFusion

remarkably contributes to an effective aggregation of intra-modal semantic information

and, subsequently, more precise cross-modal alignment between image and text data.

5.4.7Qualitative Results
Cross-attention Visualization.
We visualize the cross-attention maps using Grad-CAM [235] to provide a qualitative assess-

ment of GraphFusion. Figure 5.2 shows that GraphFusion can associate language with

“regions of interest” by attending to meaningful objects and locations, visually reflecting

the quality of our model in multi-modal alignment. For instance, the model attends to the
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Module K

Image to Text Text To Image

𝐑@1 𝐑@𝟓 𝐑@𝟏𝟎 𝐑@𝟏 𝐑@𝟓 𝐑@𝟏𝟎

ViG

3 57.56 82.19 88.3 41.52 69.49 79.04
6 58.21 83.11 89.29 41.99 70.27 79.92
9 58.43 83.43 89.64 42.15 70.55 80.24
12 58.98 84.21 90.47 42.54 71.2 80.98
15 59.18 84.5 90.79 42.69 71.45 81.27
20 58.32 83.27 89.46 42.07 70.41 80.08
9-15 𝟔𝟎.𝟑𝟒 𝟖𝟔.𝟏𝟐 𝟗𝟐.𝟒𝟖 𝟒𝟑.𝟓𝟏 𝟕𝟐.𝟕𝟖 𝟖𝟐.𝟕𝟗

HiG

3 59.31 84.69 90.98 42.79 71.61 81.44
6 59.56 85.04 91.36 42.96 71.9 81.78
9 59.52 84.99 91.31 42.94 71.86 81.73
12 59.48 84.93 91.25 42.91 71.81 81.68
15 58.68 83.79 90.02 42.33 70.85 80.58
6-10 𝟔𝟎.𝟑𝟒 𝟖𝟔.𝟏𝟐 𝟗𝟐.𝟒𝟖 𝟒𝟑.𝟓𝟏 𝟕𝟐.𝟕𝟖 𝟖𝟐.𝟕𝟗

Table 5.4: The ablation study on MSCOCO-5K to observe the impact of the different numbers of neighbors (K) in

the visual graph (ViG) and cross-modal graph (HiG).

A man is walking out of

ocean and surfboardis holding athe

Figure 5.2: Grad-CAM visualization on the cross-attention maps corresponding to individual words.

face of the person when the word “man” is given, while for “walking” and “holding”, the
model performs surprisingly well, by moving the attention to men’s "feet" and his "hands",
respectively. In this experiment, we interestingly see that the model switches its attention

from the man’s upper body to the conjunction of his feet and the ground when the word

changes are “walking.” It demonstrates the capability of GraphFusion in understanding

the semantic relations between image and text.

Image-text Matching.
To verify the superiority of the proposed model, we further visualize some representative

image–text retrieval results on the Flickr30k dataset. Figure 5.3 displays top-5 ranked

image-to-text. The proposed GraphFusion has indexed the semantically relevant textual

results for the first image query. Similarly, for the second image query, GraphFusion can

capture the fine-grained correspondence of the objects and their potential relations, such
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as "a group of people" and "eating food," and three indexed textual results are semantically

relevant to the image query. We can also see that the two textural do not exactly match

the image query. However, the main semantic descriptions, such as "many people" and "a

crowd of people," match correctly. As for the T2I retrieval, Figure 5.4 shows that the top 3

retrieved images mark the correct results with green boxes. The top-1 image is the ground

truth; all other results are close to the sentence’s semantics. These results demonstrate that

our model can precisely learn the fine-grained semantic correspondence between different

modalities, improving retrieval performance.
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  1) A female performer with a violin plays on a street while
  a woman with a blue guitar looks on. 

  2) two women are standing in the street playing a 
  blue guitar and a violin.

  3) A female performer with a violin plays on a street while
  a woman with a blue guitar looks on.

  4) Two ladies play the violin and the guitar on the street to
  entertain the passer byes.

  5) Two women on the street, one is playing the guitar and
  the other is playing violin. 

  1) A group of people sitting at a picnic table
  eating.

  2) Many people are watching street performers
  dancing. 

  3) Men and women sitting and walking around the picnic 
  tables and having food. 

  4) A crowd of people are watching two guys play
  buckets.

  5) multiple people in a park eating at a picnic table. 

Figure 5.3: Visualization of the image retrieval result. The top 3 images are retrieved for each text. Our approach

always retrieves the ground truth in the Top 1 rank.
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Figure 5.4: Visualization of the image retrieval result. The top 3 images are retrieved for each text. Our approach

always retrieves the ground truth in the Top 1 rank.
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5.5 Conclusion
In this chapter, we present GraphFusion, a novel methodology for multimodal vision-

language understanding, leveraging the capabilities of Heterogeneous Graph Neural Net-

works (HGNN). By representing visual and linguistic data as nodes in a heterogeneous

graph, our proposed model, GraphFusion, can learn joint representations that encapsulate

the semantics of both modalities. This graph-based representation allows for efficient

information propagation across different types of nodes, enabling the model to capture the

intricate interdependencies between visual and textual information. Furthermore, we have

proposed a set of techniques for pretraining the GraphFusion on large-scale image-text

datasets, fostering alignment and ensuring that the learned representations are semantically

rich and well-aligned across the two modalities.

While our methodology has shown promising results, there are several avenues for

future work. One such direction is to explore other graph-based techniques that can further

enhance the alignment and representation learning of visual and linguistic modalities.

In addition, it would be worthwhile to investigate how to more effectively incorporate

attention mechanisms within the heterogeneous graph framework to better focus on rele-

vant parts of the input when generating output. Finally, applying our methodology to a

wider range of multimodal tasks, such as visual question answering, image captioning, and

visual grounding, could provide additional insights into the generalizability and potential

of our approach in addressing the challenges of multimodal vision-language understanding.

In conclusion, the proposed GraphFusion model offers a promising step forward in

addressing the challenges of encapsulating the intricate interdependencies between visual

and linguistic modalities and aligning their representations. By explicitly modeling these

relationships using Heterogeneous Graph Neural Networks, our methodology has the

potential to facilitate advancements in the field of artificial intelligence and contribute to

the development of systems capable of advanced multimodal comprehension.
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6
Conclusion

Computer vision aims to enable computers to interpret visual content, represented by

pixels, at a high level. This interpretation is a crucial step in all types of computer vision

problems as it requires the ability to decipher the semantics conveyed through raw pixels.

The long-acknowledged gap between low-level features and the semantic meanings of

images is known as the semantic gap. Bridging this gap is essential for developing computer

vision systems that mirror human perception in understanding visual content.

In this thesis, we explored various challenges and our methods for enhancing visual

models with semantic information. Our goal is to improve the reliability of real-world

applications in numerous visual understanding tasks. This chapter first summarizes the

main contributions and then discusses the limitations of our work. Lastly, we suggest

future research directions for multi-modal representation learning in visual understanding.
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6.1 Summary of Contributions
This thesis aims to advance visual models by focusing on three key areas to enhance

their semantic understanding capabilities. Firstly, we explore the integration of visual

and textual inputs within multi-modal learning frameworks to improve performance on

tasks involving complex visual-semantic relationships. This approach seeks to refine the

models’ abilities to interpret intricate visual information by acknowledging the complexity

and subtleties of such tasks. Secondly, we investigate how combining human cognitive

insights with algorithmic techniques can help identify and characterize shortcomings in

visual understanding models, making them more aligned with human perception. Finally,

building on insights from our earlier work, we utilize large, unlabeled datasets to pre-train

a foundation multi-modal model. We aim to develop a model capable of representing

multi-modal data into a unified feature space and capturing long-range dependencies

across different modalities, thereby facilitating a wide range of downstream applications

that demand advanced comprehension and long-range reasoning capabilities. Each focus

area addresses specific research questions discussed in Chapters 2 to 5.

6.1.1 Multi-Modal Data Integration
In Chapter 2, we explore the potential of integrating multi-modal data by formulating the

following research question:

RQ1: How can the integration of multi-modal data, specifically text and visual
information, improve the semantic and contextual reasoning abilities of models in
fine-grained scene recognition?

To address RQ1, we focus on overcoming the limitations inherent in current visual un-

derstanding models, particularly in handling visual ambiguities and nuanced differences

in appearance. Our solution is a multi-modal late fusion strategy that merges visual and

textual inputs, thereby improving scene recognition with a special focus on resolving

semantic ambiguities and the challenges in converting textual labels from visuals into

digital formats. The cornerstone of our contribution is the Cross-Modal Semantic-Enhanced

Visual Understanding Model, designed to enhance scene class categorization in complex

environments, surpassing the performance of visual-only models in extensive testing.

Additionally, we present the Scene-Text Semantics (ST-Sem) technique to classify Points of

Interest (POI) in commercial frontages, utilizing visual labels extracted from street-level

images. This technique comprises three modules: scene recognition, scene-text semantic

recognition, and a class rank module that merges prediction scores. Our novel approach in

data fusion, which integrates visual and textual information after semantic clarification

and digitization error correction, provides enhanced flexibility and compatibility across

diverse datasets, requiring minimal retraining. Experimental outcomes reveal that our

model significantly outperforms both visual-only and other multi-modal methods in POI

classification, particularly in urban areas with intricate scenes. The results include both

qualitative and quantitative evaluations, confirming the model’s efficiency.
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Ultimately, our method stands out in its ability to distinguish between similar objects

or scenes by incorporating textual data, proving especially useful in scenarios with high

visual ambiguity. This research marks a significant contribution to the field of visual

understanding and paves the way for future exploration in refining the differentiation of

similar entities in real-world settings.

6.1.2 Human-In-the-Loop Approach
In Chapter 3, as our first attempt to leverage human cognitive capabilities to narrow down

semantic gaps in the visual models, we formulate the following research question:

RQ2: How can we efficiently utilize human cognitive insights to identify and char-
acterize unknown-unknowns in visual models?

To address RQ2, we introduce the Scalpel-HS framework. This human-in-the-loop seman-

tic analysis framework engages humans in the Should-Know and Really-Knows tasks to
understand what the model should have learned versus what it has learned. We emphasize

characterizing the "unknown-unknowns" in image recognition by comparing these two

aspects. The framework integrates various components like scene graphs, saliency map

extraction, and representation learning. Our experimental results showcase the effec-

tiveness and cost-efficiency of Scalpel-HS, particularly in understanding and mitigating

model limitations. This approach highlights the importance of human cognitive abilities in

AI, offering significant implications for developing trustworthy AI systems, especially in

critical areas like medical imaging and autonomous vehicles.

To further advance our research on bridging the semantic gap using human-in-the-loop

techniques, we formulate our third research question as the following:

RQ3: How can we develop a scalable system that combines human and computer
capabilities to proactively identify instances that visual models fail to recognize due
to insufficient high-level reasoning?

In Chapter 4, we address RQ3 by proposing the ’Perspective’ annotation tool. This tool

aids in identifying and characterizing atypical images through human computation. Our

approach involves a two-step image atypicality annotation and sampling process supported

by a novel coding scheme based on 10,000 human-annotated images. We tested the identified

atypical images against leading image classification services, revealing insights into the

alignment between human andmachine perception of atypicality. The findings significantly

impact the enhancement of image classification systems, suggesting the inclusion of atypical

images in training data and the potential for hybrid human-AI systems. Our contributions

extend to a large dataset of atypical images with structured characterizations, highlighting

the gap between human and machine perception in image classification.
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6.1.3 Multi-modal Foundation Model
In Chapter 5, we explore the possible advantages of building a multi-modal foundation

model by pre-training on large-scale image-text datasets, such as image-text pairings found

on social media platforms. To this end, we formulate our fourth research question posed

as:

RQ4: How can we develop and pre-train a foundation model capable of cross-
modal comprehension and reasoning by leveraging large-scale multi-modal unlabeled
datasets?

To address RQ4, in Chapter 5, we introduce a novel multi-modal graph neural network

called GraphFusion, designed for capturing the nuanced dependencies within and across

different modalities. Inspired by recent advancements in the knowledge graph domain,

GraphFusion first constructs a heterogeneous graph by encoding low-level features of each

modality (e.g., superpixels for an image and word tokens for text) as nodes of different types

and encoding inductive biases within each modality as edges (e.g., the spatial relationship

between pixels and syntactic dependencies between words). This graph-based architecture

is crucial in facilitating the flow of information across different modalities (different node

types) and within each modality (same node types) through different weighted edges,

thereby capturing the nuanced inter-dependencies between visual and textual features. Fur-

thermore, our proposed graph neural network architecture effectively aligns multi-modal

features and learns multi-scale joint embeddings by hierarchically aggregating features at

every layer. We pretrain GraphFusion on extensive, unlabeled image-text datasets publicly

available online. Training our model on such diverse and comprehensive datasets enriches

its semantic information, enabling it to generalize across various visual understanding

tasks. The practical effectiveness of GraphFusion is further demonstrated through rigorous

testing on various downstream tasks, notably in cross-modal retrieval and visual question

answering. These experiments show the model’s ability to utilize multi-modal data effec-

tively. The success of GraphFusion in these tasks is a testament to its ability to learn unified

multi-modal representations, which are essential for tasks requiring a comprehensive

understanding of visual and linguistic elements. By introducing GraphFusion, we take a

notable step towards narrowing the semantic gap in the visual understating model and

moving it closer to practical, real-world applicability. In addition, it opens new avenues for

future research in Graph-based Multi-modal Representation Learning.

Our collective efforts to enhance the semantics of visual models provide several method-

ological and practical insights. We’ve introduced strategies highlighting the benefits of

integrating multi-modal data, incorporating human cognitive abilities, developing a graph-

based multi-modal architecture, and utilizing web-scale unlabeled data. These techniques

help construct a semantic-aware multi-modal foundation model while ensuring efficiency,

reliability, and explainability.

6.2 Limitations and Future Directions
While our research has made notable contributions, some limitations guide future research

directions and inform the societal and practical considerations necessary for the responsible
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development and application of AI technologies.

6.2.1 Mitigating Bias and Enhancing Dataset Diversity
In machine learning and artificial intelligence, the quality of the data used to train models

is paramount to their output. However, biases present in these training datasets can unin-

tentionally shape and influence the resultant model’s predictions and behavior. This is a

significant concern as it might lead to outcomes that unknowingly reinforce pre-existing

societal disparities and biases. Therefore, a keen eye must be kept on the data used to train

these models to ensure they represent a fair and unbiased worldview.

Development of Bias Mitigation Algorithms. Investing in the research and devel-

opment of innovative algorithms is of extreme importance. These algorithms should be

designed and tailored to identify potential biases within datasets and then take the neces-

sary steps to mitigate them. Identifying biases could involve using sophisticated techniques

capable of detecting skewed data distributions. Once identified, these techniques would

work towards automatically balancing them, thus ensuring the integrity of the data. More-

over, there is also a need to develop advanced algorithms that can adjust and fine-tune

model training processes. This would aim to minimize and ideally eliminate the influence

of biased data. This comprehensive approach to research and development in algorithm

design not only enhances the accuracy of data analysis but also upholds the principles of

fairness and objectivity.

Creation of More Diverse and Inclusive Datasets. One key objective is to work with

an extensive array of stakeholders. These may include industry professionals, academic

researchers, community members, and other interested parties. The goal is to gather and

annotate datasets that more accurately embody the diversity of real-world scenarios and

populations across the globe. This collaborative effort should concentrate on collecting a

broad spectrum of visual and textual data, which has been sourced from a diverse range

of cultures, languages, and geographical locations. It’s not just about the variety of data

but also about the quality and relevance of the data to different groups and scenarios.

It’s crucial to ensure that the models we train are based on data representative of the

diversity we see in the real world. By doing so, we can help avoid biases in AI systems and

contribute to developing more fair, equitable, and inclusive AI technologies that respect

and understand a broad range of human experiences and perspectives.

6.2.2 Addressing Resource and Complexity Issues
Foundation models, such as the GraphFusion, demand significant computational resources.

The training phase of these models, in particular, requires considerable processing power

and storage capacity. This ongoing need for high computational resources can be a signifi-

cant hurdle for smaller organizations, startups, or any entity with limited resources. The

cost-effectiveness of implementing such models needs to be carefully evaluated against the

potential benefits. Furthermore, the complexity of these models adds another challenge

in understanding, implementing, and maintaining them, which may deter adopting such
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models despite their high performance. Therefore, foundation models like GraphFusion

offer impressive results, but their resource requirements and complexity might present

considerable obstacles to widespread adoption.

Optimization of Model Architectures. The focus here is on developing more efficient

model architectures. The goal is to create designs that require less computational power,

thus making them more cost-effective and environmentally friendly while not sacrificing

their performance or accuracy. This complex task requires a deep understanding of both the

theoretical and practical aspects of machine learning. Techniques such as model pruning,

quantization, and knowledge distillation could be explored in this process. Model pruning

is a method of reducing the size of a machine-learning model by eliminating unnecessary

parts.

In contrast, quantization can reduce the precision of the computations, thus reducing

the computational requirements. On the other hand, knowledge distillation is a technique

that involves training a smaller model on the output of a larger model, effectively "distilling"

the knowledge from the larger model into the smaller one. These techniques could be

instrumental in reducing the size and complexity of models, thereby making them more

accessible for use in a more comprehensive range of applications and in a broader range of

devices, especially those with limited computational resources.

6.2.3 Improving Human-in-the-Loop Scalability
Incorporating human feedback into artificial intelligence systems can result in many issues,

particularly scalability and consistency. The inherent variability of human judgment, with

its unique subjectivity and often unpredictable nature, can lead to a lack of uniformity in

the responses and decisions made by the AI system. Furthermore, significant logistical

challenges are involved in integrating human feedback into large-scale systems. These

challenges range from the practical aspects of managing and processing vast amounts of

data to the technical difficulties of designing and implementing systems that can effectively

incorporate and utilize such feedback. As a result, these factors, both individually and

collectively, can severely limit the feasibility and effectiveness of methods involving human

feedback in AI systems. De Bruijn et al. [126] further emphasize the need for socio-technical

strategies that blend human expertise with algorithmic processing to ensure trust and effi-

ciency in decision-making. Such approaches must carefully balance the potential benefits

of human feedback against challenges of resource constraints and variability in human

input.

Hybrid Feedback Mechanisms. Future research must develop hybrid approaches that

combine human oversight with automated mechanisms. For instance, synthetic data gener-

ation and semi-supervised learning could reduce the burden on human annotators. These

mechanisms should aim to emulate human judgment effectively while minimizing the

cognitive load on contributors, thus ensuring both scalability and reliability.

Crowdsourcing and Gamification. The fascinating world of crowdsourcing and gamifi-

cation is a practical strategy for gathering human insights on a grand scale. By actively
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engaging a broad and diverse community in the integral processes of data annotation

and model evaluation, it becomes feasible to obtain an array of human feedback that is

diverse in its range and scalable in its volume. This not only broadens the scope of data

that is being evaluated but also enriches the quality of the insights obtained. With the

introduction of gamification methods, participants are more likely to stay engaged and

motivated, further enhancing the quality and diversity of input. However, to maintain the

integrity and reliability of this approach, implementing robust quality control mechanisms

becomes imperative. It is equally essential to establish effective incentive structures. These

structures would motivate and reward participants, encouraging continued and sustained

engagement. In doing so, this ensures the reliability of the crowdsourcing and gamification

approach and enhances its overall efficacy and success.

6.2.4 Enhancing Domain Generalization
While our proposed foundation model has shown considerable performance in various

downstream tasks, generalizing across various domains remains complex and challenging.

This is due to the inherently unique nature of each domain, which often requires specific

adjustments to our models. As such, there is a critical need for future work in this area to

focus on increasing the adaptability of these models. This includes not only their ability to

handle different types of data but also their capability to adjust to different domain-specific

requirements and conditions. By doing so, we can ensure that these models maintain

relevance and usefulness in various real-world situations, thereby broadening their appli-

cability and potential impact.

The Development of Domain-Agnostic Models. A significant area for future research

is the development of domain-agnostic models. These advanced models are designed to

perform optimally across diverse tasks and data types. The primary focus is extensive

research on foundational model architectures. This research aims to pinpoint and develop

architectures to learn and comprehend universal representations of various information

types beyond visual and textual. This approach is anticipated to boost our models’ overall

efficiency and effectiveness, thus advancing the field.

By pursuing these future directions, the research community can address the current

limitations and move towards developing more robust, fair, and universally applicable

visual understanding models.
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