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Abstract

The electrostatics has effect on conductance of nanowire devices. In this model electrostatics
are described by nonlinear coupling of the Poisson and the Schrödinger equations. In presence
of magnetic and electric field and spin-orbit interaction, conductance develops a feature called
the helical gap. This gap is characterised by a drop of conductance and is the main focus of the
research.

The solver is based around an Anderson mixing scheme, and specific class of points has been
discovered for which the solver performs poorly. For those points, an temperature annealing
subroutine has been put in place to speed up convergence. This subroutine efficiently solves the
system for some small finite temperature. The solver has also been expanded to solve systems
for magnetic field pointed in any direction of the y, z plane.

As a result, it is now possible to perform simulations for different magnitudes and directions
of magnetic field, which are a handy tool for understanding the behaviour of conductance as
a function of VG in real nanowires. The relation between energy and conductance has been
researched. The size of helical gap is found to scale linearly with the Zeeman energy EZ , while
other features of conductance scale nonlinearly.
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Chapter 1

Introduction

The field of quantum technologies has been gathering lots of wind in it’s sails. New, smaller
devices are being researched and the media hypes over the wonders of quantum computers. Se-
rious businesses and organisations start to invest heavily in the quantum devices, like Google
and Intel. Recent announcement about the Quantum Flagship initiative by the EU shows that
political organisations start to follow the trend as well. In this exciting era of inventions a corner
stone of nano devices has been researched in, among many places, TU Delft. This corner stone
is the nanowire device.

Nanowires are structures whose cross sections are bounded to sizes in order of tens of nanome-
ters. The length of such structures isn’t bounded to any significant limitation, and they are far
longer than wide in practice. When cooled down to temperatures in the range of mili Kelvins
naive models expect the conductance of such system to change in quantized steps directly re-
lating to energy dispersion relations of the system. Actual devices, due to impurities, finite
temperatures and interfaces between different parts of device, exhibit conductance similar to
quantized steps with some added smooth transitions between the steps. This means that the
naive models are essentially valid, and predictions made from them are of use to describe the
physics of nanowire devices. One can observe unique features if one tunes the strength of mag-
netic and electric field right in such a device. The feature we mostly focus on is the behaviour
of conductance for different electric fields. For fixed external magnetic field, one can change the
external electric field. This result in conductance of the wire to have a 0→ 2→ 1→ 2 shape as
a function of electric field. The area corresponding to conductance of one is called the helical gap.

Theoretically this is a well understood phenomenon, yet many models describe such systems
in terms of tunable energy of an electron trapped in a 2D cross section of a nanowire. In practice
this parameter isn’t directly tunable. Instead, one can change the potential of local electric field
called gate voltage VG. To relate VG to energy correctly, one must consider the electrostatic
potential generated by the electrons present in the system. The electrostatics can change simple
energy relations derived from more naive models into nonlinear scaling relations. Inclusion of
electrostatics involves solving a non linearly coupled Schrödinger - Poisson (SP) equation.

This SP equation is solved numerically by use of an algorithm based on Anderson Mixing scheme,
developed as master project [2]. This solver can solve the system of equations for various mag-
nitudes of magnetic field and strengths of spin orbit interactions.
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The helical gap is closely related to the magnetic field. The energy dispersion of electrons
in the system has an energy gap between the spin up and spin down branch caused by the Zee-
man effect. When the Fermi level lies inside of this gap, the conductance of the wire is lower
than outside of it and more specifically, only mostly spin down electrons conduct (as opposed to
mostly spin up electrons). The direction of the applied magnetic field has a tremendous effect,
to the extend that for a magnetic field aligned perpendicularly to the wire the helical gap ceases
to be. For this reason, the numerical solver must be expanded to be able to perform calculations
for various directions of magnetic field.

Another development needed, is a way to be able to do simulations for very fine ranges of
VG. Some specific points, which are the focal point of the phenomena of conductance, prove to
give rise to numerical problems for the solver.

This structure of this thesis is as follows: chapter 2 describes a InSb nanowire device, geo-
metrically at first and then through description of quantum effects working on electrons in such
a wire. The main computational issue is introduced - a non linear coupling of SP equation, due
to the electrostatic effect caused by electrons present in the system. A relation between energy
and momenta k, called energy dispersion, is derived and from there one introduces the notion of
conductance. Effect of strength the parameters on the shape of energy dispersion and effect of
the shape of energy dispersion on the shape of the conductance are introduced. Chapter closes
by introducing numerical values of relevant constants and energy scales.
Chapter 3 begins by stating the SP problem in terms of discretizated meshes and explain the
approach to solve it. Few numerical algorithms are introduced, especially the Anderson method
used to vastly improve the convergence speed. Attempts of memory and relaxation parameters
optimization together with convergence analysis of Anderson are next. The analysis leads to
discovery of specific points for which the Anderson performs the worst. Lastly a temperature
annealing subroutine is introduced in order to improve convergence in those points and is showed
to work for specific temperature ranges.
Chapter 4 starts by showing energies corresponding to a range of VG. Then, full picture of con-
ductance is introduced in terms of fixed magnetic field magnitude EZ but changing direction θ
and tunable energy. Scaling properties of few conductance plateaus are researched in terms of
EZ and VG. After, the full conductance is introduced in terms of VG and θ. Afterwards, more
focus is put on the EZ as the scaling properties between conductance in terms of tunable energy
and EZ are compared to conductance in terms of VG and EZ .
The thesis closes with a conclusion, with acknowledgements right after.
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Chapter 2

Quantum effects in InSb
nanowires

In this chapter one introduces general InSb device see section 2.1. Afterwards section 2.2 in-
troduces the effect magnetic and electric field have on the device, with section 2.3 stating a
interaction in the system that’s very hard to calculate - electrostatics. Section 2.4 put all that
interactions together to state the full Hamiltonian working on the system, and from there derives
the energy dispersion relation. Influence parameters have on the dispersion is shown together
the influence they have on conductance. Chapter finishes with a introduction of all numerical
values used to describe the system and energy scales.

2.1 Description of the system

Nanowire devices are simplified to three building blocks for this project. First, the nanowire is
a hexagonal shaped Indium Antimonide (InSb) semiconductor. It has about 100 nm of diameter
in the x, y section and is considered to be infinite in the z direction see figure 2.1 on the left.
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Figure 2.1: On the left, a sketch of nanowire, with added coordinates. Wire is bounded in x and
y direction and infinite in the z direction. On the right, schematic picture of a global backgate
device. Circle denoted by VG stands for the voltage source that can be tuned in real experiments.

On top of the nanowire lies a piece of dielectric material Silicon Nitride (Si3N4). Its whole
purpose in actual devices is to separate the nanowire from the third and final element. This
element is a (global) voltage gate, used to create an electric field inside of the nanowire without
allowing electrons to flow into the system. One does that by applying a finite potential difference
VG at the boundary of the dielectric. Silicon Nitride is perfect for this purpose, due to the fact
that it’s an insulator and it thus doesn’t allow electrons to flow through. This device is sketched
in figure 2.1 on the right.

The whole device is z-direction invariant. Consider a part of the wire with length ∆z as a
unit cell. The function describing the electrons inside of this unit cell must be ∆z periodic. Yet,
since the wire is exactly the same at all z, this function must be constant in the z-direction.
Thus, once can choose any length of ∆z and still have a viable unit cell. In this case, a natural
choice is to choose the cross section in x, y direction with the infinitesimal width dz as a unit
cell. One can invoke the Bloch theorem to describe conductance electrons (and thus electrons
moving in the z direction) [1]. This ensures the form of conduction electrons to be:

Ψi,k(x, y, z) =

[
↑
↓

]
Ui,k(x, y)eikz (2.1)

where subscripts i, k correspond to orbitals in the cross section and momentum along the wire

respectively. The

[
↑
↓

]
describes the spin state of said electron and is a 2× 1 complex vector, Ui,k

is the wavefunction in the cross section.
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2.2 Zeeman induced gap and spin orbit interactions

Electrons are mass carrying particles. One associates kinetic energy p̂·p̂
2m∗ with such particles.

Here p̂ is the momentum of an electron and m∗ is the effective mass of a particle. This effective
mass is a material property, changing mass of electron corresponding to crystal structure of the
material. The momenta operator reads p̂ = −i~∇, with ~ the Planck constant, thus we can
introduce the first energy operator entering the Hamiltonian as:

Hkinetic = − ~2

2m∗
∇2σ0, (2.2)

where σ0 is a 2× 2 identity matrix making Hkinetic a diagonal operator. Electrons, being spin 1
2

particles, experience different forces based on their spin direction. When an external magnetic
field B is applied, the (energy) degenerate orbitals of an electron (higher eigenmodes of the
electron) split due to the so called Zeeman Effect. The associated Zeeman energy EZ enters the
Hamiltonian of the system in the form of the operator

HZeeman = γσ̂ · B, (2.3)

where γ = 9.27 · 10−24 J/T is called the Bohr magneton, σ̂ is a vector of Pauli matrices. The
Pauli matrices read:

σx =

[
0 1
1 0

]
, (2.4)

σy =

[
0 −i
i 0

]
, (2.5)

σz =

[
1 0
0 −1

]
, (2.6)

Since the external magnetic field is a global property of the device, it is not place dependent and
we can express the eigenenergy (eigenvalue) of this operator as EZ σ̂ · r̂, where r̂ is the direction
of magnetic field and EZ = γ · |B|. The magnetic field can point in any direction in the z, y space
so we can state the final operator as

HZeeman = EZ(cos(θ)σz + sin(θ)σy), (2.7)

where θ is the tilt in magnetic field taking orientation along z as a zero.

For example, consider a system containing two free electrons of the same momenta but op-
posite spin orientations. The energy of the electrons in the same system with applied magnetic
field in the direction of spin will differ by exactly 2EZ . The Zeeman effect has been measured in
a number of systems, like Hydrogen atoms.

Another effect related to spin of a particle is the spin orbit (SO) interaction. Consider an
electron moving with momentum p̂ through an electric field. In electron rest-frame the electric
field is moving and thus induces an magnetic field Binduced ∝ E× p̂. This induced magnetic field
gives a rise to a momentum dependent Zeeman effect called spin orbit coupling. SO coupling
linear in momenta is known as Rashba SO and enters the Hamiltonian as

HRashba =
α

~
(r̂induced × p̂) · σ̂, (2.8)
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where, r̂induced is the direction of the electric field and α is know as the SO strength. In prac-
tice a different parameter called SO length lSO is used to describe the magnitude of the SO effect.

Consider an electron with spin orientation not perpendicular to the electric field. As stated
before the moving (in electrons frame of reference) electric field induces a magnetic field. This
magnetic field exerts Lorentz force F = e

m∗ p̂ × Binduced on an electron, where e is the electron
charge, aligning the spin with the induced field. Thus the direction of spin moves around, an
effect called spin-flip. lSO is a typical length scale on which such flip happens.

The Rashba operator interacts with any electric field present in the system. This can make
the equations, and in turn calculations, very cumbersome so one restricts the SO to only interact
with a virtual potential difference applied along the wire. This potential difference corresponds
to the electric field one needs to apply in real world situations in order to get electric current
and the strength of it can be varied by changing the strength of SO strength. One considers this
potential to be virtual because it doesn’t enter the calculations expect for giving rise to a SO
operator used:

HSO =
α

~
pzσy = −iα ∂

∂z
σy. (2.9)

HSO is an off diagonal operator. SO coupling has been observed and used in many quantum
mechanical systems and gave rise to the specialised field of spin-orbitronics [4].

2.3 Electric potential due to electrons in the nanowire

The core of the problem arises when one considers the electrostatic potential term. Electrons
experience Coulomb force from other electrons, and thus the amount and position of the electrons
in the system determine the electrostatic potential φ.

Charge density in this model is described by a fully the quantum-mechanical approach. Ev-
ery electron present in the system contributes one charge quantum to the density, with the
chance the charge is present at some x, y given by |Ui,k(x, y)|2. One assumes here that the Ui,k
from equation (2.1) are orthogonal with respect to each other for different values of i. One then
account for all electrons in the system by integrating over all the energies and summing over all
the possible eigenmodes of the wire’s cross section.

ρ(x, y) =
∑
i

∞∫
−∞

f(E,EF , T )|Ui,k(x, y)|2Di(E)dE (2.10)

with density of states (DoS) Di(E) = 1
2π

dk
dE(k) describing how many states occupy an energy, and

f(E,EF , T ) the Fermi-Dirac distribution describing influence temperature has on the distribution
of states across the energy spectrum

f(E,EF , T ) =

(
exp

(E − EF
kBT

)
+ 1

)−1

, (2.11)

the Fermi energy EF is a reference energy and kB the Boltzmann constant. For energies larger
than EF the Fermi-Dirac decreases exponentially, ensuring that equation (2.10) is finite. The
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subscript i stands for different eigenenergies of the cross sectional area of the wire. In the limit
case T → 0 the Fermi-Dirac distribution approaches a step function, so when one disregards
temperature effects the charge density becomes:

ρ(x, y) =
∑
i

∫
E≤EF

|Ui,k(x, y)|2Di(E)dE, (2.12)

Equation (2.12) clearly describes the physical meaning of the Fermi level EF . All the electron
states with energy above EF don’t contribute to charge density. Since, by definition, electrons
carry charge and thus contribute to charge density, electron states above EF aren’t occupied by
electrons for a system at T = 0. Instead those states are left vacant. One can relate the charge
density with the electric potential using the familiar Poisson equation to get:

∇2φ(x, y) = −ρ(x, y)

ε(x, y)
, (2.13)

where ε(x, y) stands for the dielectric constant of the medium. Inspection of figure 2.1 shows that
the whole system consists essentialy of two area’s, each one with a constant ε. As stated before,
electrons experience Coulomb force so electrostatic potential operator enters the Hamiltonian as
diagonal operator:

Helectrostatics = −eφ(x, y)σ0 (2.14)

2.4 Energy dispersion and conductance

The previous sections describe various interactions an electron can experience within the frame-
work of this model. Since all those Hamiltonian operators commute with each other, [Hi, Hj ] =
0 ∀i, j, one can state the total Hamiltonian of the system as a simple sum of those Hamiltonian
operators:

H = −
( ~2

2m∗
∇2 + eφ(x, y)

)
σ0 − iα

∂

∂z
σy + EZ(cos(θ)σz + sin(θ)σy) (2.15)

Common practice is expressing the energy and Hamiltonian in units of ~2

2m∗ to simplify the
equations. Using the fact that all operators work either purely on cross section or direction along
the wire one writes:

H = Hz +Hx,y (2.16)

Hz = − ∂2

∂z2
σ0 + α

∂

∂z
σy + EZ(cos(θ)σz + sin(θ)σy) (2.17)

Hx,y = −(
∂2

∂x2
+

∂2

∂y2
+ eφ(x, y))σ0 (2.18)

From here one can derive a relation, referred to as the energy dispersion, between eigenenergies
of this Hamiltonian and momentum k, see Appendix A.

E(k) = k2 + Ei ±
√

(αk + Ez sin(θ))2 + (Ez cos(θ))2) (2.19)

The ± sign creates two branches of the energy dispersion referred to as the lower and upper

8



branch. Equation 2.12 integrates over all eigenenergies lower than EF in order to determine
potential φ. Yet, the potential term determines the eigenenergies of cross section Ei. This leaves
us with a nonlinear coupled set of equations:{

H(φ)Ψi,k(x, y, z) = EΨi,k(x, y, z)

∇2φ(x, y) = −ρ(x,y)
ε(x,y)

(2.20)

Figure 2.2 explores the effect of parameters on the overall shape of energy dispersion. Three
different types dispersion are shown: in the leftmost figure we have α = 0 and EZ is varied.
One can see the energy gap widen between the ± parts of dispersion, for zero EZ one has a
degenerate parabola with the bottom at Ei. The middle plot is the situation of EZ = 0, has a
shape of letter V stacked on top of W. For stronger α the depth of the minimums of W increases.
The upper band of dispersion gets steeper as α increases. An intuitive way of thinking of this is
the following: the Zeeman effect pushes the local maxima of bands away from each other, while
SO pushes local minimum of the W away from the local maximum. This implies some relation
between EZ and α must hold for the dispersion to be W shaped. One can derive (see Appendix
A) that the dispersion has 2 local minimums (and thus W shape) if α2 > 4EZ for all θ. For
specific case of θ = 0 it is sufficient to have α2 > 2EZ in order for dispersion to have a W shape.
This research focuses mostly on W shaped dispersions. Figure on the right is an example for
such W shaped dispersion. If one changes the direction of magnetic field θ, the dispersion will
’tilt’. Both bands of dispersion tilt towards each other and at θ = ±π/2 the Zeeman gap closes.
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Figure 2.2: Schematic energy dispersion and effect of (left to right, top to bottom): Zeeman
splitting, SO coupling, relation between EZ and α for θ = 0 and lastly relation between W
dispersions and θ. All parameters that are not mentioned are set to zero. In third plot one
considers case α2 > 2EZ and α2 < 2EZ with the later not being a W shaped dispersion.
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Since the conduction direction z is infinite in length and we neglect electron scattering, one
can assume the conductance electrons to conduct with a chance of unity. In this trivial regime
electrons with Fermi momenta kf and positive velocity contribute one conductance quantum,

equal to 2e2

h where h is the Planck constant times 2π, to the total conductance. One includes
only the electrons with positive velocity because transport happens in the one direction and thus
it is either left to right or vice versa, never both. The velocity of electron is the slope of energy

dispersion ∂E(k)
∂k . Thus one can write:

G =
1

2

∑
i

2e2

h
|{kF | E(kF ) = EF }| , (2.21)

where G denotes the conductance, fraction 1
2 arises from the fact that crossing at Fermi level

comes in pairs of positive and negative slopes (ofter called a conductance channel). {kF | E(kF ) =
EF } is the set of all momenta at the Fermi level and |·| is the size of this set.

Inspection of figure 2.2 grants insight into behaviour of conductance as a function of Ei. Ei
doesn’t change the shape of dispersion, instead it changes the position of the dispersion relating
to EF . Let Ei decrease starting from a value larger than EF . The dispersion will continuously
move down and bigger parts of it will be below the EF . Due to different shapes of the dispersion
the conductance, specifically the amount of energy crossing at EF , will change. First dispersion,
will have a conductance in the shape of 0→ 1→ 2 for the red dispersion and shape of 0→ 2 for
the green one. The factor 2 comes from energy degeneracy the green dispersion has. The size
of 1 plateau scales linearly with EZ . Second dispersion will go as 0 → 2 with the point where
one goes to 2 will move down in energy linearly as a function of α. In the third plot the Fermi
level inside of the Zeeman induced gap for some finite interval of Ei. Thus the conductance will
go like 0→ 2→ 1→ 2 for the green conduction and red will behave exactly the same as in the
first plot (even though α 6= 0 there). Conductance of the green dispersion in a way special since
intuitively one would expect conductance to be a strictly decreasing function of energy. The area
where conductance drops is known as the helical gap and, just like W shapeddispersions, is the
focus of this research. Tilted magnetic field changes the conductance even further. One half of
W is lower for θ 6= 0 and thus conductance will go like 0 → 1 → 2 → 1 → 2. Vanishing of the
Zeeman gap for θ = π/2, will in turn close the helical gap.

To study this more, a relation between α and EZ is derived, equalizing the size of energy gap
caused by EZ and the depth of the W shape created by SO coupling. This way one has maximum
resolution when sweeping the energy scale. The equation reads:

EZ =
1

6 + 4
√

2
α2. (2.22)

2.5 Constants and energy scales

This section gives numerical values for various constants and parameters used throughout the
project. The effective mass of an electron m∗ in Indium Antimonide (InSb) is 1.4% of electron
mass m, with m = 9.1e−31 kg. The size of spacing in the equidistant grid denoted by a,is
also often referred to as the energy hopping length and equals 2.5 nm. Thus the size of energy

hopping t described in section 3.1.1 is t = ~2

2m∗a2 = 7e−20 J. Energy units of t is the unit system
used by the Kwant [9] package.
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The Zeeman effect EZ depends on the size of magnetic field, and in most practical purposes
has a value in the range of [0, 10] meV, corresponding to a range of [0, 23] mt. The SO length
parameter enters the calculations by stating α = 2a

lSO
. Typical values of lSO, expressing the

magnitude of α in equation (2.9) are in the range of [50, 300] nm. This puts SO strength in the
range of [0.002, 0.1]. If one still wants to observe W shaped dispersion, the parameter lSO defines
an upper-bound on EZ . In order for α2 > 4EZ to hold, the range for EZ used in this project
becomes [0, α2/4]. Biggest Zeeman energy one can thus encounter is 2.5 mt.

The last energy parameter involved in equation (2.19), the eigenenergies Ei can take about
any negative value, depending on applied voltage difference VG. The relation between the two is
highly non trivial as can be seen in the section results.

Values of ε used in equation (2.13) is 17.7 F
m inside of the wire and 8.0 F

m inside of the di-
electric.

Another energy scale used in section 3.3 relates to temperature. Boltzmann constant kB relates
temperature T to energy by a simple relation E = kBT . In units of t one Kelvin corresponds 0.2
mt. Temperature is a metric of average energy so due to inherent randomness of it one doesn’t
just introduce a temperature dependent term in the Hamiltonian.

Instead, one goes for more statistical approach by introducing the Fermi Dirac distribution
as described in the (2.11). Figure 2.3 shows the relation between temperature and shape of this
distribution. Observe how the distribution approaches a step function for T → 0.

Figure 2.3: Fermi distribution plotted for few values of T .
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Chapter 3

Numerical Model

3.1 Background

This work builds on a master project done by Adriaan Vuik [2]. The algorithms written by him
solve the system for various strengths of SO coupling and EZ , for magnetic field oriented along
the nanowire.

Chapter 3.1.1 outlines the algorithm according to [2]. Introduction of tilt in the magnetic field
direction θ forces one to invent a new way for the Density of States integration as explained
in section 3.1.2. Anderson method described in Chapter 3.2 is used for major speed up of the
calculations. Temperature annealing process has been introduced to fix a non-convergence issue
caused by the van Hove singularities in the Density of States, see section 3.3.

3.1.1 Self consistent solution loop

Let φn(xi, yj) be the electric potential after n iterations. xi, yj denote coordinates in equidistant
grid used for finite differences approximation of 2.18. Finite differences approximation states

− ~2

2m∗
∂2

∂x2
ψ(xi, yj) ≈ t(ψ(xi−1, yj) + ψ(xi+1, yj)− 2ψ(xi, yj)), (3.1)

where t = ~
2m∗a2 and a = ∆x the size of spacing between grid points. Physical interpretation

of a is the size of energy hopping (see section 2.5). A similar equation can be written for the
derivative with respect to y. Solving for the eigenenergies - eigenvectors of Hx,y reads:

Eiψ(xi, yj) = −eφn(xi, yi) + t(ψ(xi−1, yj) +ψ(xi+1, yj) +ψ(xi, yj−1) +ψ(xi, yj+1)− 4ψ(xi, yj)).
(3.2)

Using those equations one can build a matrix describing the discretized operator Hx,y. This
whole process is made very simple by the use of Kwant package [9]. Kwant allows users to define
the geometry of a system and then defines a equidistant grid on it. Chapter 3.1.2 describes how
the charge density ρ is calculated from the eigenenergies and eigenwaves of said matrix. One
then translates charge density to the grid used for the Finite Elements Method. Grid points on
the FEM grid are denoted by x̂i, ŷj .The Dolfin package [10] is used to solve equation (2.13) and
thus obtaining a new electric potential φn+1(x̂, ŷ). Lastly, one transforms the potential back to
the equidistance grid.
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Figure 3.1: Schematic visualisation of self consistent solution loop. Anderson terminates when
difference between last two iterations is smaller than some tolerance.

Pseudo Code

INPUT φn(xi, yj) DO:
Ei , Ui(xi, yj) = Kwant(Hx,y, φn(xi, yj)) (See (2.16))
ρ(xi, yj) = INTEGRATE(Ei, Ui(xi, yj)) (See 3.1.2)
ρ(x̃i, ỹj) = INTERPOLATE(ρ(xi, yj))
φ(x̃i, ỹj) = Dolfin(ρ(x̃i, ỹj)) (See (2.13))
φn+1(xi, yj) = INTERPOLATE(φ(x̃i, ỹj))
OUTPUT φn+1(xi, yj)

Iterations described in chapter operate on the electric potential φ instead of the charge den-
sity ρ. One might consider iteratively calculating new charge densities but previous research [3]
shows that fix point iterations φ(ρ(φ)) = φ are better conditioned than it’s counterpart in terms
of ρ

The Picard iteration is fairly expensive to calculate, so one can use a more complex solver
in order to significantly speed up the process. Anderson mixing scheme (see 3.2) performs best
of the solver availible from SciPy [3].

3.1.2 Density of states integration

Consider Equation (2.12). Recall Di(E) = 1
2π

dk
dE . Since SO coupling does not happen in the

cross section, the eigenfunctions Ui,k are not actually k dependent. Write Ui,k = Ui. One can
thus simplify:
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ρ(x, y) =
∑
i

∫
E≤EF

|Ui(x, y)|2 1

2π

dk

dE
dE (3.3)

=
1

2π

∑
i

∫
E≤EF

|Ui(x, y)|2 1

2π
dk (3.4)

=
1

2π

∑
i

|Ui(x, y)|2
∫

E≤EF

dk. (3.5)

Note that since energy dispersion is not an injective function DoS is not a well defined function,
and thus the last integral doesn’t have a closed form solution. Naively one might want to invert
(2.19) and simply evaluate it at EF to find kF and thus finding the upper and lower bound on
the otherwise simple integral. Quick inspection of Figure 3.2 illustrates this problem. Imagine
a horizontal line representing the Fermi energy. Moving this level up and down shows there are
either 0, 4, 2 Fermi momenta kF for which E(kF ) = EF , in some cases such points are on entirely
different branches of dispersion (referring to ± sign in the equations). It is noteworthy that in
practice the Fermi level is set to zero, and the dispersion has a different offset Ei.

Figure 3.2: Schematic plots of W shaped energy dispersion for θ 6= 0. Color lines describe part
of the energy dispersion underneath Fermi level. This part is usually either not a connected set
(2’nd plot) or some k values are used more than once (displayed right most).Note that this is one
band case and in practice one might need to deals with many bands stacked above each other.
This occurs when high energies are considered.

Thus, one needs to know where the Fermi level lies in relation to the energy dispersion. In
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order to do so, a numerical solver is used to determine the location of minima and maxima along
the dispersion.

For the two minima’s of the W-shape band Newton-Raphson method is used to determine the
zero of a derivative of E(k). The iterations read:

kn+1 = kn −
E′(kn)

E′′(kn)
, (3.6)

with:

E′(kn) = 2kn −
α(αkn + EZ sin(θ))√

(αkn + EZ sin(θ))2 + E2
Z cos2(θ)

E′′(kn) = 2− (αEZ cos(θ))2

(αkn + EZ sin(θ))2 + E2
Z cos2(θ))

√
(αkn + EZ sin(θ))2 + E2

Z cos2(θ))

The iterations start at k0 = ±M such that E(M) >> EF . In practice, a value of M = 106 is
sufficient. This calculation needs to be done only once instead of every iteration of the solver, so
efficiency isn’t the issue here. Rather convergence is essential.

Newton-Raphson will converge if E′′(k) 6= 0 in the neighbourhood of the solution, and the
initial guess is in this neighbourhood. Short inspection of E(k) shows that E′(k) has only three
zeroes, and thus E′′(k) must have 2 zeroes. Yet, the dispersion behaves like a quadratic function
for big k’s, so one can assume the zeroes of E′′(k) to lie in between the minimum and maximum
of the W shape (see Figure 3.2), and thus outside of the relevant neighbourhood of the local
minimum.

When both minimas are found, the position of the maximum can be calculated using a bisection-
like method, called Brent’s method, to again determine the zero of E′(k) in the interval [kleft +
ε, kright − ε].

Brent is a combination of bisection, secant method and inverse quadratic interpolation [7]. We
will use the notation from the same source to describe the algorithm.Let a, b be bounds of the
interval and f(a)f(b) ≤ 0, and c = a+b

2 . If f(a) = f(c) or f(c) = f(b) the method takes a secant
step:

x = b− f(b)
b− a

f(b)− f(a)
(3.7)

Else, the quadratic interpolation is attempted. It reads:

x =
[y − f(a)][y − f(b)]c

[f(c)− f(a)][f(c)− f(b)]
+

[y − f(b)][y − f(c)]a

[f(a)− f(b)][f(a)− f(c)]
+

[y − f(c)][y − f(a)]b

[f(b)− f(c)][f(b)− f(a)]

Setting y = 0 interpolates in the direction of the root and can be written as:

x = b+ P/Q (3.8)
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where:

R ≡ f(b)/f(c)

S ≡ f(b)/f(a)

T ≡ f(a)/f(c)

P = S[T (R− T )(c− b)− (1−R)(b− a)]

Q = (T − 1)(R− 1)(S − 1)

Either way, both iterations are expressed in the form of b plus some correction. If the correc-
tion were small or would put x outside of bounds or would be troublesome for numeric reasons
(f(b)− f(a) ≈ 0 or Q ≈ 0), the method takes a simple bisection step instead.

The minimum of the upper-band of dispersion is also calculated using the Brent method, on
the interval [−M,M ]. With convergence of the method ensured, one needs also to ensure that
the solution actually lies in the interval.

Again, quick inspection of the equation (2.19) shows that if the dispersion has a W shape then
the local maxima will move between [−EZ

α , EZ

α ], same for the upper branch of dispersion. Thus,
using ±M as bounds is fine.

Afterwards, one can calculate where the Fermi level lies with respect to dispersion. This knowl-
edge is used to define intervals such that only crossing of Fermi level and dispersion lies in such
an interval. Brent’s method is again used, now to calculate the k of the crossing (reminder: EF
is set to 0, so the crossing happen at zeroes of the E(k)). Finally the integral term of (3.3) can
now be computed and equals the total length of the interval underneath of EF .

3.2 The Anderson algorithm

Anderson mixing scheme, also known as the Anderson acceleration method is an iterative zero
point solver for nonlinear schemes that makes use of values obtained from previous iterations.

Let xn be the nth output of Picard iteration described in 3.1.1 and fn the function value (in this
case it is the difference compared to last input to the Picard iteration). Let memory M be a
collection of last solutions x and function values f . Define predictors x̄n and f̄n, predicting the
value of respectively the next solution and function value as:

x̄n = xn −
∑
i∈M

γni ∆xi = xn −XMγ
n (3.9)

f̄n = fn −
∑
i∈M

γni ∆fi = fn − FMγn (3.10)

where:

∆xi = xi+1 − xi (3.11)

∆fi = fi+1 − fi (3.12)

γn = (γnn−1, ...., γ
n
n−m) (3.13)

XM = [∆xn−1, ....∆xn−m]T (3.14)

FM = [∆fn−1, ....∆fn−m]T (3.15)
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The weights for x̄n and f̄n are determined by the least squares estimation, minimizing the next
function value:

min
γn

< f̄n, f̄n >= min
γn
|fn − FMγn|22 (3.16)

The normal equations of this condition read:

(FTMFM )γn = FTMfn (3.17)

A new solution can be now calculated by:

xn+1 = x̄n

= xn −XMγ
n

= xn −XM (FTMFM )−1FTMfn

One last improvement encountered in practice is the use of mixing parameter η, usually set to
0.5 [5]. This mixing introduces damping of oscillations in the solution. The final equation reads:

xn+1 = x̄n + ηf̄n (3.18)

= xn + ηfn − (XM + ηFM )γn (3.19)

= xn + ηfn − (XM + ηFM )(FTMFM )−1FTMfn (3.20)

In practice Anderson iterations will continue, until |fn|2 < tol where tol is usually about 10−5.

A very natural connection to be made here concerns GMRES methods. Chapter 2.1 of [5]
proves that Anderson has the same converging behaviour as GMRES for linear systems.

3.2.1 The memory

Great advantage of keeping an memory is quicker convergence compared to other methods [3],
especially in cases where repeated computation of f(x) is expensive [5]. Yet, clearly without
an upper-bound on the size of the memory evaluation of Equation (3.18) will get expensive too
(note that one needs to calculate the product of an M by n matrix with an n by M matrix). A
more important problem arises from the fact that the solution tends to get better after more
iterations, and a solver with big memory, keeps the old ”bad” solutions in their calculations. For
this reason M is often set to 2 [6] in practical applications.
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Figure 3.3: Few simulations with different values for M in [1, 9]

Figure 3.3 is a benchmark of amount of iterations needed for convergence versus gate voltage
VG. Each line corresponds to a different amount of solutions stored in memory. The base case
of M = 1 performs significantly worse across the whole range of VG. Other values for memory
differ mostly in the area close for the first energy crossing. Those points have proven to be a
strain on the solvers ability to converge, see section 3.3. For practical use, M = 5 has been used
throughout the project.

3.2.2 Mixing parameter

While, the mixing parameter η is traditionally set to 0.5, this exact value is supported by only
hand-waving arguments. Some authors [5],[6], actually propose values of η slightly lower than 0.5
to improve the convergence speed. Figure 3.4 shows that, indeed, the mixing parameter η has an
effect on the amount of iterations needed in order to achieve convergence,especially around values
at the two clearly visible peaks around VG = 0.17 and VG = 0.5. Yet, this isn’t a clear trend as
can be seen in Figure 3.5. There isn’t clear neighbourhood in which value of η can be crowned as
the optimal. On average, the exact choice of η doesn’t matter much. One should note that few
points that do require way more iterations on average are much less common than points where
Anderson performs within acceptable bounds for η = 0.5. Lastly, figure 3.6 disproves the claims
about η slightly lower than 0.5 being the optimal value. The general area close to 0.5 performs
slightly better than the other values (about 11% better in the area η < 0.5 and even more on
the other side, yet one can’t point at a specific value and be sure that it performs the best.
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Figure 3.4: Large amount of simulations with different values of η in range [0.1, 1.5]. The amount
of iterations needed for convergence is displayed against VG.

Figure 3.5: Large amount of simulations with different values of η in range [0.1, 1.5]. The total
amount of iterations in VG sweep needed for convergence is displayed against η.

20



Figure 3.6: Large amount of simulations with different values of η in range [0.4, 0.6]. The total
amount of iterations in VG sweep needed for convergence is displayed against η.

3.2.3 Convergence analysis

The Anderson algorithms operates on the difference between the iterations as a metric for the
”quality” of solution. Since we are dealing with a fix point iterations this is a fine metric, in the
sense that if |fn − fn−1| < ε where fn is the solution and n iterations and ε is small then fn−1

should be fairly close to the actual fixed point f . Yet, this approach gives no insight into how
the solution will improve as more iterations are calculated. To gain this insight one can analyse
the K values relating the residuals of two consecutive iterations.

Say the residual of Anderson iteration obeys |fn+1 − fn| ≤ K|fn − fn−1| for some constant
K ∈ R. Consider, two iteration steps n and m with m > n. Then one can write:

|fm − fn| ≤ |fm − fn+1|+ |fn+1 − fn|
≤ |fm − fn+2|+ |fn+2 − fn+1|+ |fn+1 − fn|

≤ |fm − fm|+
m−2∑
j=n

|fj+1 − fj |

≤
∑
j

Kj |fn+1 − fn|

If we now let n→∞ then the last line converges for K strictly lower than 1. Common method

to prove convergence of a numerical method is to define Kn = |fn+1−fn|
|fn−fn−1| and observe what the

maximal value of Kn is for a finite amount of iterations. Simple Picard methods can relate the
value of Kn to derivitive of function f close to the convergence point. Methods iterating on linear
equations can often define some upperbound based on the equations to bound Kn. Equation
(2.20) isn’t linear and Anderson isn’t a linear solver so one is left with observing the values of
Kn.
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Figure 3.7: The upper plot is the value of K for every Anderson step needed for convergence.
For this VG the convergence isn’t hard to archive as it doesn’t lie close to a zero crossing. The
lower plot denotes the energies Ei at every iteration.

Figure 3.7 shows the value of Kn for Anderson iterations until convergence has been reached.
Energy levels at given iteration are displayed as an aid in understanding what is going on. At
step 2 the algorithm made a huge correction to the energies, resulting in K2 = 110. Other
values of Kn are slightly lower than 1. Energy crossing (with zero) are hard for Anderson for
reasons described in section 3.3, yet Anderson converged in just 16 steps. Figures 3.8 and 3.9
show similar peaks in Kn, also related to energy crossing. General trend can be observed that
Kn = 1 − ε with ε ≈ 10−4 unless Anderson tries to put energy levels below the Fermi level, in
which case the value of K changes rapidly, often accompanied by a oscillation afterwards, as
Anderson tries to find out how low the energies should be.
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Figure 3.8: The upper plot is the value of K for every Anderson step needed for convergence.
The lower plot denotes the energies Ei at every iteration. Here the final solution has energy
levels close to zero, resulting in a much harder problem for Anderson.

Figure 3.9: The upper plot is the value of K for every Anderson step needed for convergence.
The lower plot denotes the energies Ei at every iteration. Observe how first and second excited
energy (red and green line) are almost degenerate and both end up close to zero. This poses a
much harder problem for Anderson than previous ones.

K analysis gives us some insight into general behaviour of Anderson scheme but one can’t
derive convergence from it. The oscillations in K and the tendency to remain very close to 1 all
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the way to convergence render this approach not useful. Anderson solver has the tendency to
converge in ”jumps” or ”burst”. Also we can’t use it for to give any meaning full bound on the
error made by Anderson.

3.3 Van Hove singularities nonconvergence

Consider equation (2.19), for Ei such that the lowest point of dispersion is larger than zero. Then
there exists no k such that E(k) = EF and thus Di(E) ≡ 0. As a result density in equation 3.3
equals zero. Then, if Ei gets pushed down just slightly then suddenly a part of the dispersion
is below the Fermi level. Note that every band bottom starts with a local minimum and thus
dE
dk = 0 there. This has a great effect on the density of states Di(E) as dk

dE →∞ on those points.
Those points are referred to as Van Hove singularities named after Belgian physicist Leon van
Hove [8].

Consider now the case for which α and EZ are both zero and Ei < EF . Then, the energy
dispersion 2.19 is a simple relation E = k2 + Ei and thus dk

dE = 1√
E−Ei

. Integration yields:

∫
E≤EF

Di(E)dE =
1

2π
lim
t↓Ei

EF∫
E′

1√
E − Ei

dE

=
1

π
lim
t↓Ei

(√
EF − Ei −

√
t− Ei

)
=

1

π

√
EF − Ei, EF = 0→

=
1

π

√
|Ei|.

This tells us two things: first, the integral over the singularity is finite, second the density
(the integral) grows rather slowly as Ei gets more and more negative. Furthermore we can
conclude that most of the density is at the bottom of a dispersion band. A similar argument
holds for cases where the parameters are nonzero, with the small difference that DoS is defined
starting from energies lower than 0 when EZ is present. Figure 3.10 explores this. Dotted lines
describe offset energy corresponding to minimas and maximas of energy dispersion being close
to the Fermi level.
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Figure 3.10: Schematical display of energy dispersion and corresponding density. Dotted lines
stand for different Fermi levels. Note the kinks in density at the heights of minima and maxima
of dispersion.

This is somewhat troubling for the solver, as when Ei ≈ 0 then small change in Ei can force
a big change in the density, and by extension in the electric potential. Anderson, being an iter-
ative solver can be forced to oscillate between electric potential resulting in Ei just above zero
and electric potential resulting in Ei just below the zero. Those aren’t actually oscillation as
Anderson is a quite robust solver, yet it forces the convergence speed to be painfully low, to the
point that the amount of iterations needed for convergence makes the problem to be practically
unsolvable.

Solution to this issue is the introduction of the temperature T back into the equations, to smooth
out the kinks in the density. The same steps are taken as in section 3.1.2 regarding Ui,k resulting
in:

ρ(x, y) =
∑
i

|Ui,k(x, y)|2
∞∫
−∞

F (E,EF , T )
1

2π

dk

dE
dE (3.21)

=
1

2π

∑
i

|Ui,k(x, y)|2
∞∫
−∞

F (E,EF , T )
dk

dE
dE (3.22)

=
1

2π

∑
i

|Ui,k(x, y)|2
∞∫
−∞

F (E(k), EF , T )dk, (3.23)

where, F stands for the Fermi Dirac distribution introduced in section 2.3. Shape of F for
various temperatures can be seen in Figure 2.3 for various values of T .
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Again, one can’t naively integrate over k from −∞ to +∞. DoS has different branches, all
of which need to be taken into account. Furthermore, F is a decreasing function of energy,
and after E = EF the function starts to drop exponentially (see section 2.5), so we only need
to integrate up to some finite energy only. For E ≥ EF we have F ≈ exp(− E

kBT
), and at

Ebound = 100kBT we have F (Ebound, EF , T ) ≤ εmachine. Thus, one defines bounds on the in-
tegral in the same way as in section 3.1.2 with the difference that E(k) is first shifted down
100kBT to ensure E(kbound) = 100kBT . Then integration of F occurs using the trapezoidal
method. Figure 3.11 explores the results for various temperatures.

Figure 3.11: Schematic display of energy dispersion and corresponding density for nonzero tem-
perature. Dotted lines stand for different Fermi levels. Temperature goes from 10 K to 0.1 K in
logarithmic steps. Note the disappearance of kinks in the first plot.

Increased smoothness of density vastly increases the convergence speed for the Anderson
solver. One can thus solve the system for some Tn, resulting in ψTn . Afterwards this solution
can be used as initial guess in order to solve the system for some lower Tn+1. This process is
known as temperature annealing, and is repeated until Tn ≈ 0. Temperature annealing can be
more expensive to use than straight forward approach yet it can improve the initial guess for
T = 0 ensuring convergence close to the van Hove singularities. Lastly, note how the last density
plot for T = 0.1 resembles density for T = 0. If Anderson fails to converge even with the use of
temperature annealing one might be satisfied with ψTn if Tn ≈ 0. 1 mK is small enough for all
practical purposes (see chapter 2.5).

3.3.1 Temperature range optimization

Temperature steps used in the process of annealing have huge impact on the speed of the process
(and in some cases also on whether or not the Anderson solver converges). The natural choice of
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steps are logarithmic as opposed to linear to ensure linear changes of the Fermi Dirac distribution
between annealing processes. This helps to ensure the solutions be close to each other.

Temperature annealing is a process used only when Anderson solver fails to converge on its
own. In order to test it, a VG range was found with an energy crossing in it. The corresponding
van Hove singularity (see chapter 3.3) makes it very hard for Anderson to converge. In this range
few annealing ranges have been tested. Figure 3.12 is a test of few different ranges. The goals
is to optimize convergence close to energy crossing (as seen in the lowest plot), in an area when
Anderson performs poorly. Note that when using the solver in practical cases, one expects a
solution in less than 300 iterations, where for every new temperature the counter resets to zero.
Value of 2000 iterations corresponds to computations not converging. Baseline plot, has a peak
around the area with energy crossing the zero (see the lowest plot). Big change in charge density
and resulting discontinuity have big impact on the solver. In the first plot the linear ranges failed
to converge thus, one can conclude, that linearly spaced ranges are bad for annealing.
Second plot displays the logarithmically spaced ranges. Two of those ranges do converge quicker
than the baseline, a very nice result, proving the use-fullness of temperature annealing.
The ranges displayed in 3rd plot fulfil practical expectations as here one can observe that all
the ranges were an improvement on the no annealing case. Each range has a lower lower bound
than the previous one with fixed (19) amount of steps. Not surprisingly range corresponding to
the highest lower bound converged in least amount of steps. One can observe that outside of
general neighbourhood of a energy crossing, all the annealing ranges performed worse than the
baseline. For this reason it is not ad viced to use temperature annealing except for proximity to
energy crossings. It is thus advised to use logarithmically spaced temperature ranges, with the
highest temperature around 100K, in order to easily converge when operating on an initial guess.
That way next iterations can use previous result as a initial guess, which usually improves the
convergence rate by quite a bit. 19 steps seems to be the right trade off between the amount
of iterations needed and stability. Lastly an upper bound of about 0.01 K is sufficient for all
physical purposes.
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Figure 3.12: 3 graphics of number of Anderson iterations needed for each VG in the sweep and
energy levels displayed as a function of VG. In the first plot, 3 linearly spaced temperature
ranges of [100, 0.01] K were used. All three of those ranges failed to converge within the fixed
set of steps. Next plot displays logarithmically spaced ranges of [100, 0.001] K. The amount of
temperature points inside the range has been changed from curve to curve. All 3 converged, and
ranges with 19 and 24 steps managed to do so in less steps than the baseline plot. Last 3 ranges
all have 19 elements, and the lowest temperature is varied between 0.1 to 0.001.
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Chapter 4

Results

In this section, the relation of electrostatics on energy as a function of gate voltage VG is displayed
for the first few bands of dispersion. This allows us then to show a more realistic relation between
conduction and gate voltage VG. A theoretical phase plot, displaying conduction as a function of
the direction of magnetic field θ and energy, is shown next. Scaling properties of two conduction
regions are researched for fixed spin orbit strength and changing Zeeman energy EZ . Main focus
is the helical gap introduced in chapter 2.4,the other region arises only for θ 6= 0. A phase plot of
conduction, now in terms of θ and VG is analyzed, calculated using maximum resolution relation
between α and EZ from chapter 2.4. Lastly, we look at a conduction plots for varying strengths
of magnetic field. This is done for 4 different directions of the field, respectively θ = 0, π/4, π/3.

4.1 Energy and electrostatics

Solutions to the SP equation can be expressed in terms of electrostatic potential, charge density
or eigen energies Ei together with the eigen waves. While, Ei’s on it’s own don’t fully describe the
system they are a useful resource for understanding general trends in the system. Figure 4.1 is a
display of the lowest 9 eigenenergies as a function of gate voltage VG. One can see that whenever
a Ei crosses the Fermi level all curves have a kink. This phenomena corresponds to the van Hove
singularity, where Ei crossing the EF suddenly adds lots of density to the system. The spacing
between energies isn’t constant. Most notably the first and second energies are degenerate up
to the point where the ground state E0 crosses the EF and by doing so puts the first electrons
in the system. Most likely, this energy degeneracy is due to some rotational symmetry the wire
has. Electrostatic field, not sharing the symmetry, breaks the energy degeneracy.
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Figure 4.1: Plot of the lowest 6 eigen energies Ei of a global back gate device. The dotted line
represents the Fermi energy EF . Parameters used here are: lSO = 250nm and EZ = 0.014 meV.

For practical purposes, the energy scale is fairly big - usually one wants to measure the ground
state only. Thus in next section we only look at a smaller range of VG.

4.2 Conductance and direction of magnetic field

To test the conductance behaviour, mainly the existence and size of helical gap for various θ,
one can artificially sweep the Ei parameter. Figure 4.2 explores this idea. Length of spin-orbit
interaction has been chosen to be 250 nm for this calculation. The corresponding EZ has been
calculated for a maximum resolution, see section 2.4. As a result, for θ = 0, the size of helical
gap (starting at around −0.03meV) corresponds to the size of conductance of two area. Other
noteworthy features are: the fact that, for higher θ the phase transition of 0 → 1 happens at
a lower energy (due to deeper W shape) and closing of the helical gap for θ = π/2. These
phenomena are to be expected as seen in chapter 2.4.
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Figure 4.2: Phase plot of the conductance against Ei and angle of magnetic field θ. Colors
denote the amount of conduction channels see section 2.4. x axis is the energy of lowest point of
dispersion for θ = 0, lowered not only by Ei but also by EZ and SO coupling. Calculations have
been only done for 0 ≤ θ ≤ π/2 as, due to the symmetry, one can copy the data over.

For practical purposes a better way to describe conductance is based on gate voltage VG.
Figure 4.3 is the conductance calculated through out a VG sweep, for θ fixed to zero and lSO =
50nm.
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Figure 4.3: Conductance vs VG for θ = 0. Various Zeeman energies in range of [0, 4] meV are
plotted, each was given an offset to make features more visible.

Various values of EZ are plotted and the helical gap appears for nonzero EZ . One can observe
how the size of the gap scales almost linearly with Zeeman energy. This is a well understood
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phenomenon. Whilst in the gap contribution to charge density comes mostly from the k2 term
of energy dispersion (as the dispersion is approximately parabolic there). Thus, similarly to the

example used in the section 3.3, ∆E change of energy will cause an
E+∆E∫
E

1√
E
dE change in charge

density, where E > 0. The helical gap contributes close to nothing to the charge density, thus
charge screening stays roughly constant in the system. Similar arguments can’t be made if the
system is in first conductance one phase. Figure 4.4 used the same set of parameters, now for
θ = π/2. Here the lower conductance area comes from the uneven W shape caused by θ. Here
the scaling isn’t linear anymore. In this phase, any charge added to the system has a significant
influence on charge screening, and thus on the relation between energy and VG.
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Figure 4.4: Conductance vs VG for θ = π/2. Various Zeeman energies in range of [0, 4] meV are
plotted, each was given an offset to make features more visible.

Figure 4.5 is vastly different from it’s predecessor, and displayed energy levels help to under-
stand the difference. Firstly, there are clear area’s where Anderson solver had trouble converging,
which can be related to the big change in charge screening. Conductance transitions occur at the
points of the van Hove singularities (see section 3.3) in energy dispersion. The first transition,
0 → 1 is harder for the solver compared to 2 → 1 transition of entering the helical gap. In the
0 conductance area there are no electrons in the system yet, resulting in no density. This causes
the Ei to change rapidly as a function of VG, specifically the change is 3 orders of magnitude
higher than for any other VG. Resulting kink (discontinuity in the derivative) in the energy curve
is harder to converge around than the kink corresponding to 2 → 1. For this reason, points for
which Anderson fails to converge by the use of temperature annealing, fail at higher temperature
compared to failure points close to 2→ 1 transition. This point can be made stronger by noting
that the kink related to leaving the helical gap (1→ 2 transition) doesn’t create any trouble for
the temperature annealing aided convergence, as seen by the lack of white dots in that area.

Secondly, shape of transitions has changed as compared to previous plot. First transition has
now a flat sharp edge instead of egg like feature in the figure 4.2. One can explain this phenomena
by again referring to rapid change of Ei in the 0 conductance phase. This requires one to have a
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immensely high resolution in VG parameter to observe more rounded up edge. Specifically, the
shape of transition can be approximated to be symmetric in energy, and for θ = π/2 conductance
of 1 region stretches for 4.8 mV corresponding to energy of 7.4 µeV. On the 0 conductance side
this would correspond to voltage resolution of 7.4 nV. Appendix C zooms in on this issue.

Energy change throughout the VG range stays roughly linear through the corresponding phase.
One can observe that inside of the helical gap the energies change more than outside of it. The
red energy line corresponding to θ = π/2 is far from being a straight line in conduction of 1
phase.

Figure 4.5: Phase plot of conductance against gate voltage and angle θ. Dots represent point
where temperature annealing failed to converge, and result for finite temperature had to been
used in the range of 0 to 90 mili Kelvin. White color corresponds to lower temperature.Lower
figure is a plot of lowest point of energy dispersion for few different angles of θ. Helplines
are drawn to further display the relation between energy and conductance. Colored numbers
describe an average change of Ei as a function of gate voltage in the area between dotted lines,
blue corresponding to θ = 0 and red to θ = π/2. Again, the data has been only calculated for
0 ≤ θ ≤ π/2 and copied over.

4.3 Conductance and the magnitude of magnetic field

This section takes a similar approach as the previous one. This time the magnetic field is changed
and the direction of it stays set. First, Ei is artificially swept in order to give an expectation of
the shape of the conduction. Then the conductance is calculated as a function of VG. Lowest
point of energy dispersion is plotted along as a function of VG to help understand the changes
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in conductance.

Figure 4.6 displays the case for θ = 0. The size helical gap scales approximately linearly with
the Zeeman energy as expected from figure 4.3. Again, the 0→ 2 step has a sharp edge in terms
of VG instead of expected half circle. Lastly one can observe the effect helical gap has on the
energies. While inside of the gap the energies drop quicker as a function of VG.

Figure 4.7 is the case of θ = π/4. Here, one expects the conductance to go as 0→ 1→ 2→ 1→ 2
for nonzero EZ . Specifically the size of the helical gap and lower conductance area due to the
tilt in magnetic field is exactly the same size in energy. In terms of VG this balance is broken,
due to the charge screening. Another feature the system has is the small change in Ei in the
area 2 conductance area left of the helical gap. Numerical artifacts can be seen for the highest
EZ in the middle plot. First, one can observe the conductance to remain at 1 while it shouldn’t.
For high EZ the energy dispersion has a saddle point instead of minima-maxima-minima shape.
When approaching this shape, the algorithms calculating the position of extrema simply run in
into round off errors. Since those positions are crucial for calculation the density those small
mistakes can have a huge impact on the Ei. This can be seen just right of 0 zone, where few
points failed to converge at T = 0 causing a huge difference in the energy.

Lastly figure 4.8 gives us some insight into change of the relation between the size of conductance
1 area due to tilted dispersion and the size of helical gap. Here we consider the case of θ = π/3.
To avoid distracting numerical issues the size of EZ range has been lowered slightly. One can
observe that area corresponding to conductance of 1 due tilted dispersion stays roughly the same
as in figure 4.7 in the VG range. The helical gap on the other hand decreases. This trend will
continue all the way to θ = π/2 at which point the gap will disappear. Another feature is this:
Ei is more flat in the area of conductance of 2 left of helical gap as compared to the θ = π/4 case.

Electrostatics changes the scaling properties of the conductance plateau’s. One can use it to
the advantage, when determining whether or not the system is inside of the helical gap for given
VG. In practice, when magnetic field isn’t perfectly aligned with the nanowire one can assume
(for example by only doing conductance measurements) to be inside the helical gap while, in
fact the system is in the first plateau related to tilted W shape of energy dispersion. This can
happen quite easily as the first plateau takes more space up in the VG domain as a function of
EZ . Sweeping the θ parameter won’t directly characterize the area as the helical gap when it
disappears for some value of θ, since the energy dispersion is perfectly W shaped for θ = 0 thus
the first plateau will disappear as well for some single value of θ. Instead, one can look for scaling
laws for the size of the gap as a function of EZ . The size of helical gap will scale linearly, with
EZ in the gate space. The first plateau doesn’t scale linearly with EZ . Further, one can change
the parameter θ and sweep VG back and forth. Helical gap is roughly symmetric while the fake
gap has a shard edge. Another characteristic is that size of helical gap goes to zero quicker (non
linearly) as θ → π/2 compared to decay of the fake gap as θ → 0.
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Figure 4.6: Top panel, conductance as a function of the lowest point of dispersion and the Zeeman
energy. Middle panel, conductance as a function of VG and EZ . Dots represent points where the
process of temperature annealing failed, with color relating to final temperature. Lowest panel,
plots of the lowest point of energy dispersion as a function of VG for various values of EZ . Blue
corresponds to the top line of middle plot and green is the case of EZ = 0. lSO is fixed at 250nm
for all calculations.

35



Figure 4.7: Top panel, conductance as a function of the lowest point of dispersion and the Zeeman
energy. Middle panel, conductance as a function of VG and EZ . Dots represent points where the
process of temperature annealing failed, with color relating to final temperature. Lowest panel,
plots of the lowest point of energy dispersion as a function of VG for various values of EZ . Blue
corresponds to the top line of middle plot and green is the case of EZ = 0. lSO is fixed at 250nm
for all calculations.
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Figure 4.8: Top panel, conductance as a function of the lowest point of dispersion and the Zeeman
energy. Middle panel, conductance as a function of VG and EZ . Dots represent points where the
process of temperature annealing failed, with color relating to final temperature. Lowest panel,
plots of the lowest point of energy dispersion as a function of VG for various values of EZ . Blue
corresponds to the top line of middle plot and green is the case of EZ = 0. lSO is fixed at 250nm
for all calculations.
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Chapter 5

Conclusion

In this project, nanowire devices have been approximated by a 3D wire, shaped like a hexagon in
the x and y direction and infinite in the z axis. The electrostatics due to electrons in the system
has been described as a nonlinear coupling of Schrodinger and Poisson equations. These equa-
tions have been solved numerically using an algorithm based on the Anderson Mixing Scheme.
One can find the algorithm and simulations used on the GitLab.

Anderson solver is a highly robust solver and attempts to improve it by finding the optimal
parameters weren’t fruit full. The memory and relaxation parameters were sweep for simula-
tions with varying degree of difficulty, yet no useful general trends were derived from it.

The SP solver wasn’t able to previously operate on changing direction of magnetic field θ and
to solve this problem the algorithm has been extended, and is now able to solve systems for
magnetic field in any direction instead of just along the wire. Furthermore a temperature an-
nealing subroutine has been introduced to improve convergence at energies close to van Hove
singularities. Whilst this subroutine doesn’t guarantee convergence of the solver for zero Kelvin,
it does converge in the range of tens mili Kelvin.

Voltage gate dependency of energies has been studied, with focus on conductance. Energies
of global backgate devices have an almost degenerate first orbital energy, most likely due to
the rotational symmetry of the system. This energy degeneracy is broken for high gate voltages.
Scaling properties of the 1 conductance features have been studied. Size of the helical gap proved
to scale linearly with Zeeman energy EZ . Yet, the first conductance of 1 plateau doesn’t scale
linearly with the EZ in VG space and is bigger in the VG space than the helical gap, even though
special energy relations are imposed on the energy dispersion to make both plateaus the same
size in the energy domain. The edge of this plateau is sharp instead of smooth egg like shape. In
practical applications, where the magnetic field isn’t perfectly aligned with the wire, this feature
can be mistaken for the helical gap. One can avoid this mistake by sweeping the EZ looking for
linear scaling laws and by sweeping the θ as helical gap closes quicker as θ → π/2 than the 1
conductance plateau as θ → 0. A theoretical conductance-phase curve has been provided as a
function of cross-area energy Ei and tilt in the magnetic field direction θ and has been compared
to more realistic approach, describing the system in terms of θ and gate voltage VG. Analysis of
different conduction phases and behaviour of energies in this phase showed the density to remain
constant in the helical gap for all values of θ except for π/2 for which the gap ceases to exist.
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Appendix A

Energy dispersion

Write H = Hz +Hx,y as in chapter 2.4
Those two operators, commute with each other and relation

HzΨi,k +Hx,yΨi,k = EΨi,k ⇐⇒ HΨi,k = EΨi,k (A.1)

holds. The eigenvalue of first operation can be easily found by setting the

[
↑
↓

]
term to a linear

combination of spin up and down states of the form γ

[
1
0

]
+ β

[
0
1

]
. Now, note that wavemode in

the cross section does not interact with any of the operators, and the z dependent part retains
it’s exponential form, one can thus divide it out. Equation left reads:[

k2 + EZ cos(θ) −iαk − iEZ sin(θ)
iαk + iEZ sin(θ) k2 − EZ cos(θ)

] [
γ
β

]
= Ẽ

[
γ
β

]
(A.2)

With Ẽ the eigenenergy of Hz. This, is now again an eigenvalue - eigenvector problem, but now
a simpler one as it only regards a 2x2 matrix. One can further derive:

(k2 + EZ cos(θ)− Ẽ)(k2 − EZ cos(θ)− Ẽ) = (αk + EZ sin(θ))2

⇐⇒
(k2 − Ẽ)2 = (αk + EZ sin(θ))2 + (EZ cos(θ))2

⇐⇒

Ẽ = k2 ±
√

(αk + EZ sin(θ))2 + (EZ cos(θ))2

Now, denote the eigenenergies of Hx,y by Ei and using A.1 we conclude:

E(k) = k2 + Ei ±
√

(αk + EZ sin(θ))2 + (EZ cos(θ))2 (A.3)
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Appendix B

Shape of dispersion

The approach used in this appendix originates from conversations with Math StackExchange [11]
users Andreas and Yuri Negometyanov.

Shape of conductance is determined by the shape of energy dispersion (2.19). Also, algorithm
doing density of states calculations as described in section 3.1.2. For this reason, one wants to
determine the amount of minima and maxima the energy dispersion has. The upper branch of
the dispersion, the + case of (2.19), goes to ∞ as k → ±∞ and consists only of positive terms.
Trivially, it has but one minimum.

Lower branch, corresponding to the − case of (2.19), isn’t as simple. It too goes of to infin-
ity for large k but the square root term can be larger than k2 for some interval forcing the
dispersion to have two (by symmetry) minimums and one maxima in between. Consider the
derivative of E(k) for α,EZ 6= 0:

E′(k) = 2k − α(αk + EZ sin(θ))√
(αk + EZ sin(θ))2 + E2

Z cos2(θ)
. (B.1)

We set the equation equal zero, and work out:

E′(k) = 0 (B.2)

2k =
α(αk + EZ sin(θ))√

(αk + EZ sin(θ))2 + E2
Z cos2(θ)

(B.3)

4k2
(
(αk + EZ sin(θ))2 + E2

Z cos2(θ)
)

= α2
(
αk + EZ sin(θ)

)2
(B.4)

Note that because of the squaring of both sides, we generate more solutions corresponding to
the case:

2k = − α(αk + EZ sin(θ))√
(αk + EZ sin(θ))2 + E2

Z cos2(θ)
, (B.5)

to account for this we must thus require sign(k) = sign
(
αk + EZ sin(θ)

)
.

Equation (B.4) can be simplified by a linear transformation to a variable x defined as k =
EZ

α

(
x − sin(θ)

)
. Linear transformations re-size and translate the space they work on, so they

don’t change the existence of topological features like minimums and maximums. In terms of
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the new variable the equation reads:

4

(
EZ
α

)2(
x− sin(θ)

)2(
E2
Zx

2 + E2
Z cos2(θ)

)
= α2E2

Zx
2 (B.6)

4E4
Z

(
x− sin(θ)

)2(
x2 + cos2(θ)

)
= α4E2

Zx
2 (B.7)(

x− sin(θ)
)2(

x2 + cos2(θ)
)

=
α4

4E2
Z

x2 (B.8)

The quantity α4

4E2
Z

,instead of α or EZ on it’s own, determines the amount of solution and hence

we will denote it by λ. For θ = nπ with n ∈ Z the equations simply read x2(x2 + 1) = λx2.
x = 0 is trivially a solution to the equation. For other solution can be obtained by dividing the
x2 factor out, and reads x = ±

√
λ− 1. Since, for θ = 0 we automatically meet the requirement

of correct signs and thus for λ > 1 the bottom band has 3 local maximums or minimums, and
thus 2 minima’s and one maximums (E(k) → ∞ as |k| → ∞) and one minimums otherwise.
This is the same as requiring α2 > 2EZ for W-shaped dispersion.

For θ 6= nπ one can define yet another linear transformation x = z sin(θ). Note that a lin-
ear transformation of a linear transformation is, in itself a linear transformation so the existence
of minimums and maximums in conserved. One can further simplify equations:(

z sin(θ)− sin(θ)
)2(

z2 sin2(θ) + cos2(θ)
)

= λz2 sin2(θ) (B.9)

sin2(θ)(z − 1)2
(
z2 sin2(θ) + cos2(θ)

)
= λz2 sin2(θ) (B.10)(

z2 sin2(θ) + cos2(θ)
)

= λ
z2

(z − 1)2
(B.11)

Number of solutions for equation (B.11) coincides with the number of energy dispersion E(k).
RHS is singular for z = 1. Yet observe, that sing restriction reads:

sign(k) = sign
(
αk + EZ sin(θ)

)
sign

(
x− sin(θ)

)
= sign(x) since EZ > 0 and α > 0

sign
(
z sin(θ)− sin(θ)

)
= sign(z sin(θ))

sign(z − 1) = sign(z)⇒ z 6∈ (0, 1).

Thus, the valid solutions have either z < 0 or z > 1. Observe for the LHS that at z = 0 equals
cos2(θ) ≥ 0 and for z →∞ it diverges. On the other hand RHS is zero for z = 0 and monotonic
decreasing function for z > 1 with limit of λ as z → ∞. Thus equation (B.11) has one solution
for z > 1.

Lets now consider the z < 0 case. RHS has a limit of λ as well, but it reaches the limit
monotonically from below as opposed to reaching it from above compared to the other case.
LHS experiences the same behaviour as in the last case. Thus, for fixed θ the value of λ deter-
mines amount of intersections. For a small λ one expects no intersections, big λ exactly two and
somewhere in between LHS and RHS will touch but not intersect. This will result in a saddle
point in the energy dispersion. In order to calculate the value of λ for which one obtains a saddle
point, LHS and RHS needs to have both the same function values and derivatives. Calculating
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the point where this happens goes as:

2z sin2(θ) = −2λ
z

(z − 1)3
(B.12)

(z − 1)3 = − λ

sin2(θ)
(B.13)

z = 1− 3

√(
λ

sin2(θ)

)
. (B.14)

Finally, plugging the z into the expressions from equation (B.11) gives:(
1− 3

√(
λ

sin2(θ)

))2

sin2(θ) + cos2(θ) = λ

(
1− 3

√(
λ

sin2(θ)

))2(
3

√(
λ

sin2(θ)

))−2

This equation simplifies to the relation:

λ =
(

cos2/3(θ) + sin2/3(θ)
)3

, (B.15)

one can now observe three important facts. First, case θ = 0 reads λ = 1 a result we already
have obtained. Secondly RHS of equation (B.15) has a maximum of 4 for θ = π/4. Thus, if
λ > 4 the energy dispersion will have a W shape for all values of θ. Finally for 1 ≤ λ ≤ 4 the
energy dispersion will go from having 3 extrema to only 1 for some θ range centered around π/4.
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Appendix C

Conduction edge
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Figure C.1: Zoom in on the sharp edge of the 0 → 1 conductance transition. The resolution in
θ is 4 times lower in this plot as compared to figure 4.5. One can still observe the edge to lose
it’s sharpness as expected. This transition is the hardest for the Anderson solver, as mentioned
in chapter 4.2, so one see’s many points for which the solver failed to converge, denoted by the
blue dots. Typical temperature for which the convergence failed is about 60 mK. The voltage
gate spacing used in this plot is 10−5V and yet the non sharp edge of the gap is barely to be
seen. One can safely assume that for all practical purposed the band edge is sharp.
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