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Foreword

Getting to the precise moment at which I am writing this page has not been easy. In this journey, there has been a
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are definitely a role model for me. Jack, my infinite gratitude for always being available for me. Since I met you, I
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always did your best for my success and trusted every decision I made. I cannot thank you enough for offering me
this fascinating topic and trusting in my capabilities to fulfill it. Oscar, you were always the most critical during
our feedback sessions, and thanks to that, you pushed my limits and helped me elevate the quality of the research,
especially the social aspects. Thank you for bringing a new dimension to this research. Nitesh, with your wealth
of experience, you also helped me enormously to refine the quality of my discussion. Your continued interest in the
topic and in the direction of the research gave me the motivation and confidence to keep moving forward. Thank you
for the trust you all have placed in me. I could never have dreamed of a better graduation committee.

Next, I am very thankful to TNO and the Data Science department for welcoming me as one of your own. Especial
thanks to my colleagues who helped me immensely by participating as interviewees in this research. All of this
research revolves around your concerns and ideas, so this would certainly not be possible without you. You gave me
the strength to keep going, not only by showing your interest in my project, but also by sharing our struggles in front
of a cup of coffee, or by forgetting a bit about our professional careers while playing table tennis or bouldering.

I cannot finish this text without expressing my most heartfelt gratitude to my family and friends. Victor, I will never
be able to find the words to thank you for the many times you saved me from getting lost in the deepest negativity.
We have been navigating together this important moment in our lives, and thanks to that we never felt lonely. I do
not think there is any better feeling in the world than that. Mum, dad, and sister, you are my biggest fans. I would
not be where I am today without your unconditional support. I am the luckiest person in the world for having you.
And to my friends, many of you have been through the same, we have shared successes and disappointments along
the way, and everything turned out well in the end. Thank you for all for patiently listening to my worries, and for
just making this process much better.

If I had to choose a quote that represents the research presented in this document, it would be:

”Any sufficiently advanced technology is indistinguishable from magic”. – Arthur C. Clarke.

Whether or not the LLM hype continues in the coming years, I am thrilled to be living in this era of tremendous
evolution of artificial intelligence, and I look forward to continuing to contribute to unveiling the positive impact of
this magical power.

Julia García Fernández
Delft, August 2024
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Executive Summary

Digital technologies are reshaping the way we live. From the moment we wake up in the morning until the sun goes
down, our daily routine is shaped by digital systems that make our life, at home and work, easier. In the not-so-
distant future, we envision a full integration of all these systems in a way that they can operate autonomously and
talk to each other without requiring any manual setup. But for this integration, these systems must speak the same
language, or at least understand each other. Ontologies are the dictionaries for these systems, the shared vocabularies.
By modeling the world as we see it, understand it, and agree on its representation, ontologies transform data into
information, and information into semantic knowledge that can be shared. Because ontologies represent the world’s
knowledge in the way that humans understand it, they can be used to reason about facts of the world. Thus, it is
not surprising that knowledge engineering has been a crucial aspect of Artificial Intelligence (AI) for decades.

However, standardization is not an easy task. The field of Ontology Engineering (OE) is not new but, so far, its
evolution has been slow compared to other fields of engineering. The development of ontologies is a long process,
requires expert knowledge across multiple fields, and necessitates consensus-building from a group of stakeholders.
Several Ontology Engineering Methodologies (OEMs) have tried to structure the OE process and disentangle the
complexities associated with it but, as of today, none of them is a standard. Moreover most of the tools used for OE
are old and have not been maintained in the past years. Even with these entry barriers for ontology engineers, the
field of OE seems to be experiencing significant growth in recent years with the widespread need for data sharing
and interoperability across information systems. But there is a paradox with the standardization of information:
the more different standards, the less standardization. This is why reusing existing standards is a crucial aspect of
standardization.

Extending an existing ontology to model the rapid changes that society experiences or to fulfill new requirements
from the information system in which it is used is a common task. To facilitate this process, Large Language Models
(LLMs) have strongly entered the scene as powerful tools that can be used to automate the generation of ontologies.
LLMs are Natural Language Processing (NLP) systems that can understand and generate human-like text. Some of
their NLP capabilities, such as information extraction, seem to perfectly align with the activities needed to develop an
ontology. But the use of LLMs for OE does not come without a cost. Ontology engineers are aware of the limitations
of LLMs, such as inconsistent or hallucinated outputs, but also of the impact of their use in a broader sense and
the lack of regulatory frameworks. Even with these concerns, there have been several attempts to automate the
ontology generation process using LLMs. Many of these attempts aim for full automation, resulting in flat ontologies.
Others, opt for a semi-automated approach to extend ontologies in specific domains. The work presented here aims
to contribute to this field of research by addressing the following research question:

How can LLMs be integrated into a semi-automated and domain-independent process for the extension
of existing ontologies?
To integrate LLMs in the ontology extension process in a way that these innovative tools become part of the OE
toolkit, complementing human knowledge and alleviating some of the most cumbersome tasks in the process, we
addressed this question in a holistic and systematic way by following a Design Science Research (DSR) approach:

• In Chapter 3 we answered the first research sub-question: How does the current manual process to extend
existing ontologies look like and what are the issues that ontology engineers are experiencing?. By modeling the
current ontology extension process directly from the practices of ontology engineers we provide a holistic view
of the process and facilitate its comprehension. Moreover, we investigated how the size and complexity of the
ontology to be extended and the lack of enough expertise and tailored tools hinder the process of extending
an existing ontology. Though ontology engineers have several concerns about the use of LLMs for OE, such as
its negative environmental impact or the potential loss of an enriching multi-actor process due to automation,
they see great opportunities for the automation of some specific tasks in the process that can be repetitive and
cumbersome.

• In Chapter 4 we answered the second research sub-question: What are the requirements for a human-LLM
collaboration framework for ontology extension?. The artifact to be designed is outlined as a human-LLM
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collaboration framework for ontology extension. Through a multifaceted approach for requirements elicitation,
we formulated a set of requirements that directly address the problems associated with the ontology extension
process, without overlooking the concerns and opportunities that ontology engineers perceive for the application
LLMs for OE and the legal context framed by the European Artificial Intelligence Act. Due to the level of
abstraction required to design a process framework that combines LLMs and human capabilities, a set of
high-level requirements was produced. These requirements, validated by the ontology engineers, emphasize an
expert-in-the-loop approach that encourages best practices in ontology engineering while capitalizing on the
strengths of LLMs.

• In Chapter 5 we answered the third research sub-question: What does the design of an integrated process
framework for human-LLM collaboration for ontology extension look like?. To integrate LLMs in the ontology
extension process, we used the previously identified OE tasks (in Chapter 3) and analyzed their similarities
to NLP tasks. To define how LLMs can be effectively used for these tasks, we searched for existing work on
the field. By examining recent academic publications that apply LLMs to different OE processes, we saw that
how the LLM is prompted significantly influences its output. We also found that, with fine-tuning, smaller
open-source models can offer performance comparable to that of larger proprietary language models, but this
requires time, resources, and specific knowledge on the AI field. Moreover, this performance, only measured by
machine learning metrics, fails to capture the fact that there are multiple correct ways of modeling knowledge.
The proposed design of a human-LLM collaboration framework for ontology extension is an extended version
of the current ontology extension process in which some of the downstream OE tasks are facilitated by different
types of LLMs, relying on their NLP capabilities. This systematic approach combines expert OE knowledge
from the different stakeholders in the OE process with novel OE tools. In addition, a set of customizable
prompts is included in the design, which can be used by the ontology engineer to extend an existing ontology
in any domain.

• In Chapter 6 we answered the fourth and last research sub-question: How can the framework be demonstrated
and evaluated with a specific use case and to what extent does it improve the status quo?. To demonstrate and
evaluate the designed artifact, we selected a real use case in the agricultural domain: extending the Common
Greenhouse Ontology (CGO) with the Semantic Explanation and Navigation System (SENS) use case. We
demonstrated how the process framework works in practice by using GPT-4o and its general-purpose capabilities
to perform all the LLM-assisted tasks in the designed process, and we discussed each output. Compared to the
gold standard – the manually crafted SENS extension to the CGO – the generated extension using the process
framework is less rich in terms and conceptualization and fails to propose as many ontologies for reuse as the
real extension. However, the generated ontology extension is syntactically correct and includes most of the
ideas used for the manual extension. Some of the tasks assisted by the LLM in the process, such as formalizing
Compentency Questions (CQs) into SPARQL queries or verifying if the extended ontology can answer all the
CQs produced remarkably good results. The process framework was externally evaluated by a real ontology
engineer who used the artifact with the same use case, and finally, the design requirements were evaluated
against the final proposed design.

The proposed design – based on the current workflow of ontology extension and OE best practices – could be
implemented as a digital, web-based tool that guides the ontology extension practice and provides customizable
prompt templates for some of the ontology extension tasks. The prototype design is adaptable for use within different
OEMs, where the prompts could be integrated with specific tasks outlined by these methodologies. However, the
extent to which the proposed process framework becomes a standard or, at least, LLMs are fully integrated within the
OE toolkit would require additional time and further usage after its implementation. Further research could involve
evaluating the framework with ontologies across different domains, assessing the framework with ontology engineers
of varying expertise levels, including domain experts, and measuring how the users’ expertise impacts the framework’s
output. In this research, the demonstration and evaluation of the process framework prototype were conducted using
only one model. It would be interesting to use different LLMs (e.g., open-source, proprietary, fine-tuned for the task)
for various tasks to observe their impact on the process and the final output.

Despite all the limitations introduced by the several choices made to develop the human-LLM collaboration process
framework design for ontology extension, this research contributes to the field of Hybrid AI by proposing an approach
that leverages the strengths of LLMs to enrich rather than replace the ontology engineer’s expert knowledge. The
insights gathered through the development of the artifact proposed in this research contribute to the DSR field for
the future development of LLM-based applications for knowledge engineering that maximize the synergies between
LLMs and ontologies.
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1
Introduction

This chapter introduces the topic of this research project. First, the identified initial problem is presented. Second,
the research gap is found through a systematic literature review, also explained in the section. The results of the
literature review are summarized, and from them, the main research question is elaborated. Subsequently, a research
approach is chosen and justified, and from it, the research sub-questions are formulated. A Research Flow Diagram
(RFD) synthesizes the research approach, methods, and the sub-questions that contribute to answering the main
research question. The end of this chapter is dedicated to demonstrating the connection between the chosen research
topic and the study program, Complex Systems Engineering and Management.

1.1. Problem identification
An ontology is a shared understanding of reality, a formal model to represent knowledge (Guarino et al., 2009).
Ontologies are widely used in information systems where data must be automatically interpreted not only by humans
but by machines (Tran et al., 2007). They can be applied to different domains to semantically describe concepts
and relations between these concepts, enabling a common understanding and therefore facilitating data sharing, data
quality, and interoperability (Obrst, 2003).

Although the concept of Ontology Engineering (OE) is not new (Kotis et al., 2020), the creation of new ontologies
and the extension of existing ontologies is currently done manually. OE focuses on the development and evolution
process of ontologies, which consists of a multi-stakeholder decision process to agree on how to standardize and
represent common knowledge (Kotis et al., 2020). There are numerous approaches for systematic design and creation
of ontologies (Corcho et al., 2003; Kotis et al., 2020). However, none of them is a standard. Kotis et al. (2020) show
in their study of the impact of Ontology Engineering Methodologies (OEMs) in the status of recent and well-known
ontologies, that custom-engineered OEMs that include tool support have the highest impact on ontologies in terms of
liveability, evolution, and reuse. This seems to indicate that OEMs work best when allowing the ontology engineers
to adapt the methodology to their needs or the project needs.

This does not mean that clear guidelines and tool support are not needed. There are numerous ontologies developed
for big areas of knowledge that are rapidly evolving, and new concepts need to be added. This process is complex,
requires a deep understanding of both the domain and the ontology, and involves numerous steps and, often, many
different possible choices (Funk et al., 2023). Kotis et al. (2020, p. 18) claim that “Methodology by itself may not be
sufficient for an ontology engineer to perform a set of collaborative tasks”. The authors mean here that custom OEMs
have proven to be more successful when supported by tools that allow for collaboration, such as GitHub1. In an era
where Artificial Intelligence (AI) applications are flourishing, the use of Natural Language Processing (NLP)-based
tools or LLMs — of which ChatGPT2 is an example — is gaining significant attention across various research domains
(Liu et al., 2023), including the field of OE (Neuhaus, 2023).

NLP is an AI-based field of study that makes computers able to understand and interpret human communication or
linguistics (Nadkarni et al., 2011). Within the broader field of NLP, LLMs have emerged as powerful tools not only to
understand but also to create human-like language (Chang et al., 2024). LLMs are complex and high-performing mod-
els built with the Transformer architecture (see Vaswani et al. (2017)) that feature billions of parameters. Commonly
used in conversational mode, such as ChatGPT – the conversational version of Generative Pre-trained Transformer

1https://github.com/
2https://openai.com/chatgpt
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(GPT) developed by OpenAI3 – LLMs can contextualize and learn from the human prompts (Chang et al., 2024).
Conversational LLMs can be used for multiple purposes such as text generation, information extraction, translation,
code generation, and more. The use of LLMs has caught the attention of not only students, researchers, and profes-
sionals but also the general public. Naturally, there have been already some recent attempts to use this NLP and
LLMs for Ontology Learning (OL) (see Funk et al. (2023), Giglou et al. (2023), Oba et al. (2021), and Zaitoun et al.
(2023)). The concept of OL refers to the process of automatically extracting, constructing, or refining ontologies from
various sources of unstructured or semi-structured information. The goal of OL is to facilitate the creation of formal
representations of knowledge in a particular domain without (or with little) manual effort (Giglou et al., 2023). How-
ever, no standardized method exists for integrating these innovative tools into ontology engineers’ workflows, nor an
objective mechanism for verifying the quality of automatically generated ontologies, apart from manual verification
(Funk et al., 2023).

Additionally, with the increasing digitization of our society, the Information and Communication Technology (ICT)
sector is experiencing a significant growth in the demand for high-skilled ICT workers (MIT Technology Review
Insights, 2023) that the job market will not be able to fulfill (Beerli et al., 2023). The field of OE, as a niche
segment in the broader field of ICT, is likely to be affected by this problem due to its recently growing popularity
and its high complexity and need for expert knowledge in various disciplines. In fact, in terms of tooling support,
the OE community lacks the variety of specialized, accessible, and well-maintained tools that bigger fields such as
software engineering have at its disposal, especially important for newcomers and during the initial phases of ontology
development (Tudorache, 2020). Instead of replacing human workers, AI systems might have the potential to lower
the entry barriers to the field of OE for less experienced ICT professionals and even different stakeholders such as
domain experts.

While the potential application of LLMs to OE is promising, the absence of relevant or widely accepted solutions
suggests the presence of several challenges that must be addressed before this idea can be successfully implemented.
But one thing seems clear: LLMs are powerful tools to support ontology engineers, and the synergies that this
collaboration might produce, are yet to be explored.

This research project is carried out in collaboration with the Dutch Organization for Applied Scientific Research
(TNO), specifically within the Data Science department, which will be introduced in the next chapter. TNO focuses
on developing technical innovations and applying them for positive societal impact (TNO, 2024). The problems
described above are pertinent to TNO and its OE community, which develops and maintains several ontologies across
different domains. At the Data Science department, reusing and extending existing ontologies is a common practice.
The integration of LLMs and ontologies is currently one of the research topics at the Data Science department, making
the problem identified in this research project highly relevant to the department’s ongoing work.

1.2. Academic context and Main research question
In this section, the main research question is formulated as the result of analyzing the available literature on the
topic. First, the method carried out to find the relevant sources is presented. The results are described next, based
on several criteria based on the findings from the literature. Finally, the main research question is presented.

1.2.1. Method: Literature review
The literature review was conducted from mid-November until the beginning of December of 2023. Two differ-
ent sources were employed: Scopus and Web of Science (WoS). The query used is: (extension AND automa*) AND
(ontology OR ontologies) AND (llm* OR “large language models” OR nlp* OR “natural language proces-
sing” OR “chatgpt”). The keyword string “extension” and “automa*” have been added to rule out manual method-
ologies and focus on (semi-)automatic ones. This query produced 65 and 27 output results in the mentioned sources,
respectively. According to Scopus analysis tool, the articles found date from 1998 to the current date. This find-
ing shows the enduring and constant effort of the academic community to use (mainly) NLP in combination with
ontologies. After removing duplicates and screening the articles found, the final set comprises 11 academic papers
(from the 2 databases used) plus 5 articles added from forward/backward search. The complete list of articles can be
found in Table A.1, in Appendix A. The methodology conducted for the literature review is summarized in Figure
1.1. It is worth mentioning that when deleting the strings “nlp*” and “natural language processing”, Scopus gave 2
results and WoS gave 33 results, from which only 1 result in total appears to be relevant. This finding already gives
a hint of the novelty of the topic, which is not surprising considering that LLMs exploitation is a relatively new and

3https://openai.com/
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increasingly popular research area.

Figure 1.1: Literature selection process. Conducted between mid-November and the beginning of December 2023.

1.2.2. Research gap
The 16 articles reviewed have been analyzed by focusing on 5 criteria considered relevant for the topic:

1. Use of NLP or LLM: if the proposed methodology employs one of these Natural Language Processing (NLP)
techniques or Large Language Models (LLMs) (or none).

2. Reach: to what extent the ontology development process is automated, e.g., generation, extension, only knowl-
edge extraction for manual ontology extension, etc.

3. Input: the way in which the ontology engineer has to provide the data for the proposed tool/methodology.
4. Includes methodology for integration in the OE workflow: if the proposed solution also includes

guidelines or instructions on how to integrate the tool/methodology in the current workflow of the ontology
engineer.

5. Shortcomings: limitations of the proposed solutions.

Based on the described criteria, Table 1.1 compiles the analysis of the literature conducted. The main findings of
this literature review are:

• Most of the currently available solutions are based on NLP.
• In general, most proposals are semi-automatic for both the generation and extension of ontologies. This seems

to confirm that keeping a human in the loop is important in these processes, or that the existing technology is
not fully mature yet to automate the whole process.

• Most solutions require raw text as an input. Different methodologies, e.g., querying, conversation-based, are
not considered in general.
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• Almost none of the articles reviewed propose a methodology to showcase how the designed solutions can be
implemented in reality and integrated within the manual process.

• The proposed solutions are in general difficult to use, difficult to understand (for both use and explainability of
results), difficult to adapt to different domains, and focused on ontologies for specific languages. The evaluation
of the outcomes provided by these (semi-)automated tools is widely missing or manual.

From these findings, there is a clear gap in the application of LLMs to the Ontology Engineering (OE) processes, most
certainly due to the novelty of this technology, and how to seamlessly integrate the proposed tools into the human
workflow of OE. On the other hand, some of the solutions proposed include remarkable strengths. For example,
Cantador et al. (2007) propose a user-friendly interface that features a collaborative evaluation mechanism and that
offers understandable explanations of the ontologies recommended. The work of Funk et al. (2023) includes publicly
available examples of ontologies that are automatically generated by just providing a concept, e.g., “Animals”. The
methodology designed by Haridy et al. (2023) includes a thorough verification procedure and metric-based evaluation.
Nováček et al. (2008) propose an integration scheme of the NLP methods with some high-level tasks in the ontology
extension process. Last but not least, Mateiu and Groza (2023) have integrated their model in Protégé4, an open-
source editor and framework for ontology creation, as a plugin. Some of the strengths of these proposed solutions
can be incorporated to address the identified problem in this research proposal, such as enhancing user-friendliness
and ensuring integration with current ontology extension tasks in the workflow and with widely used OE tools.

Table 1.1: Categorization of the articles based on the criteria: Use of NLP/LLM; Reach; Input; Includes methodology for
integration in the OE workflow; and Shortcomings.

Criteria ⇒
Source ⇓

Use of
NLP or
LLM

Reach Input
Integration
in the OE
workflow?

Shortcomings

1.Cantador et al.
(2007) NLP

Automatic ontology
recommendation (reuse
of existing ontologies).
Collaborative Evaluation
mechanism

Raw text
following
Gold
Standard
definition

No

Automation only covers
recommendation of
existing ontologies for
reuse

2.de Vries et al.
(2008) NLP Semi-automated

extension of ontology

Raw text
(web search
results)

No

Tailored to maritime
shipping industry;
systematic evaluation of
results is not described
(manual)

3.Nováček et al.
(2008) NLP Semi-automated

extension of ontology

Raw text
(web search
results, e.g.,
Wikipedia)

Yes

Methodology for
integration is
abstract/high-level;
systematic evaluation of
results barely described

4.Rodríguez et al.
(2008) -

Automated identification
of entries that can be
added to an existing
ontology

Raw text
(words) No Tailored to Arabic

language

5.Suchanek et al.
(2009)

NLP, Math
algorithms

Automated ontology
extension

Raw text or
semi-
structured
documents

No

Low explainability of
results; systematic
evaluation of results is
not described

6. Cruanes et al.
(2010) NLP Automated ontology

extension

Semi-
structured
documents
in XML
format

No

No implementation; not
tested; systematic
evaluation of results is
not described

4https://protege.stanford.edu/
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Criteria ⇒
Source ⇓

Use of
NLP or
LLM

Reach Input
Integration
in the OE
workflow?

Shortcomings

7.Toti et al. (2012) NPL, ML

Automated extraction of
knowledge that can be
used for ontology
creation

Raw text
(documents) No

Focus on creation of new
ontologies rather than
extension; no automated
extension of ontology;
systematic evaluation of
results is not described

8.G. Zhao and
Zhang (2018) NLP, ML Automated ontology

extension
Raw text
(words) No

Domain-dependent; low
explainability; difficult
to implement/use

9.Hosseini Pour
and Shamsfard
(2019)

Artificial
Neural
Networks

Automatic classification
of lexical relations
between words that can
be used for ontology
extension

Raw text,
i.e., words
(concatena-
tion of word
embedding
vectors)

No

Tailored to lexical
relations (language);
difficult to use for users
with little OE knowledge
(e.g., domain experts)

10.Yilahun et al.
(2020) -

Automated extraction of
concepts that can be
used to extend and
ontology

Raw text
(documents) No

Tailored to Uyghur
language; no automated
extension of ontology

11.Oba et al.
(2021) NLP, PLM Automatic ontology

generation Raw text No Domain-specific
ontologies not supported

12.Funk et al.
(2023) LLM Automatic ontology

generation

Concept in
natural
language,
e.g.,
“Animals”

No

Manual and subjective
evaluation of generated
ontology; only concept
hierarchy can be
generated (basic
ontology)

13. Haridy et al.
(2023) NLP Semi-automatic ontology

extension

Initial
ontology
plus raw
text

Yes
Proposed integration
methodology is mainly
manual

14. Mateiu and
Groza (2023) LLM Automatic ontology

generation and extension
Raw text
(sentences) No

No workflow integration
suggested; systematic
evaluation of results is
not described

15. Straková et al.
(2023) LLM

Automated
pre-annotation of words
that can be used for
ontology extension

Raw text
(words) No

Tailored to lexical
relations (language);
tailored to Czech
language; Manual
evaluation process based
only on 4 levels

16. Zaitoun et al.
(2023) LLM Semi-automatic

extension of ontology

Raw text
(medical
guideline)

No

No workflow integration
suggested; systematic
evaluation of results is
not described (manual);
specific to medical
domain

To address the gaps identified in the current research, this document focuses on developing a semi-automated, user-
friendly approach for extending existing ontologies, facilitated by LLMs. This approach is accompanied by clear
guidelines on how to effectively utilize these models. Specifically, we will examine the existing process of ontology
extension, identifying the primary challenges it faces. By analyzing the NLP capabilities of LLMs and reviewing
recent advancements in applying LLMs to OE, we will establish a mapping between key OE tasks and the potential
of LLMs to support them. A key strength of this research lies in its user-centered approach, which contrasts with
existing solutions that predominantly focus on the technology and its performance in automation (e.g., can human
ontology engineers be entirely replaced by LLMs?). The literature on applying LLMs to OE consistently points to the
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necessity of a human-in-the-loop approach. Furthermore, by exploring the current landscape of ontology engineering
and evaluating the capabilities of LLMs in this context, we can distinguish effective practices from ineffective ones and
incorporate these insights into our proposed solution. In the following chapters, we will provide a detailed explanation
of the rationale behind this contribution.

1.2.3. Main research question
Based on the analysis of the literature, the main findings, and the strengths discovered, the research question for the
problem introduced is:

How can LLMs be integrated into a semi-automated and domain-independent process for the extension
of existing ontologies?
Note that the focus of the research question is on the extension of existing ontologies rather than on the generation
of new ontologies. The use of ontologies is not a recent subject, with numerous ontologies already established
across various domains. At TNO, the practice of extending ontologies is routine, given the constant evolution of the
domains TNO engages in, spurred by technological advancements and regulation changes. Importantly, extending
pre-existing ontologies not only aligns with the swift pace of change but also fosters interoperability, reuse, and data
standardization. This emphasis additionally contributes to narrowing the scope of this thesis research project.

1.3. Research approach
The current focus on the development of LLMs is on generic tasks such as text classification, question answering, in-
formation extraction, sentiment analysis, and coding (Kalyan, 2024). As shown within the literature review presented
in the previous chapter, there is not so much work on using LLMs specifically for OE. Existing work tackles small
tasks such as automatically adding a simple and well-defined concept to an existing ontology (Mateiu & Groza, 2023),
or automatically generating a small ontology from a relatively simple concept (Funk et al., 2023). These applications,
though very promising, might not be useful right now for ontology engineers.

This research project aims to disentangle the complexities associated to the introduction of LLMs in the socio-technical
process of extending ontologies. Research carried out so far shows that there is much work to be done for the effective
application of LLMs to the different OE tasks and for the integration of LLMs into human-in-the-loop approaches
that involve experts for enhanced OE processes (Giglou et al., 2023).

Moreover, apart from the performance, other criteria are crucial to assess whether an LLM can be used for extending
an ontology. For example, confidentiality, which depends on the domain that the ontology represents, or context
window/token length, which depends on the specific application within a domain, or even specific use cases for the
LLM regarding the extension of the ontology. Therefore, no single LLM-based artifact fulfills all the requirements
for all the different use cases. Moreover, the rapid evolution of LLMs is outpacing regulatory frameworks, leading
to considerable uncertainty regarding their appropriate use. With these findings, we conclude that the result of this
research must be a process framework for the seamless integration of LLMs in the process of extending ontologies
that does not prescribe the use of LLMs but describes how they can be effectively used within the current ontology
extension workflow. This framework should provide clear guidelines for human-LLM collaboration and serve as a
knowledge contribution to research focused on the design of systems that include both, human expertise and technical
innovation. The goal is that the framework can be implemented by TNO, but also generalized so that it can be used
within any institution. The process should also be applicable to any ontology regardless of the domain, i.e., agriculture,
construction, business, health, etc. The Design Science Research (DSR) approach is the chosen one for this research
proposal.

Advantages
The Design Science Research (DSR) approach is a widely known, studied, and developed approach within academia.
Within Information Systems (IS), there are extensive frameworks available (see Hevner and Chatterjee (2010), Johan-
nesson and Perjons (2021), and Peffers et al. (2007)). Thus, selecting this research approach provides a significant
advantage by providing robust and extensive guidance throughout the research process.

Despite the great level of detail of design science frameworks compared to other more high-level ones, they allow for
flexibility and adaptability. These approaches usually propose an iterative process in which the design is constantly
reviewed and updated. This positively contributes to the quality of the final design.
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Limitations
Approaching the problem from the design perspective also has some disadvantages. Designing in complex socio-
technical systems is a subjective task that implies numerous design choices. These choices should be objectively
based on well-defined requirements, which in turn are based on objectively gathered data. However, a complete
detachment from the system is often impossible, and therefore it is important to acknowledge the various sources of
bias the designer is exposed to during the designing process.

While the DSR approach is more specific than other approaches (such as the qualitative approach) can be highly
flexible as discussed above and can be combined with different research methods, there is a risk that certain high-level
aspects may be overlooked (e.g., the regulatory context regarding AI and LLMs). To overcome these limitations, it
is important to maintain a broader view when eliciting requirements for the framework to be designed, for instance
by paying special attention to the European Artificial Intelligence Act (European Parliament and Council of the
European Union, 2021).

1.3.1. Research sub-questions and Research Flow Diagram
From the main research question presented before – How can LLM-based tools be integrated into a semi-automated and
domain-independent process for the extension of existing ontologies? – and framed by the Design Science Research
(DSR) approach by Johannesson and Perjons (2021), the following research sub-questions have been posed:

• Sub-question 1: How does the current manual process to extend existing ontologies look like and
what are the issues that ontology engineers are experiencing?
This sub-question fits in the first activity of the DSR framework: understanding and explicating the problems
perceived by the practitioners (the ontology engineers) in a practice (the ontology extension process). To answer
it, qualitative, empirical data is needed. These data can be gathered through semi-structured interviews with
experts (ontology engineers and LLMs experts) at TNO. Because there is no standard process for ontology
extension, we need to extract this information directly from the daily practice of ontology engineers. This
practice is accompanied by a set of tools and a group of diverse stakeholders, that we will also explore in the
interviews. Within these exploratory conversations, out-of-the-box perspectives on the problem may flourish,
but the researcher must be aware of the subjectivity of the ideas proposed by the practitioners. Thus, we
will analyze the raw data from the interviews by applying content analysis, based on the work of Erlingsson
and Brysiewicz (2017) and Seljemo et al. (2024). Using the data gathered, and as suggested by Johannesson
and Perjons (2021), the root cause of the problem can be unraveled and explained using an Ishikawa diagram.
The goal is to have a clear picture of how ontology engineers currently work and experience first-hand their
struggles regarding the process of extending existing ontologies. In addition, we will explore why LLMs, though
available and easily accessible, are still not widely used for ontology engineering, and what opportunities ontology
engineers perceive for the successful integration of LLMs in their ontology extension workflow.

• Sub-question 2: What are the requirements for a human-LLM collaboration framework for on-
tology extension?
Once we have understood the ontology extension process and the major problems associated with it, we will
establish the requirements that can address these problems and ultimately facilitate the ontology extension
process. Stakeholders may have limited familiarity with eliciting requirements for an LLM-based process frame-
work due to their relatively low experience in utilizing LLMs and the absence of established standards and
guidelines in this emerging field. Academic literature on the topic of human-in-the-loop approaches for ontol-
ogy engineering using LLMs is scarce, thus, most requirements will be based on the findings from the previous
sub-question. Johannesson and Perjons (2021) propose several methods for requirements elicitation such as
conducting surveys, questionnaires, forming focus groups, etc. The authors mention observation studies as an
effective method to define additional requirements in contexts where the stakeholders might not be able to
produce requirements themselves. Thus, a simple prototype can be created and presented in a focus group
including ontology engineers and LLMs experts, to validate the design and iterate it with the expert feedback
provided. The final process framework aims to guide ontology engineers on how to collaborate with the LLMs
to exploit their full potential.

• Sub-question 3: What does the design of an integrated process framework for human-LLM
collaboration for ontology extension look like?
With the list of requirements outlined in the previous sub-question, in SQ3 we proceed to design and develop the
process framework artifact that meets these requirements, addressing the issues in the ontology extension process
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and aligning with the needs and values of ontology engineers at TNO. To initiate this process, we will review
the current NLP capabilities of LLMs and their alignment with the downstream OE tasks involved in ontology
extension. To inspire the development of the artifact prototype, we will examine recently published literature on
the application of LLMs in OE. This examination aims to uncover how researchers are currently utilizing LLMs
for various OE tasks, highlighting successful configurations and prompt engineering techniques. Additionally,
we will identify existing LLM-based tools that can be integrated into the design prototype. Furthermore, we will
evaluate available OE tools that can facilitate the ontology extension process. The outcome of this investigation
will be a comprehensive artifact design ready for implementation.

• Sub-question 4: How can the framework be demonstrated and evaluated with a specific use case
and to what extent does it improve the status quo?
In this last activity of the DSR cycle covered by SQ4, we demonstrate and evaluate the prototype designed in
the previous activity. To do so, we have selected a real use case. We will use the human-LLM collaboration
process framework to extend the Common Greenhouse Ontology (CGO)5 (Bakker, van Drie, et al., 2021;
Verhoosel et al., 2023) with the use case Semantic Explanation and Navigation System (SENS). The CGO is
a semantic representation of knowledge about high-tech greenhouses and their components, that is intended to
become the standard in the greenhouse sector (Bakker, van Drie, et al., 2021). The designed process framework
can be applied to extend any type of domain ontology. The choice of the CGO is a good representation of
a rapidly evolving domain, in which different technological innovations are being increasingly adopted, such
as autonomous systems. Therefore, the knowledge representing the greenhouse sector needs to be extended
frequently. This project was successfully developed by TNO, and therefore we have at our disposal the manually
extended CGO with the SENS use case, which will serve as our gold standard. During the demonstration, we
will test the process framework prototype with this use case and refine the design if necessary. Subsequently,
both the output of the designed process framework and the framework design itself will be evaluated against
the established design requirements. The goal of this sub-question is to demonstrate and evaluate the quality of
the proposed artifact compared to the baseline scenario in which no LLM or LLM-based tool is applied (status
quo).

The Research Flow Diagram (RFD) displayed by Figure 1.2 summarises the research sub-questions, the research
methods, and the data analysis tools, and it frames them using the Design Science Research (DSR) framework by
Johannesson and Perjons (2021). The output for each sub-question is used as the input for the next sub-question in
the research. Thus, the results of the analysis of the problem carried out by analyzing the content of the interviews
conducted during the first activity of the DSR cycle will be used to elicit the design requirements. These requirements,
formulated and validated within Activity 2, will guide the design prototyping in Activity 3. Activities 4 and 5 of the
DSR approach proposed by Johannesson and Perjons (2021) have been merged into one activity. Within this activity,
the design prototype from the previous activity will be demonstrated and evaluated using a real use case. Note that
there can be iteration in every phase of the framework, but especially during the design and its demonstration and
evaluation when the design prototype can be refined using the insights gathered from utilizing the artifact with a
real use case.

5https://gitlab.com/ddings/common-greenhouse-ontology

https://gitlab.com/ddings/common-greenhouse-ontology


1.4. Link to MSc program 9

Figure 1.2: Research Flow Diagram. Adapted from Johannesson and Perjons (2021).

1.4. Link to MSc program
In the last decades, the world has been experiencing profound digitization across all areas of knowledge and informa-
tion. This disruption is affecting how businesses and institutions organize their ecosystems (Ducuing, 2020), where
data sharing and standardization factors are key. Ontologies are important enablers for the success of these factors
(Gruber, 1995; Poveda-Villalón et al., 2020). From the hand of digitization, AI-powered systems emerge. These
systems enable the automation of repetitive, complex, or cumbersome tasks previously done manually. Some authors
talk about the AI Revolution and compare it to the industrial and digital revolutions (Makridakis, 2017). Indeed,
the effective integration of AI systems in our current socio-technical systems is a complex and ongoing challenge.

Automating the process of ontology generation has been attempted since the 1990s (Neuhaus, 2023). But, according
to Neuhaus (2023, p. 401), “there are no widely adopted ontologies that are automatically created by ontology learning
techniques”. The author argues that developing an ontology is not just representing the knowledge on a specific
domain but building consensus. Thus, generating an ontology is not only a technical challenge but a social one.
According to this author, LLMs will never replace ontology engineers, or at least not in the near future. A hybrid
approach, combining both human knowledge and technical support, seems to be inevitable.

Since the release of ChatGPT, the use of this tool has raised concerns across domains, countries, and institutions
(Dwivedi et al., 2023). These societal concerns pertain to issues such as bias, fairness, explainability, and interpretabil-
ity of the model’s output regarding the generation and extension of ontologies, as described by Pan et al. (2023).
These concerns cannot be overlooked because ontologies represent common and agreed knowledge on a domain, and
are used to standardize systems and communication between organizations, and therefore they have an impact on
society (Funk et al., 2023). Thus, looking at the integration of LLMs in this process cannot be done through a
technical lens only. Here is where the complex socio-technical perspective comes into play, bringing a new angle into
one of the big challenges of our era.

The master’s program in Complex Systems Engineering and Management (CoSEM) focuses on the design and intro-
duction of innovative solutions within socio-technical systems. CoSEM makes its students develop a comprehensive
mindset that extends beyond technological implementation. It emphasizes the integration of technology within the
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existing landscape, considering regulatory frameworks, cultural contexts, and stakeholders’ needs and values. The
integration of Large Language Models (LLMs) into the workflow of ontology engineers as a semi-automated process
exemplifies a typical CoSEM project. The ontology extension process is inherently complex, requiring expertise across
multiple fields. It involves various stakeholders with diverse roles, needs, and perspectives, all of whom must reach a
consensus to share, model, and standardize knowledge into an ontology. Introducing LLMs into this scenario neces-
sitates a systematic approach that prioritizes stakeholders’ needs and values. From a purely technical standpoint, a
fully automated ontology extension process could be feasible. However, from a socio-technical perspective, the focus is
broader, encompassing the quality and usability of the process, and considering recent regulatory developments such
as the European Artificial Intelligence Act. It is not solely about technical performance measured by the output but
also about using AI to complement, rather than replace, the expertise of ontology engineers. This hybrid approach
aligns with CoSEM’s perspective, balancing technological innovation with human expertise and traditional Ontology
Engineering (OE) techniques.



2
Background

In this chapter, we give a brief overview of the key concepts of this research topic. First, we define the concept
of ontology and the main terminology in the field. Second, we give a quick summary of Ontology Engineering
Methodologies (OEMs). Third, we introduce TNO, the relevant unit and department in which this research project
is realized, and its ontology engineering community. Finally, we shortly address the field of Large Language Models
(LLMs) and its connection with the topic of ontology engineering.

2.1. Ontologies
Ontology, in its philosophical sense, is the knowledge and representation of reality. An ontology, in the field of
Computer Science, is a formal model or structure to represent knowledge, as a shared understanding of reality (Guarino
et al., 2009). Already in the 90’s, Gruber (1995) defined an ontology as ”an explicit specification of a conceptualization”
Gruber (1995, p. 908). Conceptualizing knowledge implies making assumptions and simplifications to model the
complexity of reality with a purpose. The purpose of an ontology is a crucial aspect of its development. Ontologies
can be created to represent a shared vocabulary in a specific domain or to be integrated within a knowledge-based
system with specific requirements. The purpose of the ontology plays a big role in its design and development. There
are different ways in which ontologies can be classified. In this work, we want to point out the distinction between
reference ontologies and operational ontologies made by Falbo (2014). For Falbo (2014) a reference ontology is closer
to a standard vocabulary, with a focus on representation adequacy. On the contrary, operational ontologies focus
on computational capabilities. From one reference ontology, different operational ontologies could be conceptualized.
In this work, we focus on operational ontologies, i.e., domain ontologies that are integrated within an information
system and that need to be extended.

An ontology consists of concepts and relations, and it can therefore be visualized as a graph with nodes and links.
Concepts (nodes) are related by different properties (links). These concepts and relations are formalized using
Description Logics (DL), and thanks to this formal, logic-based, and explicit representation it is possible to deduce
or infer implicit knowledge (Baader et al., 2005), or in other words, to reason (Guarino et al., 2009). In a nutshell,
this is why in the last decades ontologies have been used within Artificial Intelligence (AI) systems (Chandrasekaran
et al., 1999; Neuhaus, 2023). Ontologies play a crucial role on the Semantic Web, the machine-readable version of
the World Wide Web (Baader et al., 2005).

Resource Description Framework (RDF) is a standard model for data interchange on the web, which uses triples to
represent data in subject-predicate-object expressions (Beckett & McBride, 2004). Web Ontology Language (OWL) is
a more expressive language built upon RDF, designed to represent rich and complex knowledge about things, groups
of things, and relations between things (McGuinness & van Harmelen, 2004). Turtle (Terse RDF Triple Language) is
a syntax for writing RDF data in a compact and human-readable format, simplifying the creation and maintenance
of RDF data (Beckett et al., 2014).

Represented in any form, ontologies can be applied to different domains to semantically describe concepts and relations
between these concepts, enabling a common understanding and therefore facilitating data sharing, data quality, and
interoperability (Obrst, 2003).

Figure 2.1 shows a visualization of a simple ontology following the OWL syntax. In this example ontology there are
3 classes: University, Student, and City. The class University is related to the class Student via the Object Property
hasStudent, and related to the class City via the Object Property isLocated. The Individuals of the class Student have
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2 Data Properties, hasNationality and hasAge. These are string (text) and integer (number) data types, respectively.

Figure 2.1: A simple example of an ontology following the OWL syntax (own creation).

2.2. Ontology Engineering Methodologies
According to Kotis et al. (2020), Ontology Engineering Methodologies (OEMs) support the development, maintenance,
and evolution of ontologies, ensuring they effectively solve specific problems and meet stakeholder needs throughout
their lifecycle. OEMs emphasize the active involvement of knowledge engineers, domain experts, and other stakehold-
ers in all phases, from specification and development to exploitation and evaluation. These collaborative approaches,
facilitated by specialized Ontology Engineering (OE) tools, not only ensure the quality of the developed ontology but
also of the process of developing the ontology itself.

Despite the acknowledged benefits of using OEMs, there are no standard methodologies that are fully applied for
ontology development, and only some parts of these methodologies are used for some projects. Thus, different compa-
nies, teams, and even projects use different methodologies depending on the preferences of the ontology engineers or
the characteristics of the project (Peroni, 2017). Some OEMs focus on the participation and collaboration of different
stakeholders (Kotis & Vouros, 2006), others focus on the development of reference and operational ontologies with a
clear purpose and based on a well-defined set of requirements and Compentency Questions (CQs) to clearly define
the ontology’s scope (Falbo, 2014), others aim to facilitate the formalization of domain knowledge into an ontology
prototype for users with less OE experience, such as domain experts (De Nicola & Missikoff, 2016), and some others
adopt the incremental development process known as agile and widely used in Software Engineering and combine it
with CQs and other OE patterns (Peroni, 2017).

An important part of some of these OEMs is the use of Compentency Questions (CQs). As mentioned above, CQs
define the scope of the ontology by outlining what should be included in the ontology. CQs are the questions that the
developed ontology should be able to answer, and otherwise, the ontology development is not finished (Monfardini et
al., 2023). Thus, CQs are defined at the initial phases of the ontology development process and used in the last phases
to verify the generated ontology. CQs are like design requirements in the Design Science Research (DSR) approach,
or like system requirements in Systems Engineering. CQs are widely used by the OE community (Monfardini et al.,
2023), also inside TNO.
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2.3. TNO
The Dutch Organization for Applied Scientific Research (TNO), is an independent, non-for-profit research organiza-
tion in the Netherlands that focuses on the development of innovations to make a positive impact in society, bridging
academia, industry, and government. TNO collaborates with other companies, institutions, and public organizations
such as universities and the Dutch government to accelerate industrial and societal transitions. TNO’s projects re-
volve around the fields of applied sciences and technology, and address topics such as sustainability, healthcare, the
energy transition, or the secure digitization of society (TNO, 2024). The unit ICT, Strategy and Policy is one of
the 9 units TNO is composed of (TNO, n.d.). The Data Science department is one of the multiple expertise groups
within this unit. The focus of this group is on hybrid AI topics that include explainable AI, fairness and bias; con-
versational AI and NLP technologies (such as LLMs); privacy-enhancing technologies; and semantic technologies and
infrastructures for standardization, interoperability, and data sharing (such as ontologies). Therefore, this research
project integrates two key areas of focus within the Data Science department.

The OE community within the Data Science department at TNO develops and maintains several ontologies across
various domains, including the energy sector, the talent acquisition industry, and the greenhouse sector. Developing
and extending ontologies is a common practice. In parallel, researchers in the Data Science department recognize the
synergies between LLMs and OE. The research presented in this document is not the first conducted by the Data
Science team and is unlikely to be the last.

2.3.1. TNO's OE methodology: REPRO
Exemplifying the conclusions drawn by the research of Kotis et al. (2020), the OE community in TNO’s Data Science
department developed their custom methodology and set of best practices named REPRO: Recommended Engineering
PRactices for Ontologies (Bakker, van Bekkum, et al., 2021). Drawing from their extensive practical experience in
developing semantic standards, the members of the REPRO group recognized the challenges in the OE process. These
challenges are faced not only by novice ontology engineers but also by experts in the field. Consequently, they decided
to create a comprehensive guide that outlines a set of principles and best practices. This guide aims to facilitate
the OE process by adapting proven OE methods and widely accepted best practices to their specific way of working.
The REPRO Handbook compiles this knowledge in form of an internal online documentation. An screenshot of the
REPRO Handbook can be seen below in Figure 2.2.

Figure 2.2: Screenhsot of REPRO: Recommended Engineering PRactices for Ontologies (Bakker, van Bekkum, et al., 2021),
developed within the Data Science department at TNO.

In addition to this documentation, the REPRO Group frequently organizes sessions, open to everyone at TNO (inside
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or outside the Data Science department), to discuss the topics that are relevant to the TNO’s OE community. They
emphasize that the aim of the REPRO Handbook is to compile the insights from these regular discussions, together
with their practical experiences and theories coming from the literature into a source of information that helps and
inspires ontology engineers at TNO to engineer high-quality ontologies, without prescribing a set of mandatory or
fixed steps (Bakker, van Bekkum, et al., 2021).

2.4. Ontology Engineering and Large Language Models
Ontologies represent real-world knowledge. Human knowledge is encoded in human language. And Large Language
Models (LLMs) can process and produce human language. The connection between these two seems obvious, thus
this is not the first research, nor it will be the last, on how to apply LLMs to OE. In fact, Ontology Learning (OL) is a
discipline that combines Artificial Intelligence (AI) and knowledge engineering to automatically construct an ontology
from structured or semi-structured textual sources (Giglou et al., 2023). Some of the tasks of OL are automatically
identifying concepts, their meanings, and their relations to other concepts in texts, and even statements or facts, or
in OE terms, axioms (Giglou et al., 2023), facilitating or even replacing the manual work in the OE process. These
OE and OL tasks are very similar to the Natural Language Processing (NLP) capabilities of LLMs.

Within the field of NLP, LLMs have gained prominence as powerful tools for both comprehending and generating
human-like text (Chang et al., 2024). NLP is a branch of AI focused on enabling computers to understand and
interpret human language (Nadkarni et al., 2011). LLMs, built using the Transformer architecture outlined by
Vaswani et al. (2017), are notable for their complexity and high performance, featuring billions of parameters. LLMs
have been trained on huge amounts of data, from books, articles, and websites, which provides them with an important
knowledge base (Giray, 2023). Extracting information and processing real-world knowledge are some of the pillars of
ontology development.

Prompt Engineering
Frequently utilized in conversational contexts, such as ChatGPT – OpenAI’s conversational version of Generative
Pre-trained Transformer (GPT)1 – LLMs are capable of contextualizing and learning from human prompts (Chang
et al., 2024). Prompting an LLM consists of instructing the model what to do in natural language (Giray, 2023).
Prompts can be as simple as a question and as elaborate as a full text decomposed into several parts with instructions,
context, examples, and a defined output format. The quality of the prompts has a demonstrated positive impact on
the quality of the output (Marvin et al., 2024), but longer prompts do not lead to better results. These intricacies
associated with prompting LLMs have led to the emergence of a new discipline called Prompt Engineering. Marvin
et al. (2024, p. 389) define Prompt Engineering as ”the practice of developing and optimizing prompts to efficiently
use language models (LMs) for a variety of applications”. Prompt Engineering has the potential to enhance the
application of LLMs to OE by providing more control over the model’s output on the OE tasks that require a very
formalized format. But different OE tasks might require different prompting techniques. Some of the multiple Prompt
Engineering Techniques are:

• Zero-shot. This simple method consists of prompting the model once (e.g., asking a question) without giving
any examples, context, or further instructions. It refers to the ability of the model to perform a task accu-
rately without any prior training examples or specific task-related instructions, relying solely on its pre-existing
knowledge and generalization capabilities (Kojima et al., 2022).

• Few-shot. In this method, a limited number of examples of how to produce an output for the task is provided to
the model. This technique enables in-context learning and improves the model’s performance in more complex
tasks compared to zero-shot (Reynolds & McDonell, 2021).

• Chain-of-Thought (CoT). Within this technique the model is encouraged to generate a series of intermediate
reasoning steps that lead to the final answer, thereby improving its problem-solving accuracy and interoperability
(Diao et al., 2024).

• Prompt Chaining: Similarly to decomposed prompting, within this technique, the task is divided into several
simpler parts so that multiple prompts are sequentially linked together, allowing each intermediate output to
serve as input for the next step, thereby enabling more complex tasks to be performed and enhancing the overall
reasoning capability of the model (Sun et al., 2024).

• Retrieval-Augmented Generation (RAG). Though not exactly a prompting method, this technique en-
hances text generation by incorporating relevant information retrieved from an external knowledge base or

1https://openai.com/

https://openai.com/
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dataset. This method combines the capabilities of retrieval mechanisms to access pertinent data and generative
models to produce coherent and contextually enriched outputs, resulting in more accurate and informative
responses (P. Zhao et al., 2024). RAG could be a promising technique for the engineering of domain ontologies
by allowing the model to retrieve the domain information that the ontology engineers or domain experts specify
about the domain.



3
Analyzing the problem of ontology

extension

The chapter below describes the process followed to answer SQ1: How does the current manual process to extend
existing ontologies look like and what are the issues that ontology engineers are experiencing?. Through a round of
semi-structured interviews with ontology engineers and some experts in LLMs with experience in OE, their actual
approach to extending and ontology can be modeled; and the complexity in the ontology extension process is revealed,
and presented in an Ishikawa diagram1, as suggested by Johannesson and Perjons (2021). Furthermore, the concerns
about the use of LLMs for the process of OE are identified, and the main opportunities that the interviewees perceive
for the application of LLMs to the OE tasks are discussed.

3.1. Method: Interviews
To understand a problem, it is crucial to understand the practice in which the problem exists (Johannesson & Perjons,
2021). Because there is no standard OE methodology that explains the practice followed by the ontology engineers at
TNO, we decided to extract this practice inductively through semi-structured interviews with the practitioners. The
utilization of semi-structured interviews allowed for a nuanced exploration of participants’ perspectives, experiences,
and attitudes related to the complexities in the ontology extension process and the application of LLMs. This method
facilitated open-ended discussions, enabling participants to express their thoughts and insights in their own words.
Looking at the problem of the application of LLMs to the manual process of ontology extension from a socio-technical
perspective, in contrast to a technical one, requires a human-centered approach. Through the interviews with ontology
engineers and experts in LLMs, we can understand the struggles that they experience in their daily work, and identify
the current problems for the effective application of LLMs to the ontology extension process.

3.1.1. Interview protocol
As pointed out by Seljemo et al. (2024), this inductive approach allows to extract the knowledge and perspectives
from real experts in the topic and from the potential users of the framework to be designed, and to model their current
way of working directly from their daily practices with higher richness in perspectives and experiences. This method
aligns with the first activity of the method framework for Design Science proposed Johannesson and Perjons (2021):
understand and explain the problem experienced by the stakeholders of a practice. In this case, the stakeholders are
the ontology engineers and the practice is extending an existing ontology.

A total of 11 TNO experts were interviewed (see list in Section B.0.1 of Appendix B). The list was crafted based
on their role, and aimed at a variety of level of experience, expertise focus, and background. The participants were
recruited through TNO’s official channels (MS Teams and MS Outlook), providing the questions beforehand and an
Informed Consent Form document that they had to agree with, sign, and send through email before the interview.
The potential participants had the freedom to accept or decline their participation, to ask questions at any moment,
to allow or not the recording of the interview and the summarized transcript of the interviews to be used within
this research project and to be published in the public repository of the Delft University of Technology. The entire
data collection method was designed following TU Delft Data Management policy, including a risk management plan
approved by the Human Research Ethics Committee (HREC). The interviews were held offline and online (through
MS Teams), depending on their own preference, and lasted between 30 minutes and 1 hour approximately.

1https://en.wikipedia.org/wiki/Ishikawa_diagram
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The interview guide can be found in Section B.0.2 of Appendix B. It consists of differentiated parts: one focused on
the Ontology Engineering (OE) and ontology extension process, and another one focused on the use of LLMs for OE.
The purposes of the interviews were:

1. To understand and model the process of ontology extension by:

• Understanding the steps or downstream tasks followed by ontology engineers in practice;
• Identifying the stakeholders most frequently involved in the OE process;
• Identifying the tools that are currently used by ontology engineers for OE;

2. To identify the problems with ontology extension and the challenges and opportunities of applying LLMs to
OE by:

• Identifying and understanding the main struggles for the ontology engineers in the ontology extension
process;

• Identifying and understanding the concerns about the use of LLMs for OE;
• Identifying perceived opportunities of LLMs for OE.

All the interview summaries are included in Section B.0.3 of Appendix B.

3.1.2. Data analysis
The qualitative, empirical data collected through the semi-structured interviews, in the form of transcriptions and
their summaries (raw data) (see Section B.0.3 in Appendix B), has been manually analyzed using Excel tables and
performing content analysis, following Erlingsson and Brysiewicz (2017) and Seljemo et al. (2024).

For the first purpose of understanding the current process of ontology extension, the interviewees were asked to
describe the steps they follow to extend an existing ontology, to name the stakeholders involved in the process from
their own experiences, and to enumerate the tools they use. This information in combination with desk research
and internal TNO documentation about OE practices, such as TNO’s internal documentation for best practices in
OE, REPRO (Bakker, van Bekkum, et al., 2021), has been used to build a flowchart diagram of the current ontology
extension process, presented and discussed below in Section 3.2.

For the second purpose of identifying the problems in the ontology extension process and regarding the use of LLMs,
the content of the interviews’ transcripts has been analyzed focusing on three overarching themes:

1. The complexity of ontology extension.
2. Concerns about the use of LLMs for Ontology Engineering (OE).
3. Opportunities for the use of LLMs for Ontology Engineering (OE).

For each of these themes, meaning units have been extracted from the data set (the set of 11 interview transcripts)
focusing on the responses to the questions relevant to the theme being analyzed. The meaning units have been
condensed and further assigned to broader categories covering the condensed meaning units. These categories have
been inductively generated by looking at the condensed meaning units and defining a concept that groups two or
more condensed meaning units, following Erlingsson and Brysiewicz (2017). For each theme, the resulting condensed
meaning units and categories have led to the creation of a different visualization to synthesize the data analysis
carried on that theme.

The results of the content analysis for each overarching theme are presented and discussed in Section 3.3.

3.2. Understanding the process of ontology extension
As ratified by most interviewees, the process of ontology extension is neither static nor linear. It heavily varies
depending on different factors such as time and budget constraints for the project (Interviewee 9), the type of ontology,
i.e., reference or operational ontology (Interviewee 8), the availability of standards or structured documentation for
the domain or specific use case (”Bottom-up approach”) or the need to extract the knowledge from the domain
experts (”Top-down approach”) (Interviewees 3 and 5), and even personal preferences such as the choice of using
Compentency Questions (CQs) (Interviewee 8). To model the ontology extension process from the point of view
of the ontology engineer, we have decided to use a flowchart diagram2 (see Figure 3.1), since it allows us to model

2https://en.wikipedia.org/wiki/Flowchart

https://en.wikipedia.org/wiki/Flowchart
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different downstream tasks (transparent, rounded boxes) and sub-processes that are followed as a result of making
a specific choice (grey, rectangular boxes). The tasks performed depend on the experience of the ontology engineer,
the type of extension to be made, the availability and quality of the data, documentation and/or standards that can
be used for developing the ontology extension, the complexity and quality of the ontology to be extended, and the
possibility of reuse of existing ontologies.

In the image’s background, the different layers frame the tasks into the phases in the ontology extension process.
Inspired by the phases defined by the REPRO Handbook (Bakker, van Bekkum, et al., 2021), as well as by method-
ologies such as SABiO (Falbo, 2014) (widely known in TNO) and HCOME (Kotis & Vouros, 2006), the phases
considered within this research project are defined in Table 3.1. Note that phases 5) Exploitation and 6) Validation
are left out of the scope in the flowchart diagram since they do not involve the active participation of the ontology
engineer, but they do have an impact on the ontology extension process since the feedback coming from the end
users in these phases might lead to the revision of one or more of the tasks carried out in the previous phases. The
Preparation and Conceptualization phases are the ones with more tasks in the modeled process, according to the
flowchart diagram, compared to the Implementation and Verification phases. All decisions that lead to the execution
of one task or another also fall within the first two phases. This might indicate that the first two phases entail more
complexity in terms of the number of tasks to be executed and the number of decisions to be made.

Table 3.1: Phases in the ontology extension process, inspired by REPRO (TNO’s internal documentation for OE best
practices) (Bakker, van Bekkum, et al., 2021), SABiO (Falbo, 2014) and HCOME (Kotis & Vouros, 2006).

Phase # Phase name Goals

1 Preparation Familiarize/learn about the ontology, the domain and use case. Define purpose
of the ontology and test cases. Decide how to perform the extension, which
stakeholders to involve, and find/identify necessary knowledge sources

2 Conceptualization Identify main concepts and relations and create a conceptual design of the ontol-
ogy extension

3 Implementation Write the operational ontology in a formal language (e.g., OWL, RDF). In RE-
PRO this phase is referred to as ontology formalization (Bakker, van Bekkum,
et al., 2021)

4 Verification Check that the ontology is extended correctly
5 Exploitation Integrate the ontology within an information system exploited by the end users
6 Validation Check that the correct extension has been added

An important initial decision to make is whether the extension can be done by adding a single concept to the ontology,
e.g., because that concept is missing and/or needed for a specific use case, or if the extension entails a conceptual
expansion. This refers to the situation in which a new technical innovation or regulation must be modeled in the
ontology, and various concepts and relations must be added (sometimes this entails the creation of a new sub-ontology
that must be aligned to the existing one). However, it can be the case that when a conceptual expansion must be
developed, the ontology engineer chooses to add all the necessary concepts one by one, which means that the ontology
engineer will go over the ”single concept” branch in the flowchart several times until all the concepts and relations
are added to the ontology. It is worth mentioning that, on the left-hand side of the Conceptualization phase in the
flowchart diagram, there is an entangled process covering the tasks and decisions necessary to reuse existing ontologies.
Though contributing to the complexity of the process, the reuse of existing standards is regarded as a good practice
within the OE community. The complexity added relies on the fact of having to interact with external stakeholders
when an external ontology needs to be used (in this sense ”external” refers to ontologies developed outside of TNO).
Having to communicate and agree with these stakeholders usually slows down the process. These stakeholders are
not included in the ontology extension flowchart since they are out of the scope of this research project.

According to the experiences of the interviewees, the stakeholders currently included in the process are:

• Ontology Engineer: They design and develop the ontology extension. Kotis and Vouros (2006) identify
them as knowledge engineers, whereas Falbo (2014) distinguishes between ontology engineer, ontology designer,
ontology programmer, and ontology tester. At TNO, all of these responsibilities are grouped into the single
role of the ontology engineer, therefore we only include this role. Note that when this stakeholder appears in
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the flowchart diagram, it means that the ontology engineer working on the extension collaborates with other
ontology engineers within that task.

• Domain Expert: They hold the domain knowledge the ontology covers. They are mainly involved in the
initial stages to extract the information and requirements needed for the next phases, especially for the Concep-
tualization phase. They are sometimes referred to as the ”customers” of the project (Interviewee 10) since the
need for extension is usually initiated at their request. Thus, they are often involved in the verification phase
to check that the ontology (extension) designed meets their requirements.

• Knowledge Worker: Kotis and Vouros (2006) define this stakeholder as ”any member of an information
production-exploitation community” (Kotis & Vouros, 2006, p. 110). Here, we define this role as the one
responsible for importing and integrating the extended ontology within the information system that makes
use of it (usually a data scientist or software engineer at TNO). In some cases, the ontology engineer also
plays the role of the knowledge worker to some extent. For example, interviewees 7 and 9 focus on developing
operational ontologies to integrate them within the Semantic Treehouse, a vocabulary hub developed by TNO
that facilitates semantic interoperability across different organizations and institutions through the creation of
messages and data mappings based on standards.

The ontology extension process depicted in Figure 3.1 also includes the relevant OE tools that are currently used
to execute the task at hand. In practice, there are not many tools tailored to OE. The OE software most used by
ontology engineers at TNO is either TopBraid or Protégé. Some ontology engineers prefer to use a generic Integrated
Development Environment (IDE) such as Visual Studio Code, together with extensions for Resource Description
Framework (RDF) and Turtle syntax. For collaborative tasks, such as sharing and reviewing the ontology code,
software platforms such as GitHub and GitLab are used. Finally, the verification is carried out manually, by creating
a visualization of the ontology extension or the extended ontology and presenting it to other ontology engineers and to
the domain experts. The ontology engineers at TNO currently prefer software tools such as draw.io3 or MS PowerPoint
to create ad-hoc visualizations of their ontologies, since automatic visualization tools such as the ones provided as
plugins by TopBraid or Protégé, or independent software for ontology visualization such as WebVOWL (Lohmann
et al., 2015) do not provide the flexibility they need to generate visualizations that can be easily communicated to
all the stakeholders including those with less technical knowledge on OE, such as the domain experts. The topic of
ontology visualization was discussed during several internal REPRO sessions.

3https://www.drawio.com/

https://www.drawio.com/
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Figure 3.1: Current ontology extension process (As-Is) modeled through the empirical data gathered from the interviews,
and inspired by REPRO (TNO’s internal documentation for OE best practices) (Bakker, van Bekkum, et al., 2021), SABiO
(Falbo, 2014) and HCOME (Kotis & Vouros, 2006). Abbreviations: Compentency Questions (CQs), Resource Description

Framework (RDF).



3.3. The problems with ontology extension and the application of LLMs 21

3.3. The problems with ontology extension and the application of LLMs
In this section, the results from the content analysis of the interviews in the three overarching themes 1) The complex-
ity of ontology extension; 2) Concerns about the use of LLMs for Ontology Engineering (OE); and 3) Opportunities
for the use of LLMs for Ontology Engineering (OE); are discussed.

Theme 1: The complexity of ontology extension
The assumption that the ontology extension process is complex is not true for all the interviewees. Most of the
interviewees agree that the complexity of the process depends heavily on the expertise and experience of the ontology
engineer, on the level of familiarity with the domain, and on the size and quality of the ontology to be extended.
However, all of them claim to have experienced several difficulties in the process of ontology extension.

Focusing on the causes of the complexity of the ontology extension process, seven broader categories have been
identified following the content analysis process (described previously in Section 3.1.2). Figure 3.2 shows an example
of the analytic process for this theme. The full analysis can be found in Table B.2 (Appendix B). As introduced in
Section 3.1.2, the relevant meaning units were compiled using the transcript of the interviews, and focusing on the
questions relating to Theme 1. The meaning units are words or sentences (sometimes rephrased sentences to simplify
the analytical process) with a meaning related to the theme analyzed. From the meaning unit, one or more condensed
meaning units are assigned. These are shorter versions of the meaning units that summarize the content in a few
words while trying to maintain the same meaning. Finally, every condensed meaning unit is assigned to a category
that we defined by trying to cluster the condensed meaning units into broader groups, taking into account the meaning
and context of the condensed meaning unit in relation to the category defined. In this case, the categories group
together related problems that, according to the ontology engineers, make the ontology extension process complex.

Figure 3.2: Example drawn from the analytic process for the theme: ”The complexity of ontology extension”. Full analysis
in Table B.2 (Appendix B).

The Ishikawa diagram presented in Figure 3.3 compiles these difficulties or problems into seven categories identified
through the content analysis of the interviews’ data set. This type of visual representation is used to illustrate the
potential causes that produce a specific effect. Thus, the causes are the difficulties mentioned by the interviewees,
grouped into broader categories that influence the effect ”the ontology extension process is too complex”:

• Stakeholders: refers to the issues related to the inherent complexities of the multi-actor decision-making
process for building consensus on the conceptualization of the ontology, and the characteristics of the actors.

• Process: refers to the technical process of ontology extension, i.e., covering the tasks performed only by
ontology engineers.

• Governance: refers to the set of principles used to manage the development, maintenance, and evolution of
ontologies.

• Status quo: refers to the existing state or condition of the ontology that has to be extended, and the data
sources available.

• Expertise: refers to the level of experience of the ontology engineers in their role.
• Domain: refers to the domain knowledge the existing ontology covers or the specific domain area the extension

to the ontology must cover.
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• Tools: refers to existing software tools of methodologies for ontology extension.

The two first categories, Stakeholders and Process, are the ones with the biggest branches in the diagram. This
seems to indicate that these are the categories that influence the most the fact that the ontology extension process
is complex. Though not shown in the diagram, there are relations between the problems identified in each category.

Most interviewees mentioned that trying to agree on the knowledge that the ontology or the extension of the ontology
must represent often leads to long discussions. Among many other factors, this can be due to the fact that sometimes
domain experts do not have the technical knowledge to effectively translate the domain knowledge into a standard –
the ontology – that is simple enough, reusable, and compliant with other existing standards, especially when there is
a lack of well-structured documentation or standards on the domain or the specific use case to be modeled (related to
Category: Domain). Interviewee 3 mentioned that some domain experts are ”too powerful”, i.e., they want to decide
how the data must be modeled, which makes it difficult to build the necessary consensus.

The process of ontology extension often requires a high abstraction level, to successfully capture the main concepts in
a domain and the relations between them, but also in a way that meets the requirements of the system in which the
ontology must be integrated. This is the most common situation at TNO: the development of operational ontologies
that are designed and built to be used within an information system. The complexity of such an abstraction process
grows even more when the ontology engineers are not familiar with concepts that need to be added to the ontology
(related to Category: Expertise), or because the domain is too complex itself (related to Category: Domain). As
mentioned before, the model must be accurate enough to the domain information to be modeled, but simple enough
so it can be captured within an ontology.

This accuracy will be higher when more stakeholders with knowledge of not only the domain but also the specific
use case are involved in the conceptualization phase of the ontology extension process. However, it is not always the
case that all the possible perspectives are present, for several reasons such as time and budget constraints on the
project (related to Category: Stakeholders). It was discussed with several interviewees (for example with Interviewee
2), that the ontology engineers and domain experts are the main stakeholders in the process of ontology extension (or
in general OE), but that other roles such as the expert in charge of integrating the operational ontology within the
information system (usually a data scientist or software engineer), or even the end users of that information system
are rarely involved in the ontology development. As discussed with Interviewee 3, the more variety of stakeholders
included, the more richness in the ontology modeled, but the slower the process might get. In contrast, Interviewee
9 disagreed with this statement, arguing that having early expert verification can help the ontology engineers to
continue the following stages of the design process with a more refined model and avoid having to make changes when
all the information is modeled, often more cumbersome.
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Figure 3.3: Ishikawa diagram mapping the problems causing the complexity in the ontology extension process. Based on
the content analysis of the data collected through the interviews. Numbers in brackets refer to the interview(s) in which the

problem was mentioned/discussed.

Finally, it is worth mentioning that there exists a dilemma between the amount of application-specific data that should
be added to an ontology. This concern was discussed with Interviewee 5, who referred to this issue as ”Governance”
of the ontology, ”when there are multiple use cases” represented in the ontology.

”And also another discussion is that sometimes people want to put something in the [Common Greenhouse
Ontology (CGO)], or in another ontology, when it may not really be on that level because it may be really
application-specific because the application just needs some kind of company-specific property, and then we
get the request of: Can we add that to the ontology? Can we add that to the CGO? Well, it may need to
be in the application. [...] [T]here might need to be an [Resource Description Framework (RDF)] property
for that, but it does not necessarily need to be in the ontology that’s being standardized. And that’s also
something where I see more of a paradigm discussion about: “Should everything be in the ontology? (From
Interviewee 5).

This issue might need a chapter or even dedicated research on its own. Here, it can be mentioned that this dilemma
might have a relevant influence on several identified problems such as the size or complexity of the ontology (Category:
Status quo), the systems’ dependence on the ontology and the difficult maintenance of having to manually change
the code and documentation if a (breaking) change is introduced (Category: Tools). This ”interwovenness” between
problems illustrates the high complexity that ontology-based systems can present.
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Theme 2: Concerns about the use of LLMs for Ontology Engineering
The ontology engineers interviewed were asked if they have used LLMs for any task regarding OE or not and if not,
what their concerns are for not using them. Following the same methodology as with Theme 1, but this time focusing
on the concerns about the use of LLMs for OE, six broader categories have been identified throughout the content
analysis. In this case, the categories refer to areas of related concerns about the use of LLMs for OE, as identified
by the interviewees. Some condensed meaning units are associated with two categories. This means that by the
conversation and the context, we identified that the concern is related to these two different areas. Figure 3.4 shows
an example of the analytic process for this theme. The full analysis can be found in Table B.3 (Appendix B) The six
categories are defined as:

• Impact: refers to the effect that using LLMs can have regarding broader societal concerns.
• OE expertise: refers to the technical skills and expertise required for the OE tasks.
• Performance: refers to the technical functionalities of the LLMs.
• Regulation: refers to the regulatory context of LLMs.
• Skills: refers to the knowledge needed to effectively use LLMs (for OE).
• Academic Rigour: refers to the availability of academic research on the area of LLMs (for OE).

Figure 3.4: Example drawn from the analytic process for the theme: ”concerns about the use of LLMs for OE”. When a
condensed meaning unit is associated with two categories with a ”/”, it means that that condensed meaning unit is related to

both categories. Full analysis in Table B.3 (Appendix B).
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Figure 3.5: Concerns about the use of LLMs for OE. Visualization inspired by Network Theory. Based on the content
analysis of the data collected through the interviews. Numbers in brackets refer to the interview(s) in which the problem was
mentioned. The concerns that were mentioned by at least 4 interviewees are highlighted in orange, and the concerns that

were mentioned by at least 3 are highlighted in yellow.

These six categories are represented in Figure 3.5 as circular nodes. These are bigger if the category (node) has
more condensed meaning units associated with it (links), or – in network theory words – if their degree is higher.
We have chosen this kind of visualization inspired by network theory because it helps to easily identify the areas of
concern deemed more important according to the responses of the interviewees. Thus, in general, the concerns of the
interviewees seem to be mostly related to the category of Impact. In fact, the most frequently mentioned concerns
are the impact of LLMs in the environment, since running LLMs is resource-heavy in terms of energy consumption,
according to the interviewees; the potential loss of the OE human processes that are regarded as enriching for the
ontology engineers (e.g., fruitful discussions with stakeholders, learning about different domains, interacting with
other experts, building a common vision on the domain knowledge, etc.); and, connected to the regulatory context,
the security of the data provided to the LLM, due to potential confidentiality breaches when modeling sensitive
information (e.g., defense domain); and the lack of transparency, as LLMs are seen as ”black boxes”.

On the side of the technical performance of LLMs, the concern of hallucinations is the most mentioned by the
interviewees. The concept of ”Hallucinations” is already widely used to refer to the fact that sometimes LLMs
generate responses that seem correct but that contain wrong information (Ye et al., 2023). This is closely related
to ”Factuality” (Cao et al., 2022), or the extent to which the response given by the LLM corresponds to reality.
However, according to the definitions given, the fact that the problem of hallucinations is mentioned more often
might be related to the general agreement that the output of the LLM must be always verified, preferably by an
expert. Thus, factuality can be corrected with human expertise, but hallucinations might be more difficult to spot
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by ontology engineers with less experience.

This hybrid approach combining the LLM capabilities with human expertise was indeed mentioned by several inter-
viewees. This is included in the category of OE expertise because, according to the interviewees, the OE field requires
a high level of expertise due to the level of abstraction needed to model the information, minimizing ambiguity but
maximizing reusability of existing standards and ontologies, in combination with the technical skills required. This
seems to support the idea that the application of LLMs to OE is especially challenging, as discussed by authors such
as Neuhaus (2023). The fact that (in general) LLMs are not tools specifically tailored to the needs of the OE tasks
(or to many other tasks, as pointed out by Interviewee 6), seems to call for a hybrid approach of ontology extension
using LLMs.

”[An LLM is] not a model of the world, [it] is just a model of our language”. (From Interviewee 6).

Theme 3: Opportunities for the use of LLMs for Ontology Engineering
Within this final theme for the qualitative analysis of the interviews, the interviewees were asked about the opportuni-
ties they believed LLMs can be successfully used regarding OE tasks. Following the same content analysis approach
as with the previous two themes, five broader categories are defined. These five categories group the condensed
meaning units into some of the phases in the ontology extension process defined in Table 3.1. The process for this
theme is exemplified in Figure 3.6. The full analysis can be found in Table B.4 (Appendix B). The suggested potential
applications of LLMs to OE activities are grouped into:

• Preparation: refers to the OE tasks within the preparation phase in the ontology extension process as defined
in Table 3.1.

• Conceptualization: refers to the OE tasks within the conceptualization phase in the ontology extension
process as defined in Table 3.1.

• Implementation: refers to the OE tasks within the implementation phase in the ontology extension process
as defined in Table 3.1.

• Verification: refers to the OE tasks within the verification phase in the ontology extension process as defined
in Table 3.1.

• Supporting activities: refers to tasks not related to any phase in particular, but that the ontology engineer
can perform to support the other activities at any stage.

• Approach: refers to the broader approach for ontology extension using LLMs.

Figure 3.6: Example drawn from the analytic process for the theme: ”opportunities for the use of LLMs for OE”. When a
condensed meaning unit is associated with two categories with a ”/”, it means that that condensed meaning unit lies between

the two categories. Full analysis in Table B.4 (Appendix B).

Figure 3.7 presents a visualization of these categories and the condensed meaning units associated. As highlighted in
the figure, several interviewees mentioned that they would use an LLM, especially for the initial preparatory stages
in which creativity and inspiration are needed to identify the concepts from the domain that could be added to
the ontology, especially when the ontology engineer is not familiar with the ontology to be extended, or with the
extension to be made. This task also intersects with the conceptualization stage in which the ontology engineer tries
to reuse concepts from existing ontologies since an LLM could be asked to provide this information, as suggested by
Interviewee 11.

Within Implementation-related tasks, some interviewees said that LLMs could be used as ”suggestion machines”
(Interview 2) or syntax checkers to provide the ontology engineer real-time advice on best practices while manually
formalizing the ontology, i.e., manually creating the ontology with tools such as Protégé or TopBraid or directly
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writing Web Ontology Language (OWL)4, Resource Description Framework (RDF)5 or Shapes Constraint Language
(SHACL)6 code in a Integrated Development Environment (IDE).

Figure 3.7: Opportunities for the use of LLMs for OE. Based on the content analysis of the data collected through the
interviews. Numbers in brackets refer to the interview(s) in which the idea was mentioned/discussed. The opportunities that
were mentioned by at least 4 interviewees are highlighted in blue, and the opportunities that were mentioned by at least 3 are

highlighted in green.

Special attention must be directed towards SPARQL7 query generation. SPARQL is a query language for RDF
developed by the World Wide Web Consortium (W3C)8. These queries are normally the translation of natural
language questions into machine-readable questions, also known as Compentency Questions (CQs) (Wiśniewski et al.,
2019). CQs are the questions that the ontology must answer. In the ontology engineering process, they are created at
the beginning when the stakeholders (ontology engineers, domain experts, etc.) are deciding which information must
be added to the ontology and how. At TNO, many ontology engineers use CQs throughout the whole OE process
and especially at the end to verify that the knowledge to answer the question is correctly modeled in the ontology.
In systems engineering terms, CQs is to ontology as requirements are to a system. They capture the stakeholders’
needs and guide the design process. Once the requirements are fulfilled, the system is ready for implementation
or exploitation. An additional function of CQs, as discussed by Interviewees 5 and 8, is to set the finish line for
the ontology engineer to know where to stop including data in the ontology. This is important to avoid ontologies
containing redundant information and growing too much in size and complexity. Previous research at TNO, showed
that the application of LLMs to the translation of natural language questions to SPARQL queries is in a Technology
Readiness Level (TRL) of 7, the highest in comparison to other tasks such as automatic ontology generation (TRL

4https://www.w3.org/OWL/
5https://www.w3.org/RDF/
6https://www.w3.org/TR/shacl/
7https://www.w3.org/TR/rdf-sparql-query/
8https://www.w3.org/

https://www.w3.org/OWL/
https://www.w3.org/RDF/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/
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1-2) of ontology matching/alignment (TRL 3-4) that these TNO experts investigated (Bouter et al., 2024). They
argue that there are already commercial prototypes that provide SPARQL generation functionalities using LLMs,
which seems to indicate that this application is feasible. Moreover, they conducted an experiment that consisted
of asking several TNO employees with various levels of expertise on ontologies, Semantic Web technologies (such as
SPARQL), and the logistics domain to translate natural language questions into SPARQL queries using various tools
and documentation sources, including an LLM-based tool. The goal of the experiment was to identify what level of
expertise is still required to formulate correct SPARQL queries using LLMs within an ontology in the logistics domain.
Through several experiments and survey questions, they found out that participants with less expertise found the
help of the LLM more useful than the more experienced participants. Still, all participants did not fully trust the
LLM-based tool and were aware of the limitations and the need to evaluate the suggestions provided by the LLM.
Bouter et al. (2024) finally point out that, while LLMs can be a powerful tool especially to ease the learning process
for less experienced users, in practice, the responses by the LLM are incorrect on average, and thus expert knowledge
remains indispensable.

Finally, several interviewees mentioned that they would see the potential for the use of LLMs in smaller or repetitive
OE tasks where full accuracy is not needed and that can be more easily checked by the expert. As Interviewee 8
pointed out:

”[T]he more specific and [the] smaller the task is, the better it performs”. (From Interviewee 8).

Examples of these ”small/simple” tasks are keyword extraction or relation extraction (from Interviewee 5). This aligns
with a human-in-the-loop or, more specifically, expert-in-the-loop approach, frequently mentioned by the interviewees.
In general, all interviewees know the importance of human verification of the LLMs output and the expertise required
for it, especially in the field of OE. Last but not least it is important to mention that despite all the ontology
engineers recognizing that LLMs could be useful for certain OE tasks, most of them have little or no experience with
the use of LLMs for ontology engineering or development tasks, and there is a certain feeling of skepticism among
the interviewees about the successful application of LLMs to OE, at least in the near future.

3.4. Conclusion
In this chapter, we employed semi-structured interviews as the research method and content analysis as the data
analysis method to address SQ1: How does the current manual process to extend existing ontologies look like and
what are the issues that ontology engineers are experiencing?. Through a comprehensive analysis of the gathered
data, several key findings emerged.

Firstly, there is no standard process for ontology extension. The current process of ontology extension highly varies
depending on many factors such as the level of experience and expertise of the ontology engineer, the availability
and quality level of data sources, or the possibility of reuse of existing standards and ontologies, among many other
factors discussed in this chapter. The participation of stakeholders in the process is limited to the roles covered by
the ontology engineer and the domain expert, and in some tasks, the role of the knowledge worker is incorporated or
partially played by the ontology engineer. In the current process of ontology extension, most of the activities that
require complex decision-making are in the initial phases, namely the Preparation phase and the Conceptualization
phase. The use of Compentency Questions (CQs) for developing ontologies is currently a personal preference of the
ontology engineer. Regarding tools, ontology engineers at TNO mainly use OE tools such as Protégé and TopBraid for
the implementation of the ontology in a formal language such as RDF, even though several ontology engineers prefer
generic code editing software such as Visual Studio Code. The verification of the (extended) ontology is done manually
through visualizations that are also manually created by the ontology engineers, mainly using general-purpose software
for diagram generation. This provides the flexibility that the ontology engineers need to create visualizations that
can be communicated to stakeholders with different levels of OE expertise, such as domain experts. If CQs have been
formulated, these are used again to verify that the necessary data to answer them has been correctly modeled within
the ontology. Through the creation of a flowchart diagram (see Figure 3.1) we have illustrated the answer to the first
part of SQ1.

Secondly, the process of ontology extension is not always complex. The level of complexity mainly depends on how
big and complex the ontology to be extended is, on the complexity of the domain itself, and on the level of experience
of the ontology engineer both with the OE tasks and the domain. However, the size and complexity of the ontologies
developed at TNO are growing, which is heavily influenced by the need to model application-specific data within the
ontology. The question of the appropriate degree of application independence in ontologies is currently a subject of
ongoing discourse within the ontology engineering community at TNO. Overall, ontology engineers often face several



3.4. Conclusion 29

issues when extending ontologies. These include the time-consuming process of aligning with domain experts, who
possess varying degrees of technical proficiency and influence over modeling decisions, the need for high levels of
abstraction and expertise, and the lack of tailored tools, leading to predominantly manual ontology development and
maintenance. All the factors that contribute to the complexity of the ontology extension process have been illustrated
with an Ishikawa diagram (see Figure 3.3).

Finally, the application of LLMs to solve the problems faced by ontology engineers is not a straightforward solution.
Although all ontology engineers interviewed acknowledged most of the performance problems that LLMs present
regarding their effective application to the field of ontology engineering, such as hallucinations, factuality, incon-
sistencies and lack of reliability – particularly problematic given the high abstraction level, human understanding,
reasoning demands, and precision required in ontology engineering – it is noteworthy that environmental impact
concerns stemming from LLM usage emerged as a common concern in the interviews. Interviewees frequently ex-
pressed apprehensions regarding the potential loss of the enriching human-related aspects inherent in the ontology
engineering process. Automating the process of ontology extension might be not only not possible right now, but also
not desired within the ontology engineering community. However, even if LLMs are not currently inside the toolkit
of the ontology engineers at TNO, all of them see promising benefits in using LLMs to complement their expertise
and ease some of the cumbersome tasks associated with the ontology engineering process.

In crafting a human-centric framework that harnesses the capabilities of LLMs to facilitate the ontology extension
process, it is imperative not only to comprehend the intricacies of this process and identify its primary sources of
complexity but also to discern the current reservations preventing ontology engineers from embracing LLMs. By
addressing these concerns in the framework’s design, we aim to alleviate barriers and capitalize on the opportunities
recognized by experts to create a design that can be actually implemented and used.



4
Requirements for a framework for ontology

extension

This chapter describes the process followed to answer SQ2: What are the requirements for a human-LLM collaboration
framework for ontology extension?. Addressing a problem that initially appears predominantly technical through a
holistic systems engineering approach might be an unconventional practice. In order to find previously elicited
requirements for the design of similar approaches combining ontologies with LLMs, we searched for relevant academic
sources on the application of LLMs to OE. Since relevant literature on the topic is scarce, we employed a multifaceted
approach to elicit requirements for the design of the process framework for human-LLM collaboration in ontology
extension. This approach involved using the results of the semi-structured interviews conducted within the previous
chapter and organizing a focus group to elicit requirements and validate them, respectively. To prevent overlooking
the legal context of the proposed design, the alignment of the design with the EU AI Act is briefly discussed. At the
end of this chapter, the final list of functional and non-functional requirements, as categorized by Johannesson and
Perjons (2021), is presented.

4.1. Outlining the artifact
The artifact to be designed is a ”process framework for human-LLM collaboration for ontology extension”. The
aim is to define a structured approach, a set of guidelines, and best practices for facilitating collaboration between
humans and Large Language Models (LLMs) in the context of ontology engineering, with a focus on the ontology
extension process. This framework delineates the stakeholders, tasks, and interactions involved in leveraging both
human expertise and LLMs capabilities in the process of ontology extension.

Following the categorization of theory types in IS research developed by Gregor (2006), the aim is to design a process
framework that analyzes ”what is” the structure of an ontology extension process that can be assisted by LLMs. The
process framework does not intend to be prescriptive, in other words, it is not meant to tell ontology engineers ”what
to do” or ”how to do it”. Rather, the framework aims to be descriptive, analyzing the current process of ontology
extension and showing ontology engineers how LLMs could be used as a tool to facilitate some of the downstream
tasks of this process. The decision whether to use the LLMs or not remains within the ontology engineer – the user
of the framework.

4.2. Requirements elicitation
In this section we introduce the requirements elicitation process and the methods employed to establish the design
requirements for the artifact outlined above. First, we searched in academic databases for published sources addressing
the application of LLMs to OE processes, aiming to find similar designed artifacts based on demonstrated requirements
that can be reused within this design research. Second, we elicit requirements directly from the intended users of
the artifact – the ontology engineers – using the results of the interviews presented before in Chapter 3. Third, we
complete and validate the previously elicited requirements list with a focus group. Finally, we discuss how the design
framed by the elicited requirements aligns with the EU AI Act.

30
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4.2.1. Method 1: Literature search
To the best of our knowledge, a process framework that integrates both the downstream tasks of the ontology extension
process and the application of LLMs to those tasks does not exist yet. By querying ScienceDirect, Scopus, and Web of
Science with the query string ("ontology engineering" OR "ontology development") AND (llm OR large AND
language AND model OR artificial AND intelligence OR machine AND learning OR deep AND learning)
AND requirement only a few articles can be found (search realized beginning of May 2024) – 2 in Science Direct, 1
in Scopus, and 52 in Web of Science – from which only 2 (all of them from Web of Science) are partially useful for
this case. Due to the novelty of this topic, we have expanded this search using Google Scholar with the same query
string. Even though the amount of hits is excessive, the relevance is very low. After a quick scan of the titles and
abstracts, 4 articles from Google Scholar are selected. None of these sources explicitly identify requirements for a
process framework for ontology extension combining manual techniques with LLMs support, however, some of the
conclusions drawn by the authors of these 6 sources (2 from Web of Science and 4 from Google Scholar) can inspire
the requirements elicitation process. An overview of the 6 analyzed sources for the requirements elicitation process is
presented in Table C.1 (Appendix C). Overall, these sources emphasize the need for ontology development processes
that:

• Are iterative, clearly and concisely documented, and include the optimal number of stakeholders’ roles with
clear responsibilities to maximize efficiency in the process without lowering the quality of the developed (or
extended) ontology (Czarnecki & Orłowski, 2010).

• Can be applied to different domains and use cases, framing a clear (though complex) structure that facilitates
the work of the ontology engineers and captures the essential decision-making moments in the process (Hoekstra
& Breuker, 2010).

• Are semi-automatic, minimizing human intervention whenever feasible and desirable. A fully standardized and
automatic ontology development process seems to be unfeasible, but there is a need to alleviate the workload for
ontology engineers (Al-Aswadi et al., 2020), enabling them to focus their time and effort on tasks that demand
inherently human reasoning capabilities.

• Leverage of state-of-the-art tools (such as LLMs) that can minimize the complexity and quantity of the in-
teractions between ontology engineers and domain experts by facilitating the downstream tasks that ontology
engineers consider most demanding of computational support (Zhang et al., 2024).

• Promote and facilitate the reuse of existing ontologies, and lower the entry barriers for less experienced ontology
engineers (Stadnicki et al., 2020; Tudorache, 2020).

• Feature and foster innovative tools, which may or may not have been specifically designed for OE tasks, but
that can be used in a ”plug-in” fashion, allowing for a flexible and collaborative ontology development process
that supports the ontology engineering community in the long term (Stadnicki et al., 2020).

These key insights distilled from the literature will serve as foundational design principles for delineating the process
framework for human-LLM collaboration in ontology extension. Next, the requirement elicitation process and the
additional methods used (interviews and focus group) are described.

4.2.2. Method 2: Interviews
To extract the requirements inductively and directly from the users’ needs and values, we have used the information
gathered through the interview process for the exploration of the problem (Chapter 3). As exemplified by Johannesson
and Perjons (2021), the requirements for the outlined artifact can follow from the root causes of the problem that
the artifact will try to address and, ultimately, solve. As illustrated with the Ishikawa diagram presented in Chapter
3 (Figure 3.3), the problem addressed within this research is the complexity in the ontology extension process, and
the root causes fall within different categories. However, solving these problems is not enough if the concerns and
the opportunities that the ontology engineers perceive are not considered. Thus, based on the three themes explored
within the content analysis of the interviews, the requirements aim to:

1. Address the complexity of ontology extension (Theme 1).
2. Reduce the concerns about the use of LLMs for Ontology Engineering (OE) (Theme 2).
3. Leverage the opportunities for the use of LLMs for Ontology Engineering (OE) (Theme 3).

Appendix C compiles the coding of the categories and condensed meaning units for each theme. The process followed
to elicit the requirements consists of:
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• Step 1: For all the Condensed Meaning Units (CMUs) extracted from the content analysis of the interviews’
transcripts for Theme 1: ”The complexity of ontology extension”, generate a requirement. As mentioned above,
the aim is to address the main problems or issues that make the ontology extension so complex, according to
the ontology engineers. (Table C.2 in Appendix C shows the codes for the CMUs related to Theme 1).

• Step 2: Check if the elicited requirement in the previous step addresses any additional CMUs for Theme 1.
• Step 3: Check if the elicited requirement in the previous steps helps to reduce any of the CMUs for Theme

2: ”Concerns the use of LLMs for OE”. (Table C.3 in Appendix C shows the codes for the CMUs related to
Theme 2).

• Step 4: Check if the elicited requirement in the previous steps contributed to leverage any of the CMUs for
Theme 3: ”Opportunities for the use of LLMs for OE”. (Table C.4 in Appendix C shows the codes for the
CMUs related to Theme 3).

The list of requirements elicited from each CMU of Theme 1 is presented in Table C.5. The final list of requirements,
aligned with the CMUs of Theme 2 and Theme 3 is presented in Table 4.1. Note that the requirements resulting
from the elicitation process described above are high-level requirements. This can be due to the fact that the issues
discussed with the interviewees were also broad in the context of ontology engineering and that the design process
applied within this project is more abstract compared to designing a software tool or prototype aimed to solve a specific
problem. The artifact to be designed here aims to facilitate the whole process of ontology extension, providing a
high-level overview of the sequence of tasks, serving as a blueprint or roadmap for the ontology extension process,
regardless of the domain covered by the ontology or the extension to be made.

As an example to illustrate the requirements elicitation process: from issue T1-CMU.7.1:”Manual maintenance”, a
possible requirement to address it can be formulated as 1.11:”Include OE-tailored tools”. This means the framework
should feature existing tools built for Ontology Engineering (OE) that can reduce the burden of manual ontology
extension tasks. According to Tudorache (2020), the quality and availability of both open-source and commercial
tools for OE has been improving over the last decade. However, the number of tools currently being used by the
ontology engineering community at TNO is limited. By meeting this requirement, the framework can increase ontology
engineers’ awareness of existing tools that can facilitate the tasks in the ontology extension process. LLMs might
not be the only or the most adequate tool to solve all the difficulties associated with the ontology extension tasks.
Moreover, this requirement helps to reduce the concerns T2-CMU.1.1:”Environmental concern”, T2-CMU.1.2:”Ethical
concern” and T2-CMU.1.6:”Unintended use”, by promoting the use of OE tools over the use of LLMs when possible.
The complete list of requirements elicited from each CMU of Theme 1 following this process is presented in Table
C.5 (in Appendix C).

Table C.5 shows that 3 CMUs do not have an associated requirement. The CMUs for which design requirements have
not been identified are:

• T1-CMU.2.2: ”Trade-off accuracy vs. Simplicity”;
• T1-CMU.2.4: ”Reducing ambiguity”;
• and T1-CMU.3.1: ”Application-independent vs. need for application-specific data”

These three problems are particularly complex and broad in the context of OE, requiring complex human reasoning
and decision-making. Despite efforts to extract requirements for addressing each problem within the design of a
process framework for ontology extension using LLMs, some issues might not be currently solvable only by using the
designed process framework. To address these challenges, it is crucial to employ substantial human expert intervention.
The applicability of LLMs to OE presents inherent challenges that might not be fully addressed through automated
means or tasks framed within the ontology extension process framework. As such, while these problems remain
crucial considerations in the field, they do not lend themselves to clear and actionable requirements within the scope
of this design research.

4.2.3. Method 3: Focus group
As discussed above, the requirements identified from the interview data analysis are high-level requirements. To
refine these high-level requirements and confirm their validity, a focus group session was planned and executed. As
Johannesson and Perjons (2021) points out, focus groups facilitate the creation of innovative requirements through
collaborative discussions among stakeholders with diverse backgrounds.

The focus group consisted of a session within the REPRO group, a community of ontology engineers (and other TNO
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professionals interested in OE), with different expertise, levels of experience, and backgrounds. Within a session of 1
hour of duration, the following topics were addressed:

• Outline of the artifact to be designed.
• The process of ontology extension (As-Is): Figure 3.1 was presented and discussed.
• Brainstorming requirements for the process framework design using Mentimeter1 (interactive presentation soft-

ware that allows live polling and surveying). The participants were asked to anonymously answer the question
”What are the requirements for a human-LLM collaboration framework for ontology extension?”, and encouraged
to brainstorm ideas. After everyone finished, the participants were asked to anonymously vote for their three
preferred requirements amongst all the previously generated requirements. The most voted requirements/ideas
were discussed.

• The results of the analysis of the interviews covering the three themes discussed in Chapter 3 were presented,
which led to a fruitful discussion with the participants.

A total of 7 participants attended the session and 6 engaged in the live survey to brainstorm requirements. The
result of the brainstorming live survey is presented in Table C.6 (Appendix C). Note that, though the initial goal
of the session was to refine the high-level requirements previously elicited from the interviews, to minimize bias and
foster creative thinking, participants were not initially shown the requirements previously elicited. Instead, they were
presented with an example of how a requirement could be formulated. This approach aimed to encourage participants
to think creatively and generate innovative ideas during the session. From the ideas brainstormed within the focus
group session (identified with the code Bx):

• Some requirements previously elicited from the interviews were validated. As a straightforward example,
B17:”Backwards compatibility should be taken into account” validates requirement 1.5:”Support backward com-
patibility of ontology changes”. As a less obvious example, B11:”Should be usable in group setting” validate
requirement 3.2:”Be user-friendly and intuitive for ontology engineers with varying levels of expertise”. If the
proposed framework is intuitive and easy to use even for users with less experience in ontology engineering,
such as domain experts, the framework could be used in group meetings including diverse stakeholders with
varying levels of expertise.

• New requirements were added (see Table C.7). As an example, requirement 1.14:”Support formulation and
formalization of CQs” is elicited from B12:”LLM can generate SPARQL queries with competency questions”.

The complete list of requirements elicited from the ideas proposed by the ontology engineers during the brainstorming
session as part of the focus group is presented in Table C.7. The ideas that validate previously elicited requirements
are indicated. Note that ideas B3, B14, B21, and B22 have not been used to generate or validate any requirement.
This is because these ideas are too broad (e.g., B14:”Explainability”) or too specific (e.g., B3:”If an LLM provides
technical content, its sources should be listed”) to generate a feasible requirement that can be fulfilled within the
design of a process framework.

4.2.4. Alignment with EU AI Act
As already mentioned in the introduction section of this work (Section 1.3 in Chapter 1), one of the limitations of
the Design Science Research Approach is that, while highly flexible and applicable to a diverse range of problems,
it is focused on designing solutions that aim to address specific users’ needs. However, focusing too much on the
technical details for the effective implementation of the design can prevent the designer from taking into account
the legal context of the artifact. The rapid advancement of LLMs has ushered in an era of unprecedented confusion,
with these models outpacing regulatory frameworks. Both institutions and individuals are grappling with questions
regarding the safe and effective use of LLMs, and whether their utilization is appropriate at all.

To shed some light on this period of uncertainty, in 2021 the European Commission proposed the Artificial Intelligence
(AI) Act, recently passed in the European Parliament (European Parliament and Council of the European Union,
2021). As one of the first attempts to regulate AI, the text classifies AI-based systems according to the level of potential
risk of causing significant harm to individuals (Future of Life Institute, 2024). The act distinguishes different entity
types, namely providers, deployers, distributors, importers, product manufacturers, and authorized representatives
(European Parliament and Council of the European Union, 2021). Most of the compliance obligations fall on the
providers or developers of AI systems that are placed on the market for personal or commercial use. Since TNO is a
research organization and its research outputs are often not directly introduced to the market but are part of research

1https://www.mentimeter.com/

https://www.mentimeter.com/
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outcomes for commissioning organizations, it is unclear how the EU AI Act will impact their projects. However, TNO
researchers are aware of the legal context of their work and there is a common agreement on considering the EU AI
Act already in the early stages as a guideline to prevent future problems in the case of adoption of the technologies
and innovations that TNO’s research focuses on.

In this research project, the proposed design entails a semi-automated expert-in-the-loop approach, wherein the
ontology engineer retains decision-making authority regarding LLM utilization for specific tasks and the subsequent
handling of LLM outputs. Given this approach, the use of LLMs is likely to pose a low risk and is improbable to cause
harm to individuals, thereby probably classified as limited risk (lightly regulated) or even minimal risk AI system
(unregulated). Regarding LLMs, categorized as General-Purpose AI (GPAI) models by the EU AI Act, the text poses
the obligations on the providers of the GPAI models, mainly focused on the enforcement of copyright law concerning
the development and training of the models (Future of Life Institute, 2024). To adhere to the transparency obligation
for limited risk AI systems, TNO as an organization, should ensure that, in case the process framework designed
within this research project is implemented and used, its users are aware of their interaction with the LLM and the
implications of this interaction. It could be argued that ontology engineers at TNO are highly educated individuals
– many of them with a background in AI – and, as the interviews show, they are very aware of the implications
of the use of LLMs. However, the ontology extension process framework design aims to facilitate the tasks even
for less experienced ontology engineers and to frame the ontology extension process in such a way that even other
stakeholders such as domain experts could make use of it. As a ”provider” of a process that fosters the use of LLMs,
TNO should take the necessary measures to ensure that users of the process framework have the skills, knowledge,
and understanding necessary to make informed decisions about the use, risks, and opportunities of LLMs.

While a comprehensive analysis of the entire EU AI Act text lies beyond the scope of this research project, it is
imperative to acknowledge the significance of understanding the institutional context. As both the technical and
regulatory landscapes continue to evolve, anticipating all potential implications of the EU AI Act on the utilization
and interaction with LLMs proves to be a crucial step, also in the context of ontology engineering. While not directly
translated into actionable requirements for the process framework design, maintaining awareness of the broader
institutional framework is essential to ensure the effective implementation and utilization of any designed solutions.
This holistic approach provides valuable insights into the challenges and opportunities associated with successfully
integrating LLMs as a safe and powerful tool within organizations such as TNO.

4.3. Final list of requirements
As a result of the inspiration drawn from the literature, and the methods applied for the elicitation of requirements
described in the previous sections, Table 4.1 compiles the total set of 22 high-level requirements and their source,
categorized into functional, non-functional/structural, and non-functional/environmental following Johannesson and
Perjons (2021). Figure 4.1 summarizes the process followed to elicit the requirements, described in the previous
sections of this chapter.

As the name suggests, functional requirements address functions of the designed system, in this case, the process
framework (Johannesson & Perjons, 2021). These requirements cover the problems and needs of the ontology engineers
that the process framework designed will try to solve. On the other hand, non-functional requirements refer to
the structure and context or environment of the designed artifact, and thus they are subdivided into structural
and environmental (Johannesson & Perjons, 2021). Non-functional/structural requirements address the shape and
composition of the process framework, aiming to make the process framework usable. Non-functional/environmental
requirements address values that are important to the users, in this case, the ontology engineers at TNO.
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Figure 4.1: Illustration of the requirements elicitation process.

Table 4.1: High-level requirements for the human-LLM collaboration process framework for ontology extension. The
Condensed Meaning Units (CMUs) codes can be found in Appendix C for each theme.

Requirement
category ID Description Source
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FUNCTIONAL 1.1 Support the acquisition of domain
data

CMU 1.1,
1.2, 1.3, 6.2

CMUs 1.1,
1.2, 1.3, 1.4 B6

1.2

Complement the role of the domain
expert in tasks related to the
acquisition of data and technical
conceptualization

CMUs 1.5,
1.6, 1.7

CMUs 1.2,
1.3, 1.4, 2.1 B9

1.3 Support ontology
matching/alignment techniques CMU 2.3 CMU 2.5

1.4
Define the roles and responsibilities
of the stakeholders and the LLM for
each task

CMU 2.5 CMUs 1.5,
1.6

1.5 Support backward compatibility of
ontology changes CMU 3.2 CMU 2.5 B17

1.6
Include CQs throughout the whole
ontology extension development
process

CMU 4.1 CMUs 1.2,
4.1

1.7 Support various data source formats CMU 4.2 CMUs 2.3,
3.2

1.8 Facilitate the exploration of the
ontology to be extended CMU 5.1 CMUs 1.2,

1.3, 1.4, 2.1

1.9 Support less experienced ontology
engineers CMU 5.2

CMUs 1.4,
2.1, 3.3, 3.4,
3.5

1.10 Facilitate comprehension of
domain-specific information CMU 6.1 CMUs 1.2,

1.3, 1.4, 2.1

1.11 Include OE-tailored tools CMU 7.1 CMU 1.1,
1.2, 1.6

1.12 Facilitate documentation of ontology
extension CMU 7.1 CMU 5.1 B8

Continued on next page
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Table 4.1 continued: High-level requirements for the human-LLM collaboration framework for ontology extension.
Requirement
category ID Description Source
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1.13 Promote reuse of existing ontologies
and standards B2, B5

1.14 Support formulation and
formalization of CQs B12

1.15
Provide evaluation method for
ontology extension including domain
experts

B15

1.16 Specify format of LLM’s output for
each task B19

NON-
FUNCTIONAL
(Structural)

2.1 Outline the sequence of tasks CMUs 2.1,
2.5 CMU 5.3

2.2 Provide hybrid approach combining
LLMs with traditional OE techniques

B1, B10,
B18

2.3
Provide flexibility depending on the
project characteristics, application
and/or use case

B10, B20

NON-
FUNCTIONAL
(Environmen-
tal)

3.1
Promote the inclusion of diverse
perspectives (include additional
stakeholders in the process)

CMU 1.4 CMU 2.6

3.2
Be user-friendly and intuitive for
ontology engineers with varying
levels of expertise

CMU 5.2 CMUs 1.4,
2.1 B11

3.3 Encourage
expert-in-the-loop-approach

B4, B7, B13,
B16

4.4. Conclusion
In this chapter, we described how the insights from the semi-structured interviews conducted in the first phase of this
research project have been used to address SQ2: What are the requirements for a human-LLM collaboration framework
for ontology extension?. The selected approach stems from a lack of academic literature supporting the elicitation
of requirements for a process framework facilitating human-LLM collaboration in ontology extension. Being aware
that the choice of this design artifact poses a great challenge for ontology engineers to produce specific or low-level
requirements, due to the high level of abstraction required (compared to, for example, the design of a software tool),
a focus group was organized to foster innovative, unconventional or out-of-the-box ideas to contribute to the design
of an artifact that addresses the genuine needs of its potential users. Thus, the requirement elicitation process was
based on three different methods: first, a literature search of similar designs, which was used to establish a set of
design guidelines; second, a custom approach consisting of extracting requirements that directly address the problems
identified by the ontology engineers interviewed during the first stage of this design research project; and third, a
focus group with ontology engineers with diverse backgrounds and levels of experience, expertise, and backgrounds
at TNO to extract additional requirements and validate the previously generated set. Finally, it was briefly discussed
how the proposed design framed by the elicited requirements aligns with the EU AI Act.

The result is a set of 22 functional and non-functional high-level requirements. We acknowledge the inherent lim-
itations of high-level requirements, given the significant gap between these requirements and their practical imple-
mentation through design. However, the underlying objective of adopting this, perhaps unconventional, approach to
requirements elicitation is to authentically address user needs. While it may not be feasible to fulfill all requirements
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at present, ongoing advancements in both LLMs and ontology engineering hold promise for the development of al-
ternative designs capable of meeting these needs comprehensively. Moreover, the flexibility and interpretive space
provided by these high-level requirements allow the emergence of innovative design concepts. These considerations
will be further explored in the subsequent chapter.



5
Designing a human-LLM collaboration

process framework for ontology extension

Stemming from the problems in the ontology extension process and from the challenges and opportunities for LLMs
to be introduced into this process, identified by the ontology engineers, a set of 22 high-level requirements for a
human-LLM collaboration framework for ontology extension have been identified in the previous chapter. This
output will be now used in this chapter to answer SQ3: What does the design of an integrated process framework
for human-LLM collaboration for ontology extension look like?. First, we define the structure of the artifact. Second,
we examine how the tasks that Large Language Models (LLMs) excel at in Natural Language Processing (NLP)
can be mapped to ontology extension tasks. Next, to create a prototype design that not only attempts to fulfill the
requirements but is also feasible to implement, the current landscape of LLMs and LLM-based tools applied to OE
tasks is examined. It will be shown how the insights from these sources provide valuable input for the prototype
design choices. Additionally, some of the currently available OE tools will be identified and discussed. Finally, the
prototype design is presented and described at the end of this chapter.

5.1. Choice of the design's structure
To design an integrated process framework for human-LLM collaboration for ontology extension, we decided to use
the current ontology extension process modeled as a flowchart diagram as the template (see Figure 3.1 in Chapter 3).
Thus, the prototype design of the integrated process framework for human-LLM collaboration for ontology extension
will be an extended version of this flowchart diagram. The new flowchart diagram indicates which OE task can be
performed with the assistance of an LLM, and which tasks can be facilitated by new OE tools (that are currently
not being used by the ontology engineers at TNO). Moreover, some additional tasks are added. Some are deemed
necessary given the use of LLMs, such as reviewing the LLM’s output with domain experts, and some of them are
introduced given the emergence of new OE tools, such as scanning the ontology extension for its alignment with the
FAIR principles (Findable, Accessible, Interoperable, and Reusable) (Garijo et al., 2021). New stakeholders are also
added to the new process framework. Hence, the As-Is manual process framework for ontology extension presented in
Chapter 3 is evolved into a To-Be process framework for ontology extension facilitated by LLMs, and including new
OE tools and stakeholders. By making this design choice, the non-functional structural requirements are fulfilled:

• Requirement 2.1:”Outline the sequence of tasks” – The As-Is flowchart diagram already identifies the sequence
of downstream OE tasks in the ontology extension process. The new To-Be version leverages this feature and
integrates new tasks in the current sequence.

• Requirement 2.2:”Provide hybrid approach combining LLMs with traditional OE techniques” – The As-Is
flowchart diagram is based on the ”traditional” OE techniques used by the ontology engineers at TNO and
on the best practices described in REPRO (Bakker, van Bekkum, et al., 2021). The new To-Be framework
integrates LLMs into this landscape.

• Requirement 2.3:”Provide flexibility depending on the project characteristics, application and/or use case”
– The As-Is flowchart diagram already provides flexibility by giving the possibility to the user, the ontology
engineer, to choose the sequence of tasks to be executed depending on the answer to some of the questions
that are asked throughout the ontology extension process (represented as grey, rectangular boxes in Figure 3.1).
The new To-Be framework capitalizes on this feature and preserves it by indicating which tasks can be assisted
by an LLMs in a ”descriptive” manner, in contrast to a ”prescriptive” one (as mentioned previously in Section
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4.1). This means that the new flowchart diagram will not change the current tasks in the process, but rather
it will complement them with LLMs usage and new OE tools. The decision of whether to execute the task as
it is currently performed or to use an LLM or an OE tool remains with the ontology engineer.

After having selected and justified the structure for the artifact, in the following sections we focus on adding content
to the design of the To-Be process framework for ontology extension facilitated by LLMs.

5.2. Identification of OE tasks that can be facilitated by LLMs
After having established the structure of the prototype design of an integrated process framework for human-LLM
collaboration for ontology extension, in this section, we identify which NLP downstream tasks are the most relevant
to the OE downstream tasks currently modeled in the As-Is flowchart diagram, presented and discussed in Section
3.2 (Figure 3.1). One of the main characteristics of LLMs is that no specific fine-tuning is needed for them to perform
many different tasks (Kalyan, 2024). J. Wei et al. (2022) argue that these ”emergent abilities” are a strength of LLMs
since many new applications are flourishing outside the field of NLP. The application to ontology extension, or in
general to OE tasks, can be viewed as one of these flourishing emergent abilities of LLMs.

Normally, LLMs are adapted to downstream NLP tasks (C. Wei et al., 2021), i.e., specific tasks that are part of
the broader field of NLP or that are used to build specialized NLP-based applications, and evaluated on them. The
ontology extension process is also composed of several downstream tasks. The As-Is model shows these tasks according
to the ontology engineers’ practice at TNO. However, this is not the first time that the ontology engineering process
has been decomposed into smaller processes or tasks. OEMs such as the one presented by De Nicola and Missikoff
(2016) try to facilitate the process of OE by breaking it down into smaller steps (building a lexicon, building a glossary,
building a taxonomy, creating a parthood, and building the ontology). These steps or downstream tasks in the OE
process have some overlap with the downstream NLP tasks. But to establish this connection, first, it is necessary to
define the broader NLP tasks performed by LLMs.

Kalyan (2024) extensively assesses various models within the GPT family across a spectrum of downstream NLP
tasks, offering a detailed exposition of each task. Table 5.1 highlights a subset of tasks deemed particularly pertinent
to the ontology extension process, drawn from this author’s comprehensive overview. As depicted in this table,
NLP tasks such as Text Classification, Information Extraction, Keyphrase Generation, Information Retrieval, and
Recommendation can play a crucial role in the Preparation and Conceptualization phases of the ontology extension
process. Tasks such as Machine Translation and Coding can potentially facilitate the OE tasks included in the phases
of Implementation of the ontology extension, whereas Multimodal AI tasks could be applied in the Verification phase
to generate visualizations of the ontology extension. Finally, Question Answering is a NLP task that is present
through the whole ontology extension process, since the ontology engineer can ask for assistance on any OE task to
the LLM. A more specific mapping of this NLP task to an OE task is the verification of the ontology extension model
using Compentency Questions (CQs). The LLM could be used to verify if the extended ontology or the ontology
extension can answer the CQs. In this case, given a set of CQs and the ontology extension (or the extended ontology)
the LLM must understand and interpret the CQs but also the ontology structure to provide a correct answer to the
ontology engineer.

The identified OE tasks that can be assisted by LLMs based on their NLP capabilities will be included and highlighted
in the design of the To-Be process framework for ontology extension facilitated by LLMs.
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Table 5.1: Downstream NLP tasks relevant to the ontology extension process downstream tasks. NLP tasks and their
descriptions are based on Kalyan (2024). Ontology extension phases are 1) Preparation; 2) Conceptualization; 3)

Implementation; 4) Verification.

NLP task Description Ontology extension
task

Ontology
exten-
sion
phase

1.Text Classification

Assign labels from a predefined set to a given text
(phrase, sentence, graph, or document). E.g., lan-
guage identification, stance detection, sentiment
analysis, etc.

Define ontology
extension modules
(classify concepts,
classify CQs)

2

2.Information
Extraction

Identify structured data like entities, relationships,
and events from unstructured text sources

2.1.Named Entity
Recognition or Entity
Extraction

Identify entities and assign them to the correspond-
ing entity type

Extract main concepts
and relation from
existing documentation
or standards; Build
small graph or
preliminary sub-ontology
(Identify classes and
taxonomy, properties,
restrictions, and axioms)

1/2
2.2.Relation
Classification

Identify the semantic relationships between two
given entities in a text source

2.3.Relation Extraction Entity Extraction + Relation Classification
2.4.Event Detection Identify and classify entities that trigger events
2.5.Event Argument
Extraction

Identify entities in a given event and classify their
roles

2.6.Event Extraction Event Detection + Event Argument Extraction

3.Question
Answering

Provide the most accurate response to a human
query in natural language

Answer ontology
engineer’s questions
about ontology to be
extended and how to
model the extension;
Verify if CQs can be
answered given an
ontology

1/2/3/4

4.Machine
Translation

Given two languages, translate text from one to
the other

Set concepts/data in
different languages
(multilingual ontology)

3

5.Keyphrase
Generation

Given a text or document, generate a smaller text
(sentence, paragraph) that compiles the main ideas

Generate test cases or
business scenarios;
Generate CQs

1/2

6.Information
Retrieval

Gather the relevant information for the user given
large volumes of data and a query

List main concepts and
relations in the domain;
Describe concepts,
relations, group
synonyms (glossary);
Suggest standards,
documentation, or other
ontologies for reuse

1/2

7.Recommendation Suggest content, products, etc. relevant to the user
Suggest standards,
documentation, or other
ontologies for reuse

2

8.Coding

Generate code from a query in natural language,
find problems in a given piece of code, explain a
given piece of code, generate tests for the given
code, refactor, generate documentation, etc.

Formalize ontology in
RDF/OWL; Formalize
CQs in SPARQL;
Generate documentation

3

9.Multimodal AI
tasks

Different techniques to make the model able to pro-
cess input data as text, image, audio, or video for-
mats

Generate ontology
visualization 4
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5.3. Current landscape of LLMs applied to OE tasks
Now that it has been identified which NLP tasks successfully performed by LLMs are relevant to the OE tasks
currently executed in the ontology extension process, we want to dive deeper into the implementation of these tasks
with the current capabilities of LLMs. To that end, we examined some relevant publications in the field. Research
on this topic is growing significantly, with renowned conferences such as the European Semantic Web Conference
(ESWC) dedicating in 2024 a special track on Large Language Models for Knowledge Engineering1.

The set of articles examined in this section was compiled between February and June 2024. Some of the articles were
recommended by OE experts at TNO or discussed during some of the REPRO sessions. Others were gathered from
snowballing previously reviewed articles in this research project. Given the rapid and constant growth of literature
on LLMs in both academic and non-academic sources, it is challenging to keep pace with the publication rate. Thus,
we decided to focus on the most relevant articles that provide insight for generating feasible ideas for the artifact
design.

The analysis is divided into two separate sections. The first one compiles the main insights of a series of publications
that apply and evaluate LLMs in OE tasks. The second one focuses on the application and evaluation of LLMs in
ontology matching/alignment, which is a larger and more complex OE task and therefore often warrants research
on its own. Still, we decided to explore the current possibilities of the application of LLMs to this task due to its
relevance in the ontology extension process, which is the focus of this research project. As shown in the As-Is process
of ontology extension, once the extension is conceptualized, it is necessary to align it with the ontology to be extended.

The goal of this section is to find in the literature inspiration, ideas, and guidance to design the To-Be process
framework prototype that aims to integrate LLMs in the current ontology extension process. We focused on academic
articles that propose solutions for ontology engineering using LLMs based on prompt engineering. This decision is
driven by several reasons:

• The goal is to design a human-in-the-loop approach that is user-friendly and leverages off-the-shelf tools as
much as possible. This ensures that the system is accessible and practical for the ontology engineers.

• While some tasks can be performed with a prompt, they can still be executed manually if desired. This flexibility
allows the ontology engineers to choose the method that best suits their needs and ensures that the task is
performed accurately.

• Even when tasks are automated with an LLM, human supervision remains essential. This supervision ensures
the quality and accuracy of the results, making prompting a suitable approach.

• The prototype approach using prompt engineering is being tested to explore its feasibility. Current research
indicates that the potential of LLMs for ontology engineering is still limited, and their performance varies
across different tasks. In the next chapter, we will evaluate this performance in various ontology extension
tasks to determine its strengths and limitations. This evaluation will help us conclude which tasks the LLM
can effectively support and which ones require further refinement or human intervention.

The key insights relevant to the design of the process framework artifact gathered from the analysis carried out in
both areas of application of LLMs to OE are discussed at the end of this section.

Literature search - Area 1: LLMs applied to OE tasks
There have been recent attempts to apply LLMs to the ontology engineering process (Fathallah et al., 2024; Saeedizade
& Blomqvist, 2024; Zhang et al., 2024), to generate ontologies or knowledge graphs ”from scratch” using unstructured
data (Trajanoska et al., 2023), to use LLMs to generate Compentency Questions (CQs) (Rebboud et al., 2024), and
to evaluate LLMs in different downstream OE task such as Relation Extraction (Giglou et al., 2023; Meyer et al.,
2023; X. Wei et al., 2023; Zhu et al., 2024). Each approach is different and employs different methodologies to use
and evaluate the LLMs:

• Fathallah et al. (2024) create a domain-agnostic prompting pipeline based on the ontology engineering method-
ology NeOn (Suárez-Figueroa et al., 2015). The authors evaluate a few LLMs using zero-shot prompting to
decide which model is more suitable for their pipeline design, concluding that, from the models tested, GPT-3.5
gives the most satisfactory results. Thus, they develop the so-called NeOn-GPT workflow and evaluate it using
the wine ontology. They compare the structure of the generated wine ontology using NeOn-GPT with the gold
standard wine ontology. The comparison is based on structural ontology metrics such as the number of classes,

1https://2024.eswc-conferences.org/special-track-on-large-language-models-for-knowledge-engineering/

https://2024.eswc-conferences.org/special-track-on-large-language-models-for-knowledge-engineering/
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objects and data properties. In addition, the authors briefly discuss some modeling decisions made in both
ontologies and how these decisions affect the reasoning using the ontologies. They conclude that LLMs have
the potential to assist human experts in the process of developing base ontologies, while LLMs alone cannot
achieve the richness that ontology engineers achieve through expertise, deductive reasoning and formal logic
knowledge, since, after all, LLMs are models based on statistical patterns and vector representations. They
make their prompts publicly available2.

• Saeedizade and Blomqvist (2024) try to assess the suitability of LLMs to assist ontology engineers in the
development of OWL ontologies, since, as they claim, most of the OE tasks are still fully manual and current
tools such as Protégé or TopBraid only help ontology engineers to formalize the ontologies, but more guidance on
how to conceptualize and model an ontology is missing. With this problem in mind, they test several LLMs and
prompting techniques for the construction of ontologies in different domains. The resulting ontologies created
through the LLM-assisted process are manually evaluated and compared with ontologies created by ontology
engineering students on the same domains (ground truth). Ignoring minor errors in both semi-automatically
crafted ontologies and manually engineered ontologies, the results show that only GPT-4 is suitable for assisting
ontology engineers and that more sophisticated prompting methods such as Decomposed Prompting (addressing
one Competency Question at a time) or Graph of Thoughts (GoT) yield better results (measured by averaging
the scores over some simple binary criteria defined by the authors based on what they consider good OE
practices). The authors conclude that the combination of GPT-4 with advanced prompting techniques can
surpass the quality of ontologies manually created by novice ontology engineers, and can effectively assist
ontology engineers in building more complex ontological models. The experiments, results, and prompts are
publicly available3.

• Zhang et al. (2024) present OntoChat a conversational GPT-based OE framework that supports ontology
engineers in the tasks of requirement elicitation from user stories, CQs-based analysis (generation, verification,
reduction, and clustering), and testing using CQs. These tasks were chosen as they were deemed as the most
cumbersome OE tasks according to 23 ontology engineers with varying expertise levels that the authors surveyed.
The OntoChat approach was tested with an ontology in the musical domain and with 6 domain experts and 8
ontology engineers. The qualitative evaluation of OntoChat was carried out through a survey of the participating
experts. The results show that, though aware of the several limitations of LLMs in OE tasks, in general, the
participants enjoyed using the approach and saw its potential in reducing manual effort. The tool is publicly
available in the AI platform Hugging Face4.

• Zhu et al. (2024) evaluate LLMs for knowledge graph construction using quantitative and qualitative metrics.
They show how GPT-4’s performance is comparable to fine-tuned state-of-the-art models in Entity and Relation
Extraction, Event Extraction, Link Prediction, and Question Answering tasks, using zero-shot and one-shot
prompting techniques. Yet, using LLMs for knowledge extraction presents important limitations such as the
lack of highly specific domain expertise. The authors experiment with the ability of GPT-4 to generalize and
learn from the prompt instructions, rather than just relying on its memory. From the insights gathered through
these experiments, the authors conclude that even if the ability of LLMs for automatic knowledge construction
is still limited, LLMs are powerful tools as inference assistants. They state that the model’s performance can
improve notably with better instructions through prompt engineering. In addition, they propose a system,
called AutoKG, in which LLMs play different roles (Domain Expert, Consultant) to support the knowledge
construction process through a conversational interface. They conclude that collaborative tools such as AutoKG
can make the process faster by leveraging the use of LLMs for tasks in which their factual accuracy is adequate
while improving transparency (compared to other tools or approaches with a higher degree of automation).
Finally, they state that LLMs can reduce complexity in the knowledge graph creation process and facilitate
decision-making, but human oversight and expert validation are still imperative.

• Rebboud et al. (2024) evaluate the ability of LLMs to generate Compentency Questions (CQs). Acknowledging
the challenges in ontology development and the success of LLMs in understanding and generating both gen-
eral and formal knowledge (such as that required for ontology engineering), the authors seek to explore how
effectively LLMs can facilitate the knowledge engineering process when integrated with knowledge engineering
methodologies. Although they identify six ontology engineering downstream tasks in which LLMs could poten-
tially help, this work focuses on the task of generating CQs. To that end, the authors develop a platform in
Python to test different LLMs (both open-source and proprietary) against several ontologies and their sets of

2https://github.com/andreamust/NEON-\acrshort{gpt}
3https://github.com/LiUSemWeb/LLMs4OntologyDev-ESWC2024
4https://huggingface.co/spaces/b289zhan/OntoChat

https://github.com/andreamust/NEON-\acrshort {gpt}
https://github.com/LiUSemWeb/LLMs4OntologyDev-ESWC2024
https://huggingface.co/spaces/b289zhan/OntoChat
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CQs, using prompt strategies developed with their own prompt template. They evaluate the LLM-generated
CQs to the ground truth dataset – the actual set of CQs of each ontology – using a similarity metric and
then compute a precision score defined as the number of valid (sufficiently similar) CQs over the total number
of CQs for that ontology. Their results show that the precision scores are generally low for all models and
ontologies tested. Surprisingly, the model that shows the best scores (outperforming GPT-3.5 and GPT-4) is
an open-source model called Zephyr, fine-tuned and aligned to user intent (Tunstall et al., 2023). The authors
conclude that few-shot prompting normally produces better results than zero-shot, though sometimes shorter
prompts reduce the model’s hallucinations. They realize that prompting the model with the ontology does not
improve the results and even decreases the precision scores of the generated CQs. Finally, they acknowledge
the potential of LLMs to generate new CQs not originally present in the ground truth dataset, highlighting the
ability of LLMs to offer creative suggestions.

• Giglou et al. (2023) propose an approach to evaluate Large Language Models (LLMs) for Ontology Learning
(OL), which they call LLMs4OL. They compare 9 different LLMs using zero-shot prompting for three OL
tasks. These tasks are 1) Term Typing (systematically assigning categories to words or phrases based on their
meanings that can be then used for ontology construction); 2) Taxonomy Discovery (identifying which classes
are superclasses or subclasses to other classes, i.e., identifying ”is-a” relationships); 3) Non-Taxonomic Relation
Extraction (identifying other types of relations between classes or, more generically, concepts, beyond the
”is-a” relationship). These tasks are applied to different ontological sources covering four knowledge domains:
lexicosemantic, geographical, biomedicine, and content representation on the web. The metrics used to evaluate
the performance of the models on the different tasks for the different domains are quantitative, namely Mean
Average Precision at k (MAP@K) for the first task F1-score based on Precision and Recall for the second
and third tasks. The results show that the models from the GPT family (GPT-3.5 and GPT-4) perform
significantly better than other LLMs across the three tasks. Finally, they fine-tune an open-source model and,
after its evaluation, the results show that, even with fewer parameters, the performance is comparable to that
of the GPT models. While these results are promising, the authors conclude that the suitability of LLMs to
complex OL tasks is limited and that even when fine-tuned, a human-in-the-loop approach is still needed, in
which the LLMs can provide assistance to the experts in the OE tasks.

• Trajanoska et al. (2023) use two different approaches: OpenAI’s chatbot model based on GPT, ChatGPT,
and REBEL (Relation Extraction By End-to-end Language Generation) (Huguet Cabot & Navigli, 2021), an
LLM specifically trained for relation extraction; to automatically create a knowledge graph in the domain
of sustainability. They collect sustainability-related news articles and use them as the source to extract the
concepts and relations. The approach using REBEL requires the tokenization of the raw text into smaller units
or tokens, and some other pre- and post-processing steps. Conversely, the ChatGPT-based approach is based on
prompting the model and aiming at reducing the number of manual steps required. The authors claim that the
ChatGPT approach presents some limitations, especially when dealing with abstract concepts, mainly due to
its conversational purpose, but that in general is able to identify more concepts than REBEL. To evaluate both
LLMs, and due to the lack of quantitative metrics to do so, the authors define their own qualitative metrics
based on good practices in Knowledge Engineering and conclude that the quality of the knowledge graph created
using ChatGPT with detailed prompting and refinement of the outputs is better than that achieved by REBEL.
The prompts used are not included in the article, nor made available as open-source data or code.

• Meyer et al. (2023) experiment with ChatGPT (GPT-3, GPT-3.5, and GPT-4) in Knowledge Engineering tasks:
generating SPARQL queries from natural language questions, exploring and summarizing existing knowledge
graphs, and populating knowledge graphs. They manually evaluate the outputs and find that the results are
always syntactically correct, but often incorrect in practice (e.g., SPARQL queries did not work when executed),
needing further prompting and manual correction. They conclude that LLMs tend to hallucinate and there
is no evaluation method other than manual verification and validation. Yet, when used in combination with
human expertise, the potential is evident.

• X. Wei et al. (2023) propose a zero-shot Information Extraction (IE) framework based on a multi-turn question-
answering method, using ChatGPT and prompt engineering across different datasets and IE tasks (Relation
Extraction, Named Entity Recognition, and Event Extraction), achieving good performance. This performance
is measured with Precision, Recall, and F1 measures against 3 datasets, one for each IE task. They argue that
the achieved performance by their zero-shot framework is comparable to few-shot approaches and fine-tuned
models. The main insight of this work is that dividing complex IE tasks into smaller and simpler sub-tasks can
notably improve the performance of LLMs without the need for specific training or fine-tuning.
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Literature search - Area 2: LLMs for Ontology Matching/Alignment
Ontology matching (often used interchangeably with ontology alignment) is an OE task that consists of identifying
mappings between entities from different ontologies that are semantically related. As mentioned above, this is a
field of study on its own within the broader field of LLMs applied to OE. We decided to briefly explore the current
applications of LLMs to the ontology extension process because, firstly, it is an important task in the extension
process, i.e., once the extension is conceptualized, and sometimes even implemented in a formal language, it has to be
merged with the ontology to be extended, as depicted in the As-Is flowchart diagram of ontology extension (Figure
3.1); and secondly because it is a prominent field of application of LLMs with promising results (He et al., 2023).
Again the focus is on prompt-engineering-based approaches or off-the-shelf LLM-based tools:

• Amini et al. (2024) investigate a prompt-based approach using LLMs to support complex ontology alignments
based on ontology modularization. The choice of this approach is based on two assumptions that the authors
discuss: 1) Modularization is a widely accepted OE principle that increases the understandability and reusability
of the model, and thus it should be encouraged. It is expected that high-quality ontologies are based on this prin-
ciple and that the number of modular ontologies increases; 2) Fine-tuning LLMs requires significant resources
and expertise. Advanced prompting techniques mitigate these issues (resource and expertise requirements) and
are essential for significantly improving the performance of LLMs. In their approach, they use OpenAI’s GPT-4
and its interface to upload the RDF/Turtle file containing the relevant module of one of the ontologies, and
provide the relevant section of the second ontology in RDF directly in the prompt. GPT-4 is unable to produce
a response for the alignment in the zero-shot prompting setting, but by employing Chain-of-Thought prompting
and adding module documentation the response drastically changes, and GPT-4 is able to identify most of the
targeted components for alignment. The authors then test this approach with 109 complex alignment rules
and find that, GPT-4 fails to detect the full alignment rules but can effectively detect the relevant pieces for
alignment that can be then easily assembled by a human. The performance is quantitatively measured through
Precision and Recall metrics. They conclude that LLMs have a great potential to assist ontology engineers in
ontology alignment within human-in-the-loop approaches.

• Norouzi et al. (2023) experiment with a prompt-based approach for ontology alignment using OpenAI’s Chat-
GPT. By crafting and using simple prompt templates, they compare ChatGPT’s responses with the ground
truth, a set of reference alignments provided by the Ontology Alignment Evaluation Initiative (OAEI) 2022
campaign, using Precision, Recall, and F1-score metrics. Their results across all datasets show that ChatGPT
achieves high Recall but low Precision, and often suggests new entities to be added to the ontology. The au-
thors discuss several limitations, being the context length limit of the model one of the main bottlenecks. This
means that inputting large prompts, if possible, makes the model ”forget” about the context of the ontology
and the task and produces hallucinated responses. Finally, they conclude that this demonstrates the potential
of ChatGPT to assist domain experts in suggesting potential matches that they can review and use. They also
add that ChatGPT shows the potential to be useful for extending reference ontologies.

• Giglou et al. (2024) evaluate the applicability of LLMs to several ontology matching tasks. To address the context
length limit issue discussed by Norouzi et al. (2023), the authors propose a strategy that includes a Retrieval-
Augmented Generation (RAG) module used for candidate selection of the target ontology for alignment, an LLM-
based module with prompting, and a post-processing module to remove suggestions with low confidence, low
precision, and multiple matches. Employing Precision, Recall, and F1-score metrics on the OAEI 2023 dataset
covering several domains, they compare closed-source and open-source LLMs and conclude that OpenAI’s GPT-
3.5 achieves the best performance, surpassing traditional ontology matching systems in complex tasks. They
emphasize the importance of crafting the RAG module to the ontology matching task specifics and point out
that the LLM architecture and context given for each task play a big role in the quality of the matching output.

• Hertling and Paulheim (2023) leverage the ability of LLMs to interpret natural language text by applying
open-source models to the task of ontology matching. The authors acknowledge that currently, GPT-4 is the
model that achieves the best performance in ontology matching. However, they advocate for fostering the use
of open-source models. They evaluate different LLMs on several OAEI datasets and discuss the factors that
positively impact the quality of the results. Their approach, named OLaLa, consists of a module that translates
candidate ontologies (identifying and taking only the part of the ontology that might be the most relevant for
the alignment, since they argue that LLMs cannot process whole ontologies, especially when they are big) based
on Sentence BERT models (SBERT)5, an LLM-based module using prompt engineering, and a post-processing
module including a cardinality filter (ensuring one-to-one matches) and a confidence filter (filtering out matches

5https://sbert.net/
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with low confidence). Based only on textual description, the OLaLa system achieves good performance compared
to the selected OAEI benchmarks, measured using Precision, Recall, and F1-score metrics. It is noteworthy
that the proposed system exhibits high latency compared to other systems, occasionally taking hours and even
days to generate a result. Finally, the authors conduct an ablation study by modifying one of the system’s
components while maintaining the rest of the components unchanged to identify which system configurations
achieve the best results. They observe that the combination of the model and parameters has the highest
impact on the metrics, which indicates that it might be necessary to tailor the parametrization of the model to
the specific matching problem. They highlight the importance of prompt engineering since it can significantly
improve the results without the need for specific training or fine-tuning.

Literature search - Synthesis of the literature
Apart from providing insightful ideas and guidance on how to prompt LLMs for different OE tasks – which will be
incorporated in the prototype design – there are some repercussions or main takeaways of these recent works in the
process framework for ontology extension design. These takeaways (summarized in Table 5.2) are:

• Off-the-shelf LLM-based tools: From the articles reviewed, only one off-the-shelf LLM-based tool for OE
was found, OntoChat (Zhang et al., 2024). Though conversational-based and prompt-depending, it can be
incorporated as an option for facilitating three tasks in the ontology extension process: defining new test cases
or business scenarios, formulating CQs, and verifying that all CQs can be answered by the extended ontology.
It is worth mentioning the work of Mateiu and Groza (2023), found through the literature analysis conducted in
Chapter 1 (Section 1.2). The authors developed a Protégé plugin which they called GPT Ontology Augmenter
to automatically add OWL axioms to an ontology. However, the plugin does not appear to be available for use
at the time of writing this thesis. As mentioned before, the intended user of the process framework for ontology
extension is the ontology engineer, who might not be familiar with the use of LLMs. Moreover, the process
framework must be user-friendly and support users with varying levels of experience and expertise. Since there
are not many off-the-shelf LLM-based tools available for OE yet, the framework will need to employ general
LLMs models. It will focus on leveraging their potential for ontology extension tasks through the structured
approach and the use of prompt engineering techniques.

• Suitability of LLMs for ontology extension: While fine-tuned models perform comparably or slightly
better than GPT models, the need for fine-tuning complicates the integration of LLMs in an intuitive and
easy-to-use process framework for ontology extension focused on the role of the ontology engineer. This layer
of complexity relies on the need for resources (datasets, infrastructure, expert knowledge, and time) to fine-
tune the models. Looking at performance and accessibility, using an off-the-shelf GPT model for the ontology
extension tasks might be the best solution at present. However, as discussed in Chapter 3, ontology engineers at
TNO expressed concerns about the significant energy consumption associated with these large models and the
potential confidentiality risks related to data use and storage. It is important to note that LLMs are evolving
rapidly; it is conceivable that open-source alternatives will soon not only match but surpass the performance
of GPT models while becoming more accessible and easier to implement. Therefore, the prototype design will
make use of GPT for its demonstration and evaluation, but the design will remain independent of one specific
model or vendor. Regarding confidentiality concerns, there are solutions such as deploying GPT models on-
premises within a company, which provides more control over the data and alleviates privacy issues. The design
will be adaptable to various settings by not prescribing any particular configuration.

• Impact of prompt engineering: Most of the articles analyzed in both categories conclude that the choice
of the prompting technique used and the quality of the prompt has a significant impact on the quality of the
LLM’s output. The positive correlation between the length of the prompt and the quality of the output is not
clear, but results seem to indicate that the more precise and concrete the instructions given to the LLMs are,
the more correct and useful the outputs are. In other words: ”garbage in, garbage out”. These conclusions
ratify again the design choice pursued in this project: a decomposed expert-in-the-loop approach where LLMs
are used for some downstream tasks in the ontology extension process. The prototype design will focus on
crafting prompts that offer good quality outputs in terms of usefulness for the ontology engineer in the ontology
extension process.

• Evaluation of the LLMs: Most of the articles reviewed use a ground truth or gold standard to compare
the results produced by the LLMs against. These machine learning metrics are typically quantitative, such as
Precision and Recall. However, several aspects need to be considered regarding these methods. First, when
extending an ontology in a real setting, there is no ground truth or gold standard available. Even if a gold
standard exists (e.g., when evaluating if the LLMs can generate the same extension or the same set of manually
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formulated CQs), there is no single correct way to model an ontology (Noy & McGuinness, 2001) or generate a
CQ. Consequently, numerical metrics alone cannot adequately indicate which ontology (or CQ is better). This
is a topic of ongoing research within the ontology engineering community (McDaniel et al., 2018). Furthermore,
as Bakker and De Boer (2024) present in their work, in an era of information exchange in which data models
such as knowledge graphs and ontologies need to be updated constantly, it is crucial to evaluate the quality of
these introduced changes. In this context, static evaluation metrics lack the meaning that dynamic evaluation
metrics for ontologies can provide. This is especially relevant to the case of ontology extension, because the
quality of the extension should be measured relative to the quality of the existing ontology to be extended.
Second, even if some authors generate their own metrics to assess the quality of the ontology generated by the
LLMs, these metrics tend to be fairly simple, such as counting the number of classes or axioms (Fathallah et al.,
2024), or using binary indicators like the presence of an ”EquivalentClass” restriction (Saeedizade & Blomqvist,
2024). While these are valid attempts to evaluate the LLMs outputs, and there may be no better alternative
at present, they remain subjective and limited in scope. The implications are twofold. On the one hand, the
prototype designed here will aim to facilitate and ultimately improve the verification of the extended ontology
through the use of LLMs and other available OE tools. These tools can assist the ontology engineer in better
assessing the extended ontology compared to the current manual verification process. On the other hand, the
evaluation of the prototype’s output will not focus on machine learning metrics or ontology metrics, such as the
number of classes or properties added or the presence of a specific modeling choice. Instead, it will qualitatively
assess the differences and usefulness of the suggestions provided by the LLMs to the ontology engineer.

A summary of the takeaways from the literature and the implications of these insights for the design of the process
framework prototype discussed above is presented in Table 5.2.

Table 5.2: Overview of the takeaways from the literature search and their implications in the framework design.

Takeaway from the literature search Implication for the framework design

Off-the-shelf LLM-based tools for OE are scarce Framework design will leverage the use of general LLMs
and prompting engineering techniques

GPT often gives the best performance in various OE
tasks, but using fine-tuned, smaller open-source mod-
els aligns with the concerns of ontology engineers about
environmental impact and confidentiality, though these
models are difficult to deploy

Framework design will be adaptable to the use of differ-
ent LLMs and configurations, as preferred by the user.
GPT will be used for the demonstration and evaluation
of the prototype design.

Prompting techniques highly influence the quality of the
output

Process framework design will focus on crafting prompts
that can produce useful outputs for the ontology engi-
neer

Quality of the generated ontology is currently measured
with quantitative or structural metrics that fail to cap-
ture the diversity in modeling choices

Prototype design will try to facilitate and improve the
verification process by including OE tools and LLMs.
Evaluation of the output produced by the prototype will
be carried out qualitatively

5.4. Ontology Engineering tools for the ontology extension process
In the previous sections, we examined how LLMs can be applied to various OE tasks by leveraging their strengths in
NLP and the similarities between downstream OE tasks in the ontology extension process and NLP tasks. Addition-
ally, we explored how LLMs are being applied to OE in practice and evaluated their performance. However, it has
been shown that LLMs cannot be used for all OE tasks. This is not only due to their suboptimal performance but
also because it is not preferred by ontology engineers. Previous phases of this research revealed that the interviewed
ontology engineers are aware of the limitations of LLMs in ontology engineering and asserted that some tasks must
remain manual. Nevertheless, this does not imply that there are no other OE-tailored tools that could be employed
to facilitate the tasks in the ontology extension process that LLMs cannot address. In this section, we explore the
OE tools that could be integrated into the ontology extension framework prototype design. The articles discussed
below were gathered throughout the development of this research project from February to June 2024. The tools
were mentioned during the interviews by some of the ontology engineers at TNO or during specific REPRO sessions
on the topic. Some tools were mentioned in articles examined previously for other parts of this research, such as
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the work of Tudorache (2020), which was found within the literature review for the requirements elicitation process
and is also relevant here. It is worth mentioning that the tools discussed below have been selected to complement
the ones already known and used by the OE community at TNO, and therefore already included in the current
process visualized in Figure 3.1, such as TopBraid or Protégé. The availability and accessibility of the additional
tools have been checked by testing them with some simple examples or even by contacting their developers about
their maintainability and future development plans. An overview of the selected OE tools is provided below in Table
5.3.

In her work, Tudorache (2020) explores the current landscape of ontology engineering, discussing the challenges
and future perspectives, including emerging OE tools. Tudorache (2020) argues that while ontology engineering
methodologies have not significantly evolved over the past decade, better tools are becoming available. Open-source
projects such as OnToology6 (Alobaid et al., 2019) leverage widely used platforms like GitHub to automate the
ontology development pipeline. When ontology engineers push changes to the ontology code in a public GitHub
repository, OnToology automatically generates documentation compatible with WIDOCO (Garijo, 2017). WIDOCO7

is another open-source tool that helps users create comprehensive documentation for their RDF vocabularies by
detecting missing metadata and generating linked HTML pages with diagrams and descriptions of ontology terms
(Garijo, 2017). Although OnToology does not currently support GitHub private repositories, it shows great potential
to advance the traditional ontology engineering landscape and contribute to the shift towards a web-based paradigm,
a transition that has been occurring in other fields such as software engineering over the last few decades (Stadnicki
et al., 2020). Tudorache (2020) not only includes open-source tools, but also commercial tools that contribute to
modernizing the ontology engineering development process. An example is Grafo8, a web-based tool for generating
knowledge graphs visually and in real-time, allowing for collaboration. Both OnToology and Grafo can be incorporated
into the Verification phase of the ontology extension process framework design. Grafo can assist in visualizing the
extended ontology (or just the isolated ontology extension), whereas OnToology can facilitate the documentation
(and, optionally, publishing) task once the ontology extension is finished. Additionally, Grafo can be used within
the Implementation phase to build the ontology extension visually, complementing Protégé (or TopBraid) and Visual
Studio Code.

Newly on the scene, OntoEditor9 (Hemid et al., 2024) is another online collaborative tool for developing ontologies
that supports multiple RDF serialization formats and integrates with distributed version control systems. OntoEditor
aims to fill a gap in the collaborative development of ontologies by facilitating real-time collaboration and RDF syntax
validation. However, because OntoEditor is the output of a very recent research project, it is still in its infancy and
currently can only be used by running it locally. This infancy stage brings some limitations, such as potential stability
issues, limited user documentation, and a lack of extensive community support. As a prototype, OntoEditor may
also lack some advanced features found in more mature tools, requiring users to adapt to its evolving capabilities.
Despite these limitations, we included it here because of its potential to significantly enhance collaborative ontology
development. Its innovative approach and integration capabilities suggest that it could become a valuable tool in the
field as it matures and its features are refined.

Continuing with web-based tools for ontology engineering that can be applied to the ontology extension framework,
we identified OOPS!10 (an OntOlogy Pitfall Scanner) (Poveda-Villalón et al., 2014) and FOOPS!11 (an OntOlogy
Pitfall Scanner for the FAIR principles) (Garijo et al., 2021). Both open-source tools were developed and are currently
maintained by the Ontology Engineering Group based at the Computer Science School at Universidad Politécnica
de Madrid12 (also OnToology and WIDOCO, previously mentioned). The tool OOPS! is aimed at users with less
experience in ontology engineering or even domain experts to detect common mistakes in the ontology model, provid-
ing an importance level of the pitfall (critical, important, and minor) and an explanation. Some ontology engineers
interviewed for this thesis project recognized OOPS!, even though it is not widely used within TNO currently. In the
ontology engineering community outside TNO, the popularity of this tool seems to be bigger (Stadnicki et al., 2020;
Tudorache, 2020). More recently, FOOPS! has been incorporated into the toolkit. FOOPS! is a web service that
evaluates public vocabularies or ontologies for compliance with the FAIR principles, performing 24 checks across the
four FAIR dimensions to ensure best practices and provide explanations and suggestions for any compliance issues

6https://ontoology.linkeddata.es/
7https://dgarijo.github.io/Widoco/doc/tutorial/
8https://gra.fo/
9https://ahemaid.github.io/OntoEditor/

10https://oops.linkeddata.es/
11https://foops.linkeddata.es/about.html
12https://oeg.fi.upm.es/index.php/en/index.html
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https://ahemaid.github.io/OntoEditor/
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(Garijo et al., 2021). Both OOPS! and FOOPS! can be incorporated into the ontology extension framework, within
the Verification phase, to improve the quality of the extended ontology.

For the arduous task of assessing the quality of the extension generated using the human-LLM process framework
for ontology extension employing off-the-shelf OE tools, we found OntoMetrics13 (Reiz et al., 2020) and its updated
version NEOntometrics14 (Reiz & Sandkuhl, 2022). OntoMetrics is a web service that accepts both unpublished
ontologies in RDF or OWL, or the URL of a published ontology and returns a set of base metrics (e.g., number of object
properties), schema metrics (e.g., class-axioms ratio), graph metrics (e.g., average number of paths), knowledge-base
metrics (e.g., number of leaf classes), and class metrics (e.g., class inheritance richness). One of the main limitations
of OntoMetrics is its lack of scalability for larger ontologies. NEOntometrics addresses OntoMetrics’ limitations
by offering a scalable, flexible, and efficient architecture for large ontologies, enhanced extensibility for adding new
metrics, and a modern, user-friendly interface. It also provides detailed metric descriptions, integrates with Git
for version control, and supports both RESTful and GraphQL APIs, making it a more robust and maintainable
open-source solution.

As discussed previously, quantitative metrics in ontology engineering have limited meaning when viewed in isolation
(Bakker & De Boer, 2024). For instance, knowing the ”attribute richness” in an ontology provides little insight
unless it is compared against similar measurements from other ontologies or versions of the same ontology. This
is the logic behind NEOntometrics, which tracks how these numbers evolve over time with changes in the ontology
repository. By comparing the metrics of an ontology before and after an extension (in the Verification phase), tools
like NEOntometrics allow ontology engineers to gauge the impact of their changes. This comparative approach helps
in determining whether an extension has positively or negatively influenced the ontology, guiding engineers in making
informed decisions about whether to revise the extension. This comparative approach offers a quick mechanism for
verifying the ontology’s state, helping engineers determine whether an extension has positively or negatively influenced
the ontology. However, this method is limited and somewhat naive, as it provides only a fast, initial verification. A
manual qualitative review of the final extended ontology remains indispensable, as no automated method can fully
replace human judgment and expertise, at least with current technologies.

Table 5.3: Overview of OE tools selected for the process framework prototype design. Ontology extension phases are 1)
Preparation; 2) Conceptualization; 3) Implementation; 4) Verification.

OE tool Phase Description

Grafo 2/4 Web-based tool for generating knowledge graphs visually, collaboratively, and in real-time.
It can be used within phase 2 with other stakeholders, such as domain experts, during a
meeting to conceptualize extension in real time. It can be used in phase 4 for creating a
visualization for verifying with other stakeholders the main concepts and relations added

OntoEditor 3* Web-based editor for real-time collaboration in ontology development. *Not included in the
framework since it is currently under development and can only be used locally

OOPS! 4 OntOlogy Pitfall Scanner, a web service for detecting common mistakes in the ontology
syntax code and its structure, including the severity level of the mistake. Based on the RDF
validation service from W3C. Fathallah et al. (2024) use it with GPT, prompting the mistake
to the LLM so it can automatically correct the code

FOOPS! 4 Web-based ontology scanner for compliance with the FAIR principles. It could be used
independently or with an LLM like OOPS!

OntoMetrics 4 Web-service that scans the ontology code and provides several quantitative metrics that can
be used to measure the difference between the ontology before the extension and after the
extension, as discussed by Bakker and De Boer (2024)

NEOntometrics 4 Modern version of OntoMetrics that allows executing various quantitative measurements over
different versions of the code in the same ontology, from its repository

WIDOCO 4 Desktop application for generating and publishing ontology documentation in HTML
OnToology 4 Web-based system that integrates with GitHub and automatically produces ontology doc-

umentation, such as diagram and WIDOCO documentation, and allows for automatically
publishing the ontology

13https://ontometrics.informatik.uni-rostock.de/ontologymetrics/
14http://neontometrics.informatik.uni-rostock.de/
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This section provided an overview of several still available and maintained OE tools. While these tools will not
eliminate the complexity inherent in the ontology extension process, they can assist with certain downstream tasks,
particularly for less experienced ontology engineers. The insights gained from this overview will be integrated into the
process framework design prototype, offering users the option to select appropriate tools from the toolkit for specific
tasks if they choose.

5.5. The ontology extension process framework design
In this section, we present the design prototype of the human-LLM collaboration framework for ontology extension.
Previously in this chapter, in Section 5.1, we discussed how the choice of the structure of the artifact design fulfills
the non-functional/structural requirements. Now in this section, we address how the proposed design meets the
non-functional/environmental requirements. These requirements focus on the values that are important to the OE
community at TNO. Thus, we can already discuss in this design stage how certain choices for the prototype design
have been made to preserve these values. The fulfillment of the functional requirements will be discussed later in the
design process after the implementation and demonstration of the prototype.

The process framework design prototype is visualized in Figure 5.1. As explained before, the framework consists of an
augmented version of the As-Is ontology extension process modeled from the input gathered in the interview round
with ontology engineers and LLMs experts at TNO and based on the REPRO methodology (Bakker, van Bekkum,
et al., 2021) (Figure 3.1). In Section D.1 in Appendix D we provide a more detailed description of each phase in
Figure 5.1 and zoomed-in visualization of each phase.

The user of the framework, an ontology engineer, starts at the top of the flowchart diagram in Figure 5.1. Depending
on the answer to the grey rectangular boxes representing decisions, a different route is taken. The route includes the
OE tasks in the ontology extension process, in transparent boxes. Each task is included in one of the phases of the
ontology extension process, represented by different background colors (see definition of the phases in Table 3.1). As
explained before for the As-Is flowchart diagram (Figure 3.1), there are two main routes differentiated in adding a
single concept to the ontology or extending the ontology with a conceptual expansion. When adding a single concept
the ontology engineer has to add only one concept to the ontology (or a few concepts that can be added one by one),
which might be a new class with different object properties and data properties. When extending the ontology with
a conceptual expansion, there is a new use case in the domain or application in which the ontology is integrated, or a
regulatory change, requiring to conceptualize many concepts and relations in such a way that a new ”sub-ontology”
results, and then it has to be merged with the ontology to be extended.

Some of the OE tasks have a light blue hexagonal icon near them. These represent OE tools that the ontology engineer
can use to perform that task. Some tools were already in the As-Is ontology extension process (in Figure 3.1), such
as Protégé or TopBraid. In addition, the tools presented and discussed in Section 5.4 and summarized in Table 5.3
have been added. The addition of new tools – those that are not currently in use by the ontology engineers at TNO
– allows the addition of new tasks. For example, OOPS! makes it possible to quickly scan the ontology to detect
syntax errors and pitfalls, FOOPS! allows for scanning the extended ontology for alignment with the FAIR principles,
and NEOntometrics enables the calculation of quality metrics. These tools are added within the Verification phase
in Figure 5.1 next to the relevant OE task.

To the list of stakeholders included in the As-Is ontology extension process (in Figure 3.1), namely the Ontology
Engineer, the Domain Expert, and the Knowledge Worker, a new stakeholder has been added to the early phases of
the ontology extension process into to the To-Be ontology extension process design (in Figure 5.1):

• Knowledge User: Is the end user of the system in which the extended ontology is integrated. The knowledge
user will use the information provided by the ontology via a user interface or directly asking the Compentency
Questions (CQs) to the ontology by executing the SPARQL queries against the data model (the extended
ontology containing all the data instances). Including this stakeholder in the early phases of the ontology
extension development can add more richness to perspectives and maximize the value added to the system by
the ontology extension. They have been incorporated in reviewing tasks in the new ontology extension process,
together with domain experts and knowledge workers. Ontology engineers should ensure that the CQs reflect
the real needs of the knowledge users, from the beginning of the ontology extension process (Preparation and
Conceptualization phase), until the end (Verification phase).

This addition addresses the non-functional/environmental Requirement 3.1:”Promote the inclusion of diverse per-
spectives”.
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Last but not least, based on the results of the interview analysis for the theme ”opportunities for the use of LLMs for
OE” (Section 3.3 in Chapter 3, see Figure 3.7), the identification of the LLMs’s NLP-powered capabilities for ontology
extension tasks (Section 5.2), and the analysis of the recent application of LLMs for OE (Section 5.3), we identified
the ontology extension tasks that LLMs can assist with (marked with a red star-shaped icon in the flowchart diagram
in Figure 5.1). These tasks are identified with a purple rectangular box near the task in the flowchart diagram in
Figure 5.1. Table 5.4 provides details for all the LLM-assisted tasks identified within the flowchart diagram. For each
task, we compiled the following in this table:

• The type of LLM or LLM-based tool that could be used to help the ontology engineer with the task;
• The NLP task associated to the OE task;
• The role that the LLM can play for that task (ontology engineer, domain expert, or both)15;
• The output format of the LLM answer for that task;
• And the need to include an LLM engineer in the process.

Addressing the non-functional/environmental Requirement 3.2:”Be user-friendly and intuitive for ontology engi-
neers with varying levels of expertise” and Requirement 3.3:”Encourage expert-in-the-loop approach”, we opted
for a conversational approach leveraging off-the-shelf LLMs and LLM-based tools. The idea is that the ontology
engineer uses the process framework represented as a flowchart diagram to have an overview of the steps to follow
in the ontology extension process, based on REPRO’s best practices. When an OE task can be facilitated by an
LLM, the user has all the information available for that task in Table 5.4 and the corresponding prompt template.
For each task, we designed a prompt template. All the prompt templates are provided in Appendix D, Section D.2.
The ontology engineer can choose the LLM and customize the prompt by modifying the placeholders, according to
the domain and use case for the extension. This approach gives flexibility to the user and can be adapted to the
dynamics of the advancements of LLMs since the process is not tied to any specific model or version. Moreover,
providing prompt templates that can be used with any LLM with a chatbot interface, the design prototype does not
require the ontology engineer to be knowledgeable in LLM engineering.

Finally, it is worth pointing out two tasks in the Verification phase: ”Scan ontology structure to eliminate syntax
errors and apply best practices” and ”Scan for alignment with FAIR principles”. These tasks include a red star-shaped
icon identified as ”LLM validation”. According to Fathallah et al. (2024), the output of the tool OOPS! can be used
as input for the LLM, asking it to correct errors with satisfactory results. Following this example, FOOPS! could be
used in the same fashion. Although this is not currently possible, since FOOPS! can only scan published ontologies,
it might become feasible in future releases, according to the maintainers.

In essence, the section has delineated the various components of the design prototype: a human-LLM collaboration
process framework for ontology extension. The process framework design is structured as a flowchart diagram outlining
the tasks in the ontology extension process and indicating which ones can be assisted by an LLM, which ones can
be facilitated by an OE tool, and the tasks that require stakeholder involvement (Figure 5.1). Each task that can be
assisted by an LLM is highlighted in the flowchart diagram and detailed in Table 5.4, including the type of LLM or the
LLM-based tool that could be used, the role of the LLM, and its output format. Finally, a prompt template is offered
for each one of these tasks (Section D.2 in Appendix D). As a prototype, this design serves as a proof of concept and
currently exists only ”on paper”, without being implemented as a functional tool. Although the design may appear
fragmented, consisting of a flowchart diagram, a table, and a list of prompt templates, this flexible structure allows
us to effectively demonstrate and evaluate the approach. This preliminary evaluation is the focus of the next chapter.

15LLMs can adopt different roles depending on the needs of the users (see for example Zhu et al. (2024)). By adopting these roles they
can also support either the role of the LLM’s user as an ontology engineer or a domain expert, or both.
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Figure 5.1: Prototype design for the ontology extension process framework for human-LLM collaboration (To-Be). This
framework is the extended version of the As-Is process for ontology extension modeled in Figure 3.1. Abbreviations:
Compentency Questions (CQs), Large Language Models (LLMs), Resource Description Framework (RDF). Detailed

description and zoomed-in visualizations of each phase can be found in Section D.1 in Appendix D.
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Table 5.4: Analysis of each OE task in the ontology extension process framework design (Figure 5.1) that can be assisted by LLMs.
OE
task
ID

OE Task Type of LLM or LLM-based tool NLP task /
multimodal task

Role of
LLM Output format Need for LLM

engineer

T-1.1 Research about the domain(s) General-purpose model (like GPT to add updated
and/or real-world knowledge)

Information
Retrieval, Question
Answering

Domain
Expert Natural language text No

T-1.2 Get acquainted with the
ontology

General-purpose model (multimodal, capable of
understanding ontology code and explain in natural
language); Fine-tuned for RDF/OWL

Question Answering Ontology
Engineer

Natural language text; Mermaid
visualization of most important concepts in
ontology to be extended (Meyer et al.,
2023)

Yes if fine-tuned
model

T-1.3

Are there any standards or
formal documentation already
in place for the domain and/or
specific application and use
case(s)?

General-purpose model (like GPT to add updated
and/or real-world knowledge)

Question Answering,
Recommendation

Domain
Expert Natural language text No

T-1.4 Gather documentation from the
domain

General-purpose model (like GPT to add updated
and/or real-world knowledge) Information Retrieval Domain

Expert
Natural language text (+ source of relevant
documents) No

T-1.5 Define new test cases and/or
business scenarios

General-purpose model; OntoChat (Zhang et al.,
2024); RAG

Keyphrase
Generation

Domain
Expert

Natural language text (specific format can
be defined by ontology engineer) Yes if RAG

T-1.6 Create glossary of terms General-purpose model; RAG Information Retrieval Domain
Expert

Dictionary of terms (e.g., list or JSON),
each one including: name, synonyms,
natural language description, type (noun,
verb)

Yes if RAG

T-1.7
Extract main concepts and
relations from existing
documentation/standards

General-purpose model; Fine-tuned for task (e.g.,
REBEL (Huguet Cabot & Navigli, 2021))

Information
Extraction

Ontology
Engineer

List of triples in the format (concept -
relationship - concept)

Yes if fine-tuned
model runs
locally

T-2.1 Formulate Competency
Questions

General-purpose model (Rebboud et al., 2024);
Fine-tuned for task (e.g., Zephyr); OntoChat (Zhang
et al., 2024)

Keyphrase
Generation (Question
Generation)

Domain
Expert

List of CQs grouped into levels: low or
atomic, middle or connectivity, and high or
business

Yes if fine-tuned
model

T-2.2
Is there an ontology with a
scope that already covers the
concept(s) to some extent?

General-purpose model (like GPT to add updated
and/or real-world knowledge)

Question Answering,
Recommendation

Ontology
Engineer,
Domain
Expert

Natural language text No

T-2.3 Define ontology extension
modules

General-purpose model (like GPT to add updated
and/or real-world knowledge)

Text Classification,
Information
Extraction

Ontology
Engineer

Sets of CQs grouped in categories. Each
category has a name and a description No

T-2.4 Build small graph or
preliminary sub-ontology

General-purpose model (Fathallah et al., 2024);
Fine-tuned model for Description Logic modeling;
GPT Ontology Augmenter (Protégé plugin) (Mateiu
& Groza, 2023)

Information
Extraction (+
reasoning)

Ontology
Engineer

Ontology including class declarations,
subclass relationships, individuals,
properties and restrictions in RDF/ OWL/
Turtle syntax, SHACL; Mermaid
visualization (Meyer et al., 2023)

Yes if fine-tuned
model

T-2.5
Find links between main
class(es) in preliminary
sub-ontology and ontology to be
extended

General-purpose model (few-shot/CoT prompting)
(Amini et al., 2024; Norouzi et al., 2023); RAG
(Giglou et al., 2024); OLaLa (Hertling & Paulheim,
2023)

Ontology Matching /
Alignment

Ontology
Engineer

List of matching concepts from ontology to
be extended and ontology extension Yes if RAG

T-3.1 Formalize Competency
Questions into SPARQL queries

General-purpose model; Fine-tuned for coding (e.g.,
Copilot); Custom LLM-tool for SPARQL query
generation with LangChain (Bouter et al., 2024)

Coding (SPARQL
query)

Ontology
Engineer List of CQs and SPARQL queries

Yes if custom
LLM-tool
(SPARQL
generation by
LLMs is still
unstable
according to
LangChain
documentation)

T-4.1 Populate ontology extension
with instances General-purpose model (Fathallah et al., 2024)

Information
Extraction (Named
Entity Recognition),
Coding (OWL, RDF,
Turtle)

Ontology
Engineer Triples in RDF No

T-4.2 Verify al CQs can be answered
according to test cases

General-purpose model; OntoChat (Zhang et al.,
2024)

Information
Retrieval, Question
Answering

Ontology
Engineer

List of CQs included: if it can be answered
(yes/no) and explanation No
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5.6. Conclusion
In this chapter, we described the prototype design of an LLM-assisted process framework for ontology extension, which
addresses SQ3: What does the design of an integrated process framework for human-LLM collaboration for ontology
extension look like?. To integrate LLMs in the ontology extension process, we decided to use the current ontology
extension process modeled in Chapter 3 and extend it by identifying which current OE tasks can be facilitated by an
LLM (Figure 5.1). This identification is the result of a study on the NLP capabilities of LLMs and their similarities
to the downstream OE tasks in the ontology extension process (Table 5.1). Moreover, current applications of LLMs
to OE were analyzed and incorporated into the design. The application of LLMs to OE presents several inherent
limitations of which ontology engineers at TNO are aware. Because LLMs cannot solve all the problems associated
with the ontology extension process, we assessed currently available OE tools that could help with some of the tasks
that LLMs cannot assist. Certain tasks must remain manual, as the expertise and richness in perspectives of human
professionals cannot be fully replaced by AI systems. The integrated process framework design depicted in Figure
5.1 is complemented by a detailed description of how each specific OE task in the ontology extension process can
be implemented in practice with an LLM (see Table 5.4) and a prompt template (see Section D.2 in Appendix D).
We justified how all non-functional requirements, both structural and environmental (See Chapter 4), are addressed
by the prototype design. In the next chapter, we will demonstrate and evaluate the designed artifact, including the
fulfillment of the functional design requirements.



6
Demonstrating and Evaluating the

human-LLM collaboration framework for
ontology extension

Once the process framework for human-LLM collaboration has been designed, in this chapter we show how the artifact
works in practice with a specific use case and we perform an ex-post evaluation with the use case chosen (Johannesson
& Perjons, 2021). Thus, in this chapter we answer SQ4: How can the framework be demonstrated and evaluated with
a specific use case, and to what extent does it improve the status quo?. This chapter is divided into two parts. First,
we demonstrate the artifact – the process framework prototype – with the selected use case and discuss the main
insights observed in this testing phase. Second, we evaluate the output of the process framework prototype – the
ontology extension – against the gold standard. Additionally, we evaluate the process with an end-user – an ontology
engineer – and we assess to which extent the elicited requirements were fulfilled with the proposed design.

6.1. Description of the use case chosen
To demonstrate the artifact and show its feasibility, following Johannesson and Perjons (2021), we have chosen the use
case called Semantic Explanation and Navigation System (SENS), developed by TNO in 2023. The project consists
of the development of the SENS module, an interoperable system that enables semantic communication between
autonomous systems from diverse manufacturers and humans in the greenhouse environment. The assumption is that
the use of autonomous systems in high-tech greenhouses will grow in the near future. As a consequence, heterogeneous
autonomous systems will coexist in the greenhouse, together with human workers, such as growers, pickers, technicians,
or managers. The greenhouse is a tight space, often composed of narrow paths and dense vegetation in which human
workers and autonomous systems or robots must perform different tasks concerning the crops and use specific materials
and tools. These tools can be in motion (e.g., carts), or could potentially be hazardous in specific situations (e.g.,
weeding knives or scissors). Currently, autonomous systems can detect obstacles obstructing their way, but will only
stop without notifying the human operator. The goal of SENS is to improve this state concerning foreseeable but
unexpected situations by enabling the robots to semantically communicate and explain to the human operator the
obstacle encountered and the level of urgency of the situation. With this information, the human operator can locate
the robot in the greenhouse, judge the situation, and act accordingly (e.g., removing the obstacle from the robot’s
way). The ultimate goal is to increase the work efficiency of both autonomous systems and human workers in the
greenhouse while maintaining a safe work environment for all.

The Common Greenhouse Ontology (CGO)1 is introduced in the project SENS to enable the semantic communication
and interoperability between robots from different manufacturers, which might use various communication protocols
and standards. The CGO is a public domain ontology focused on high-tech greenhouse infrastructure and the
systems measuring the necessary data to effectively monitor and control the crops’ growth inside the greenhouse,
such as climate data (Bakker, van Drie, et al., 2021; Verhoosel et al., 2023). The CGO was extended within the
SENS project to include all the concepts and relations needed to model the use case. As part of the project SENS
a web application prototype was built to showcase the use case. The web application included a dashboard as the
user interface for the human operator, in which the information reasoned by the robots via the SENS module is

1https://gitlab.com/ddings/common-greenhouse-ontology
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presented. The CGO was extended accordingly to provide all the necessary information in the dashboard and fulfill
the application’s requirements. We have chosen this use case for several reasons:

• The SENS use case is a real-life case, providing a more accurate and representative context than an artificial
or fictitious use case (Johannesson & Perjons, 2021).

• The documentation of the SENS use case is available and sufficient to demonstrate the process framework
prototype.

• The CGO is a big ontology (thousands of classes and instances, and hundreds of relations), which is an accurate
representation of most ontologies currently. Encouraging the reusability of standards, big ontologies might need
to be extended frequently.

• The CGO is public, thus there are no confidentiality concerns.
• The CGO was manually extended (without using LLMs or any other type of automated system) to model

the SENS use case and successfully develop and test the SENS system and all its components, including the
dashboard presenting the information to the end-user. This provides us with a gold standard (the manually
developed SENS extension) that can be used to evaluate the output of the process framework prototype.

• The high-tech greenhouse domain is a relevant topic for society, significantly impacting the advancement of
agri-tech innovation and sustainable food production.

The full use case description used for the demonstration and evaluation of the process framework prototype is provided
in Section E.1 (Appendix E).

6.2. The gold standard
As part of the project Semantic Explanation and Navigation System (SENS) developed by TNO in 2023, the Common
Greenhouse Ontology (CGO) was extended manually, i.e., without using LLMs. The extension process was guided
by the development in parallel of the SENS dashboard, a web application with a user interface in which the user, in
this case, the human operator in the greenhouse, would receive notifications from the robots. The SENS extension
was conceptualized based on some Compentency Questions (CQs) covering mainly the knowledge about types of
obstacles found in the greenhouse and types of situations and actions related to the characteristics of the obstacles
or objects. From four ontologies identified as potentially reusable for the SENS use case extension, two ontologies
were selected and reused: the SOMA ontology (Beßler et al., 2021) and the Dolce/DUL ontology (Borgo et al., 2022).
The SENS system was integrated with a tag-based positioning system that enabled the identification of the tagged
objects and people in the greenhouse. For the demonstration of the process framework prototype, we will leave the
specifics of the integration of the CGO with the positioning system out of the scope of the use case, and we will focus
on the obstacles and situations. The CGO was extended by adding the concepts and relations for SENS one by one
to the ontology. Figure 6.1 illustrates the manual SENS extension to the CGO developed and used here as our gold
standard. The visualization has been generated with TopBraid, using the code for the use case SENS in the public
GitLab repository of the CGO2.

2https://gitlab.com/ddings/common-greenhouse-ontology/-/tree/sens?ref_type=heads

https://gitlab.com/ddings/common-greenhouse-ontology/-/tree/sens?ref_type=heads
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Figure 6.1: The SENS extension to the CGO, the gold standard. Object hierarchy (left) and graph visualization (right).
Highlighted in red some of the main concepts added for the SENS extension. Visualization generated with TopBraid, using

the code for the use case SENS in the public GitLab repository of the CGO.

6.3. Demonstration of the process framework prototype
In this section, we focus on the demonstration of the process framework prototype design. First, we explain and
describe the set-up for the demonstration (Section 6.3.1), and finally, we discuss the results obtained within the
demonstration of the process framework using the selected use case (Section 6.3.2).

6.3.1. Demonstration protocol
To demonstrate the human-LLM collaboration framework for ontology extension prototype, I – as a researcher and
adopting the role of a beginner ontology engineer – performed a walk-through of all the OE tasks in the process
framework (Figure 5.1) that can be assisted by LLMs, further documented in Table 5.4. All the prompt templates
provided in Section D.2 (Appendix D) were adjusted to the SENS use case, replacing the placeholders by the corre-
sponding information concerning the CGO and the greenhouse domain, and using the description of the extension
SENS use case provided in Section E.1 (Appendix E).

We opted to use GPT-4 Omni3 (or GPT-4o) from OpenAI4 as the LLM for all the identified OE tasks. Moreover,
we built a custom GPT Assistant5 using OpenAI’s developer platform. GPT Assistants are advanced AI tools that
enable the integration of GPT models in specific use cases and applications. They can be customized to specific tasks
or domains, and be used with different GPT models. There are several reasons why we have decided to choose this
model and setup:

• The exploration of current applications of LLMs to OE tasks (Section 5.3 in Chapter 5) has shown that the
performance of GPT models is comparable to the performance of other models fine-tuned specifically for the
task, and often GPT-4 outperforms other proprietary and open-source models.

• LLMs such as GPT can add real-world knowledge, necessary for the tasks in the Preparation and Conceptual-
ization stages of the ontology extension process (as discussed with Interviewee 8, see Section B.0.3).

3https://openai.com/index/hello-gpt-4o/
4https://openai.com/
5https://platform.openai.com/docs/assistants/overview

https://openai.com/index/hello-gpt-4o/
https://openai.com/
https://platform.openai.com/docs/assistants/overview
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• As a general-purpose model, GPT-4o can perform a wide range of tasks. Therefore, we can simplify the
demonstration process by using the same model for all the different OE tasks in the ontology extension process
design.

• While its performance is comparable to GPT-4 and GPT-4 Turbo, GPT-4o is faster and cheaper, according to
OpenAI (OpenAI, 2024).

• The creation of a custom GPT Assistant allows the creation of a file store from which the model can retrieve
information (from the files uploaded). This functionality allows us to overcome the context window limitation
(i.e., there is a maximum number of tokens that the input of the chatbot interface can accept), and to have
higher control over the sources from which the model can take the information to produce a relevant output
(as discussed with Interviewee 2, see Section B.0.3).

• Creating a GPT Assistant can be done easily through OpenAI’s developer platform. Without having to code,
any user with little or no experience using LLMs can create an assistant. This aligns with the user-friendliness
of the process framework prototype design.

Following the advice and insights from other research projects at TNO using LLMs, we created a GPT Assistant called
Common Greenhouse Ontology Expert. The Common Greenhouse Ontology Expert plays the role of an experienced
ontology engineer with domain expertise in the greenhouse domain to help the user, the ontology engineer, develop
the SENS extension. In its file store, we included a text file containing relevant information about the CGO, taken
from its public GitLab repository, and another text file containing the CGO code formatted as a Turtle triples file.
We used a version of the CGO code before the implementation of SENS, i.e., the CGO code uploaded to the file store
of the GPT Assistant does not contain any data related to the SENS use case. In the model instructions’ input we
included the following text:
You are an experienced ontology engineer with expertise in the greenhouse domain. The user is also an

ontology engineer , who needs you helpful assistance to create an extension to the Common Greenhouse
Ontology (CGO). The extension consists in adding new concepts and relations to the CGO to cover a new

use case. The user will ask you for suggestions for different tasks in the ontology development
process. In your answers , please be as concise as possible. Do not include any explanations or
apologies in your responses (unless otherwise specified by the user). Answer the questions in the
format specified by the user. When asked about the existing Common Greenhouse Ontology , make sure you

only use the information provided in the file called cgo with the extension \".txt\" but formatted
as a turtle triples file, without creating new entities , relations , concepts , or any type of data
that is not already in the file provided. When asked questions for modeling the new extension , use
the files provided but also your knowledge base to provide correct and useful suggestions to the user
. Make sure the code you provide is syntactically correct.

Any other settings available in the GPT Assistant customization interface were left as default.

6.3.2. Demonstration results
I, in the role of an ontology engineer, executed all the prompts designed (Section D.2) for the LLM-assisted OE tasks
of the process framework for ontology extension prototype to extend the Common Greenhouse Ontology (CGO) based
on the SENS use case. GPT-4o was used for all the tasks, through a customized GPT Assistant playing the role of
a Common Greenhouse Ontology Expert, instructed to be an expert ontology engineer with domain expertise in the
greenhouse sector and assist the user – myself acting as a beginner ontology engineer – to develop the extension to
the CGO. The resulting outputs for each task are included in Section E.2 of Appendix E. For each task, the input
is also indicated when additional files or text have been added to the prompt or uploaded as a file to the file store
of the GPT Assistant, or the prompt has been significantly modified (beyond the replacement of the placeholders).
When additional prompts were used, this was also indicated in the task. For each output of the tasks executed, we
included an observation, reflecting on the output of the LLM and focusing on the correctness and usefulness of the
task for the ontology engineer (See Table 6.1). The main insights are:

• Preparation phase – Getting acquainted with the domain, the ontology to be extended, and the
extension: Tasks 1.1, 1.2, and 1.3 produced relevant results that can be used by the ontology engineer to
get acquainted with the domain, the ontology to be extended and the ontology extension. The outputs can
serve as inspiration to the ontology engineer, but the information must be reviewed and checked, for example
by opening the ontology file in Protégé or TopBraid. The LLMs can complement the information provided by
these tools, though not replace them.

• Preparation phase – Gathering existing standards: The output Task 1.4 was fully hallucinated. Thus,
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this indicates that the ontology engineer should use conventional search engines instead of an LLMs for this
task.

• Preparation phase – Defining business scenarios, creating a glossary of terms, and extracting
concepts and relations from existing standards: Tasks 1.5, 1.6, and 1.7 produced relevant suggestions
with few-shot prompting and by making the instructions in the prompts very specific.

• Conceptualization phase – Formulating Compentency Questions (CQs): Though also highly depen-
dent on the quality of the documentation of the use case provided, the output of task 2.1 was surprisingly
relevant. The quality achieved was not expected after examining the results of previous research on the topic
(Rebboud et al., 2024). In this case, the CQs produced were similar to the ones formulated in the gold standard
(e.g., CQ1: What type of obstacle has the robot detected?, CQ2: Where is the robot currently located?) and
some of them provided relevant suggestions that were not thought of in the gold standard but that could be
added (e.g., CQ10: How much time did the robot take to avoid the obstacle?, CQ13: How many obstacles have
been detected within a specified timeframe?).

• Conceptualization phase – Reusing existing ontologies and defining modules: The output to task 2.2
included 1 correct suggestion of an ontology that could be reused for the use case SENS, from the 2 ontologies
reused in the gold standard (in total 4 were proposed). The output to task 2.3 produced coherent suggestions
to modularize the ontology, though it is not clear if it is useful in reality, since the ontology extension is small
in this case.

• Conceptualization phase – Building the ontology extension and aligning the extension with the
ontology to be extended: The output of task 2.4 needed to combine few-shot prompting to the prompting
chaining technique proposed in order to add depth to the ontology (for example, to add sub-classes to the class
Obstacle and to the class Situation), and to apply several corrections. But overall, the code provided by GPT
in Turtle/OWL syntax was syntactically correct and the model was able to identify mistakes and correct them.
It is worth mentioning that GPT established severity levels for the situations according to their characteristics
and the impact on the functioning of the robot, without specifying this in any prompt. The reasoning by GPT
is logical and similar to the gold standard. Thus, this task is useful if the ontology engineer wants to use GPT
to obtain an initial version of an ontology without having to write a single line of code or without having to do
it manually in Protégé. For an inexperienced ontology engineer, this task might be much more useful, providing
a solid starting point while learning good OE practices. The final ontology resulting from this task can be seen
below in Figure 6.2. Some prompts were inspired by the work of Fathallah et al. (2024). Following the approach
of Amini et al. (2024), the suggestions for aligning the ontology extension with the ontology to be extended
given in task 2.5 are relevant and provide additional insights compared to the gold standard.

• Implementation phase – Formalizing CQs into SPARQL queries: The output of task 3.1 was unex-
pectedly high quality with zero-shot prompting. Though the potential of using LLMs for this task has been
demonstrated (both inside and outside TNO), the performance of LLMs for this task is claimed to be ”unstable”
(LangChain, n.d.). In this test, from the 16 CQs provided to GPT, all were syntactically correct when executed
in Protégé and 8 gave results (see Figure E.6 as an example). Some SPARQL queries produced revealed the rea-
soning capabilities of GPT, such as CQ6: Why has the robot made the specific decision for obstacle avoidance?,
in which it is not explicit how the robot makes a decision. The SPARQL query produced shows that GPT
correctly identified that to answer that CQ, information about the outcome of the situation, the obstacle type,
the recommended action, and the explanation was needed (see Figure E.10). Though the SPARQL queries
produced by GPT might need some manual post-processing, perhaps to simplify them, this output gives a
solid start to ontology engineers and might be especially relevant for domain experts with scarce knowledge on
SPARQL query generation.

• Verification phase – Populating ontology and verifying CQs: With task 4.1 the ontology extension was
populated with relevant individuals and as a result, 14 out of the 16 SPARQL queries generated previously gave
results when executed in Protégé. This task can be especially useful since it can fully eliminate the cumbersome
process of having to create manually a lot of individuals, as discussed with Interviewee 11 (see Section B.0.3).
The output of task 4.2, inspired by the work of Zhang et al. (2024), is almost fully correct, with 14 out of 16
CQs correctly identified. The potential of this task relies on the capacity of the user to spot the mistakes and
judge the output, but it can provide a solid starting point and serve as a guide to less experienced ontology
engineers. The highest benefit of this task is that the ontology extension can be verified without having to use
SPARQL queries, which could make the task especially useful for domain experts (who might not know how to
write SPARQL queries).



6.3. Demonstration of the process framework prototype 59

Figure 6.2: Output of Task 2.4 – Final version of the ontology extension (concepts to be added to the CGO) generated
using the human-LLM collaboration process framework prototype (after all additional prompts) – a) Classes; b) Object

properties; and c) Data properties. Visualized in Protégé.

Table 6.1: Observations for each OE task executed with GPT during the walk-through using the process framework design
prototype.

OE
Task
ID

OE Task Observations

T-1.1 Research about the domain(s)
Output is more relevant when the description of the extension use case is
provided as text in the prompt instead of uploading a text file in the file
store of the assistant. The output provided seems relevant and useful.

T-1.2 Get acquainted with the ontology

Q1: Most of the information seems relevant and not hallucinated. It
struggles to identify which concepts are ”main” concepts. The term
”main” seems vague, thus the user should use more concrete terms or
explain what is meant by ”main”. Q2: Most of the information seems
relevant and not hallucinated. It incorrectly identifies
sosa:ActuatableProperty and sosa:ObservableProperty as relations
(object or data properties) when they are classes. When told the error, it
identifies and corrects the mistake. Q3: Mermaid visualization looks a
bit confusing. Output is better when asked to visualize a small part of
the ontology (e.g., a class and its properties).

T-1.3

Are there any standards or formal doc-
umentation already in place for the do-
main and/or specific application and
use case(s)?

Output seems correct and not hallucinated. The links provided work.

T-1.4 Gather documentation from the do-
main

Q1: Most of the information seems hallucinated. Proposed sources
cannot be found on the internet or Google Scholar. Q2: Output could
be helpful to extract main concepts and definitions in the domain.

T-1.5 Define new test cases and/or business
scenarios

Output varies a lot depending on the prompt. If the description of the
use case is too vague, the answer is very broad, producing irrelevant
business scenarios. When the description is more detailed and scoped,
the output answer is much more relevant.

Continued on next page
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Table 6.1: Observations for each OE task executed with GPT during the walk-through using the process framework design
prototype. (continued)

OE
Task
ID

OE Task Observations

T-1.6 Create glossary of terms

Output improves if the task is decomposed (first asking for the list of
concepts and then asking for the definition). Because the documents
provided in the test are not very extensive, only 19 concepts are
identified. This makes the results of the following prompts look trivial.
This task might not be so useful for use cases that do not have extensive
documentation.

T-1.7
Extract main concepts and rela-
tions from existing documentation/s-
tandards

Tested with a simple, fictitious JSON structure. The LLM does not seem
to understand that the user is modeling an ontology, even if specified in
its system and in the prompt (zero-shot). Several corrections (few-shot)
are needed to establish correct ontological relationships, e.g., creation of
superclass-subclass relationships. The outputs be corrected by applying
few-shot prompting and providing examples and corrections. It could be
possible to achieve better quality in the responses with a fine-tuned
model or by training the general-purpose model by prompting. In the
latter option, the question would be how much time does it save in the
ontology engineering process compared to doing this task manually.

T-2.1 Formulate Competency Questions

The quality of the CQs depends a lot on how well the use case is
described. In this case, a file describing the business scenarios and new
concepts to add was uploaded. The file content was taken from T-1.1
and T-1.5 and manually reviewed and modified: we homogenized the
information exchanged between the Robot and the Human Operator and
we replaced the actions of the Human Operator by Receives the
notification and monitors the robot’s decision for all the business
scenarios to reflect that the communication is only one-way, from the
autonomous system to the human operator. We added the suggestions
of new concepts to add to the ontology given in the input of T-1.1. Most
of the CQs produced by GPT are low-level, but seem relevant. The
question would be how often a good description of the use case and
business scenarios are available in real life (”garbage in, garbage out”).

T-2.2
Is there an ontology with a scope that
already covers the concept(s) to some
extent?

GPT is able to identify 1 of the 2 ontologies reused in the CGO for the
SENS extension (Dolce/DUL ontology). Thus, the ontology engineer
might miss relevant ontologies if only using GPT.

T-2.3 Define ontology extension modules

Modules generated and CQs associated to them seem coherent overall.
Whether the modules are relevant to include to the CGO is unclear. The
task might be more relevant when developing a bigger extension, hence
more CQs (in this case the input had a total of 16 CQs).

T-2.4 Build small graph or preliminary sub-
ontology

Provided same file as for T-2.1 with reviewed business scenarios (from
T-1.5), suggestions of which CGO concepts are relevant to the extension
and which ones should be added (from T-1.1), and added the list of CQs
(from T-2.1) and CGO prefixes. If not including the business scenarios,
only including the CQs produced a very small and flat ontology.
Additional prompts are necessary for GPT to create a richer ontology,
with a deeper taxonomy level.

T-2.5
Find links between main class(es) in
preliminary sub-ontology and ontol-
ogy to be extended

The output seems relevant with zero-shot using the information from
the output of T-1.2. Not all alignment suggestions seem correct, such as
making the class Object of SENS a subclass of the class Sensor in the
CGO. But other suggestions could be used, such as making the class
Robot of SENS a subclass of System in CGO, or merging the class
Location of SENS with the classes Grid or Place of the CGO.

T-3.1 Formalize Competency Questions into
SPARQL queries

The zero-shot approach without examples was tried. First, one CQ at a
time was given. Then, a list of CQs was given and GPT was asked to
provide a SPARQL query for each CQ in the list. Of the 16 SPARQL
queries produced for the 16 CQs, 8 gave results when executed using the
plugin SPARQL Query in Protégé. All the CQs were checked in Protégé
and all seem to be syntactically correct.

Continued on next page
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Table 6.1: Observations for each OE task executed with GPT during the walk-through using the process framework design
prototype. (continued)

OE
Task
ID

OE Task Observations

T-4.1 Populate ontology extension with in-
stances

From the list of 16 CQs with 16 SPARQL queries, 14 of the SPARQL
queries executed produced results when executed in Protégé after GPT
populated the ontology.

T-4.2 Verify all CQs can be answered accord-
ing to test cases

From the list of 16 CQs, 14 were correctly identified as Yes/No.
Numbers 2 and 12 are incorrect. This task is promising since it allows
the ontology engineer to test the ontology without having to translate
the CQs into SPARQL queries.

6.4. Evaluation of the process framework prototype
In this part, we focus on the ex-post evaluation of the process framework prototype design (Johannesson & Perjons,
2021). First, we briefly explain the evaluation plan, and after we show the evaluation results on three different layers:
1) Comparison of the output with the gold standard; 2) Evaluation of the process framework design with an end-user;
and 3) Evaluation of requirement adherence in the proposed design.

6.4.1. Evaluation protocol
To evaluate the artifact and assess to what extent it improves the status quo, following Johannesson and Perjons
(2021), we have chosen a multifaceted approach:

• First, we compare the output generated by the demonstration or walk-through of the process framework (the
SENS ontology extension generated with the GPT Assistant and using the process framework prototype in
Section 6.3) with the gold standard (the SENS ontology extension developed manually).

• Second, an end-user (an ontology engineer) is asked to use the process framework prototype and perform an
extension using the same use case as for the demonstration of the prototype (the CGO and SENS). The end-user
is asked to evaluate the set of the proposed LLM-assisted OE tasks in the process framework prototype design
executed.

• Finally, we show how the proposed design fulfills the requirements elicited in Chapter 4.

Though a real use case has been chosen to demonstrate and evaluate the artifact, this evaluation can be classified
as artificial (Johannesson & Perjons, 2021) if compared to a real setting in which the ontology engineer would use
the process framework prototype while working together with other ontology engineers, domain experts, knowledge
workers, and knowledge users. While testing the design prototype using a real case and in a real setting would be
extremely useful for its evaluation, the time and stakeholder participation needed extend beyond the duration of
this thesis research project. By following a multifaceted approach we try to mitigate this limitation and provide a
thorough evaluation of the prototype design.

End-user evaluation protocol
For the end-user evaluation of the process framework design, we asked a beginner ontology engineer at TNO to
use the process framework design to perform the extension to the Common Greenhouse Ontology (CGO) based on
the Semantic Explanation and Navigation System (SENS) use case. We used the same GPT Assistant created for
the demonstration (the Common Greenhouse Ontology Expert), maintaining the same configuration. The ontology
engineer had some previous experience with the CGO. We specifically chose this profile because: 1) It matches the
intended audience of the process framework design (ontology engineers with varying levels of expertise); 2) Through
the demonstration phase, it was shown that several tasks in the process framework design could be particularly
valuable for less experienced ontology engineers since they are based on best practices and thus not only facilitate the
task but also provide guidance in the extension process; 3) The ontology engineer did not have previous experience
with the use case SENS, which reduces potential biases on how to model the extension.

The setup of the end-user evaluation consisted of a session of 2.5 hours of duration in which we observed how the
ontology engineer used the process framework prototype. For each task of the process framework prototype executed
with the LLM (the GPT-4o Assistant) we asked the ontology engineer to give a score. The scoring system will be
explained below. All the information for the session was documented in an internal GitLab repository shared with
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the ontology engineer. In this repository, we included the description of the use case for the extension (provided in
Section E.1 of Appendix E); the ontology to be extended: CGO code (before the SENS implementation, i.e., with
no data about SENS); the human-LLM collaboration framework prototype (Figure 5.1) including a document with
all the prompt templates (provided in Section D.2 of Appendix D); and an Excel file to evaluate each LLM-assisted
task executed.

For the tasks’ evaluation, we used a scoring system based on a simplified version of a Likert scale6. The ontology
engineer was asked to give a score on the task based on the following scoring system:

• Score = 1: Task does not work well with LLM. Too much manual processing of the output is needed. It confuses
more than helps.

• Score = 2: Task works with LLM, but still needs some manual processing. Usefulness for the task looks
promising with some further improvements.

• Score = 3: Task works quite well with LLM, with little or no manual processing needed.

The objective of this evaluation is to collect end-user feedback on the validity of the process framework design, with
a specific focus on the LLM-assisted tasks. We decided to prioritize these tasks because we are interested to see
how LLMs can facilitate the current ontology extension process. While evaluating how other tools can facilitate the
process is also essential, we decided to leave this beyond the scope of this experiment, and hence beyond the scope
of this research project. The feedback from the end-user aims to provide insights into how effectively the proposed
design facilitates the ontology extension process compared to the current practice of manually extending an ontology
without the process framework and LLM support.

6.4.2. Evaluation results
Comparison with the gold standard
As discussed previously in Chapter 5, research on the evaluation of ontologies is still ongoing, with many questions
remaining unanswered due to the lack of a single correct method for modeling the information of a domain. The
quality of an ontology is primarily determined by its ability to answer the Compentency Questions (CQs) and meet
the knowledge requirements of the end-user. Additionally, operational ontologies must satisfy the specific needs of
the systems in which they are integrated (Noy & McGuinness, 2001) (Validation phase), which may differ from the
CQs, and this should be considered when evaluating the quality of an ontology.

Acknowledging the problems associated with the evaluation of ontologies and knowledge graphs, researchers such
as Trajanoska et al. (2023), Saeedizade and Blomqvist (2024) and Fathallah et al. (2024) propose qualitative met-
rics based on best practices and modeling principles; correctness of the syntax and presence of certain classes and
restrictions that according to the authors show a more sophisticated understanding of ontology conceptualization;
and structural metrics such as number of classes, object and data properties, respectively. Assuming that so far,
automated methods for ontology development generate flat ontologies, in the work of Fathallah et al. (2024) it is
concluded that ”the more the better”, which can be valid in the context of comparing LLM-created ontologies to
manually developed ontologies, but is not always true in reality. If an ontology can effectively represent the domain
or use case with fewer data but still meets the requirements of the use case or the application, then that might reduce
the complexity of the model and the amount of data needed. On the other hand, employing quantitative metrics such
as the ones provided by Reiz and Sandkuhl (2022) provides a more objective framework for evaluation, but lacks the
depth and richness of qualitative metrics, and is only meaningful when compared.

Thus, we have decided to discuss some of the main differences that we can observe in the manually developed SENS
extension (the gold standard) (Figure 6.1) and the SENS ontology extension generated using GPT-4 Omni with the
process framework prototype (Figure 6.2) (for better readability identified as SENS-GPT from now on):

• The gold standard has a richer taxonomy for class Situation, with 7 sub-classes in total compared to the 5 sub-
classes modeled in SENS-GPT. Even though the types of situations generated in SENS-GPT are very similar to
the gold standard, it lacks the distinction between the position of the human detected (standing or lying) and
the distinction between attended and unattended tool. These distinctions were used to model different types
of situations with different severity levels for the human operator to act upon.

• In the gold standard, obstacles were categorized as fixed objects (class cgo:FixedObject which includes parts of
the greenhouse infrastructure, already part of the CGO), self-moving objects (class cgo:SelfMovingObject which

6https://en.wikipedia.org/wiki/Likert_scale

https://en.wikipedia.org/wiki/Likert_scale
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includes the sub-classes cgo:MovingRobot and dul:NaturalPerson), and physical objects (class dul:PhysicalObject
that includes the sub-class cgo:MovableObject). This reuse of existing classes in the CGO and other ontologies
contributes to higher reusability of standards and interoperability of the extended CGO. In SENS-GPT the
class Object contained only the sub-classes GreenhousePart (already existing in the CGO), Human, and Object.

• In the gold standard the severity level of a situation was modeled as an object property while in SENS-GPT is
a data property. Moreover, an additional class called Hazardousness associated with the class Object through
an object property was included in the gold standard, but missing in SENS-GPT. The way in which the severity
level of the situation was conceptualized, based on the characteristics of the object and on its impact on the
operation of the robot and the safety of the human, was similarly conceptualized by GPT (See the output of
Task 2.4 - Additional prompt 1.2 in Appendix E).

• In the gold standard a class called PossibleRecognition was included to reflect the information detected by
the robots through their detection system before adding inferred information about the situation. This was
included due to certain requirements of the web application containing the dashboard for the SENS system,
that were not made explicit in the demonstration use case. Thus, this was not included in SENS-GPT.

• In the gold standard, the action taken by a robot after detecting an obstacle and determining the situation
was based on the capability of the robot to bypass the obstacle (based on its size) and on the hazardousness
level of the object. This decision was created in the SENS dashboard (outside the CGO) using the information
given by the ontology. A data property, hasBypassablePossibility, and an object property, hasHazardousLevel,
were included whereas in the SENS-GPT extension a class called Action with the sub-classes ContinueActivity,
GetAround, and StopAndWait was modeled. The assignment of these Action types as an object property to
the class Situation is explicitly modeled within the SENS-GPT extension by including object properties such
as hasAction and hasRecommendedAction and data properties such as hasExplanation and hasTaskDeviation,
that were not added in the gold standard.

But beyond these structural differences, there are other aspects to consider in both ontology extensions. The gold
standard effectively reused 2 ontologies while SENS-GPT failed to identify all the possible ontologies that could be
reused. Thus, we can conclude that human expertise is required in this step to ensure the reusability of standards.
On the other hand, SENS-GPT provides a more complete list of CQs and their respective SPARQL queries. GPT
generated annotations (comments and labels) for all the generated classes, object properties, and data properties.
Leveraging the NLP capabilities of LLMs, all these annotations could be automatically translated to other languages
if necessary. Moreover, because SENS-GPT has been developed using the process framework prototype, which is
based on REPRO’s best practices (Bakker, van Bekkum, et al., 2021), the content generated by GPT throughout the
Preparation and Conceptualization phase provides a solid source for documenting the ontology and the project.
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Table 6.2: Overview of the main differences between the gold standard extension and the extension generated using the
process framework with GPT-4o (SENS-GPT).

SENS Gold Standard SENS-GPT

Situations Taxonomy with 7 sub-classes including differ-
ent situations depending on the position of the
human when detected as an obstacle

Taxonomy with 5 sub-classes (position of hu-
man not considered)

Obstacles Extended from DUL ontology, including self-
moving objects (such as humans) and movable
objects (tools found in the greenhouse), and
using the FixedObject already existing in the
CGO

Obstacle class created, with three sub-classes:
GreenhousePart (existing in the CGO), Hu-
man, and Object. Object has several sub-
classes representing common tools found in the
greenhouse

Severity level of
situations Object property of an unexpected situation.

Severity is a class with instances (Alarm, Info,
Warning) that depend on the characteristics of
the object that have an impact in the robot’s
operation and the safety of the human

Data property of Situation. The data type
is a string that can be ”High”, ”Medium”, or
”Low” depending on the obstacle found and its
impact on the operation of the robot and the
safety of the human (reasoned by GPT)

Possible recognitions Additional class to differentiate recognitions
from reasoned situations in the SENS dash-
board

Not included

Decision made by the
robot when detecting
an obstacle

Made outside the ontology, in the SENS dash-
board using the data provided by the ontology
model

Explicitly modeled within the ontology exten-
sion using the object properties hasAction and
hasRecommendedAction and data properties
such as hasExplanation and hasTaskDeviation

Reuse of existing
ontologies 2 ontologies reused Only 1 ontology identified for reuse

Compentency
Questions (CQs) CQs where not used during the development

of the extension
16 CQs generated and formalized, and used for
verification of the ontology extension

Annotations
(comments and
labels)

Some annotations are missing All annotations are included, but some are too
generic

Glossary of terms Not included Basic glossary of terms automatically created
from use case description

In summary, both manual and automated ontology extensions have distinct strengths and weaknesses. While a
manually crafted ontology offers greater richness and depth, the limitations of a fully automatic approach highlight
the importance of an expert-in-the-loop methodology. Thus, the goal is to maximize the synergies between human
expertise and LLMs capabilities, reducing the number of cumbersome tasks that have to be manually executed by
the ontology engineer and maximizing the quality of the ontology extension thanks to the possibilities offered by the
LLMs. This sweet spot could be found using the human-LLM collaboration process framework.

End-user evaluation
The ontology engineer executed the tasks of the process framework in the Preparation and Conceptualization phases.
As discussed above, the focus of the evaluation was on LLM-assisted tasks in the ontology extension process. Even
though the same use case used in the demonstration of the artifact has been used in this user evaluation, the results
are different. First, the responses of the GPT Assistant are slightly different from the ones provided during the
demonstration phase. Second, the ontology engineer strictly used the prompt templates but no additional prompts
were used, as was done in the demonstration process. Thus, this end-user evaluation relies more on the capabilities
of the GPT Assistant, and less on human expertise. The score given by the end-user for each task is presented below
in Table 6.3.

The ontology engineer gave the highest score to tasks 1.6 (creating a glossary of terms) and 2.1 (formulating CQs).
According to the end-user, the output of these tasks provides helpful assistance for the conceptualization of the
ontology extension. On the other hand, tasks 1.3 and 1.4 (gathering standards and documentation for the domain
and use case), and 2.2 (searching for ontologies to reuse) resulted in more confusion than assistance to the user, due to
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hallucinated information. Tasks 1.2 (getting acquainted with the ontology to be extended) and 1.5 (defining business
scenarios) provided relevant information that can be selected and used in the ontology extension. Finally, though
it also scored the lowest value, the ontology engineer acknowledged the potential of using GPT to build an initial
ontology. Overall, the ontology engineer enjoyed using the process framework prototype and stated that it is very
useful as it provides guidance throughout the ontology extension process in an accessible and user-friendly manner
(without having to read extensive documentation or guides on ontology engineering). The ontology engineer also
pointed out that the process framework not only adds value for beginner ontology engineers but also for experienced
ones, enabling the automation of some tasks that can be cumbersome.

Table 6.3: Evaluation provided by end-user for each OE task executed with GPT using the process framework design
prototype.

OE
Task
ID

OE Task Score Explanation

T-1.2 Get acquainted with the ontology 2
”The Mermaid code provided needed some improvements. The
first questions were useful to see what concepts that are related
to the use case might be missing from the CGO.”

T-1.3

Are there any standards or formal doc-
umentation already in place for the do-
main and/or specific application and
use case(s)?

1 ”In this case it was confusing since it recommended a ROBOT
ontology that does not seem to exist.”

T-1.4 Gather documentation from the do-
main 1

”The answer mostly mentioned sources from its previous
answer, so in this case it did not work. The question does
seem relevant though and might work in other cases.”

T-1.5 Define new test cases and/or business
scenarios 2

”I have to make a decision from the list of business scenarios
on which ones I find relevant and which ones not so much.
This would likely happen in the case without using an LLM as
well.”

T-1.6 Create glossary of terms 3

”Prompt 1 worked quite well and prompt 3 gave some good
intuition for different modules, even if I wouldn’t use the exact
selection it made. In this case, more data would likely have
provided a more extensive and better answer.”

T-2.1 Formulate Competency Questions 3

”Answers to both prompts seemed correct. It gave some CQs
related to scenarios that we do not care about, but the rest
seemed very relevant, so we would likely use a number of
them.”

T-2.2
Is there an ontology with a scope that
already covers the concept(s) to some
extent?

1 ”The ontologies given were already imported, or did not exist
(ROBOT Ontology).”

T-2.4 Build small graph or preliminary sub-
ontology 1

”The answer to prompt 1 is likely more confusing than helpful,
and the answers for the other prompts were influenced by it.
However these answers were quite correct and relevant to the
code provided for prompt 1, so there is potential here.”

The demonstration of the process framework presented earlier (Section 6.3.2) confirms the effectiveness of the proposed
prototype and illustrates its practical functionality. This section presents the evaluation by the end-user, an ontology
engineer at TNO, which provides essential information for assessing the prototype design beyond its demonstrated
functionality. Here, the focus shifts from functionality to the usefulness of the artifact for the ontology extension
process and the user experience.

As previously mentioned, although the same use case was employed in both the demonstration and the end-user
evaluation, the results are not identical. To compile the differences, we gave a score to the same tasks performed
during the walk-through using the same score system as the one provided for the end-user evaluation. This is presented
below in Table 6.4. The setup for the end-user evaluation session, restricted to a 2.5-hour time slot, influenced the
interaction with the process framework and the LLM-assisted tasks. Compared to the walk-through demonstration,
the input and output in the end-user evaluation session were less manually processed due to the limited time available.
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Additionally, the level of OE expertise differs between the end-user and myself, the researcher who performed the
walk-through, impacting the interaction with the tasks and the perception of their usefulness. Moreover, the end-user
is not as familiar with the artifact as the researchers are.

Table 6.4: Comparison of the end-user evaluation with the walk-through demonstration results.

OE Task
Score
by end-
user

Score
in walk-
through

Explanation

T-1.2 Get acquainted with the
ontology 2 2

The output by the LLM allows ontology engineer to
have an overview of some ontology concepts without
having to manually navigate the ontology using Protégé
or TopBraid, but some information is not correct or
relevant, though checking the information if necessary

T-1.3 Are there any standards or
formal documentation already in
place for the domain and/or specific
application and use case(s)?

1 1 In the walk-through, output seems correct but not very
useful for the ontology engineer in any case

T-1.4 Gather documentation from
the domain 1 1 In both cases response was hallucinated

T-1.5 Define new test cases and/or
business scenarios 2 3

In the walk-through, with a more refined prompt the list
of business scenarios requires little manual
post-processing and provides a solid base for the
ontology extension development that can be used in
other prompts, but also as documentation that can be
reviewed with the domain experts and/or the knowledge
workers

T-1.6 Create glossary of terms 3 2

In both the evaluation and the demonstration of the
results, the list of terms was short, as the description of
the use case is concise. The task can be very useful with
more documentation on the use case, but it is not clear
to what extent this is the case in real life

T-2.1 Formulate Competency
Questions 3 2

List of CQs is mostly relevant and many CQs can be
reused. Output depends a lot on the documentation
provided and the clarity and level of specificity, which
again requires the availability of this documentation in
real life and manual pre-processing. CQs should always
be revised and completed with the relevant stakeholders
(domain experts, knowledge users)

T-2.2 Is there an ontology with a
scope that already covers the
concept(s) to some extent?

1 1

In the walk-through, GPT was able to identify 1
ontology that was actually reused in the gold standard.
However, it was not able to identify all the reused
ontologies. Thus, manual verification is essential in this
case, using traditional methods (e.g., a search engine).
The extent to which using an LLM improves the manual
approach is unclear

T-2.4 Build small graph or
preliminary sub-ontology 1 3

In the walk-through, the input for this task was
carefully crafted using the documentation and previous
outputs, and several additional prompts were needed to
make the taxonomy richer. However, as a researcher
with less experience in OE than the end-user, this task
allowed me to create an ontology with a correct syntax
without having to code, and thus without needing
extensive knowledge in OE. This is very useful to lower
the entry barriers to the OE field or to include other
stakeholders (e.g., domain experts) in additional tasks
(e.g., in the implementation phase) in the process
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As we can see in Table 6.4, the scores are generally similar, suggesting that the perceived usefulness of the evaluated
tasks is consistent regardless of the ontology engineer’s level of expertise. Better results were achieved in task 1.5
(define new test cases and/or business scenarios) and task 2.4 (build small graph or preliminary sub-ontology) due
to additional pre- and post-processing of the inputs and outputs. For tasks 1.6 (create a glossary of terms) and 2.1
(formulate CQs), the quality of the input significantly impacts the output. While the end-user acknowledges the
usefulness of these tasks in facilitating the ontology extension process, the availability of high-quality input data in
real-life scenarios and the extent to which users are willing to perform manual pre-processing remain uncertain.

Requirements evaluation
Below, in Table 6.5, we have indicated which requirements have been fulfilled by the process framework design
prototype. From the 22 high-level requirements, only 1 requirement was not fulfilled: Requirement 1.5 (”Support
backward compatibility of ontology changes”). While this is a crucial requirement, its implementation is highly complex
and challenging in practice. In fact, this is a topic of ongoing discussion within the OE community at TNO. The
current OE tooling and methodologies do not effectively support this task according to the experts. Moreover, since
it is unclear how LLMs can assist the process of versioning and compatibility changes in ontologies, the requirement
was considered beyond the scope of the prototype design.

Table 6.5: Evaluation of the requirements for the human-LLM collaboration process framework for ontology extension.
Requirement
category ID Requirement description Fulfilled (Yes/No)

FUNCTIONAL 1.1 Support the acquisition of domain data
Yes, LLMs can assist these tasks
within the Preparation phase in
the framework

1.2
Complement the role of the domain expert in tasks
related to the acquisition of data and technical
conceptualization

Yes, LLMs provide relevant
information about the domain in
the Preparation and
Conceptualization phases in the
framework

1.3 Support ontology matching/alignment techniques

Yes, LLMs provide relevant
suggestions to align the extension
sub-ontology with the ontology to
be extended

1.4 Define the roles and responsibilities of the stakeholders
and the LLM for each task

Yes, the framework specifies the
role of the LLM for each task
(Table 5.4) and additional
stakeholders in certain tasks

1.5 Support backward compatibility of ontology changes
No, not supported by the use of
LLMs nor by the tasks outlined by
the framework

1.6 Include CQs throughout the whole ontology extension
development process

Yes, framework includes CQs and
provides LLM assistance

1.7 Support various data source formats

Yes, the prompt engineering
approach chosen allows using any
type of textual data within the
LLM

1.8 Facilitate the exploration of the ontology to be extended

Yes, the use of models such as the
GPT Assistant implemented
allows uploading the complete
ontology to the LLM and asking
questions related to it

1.9 Support less experienced ontology engineers

Yes, the framework is evaluated as
especially useful for less
experienced ontology engineers by
one end-user (see Section 6.4.2)

Continued on next page
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Table 6.5 continued: Evaluation of the requirements for the human-LLM collaboration process framework for ontology
extension.

Requirement
category ID Requirement description Fulfilled (Yes/No)

1.10 Facilitate comprehension of domain-specific information

Yes, general-purpose models such
as GPT can provide relevant
information about the domain in
the Preparation and
Conceptualization phases within
the ontology extension process
framework

1.11 Include OE-tailored tools Yes, the framework includes
available OE tools (see Section 5.4)

1.12 Facilitate documentation of ontology extension

Yes, the framework includes
LLM-assisted tasks based on best
practices, and their output can be
used to document the ontology
extension. Some OE tools for
documentation are also added
(e.g., OnToology)

1.13 Promote reuse of existing ontologies and standards

Yes, the sequence of tasks is
outlined in the process framework.
LLMs can assist but expert
verification is crucial in these tasks

1.14 Support formulation and formalization of CQs

Yes, outlined in the framework
and positively evaluated after the
demonstration. These tasks
produced significantly good results
with GPT

1.15 Provide evaluation method for ontology extension
including domain experts

Yes, tasks and tools for
verification of the ontology
outlined in the Verification phase
of the framework, including
verification with CQs assisted by
the LLM

1.16 Specify format of LLM’s output for each task
Yes, specified in Table 5.4 and in
the prompt templates designed
and provided (in Section D.2)

NON-
FUNCTIONAL
(Structural)

2.1 Outline the sequence of tasks
Yes, see Section 5.1 in Chapter 5

2.2 Provide hybrid approach combining LLMs with
traditional OE techniques

2.3 Provide flexibility depending on the project
characteristics, application and/or use case

NON-
FUNCTIONAL
(Environmental)

3.1 Promote the inclusion of diverse perspectives (include
additional stakeholders in the process) Yes, see Section 5.5 in Chapter 5

3.2 Be user-friendly and intuitive for ontology engineers
with varying levels of expertise

3.3 Encourage expert-in-the-loop approach

6.5. Conclusion
In this chapter, we concluded the design cycle by demonstrating and evaluating the artifact designed. Thus, we
answered SQ4: How can the framework be demonstrated and evaluated with a specific use case, and to what extent
does it improve the status quo?.

To demonstrate the process framework for human-LLM collaboration for ontology extension, we selected a real use
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case. The real use case consisted of extending the Common Greenhouse Ontology (CGO) based on the Semantic
Explanation and Navigation System (SENS) use case. Because this use case was designed and implemented previously
at TNO, we had available documentation resources and, very importantly, a gold standard: the manually developed
SENS extension. Moreover, we created a GPT Assistant on top of the GPT-4o model, overcoming some limitations
such as the context window, and allowing us to upload the ontology to be extended to the GPT file store. Within
the demonstration, we tested all the LLM-assisted OE tasks designed in the process framework, using the prompt
templates.

To evaluate the process framework prototype we qualitatively compared the output generated in the demonstration
phase with the gold standard, and discussed the main differences. Unlike other qualitative methods based on counting
the number of concepts added or metrics that favor the inclusion of specific structures in the ontology, or quantitative
methods that lack dynamism and meaning when applied to a snapshot of an ontology, in our discussion, we highlighted
different correct ways of modeling the same information. Even though the extension generated using the framework
is less rich in conceptualization than the manually generated extension, using the human-LLM approach provides
important benefits such as automation of some tasks in the process, significantly reducing manual effort. Additionally,
an ontology engineer acted as an end-user of the process framework prototype and evaluated a set of the LLM-assisted
tasks in the process. This added valuable insights to the evaluation plan, specifically highlighting the usefulness of
the process’ tasks in a real ontology extension scenario and enhancing the understanding of its user experience and
effectiveness from the perspective of an end-user. In general, the user acknowledged the potential of the human-LLM
collaboration approach but also made critical notes on the need for human expertise for pre-processing the inputs
and verifying the outputs, indispensable to filter out hallucinated information provided by the LLM. We conclude
the chapter by showing how the designed prototype fulfilled all the design requirements except for the requirement of
supporting backward compatibility of ontology changes, which is a currently debated topic and acknowledged issue
by the OE community.
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Conclusion

In this final chapter, we reflect on the design science research cycle presented in the previous chapters of this document.
First, we address the implementation details of the process framework designed and illustrate how this can be achieved
in practice, reflecting on some of the main opportunities and concerns for the use of LLMs for OE identified and
discussed earlier in this research project. Second, we answer the research sub-questions by summarizing the key
insights gathered in each design stage. Third, we reflect on these insights and how they have been combined to
answer the main research question of this work and fill the identified research gap. Fourth, we discuss the societal
relevance and the theoretical contribution of the research approach and its output. Finally, we identify some of the
limitations of this work and translate them into future research directions that can add significant value to the OE
community both inside and outside TNO.

7.1. Implementation of the process framework
In this section, we start by discussing the results of the demonstration of the LLM-assisted tasks achieved within the
walk-through with the designed ontology extension process and the evaluation given by the end-user. Based on the
performance and satisfaction by the end-user, we select which tasks have the highest potential to be implemented.
Furthermore, we briefly address how these tasks can be implemented in practice and illustrate it with a simple user
interface design.

7.1.1. Selection of best LLM-supported OE tasks in the designed process
Through the demonstration of the process framework design during the walk-through of the LLM-assisted tasks and
the evaluation provided by the end-user, we saw that not all the tasks yielded satisfactory results in terms of perceived
usefulness for facilitating the task at hand in the ontology extension process for the ontology engineer. Based on the
performance of the LLM for these tasks and the score achieved (compiled in Table 6.4), we can choose a smaller set
of tasks with the highest potential to be implemented at TNO. The tasks with the highest score are:

• T-1.5 Define new test cases and/or business scenarios.
• T-1.6 Create glossary of terms.
• T-2.1 Formulate Competency Questions.
• T-2.4 Build small graph or preliminary sub-ontology.

Note that we have included task T-2.4, which achieved the lowest score by the end-user evaluation. However, the
end-user recognized the potential of the LLM for the task (see Table 6.3), which was demonstrated within the walk-
through (see Section 6.3.2). Here, by refining the input for the task and executing several additional prompts, a
syntactically correct ontology formalized in OWL syntax was achieved. As briefly mentioned in Table 6.4, though
further manual post-processing and expert OE knowledge is needed to achieve a fully-fledged ontology extension, this
task provides a less experienced ontology engineer with an initial version of a formalized ontology extension which
can be built upon. It also allows other stakeholders such as domain experts, with little or no knowledge of ontology
formalization, to build a formal model that can be subsequently refined, employing a natural-language conversational
approach. For these reasons, we consider this task has a high potential to be integrated into the ontology extension
process at TNO.

Moreover, not all the LLM-assisted tasks were evaluated by the end-user. Based on the demonstration results
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achieved within the walk-through executed by myself acting as a beginner ontology engineer (compiled in Table 6.1),
we observed promising results in other tasks that can be added to the list above:

• T-3.1 Formalize Competency Questions into SPARQL queries.
• T-4.1 Populate ontology extension with instances.
• T-4.2 Verify all CQs can be answered according to test cases.

We can observe that the tasks composing the above list of high-potential LLM-assisted ontology extension tasks can
be applied to ontology engineering in general, i.e., to developing an ontology from scratch. In fact, these tasks align
with the results of the work of Zhang et al. (2024), who developed OntoChat, a conversational ontology engineering
framework focused on user story generation, Compentency Questions (CQs) extraction and analysis, and ontology
testing with CQs. OntoChat prioritized these three OE areas based on a user survey in which the participants
selected these tasks as the most in need of computational support (Zhang et al., 2024). With our work, we reached
a similar conclusion by focusing on the problems in the ontology extension process, the concerns, and the perceived
opportunities for the use of LLMs for OE, and by analyzing the NLP capabilities of LLMs and their potential to
facilitate some of the ontology extension downstream tasks. To illustrate this reflection, we went back to the perceived
opportunities for the use of LLMs for OE recognized by the ontology engineers at TNO (Figure 3.7 in Chapter 3),
and compared this with the results of the demonstration and evaluation of the process framework design prototype.
This is illustrated below in Figure 7.1.

Figure 7.1: LLM-assisted OE tasks in the ontology extension process framework, framed within the opportunities for the
use of LLMs for OE perceived by the ontology engineers, presented in Figure 3.7 in Chapter 3. The tasks in the green boxes

are the ones that achieved the highest score within the walk-through and by the end-user evaluation.

As we can see in Figure 7.1, the high-scoring tasks are spread throughout the different OE phases and coincide or are
related (represented with arrows in the figure) to the most mentioned opportunities for the application of LLMs to
OE by the ontology engineers at TNO. Tasks T-2.1 (formalizing CQs) and T-4.2 (verifying the ontology with CQs)
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are additions to these perceived opportunities identified through the demonstration and evaluation carried out in
this research. Based on the discussion above, we conclude that the application of LLMs to ontology extension tasks
has the highest potential in 3 areas, namely 1) Definition of business scenarios and creation glossary of terms; 2)
Semi-automated ontology extension formalization: and 3) Ontology development and verification with CQs. These
are elaborated below in Table 7.1.

Table 7.1: Selected LLM-assisted OE tasks in the ontology extension process framework with the highest feasibility to be
implemented (within TNO).

LLM-assisted OE task Phase Tasks Description

Definition of business scenarios
and creation glossary of terms 1 T-1.5, T-

1.6

These tasks leverage the NLP capabilities of LLMs to
extract information from unstructured text and
generate human-like text, providing inspiration to the
ontology engineer in the most creative phase of the
ontology extension process.

Semi-automated ontology
extension formalization 2/3 T-2.4, T-

3.1

These tasks leverage the emergent abilities of
general-purpose LLMs to generate code based on natural
language descriptions. It helps ontology engineers and
other stakeholders such as domain experts to generate
an initial semantic model that is syntactically correct.

Ontology development and
verification with CQs 2/4

T-2.1,
T-4.1,
T-4.2

These tasks support the ontology development using
CQs, which is considered a good OE practice, inspiring
the ontology engineer with out-of-the-box ideas (T-2.1).
It reduces manual and repetitive effort of creating mock
data for testing the CQs (T-4.1). It also leverages the
NLP capabilities to interpret the knowledge modeled in
the ontology and reason about it, which makes it
possible to test the ontology with CQs without having
to formalize them into SPARQL queries (T-4.2).

7.1.2. Practical implementation of the process framework for ontology extension
In the previous section, we discussed which LLM-supported tasks are the most promising to be implemented based
on their performance, which was evaluated in the previous chapter through the demonstration of the artifact with
a real use case and the evaluation given by an end-user. But there are several aspects to consider and steps to be
taken before these tasks are practically implemented in the current ontology extension process and, more importantly,
LLMs are integrated in the ontology engineers’ OE toolkit.

To begin, there are several concerns identified during the analysis of the main problems in the ontology extension
process (Chapter 3) that the prototype design did not solve. As we illustrated in Figure 3.5, there are broader societal
concerns such as the environmental and ethical impact of LLMs, that go beyond their performance for OE. Ontology
engineers might not be willing to use LLMs even if their performance for OE tasks is exceptional as they are aware of
the energy consumption and carbon footprint associated with the development and use of LLMs (Jiang et al., 2024)
and the need for enormous amounts of labeled and annotated data, which is frequently done manually by independent
workers under crowd-work platforms (Wang et al., 2022). Regulation is key to addressing these concerns. Users of
LLMs should be clearly informed not only about the performance of these models, but also about other characteristics
such as an estimate of their energy consumption and carbon footprint, and the origin of the data used for training.
In the shorter term, LLMs providers should have these issues at the core of their research and development activities.
Institutions such as TNO should be aware of these implications and raise awareness among their employees, through
informative sessions, workshops, and training for the use of LLMs. Regarding the ontology extension process, the OE
community and experts in LLMs at TNO, should prioritize and advocate the use of smaller and open-source language
models when possible, scrutinizing their ”energy label” and production fairness.

Next, even without these environmental and ethical concerns, LLMs will not be used for OE by the ontology engineers
if their use is more cumbersome than executing the task manually. This is why the integration of LLMs in the
ontology extension workflow is crucial. And for successful integration, the technology must be more than just
accessible, but easily setup without requiring extensive knowledge on LLMs or, more broadly, AI engineering. This
usually translates into hiding the implementation details to the user with a user-friendly user interface. Allowing for
enhanced collaboration and granularization of services, as Stadnicki et al. (2020) point out in their work, the landscape
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of web-based tools for OE is blooming. Following this trend, and similar to OntoChat by Zhang et al. (2024), the
human-LLM collaboration process framework for ontology extension designed (Figure 5.1) can be implemented as a
digital web-based tool with input boxes and buttons within which the user can follow the ontology extension process
proposed and, when clicking in any of the LLM-assisted tasks, visualize the details for interaction with the LLM
(Table 5.4), the prompt template ready to be customized in an input box (Section D.2), and the possibility to choose
different LLMs, both proprietary and open-source. As a first step, the first area of high potential for implementation
of LLM-assisted ontology extension tasks identified above, namely the definition of business scenarios and the creation
of glossary of terms, can be implemented by extending the REPRO Handbook (Bakker, van Bekkum, et al., 2021)
(already online and available for TNO employees), with an interactive user interface that allows the user to use any
preferred LLM with the corresponding prompt template, to be customized by the user. Below in Figure 7.2 we
sketch this implementation idea for the task T-1.6 (create glossary of terms), using the REPRO Handbook (Bakker,
van Bekkum, et al., 2021) (see Figure 2.2). Task T-1.5 (define business scenarios) can be implemented in the same
manner. Apart from the workshops and informative sessions mentioned above, to ensure that all ontology engineers
at TNO are familiar with REPRO, they could add the REPRO Handbook in the ”mandatory reading” list within
the onboarding process of new ontology engineers, and use it as documentation during the stakeholders’ meetings,
sharing its content with domain experts, knowledge workers, and knowledge users.

Figure 7.2: Implementation within REPRO of the LLM-assisted task T-1.6: Create glossary of terms in the ontology
extension process design. Screenshot taken from the REPRO Handbook (Bakker, van Bekkum, et al., 2021) (Figure 2.2) and

modified with the sketch of the LLM-assisted functionality in the right-bottom corner.

Finally, a step further in the integration of LLMs in the ontology extension workflow is to integrate the LLM’s
suggestions with the current OE edition tools such as Protégé, TopBraid, and Visual Studio Code. This can be
done by creating a plugin for Protégé, as previously done in the work of Mateiu and Groza (2023); or by creating an
extension for Visual Studio Code such as the ones already available in its marketplace1. In this way, we can implement
the next two identified areas of high-potential for LLM assistance, namely the semi-automation of ontology extension
formalization and the ontology development and verification with CQs. These plugins or extensions would allow
the user to receive suggestions for the formalization of the ontology extension in any formal language (e.g., RDF or
OWL) from a natural language description or conceptualization; or to automatically generate SPARQL queries ready
to be executed in Protégé from a natural language Competency Question. By integrating the LLM-based suggestions
within the current OE tools, we ensure a smooth adoption of LLMs in the ontology extension process and maximize
its user-friendliness.

1https://marketplace.visualstudio.com/items?itemName=Zazuko.vscode-rdf-sketch

https://marketplace.visualstudio.com/items?itemName=Zazuko.vscode-rdf-sketch


7.2. Answer to the research questions 74

7.2. Answer to the research questions
To address the main research question, we revisit the research sub-questions answered throughout the chapters of this
document. These sub-questions, formulated based on the Design Science Research Approach outlined by Johannesson
and Perjons (2021), encompass the entire design research cycle – from problem contextualization to design evaluation.
Each sub-question’s output serves as the input for the subsequent one. Ultimately, the response to the main research
question synthesizes the key insights gathered from each sub-question.

7.2.1. Revisiting the research sub-questions
Sub-question 1: How does the current manual process to extend existing ontologies look like and what are
the issues that ontology engineers are experiencing? - Chapter 3
Though Ontology Engineering (OE) is a well-established field of computer science, its popularity has surged in recent
years with the breakthroughs in Artificial Intelligence (AI). The topic for this research project emerged from the
assumption that extending an existing ontology is a complex process that can be improved. To understand the
ontology extension practice, we directly engaged with its practitioners. Through an exploratory round of interviews
with ontology engineers and experts in AI and LLMs at TNO, we modeled the current ontology extension practice as
a flowchart diagram (Figure 3.1), outlining the downstream tasks in the ontology extension process, the stakeholders
involved, and the OE tools commonly used at TNO.

We chose this structure because the process varies depending on the domain, the ontology to be extended, the specific
extension required, project resources and constraints, and even the preferences of the ontology engineer. The model of
the ontology extension process was enriched with TNO’s best practices for ontology engineering, from the preparation
phase to the verification of the extended ontology. We found that the complexity of the ontology extension process
depends on several factors, such as the size of the ontology to be extended, the availability of OE tools, the duration
and number of meetings with domain experts, and the level of experience and expertise of the ontology engineer.

Indeed, ontologies are often very large and interconnected with numerous applications that depend on them. While
the landscape of OE tools is advancing, it remains quite rudimentary. Meetings with stakeholders are lengthy but
essential, and with the growing popularity of the OE field, newcomers need support and lower entry barriers to
become expert ontology engineers. To address these challenges, and given the similarities between the language and
knowledge processing capacities needed for OE and the capabilities of LLMs, we explored how LLMs can alleviate
some of the problems associated with the ontology extension process. The use of LLMs advances the current state of
the art, until now primarily focused on NLP-based solutions for ontology engineering in specific domains. However,
the assistance provided by LLMs does not come without costs. Ontology engineers at TNO are aware of the limitations
of applying generative AI to a field grounded in meticulous formal logic, implicit human knowledge, and subjective
interpretation of the world. Beyond performance challenges, which might be resolved in the coming years, there are
more significant concerns within the OE community.

LLMs have societal and environmental impacts, and regulation is lagging. Issues such as intellectual property rights
and the uncertainty about how big-tech companies handle data uploaded to their models deter ontology engineers
from integrating LLMs into their daily OE toolkit. Recognizing that developing and extending ontologies is an
enriching human process, where experts from different areas collaborate to create standards representing shared
human knowledge, ontology engineers acknowledge the potential of LLMs and their NLP capabilities to assist and
even enhance certain parts of the ontology extension process, while other tasks must remain manual.

Sub-question 2: What are the requirements for a human-LLM collaboration framework for ontology exten-
sion? - Chapter 4
With all the insights gathered from conversations with the ontology engineers, we delineated the artifact to be
designed. Since the goal is not to replace the ontology extension process but to facilitate it, we decided to integrate
LLMs as another OE tool in the toolkit. This fills one of the gaps in the research literature, where it was found
that most of the proposed solutions stop at the functionality level without providing a way to adopt the proposed
solutions for automatic or semi-automatic ontology development. Instead of solely focusing on the performance of
LLMs for specific OE tasks, this research aimed to encompass the entire ontology extension practice as an expert-in-
the-loop process assisted by LLMs, from a systems engineering perspective. Previous academic articles on this topic
often conclude that while the application of LLMs in OE tasks shows promising performance, a human-in-the-loop
approach is essential given the current capabilities of this technology. However, this innovative approach has been
scarcely addressed in academic literature, prompting us to elicit design requirements directly from the end users. For
each problem mentioned and explained by the OE experts, we established a corresponding requirement. Additionally,
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we considered how each requirement aligns with the concerns and opportunities of applying LLMs to OE, as perceived
by the ontology engineers. A focus group panel was organized to complete and validate the list of requirements. With
the help of an expert, we also examined how the recently passed European Artificial Intelligence Act might impact
the proposed design. The final set of 22 high-level requirements (Table 4.1) emphasizes a standard yet flexible
process for ontology extension that maximizes the NLP capabilities of LLMs, fosters creativity and involvement from
stakeholders, and minimizes the human effort required for repetitive tasks. With this holistic systems approach,
we aimed to cover the design requirements as thoroughly as possible. Although the lack of low-level requirements
might create a gap between design and implementation, the output of this research stage provides fertile ground for
developing creative solutions.

Sub-question 3: What does the design of an integrated process framework for human-LLM collaboration for
ontology extension look like? - Chapter 5
To address this question, we literally integrated the LLMs directly into the ontology extension process. Integrating
LLMs and LLM-based tools in the current workflow ensures a smooth adoption of the technology and maximizes
user-friendliness. This fills a further gap in the literature, where it was found that most of the proposed solutions are
difficult to use and understand.

Through the analysis of recent academic work on the application of LLMs to ontology engineering, we found that
the availability of off-the-shelf LLMs-based tools is still limited. While smaller fine-tuned models are demonstrated
to perform as well or even better than general-purpose LLMs such as GPT, the knowledge and resources required
for their configuration and use hinder their wide adoption in OE. However, these articles demonstrate that prompt
engineering significantly impacts the quality of the outputs generated by an LLM, despite the challenges posed by
the quantity and quality of data required to craft an effective prompt. As a final remark from the analysis of these
solutions, we found that the quality of the generated ontology is currently measured with quantitative or structural
metrics that fail to capture the diversity in modeling choices. Evaluating the output of the LLM and the generated
ontology extension, whether by automatic or semi-automatic means, remains an ongoing research challenge. In
addition to these insights, by thoroughly examining these LLM-based solutions for OE, we mapped the downstream
OE tasks in the ontology extension process, modeled as a flowchart (Figure 3.1), with an LLM or LLM-based tool to
assist each task based on the LLMs’ NLP capabilities

The designed process framework is an extended version of the current manual process, incorporating additional OE
tools and stakeholders (Figure 5.1, extended description in Section D.1 of Appendix D). Since the process is based on
the current practice at TNO, it aligns with the best OE practices proposed by TNO’s OE community. For each task
that an LLM can assist with, the specific approach is indicated (Table 5.4), and a prompt template is provided to the
ontology engineer (Section D.2). Thus, an integrated process framework for human-LLM collaboration for ontology
extension is presented as an augmented version of the current ontology extension process, where the responsibility
and expertise remain with the ontology engineer, but the LLMs can inspire, enrich, and assist the ontology extension
effort. The design prototype emphasizes off-the-shelf tools that require minimal setup effort, facilitating both the
approach and its evaluation. The flexibility required by the ontology extension process is provided by the chosen
structure of the process framework – a flowchart diagram – that describes how LLMs can facilitate certain tasks in
the ontology extension practice without prescribing their use.

Sub-question 4: How can the framework be demonstrated and evaluated with a specific use case and to what
extent does it improve the status quo? - Chapter 6
Unlike most of previous research on the automation of the ontology extension process using NLP and AI techniques,
the presented process framework prototype design is domain-independent and can be used to extend any type of
domain ontology. However, to demonstrate the functionality of the designed process framework prototype, we per-
formed a walk-through of the framework prototype with an ontology in the greenhouse domain. We applied the
process framework to a selected use case: extending the Common Greenhouse Ontology (CGO) within the Seman-
tic Explanation and Navigation System (SENS) use case. The greenhouse domain serves as an ideal example of a
field experiencing rapid technological advancements, necessitating interoperability among different systems through a
standard language. Because the SENS project was previously completed successfully at TNO, we had access to a gold
standard to benchmark the output of the proposed framework for ontology extension: the manually extended CGO
with the SENS use case. The demonstration focused on the LLM-assisted OE task within the ontology extension pro-
cess framework prototype, developed using a custom GPT Assistant with OpenAI’s latest model, GPT-4 Omni, and
its developer platform. Although the process framework design is not tied to any specific model, we chose OpenAI’s
GPT model for its accessibility, ease of setup, and proven performance across various OE tasks. The output for each
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LLM-assisted task was reviewed and minimally modified before being used as the input for the subsequent task in
the ontology extension process. All outputs are provided in Section E.2.

The proposed SENS extension to the CGO developed using the process framework and assisted by GPT-4 Omni
exhibits several similarities to the gold standard. Both extensions propose a similar conceptualization of the scenarios
for the SENS use case. While the manual extension is richer in concepts and better integrated with other ontologies and
standards, the LLM-assisted extension offers creative Compentency Questions (CQs) and suggestions for integrating
new concepts with existing ones in the CGO. The primary advantage of the proposed ontology extension approach
is that it facilitates the development of an initial ontology extension without requiring coding, grounded in best OE
practices, which can be developed by less experienced ontology engineers or even domain experts.

However, demonstrating the prototype’s functionality in practice is insufficient. To fully validate the feasibility
and potential of the process framework prototype to improve the status quo, an ontology engineer was tasked with
developing the SENS extension to the CGO using the proposed framework. The evaluation of the LLM-assisted
tasks by the ontology engineer highlights the promising potential of its applicability to tasks in the Preparation and
Conceptualization phases of the process, emphasizing the LLM’s ability to complement the user’s knowledge with
out-of-the-box perspectives. Overall, the ontology engineer acknowledged that the process framework design can
guide and facilitate the ontology extension process for less experienced ontology engineers, while expert ontology
engineers can also benefit from the LLM-assisted approach. Apart from the requirement for backward compatibility
of ontology changes (which was not addressed in this research project), the process framework designed meets the
design requirements that were established within SQ2.

7.2.2. Answering the main research question
To answer the main research question:

How can LLMs be integrated into a semi-automated and domain-independent process for the extension
of existing ontologies?
in this research project, we have designed a human-LLM collaboration framework for ontology extension. The Design
Science Research Approach proposed by Johannesson and Perjons (2021) outlines a methodology for researchers to
design solutions that address user problems, meet their needs, and leverage new opportunities. This approach was
applied to gather qualitative data directly from ontology engineers and AI experts at TNO. By engaging in detailed
discussions with these intended users, we obtained valuable insights that might have otherwise been overlooked.

The integration of LLMs into the current ontology extension process conceptualizes the designed process as an
enhanced version of the existing process. This current process model, derived from practices followed by the OE
community at TNO, serves as the foundation for the proposed LLM-assisted process framework. Within this frame-
work, LLMs are introduced as new OE tools within the existing toolkit, with the ontology engineer retaining the
discretion to utilize or disregard the LLM suggestions and to review and adapt these suggestions as necessary. The
proposed process framework fills a gap in the academic literature about the automation of the ontology extension
process using NLP and AI techniques, focused solely on the technical performance of the solution and disregarding
its smooth adoption by the end-users. To foster the adoption of LLMs for OE, we propose implementing the most
promising LLM-assisted tasks in the designed process framework in practice by integrating them with current OE
tools widely used inside and outside TNO, such as Protégé, TopBraid, and Visual Studio Code, and with current
Ontology Engineering Methodologies (OEMs), such as TNO’s methodology, REPRO.

By examining the literature on the topic, we found that most of the proposed solutions for applying LLMs to OE are
semi-automatic, mainly due to the performance limitations of the technology. Within this research, we observed
that the semi-automated approach combining human expertise with LLMs capabilities is in fact highly desired by
the ontology engineers, who acknowledged that while the manual process of developing and extending ontologies can
be tedious, meeting diverse stakeholders is an essential and enriching part of the process. The complete automation
of the process is not feasible at this stage due to the current performance limitations of LLMs in OE tasks, but also
due to the concerns of ontology engineers about the use of LLMs. Concerns such as the environmental impact of
LLMs or the lack of regulation might have a bigger impact on the daily use of LLMs than we would have expected.
While these concerns may fade in the coming years with the advancements in the technology and in the regulatory
landscape, the OE community is still lacking tool support tailored to their needs. The advancement of OE tools,
whether LLM-based or not, is vital for the OE community. As in any other software discipline, having tooling support
is crucial for increasing the quality and reducing complexity in development processes, enabling the automation of
cumbersome and repetitive tasks, and allowing the users to concentrate their effort on the tasks that require human
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reasoning and expertise.

Unlike most of the solutions proposed by previous academic research on the topic, the designed process framework is
versatile and can be applied to extend ontologies across any domain. Although the tasks within this ontology
extension process adhere to best OE practices, the artifact has been developed with a focus on prompt engineering.
This approach describes the application of LLMs to various tasks without being tied to any specific model, providing
generic prompt templates with placeholders that can be customized based on the domain and specific use case.

While not without its flaws, the human-LLM collaboration framework for ontology extension represents a modest
yet determined step towards integrating cutting-edge technology into a field that has been somewhat overlooked in
recent years. The proposed design aims to blend traditional OE practices with the NLP capabilities of LLMs, thereby
minimizing human effort and maximizing the quality of the extended ontology.

7.3. Societal relevance
In this research, we explored the complexities associated with the field of Ontology Engineering (OE), focusing on
the ontology extension process. To alleviate some of the problems, we introduced Large Language Models (LLMs)
as a promising solution. Trying to capitalize on the perceived opportunities of LLMs for facilitating the ontology
extension tasks, and without forgetting the concerns of ontology engineers, we designed a semi-automated and domain-
independent approach to extend existing ontologies by leveraging the capabilities of LLMs and incorporating good OE
practices. The approach is intended for ontology engineers and aims to facilitate their work and improve its quality.
Thus, this research is socially relevant mainly to the OE community, but the use of the proposed LLM-assisted process
framework might have an impact on society as well.

Many current proposed solutions for the automation of OE processes aim to reduce the role of the ontology engineer as
much as possible. The semi-automated approach we designed incorporates LLMs into OE tasks, potentially reducing
the manual effort required from ontology engineers at TNO, and complementing, rather than replacing their role.
This aims to increase efficiency and productivity, allowing experts to focus on more complex and creative aspects of
their work. By automating repetitive tasks, the process framework for ontology extension can alleviate the burden
on professionals and reduce the time needed for ontology extension and development. The use of this approach with
LLMs provides the ontology engineer with a baseline output for certain tasks in the ontology extension process that
can then be reviewed with domain experts, knowledge workers, and knowledge users. Moreover, it can lower the
entry barriers to the field of OE for users with less experience and expertise, and ultimately, promote wider adoption
of ontologies, as pointed out by Tudorache (2020). Thus, the designed approach can facilitate the involvement of
different stakeholders in various tasks across the ontology extension process, and allow them to play a more active
role on them. If the use of LLMs lowers the entry barriers to the field of OE, more professionals might join the OE
community, which might translate into more and more diverse perspectives in the ontology extension process, not
only from ontology engineers with varying levels of expertise but also from other professionals with domain expertise.
Ultimately, our LLM-assisted approach can contribute to combating the problem of labor shortages in the Information
and Communication Technology (ICT) sector by increasing the number of newcomers, specifically in the OE segment,
instead of completely replacing human workers as many fear.

Integrating LLMs in a standard yet flexible process with good OE practices can help ensure that ontology extensions
are consistent and of high quality. LLMs can assist in generating relevant Compentency Questions (CQs), identifying
patterns for modeling the ontology extension, suggesting relevant terms for the domain, and ensuring good and
complete documentation. This can lead to more accurate and reliable ontologies, which are essential for applications
that rely on precise and structured knowledge. Unlike most of the proposed solutions so far, focused on the technical
performance for the automation of the OE tasks, our design can be implemented by integrating the LLM-powered
functionality with widely used OE tools and methodologies, promoting a smooth adoption of this technology within
the OE community.

Despite all the benefits that LLM can bring to the OE community, we identified some major challenges that must
be addressed before the OE community adopts the use of LLMs on their daily work. LLMs will not be widely used
until the technology is transparent and trustworthy. Regulation must ensure that LLMs are developed and deployed
in a way that the environmental impact is minimized, and ethical risks are eliminated to the greatest extent. This
could translate into enforcing developers to disclose how their models are trained, which data is used, and what is
the estimated energy consumption and carbon footprint of their models, both while training and use. While these
changes are implemented, we hope to see more open-source models becoming better in their performance for OE
tasks, with developers prioritizing the ”controllability” of the models’ output, the elimination of hallucinations and
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inconsistencies, and the efficiency, i.e., optimizing the amount of data used for training, the resources used for fine-
tuning, and the model’s performance on specific tasks. Institutions such as TNO have the responsibility to train their
employees on the fair and correct use of this technology, and to promote and facilitate the use of open-source, fair,
and more environment-friendly models as much as possible.

Because ontologies represent an agreed conceptualization of reality, adopting a systematic approach for extending
ontologies assisted by LLMs will indirectly impact society as a whole. For example, in the field of healthcare,
improved ontologies can enhance the development of decision support systems, leading to better patient outcomes.
In agriculture, as highlighted in the chosen use case to demonstrate and evaluate the design, high-quality ontologies
can aid in the integration of various technological systems, promoting sustainable practices and improving efficiency
in the greenhouses.

Throughout this thesis project, we tried to fill in some of the research gaps found in the literature, such as the lack
of integrated OE processes that address the adoption of LLMs in practice beyond their technical performance. But
not all the gaps were filled in. The fact that most of the proposed solutions so far are semi-automatic is for a good
reason. The ontology development process is an enriching human process in which stakeholders collaborate and share
knowledge about the world. Addressing the complexities in this process is not a matter of automating the entire
process. Instead, ontology engineers desire a hybrid approach supported, complemented, and enriched by AI systems
such as LLMs. Attending to the values of the ontology engineers at TNO and the state of the art of this technology,
we developed a set of design requirements that align with these and with the current regulatory landscape, addressing
the practical implementation of the proposed design beyond its technical performance. While the use of LLMs for
ontology engineering is currently feasible, as we demonstrated with our prototype design, the technology and the
regulation framework must keep moving forward the democratization of LLMs, prioritizing their fair development,
accessibility, and environmental responsibility before the full potential of LLMs for OE can be unveiled.

7.4. Theoretical contribution
This research highlights a critical aspect of modern AI applications: the synergy between human expertise and
machine capabilities. By demonstrating how LLMs can assist but not replace human ontology engineers, this work
contributes to the ongoing discourse on responsible AI use. Within the analysis of the literature concerning the
automation of the ontology extension process, we identified several gaps that were addressed throughout this research
project. First, we focused on the use of LLMs over other AI techniques, justifying their potential for ontology
engineering based on their NLP capabilities and looking into state-of-the-art LLM-based applications for OE. Second,
we created a semi-automatic approach combining human expertise, well-established OE methodologies and tools,
stakeholders’ involvement, and off-the-shelf LLMs with prompt engineering, achieving an easy-to-use and easy-to-
understand method that is ready to be implemented. Finally, we developed the framework design employing a holistic
and systematic perspective, from contextualizing the problem of the ontology extension practice and carefully listening
to the practitioners’ needs and values, to the evaluation of the proposed prototype with an end-user. The proposed
approach promotes a balanced view of AI, particularly LLMs, where human oversight and creativity are complemented
by machine efficiency and computational power. By providing a proof of concept for a human-LLM collaboration
framework, this research encourages further innovation and adoption of such methods in ontology engineering. This
can lead to more widespread use of advanced LLMs-based tools, in knowledge management and other fields, driving
technological progress and benefiting various industries. Last but not least, the proposed process framework aligns
with the findings of Kotis et al. (2020), who show in their work that custom-engineered and collaborative Ontology
Engineering Methodologies (OEMs) that are supported by OE have the highest impact in the liveability, evolution,
and reuse of ontologies.

In our study, we have conducted an in-depth analysis of a comprehensive set of OE tasks, meticulously examining
each task within the context of ontology extension using LLMs. This approach provides not only a holistic overview of
the entire ontology extension process with LLMs but also highlights which specific OE tasks hold the most potential
for the application of LLMs. Unlike existing research that typically concentrates on a single OE task and evaluates
its performance based solely on its alignment with a gold standard – which is inherently problematic in the field of
knowledge modeling where multiple valid representations can exist – our methodology acknowledges the complexity
and multiplicity of correct modeling approaches. Furthermore, while other approaches often aim to diminish the
involvement of either the ontology engineer or the domain expert, our proposed framework is designed to enhance
and support these critical roles, ensuring that LLMs serve as complementary tools that facilitate rather than replace
human expertise in the ontology extension process. Lastly, most of the existing research on applying LLMs to OE
focuses on developing new ontologies. While this is a significant area of study, the research proposed in this document
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prioritizes the extension of existing ontologies. This focus is crucial in the field of OE and semantic standards, as it
fosters reusability, compliance, and interoperability of standards, thus avoiding ”reinventing the wheel”.

If we examine the research conducted here from a broader perspective, we can frame it within the Task-Technology
Fit (TTF) framework developed by Goodhue and Thompson (1995). The TTF model was designed to explore
how the utilization of a particular technology by an individual depends on several factors: the characteristics of the
technology, the characteristics of the task, the individual’s characteristics, the fit or alignment between the technology
and the task, the precursors of utilization (such as expectations or social norms perceived by the individual), and the
performance impact (a feedback loop that, in turn, affects the utilization of the technology) (Goodhue & Thompson,
1995). Our research can be viewed as a case study or an instance of the TTF model, where the technology is
the LLMs, the task is the ontology extension process (divided into several downstream tasks), the individual is
the ontology engineer, and the concerns and opportunities for applying LLMs to OE identified by the ontology
engineers are the precursors of utilization. In our study, we thoroughly examined the current ontology extension
task, the needs, values, and opinions of a group of ontology engineers at TNO, the NLP capabilities of LLMs, and
their applicability to downstream ontology extension tasks. We aimed to fit the current ontology extension task
with the capabilities of LLMs and to fit the strengths and limitations of LLMs to the ontology extension task. As
previously mentioned, the precursors of utilization identified in our research, such as the environmental and ethical
impacts of LLMs, can significantly influence the adoption and integration of LLMs into the OE toolkit. Although we
evaluated the performance of an LLMs in a specific use case for the ontology extension task, we could not measure
the performance impact of prolonged utilization and, importantly, the integration of this technology into the ontology
extension process. As discussed by Goodhue and Thompson (1995), this could lead to several implications, such as
the modification or creation of usage policies for the LLMs-assisted process framework, the introduction of tailored
training for ontology engineers on the use of LLMs, or the redesign of various tasks in the ontology extension process
to better align with the current and future capabilities of LLMs. Despite these limitations and opportunities for
future work, which will be detailed in the next section, our research and the approach we followed contribute to the
body of work within IS research, exemplified by the TTF model.

As a final remark on the theoretical contribution of this work, we can also define our approach in terms of the Business
Process Re-engineering (BPR) strategy, first introduced in the 1990s by Hammer (1990) and Davenport and Short
(1990), as noted by O’Neill and Sohal (1999). This business management theory revolves around the idea of examining
and (re-)defining workflows and processes both within organizations and across organizational boundaries. In these
terms, we meticulously analyzed the current ontology extension workflow, building a theoretical model materialized
as a flowchart diagram. As discussed by Davenport and Short (1990), the introduction of LLMs into this workflow
aims to support the current process of ontology extension thanks to the NLP capabilities of this technology, and at
the same time, the current process is transformed by the introduction of this technology. Although our goal was
not to completely redesign the ontology extension process, the introduction of LLMs brings about several significant
changes. These include the need for enhanced verification mechanisms to minimize the risk of incorrect information
generated by the LLM, the shift or relocation of expertise from ontology engineering to LLM expertise, and changes
in the roles and responsibilities of stakeholders, such as domain experts who, supported by LLMs, can now contribute
more significantly to the technical aspects of the extension project. Additionally, there may be a need to educate
ontology engineers and domain experts in the use of LLMs, as well as to develop the necessary infrastructure to run
local models within the proposed LLM-assisted approach.

While the forthcoming implications of the introduction of LLMs into the ontology extension process, as identified
by the TTF and the BPR frameworks, fall beyond the scope of this research project, both theories underscore the
importance of aligning business processes with technological advancements and vice versa, with a focus on the needs
and values of the individuals involved. With our research, we were able to showcase how these theories can be applied
in practice.

7.5. Limitations
In this research, we tackled the entire ontology extension process, encompassing all downstream tasks, stakeholders,
and tools, and thoroughly analyzed each task to determine how it can be assisted by LLMs based on their NLP
capabilities. While this comprehensive approach offers significant contributions to the field of ontology engineering
and the application of LLMs, it also introduces a broad and ambitious scope. Throughout this research endeavor,
numerous decisions were made, each introducing specific limitations that impact both the approach and the outcomes
of this study.
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Demonstration and Evaluation with only one use case
The evaluation was limited to a single use case, specifically the extension of the Common Greenhouse Ontology (CGO)
within the Semantic Explanation and Navigation System (SENS) project. Although this use case demonstrated the
prototype’s applicability in a real-world scenario, it does not reflect the variability across different domains. Evaluating
the prototype with diverse use cases can provide insights into its validity and effectiveness in extending ontologies
across various domains. This can help establish whether the framework is truly domain-independent or if specific
adjustments are needed for different applications.

Focus on LLM-assisted OE tasks
The prototype evaluation primarily focused on the LLM-assisted tasks within the ontology extension process. While
this highlighted the potential of LLMs in enhancing certain tasks, it left other parts of the process untested. In a
real application, a comprehensive evaluation shall include all tasks within the ontology extension process, including
the ones that are completely manual and the ones that can be supported by traditional or non AI-powered OE tools,
to understand the overall impact of the framework.

End-user evaluation limited to one user
The prototype was tested with only one ontology engineer. While this provided initial insights into the framework’s
usability and effectiveness, it does not account for the variability in background, expertise, and personal preferences
that different ontology engineers might bring. The proposed process framework prototype has been designed to be
flexible, which means that ontology engineers with different levels of experience, expertise, and backgrounds might
develop some tasks in the process differently, and might customize the prompts in diverse ways. Moreover, the
outputs of the LLM might be judged and used differently depending on the user. This can significantly affect the
evaluation of the prototype design. Testing with a broader range of ontology engineers with diverse backgrounds and
levels of expertise will offer a more comprehensive evaluation of the prototype’s generalizability and adaptability to
other domains. It will also help identify potential usability issues and areas where additional refinement of the design
or support on the OE task might be required.

In addition, the designed process framework includes ontology extension tasks that are supported by other stakeholders
such as other ontology engineers, domain experts, knowledge workers, and knowledge users. Since both the walk-
through performed and the end-user evaluation with the selected use case focused on the LLM-assisted tasks of the
ontology extension process, we did not evaluate the impact that these interactions may have on the process framework,
on the end-user experience using the framework, and on the ontology extension generated using the framework.

Finally, as the process framework was developed around the figure of the ontology engineer, we did not evaluate the
approach with a different kind of end-user, for example, a domain expert. Though we saw that several tasks can be
especially beneficial for non-experts in OE such as domain experts without knowledge on formal ontological concepts
and coding, we cannot say to which extent the designed ontology extension framework can be useful for them.

Evaluation using only one LLM: GPT-4 Omni
The prototype was tested exclusively with OpenAI’s GPT-4o model. While GPT-4o is a powerful and versatile LLM,
relying on a single model limits the generalizability of the findings. Other types of LLMs, including open-source models
and those fine-tuned for specific tasks, might offer different performance characteristics and reduce or eliminate the
risk of vendor lock-in. Organizations such as OpenAI have powerfully entered the scene of generative AI, successfully
penetrating public institutions and private corporations. But they should be aware that there are far more models
in the market. Evaluating the prototype with a variety of LLMs will provide a more robust understanding of how
different models can be leveraged and whether certain models are better suited for specific ontology engineering tasks.
As mentioned before, we expect open-source models to continue to flourish. With the democratization of LLMs, we
envision smaller, fine-tuned models outperforming proprietary LLMs in a wide range of OE tasks. To this end, the
open-source community must prioritize finding a balance between performance and environmental and ethical impact
of the models, and regulatory frameworks must get up to speed with the development rate, encouraging, facilitating,
and enforcing the responsible development and use of LLMs.

Difficulty in measuring manual effort and expertise required
Quantifying the reduction in manual effort and the expertise required to use the prototype compared to conventional
approaches without LLM support is challenging. While the LLM can assist in many tasks, measuring the exact
amount of effort saved and the remaining manual input needed is complex. This also includes assessing the ease of
use and the learning curve associated with adopting the prototype in a real setting. We left this evaluation beyond
the scope of this research.
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7.6. Future research topics
To address the aforementioned limitations, future research topics could focus on the following areas:

Demonstration and Evaluation with several use cases across different domains
Future work must include a more thorough demonstration and evaluation of the process framework prototype by
selecting various use cases in different domains. By applying the framework to a wider range of scenarios, with
different characteristics – such as different levels of complexity or availability of documentation on the domain and
use case extension that can be used to give context to the LLM – researchers can validate its domain-independent
nature and gather comprehensive data on the performance of LLMs in various OE tasks with different amount and
quality of information available for the task.

Comprehensive framework application
Applying the entire framework including the OE tasks in the process that are not assisted by an LLM, but that are
performed manually or with some of the proposed OE tools, and evaluate to which extent these tasks add quality to
the developed ontology extension using the LLM is another avenue for future research.

Evaluating different LLMs
OE tasks such as relation extraction or formulation of Compentency Questions (CQs) can be performed by a fine-tuned
model for the task, while other tasks that require real-world knowledge might be better suited for general-purpose
models with a larger knowledge base. This proposition aligns with the environmental concern of ontology engineers.
LLMs might not be the only ones capable of performing some OE tasks, with smaller language models producing
similar or even better results.

This research topic shall include the study on sustainability aspects of LLMs, both environmental and economic.
On the one hand, assessing to which extent the use of smaller but fine-tuned language models impacts the energy
consumption overall in the ontology extension process. On the other hand, accounting for the cost of using LLMs
compared to a manual approach. In this case, not only proprietary models – in which case the company pays per use
as is the case of OpenAI’s services – have to be accounted for, but also the cost of deploying, scaling, and maintaining
open-source models to assist in ontology development.

Expertise and effort evaluation
Related to economic sustainability, a very interesting topic for future research is to develop a methodology or approach
to evaluate how much OE expertise is needed to use LLMs and how much manual effort LLMs can alleviate. We
saw that the prompt and the quality of the information given to the LLM had a big impact on the quality of the
output. Yet, measuring how good the input has to be to obtain an output with the desired quality is complex. This
is a direction identified and proposed before by Bouter et al. (2024) in their work.

Broader participant evaluation
Evaluating the human-LLM collaboration approach with a larger group of participants, with diverse levels of expe-
rience, expertise, and background is essential. This can help assess the variability in generated ontology extensions
based on the end user’s expertise and background. This will provide insights into the usefulness of the process
framework prototype for users with varying levels of experience in knowledge engineering. Moreover, evaluating the
process framework with a domain expert can be extremely insightful to observe the impact that the use of LLMs can
have in lowering the entry barriers to these stakeholders to the field of OE, and to determine to which extent the
LLM-assisted process will (or will not) reduce the need for OE expertise.

Additionally, including the interactions with other stakeholders in the ontology extension process evaluation is crucial
to determine to which extent can LLMs alleviate the burden of building consensus, as one of the main problems
highlighted by the ontology engineers at TNO. Researchers must also examine the impact that including LLMs can
have on the social interactions between the ontology engineers and the other stakeholders involved in the ontology
extension process, in order to minimize the potential loss of these enriching and useful human interactions.

Measuring and understanding the implications that LLMs can have in OE processes is a great challenge. While we
do not see LLMs replacing ontology engineers, commissioning organizations might benefit from the use of LLMs as
it might increase their understanding of the ontology or ontology extension needed, and enhance the quality of the
interactions with the commissioned ontology engineers.
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Evaluation of ontologies and evaluation of LLMs' output
Throughout the research conducted, and especially within the analysis of the problem and the exploration of recent
applications of LLMs to OE, we saw that there are no standard metrics to measure the quality of an ontology,
neither ways to assess the correctness and validity of incorrect but plausible answers often produced by LLMs. While
developing the process framework design, we hardly found appropriate methodologies or tools that are easy to use
and understand, and available off-the-shelf to be included in the verification phase of the ontology extension. Thus,
we firmly consider this topic as a crucial avenue for future research, and we hope to see further steps in works such
as the one recently published by Bakker and De Boer (2024).

Ethical implementation and use of LLMs
As we discussed previously in various sections of this document, the successful introduction of LLMs for OE requires
that ethical and environmental concerns are taken into account. Users of this technology, as with any other consumer
product in the market, deserve to know what kind of product they are using or intend to use. We refer to the
transparency from the providers towards the consumers. Further research is needed to establish parameters to assess
the environmental impact and carbon footprint of a model throughout its entire life cycle, as well as clear regulatory
frameworks to ensure that available models have been developed under fair and responsible conditions. In practice, this
could mean that, in the future, available models must include an ”energy label” and a ”warranty seal” informing about
the model’s compliance with somehow established parameters for maximum energy consumption when prompting, or
about how the data for training was obtained and processed, complying with data privacy regulation and intellectual
property rights. Future research shall explore how these concerns can be addressed in practice.

Moreover, as many other research works conclude, reducing and ultimately eliminating the model’s hallucinations is
a crucial aspect for the adoption of LLMs in any field, including OE. Some strategies for evaluation of the model’s
output use the model itself to explain its own answer and how it was reached, or even other LLMs trained for the
task. But users need to understand not only the output of the model but also the explanation provided by the LLM
on how the answer was created. Researchers are already busy with this topic and, with our research, we reaffirm its
relevance, imperative for the integral adoption of LLMs by the ontology engineers.
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A
Research Gap: Literature Review

Table A.1: Overview of all the articles analyzed in the literature review for research gap.
Source Title Proposition

1. Cantador et al. (2007)

Improving Ontology
Recommendation and Reuse in
WebCORE by Collaborative
Assessments

WebCORE: A web application that offers
automatic ontology recommendation and allows
for collaborative ontology evaluation and reuse

2. de Vries et al. (2008) Semi-automatic ontology extension in
the maritime domain

Method to semi-automatically extend a maritime
domain ontology based on trajectory data

3. Nováček et al. (2008)

Infrastructure for dynamic knowledge
integration—Automated biomedical
ontology extension using textual
resources

DINO: A dynamic ontology lifecycle scenario and
framework for the dynamic and semi-automatic
integration of ontologies

4. Rodríguez et al.
(2008)

Arabic WordNet: Current state and
future extensions

Semi-automatic Extension of AWN Using Lexical
and Morphological Rules

5. Suchanek et al. (2009) SOFIE: a self-organizing framework
for information extraction

Proposal of a system for knowledge extraction
through ontology extension

6. Cruanes et al. (2010)
Proposal of a Methodological and
Technological Development for
Automatic Ontology Extension

Design of an automated technical and
methodological system to extend ontologies using
NLP

7. Toti et al. (2012)
A knowledge discovery methodology
for semantic categorization of
unstructured textual sources

Methodology to automatically extract knowledge
from unstructured data (text in academic papers)
which can then be used to build an ontology

8. G. Zhao and Zhang
(2018)

Domain-specific ontology concept
extraction and hierarchy extension Two supervised learning models

9. Hosseini Pour and
Shamsfard (2019)

EoANN: lexical-semantic relation
classification using an ensemble of
artificial neural networks

Ensemble of artificial neural networks for
classifying all types of lexical semantic relations in
target datasets

10. Yilahun et al. (2020)
Automatic extraction of Uyghur
domain concepts based on
multi‐feature for ontology extension

Multi-features-based method to automatically
extract concepts and their relations from texts,
for ontology extension

11. Oba et al. (2021)
Automatic Classification for
Ontology Generation by Pretrained
Language Model (PLM)

A two-stages learning PLM-based method for
ontology generation

12. Funk et al. (2023) Towards Ontology Construction with
Language Models

LLM-based methodology to generate
domain-specific ontologies given a concept

13. Haridy et al. (2023)

An Ontology Development
Methodology Based on
Ontology-Driven Conceptual
Modelling and Natural Language
Processing: Tourism Case Study

Detailed methodology for ontology generation and
evaluation that includes a semi-automatic
enrichment module based on NLP

14. Mateiu and Groza
(2023)

Ontology engineering with Large
Language Models

Tool for ontology generation and extension using
GPT-3
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Source Title Proposition

15. Straková et al.
(2023)

Extending an Event-type Ontology:
Adding Verbs and Classes Using
Fine-tuned LLMs Suggestions

Fine-tuned LLM for pre-annotating data for
lexical extension of existing ontologies

16. Zaitoun et al. (2023)
Can Large Language Models
Augment a Biomedical Ontology with
Missing Concepts and Relations?

Technique for employing a general-purpose LLM
to deduce absent concepts in an existing ontology
and establish the relevant semantic connections
between these concepts



B
Interviews

B.0.1. List of interviewees
Table B.1: List of interviewees.

Interviewee # Role Background/Expertise

1 Ontology engineer Background in Formal Logic
2 Former ontology engineer –
3 Ontology engineer Background in Formal Logic
4 Ontology engineer Background in Hybrid AI. Focus on operational ontologies
5 Ontology engineer Background in AI engineering
6 AI engineer Expert in NLP
7 Ontology engineer Focus on operational ontologies
8 Ontology engineer NLP expert, background in AI and linguistics
9 Ontology engineer Expert in standardization and semantic interoperability. Focus on

operational ontologies
10 Ontology engineer Consultant with focus on data standardization projects
11 Ontology engineer Consultant

B.0.2. Interview questions
Interview questions for ontology engineers (at TNO).

Research topic: Integrating LLMs in the process of extending ontologies.

These questions are about your experience as an ontology engineer regarding the extension of ontologies. My master’s
thesis research focuses on the process of extending existing ontologies rather than the process of generating new ones.
The rationale behind this is that ontologies in different domains already exist, and often these need to be extended
because of new technical, institutional, regulatory or any other kind of developments in the domain they cover. As
an example, the Common Greenhouse Ontology (CGO) developed at TNO, has been recently extended to include
concepts about autonomous greenhouse systems (technical development).

1. About the process of extending ontologies:

(a) Do you follow any specific methodology for ontology generation/extension, i.e., OEMs such as SABiO,
METHONTOLOGY, HCOME, DILLIGENT, NeOn, UPON-Lite, etc.? If not, why not?

(b) Do you think that it would be useful to standardize the choice of OEMs for example within your department
at TNO or even at the company level, or do you think it is more useful to give the ontology engineers the
freedom to decide which OEM to follow depending on the project’s requirements or constraints? Why?

(c) Which process do you currently follow when an existing data ontology needs to be extended? Can you
describe the steps? How much time does this process take? Who is involved, i.e., more ontology engineers,

91



92

domain experts, ontology users? How many people and different roles?
(d) Does the process of extending an ontologies varies depending on the domain, the application or any other

factors (name them)? [For example, if the ontology is used for a prototype application, then the process
of extension is a bit more spontaneous, less rigorous, involves less people, etc., in contrast with extending
an ontology that is being used in an European project].

(e) Do you think that a specific methodology or approach for extending ontologies would be useful for you,
i.e., would ease the task? How / why?

(f) Which tools do you currently use to extend data ontologies, i.e. software tools such as Protégé, TopBraid,
OnToology or any other kind of resource such as GitHub/GitLab? Which functionalities do you use within
these tools?

(g) Do you think extending an ontology is a complex process? What are the main struggles or pain points
according to you?

2. About LLMs:

(a) Have you ever used an LLM (e.g., ChatGPT) for generating or extending existing ontologies? [For example,
to generate SPARQL queries, to translate from a competency question into a SPARQL query; to better
understand some (general concepts) concepts, etc.]

i. If yes, for what task exactly? Can you describe a bit the steps you follow?
ii. If not, why not, i.e., what are your concerns?

(b) From the LLMs available, which one do you use, or which one do you think is most suitable for working
with ontologies, i.e., generating a seed ontology, translating competency questions into SPARQL queries,
generating Description Logic from text in natural language, extracting concepts from a document into a
knowledge graph format, ontology matching or more broadly ontology alignment? Why don’t you use
other LLMs, i.e., what are the problems/constraints/boundaries with other LLMs or why the one you use
is better suited?

(c) What is your experience about using LLMs to extend ontologies (or in general to work with ontologies)?
Is it useful? Does it make your work easier, more efficient and/or effective? What are the main struggles
for you?

(d) Do you foresee LLMs as a crucial tool for working with ontologies?

B.0.3. Interview summaries
In this section we include the summaries of the semi-structured interviews conducted. The summaries condense the
information that has been used for the content analysis. If a question or topic was not asked or discussed within an
interview, it is marked as ”N/A”.

Interview 1
• Role of interviewee: Ontology Engineer, background in formal logic.
• Q1-a (Use of OEMs): Not, but does use Compentency Questions (CQs).
• Q1-b (OEMs useful?): Yes, but depends on project.
• Q1-c (Steps for ontology extension): Construct small use case or example with domain expert to extract

concepts, build initial knowledge graph to understand the domain.
• Q1-c (Stakeholders): Several ontology engineers, domain expert, developer of system that uses ontology.
• Q1-f (Tools): GitLab and VS Code with extensions.
• Q1-g (Main struggles in ontology extension): When concepts to add are very abstract, there is no unique

correct way of modeling the data. There is a lot of discussion. It’s difficult to extract the correct information
from the domain expert. Maintenance of ontologies is manual, changes must be manually reflected everywhere
(implementation, visualization, documentation).

• Q2-a (Experience with LLMs): Little experience.
• Q2-a-i (Task(s) the LLMs were used for): SPARQL query generation.
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• Q2-a-ii (Concerns about LLMs use): Formulate the right prompt is difficult, high precision is needed for
OE tasks. Hallucinations. Ethical component, it’s very resource heavy, use it only if really needed. Right now
it’s just faster to do it manually or with a tool specifically designed for it. Concern about losing own abilities.
”Garbage in, garbage out”. Uploading sensitive information.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually.
• Q2-d (Perceived usefulness of LLMs for OE): For documentation, visualizations, ontologies for improving

LLMs.

Interview 2
• Role of interviewee: (Former) Ontology Engineer.
• Q1-a (Use of OEMs): No.
• Q1-b (OEMs useful?): N/A.
• Q1-c (Steps for ontology extension): Interview experts, read documents, list main concepts, establish

relations between concepts.
• Q1-c (Stakeholders): Ontology engineers, domain experts, developer of system that uses ontology, end users

of the system should be included.
• Q1-f (Tools): N/A.
• Q1-g (Main struggles in ontology extension): Understanding the domain and the specific use case or

problem, find accessible documentation/standards that cover the use case. Interpret and match existing con-
cepts/standards to the intended purpose of the ontology (extension). People from companies have to implement
the ontology within their sofwtare, and that transition is difficult. They put it directly into code instead of
using a model-based approach. End users of the system are often not included in the OE process, resulting in
an ontology that does not answer their questions.

• Q2-a (Experience with LLMs): No.
• Q2-a-i (Task(s) the LLMs were used for): N/A.
• Q2-a-ii (Concerns about LLMs use): Generating different outputs every time. Not reliable without expert

verification. Cannot be constrained to only use specific data.
• Additional question (how do you evaluate the ontology and the output of the LLM?): N/A.
• Q2-d (Perceived usefulness of LLMs for OE): LLM as ”suggestion machine”, extracting and listing

concepts, providing a baseline to work with, but always verified by an expert.

Interview 3
• Role of interviewee: Ontology Engineer, background in formal logic.
• Q1-a (Use of OEMs): No. Bottom-up and/or top-down approach depending on the project.
• Q1-b (OEMs useful?): Yes.
• Q1-c (Steps for ontology extension): Inspiration from Object-Role Modeling (ORM) and Nijssen’s Infor-

mation Analysis Methodology (NIAM).
• Q1-c (Stakeholders): Ontology engineers, domain experts, developer of system that uses ontology, end users

of the system.
• Q1-f (Tools): Protégé.
• Q1-g (Main struggles in ontology extension): Sometimes domain experts understand the domain in a

different way in which the ontology should be modeled. They don’t have a conceptual model in their minds.
Sometimes they don’t recognize their domain in the ontology built. Extracting, interpreting, and modeling
knowledge from domain experts in a way that represents the domain but it is also simple enough. Some domain
experts have too much power. Process can be very time consuming and frustrating. Understanding and querying
a big/complex ontology.

• Q2-a (Experience with LLMs): Little experience.
• Q2-a-i (Task(s) the LLMs were used for): SPARQL query generation.
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• Q2-a-ii (Concerns about LLMs use): Cannot get understanding from looking at the model, it’s a black
box, energy cost of using an LLM, power consumption. Time that takes to get the right output. Data security.

• Additional question (how do you evaluate the ontology and the output of the LLM?): N/A.
• Q2-d (Perceived usefulness of LLMs for OE): LLMs to help query and understand a big/complex ontology,

SPARQL query generation from natural language.

Interview 4
• Role of interviewee: Ontology Engineer, background in Hybrid AI (focus on operational ontologies).
• Q1-a (Use of OEMs): No.
• Q1-b (OEMs useful?): Yes if it’s easily accessible, but depends on the project and purpose of ontology.

Flowchart would be useful.
• Q1-c (Steps for ontology extension): Asking oneself if the extension is really needed is an important first

step. Using CQs is a good practice. Try to reuse already existing ontologies and standards as much as possible.
If reusing not possible, list concepts and relations, build small ontology and match concepts with ontology to
be extended.

• Q1-c (Stakeholders): N/A.
• Q1-f (Tools): VS Code with extensions, Protégé, TopBraid, GitLab/GitHub.
• Q1-g (Main struggles in ontology extension): Building or extending small ontologies can be complicated,

but not complex if you have enough expertise. Collaborating and cooperating when working with bigger
ontologies can get very difficult, especially to agree on how to model the information.

• Q2-a (Experience with LLMs): Yes.
• Q2-a-i (Task(s) the LLMs were used for): Working on how to use LLMs for providing suggestions about

concept matching to help the ontology engineer during the development process.
• Q2-a-ii (Concerns about LLMs use): You cannot look at an ontology and now what is in there. Sometimes

answers look correct but they are not. Precision. LLMs are very hyped, people want to use them for everything.
Open source models are not as good as GPT. Evaluating and understanding the output, environmental concern,
ethical concerns (data annotation, use of data without consent), lack of regulation, factuality.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually.
• Q2-d (Perceived usefulness of LLMs for OE): LLMs as ”supportive tools”. LLMs for ontology matching.

LLMs useful for tasks they can perform well and can be manually checked afterwards. OE tasks could be split
up into smaller tasks that can be easily checked. Human-in-the-loop or hybrid approach, where human must
have enough expertise. LLMs providing suggestions to ontology engineer can speed up the process.

Interview 5
• Role of interviewee: Ontology Engineer, background in AI engineering.
• Q1-a (Use of OEMs): Yes, SABiO before [(Falbo, 2014)]. CQs still used.
• Q1-b (OEMs useful?): Yes, but depends on expertise of ontology engineer. Some parts of some methodologies

might be more useful than others.
• Q1-c (Steps for ontology extension): Two approaches: if standards already exist that can be relatively

easily modeled, translate those directly into RDF. Otherwise, setup use cases and translate those into CQs. Use
CQs throughout development process and especially for verification.

• Q1-c (Stakeholders): N/A.
• Q1-f (Tools): Protégé, TopBraid.
• Q1-g (Main struggles in ontology extension): Choice of where to add an extension to a big and modular-

ized ontology. Long discussions about application-independent ontologies vs. need for application-specific data
(system ”governance” when there are multiple use cases).

• Q2-a (Experience with LLMs): Yes. TRL of LLMs for ontology generation is very low. For ontology
alignment is medium. For SPARQL query generation is quite high.
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• Q2-a-i (Task(s) the LLMs were used for): Research on TRL of LLMs for ontology generation, ontology
alignment and SPARQL query generation.

• Q2-a-ii (Concerns about LLMs use): Explainability of its own output (how the output was reached),
output seems correct but it is not. Level of trust.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually.
For ontology verification, CQs. You could use OOPS!, FOOPS!, reasoning performance.

• Q2-d (Perceived usefulness of LLMs for OE): In situations where standards already exist that can be
translated into RDF format using an LLM, so that ontology engineer has an starting point. For repetitive tasks
in which 100% accuracy is not needed (e.g., keyword extraction, relation extraction). To give suggestions for
ontology alignmnent. TRL for SPARQL generation is quite high. To help with syntax (ontology and SPARQL
queries).

Interview 6
• Role of interviewee: AI engineer, expert in NLP.
• Q1-a (Use of OEMs): N/A.
• Q1-b (OEMs useful?): N/A.
• Q1-c (Steps for ontology extension): N/A.
• Q1-c (Stakeholders): N/A.
• Q1-f (Tools): N/A.
• Q1-g (Main struggles in ontology extension): N/A.
• Q2-a (Experience with LLMs): Yes. TRL of LLMs for ontology generation is very low. For ontology

alignment is medium. For SPARQL query generation is quite high.
• Q2-a-i (Task(s) the LLMs were used for): Research on TRL of LLMs for ontology generation, ontology

alignment and SPARQL query generation.
• Q2-a-ii (Concerns about LLMs use): Data security for sensitive data when using proprietary LLMs. Open-

source models can be run locally, but they are also black boxes and can be biased. Risks of using LLMs are
not clear. ”[The field of LLMs] is more like an art than a science”. The pace of technological progress is so fast
that peer-reviewed academic articles are scarce, but there are all kind of non-academic sources experimenting
with LLMs. Answers change a lot when the prompt is slightly different. Hallucinations. ”[An LLM is] not a
model of the world, is just a model of our language”. If creating new ontologies becomes too easy, the level of
reuse and standardization will decrease, which is not desirable. Environmental concerns. The manual process
of ontology engineering has more reasons to be manual than only its complexity. It is a learning process, and
human intervention might be essential to ensure standardization and reusability of existing standards.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually,
expertise is always needed.

• Q2-d (Perceived usefulness of LLMs for OE): LLMs should facilitate repetitive and cumbersome tasks
that can be manually checked.

Interview 7
• Role of interviewee: Ontology Engineer (focus on operational ontologies, more application-dependent).
• Q1-a (Use of OEMs): No.
• Q1-b (OEMs useful?): Yes, but depends on use case.
• Q1-c (Steps for ontology extension): 1) Understand the domain and use case(s). 2) Decide on level of

granularity. 3) Map concepts and relations into classes and properties.
• Q1-c (Stakeholders): Ontology engineers, domain experts, end users of the system.
• Q1-f (Tools): VS Code with extensions, Semantic Treehouse, GitLab/GitHub.
• Q1-g (Main struggles in ontology extension): Communication with different stakeholders, domain experts,

and users. Aligning an ontology extension with already existing (and big) ontologies. Avoiding duplication of
terms and ambiguity.
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• Q2-a (Experience with LLMs): Yes, some experience (with GPT).
• Q2-a-i (Task(s) the LLMs were used for): Ontology matching and (preliminary) ontology creation from

specification/standard, both with prompt engineering.
• Q2-a-ii (Concerns about LLMs use): Results are not correct without steering the LLM output. Some

expertise on the domain is still required when working on the domain. Possibility of losing ownership of the
ideas.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually.
Semantic Treehouse for ontology validation (from the user perspective) and syntax. Ontology testing with
GraphDB and SPARQL queries (CQs).

• Q2-d (Perceived usefulness of LLMs for OE): Some domain expertise is required even when using LLMs
for OE tasks, but with some prompt engineering the output can be useful. In a situation in which standard-
s/specifications exist, using the LLM can be very useful to create an initial ontology that the ontology engineer
can use as a baseline to built upon. LLMs can be useful to create some use cases based on text about the
domain, taking the role of the domain expert.

Interview 8
• Role of interviewee: Ontology Engineer, NLP expert, background in AI and linguistics.
• Q1-a (Use of OEMs): Yes, SABiO before [(Falbo, 2014)]. CQs still used.
• Q1-b (OEMs useful?): Yes, but depends on expertise of ontology engineer (more useful for beginners, should

be less strict for experts).
• Q1-c (Steps for ontology extension): 1) Formulate CQs and review with domain experts. 2) Develop

ontology (extension) based on CQs, extracting concepts and relations from CQs. 3) Check that CQs can be
answered, if so, extension is done.

• Q1-c (Stakeholders): Ontology engineers, domain experts, end users of the system, project leader, owners of
external ontologies.

• Q1-f (Tools): Protégé, WebVOWL for visualization.
• Q1-g (Main struggles in ontology extension): Process depends on the ontology. Some ontologies are very

big, and require expertise on the content of the ontology. The extension process is especially complex because
sometimes the ontology engineer does not have the complete view of what is already there. Working with
different data formats for an extension. Working with abstract concepts.

• Q2-a (Experience with LLMs): Yes.
• Q2-a-i (Task(s) the LLMs were used for): Triples extraction from text for knowledge graph creation with

GPT-3.5 and 4. Performance not very high but promising field of research. Also used an open-source relation
extraction pre-trained LLM with some prompt engineering and few-shot learning. GPT models work better in
general.

• Q2-a-ii (Concerns about LLMs use): Performance on LLMs for relation extraction is still not great. LLMs
lack implicit real-world knowledge that humans possess. Safety in the context of confidential data. Perfomance
of the LLM depends on the complexity of the data. Ontology development requires an hybrid approach including
both human knowledge and technology.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Research
on application-independent evaluation metrics for ontologies: Quantitative - syntactic and semantic metrics
(proportion of taxonomies, number of subclasses and superclasses, richness of ontology) and qualitative - inter-
pretability (are the concepts used, e.g., in Wikipedia), consistency... These metrics ultimately serve as guidance
and require human expertise.

• Q2-d (Perceived usefulness of LLMs for OE): Models trained on relation extraction work well and can
add some real-world knowledge. But in general, GPT models work better and might be more appropriate for
human-LLM collaboration process where the human has the expertise and richer real-world knowledge, and the
LLM can creatively contribute. Using a RAG is a promising idea. The smaller and specific is the task, the
better the LLM will perform.
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Interview 9
• Role of interviewee: Ontology Engineer, expertise on standardization and semantic interoperability (focus

on operational ontologies, more application-dependent).
• Q1-a (Use of OEMs): No, but does use CQs.
• Q1-b (OEMs useful?): Maybe. It’s good to follow best practices, but it depends on the project and the use

case.
• Q1-c (Steps for ontology extension): It is essential to understand well the domain. It is very important to

reuse existing standards, so before extending an ontology one has to ask if an existing ontology can be reused.
If the administrative burden is too much, then creating an extension is necessary. The ontology engineer must
be familiar with the ontology to be extended. For some projects we use the ”Pressure Cooker” methodology.

• Q1-c (Stakeholders): Customer (sometimes the same as the domain expert). Domain experts with different
roles and perspectives. Non-users of the ontology-based system that are affected by it. Ontology engineer.

• Q1-f (Tools): TopBraid, VS Code, Semantic Treehouse, GitLab.
• Q1-g (Main struggles in ontology extension): Removing o redesigning concepts in an already existing

ontology. The quality of the ontology to be extended, and getting acquainted with it. There are multiple
(correct) ways of modeling information.

• Q2-a (Experience with LLMs): Little experience.
• Q2-a-i (Task(s) the LLMs were used for): N/A.
• Q2-a-ii (Concerns about LLMs use): Inolving domain experts with different perspectives and having

discussions is very enriching in the process of ontology engineering. This does not necessarily slow down the
process, but rather makes the quality higher and the development faster. Hallucinations. Degree of reliability
of the response.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Manually,
with human expertise.

• Q2-d (Perceived usefulness of LLMs for OE): LLMs could help with creative suggestions and inspiration
ideas within the conceptualization phase. Assisting the ontology engineer for tasks such as SPARQL query
generation, during development and testing phases.

Interview 10
• Role of interviewee: Ontology Engineer, consultant with focus on data standardization projects.
• Q1-a (Use of OEMs): No, but does use CQs.
• Q1-b (OEMs useful?): Yes.
• Q1-c (Steps for ontology extension): Custom methodology to get concepts and relations from unstructured

text. For some projects we use the ”Pressure Cooker” methodology.
• Q1-c (Stakeholders): Ontology engineer, customers, (external) domain experts with different perspectives,

developer of the system that uses the ontology, discussion leader, data provider.
• Q1-f (Tools): TopBraid, GitLab.
• Q1-g (Main struggles in ontology extension): Though ontologies should be as application-independent as

possible, in practice there are a lot of data on them. When there are instantiations or applications that depend
on the ontology, is difficult to foresee the impact that a change in the ontology, the base model, will have in
the rest of systems that are built on top of the ontology. Extensions are more frequent on the data level (the
knowledge graph). Maintaining consistency and knowing how to add the extension (in the core, new module,
etc.)

• Q2-a (Experience with LLMs): Little experience.
• Q2-a-i (Task(s) the LLMs were used for): Ask LLM for suggestions about concepts in a specific domain.
• Q2-a-ii (Concerns about LLMs use): High level of quality cannot be reached with the LLM only. Ontologies

benefit from having a human process involving different perspectives about a domain. LLMs give incorrect
answers. LLMs cannot deal with subtle relationships in human language as humans do.
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• Additional question (how do you evaluate the ontology and the output of the LLM?): Seman-
tic Treehouse for ontology validation and syntax (”practical approach”). [Manual] evaluation meetings with
stakeholders.

• Q2-d (Perceived usefulness of LLMs for OE): LLMs can help with inspiration, to have a first understanding
of the domain or use case, to get a draft version to work with. To offer suggestions about concepts, synonyms,
etc. To identify main concepts and relations from unstructured text.

Interview 11
• Role of interviewee: Ontology Engineer, consultant.
• Q1-a (Use of OEMs): No, but does use CQs.
• Q1-b (OEMs useful?): Yes, but depends on the project and the stakeholders involved.
• Q1-c (Steps for ontology extension): Several meetings to get more or less structured knowledge from the

domain experts, using Excel Formulation of very specific use cases. From this, it is quite straightforward to
translate into RDF.

• Q1-c (Stakeholders): N/A.
• Q1-f (Tools): TopBraid, VS Code, GitLab.
• Q1-g (Main struggles in ontology extension): Adding very abstract concepts. Working with an ontology

that has not been built ”in-house”.
• Q2-a (Experience with LLMs): No.
• Q2-a-i (Task(s) the LLMs were used for): N/A.
• Q2-a-ii (Concerns about LLMs use): LLMs cannot help with very abstract concepts that require expertise

and making assumptions and decisions. Lack of trust on LLMs (LLMs cannot understand internal TNO
knowledge). One of the biggest strengths of an ontology is that is a human-made conceptualization. Loss of
learning process.

• Additional question (how do you evaluate the ontology and the output of the LLM?): Verification
of ontology is done manually with the help from other colleagues with more experience. Validation is done with
the domain experts via meetings with presentations including visualizations of the ontology.

• Q2-d (Perceived usefulness of LLMs for OE): LLMs can help with creative processes, to get some inspira-
tion, to search for other ontologies and publicly available knowledge on the domain. To create test instantiations
(repetitive task).

B.0.4. Content analysis of interviews
The qualitative, empirical data collected through the semi-structured interviews, in the form of transcriptions and
their summaries (raw data), has been manually analyzed using Excel tables and performing content analysis, following
Erlingsson and Brysiewicz (2017) and Seljemo et al. (2024). Below we present the full content analysis of the interviews
focusing on three overarching themes:

1. The complexity of ontology extension (Table B.2).
2. Concerns about the use of LLMs for Ontology Engineering (OE) (Table B.3).
3. Opportunities for the use of LLMs for Ontology Engineering (OE) (Table B.4).

For each theme, meaning units were extracted. Each meaning unit was summarized as a condensed meaning unit.
Finally the condensed meaning units were assigned to categories. These categories have been created to cluster the
condensed meaning units into different groups so that the condensed meaning units pertaining to the same cluster or
category are related by that category. The definition of these categories for each theme are presented in Section 3.3
(Chapter 3).
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Table B.2: Analysis of the 11 interviews conducted for the theme: ”The complexity of ontology extension”.

# Role of interviewee Meaning Units Condensed Meaning Units Category

1 Ontology Engineer,
background in formal
logic

When concepts to add are very abstract, there is no unique correct way of modeling the data High abstraction level; No single correct
answer Process

There is a lot of discussion Long discussions Stakeholders
It’s difficult to extract the correct information from the domain expert Extracting information from domain

experts Stakeholders
Maintenance of ontologies is manual, changes must be manually reflected everywhere (implementation,
visualization, documentation) Manual maintenance Tools

2
(Former) Ontology
Engineer

Understanding the domain and the specific use case or problem, find accessible documentation/standards that
cover the use case

Domain complexity; Lack of
documentation/standards Domain

Interpret and match existing concepts/standards to the intended purpose of the ontology (extension) Matching existing concepts; Reducing
ambiguity Process

People from companies have to implement the ontology within their software, and that transition is difficult. They
put it directly into code instead of using a model-based approach Misalignment in understanding Stakeholders
End users of the system are often not included in the OE process, resulting in an ontology that does not answer
their questions Lack of perspectives Stakeholders

3
Ontology Engineer,
background in formal
logic

Sometimes domain experts understand the domain in a different way in which the ontology should be modeled.
They don’t have a conceptual model in their minds. Sometimes they don’t recognize their domain in the ontology
built

Domain experts lack technical knowledge;
Extracting information from domain
experts

Stakeholders

Extracting, interpreting, and modeling knowledge from domain experts in a way that represents the domain but it
is also simple enough Trade-off accuracy vs. simplicity Process
Some domain experts have too much power Domain experts too powerful Stakeholders
Process can be very time consuming and frustrating Building consensus; Long discussions Stakeholders
Understanding and querying a big/complex ontology Ontology too big/complex Status quo

4 Ontology Engineer,
background in Hybrid AI

Building or extending small ontologies can be complicated, but not complex if you have enough expertise High level of expertise required; Ontology
too big/complex

Expertise;
Status quo

Collaborating and cooperating when working with bigger ontologies can get very difficult, especially to agree on
how to model the information Building consensus; Long discussions Stakeholders

5 Ontology Engineer,
background in Hybrid AI

Choice of where to add an extension to a big and modularized ontology Ontology too big/complex; Modularization
choices

Status
quo; Gov-
ernance

Long discussions about application-independent ontologies vs. need for application-specific data (system
”governance” when there are multiple use cases)

Application-independent vs. need for
application specific data Governance

6 AI engineer, expert in
NLP – – –

7
Ontology Engineer

Communication with different stakeholders, domain experts, and users Long discussions; Building consensus Stakeholders
Aligning an ontology extension with already existing (and big) ontologies Matching existing concepts Process
Avoiding duplication of terms and ambiguity Reducing ambiguity Process

8
Ontology Engineer, NLP
expert, background in AI
and linguistics

Process depends on the ontology No standard process Process

Some ontologies are very big, and require expertise on the content of the ontology Ontology too big/complex; Lack of
experience with ontology content

Status
quo;
Expertise

The extension process is especially complex because sometimes the ontology engineer does not have the complete
view of what is already there Lack of experience with ontology content Expertise
Working with different data formats for an extension Heterogeneity of source data formats Status quo
Working with abstract concepts High abstraction level Process

9 Ontology Engineer,
expertise on
standardization and
semantic interoperability

Removing o redesigning concepts in an already existing ontology Manual maintenance; Systems’
dependencies on ontology

Tools;
Gover-
nance

The quality of the ontology to be extended, and getting acquainted with it Ontology too big/complex; Lack of
experience with ontology content

Status
quo:
Expertise

There are multiple (correct) ways of modeling information No single correct answer Process

10 Ontology Engineer,
consultant with focus on
data standardization
projects

Though ontologies should be as application-independent as possible, in practice there are a lot of data on them.
Extensions are more frequent on the data level (the knowledge graph)

Application-independent vs. need for
application specific data Governance

When there are instantiations or applications that depend on the ontology, is difficult to foresee the impact that a
change in the ontology, the base model, will have in the rest of systems that are built on top of the ontology Systems’ dependencies on ontology Governance
Maintaining consistency and knowing how to add the extension (in the core, new module, etc.) Manual maintenance Tools

11 Ontology Engineer,
consultant

Adding very abstract concepts High abstraction level Process
Working with an ontology that has not been built in-house Lack of experience with ontology content Expertise
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Table B.3: Analysis of the 11 interviews conducted for the theme: ”Concerns about using LLMs for OE”.

# Role of interviewee Meaning Units Condensed Meaning Units Category

1

Ontology Engineer,
background in formal logic

Formulate the right prompt is difficult, high precision is needed for OE tasks Learning curve; Need for high precision Skills; Performance / OE
expertise

Hallucinations Hallucinations Performance
Ethical component, it’s very resource heavy, use it only if really needed Ethical concern; Environmental concern Impact

Right now it’s just faster to do it manually or with a tool specifically designed for it Time consuming; Not tailored to OE tasks
Skills / Performance;
Performance / OE
expertise

Concern about losing own abilities with extended LLM use Loss of own abilities OE expertise
Garbage in, garbage out Need for high-quality input data Performance
Uploading sensitive information Data security Impact / Regulation

2
(Former) Ontology Engineer

Generating different outputs every time Inconsistency Performance
Not reliable without expert verification Lack of reliability Performance
Cannot be constrained to only use specific data Hallucinations Performance

3
Ontology Engineer,
background in formal logic

Cannot get understanding from looking at the model, it’s a black box Lack of transparency Impact / Regulation
Energy cost of using an LLM, power consumption Environmental concern Impact
Time that takes to get the right output Time consuming; Learning curve Skills / Performance
Confidentiality needs to be taken into account in certains domains (e.g., defense) Data security Impact

4

Ontology Engineer,
background in Hybrid AI

You cannot look at an ontology and now what is in there Lack of transparency Impact
Sometimes answers look correct but they are not Plausible but incorrect answers Impact

Precision Need for high precision Performance / OE
expertise

LLMs are very hyped, people want to use them for everything Unintended use Impact / Regulation
Open-source models are not as good as GPT Reinforcing effect Impact
Evaluating and understanding the output Time consuming; Learning curve Skills / Performance
It’s not good for the environment to run a large general model Environmental concern Impact
Ethical concerns (data annotation, use of data without consent Ethical concern; IP rights Impact; Regulation
Laws and rules are not there yet Lack of regulation Regulation
Factuality Factuality Performance

5 Ontology Engineer,
background in Hybrid AI

Explainability of its own output (how the output was reached) Explainability and interpretability Impact
Output seems correct but it is not Plausible but incorrect answers Impact
For which purposes can we trust an LLM? Lack of trust Impact / Regulation

6

AI engineer, expert in NLP

Data security for sensitive data when using proprietary LLMs Data security Impact / Regulation
Open source models can be run locally, but they are also black boxes and can be biased Lack of transparency; Bias Impact / Regulation
Risks of using LLMs are not clear No clear risks Impact / Regulation
[The field of LLMs] is more like an art than a science Lack of scientific ground Academic rigour
The pace of technological progress is so fast that peer-reviewed academic articles are scarce, but there are all kind of
non-academic sources experimenting with LLMs Technical progress too fast Academic rigour

Answers change a lot when the prompt is slightly different Inconsistency Performance
Hallucinations Hallucinations Performance
”[An LLM is] not a model of the world, is just a model of our language” Unintended use Impact / Regulation
If creating new ontologies becomes too easy, the level of reuse and standardization will decrease, which is not desirable Loss of standardization OE expertise
Environmental impact of running such a large language model, is it justified? Environmental concern Impact
Manual process of ontology engineering has more reasons to be manual than only its complexity. It is a learning process, and
human intervention might be essential to ensure standardization and reusability of existing standards

Loss of enriching human process; Loss of learning
process Impact / OE Expertise

7
Ontology Engineer

Results are not correct without steering the LLM output Factuality Performance
Some expertise on the domain is still required when working on the domain Domain expertise required OE Expertise
Possibility of losing ownership of the ideas IP rights Regulation

8
Ontology Engineer, NLP
expert, background in AI and
linguistics

Performance on LLMs for relation extraction is still not great Not tailored to OE tasks Performance / OE
expertise

LLMs lack implicit real-world knowledge that humans possess Lack of implicit real world knowledge Performance / OE
expertise

Safety in the context of confidential data Data security Impact / Regulation
Perfomance of the LLM depends on the complexity of the data Variable performance Performance
Ontology development requires an hybrid approach including both human knowledge and technology Hybrid approach required OE expertise

9 Ontology Engineer, expertise
on standardization and
semantic interoperability

Involving domain experts with different perspectives and having discussions is very enriching in the process of ontology
engineering. This does not necessarily slow down the process, but rather makes the quality higher and the development faster

Hybrid approach required; Loss of enriching
human process

OE expertise; Impact /
OE Expertise

Hallucinations Hallucinations Performance
Degree of reliability of the response Lack of reliability Performance

10
Ontology Engineer, consultant
with focus on data
standardization projects

High level of quality cannot be reached with the LLM only Need for high quality; Hybrid approach required Performance / OE
expertise; OE expertise

Ontologies benefit from having a human process involving different perspectives about a domain Loss of enriching human process Impact / OE Expertise
LLMs give incorrect answers Factuality Performance

LLMs cannot deal with subtle relationships in human language as humans do Need for dealing with complex subtleties in human
knowledge OE expertise

11

Ontology Engineer, consultant

LLMs cannot help with very abstract concepts that require expertise and making assumptions and decisions Need for dealing with complex subtleties in human
knowledge; Need for decision-making OE expertise

Lack of trust on LLMs (LLMs cannot understand internal TNO knowledge) Lack of trust; Lack of internal/specific knowledge Impact; OE Expertise
One of the biggest strengths of an ontology is that is a human-made conceptualization Loss of enriching human process Impact / OE Expertise
Loss of learning process Loss of learning process Impact / OE Expertise
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Table B.4: Analysis of the 11 interviews conducted for the theme: ”Opportunities for using LLMs for OE”.

# Role of interviewee Meaning Units Condensed Meaning Units Category

1 Ontology Engineer, background
in formal logic

You could use the LLM for maybe helping with the documentation part Documentation Supporting activities
For visualization of the ontology you could also ask the LLM to help you there Visuzalization Supporting activities

2
(Former) Ontology Engineer

LLM as ”suggestion machine” Suggestions for best practices Implementation
To extract and list concepts, providing a baseline to work with Concept/relation extraction Conceptualization
Always verified by an expert Expert-in-the-loop-approach Approach

3 Ontology Engineer, background
in formal logic

LLMs to help query and understand a big/complex ontology Exploring ontology Preparation
SPARQL query generation from natural language SPARQL query generation Verification

4

Ontology Engineer, background
in Hybrid AI

”I don’t think that the manual labor […] of writing ontologies will stay only manual. […] I think the
LLM or AI will be a supportive tool” Ontology writing support Implementation

LLMs for ontology matching Ontology matching / alignment Conceptualization /
Implementation

LLMs useful for smaller OE tasks they can perform well in and that can be manually checked
afterwards Small / simple OE tasks Supporting activities

Human-in-the-loop or hybrid approach, where human must have enough expertise Human-in-the-loop approach;
Expert-in-the-loop-approach Approach

LLMs providing suggestions to ontology engineer can speed up the process Suggestions for best practices Implementation

5

Ontology Engineer, background
in Hybrid AI

In situations where standards already exist that can be translated into RDF format using an LLM,
so that ontology engineer has an starting point Automatic standard translation to RDF Conceptualization /

Implementation
For repetitive tasks in which 100% accuracy is not needed (e.g., keyword extraction, relation
extraction)

Concept/relation extraction; Small /
simple OE tasks

Conceptualization /
Supporting activities

To give suggestions for ontology alignment Ontology matching / alignment Conceptualization /
Implementation

TRL for SPARQL generation is quite high SPARQL query generation Verification
To help with syntax (ontology and SPARQL queries) Syntax checker Implementation

6 AI engineer, expert in NLP LLM should facilitate repetitive and cumbersome tasks that can be manually checked Small / simple OE tasks Supporting activities

7
Ontology Engineer

In a situation in which standards/specifications exist, using the LLM can be very useful to create
an initial ontology that the ontology engineer can use as a baseline to built upon Initial basic ontology generation Preparation

Some domain expertise is required even when using LLMs for OE tasks, but with some prompt
engineering the output can be useful Expert-in-the-loop-approach Approach

LLMs can be useful to create some use cases based on text about the domain, taking the role of the
domain expert Use cases generation Preparation

8

Ontology Engineer, NLP expert,
background in AI and linguistics

Models trained on relation extraction work well and can add some real-world knowledge […] Concept / relation extraction Conceptualization
[…] But in general, GPT models work better and might be more appropriate for human-LLM
collaboration process where the human has the expertise and richer real-world knowledge,

Human-in-the-loop approach;
Expert-in-the-loop-approach Approach

[…] and the LLM can creatively contribute Creativity/Inspiration Preparation /
Conceptualization

The smaller and specific is the task, the better the LLM will perform Small/simple OE tasks Supporting activities
Using a RAG is a promising idea RAG LLM for OE Approach

9 Ontology Engineer, expertise on
standardization and semantic
interoperability

LLMs could help with creative suggestions and inspiration ideas within the conceptualization phase Creativity / Inspiration Preparation /
Conceptualization

Assisting the ontology engineer for tasks such as SPARQL query generation, during development
and testing phases

SPARQL query generation; Syntax checker;
Concept / relation extraction Conceptualization

10 Ontology Engineer, consultant
with focus on data
standardization projects

LLMs can help with inspiration, to have a first understanding of the domain or use case, to get a
draft version to work with

Creativity/Inspiration; Initial basic
ontology generation

Preparation /
Conceptualization;
Preparation

To offer suggestions about concepts, synonyms, etc. Suggestions for best practices; Syntax
checker Implementation

To identify main concepts and relations from unstructured text Concept / relation extraction Conceptualization

11 Ontology Engineer, consultant
LLM can help with creative processes, to get some inspiration, to search for other ontologies and
publicly available knowledge on the domain Creativity/Inspiration; Exploring ontology

Preparation /
Conceptualization;
Preparation

To create test instantiations (repetitive task) Generation of mock data for testing Verification
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Requirements elicitation

Table C.1: Overview of the articles analyzed in the literature search for the requirements elicitation process.
Source Title Proposition

1. Czarnecki and
Orłowski (2010)

Ontology Engineering Aspects in the
Intelligent Systems Development

Analysis of some of the challenges emerging from
ontology development processes in the areas of
selecting a development methodology, identifying
the purpose and scope of the ontology, and
defining the roles of the stakeholders in the
process

2. Hoekstra and Breuker
(2010) Making Sense of Design Patterns

Identification and discussion of requirements for
ontology design patterns, aiming to improve the
current practice of ontology engineering

3. Al-Aswadi et al.
(2020)

Automatic ontology construction
from text: a review from shallow to
deep learning trend

Review of methods, tools, and systems for
automatic ontology construction from text,
mapping the tasks and challenges in the process

4. Tudorache (2020) Ontology engineering: Current state,
challenges, and future directions

Overview of the evolution of the ontology
engineering field and the current landscape,
including standards, methodologies, design
patterns, and tools. Discussion of some of the
current challenges and future opportunities in the
field

5. Stadnicki et al. (2020) Towards a Modern Ontology
Development Environment

Analysis of the current methodologies and tools
used for ontology engineering and their evolution
and limitations. Design of the architecture of a
web-based ontology development platform

6. Zhang et al. (2024)
OntoChat: a Framework for
Conversational Ontology Engineering
using Language Models

Design, implementation, and evaluation of a
framework for ontology engineering using
OpenAI’s API. The framework supports
requirements elicitation for the ontology, testing
and analysis of the ontology based on
Competency Questions
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Table C.2: Codes for the CMUs related to Theme 1: ”The complexity of ontology extension” used to elicit the requirements
for the artifact’s design.

T1: The complexity of ontology extension
Category (C) Condensed Meaning Unit (CMU)
C1: Stakeholders CMU 1.1: Extracting information from domain experts

CMU 1.2: Misalignment in understanding
CMU 1.3: Domain experts lack technical knowledge
CMU 1.4: Lack of perspectives
CMU 1.5: Domain experts too powerful
CMU 1.6: Building consensus
CMU 1.7: Long discussions

C2: Process CMU 2.1: High abstraction level
CMU 2.2: Trade-off accuracy vs. Simplicity
CMU 2.3: Matching existing concepts
CMU 2.4: Reducing ambiguity
CMU 2.5: No standard process

C3: Governance CMU 3.1: Application-independent vs. need for application-specific data
CMU 3.2: Systems’ dependencies on ontology

C4: Status quo CMU 4.1: Ontology too big/complex
CMU 4.2: Heterogeneity of source data formats

C5: Expertise CMU 5.1: Lack of experience with ontology content
CMU 5.2: High level of expertise required

C6: Domain CMU 6.1: Domain complexity
CMU 6.2: Lack of documentation/standards

C7: Tools CMU 7.1: Manual maintenance
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Table C.3: Codes for the CMUs related to Theme 2: ”Concerns about using LLMs for OE” used to elicit the requirements
for the artifact’s design.

T2: Concerns about using LLMs for OE
Category (C) Condensed Meaning Unit (CMU)

C1: Impact

CMU 1.1: Environmental concern
CMU 1.2: Ethical concern
CMU 1.3: Data security
CMU 1.4: Lack of transparency
CMU 1.5: Plausible but incorrect answers
CMU 1.6: Unintended use
CMU 1.7: Reinforcing effect
CMU 1.8: Explainability and interpretability
CMU 1.9: IP rights
CMU 1.10: Lack of trust
CMU 1.11: Bias
CMU 1.12: No clear risks
CMU 1.13: Loss of enriching human process
CMU 1.14: Loss of learning process

C2: OE Expertise

CMU 2.1: Need for high quality
CMU 2.2: Need for high precision
CMU 2.3: Not tailored to OE tasks
CMU 2.4: Loss of own abilities
CMU 2.5: Loss of standardization
CMU 2.6: Loss of enriching human process
CMU 2.7: Loss of learning process
CMU 2.8: Hybrid approach required
CMU 2.9: Need for dealing with complex subtleties in human knowledge
CMU 2.10: Need for decision-making
CMU 2.11: Lack of internal/specific knowledge
CMU 2.12: Domain expertise required
CMU 2.13: Lack of implicit real-world knowledge

C3: Performance

CMU 3.1: Need for high quality
CMU 3.2: Need for high precision
CMU 3.3: Hallucinations
CMU 3.4: Time consuming
CMU 3.5: Need for high-quality input data
CMU 3.6: Inconsistency
CMU 3.7: Lack of reliability
CMU 3.8: Factuality
CMU 3.9: Not tailored to OE tasks
CMU 3.10: Lack of implicit real-world knowledge
CMU 3.11: Variable performance

C4: Regulation

CMU 4.1: Data security
CMU 4.2: Lack of transparency
CMU 4.3: Unintended use
CMU 4.4: Lack of trust
CMU 4.5: IP rights
CMU 4.6: Lack of regulation
CMU 4.7: No clear risks
CMU 4.8: Bias

C5: Skills
CMU 5.1: Learning curve
CMU 5.2: Time consuming

C6: Academic Rigour
CMU 6.1: Lack of scientific ground
CMU 6.2: Technical progress too fast
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Table C.4: Codes for the CMUs related to Theme 3: ”Opportunities for using LLMs for OE” used to elicit the requirements
for the artifact’s design.

T3: Opportunities for using LLMs for OE
Category (C) Condensed Meaning Unit (CMU)

C1: Preparation

CMU 1.1: Exploring ontology
CMU 1.2: Use cases generation
CMU 1.3: Initial basic ontology generation
CMU 1.4: Creativity/Inspiration

C2: Conceptualization

CMU 2.1: Creativity/Inspiration
CMU 2.2: Ontology matching/alignment
CMU 2.3: Automatic standard translation to RDF

C3: Implementation

CMU 3.1: Ontology matching/alignment
CMU 3.2: Automatic standard translation to RDF
CMU 3.3: Suggestions for best practices
CMU 3.4: Ontology writing support
CMU 3.5: Syntax checker

C4: Verification
CMU 4.1: SPARQL query generation
CMU 4.2: Generation of mock data for testing

C5: Supporting Activities

CMU 5.1: Documentation
CMU 5.2: Visualization
CMU 5.3: Small/simple OE tasks

C6: Approach

CMU 6.1: Human-in-the-loop approach
CMU 6.2: Expert-in-the-loop approach
CMU 6.3: RAG LLM for OE
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Table C.5: List of requirements elicited from CMUs of Theme 1: ”The complexity of ontology extension”.
Source: T1-CMUs Requirement
CMU 1.1: Extracting information from domain experts

Support the acquisition of domain dataCMU 1.2: Misalignment in understanding
CMU 1.3: Domain experts lack technical knowledge
CMU 1.4: Lack of perspectives Promote the inclusion of diverse perspectives (include ad-

ditional stakeholders in the process)
CMU 1.5: Domain experts too powerful Complement the role of the domain expert in tasks

related to the acquisition of data and technical
conceptualization

CMU 1.6: Building consensus
CMU 1.7: Long discussions

CMU 2.1: High abstraction level Outline the sequence of tasks
CMU 2.2: Trade-off accuracy vs. Simplicity –
CMU 2.3: Matching existing concepts Support ontology matching/alignment techniques
CMU 2.4: Reducing ambiguity –

CMU 2.5: No standard process - Outline the sequence of tasks
- Define the roles and responsibilities of the stakeholders
and the LLM for each task

CMU 3.1: Application-independent vs. need for
application-specific data

–

CMU 3.2: Systems’ dependencies on ontology Support backward compatibility of ontology changes

CMU 4.1: Ontology too big/complex Include Competency Questions throughout the whole on-
tology extension development process

CMU 4.2: Heterogeneity of source data formats Support various data source formats

CMU 5.1: Lack of experience with ontology content Facilitate the exploration of the ontology to be extended

CMU 5.2: High level of expertise required - Support less experienced ontology engineers
- Be user-friendly and intuitive for ontology engineers
with varying levels of expertise

CMU 6.1: Domain complexity Facilitate comprehension of domain-specific information
CMU 6.2: Lack of documentation/standards Support the acquisition of domain data

CMU 7.1: Manual maintenance - Include OE-tailored tools
- Facilitate documentation of ontology (extension)
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Table C.6: Result of the brainstorming live survey conducted within the Focus Group to elicit requirements. The question
posed to the participants was: ”What are the requirements for a human-LLM collaboration framework for ontology

extension?”.
Code Brainstorm idea # of votes

(out of 6)
B1 ”I’d like to use the LLM just for tasks where its semantic strength is used, but not necessarily for

its factuality. So, finding the closest concepts in embedding space or pre-generating descriptions”
4

B2 ”Reuse of existing ontologies is important. If LLMs cannot do this, humans should do that task.” 3
B3 ”If an LLM provides technical content, its sources should be listed.” 2
B4 ”Human in the loop is needed to judge LLM suggestions.” 2
B5 ”Interesting requirement if the LLM can suggest existing ontologies that might be used.” 2
B6 ”Provide suggestions on possible language, words, terms to use in the domain and/or extension.” 2
B7 ”Work of the LLM must be checked by domain experts/engineers.” 1
B8 ”Traceability of changes/extensions” 1
B9 ”LLM comes up with suggestion [on how] the extension can be modeled conceptually.” 1
B10 ”Not a framework for collab[oration] but rather AI assistance (different level of AI autonomy).

Only use AI ’tools’ for a specific task when desired by the developer. This way, initiative is always
at [the ontology] developer.”

1

B11 ”Should be usable in group setting.” 1
B12 ”LLM can generate SPARQL queries with competency questions.” 1
B13 ”No hallucinating, making things up.” –
B14 ”Explainability.” –
B15 ”Validation with domain experts should be possible.” –
B16 ”LLM suggestions should be checked.” –
B17 ”Backwards compatibility should be taken into account.” –
B18 ”Automation of easy tasks vs. keeping autonomy with the human/domain experts.” –
B19 ”Answers should follow a prescribed format to allow integration.” –
B20 ”For confidential ontologies, a local open-source model might be necessary.” –
B21 ”Hybrid AI: Database of existing ontologies with descriptions of the ontology and then LLM is

used to find the related ontology for a specific concept to see it already exists.”
–

B22 ”Multiple suggestions by the LLM.” –
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Table C.7: List of requirements elicited from the Focus Group Brainstorming Session.
Source: Brainstorming Ideas Requirement
B1: ”I’d like to use the LLM just for tasks where its semantic
strength is used, but not necessarily for its factuality. So,
finding the closest concepts in embedding space or
pre-generating descriptions”

Provide hybrid approach combining LLMs with tradi-
tional OL techniques

B2: ”Reuse of existing ontologies is important. If LLMs
cannot do this, humans should do that task.”

Promote reuse of existing ontologies and standards

B3: ”If an LLM provides technical content, its sources should
be listed.”

–

B4: ”Human in the loop is needed to judge LLM suggestions.” Encourage expert-in-the-loop-approach
B5: ”Interesting requirement if the LLM can suggest existing
ontologies that might be used.”

Promote reuse of existing ontologies and standards

B6: ”Provide suggestions on possible language, words, terms
to use in the domain and/or extension.”

Validates requirement: Support the acquisition of domain
data

B7: ”Work of the LLM must be checked by domain
experts/engineers.”

Encourage expert-in-the-loop-approach

B8: ”Traceability of changes/extensions” Validates requirement: Facilitate documentation of ontol-
ogy extension

B9: ”LLM comes up with suggestion [on how] the extension
can be modeled conceptually.”

Validates requirement: Complement the role of the do-
main expert in tasks related to the acquisition of data
and technical conceptualization

B10: ”Not a framework for collab[oration] but rather AI
assistance (different level of AI autonomy). Only use AI ’tools’
for a specific task when desired by the developer. This way,
initiative is always at [the ontology] developer.”

- Provide hybrid approach combining LLMs with tradi-
tional OL techniques
- Provide flexibility depending on the project characteris-
tics, application and/or use case

B11: ”Should be usable in group setting.” –
B12: ”LLM can generate SPARQL queries with competency
questions.”

Support formulation and formalization of CQs

B13: ”No hallucinating, making things up.” Encourage expert-in-the-loop-approach
B14: ”Explainability.” –
B15: ”Validation with domain experts should be possible.” Provide evaluation method for ontology extension includ-

ing domain experts
B16: ”LLM suggestions should be checked.” Encourage expert-in-the-loop-approach
B17: ”Backwards compatibility should be taken into account.” Validates requirement: Support backward compatibility

of ontology changes
B18: ”Automation of easy tasks vs. keeping autonomy with
the human/domain experts.”

Provide hybrid approach combining LLMs with tradi-
tional OL techniques

B19: ”Answers should follow a prescribed format to allow
integration.”

Specify format of LLM’s output for each task

B20: ”For confidential ontologies, a local open-source model
might be necessary.”

Provide flexibility depending on the project characteris-
tics, application and/or use case

B21: ”Hybrid AI: Database of existing ontologies with
descriptions of the ontology and then LLM is used to find the
related ontology for a specific concept to see it already exists.”

–

B22: ”Multiple suggestions by the LLM.” –
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Prototype design

D.1. Prototype design: The human-LLM collaboration process framework for
ontology extension

In this section, we further describe the prototype design presented in Figure 5.1 (Chapter 5). We explain each phase
of the process framework describing the sequence of tasks performed by the ontology engineer in that phase. We
briefly address how these tasks can be performed with the assistance of LLMs or other LLM-based tools, and the
OE tools selected for the process framework design (see Table 5.3 in Chapter 5). We provide zoomed-in versions of
Figure 5.1 to help better visualize the process framework.

D.1.1. Phase 1: Preparation
Figure D.1. In the first phase of the ontology extension process, the ontology engineer must get acquainted with
the domain, the ontology to be extended and the extension to be made. LLMs with real-world knowledge, i.e.,
big models trained in vast amounts of (recent) data, can assist the ontology engineer in these tasks by providing
background information. If a lot of documentation is available the LLM can help by summarizing the key points for
the ontology engineer (T-1.1). LLMs can interpret the ontology code (e.g., RDF or OWL), and thus can answer the
ontology engineer’s questions about the ontology and provide key insights about the ontology to be extended, which is
especially useful if the ontology is very big, which is normally the case (T-1.2). The information provided by the LLM
can always be checked using Protégé or TopBraid and consulted with other ontology engineers. LLMs cannot replace
expert knowledge, and thus consulting other (more experienced) ontology engineers and domain experts should always
be an option.

Next, the ontology engineer will take a different path depending if only a single concept must be added to the ontology,
or if the ontology must be extended with many concepts and relations forming a conceptual expansion. In the first
case, several preparation steps can be skipped, jumping directly to defining the requirements of the application for
the use case. The ontology engineer can also decide not to skip these steps even if only one concept needs to be added
and to follow the same path as for the conceptual expansion. It might be the case that there is documentation for
the ontology to be extended (business scenarios, glossary of terms, application requirements) that has to be updated
with the addition of this single concept.

In the conceptual expansion case, there are again two different paths depending on the availability of documentation
for the extension. LLMs with vast background knowledge could help engineers to find this documentation (T-1.3). In
the bottom-up approach, there are standards or structured information available (e.g., a database structure, a JSON1

file) that can be easily translated into an ontology. An LLM can assist, and potentially automate, this task (T-1.7).
In the top-down approach, there is not enough structured information available about the extension use case and thus,
the ontology engineer must craft the necessary information to build the ontology, starting by gathering additional
external documentation (T-1.4). The next tasks are based on the REPRO Handbook (Bakker, van Bekkum, et al.,
2021). LLMs and LLM-based tools such as OntoChat (Zhang et al., 2024) can help define the business scenarios based
on the gathered documentation (T-1.5). The NLP capabilities of LLMs can be leveraged here to build a glossary of
terms (T-1.6). The output of these tasks should always be reviewed with the relevant stakeholders, and aligned with
the requirements of the application in which the ontology to be extended is integrated.

1https://www.json.org/json-en.html
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The LLM’s output serves as a starting point for these conversations with domain experts, knowledge workers, and
knowledge users, bridging the gap between the technical know-how of the ontology engineer and the domain expertise
of the other stakeholders. These sessions can be performed within a ”Pressure Cooker” session, which is a TNO
methodology for fast ontology development in a condensed session with stakeholders. At the end of this phase, the
ontology extension to be conceptualized is clear and the purpose of the extended ontology is identified and understood.

D.1.2. Phase 2: Conceptualization
Figure D.2. Once the ontology engineer is familiar with the ontology extension and its purpose, the extension can be
conceptualized. This process starts by defining the Compentency Questions (CQs) that the extended ontology must
be able to answer (T-2.1). LLMs can inspire the creation of CQs, using the documentation crafted in the preparation
phase as input. The LLM-based tool OntoChat (Zhang et al., 2024) also supports this activity. The generated list of
CQs should be reviewed within the team and with the relevant stakeholders. In this case, the role of the knowledge
user is especially important since the extended ontology must be able to answer their questions.

In this phase, there is a crucial step in ontology development: reusing existing ontologies. LLMs that hold a lot
of background knowledge can help the ontology engineer in finding ontologies that can be reused for the extension
(T-2.2). The next steps in the reuse decision-making process require human expertise and, potentially, communication
with external ontology developers.

Continuing with the ontology extension conceptualization, and based on the REPRO Handbook (Bakker, van Bekkum,
et al., 2021), the next task is to identify modules for the ontology extension. This task is especially relevant for ontology
generation from scratch, but it can be also very useful when developing a large extension. LLMs can support this
task with their NLP capabilities by clustering concepts (identified previously within the glossary of terms) and CQs
(T-2.3).

Finally, with all the data gathered in the previous tasks, a small graph or preliminary sub-ontology can be constructed.
This need not be the ontological model already formalized in RDF triples, but it can be a less formal conceptualization.
This could be manually done with tools like Grafo2, which makes it possible to visually design knowledge graphs. In
any case, LLMs can help build an initial version of the extension ontology that can be reviewed with the domain
experts (T-2.4). The reviewed sub-ontology for extension needs to be merged with the ontology to be extended,
which requires the ontology engineer to find the links between these two separated graphs. This is the alignment
or matching step in the ontology extension process, that LLMs can assist by suggesting these links for alignment
(T-2.5).

D.1.3. Phase 3: Implementation
Figure D.3. Within the implementation phase, the conceptualized extension is merged with the ontology to be
extended. If the extension sub-ontology has not been formalized yet, in this phase the concepts and relations
identified are transformed into RDF triples and added to the code of the existing ontology. This could be done with
an LLM, by adding the ontology code and the concepts and relations for the extension as text input (e.g., in the
prompt) and asking the LLM to modify the code. However, if the code of the ontology to be extended is too large,
i.e., the ontology to be extended is too big, which is normally the case, this might not be possible due to the restricted
context window or the limited number of tokens that the LLM can accept as its input. Moreover, ontology engineers
at TNO like to use tools such as Visual Studio Code to manually formalize the ontology instead of tools with a
graphical interface such as Protégé or TopBraid, since it provides them with more control over the code. Because of
these reasons, we have left the implementation of the extension manual in the ontology extension process framework.

However, an LLM can assist with formalizing the Compentency Questions (CQs) generated before into SPARQL
queries (T-3.1). As discussed with several interviewees, this is a promising application of LLMs to OE tasks. Of
course, the generated queries should always be verified, for example by executing them using Protégé.

D.1.4. Phase 4: Verification
Figure D.3. In the verification phase, the ontology engineer checks that the ontology extension has been correctly
generated. As found through the analysis of the literature on the application of LLMs to OE discussed in Chapter 5,
evaluating the quality of an ontology is not a trivial task, whether automatically or manually. In fact, this is currently
a topic of ongoing research.

Evaluating an ontology is even more important if the ontology has been (semi-)automatically generated. Thus, we
2https://gra.fo/

https://gra.fo/
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have tried to find tools and methods to assist ontology engineers in this phase as much as possible, compared to the
status quo (see Figure 3.1). As explained in Section 5.4 and summarized in Table 5.3, web-based tools have powerfully
entered the scene of ontology development. OOPS!3 (Poveda-Villalón et al., 2014) can be used in combination with
an LLM, scanning the ontology code and inputting the detected errors to the LLM, which can automatically fix them.
This has been previously done in the research of Fathallah et al. (2024).

As suggested by Interviewee 11 (see Section B.0.3 in Appendix B), LLMs can automate the repetitive tasks of creating
individuals, i.e., populating the ontology with test data for testing. The LLM can take the extension ontology code
as input and output the populated extension ontology (T-4.1). Once the extension ontology contains data, it can
be verified with CQs. OntoChat (Zhang et al., 2024) also supports this activity. Replicating the task proposed by
Zhang et al. (2024), the LLM can receive the list of CQs and the extension ontology code as an input and provide
an output indicating for every question if the extension ontology can answer it or not, and why. This is especially
useful for ontology engineers with less experience or even domain experts since it allows them to test the ontology
with CQs without having to formalize them into SPARQL queries first.

The rest of the tasks in the verification phase are supported by OE tools. The tool FOOPS!4 (Garijo et al., 2021) for
aligning ontologies with the FAIR principles can be used with published ontologies in combination with an LLM, in
the same fashion as OOPS!. FOOPS! detects potential improvements that can be inputted to the LLM so it can add
these automatically to the extension ontology code. Note that in the figure, this has a question mark. This is because
we have not tested this functionality within the demonstration walk-through or the evaluation of the artifact.

Tools such as OntoMetrics5 (Reiz et al., 2020) and NEOntometrics6 (Reiz & Sandkuhl, 2022) can be used to measure
the differences in the changes added to the ontology with the extension, as proposed by Bakker and De Boer (2024),
giving the ontology engineer and idea if the extension improves or reduces the quality of the ontology to be extended.
Reviewing the final extended ontology manually with the domain experts, knowledge workers, and knowledge users
is still crucial to ensure that the extended ontology meets their requirements and aligns with their values. For
communicating the extended ontology, the ontology engineers at TNO normally create customized visualizations
adapted to the level of expertise of the stakeholders. This is facilitated by OE tools such as WebVOWL7 (Lohmann
et al., 2015), or other more generic tools such as Microsoft PowerPoint. The aforementioned tool Grafo could also be
used here to produce simplified visualizations of the extended ontology for the stakeholders.

D.1.5. Phases 5 and 6: Exploitation and Validation
Figure D.3. After the ontology has been correctly extended, the knowledge worker can integrate the extended
ontology within an application or information system, so it can be used by the end-users of the system. This is
the exploitation phase in which end-users employ the knowledge yielded by the extended ontology. During its use,
mistakes or further improvements will most likely be detected by the end-users. This is when the ontology extended is
validated, and it can be evaluated if the application’s requirements are fulfilled in practice. As indicated in the figure,
these two phases are left out of the scope of the process framework design because the ontology engineer does not
have an active role in them. Of course, ontology development is an iterative cycle, and feedback coming from these
phases can be sent back to any of the other phases, requiring the ontology engineer to execute additional development
loops on the ontology extension process.

3https://oops.linkeddata.es/
4https://foops.linkeddata.es/about.html
5https://ontometrics.informatik.uni-rostock.de/ontologymetrics/
6http://neontometrics.informatik.uni-rostock.de/
7https://service.tib.eu/webvowl/

https://oops.linkeddata.es/
https://foops.linkeddata.es/about.html
https://ontometrics.informatik.uni-rostock.de/ontologymetrics/
http://neontometrics.informatik.uni-rostock.de/
https://service.tib.eu/webvowl/
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Figure D.1: Prototype design for the ontology extension process framework for human-LLM collaboration (To-Be). Zoomed in from Figure 5.1. Phase 1:
Preparation. Abbreviations: Compentency Questions (CQs), Large Language Models (LLMs), Resource Description Framework (RDF).
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Figure D.2: Prototype design for the ontology extension process framework for human-LLM collaboration (To-Be). Zoomed in from Figure 5.1. Phase 2:
Conceptualization. Abbreviations: Compentency Questions (CQs), Large Language Models (LLMs), Resource Description Framework (RDF).
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Figure D.3: Prototype design for the ontology extension process framework for human-LLM collaboration (To-Be). Zoomed in from Figure 5.1. Phase 3 and 4:
Implementation and Verification. Abbreviations: Compentency Questions (CQs), Large Language Models (LLMs), Resource Description Framework (RDF).
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D.2. Prompts for each LLM-assisted OE task in the ontology extension pro-
cess framework

Below, we provide all the prompt templates designed for the LLM-assisted tasks of the ontology extension process
framework design prototype presented in Figure 5.1, and detailed in Table 5.4. These prompts have been designed
following the Prompt Engineering Guide8, REPRO (TNO’s internal ontology engineering methodology (Bakker, van
Bekkum, et al., 2021)), and using the insights provided by the analyzed literature about the application of LLMs to
OE tasks (Section 5.3 in Chapter 5). The text inside curly braces is a placeholder. The user of the ontology extension
process framework can replace the placeholder with the corresponding content about the domain and the use case
for extension.

Note that these prompts have been designed, tested, and refined with an LLM that supports file uploads. Alternatively,
the text from the suggested files can be included directly in the prompt. This depends on the LLM’s characteristics,
such as its context window or the number of tokens it can accept as input.

D.2.1. T-1.1: Research about the domain
• Prompt Engineering Technique:

– Zero-shot
• Prompt template:

– Upload ontology TO BE EXTENDED (.txt) file. (Turtle triples file .ttl, saved as .txt and
including 3 backticks before and after code block).

– Q1: Can you please give me an overview of the {domain}, covered by the ontology that needs to be
extended? Please include the main concepts, actors, interactions, and main events happening.

– Upload file(s) describing the extension use case. E.g., file with the description provided in Section
E.1.

– Q2: Which concepts of the {name_of_ontology_to_be_extended} are relevant for the extension that we
want to make, and which new concepts should we add to cover the extension use case described below?
Description of the extension use case: {description_of_the_extension_use_case_(or_file_name(s))}.

D.2.2. T-1.2: Get acquainted with the ontology
• Prompt Engineering Technique:

– Zero-shot
• Prompt template:

– Q1: Can you please provide me with an overview of the {name_of_ontology_to_be_extended}, including
its main purpose, examples of how it could be used (if possible real examples, including a source, if not,
make up some examples and indicate these are created by you to exemplify), and the main classes and
relation (object properties, data properties) in the actual ontology?

– Q2: Which classes in the existing ontology provided could be relevant for the use case that needs to be
covered by the ontology extension, in your opinion as an expert ontology engineer?

– Q3: Could you provide me with a visualization of the main classes and object and data properties of your
previous answer, serialized in a simple Flow diagram in Mermaid? Please, answer only with the code, so
that it can be directly copy pasted in the Mermaid live editor to visualize the diagram that you provide.
The object properties and data properties should appear as text next the arrows, and only the names of
the individuals or datatypes should appear in boxes.

D.2.3. T-1.3: Are there any standards or formal documentation already in place for the do-
main and/or specific application and use case(s)?

• Prompt Engineering Technique:

– Zero-shot
8https://www.promptingguide.ai/

https://www.promptingguide.ai/
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• Prompt template:

– Are there any standards, semantic standards, or formal documentation already in place for the extension
use case, i.e., another existing standard that can be easily translated into an ontology?

D.2.4. T-1.4: Gather documentation from the domain
• Prompt Engineering Technique:

– Zero-shot / Prompt Chaining
• Prompt template:

– Q1: Can you please list all the sources, such as websites, documents, research papers, (only titles) you
can find about {brief_description_of_extension_use_case_or_main_concepts}? Please, do not search
in any the provided files, use your knowledge base.

– Q2: From the sources you listed in the previous answer, can you provide me with a summary (a text) that
identifies and briefly describes: the main concepts, stakeholders and their actions and interactions, and
the events happening, relevant to the extension use case?

D.2.5. T-1.5: Define new test cases and/or business scenarios
• Prompt Engineering Technique:

– Zero-shot
• Prompt template:

– The extension aims to cover new business scenarios. Can you provide a list of all the business scenarios
you can think of for the extension use case? The format of your output must be a list in which each row
includes the name and context of the business scenario, actors involved in that business scenario, business
processes present in that business scenario, and goal of the business scenario (i.e., which information the
user needs to get from the application that uses the ontology for that business scenario)?

– Optional (define own format for business scenario): Can you provide a list of all the business scenarios you
can think of for the extension use case {name_of_extension_use_case}? The business scenarios should
{definition_of_content_and_format_of_business_scenarios}.

D.2.6. T-1.6: Create glossary of terms
• Prompt Engineering Technique:

– Prompt Chaining
• Prompt template:

– Upload documentation or text about the domain or extension use case description (if not
uploaded before).

– Upload test cases/business scenarios.
– Prompt 1: From the documentation provided in file ”{name_of_file_provided}”, I want you to provide

a list of the most important concepts, i.e., the concepts that are mentioned more frequently. For each one,
identify if the concept is a noun or a verb and the number of times it appears in the provided documents
(an integer). Make the list as complete as possible. Your answer must be in the following format:

1. <Concept_1 >: (<noun/verb>). (<# of times it appears >).

– Prompt 2: Now, from the documentation provided before in file ”{name_of_file_provided}”, can you
provide a definition for each concept you identified? The format of your answer must be a list in which
each row looks like this:

1. <Concept_1 >: <Definition >.

– Prompt 3: From the list provided {before/below (if reviewed list, prompt new list)}, now indicate possible
synonyms for each concept (if any) according to their definition in the domain. Do not create any new
concept, stick to the ones provided in the list. Provide a new list with the following format:
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1. <Concept_1 >, <Concept_2 >, ... <Concept_n >: <Explanation of why these concepts are
synonyms >.

This is the list of concepts: {list_provided_in_prompt1_(reviewed)}.
– Prompt 4: From the list provided {before/below (if reviewed list, prompt new list)}, now group the

concepts into sub-domain clusters or modules. The goal is to identify possible modules for the ontology
extension. Modularization is an important practice in ontology engineering that facilitates the conceptu-
alization of the ontology, sets limits for its scope and allows for its understandability and reusability. Do
not create any new concept, stick to the ones provided in the list. Choose a name for the sub-domain
cluster based on the concepts that you add to it. Provide a new list with the following format:

1. <Sub-domain cluster name> (Brief definition of the sub-domain cluster): <Concept_1 >,
<Concept_2 >, ... <Concept_n >.

D.2.7. T-1.7: Extract main concepts and relations from existing documentation/standards
• Prompt Engineering Technique:

– Zero-shot CoT
• Prompt template:

– Upload file with the existing standard or database description that can be translated into
an ontology.

– The data model provided in file ”{name_of_file_provided}” has to be transformed in an ontology. Let’s
do this step by step. From the data structure in the document, I want you to extract a list with all the
concepts and relations that you can find. The format of your output must be a list, each row of the list
must look like this:

1. <Concept_1 > -> <Relation_1 > -> <Concept_2 >.

Note that a concept can be related to one or more concepts. Add as many rows in the list as necessary
to cover all the cases. Only use the information provided, without creating any concept or relation that is
not in the document.

– Optional (additional prompt): Could you also provide me with a visualization of the concepts and relations
in the list you extracted before, serialized in a simple Flow diagram in Mermaid? Please, answer only with
the code, so that it can be directly copy pasted in the Mermaid live editor to visualize the diagram that
you provide. The relations should appear as text next the arrows, and only the names of the concepts
should appear in boxes.

D.2.8. T-2.1: Formulate Competency Questions
• Prompt Engineering Technique:

– Few-shot / Prompt Chaining
• Prompt template:

– Upload file containing a description of the extension use case (if not uploaded before).
– Prompt 1: To establish the functional requirements for the extension use case, we want to formulate

Compentency Questions (CQs). The goal is that the extension added to the ontology must answer the
CQs. CQs represent the input-output behavior of our ontology extension as a black-box, providing the
user of the ontology (integrated within a system) the possibility to extract the knowledge the need by
just asking the CQs to the system (through a user interface). For example, imagine we are extending the
Pizza Ontology to use it in a recommender system that recommends pizza stores to users, based on their
preferences such as location or diet, you could formulate these CQs: How many calories does a specific
pizza have? Which vendor in city X has a unique topping? Which topping is only in one pizza? We want
you to formulate as many CQs as possible using the information provided by the user, for the ontology to
be extended. Can you please provide me with a list of all the Competency Questions you can formulate
for {description_of_the_extension_use_case/file_name}? Consider that CQs must be unique, so a CQ
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could be used in different business scenarios. Do not group the CQs by business scenario but provide a
list with all the CQs together without duplicates.

– Prompt 2: We divide Compentency Questions (CQs) into three categories: 1) Low or atomic level:
CQs that normally model a property/object relation, asking questions about the data. Example: How
many calories does a specific pizza have?; 2) Middle or connectivity level: CQs that describe relations
between several concepts along several property/object relations, combining information into meaningful
sets. Example: Which topping is only in one pizza? ; 3) High or business level: CQs that really show the
added value of the extension to the ontology, i.e., what the final users of the system would ask. Example:
Which vendor in city X has a unique topping? From the list of CQs provided {before/below by the user (if
reviewed)}, return the same list but classified into ”Low or atomic level”, ”Middle or connectivity level”,
or ”High or business level” according to the given explanation. Do not create new CQs but only classify
the ones created before/given. List of CQs: {list_of_CQs_from_previous_output_(reviewed)}.

D.2.9. T-2.2: Is there an ontology with a scope that already covers the concept(s) to some
extent?

• Prompt Engineering Technique:

– Zero-shot
• Prompt template:

– Given the information provided {before (if document already updated)/below (prompt documentation
about the use case)}, is there an ontology with a scope that already covers the concept(s) that the ontology
extension must cover? Please provide your answer as a list in which each row contains the name of the
ontology that could be reused and some examples of relevant concepts included in the proposed ontology
to be reused (in the extension). Do not include any concepts (classes, properties) that do not exist in the
proposed ontology for reuse. Use your knowledge base to identify ontologies that are not being reused
already by the {name_of_ontology_to_be_extended}. Do not make up ontologies that do not exist. If
there are no ontologies available for reuse answer with ”I cannot find any ontology that can be reused in
this case”.

D.2.10. T-2.3: Define ontology extension modules
• Prompt Engineering Technique:

– Zero-shot / Prompt Chaining (if using output from T-2.1)
• Prompt template:

– From the list of Compentency Questions (CQs) created for the extension, now we want to cluster those
CQs into different groups so we can identify of which modules or sub-ontologies the extension consists of.
Modularization is an important practice in ontology engineering that facilitates the conceptualization of
the ontology, sets limits for its scope and allows for its understandability and reusability. Use the list of
CQs given, without creating new CQs, and cluster them into modules. The format of the output must be
like this:

1. <Name_of_module1 >: <Brief_description_of_the_module >
1.1. <CQx_associated_to_that_module >
...
1.n. <CQy_associated_to_that_module >
...
N. <Name_of_moduleN >: <Brief_description_of_the_module >
N.1. <CQz_associated_to_that_module >
...
N.n. <CQw_associated_to_that_module >

If you consider it is not possible to create any modules from the CQs given (all of them correspond to the
same module) just answer with: ”Modularization not possible.” Can you please cluster this list of CQs into
different ontology modules or sub-ontologies? List of CQs: {list_of_CQs_from_T-2.1_(reviewed)} (As
text or upload file).
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D.2.11. T-2.4: Build small graph or preliminary sub-ontology
• Prompt Engineering Technique:

– Prompt Chaining
• Prompt template:

– Prompt 1 (If coming from T-1.7): From the given list of concepts and relations, can you generate a
conceptual model expressed in triples? Remember that object properties define relationships between two
individuals (instances of classes), while data properties define relationships between an individual and a
data value (literal). Find all the object properties and data properties, and include the class definitions
and all necessary prefixes. Please provide your output as a Turtle code snippet in OWL syntax. Also
include labels, comments, and descriptions for each triple. Do this for all the items provided in the list.
List: {list_of_concepts_and_relations_(from_T-1.7)} (As text or upload file).

– Upload file containing a description of the extension use case (if not uploaded before).
– Prompt 1 (If coming from T-2.1): Using the information provided in file ”{name_of_file}” and

your knowledge base and experience as an expert ontology engineer, now for each Business Scenario and
Competency Question (CQ) provided in the list, can you generate a conceptual model expressed in triples?
Use the relevant concepts from the {name_of_ontology_to_be_extended} suggested in the file and the
new concepts to add to the {name_of_ontology_to_be_extended} for the extension, also provided in the
file. Remember that object properties define relationships between two individuals (instances of classes),
while data properties define relationships between an individual and a data value (literal). Find all the
object properties and data properties, and include the class definitions and all necessary prefixes. Please
provide your output as a Turtle code snippet in OWL Syntax, so that it can be opened as a .ttl file using
Protégé. Also include labels, comments, and descriptions for each triple.

– Prompt 2: Now, for all object properties you defined, if meaningful generate the inverse property. Keep
the ontology consistent. If meaningful declare restrictions for the domain and range. Do it for the whole
ontology you generated in OWL before. Please answer with the updated Turtle code in OWL syntax.

– Prompt 3-a: Now, for the OWL/Turtle code generated before, are there any more axioms we could
add? Think for example of class axioms that have not been defined before such as disjointness axioms, or
additional property axioms to the ones already added such as transitive property axioms. Please provide
a numbered list with all the suggestions you can make, without modifying the Turtle code.

– Prompt 3-b (if output from Prompt 3-a is relevant): Please add now to the Turtle code in OWL
syntax (last version that you generated before) the axioms from the list you provided before: {spec-
ify_axioms_to_add}.

– Prompt 4-a: Now, for the OWL/Turtle code generated before, are there any constraints we could add?
Think for example of data validation or defining shapes in SHACL. Please provide a numbered list with
all the suggestions you can make, without modifying the Turtle code.

– Prompt 4-b (if output from Prompt 4-a is relevant): Please add now to the Turtle code in OWL
syntax (last version that you generated before) the SHACL constraints from the list you provided before:
{specify_SHACL_constraints_#}.

D.2.12. T-2.5: Find links between main class(es) in preliminary sub-ontology and ontology
to be extended

• Prompt Engineering Technique:

– Zero-shot / Prompt Chaining (if using output from T-1.1 or T-1.2)
• Prompt template:

– Upload ontology TO BE EXTENDED (.txt) file. (Turtle triples file .ttl, saved as .txt and
including 3 backticks before and after code block) (if not uploaded before).

– Upload ontology EXTENSION (.txt) file. (Turtle triples file .ttl, saved as .txt and including
3 backticks before and after code block).

– The file called {name_of_file_with_sub-ontology_extension} with the extension ”.txt” but formatted
as a turtle triples file provided below contains the complete code for the ontology extension to the
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{name_of_ontology_to_be_extended}. Now, I want you to examine which classes of the extension on-
tology are related to the concepts in the {name_of_ontology_to_be_extended} (provided in the file
called {name_of_file_with_ontology_to_be_extended} with the extension ”.txt” but formatted as a tur-
tle triples file). The goal is to align these two ontologies so the extension ontology generated can be
incorporated into the {name_of_ontology_to_be_extended} as an extension. You can use the follow-
ing information: {information about relevant concepts in ontology to be extended that can be used in
extension (from T-1.1 or T-1.2)}.

D.2.13. T-3.1: Formalize Competency Questions into SPARQL queries
• Prompt Engineering Technique:

– Zero-shot / Few-shot
• Prompt template:

– Upload ontology EXTENSION (.txt) file. (Turtle triples file .ttl, saved as .txt and including
3 backticks before and after code block) (if not uploaded before).

– We need to formalize the Compentency Questions (CQs) into SPARQL queries, for the extension ontol-
ogy provided in file ”{name_of_file_with_sub-ontology_extension}”. In your answer provide only the
SPARQL query code, without any explanation. The SPARQL query should be ready to run, i.e., it should
give some results when copy pasted into, for example, Protégé (using the SPARQL Query Plugin) and
executed. Include the all correct prefixes.

– Option 1 (Zero-shot): Given the CQ: ”{CQ}”, please give me its corresponding SPARQL query:
– Option 2 (Few-shot): This is an example of a CQ with its corresponding SPARQL query: {exam-

ple_of_CQ_and_SPARQLquery} (if more examples available, provide more). Now, given the CQ: {CQ}
and following the example(s) provided before, please give me its corresponding SPARQL query:

D.2.14. T-4.1: Populate ontology extension with instances
• Prompt Engineering Technique:

– Zero-shot / Prompt Chaining (if using output from T-3.1)
• Prompt template:

– For the following list of SPARQL queries (and their Compentency Questions (CQs)). Which example
instances should be added so all the SPARQL query produce results? {List of CQs with corresponding
SPARQL Queries (from T-3.1)}. (As part of the prompt).

D.2.15. T-4.2: Verify all CQs can be answered according to test cases
• Prompt Engineering Technique:

– Zero-shot
• Prompt template:

– Upload ontology EXTENSION (.txt) file. (Turtle triples file .ttl, saved as .txt and including
3 backticks before and after code block) (if not uploaded before).

– For each Competency Question (CQ), identify if it can be answered by the ontology extension provided in
file ”{name_of_ontology_extension_file}” indicating Yes/No and provide an explanation of why or why
not the CQ can be answered. Focus on the ontology structure (presence of classes, object properties, and
data properties), not on the existence of individuals. Please, stick to the content provided, do not create
any new information that is not in the ontology extension or any new CQ. Your output must be a list with
the following format:

1. <CQ1> / <Can_be_answered_by_ontology_extension?_(Yes/No)> / <Explanation >.
...
n. <CQn> / <Can_be_answered_by_ontology_extension?_(Yes/No)> / <Explanation >.

List of CQs: {list_of_CQs_from_T-2.1_(reviewed)}. Alternative: prompt one CQ at a time.



E
Prototype demonstration and evaluation

E.1. Description of the use case chosen
The description of the use case has been adapted from the internal TNO documentation of the project (de Heer et al.,
2023).

• Title: Extending the Common Greenhouse Ontology (CGO) to cover the use case Semantic Explanation and
Navigation System (SENS) - Adapted use case extension for demonstration and evaluation of the prototype
design with GPT as part of MSc Thesis project.

• Introduction: The use case Semantic Explanation and Navigation System (SENS), developed by TNO, consists
of the development of a module to enable communication in greenhouses, between autonomous systems (e.g.,
robots) and human operators (e.g., growers). In this stage, the focus is on the communication only from the
autonomous system to the human operator.

• Problem and potential solution provided by SENS: Currently, most (if not all) greenhouse robots will
simply stop if they encounter an obstacle in their way that they do not recognize. At most, the robot will send
a signal to the operator that it has stopped, but no more useful information for the operator. The assumption
is that the presence of autonomous systems in the greenhouse will increase. The greenhouse represents a
tight space with usually narrow paths that both robots and humans must share. The autonomous system
will frequently encounter obstacles in its way, both objects and humans. The safety of the human is key, i.e.,
autonomous systems should not interfere with the human’s space nor cause any harm. Moreover, it is expected
that through increased and effective (semantic and understandable) communication of the autonomous system’s
actions to the human operator, the work efficiency will increase with less disturbances and less and faster human
interventions.

• Goal for ontology engineer: The task for the ontology engineer is to extend the Common Greenhouse
Ontology (CGO) with the relevant concepts to cover the SENS use case. The CGO extension should model
the information about (unexpected but foreseeable) situations. There will be different types of situations
depending on the type of obstacle found. The obstacles that can be found also vary; different types of objects,
other robots, humans, or even parts of the greenhouse. The type of obstacle found defines the situation’s
characteristics, for example, its severity level. In addition, depending on the reasoned situation and its severity
level, the autonomous system will propose to the human operator a different type of action that it can take, e.g.,
stop and wait for help from human operator, get around obstacle and continue with activity X. The extended
CGO will be used as “a brain for the robot”, adding a layer of intelligence that enables the robot to reason and
give semantic explanations to the human operator about the situation encountered, so that the human operator
has enough information to decide what to do next.

• Available data: The SENS module is an interoperable module that can be used within any type of greenhouse
robot, with the assumption that the robots have already a system to detect and recognize objects in their way.
Moreover a positioning system is available. It consists of a tag system in which any object (including autonomous
systems) or human with a tag can be located in the greenhouse. The semantic explanations generated by the
robot will be shown to the human operator via a dashboard.

• Some specific requirements:

1. The human operator must be informed about the situation reasoned by the autonomous system in natural
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language and in real time, any time its operation is halted.
2. The human operator must be informed about what types of obstacles cause the autonomous system to halt

its operation and why, and what action the autonomous system has decided to take after encountering the
obstacle based on its reasoning (e.g., stop and wait for help from human operator, get around obstacle and
continue with activity X).

3. The human operator must know in real time the location or position of the autonomous system in the green-
house, and the situation encountered (e.g., via a greenhouse map or path number where the autonomous
system is located).

E.2. Demonstration results
E.2.1. T-1.1: Research about the domain

• Output (Q1):
The Common Greenhouse Ontology (CGO) covers key aspects of high-tech greenhouses with modern systems

, focusing on concepts and measurements relevant to greenhouse operations and management.
Main Concepts and Modules

1. Greenhouse: Central concept representing the greenhouse structure.
2. Features: Attributes and properties of the greenhouse , e.g., dimensions , location.
3. Parts: Objects within the greenhouse such as construction parts, plant parts, and various

internal systems.
4. Measurements: Data about conditions within the greenhouse collected through various

sensors and systems[1]``[2].
Actors

1. Grower: Operates and possibly owns the greenhouse , focused on crop production[3].
2. Builder: Builds greenhouses and supports crop management activities[4].
3. Greenhouse Owner: Owns the greenhouse without necessarily managing daily operations[5].

Interactions
1. Observations and Measurements: Data collected via sensors and climate computers to

monitor conditions like temperature , humidity , and CO2 levels[6]``[7].
2. System Operations: Interaction between different systems such as heating , cooling ,

irrigation , and ventilation to maintain optimal growing conditions[8]``[9]``[10].
Main Events

1. Planting and Harvesting: Key events in the crop lifecycle , requiring specific
environmental conditions[11]``[12].

2. Sensor Readings: Regular collection of data points from various sensors within the
greenhouse for continuous monitoring and control[13]``[14].

3. System Adjustments: Automation and manual interventions based on sensor data to adjust
the greenhouse environment such as opening vents, adjusting heating , and modulating
irrigation[15]``[16]``[17].

This structure ensures a comprehensive coverage of greenhouse operations , focusing on the
integration and interaction of various components to maintain optimal growing conditions.

• Output (Q2):
Relevant Concepts from CGO

Based on the SENS (Semantic Explanation and Navigation System) use case requirements , the
following CGO concepts are relevant and can be leveraged:
1. Autonomous Systems/Robots

- While an explicit concept for "Autonomous System" wasn't found, related concepts
can be adapted.

- Concepts like cgo:ControlSystem may be indirectly related .
2. Location/Positioning

- cgo:GreenhouseLocalGrid: Represents the x-y grid of the greenhouse .
- cgo:Site: Represents the physical location of the greenhouse .
- cgo:Location: May represent various locations within the greenhouse .

3. Obstacles
- Obstacles can be added as sub-classes under a potential new class such as cgo:

Obstacle (e.g., cgo:Human, cgo:Object, cgo:Robot, cgo:GreenhousePart).
4. Actions/Events

- Potential actions by the autonomous system can be modeled as subclasses of the
newly defined class, e.g., cgo:Action.

- Concepts for sensors and control systems may be used to represent observations and
actions , such as cgo:TemperatureSensor , cgo:GreenhouseSensor .

New Concepts to Add
Given the requirements of the SENS use case, consider the following extensions:
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1. Obstacle
- Class: cgo:Obstacle

- SubClasses: cgo:Human, cgo:Object, cgo:Robot, cgo:GreenhousePart
2. Situation

- Class: cgo:Situation
- Properties:

- cgo:hasObstacleType
- cgo:hasSeverityLevel
- cgo:hasRecommendedAction

3. Action
- Class: cgo:Action

- SubClasses: cgo:StopAndWait , cgo:GetAround , cgo:ContinueActivity
- Properties:

- cgo:actionDescription
4. Location

- Enhancement to existing cgo:GreenhouseLocalGrid and cgo:Site with properties to
associate positions with the new cgo:Obstacle.

5. Communication
- Property: cgo:hasExplanation: To give human-readable explanations to operators.
- Class: cgo:Dashboard: Represents the user interface for communication.

Example Code for New Classes and Properties
<code example , omitted for report readibility >

This extension ensures that various obstacle types, situations , recommended actions , and
explanations related to the SENS use case are covered in the extended ontology.

E.2.2. T-1.2: Get acquainted with the ontology
• Output (Q1):

Overview of the Common Greenhouse Ontology (CGO)
Purpose

The Common Greenhouse Ontology (CGO) is designed to capture and model information relevant
to high-tech greenhouses , specifically those equipped with modern systems that generate
data about their environment. Its primary goal is to facilitate the integration and
querying of data within greenhouses , covering aspects such as structural components ,
environmental measurements , and operational systems[1].

Modules
The CGO is structured into four main modules:

1. Greenhouse: Represents the central concept , including its physical aspects and way it
operates.

2. Features: Properties related to the greenhouse , such as dimensions or geographical
location.

3. Parts: Various objects and systems found within the greenhouse.
4. Measurements: Data collected by sensors and systems within the greenhouse.

Measurement data and their properties are heavily influenced by the SSN (Semantic
Sensor Network) ontology and the Ontology of units of Measure (OM)[2]``[3].

Main Classes and Properties
Classes

- Greenhouse: Central concept representing the greenhouse.
- SystemPart: Represents parts of various systems in the greenhouse (e.g., cgo:

HeatDistributionSystem).
- ObservableProperty: Defines measurable properties within the greenhouse (e.g., cgo:

RelativeHumidity).
- Sensor: Represents sensors that measure different observable properties (e.g., cgo:

TemperatureSensor).
- Person: Human operators involved in the operations (e.g., cgo:Picker).

Object Properties
- hasPart: Links a greenhouse to its individual parts.
- hasProperty: Links components to their properties.
- hasMeasurement: Links sensors to their measurements.

Data Properties
- hasConstructionPlaceName: Records the location detail of the greenhouse 's construction

.
- hasColumnHeight: Records the height of greenhouse columns.

Examples of Use
1.Example 1: Measuring Humidity (Fictional)
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- An autonomous system can use the CGO to measure the humidity in a greenhouse. For
example , cgo:TemperatureSensor is linked to cgo:RelativeHumidity using the
hasMeasurement property.
ex:humidityObservation a sosa:Observation ;

sosa:hasFeatureOfInterest ex:greenhouseAir ;
sosa:observedProperty cgo:RelativeHumidity ;
sosa:hasResult ex:humidityResult .

2. Example 2: Greenhouse Specifications (Real)
- The Greenhouse Construction class can be used in planning new greenhouse builds by

recording specific attributes.
ex:greenhouse123 a cgo:Greenhouse;

cgo:hasConstructionPlaceName "Amsterdam" ;
cgo:hasConstructionAddress "123 Farming Lane" ;
cgo:hasColumnHeight ex:columnHeightMeasure .

ex:columnHeightMeasure a om:Measure ;
om:hasNumericalValue 5 ;
om:hasUnit om:metre .

Source: Adapted from CGO documentation[4]``[5].

Conclusion
The Common Greenhouse Ontology serves as a robust framework for modeling and querying data

within greenhouses , integrating information from various systems and providing a
standardized approach to data representation. It can be extended to include new concepts

and relationships , making it a versatile tool for modern greenhouse operations and
research.

For a deeper dive into the ontology , including full class hierarchies and additional
properties , reviewing the actual ontology file in a tool like Protégé is recommended
[6]``[7].

• Output (Q2):
Relevant CGO Concepts and Relations for the SENS Use Case
Based on the SENS (Semantic Explanation and Navigation System) use case requirements , the following

existing concepts and relations from the Common Greenhouse Ontology (CGO) are relevant:
Concepts

1. System Concepts
- cgo:ControlSystem: Represents the control systems in a greenhouse , potentially relevant

for autonomous system controls.
- ssn:System: A broader class that cgo:ControlSystem is a subclass of, encompassing various

systems.
2. Sensor and Measurement Concepts

- cgo:TemperatureSensor: Represents sensors that measure temperature , relevant for
environmental conditions.

- sosa:Sensor: General sensor class which cgo:TemperatureSensor is a subclass of.
- cgo:GreenhouseSensor: Represents sensors in the greenhouse including various types of

sensors.
3. Location Concepts

- cgo:Grid: Represents a grid within the greenhouse , potentially useful for mapping
obstacles.

- schema:Place: A more general place concept that cgo:Grid is a subclass of.
- cgo:Site: Represents the physical location of the greenhouse.

4. Human and Role Concepts
- foaf:Person: Represents people involved in greenhouse operations such as growers.
- cgo:Grower: A specific role for greenhouse operators.

5. Construction and Part Concepts
- cgo:Part: General class for parts within the greenhouse.
- cgo:ConstructionPart: Represents different parts of a greenhouse construction , such as cgo

:Curtain.
- cgo:SystemPart: Represents different parts of systems within the greenhouse.

Relations (Object Properties , Data Properties)
1. Structural and Hierarchical Relations

- cgo:partOf: Links parts and their wholes, useful for establishing hierarchical
relationships between obstacles and their locations , or systems and their parts.

2. Measurement and Sensor Relations
- ssn:hasProperty: Links sensors with the properties they measure.
- sosa:hasFeatureOfInterest: Links observations to the features of interest , useful for

linking sensed data to the environmental conditions or obstacles.
3. Action and Status Relations
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- sosa:ActuatableProperty: Represents properties that can be measured and potentially acted
upon, relevant for autonomous system actions.

- sosa:ObservableProperty: Represents properties that can be observed , essential for
tracking the status of sensors and measurements.

Conclusion
The above existing concepts and relations from the CGO can be utilized and extended to model

aspects critical for the SENS use case, such as autonomous systems , obstacles , actions , and
human roles. This forms a solid foundation for the ontology extension required for SENS.

For additional details , the specific classes and properties can be referenced directly from the
CGO ontology file sections.

• Output (Q3) visualized using Mermaid Live Editor:

Figure E.1: Output of Task 1.2 – Question 3, visualized in the Mermaid Live Editor (diagramming tool).

E.2.3. T-1.3: Are there any standards or formal documentation already in place for the do-
main and/or specific application and use case(s)?

• Output:
Based on the search results , there were no specific standards or formal documentation found directly

related to the SENS use case in terms of existing ontologies. However , the search did point
towards the alignment of the CGO with ontologies like SSN (Semantic Sensor Network) and the
Ontology of units of Measure (OM). Given this context , the creation of a new extension for SENS
might not have direct pre-existing standards. Instead , adapting and extending current standards
(e.g., SSN and OM) to accommodate the SENS use case would be the recommended approach. For more
information on the use of SSN and OM in CGO:

- SSN: https://www.w3.org/TR/vocab-ssn/ (<link works >)
- OM: https://github.com/HajoRijgersberg/OM (<link works >)

Feel free to ask if you need further details or assistance in this regard!
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E.2.4. T-1.4: Gather documentation from the domain
• Output (Question 1):

Relevant Sources on Autonomous Systems / Robots and Greenhouses
1. Research Papers and Articles

- Title: "Smart Greenhouses: Advances and Challenges"
- Source: IEEE Access
- Authors: López-Riquelme , J. A., et al.
- Details: Discusses the latest advancements in smart greenhouse technologies , including

the integration of autonomous systems and robots.
- Title: "A Review of Robotics in Agriculture and Horticulture"

- Source: Journal of Agricultural Engineering
- Authors: Bac, C. W., et al.
- Details: Reviews the application of robotic technology in agriculture , focusing on its use

in greenhouse environments.
- Title: "Autonomous Weeding Systems in Greenhouses: Design and Applications"

- Source: Biosystems Engineering
- Authors: Perez-Ruiz, M., et al.
- Details: Examines designs and practical applications of autonomous weeding robots in

greenhouse settings.
- Title: "Development and Deployment of Autonomous Robots in Greenhouses"

- Source: Agricultural Robots Journal
- Authors: van Henten, E. J., et al.
- Details: Covers the development , deployment , and operational challenges of autonomous

robots in greenhouses.
- Title: "Automated Data Collection Using Sensor Networks and Robotics in Smart Greenhouses"

- Source: Sensors
- Authors: Wang, X., et al.
- Details: Explores the use of sensor networks and robotic systems for automated data

collection in greenhouse environments.
2. Websites and Online Resources

- Website: Agricultural Robots and Automation
- Details: A comprehensive resource on the latest advancements and applications of robotics

and automation in agriculture , including greenhouses.
- Website: Greenhouse Management Online Guide

- Details: Provides information on integrated technology solutions for greenhouse management
, including the use of autonomous systems.

- Website: Smart Agriculture Technology
- Details: Offers insights into the integration of smart technologies , such as robotics , in

agriculture with dedicated sections on greenhouse automation.
3. Technical Standards and Documentation

- Title: "ISO 18497: Agriculture — Autonomous Agricultural Machines — Safety"
- Source: International Organization for Standardization (ISO)
- Details: Specifies the safety requirements for autonomous agricultural machines , which can

include greenhouse robots.
- Title: "ANSI/ASABE S635: Standard for Agricultural Field Equipment Brakes"

- Source: American Society of Agricultural and Biological Engineers (ASABE)
- Details: While focused on field equipment , the standards provide insights that can be

applied to braking systems in autonomous greenhouse machines.
e sources will provide a solid understanding of how autonomous systems and robots are becoming

integral components of modern greenhouse management and operations.

• Output (Question 2):
Summary of Autonomous Systems/Robots in Greenhouses for SENS Extension Use Case
Main Concepts

1. Autonomous Systems/Robots:
- Include robots designed for specific tasks within greenhouses , such as weeding , data

collection , crop monitoring , and maintenance tasks.
- Robots are equipped with sensors for navigation , obstacle detection , environmental

monitoring , and specific actuator mechanisms for task execution.
2. Greenhouses:

- Highly controlled environments designed for optimal plant growth.
- Equipped with various systems such as heating , ventilation , cooling , and irrigation

systems that work in conjunction with autonomous robots.
3. Sensors and Sensor Networks:

- Devices that collect data on environmental conditions (e.g., temperature , humidity , soil
moisture).

- Networks of sensors provide real-time data to robots for adaptive and responsive actions.
Stakeholders and Their Actions

1. Growers/Farm Managers:
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- Decision -makers who oversee the operations within the greenhouse.
- Interact with autonomous systems by receiving alerts, reports , and guidance from the

system.
- Take corrective actions based on autonomous system feedback , such as removing obstacles ,

adjusting environmental controls , or intervening in plant care.
2. Robot Manufacturers/Technicians:

- Design, build, and maintain the autonomous systems used in greenhouses.
- Ensure seamless integration of robots with greenhouse management systems and sensors.

3. System Integrators:
- Specialists who configure and integrate various technologies , including autonomous systems

and sensor networks , within the greenhouse environment.
- Work closely with growers to customize system functionalities and optimize workflows.

Actions and Interactions
1. Navigation and Obstacle Detection:

- Robots use sensors to navigate through the greenhouse , avoiding obstacles such as plants,
equipment , and humans.

- Upon encountering an obstacle , the robot sends a real-time notification to the grower with
the nature of the obstacle and the proposed action (e.g., stopping , waiting , rerouting)

.
- Environmental Monitoring and Data Collection:

2. Autonomous systems continuously monitor environmental parameters and collect data.
- Data is analyzed to provide insights and automated recommendations for optimizing plant

growth conditions.
3. Task Execution:

- Robots perform various tasks such as planting , pruning , weeding , and harvesting based on
predefined schedules or sensor inputs.

- Autonomous systems may collaborate with other robots or human workers to complete complex
tasks efficiently.

Events
1. Obstacle Encounter:

- An autonomous system detects an obstacle using its sensors.
- The system halts its operation and sends a notification to the grower detailing the

obstacle and recommending a course of action.
2. Sensor Alerts:

- Sensors detect anomalies in environmental conditions (e.g., temperature spikes, humidity
drops).

- Alerts are transmitted to both the grower and the autonomous systems to trigger
appropriate responses , such as adjusting HVAC settings or notifying the grower for
manual intervention.

3. Maintenance and Downtime:
- Scheduled or unscheduled maintenance events where robots require servicing.
- Notifications are sent to the system integrators and technicians , and alternative

operational plans are executed to minimize disruptions.
4. Task Completion:

- A robot successfully completes a task and logs the event.
- Data is recorded and sent to the grower for review and future planning.

Conclusion
The integration of autonomous systems and robots in greenhouses involves a complex network of

interactions between various stakeholders , technologies , and processes. Utilizing real-time data
and automated responses , these systems aim to optimize greenhouse operations , reduce manual

labor, and enhance crop productivity. Extending the Common Greenhouse Ontology (CGO) to cover
the SENS use case will ensure that all relevant aspects , such as obstacle detection , stakeholder

interactions , and sensor data integration , are adequately modeled and represented.

E.2.5. T-1.5: Define new test cases and/or business scenarios
• Input (customized prompt template): The extension for the use case SENS aims to cover new business

scenarios. Can you provide a list of all the business scenarios you can think of for the extension use case SENS?
The business scenarios must be centered around the Navigation and Obstacle Detection and Handling only,
which is the topic SENS focuses on. The business scenarios should be centered around 2 actors: the human
operator and the robot. Please identify the actions of each of these 2 actors in each business scenario, the goal,
and the information that must be exchanged to achieve the goal. Remember that the use case covers only the
communication from the robot to the human operator (and not the other way around).

• Output:
Business Scenarios for SENS Extension Use Case: Navigation and Obstacle Detection and Handling
1. Obstacle Avoidance and Route Recalculation

- Goal: Ensure the robot can navigate around obstacles and continue with its task.
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- Actions:
- Robot: Detects an obstacle , stops, calculates an alternative route, and sends a

notification about the obstacle and the new path.
- Human Operator: Receives the notification and monitors the robot's new path.

- Information Exchanged:
- Robot to Human Operator:

- Type of obstacle (e.g., equipment , plant)
- Location of the obstacle
- New calculated path
- Estimated delay due to rerouting

2. Static Obstacle Alert
- Goal: Inform the human operator about a static obstacle that requires intervention.
- Actions:

- Robot: Detects a static obstacle (e.g., fallen equipment), stops, and sends a detailed
alert to the human operator.

- Human Operator: Receives the alert, assesses the situation , and takes action to remove the
obstruction.

- Information Exchanged:
- Robot to Human Operator:

- Type of obstacle (e.g., fallen equipment)
- Exact location of the obstacle
- Urgency level (e.g., high, low)
- Recommended action (e.g., remove equipment)

3. Human Presence Detection
- Goal: Ensure the safety of humans by stopping the robot when a human is detected in its path.
- Actions:

- Robot: Detects a human in its path, stops immediately , and sends a safety alert to the
human operator.

- Human Operator: Receives the safety alert and ensures the human is safely guided out of
the robot's path.

- Information Exchanged:
- Robot to Human Operator:

- Detection of human presence
- Location of the human
- Status of the robot (e.g., stopped)
- Suggested next steps to ensure safety

4. Unexpected Movable Obstacle
- Goal: Manage situations where an unexpected movable obstacle (e.g., a cart) is detected.
- Actions:

- Robot: Detects a movable obstacle , stops, and sends an alert with options for handling the
obstacle to the human operator.

- Human Operator: Receives the alert, decides on the action (e.g., remove or ignore the
obstacle if ’its temporary).

- Information Exchanged:
- Robot to Human Operator:

- Type of obstacle (e.g., cart)
- Location of the obstacle
- Possible actions (e.g., wait, reroute , continue)
- Recommended action

5. Greenhouse Structural Obstacle
- Goal: Navigate around structural components of the greenhouse that may block the ’robots path.
- Actions:

- Robot: Detects a structural obstacle (e.g., a pillar), stops, and sends a detailed
notification to the human operator with actions for avoidance.

- Human Operator: Receives the notification and monitors the robot as it reroutes or
continues.

- Information Exchanged:
- Robot to Human Operator:

- Type of obstacle (e.g., structural pillar)
- Location of the obstacle
- Suggested actions (e.g., reroute , stop)
- Estimated time for rerouting

6. Post-Avoidance Status Update
- Goal: Ensure the human operator is continuously updated about the ’robots status after

avoiding an obstacle.
- Actions:

- Robot: After successfully navigating around an obstacle , sends a status update indicating
task resumption.

- Human Operator: Receives the status update, confirming the ’robots task resumption.
- Information Exchanged:

- Robot to Human Operator:
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- Status update (e.g., obstacle cleared , task resumed)
- New location of the robot
- Time taken for obstacle avoidance
- Any deviations from the original task

Conclusion
These business scenarios for navigation and obstacle detection and handling involve specific actions

by the robot to detect obstacles , decide on actions , and communicate these actions to the human
operator. The goal of ensuring safe and efficient navigation within the greenhouse is achieved

through clear and concise communication from the robot to the human operator , allowing for
prompt and informed responses.

E.2.6. T-1.6: Create glossary of terms
• Output (Prompt 1):

1. Obstacle: (noun) Any obstruction or hindrance that the autonomous system encounters (including
objects , other robots, humans, or parts of the greenhouse). (9 times)

2. Robot: (noun) An autonomous system used in the greenhouse to perform tasks while navigating
around obstacles. (13 times)

3. Human Operator: (noun) The person responsible for monitoring and intervening when necessary upon
receiving alerts and statuses from the robot. (10 times)

4. Navigation: (verb) The process of the robot moving through the greenhouse while avoiding
obstacles. (5 times)

5. Safety: (noun) Ensuring the well-being of humans in the greenhouse , especially by stopping the
robot when a human is detected in its path. (5 times)

6. Detection: (verb) The act of identifying obstacles or human presence by the robot's sensors. (6
times)

7. Notification: (noun) Information sent by the robot to the human operator regarding the obstacle
encountered and the actions taken. (4 times)

8. Reasoning: (noun) The process by which the robot determines the severity of the situation and the
appropriate actions to take. (3 times)

9. Alternative Route: (noun) A new path calculated by the robot to continue its task after detecting
an obstacle. (3 times)

10. Dashboard: (noun) The interface where the human operator receives alerts, notifications , and
status updates from the robot. (3 times)

• Output (Prompt 1 without asking for definitions):
1. Robot: (noun). (23 times).
2. Human Operator: (noun). (18 times).
3. Obstacle: (noun). (17 times).
4. Greenhouse: (noun). (15 times).
5. Detection: (noun). (8 times).
6. Action: (noun). (7 times).
7. Alert: (noun). (5 times).
8. Location: (noun). (5 times).
9. Path: (noun). (4 times).
10. Notification: (noun). (4 times).
11. Route: (noun). (4 times).
12. Intervention: (noun). (4 times).
13. Goal: (noun). (3 times).
14. Situation: (noun). (3 times).
15. Monitoring: (noun). (3 times).
16. Stop: (verb). (3 times).
17. Inform: (verb). (3 times).
18. Send: (verb). (3 times).
19. Safety: (noun). (3 times).

• Output (Prompt 2):
1. Robot: A system that detects an obstacle , stops, calculates an alternative route, and sends

notifications about obstacles and new paths.
2. Human Operator: The person who receives notifications and monitors the robot's path, intervening

when necessary.
3. Obstacle: Any object or human that blocks the robot's path, requiring detection and management.
4. Greenhouse: A structure where the robot operates , sharing narrow paths with human operators.
5. Detection: The process by which the robot identifies obstacles in its path.
6. Action: The steps taken by the robot or human operator in response to detected obstacles.
7. Alert: A notification sent by the robot to the human operator when an obstacle is detected.
8. Location: The specific position of the robot, obstacles , or humans within the greenhouse.
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9. Path: The route calculated by the robot to navigate around obstacles.
10. Notification: Updates sent by the robot to inform the human operator of changes in the situation

or route.
11. Route: An alternative path calculated by the robot to avoid obstacles.
12. Intervention: The actions taken by the human operator to assist the robot in overcoming

obstacles.
13. Goal: The objective , such as ensuring the robot can navigate around obstacles and continue its

task.
14. Situation: The specific type of obstacle and its characteristics encountered by the robot.
15. Monitoring: The process by which the human operator oversees the robot's actions and path.
16. Stop: The action taken by the robot to halt its movement upon detecting an obstacle.
17. Inform: The process of providing the human operator with details about detected obstacles and

suggested actions.
18. Send: The action of transmitting notifications or alerts from the robot to the human operator.
19. Safety: The condition of ensuring that human operators are not harmed by the robot's actions

[1]``[2].

• Output (Prompt 3):
1. Path, Route: Both terms represent the route taken or calculated by the robot to navigate around

obstacles.
2. Notification , Alert: These terms refer to the messages sent by the robot to inform the human

operator about detected obstacles and actions taken.
3. Intervention , Action: These terms signify the steps taken by either the robot or human operator

to address detected obstacles and manage the situation.
4. Obstacle , Blockage: These terms both refer to any object or human that obstructs the robot's path

.

• Output (Prompt 4):
1. Robotics Operations (Concerns processes directly involving the robot's navigational and

operational tasks): Robot, Path, Route, Detection , Stop.
2. Human-Robot Interaction (Focuses on the communication and interaction between human operators and

the robot): Human Operator , Inform, Send, Monitor , Notification.
3. Obstacle Management (Handles the identification and response to obstacles in the robot's path):

Obstacle , Action, Intervention , Situation , Alert.
4. Environmental Context (Encompasses the physical setting and safety parameters where the robot

operates): Greenhouse , Location , Safety.

E.2.7. T-1.7: Extract main concepts and relations from existing documentation/standards
• Input (mock JSON object created for testing this task):

{
"Situation": {

"ID": "situation -id-1",
"Timestamp": "2012-04-23T18:25:43.511Z",
"SeverityEnum": ["Low", "Medium", "High"],
"ObstacleID": "obstacle -id-1",
"MessageID": "message -id-1",
"RobotID": "robot-id-1"

},
"Obstacle": {

"ID": "obstacle -id-1",
"TypeEnum": ["Fixed", "Self-moving", "Movable", "Human"]

},
"Message": {

"ID": "message -id-1",
"TypeEnum": ["Notification", "Alert"],
"Description": "message -description -1",
"Content": "message -content -1"

},
"Robot": {

"ID": "robot-id-1",
"Reference": "robot-reference -1",
"StatusEnum": ["Working", "Idle", "Blocked"],
"LocationID": "location -id-1"

},
"Location": {

"ID": "location -id-1",
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"TypeEnum": ["Path", "CenterAile"],
"PathID": "path-id-1"

}
}

• Output:
Based on the provided JSON structure , here's a list of concepts and their relations extracted

directly:
1. Situation -> hasID -> situation -id-1
2. Situation -> hasTimestamp -> 2012-04-23T18:25:43.511Z
3. Situation -> hasSeverityEnum -> Low
4. Situation -> hasSeverityEnum -> Medium
5. Situation -> hasSeverityEnum -> High
6. Situation -> hasObstacleID -> obstacle -id-1
7. Situation -> hasMessageID -> message -id-1
8. Situation -> hasRobotID -> robot-id-1

9. Obstacle -> hasID -> obstacle -id-1
10. Obstacle -> hasTypeEnum -> Fixed
11. Obstacle -> hasTypeEnum -> Self-moving
12. Obstacle -> hasTypeEnum -> Movable
13. Obstacle -> hasTypeEnum -> Human

14. Message -> hasID -> message -id-1
15. Message -> hasTypeEnum -> Notification
16. Message -> hasTypeEnum -> Alert
17. Message -> hasDescription -> message -description -1
18. Message -> hasContent -> message -content -1

19. Robot -> hasID -> robot-id-1
20. Robot -> hasReference -> robot-reference -1
21. Robot -> hasStatusEnum -> Working
22. Robot -> hasStatusEnum -> Idle
23. Robot -> hasStatusEnum -> Blocked
24. Robot -> hasLocationID -> location -id-1

25. Location -> hasID -> location -id-1
26. Location -> hasTypeEnum -> Path
27. Location -> hasTypeEnum -> CenterAile
28. Location -> hasPathID -> path-id-1

• Input (correction of previous output): Remember than in an ontology, the hasTypeEnum relation can
be modeled as a superclass-subclass relationship (taxonomy). The relations ”has<Concept>Enum” need an
intermediate class. For example, :Situation -> :hasSeverityEnum -> :Low ., should be modeled as a :Situation
-> :hasSeverity -> :Severity ., and the class Severity should be modeled has a class that consists of named
individuals (Low, Medium, High). The same applies to the relation between Robot and Status. Make the
necessary changes to the list provided before to reflect this. Use Turtle/OWL syntax. Provide a list with the
same format as the one provided before.

• Output (after correction):
```turtle
:Situation -> :hasID -> "situation -id-1" .
:Situation -> :hasTimestamp -> "2012-04-23T18:25:43.511Z" .
:Situation -> :hasSeverity -> :Severity .
:Severity -> :hasSeverityEnum -> :Low .
:Severity -> :hasSeverityEnum -> :Medium .
:Severity -> :hasSeverityEnum -> :High .
:Situation -> :hasObstacleID -> :obstacle -id-1 .
:Situation -> :hasMessageID -> :message -id-1 .
:Situation -> :hasRobotID -> :robot-id-1 .

:Obstacle -> :hasID -> "obstacle -id-1" .
:Fixed rdfs:subClassOf :Obstacle .
:Self-moving rdfs:subClassOf :Obstacle .
:Movable rdfs:subClassOf :Obstacle .
:Human rdfs:subClassOf :Obstacle .
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:Message -> :hasID -> "message -id-1" .
:Notification rdfs:subClassOf :Message .
:Alert rdfs:subClassOf :Message .
:Message -> :hasDescription -> "message -description -1" .
:Message -> :hasContent -> "message -content -1" .

:Robot -> :hasID -> "robot-id-1" .
:Robot -> :hasReference -> "robot-reference -1" .
:Robot -> :hasStatus -> :Status .
:Status -> :hasStatusEnum -> :Working .
:Status -> :hasStatusEnum -> :Idle .
:Status -> :hasStatusEnum -> :Blocked .
:Robot -> :hasLocationID -> :location -id-1 .

:Location -> :hasID -> "location -id-1" .
:Path rdfs:subClassOf :Location .
:CenterAile rdfs:subClassOf :Location .
:Location -> :hasPathID -> :path-id-1 .
```

• Output (Q3) visualized using Mermaid Live Editor:

Figure E.2: Output of Task 1.7 after corrections, visualized in the Mermaid Live Editor (diagramming tool).

E.2.8. T-2.1: Formulate Competency Questions
• Input: To the business scenarios output provided in task 1.5 we homogenized the information exchanged

between the Robot and the Human Operator and we replaced the actions of the Human Operator by Receives
the notification and monitors the robot’s decision for all the business scenarios to reflect that the communication
is only one-way, from the autonomous system to the human operator. We added the suggestions of new concepts
to add to the ontology given in the input of task 1.1.

• Output (Prompt 1):
Here is a list of competency questions (CQs) for the Semantic Explanation and Navigation System (

SENS) use case:
1. What type of obstacle has the robot detected?
2. Where is the robot currently located?
3. What is the severity level of the detected obstacle?
4. At what time was the obstacle detected?
5. What decision has the robot made regarding the detected obstacle?
6. Why has the robot made the specific decision for obstacle avoidance?
7. Is the detected obstacle a human?
8. Is the detected obstacle a structural component of the greenhouse?
9. What is the new location of the robot after obstacle avoidance?
10. How much time did the robot take to avoid the obstacle?
11. Were there any deviations from the original task after obstacle avoidance?
12. What static obstacle has been detected that requires human intervention?
13. How many obstacles have been detected within a specified timeframe?
14. What are the possible actions the robot can take after detecting an obstacle?
15. What are the recommendations from the robot for human intervention in case of a static obstacle?
16. How does the robot communicate its status post-obstacle avoidance?
17. What unexpected movable obstacle has been detected?
These questions cover varied aspects of obstacle detection , navigation , decision -making, and

communication between the robot and the human operator in the greenhouse setting.

• Output (Prompt 2):
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Here is the list of CQs classified into "Low or atomic level", "Middle or connectivity level", and "
High or business level":

- Low or Atomic Level:
- What type of obstacle has the robot detected?
- Where is the robot currently located?
- What is the severity level of the detected obstacle?
- At what time was the obstacle detected?
- Is the detected obstacle a human?
- Is the detected obstacle a structural component of the greenhouse?
- How much time did the robot take to avoid the obstacle?
- What is the new location of the robot after obstacle avoidance?
- What unexpected movable obstacle has been detected?

- Middle or Connectivity Level:
- What decision has the robot made regarding the detected obstacle?
- How many obstacles have been detected within a specified timeframe?
- What are the possible actions the robot can take after detecting an obstacle?
- Were there any deviations from the original task after obstacle avoidance?

- High or Business Level:
- Why has the robot made the specific decision for obstacle avoidance?
- What static obstacle has been detected that requires human intervention?
- What are the recommendations from the robot for human intervention in case of a static

obstacle?
- How does the robot communicate its status post-obstacle avoidance?

This classification covers the various levels of complexity and business relevance required for the
SENS use case.

E.2.9. T-2.2: Is there an ontology with a scope that already covers the concept(s) to some
extent?

• Input: Business scenarios text file from the output of task 1.5.
• Output:

Given the information in the file "BusinessScenariosAndInfo.txt" for extending the CGO with the SENS
use case, here is a list of ontologies that could be reused, along with some examples of

relevant concepts included in the proposed ontologies:
1. ROA (Robot Ontology)

- Relevant Concepts:
- roa:Robot
- roa:RobotComponent
- roa:Navigation
- roa:Obstacle
- roa:Task

2. SSN (Semantic Sensor Network Ontology)
- Relevant Concepts:

- ssn:Sensor
- ssn:Observation
- ssn:ObservedProperty

3. DUL (DOLCE+DnS Ultralite Ontology)
- Relevant Concepts:

- dul:Event
- dul:Situation
- dul:Object

4. FOAF (Friend of a Friend)
- Relevant Concepts:

- foaf:Person
These ontologies focus on various aspects that are relevant to the SENS use case, such as robotics ,

sensor networks , events, and human interactions. If these do not perfectly fit the required
scope, further modifications or the development of new concepts and relations specific to the
Semantic Explanation and Navigation System for the greenhouse domain will be necessary.

I cannot find any additional ontology with a scope that can be reused in this case based on the
provided information.

E.2.10. T-2.3: Define ontology extension modules
• Input: List of 16 CQs in a text file from the output of task 2.1. CQ 16 was removed.
• Output:
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Here is the clustering of the given CQs into different ontology modules:
1. Obstacle Detection Module: This module focuses on the detection and identification of obstacles.

1.1. What type of obstacle has the robot detected?
1.2. Is the detected obstacle a human?
1.3. Is the detected obstacle a structural component of the greenhouse?
1.4. What static obstacle has been detected that requires human intervention?
1.5. What unexpected movable obstacle has been detected?

2. Robot Navigation and Location Module: This module covers the navigation and positioning of the
robot.
2.1. Where is the robot currently located?
2.2. What is the new location of the robot after obstacle avoidance?
2.3. At what time was the obstacle detected?

3. Decision Making and Task Management Module: This module deals with the robot's decision -making
process and task management.
3.1. What decision has the robot made regarding the detected obstacle?
3.2. Why has the robot made the specific decision for obstacle avoidance?
3.3. Were there any deviations from the original task after obstacle avoidance?
3.4. How much time did the robot take to avoid the obstacle?
3.5. What are the possible actions the robot can take after detecting an obstacle?

4. Human Interaction and Recommendations Module: This module involves interactions and
recommendations to human operators.
4.1. What are the recommendations from the robot for human intervention in case of a static

obstacle?
5. Analytics and Reporting Module: This module focuses on the reporting and analysis of obstacles

detected over time.
5.1. How many obstacles have been detected within a specified timeframe?
5.2. What is the severity level of the detected obstacle?

modularization organizes the CQs into distinct functional areas, facilitating the development and
understanding of the extended ontology.

E.2.11. T-2.4: Build small graph or preliminary sub-ontology
• Input: Text file containing revised list of business scenarios (from task 1.5), suggestions of which CGO concepts

are relevant to the extension and which ones should be added (from T-1.1), and including list of 16 CQs from
the output of the task 2.1 and list of CGO prefixes. To the business scenarios output provided in task 1.5
we homogenized the information exchanged between the Robot and the Human Operator and we replaced
the actions of the Human Operator by Receives the notification and monitors the robot’s decision for all the
business scenarios to reflect that the communication is only one-way, from the autonomous system to the human
operator.

• Output (Prompt 1) visualized in Protégé:

Figure E.3: Output of Task 2.4 – a) Classes; b) Object properties; and c) Data properties. Visualized in Protégé.
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Figure E.4: Output of Task 2.4 – exampleSituation (individual or instance). Visualized in Protégé.

• Input (Additional prompts):

– 1.1. The conceptualization looks good. Now could you think about what types of situations could we have
and how to integrate these in the code you just provided, according to all the information provided about
the SENS use case?

– 1.2. Did you choose the values for the data property ”hasSeverityLevel” randomly or did you follow any
logic? If so, which logic?

– 1.3. That looks reasonable! Now, for the class Object, which types of objects do you think that could be
found in a greenhouse and how would you add those to the ontology?

– 1.4. How would you link the types of objects you created to the types of situations you created?
– 1.5. Why is Packaging Material a Greenhouse Structural Obstacle? (to correct mistake).
– 1.6. All situations must have an explanation. How can we ensure this in the ontology?
– 4.1. It seems like some of the SHACL Validations that you proposed are already in the ontology, such as

SHACL Validation for Disjoint Classes. Which way is better to add these constraints, in the way you did
it before, or in this way with SHACL?

– 5.1. Finally, for all the classes, object properties, and data properties that do not have a comment, please
create a descriptive comment. Do not create comments for the entities that already have one.

– 6.1. In the SENS ontology provided in file ”sens.txt” (with the extension ”.txt” but formatted as a Turtle
triples file), there are some connections missing. A robot should have a situation (or more), in order to be
able to link these two entities. What changes would you include in the SENS ontology to reflect this? Do
not provide the whole ontology modify, only explain what you would do.

– 6.2 Now, the action that the robot will take depends on the situation detected. How could we make sure
that an action is associated also to the situation detected by the robot. This means that an action should
be connected to a situation which is connected to a robot. Which changes would you suggest for this?

• Output (Additional prompt 1.2):
The values for the data property "hasSeverityLevel" were chosen to demonstrate a variety of

severities that might be encountered within the use case scenarios:
1. "High" Severity: Assigned to situations where the obstacle poses a significant risk to

the robot's operations or safety, such as human presence or critical structural
obstacles.

2. "Medium" Severity: Assigned to situations where the obstacle requires careful navigation
but is not immediately dangerous , such as detected objects or greenhouse parts that are
not immediately obstructing the robot's path.

3. "Low" Severity: Assigned to situations where the obstacle has minimal impact on the robot
's operations , such as unexpected movable objects that the robot can easily navigate
around or continue its activity without significant adjustments.

The logic is designed to cover a spectrum of possible severity levels from minor to critical ,
providing a realistic range for testing and demonstration purposes within the SENS use case
scenario.
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• Output (Additional prompt 4.1):
The decision between embedding constraints directly into the ontology versus using SHACL for

constraints depends on the specific use case, needs, and preferences for validation. Here
are some comparisons and considerations to help you decide:

- Embedded Ontology Constraints (OWL Axioms)
- Pros:

- Integrated Reasoning: Constraints such as disjointness axioms and cardinality
restrictions are inherently part of the ontology. They can be used by reasoners to
infer additional knowledge and check consistency.

- Standard Practice: OWL constraints are a well-established method in ontology modeling
and are supported by many ontology tools.

- Cons:
- Limited Expressiveness: OWL axioms can be less expressive for certain complex

validation rules compared to SHACL.
- Reasoner Dependency: The constraints are enforced during reasoning , which might not be

immediately obvious or user-friendly for all validation tasks.
- SHACL Constraints

- Pros:
- Expressiveness: SHACL can express a wide variety of constraints , including complex

validation rules that OWL cannot.
- Targeted Validation: SHACL can be used for specific validation tasks, independently of

the reasoning process. It can be more user-friendly and adaptable.
- Separation of Concerns: Validation rules can be kept separate from the ontology ,

allowing for more modular and flexible management.
- Cons:

- Additional Layer: SHACL adds an extra layer of validation that needs to be maintained
alongside the ontology.

- Tooling: Not all ontology tools support SHACL natively , so additional tooling might be
required.

Suggested Hybrid Approach
Given that some constraints are already embedded in the ontology , it might be beneficial to

adopt a hybrid approach for comprehensive validation. You can keep fundamental
constraints that support reasoning within the ontology and use SHACL for additional ,
more complex , or use-case-specific validations.

Example of Hybrid Approach
- Keep in Ontology (OWL Axioms):

- Disjointness Axioms
- Functional Property & Inverse Functional Property
- Existential Quantification
- Domain and Range Constraints

- Add in SHACL:
- Value Constraints (e.g., hasSeverityLevel)
- Data Format Constraints (e.g., hasDetectedTime)
- Combination of Property Constraints
- Specific contextual validation rules for instances

Implementation Example
<code example , omitted for report readibility >

• Final Output visualized in Protégé (after all additional questions): To connect the classes Robot and
Situation, GPT suggested to create a new object property hasDetectedSituation linking Robot to Situation
(additional prompt 6.1). To associate the class Action to the previous classes, GPT suggested to create a new
object property isOutcomeOf linking Action to Situation (additional prompt 6.2). Then we asked GPT to
implement these changes in the code. The resulting ontology after executing all the additional prompts can be
visualized in E.5.
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Figure E.5: Output for Task 2.4 – Final version after all additional prompts – a) Classes; b) Object properties; and c) Data
properties. Visualized in Protégé.

E.2.12. T-2.5: Find links between main class(es) in preliminary sub-ontology and ontology
to be extended

• Input: Text file containing SENS ontology extension from the final output of task 2.4 (after all additional
prompts) formatted as a Turtle triples file (but with .txt extension).

• Output:
To align the SENS extension ontology to the CGO ontology , we need to establish relationships between

corresponding classes and properties. Here is a list of possible alignments:
Classes
1. cgo:ControlSystem to cgo:Robot:

- cgo:ControlSystem represents control systems in a greenhouse , which could be mapped to robots
(autonomous systems).

2. ssn:System to cgo:Robot:
- ssn:System is a broader class that can encompass various types of systems , including robots.

3. sosa:Sensor to cgo:Obstacle:
- A sensor that could detect obstacles.

4. cgo:Grid to cgo:Location:
- The concept of grids within a greenhouse can be associated with locations for mapping

obstacles.
5. schema:Place to cgo:Location:

- General place concept related to locations in the greenhouse.
6. foaf:Person to cgo:Human:

- foaf:Person represents people involved in greenhouse operations , similar to cgo:Human in the
SENS ontology.

7. cgo:Part to cgo:GreenhousePart:
- General part within the greenhouse aligned to structural parts in the SENS ontology.

Object Properties and Data Properties
1. cgo:partOf to cgo:hasLocation:

- Links parts and their wholes, which could be used to establish relationships between obstacles
and their locations.

2. ssn:hasProperty to cgo:hasSeverityLevel:
- Links sensors with properties they measure , which can relate to the severity level of an

obstacle detected.
3. sosa:hasFeatureOfInterest to cgo:hasDetectedTime:

- Linking detected features (obstacles) to the time they were detected.
4. sosa:ObservableProperty to cgo:hasExplanation:
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- Represents observable properties for explanation purposes.

Alignment Suggestions
- cgo:Robot subclassOf cgo:ControlSystem
- cgo:Robot subclassOf ssn:System
- cgo:Obstacle subclassOf sosa:Sensor
- cgo:GreenhousePart subclassOf cgo:Part
- cgo:Location subclassOf cgo:Grid
- cgo:Location subclassOf schema:Place
- cgo:Human subclassOf foaf:Person

By establishing these alignments between SENS and CGO concepts , the two ontologies can be integrated
comprehensively. These are some suggestions that incorporate the relevant classes and

properties into your ontology extension effectively.

E.2.13. T-3.1: Formalize Competency Questions into SPARQL queries
• Output:

PREFIX cgo: <https://www.tno.nl/agrifood/ontology/common-greenhouse -ontology#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CQ 1: What type of obstacle has a robot detected?

SELECT ?robot ?obstacleType
WHERE {

?robot a cgo:Robot .
?situation a cgo:Situation ;

cgo:hasObstacleType ?obstacleType ;
cgo:hasDetectedSituation ?hasDetectedSituation .

?robot cgo:hasDetectedSituation ?hasDetectedSituation .
}

CQ 2: Where is a robot currently located?

SELECT ?robot ?location
WHERE {

?robot a cgo:Robot ;
cgo:hasLocation ?location .

}

CQ 3: What is the severity level of a situation?

SELECT ?situation ?severityLevel
WHERE {

?situation a cgo:Situation ;
cgo:hasSeverityLevel ?severityLevel .

}

CQ 4: At what time was an obstacle detected?

SELECT ?situation ?detectedTime
WHERE {

?situation a cgo:Situation ;
cgo:hasDetectedTime ?detectedTime .

}

CQ 5: What decision has the robot made regarding the detected obstacle?

SELECT ?robot ?obstacleType ?recommendedAction
WHERE {

?robot a cgo:Robot ;
cgo:hasOutcomeAction ?hasOutcomeAction .

?situation a cgo:Situation ;
cgo:hasObstacleType ?obstacleType ;
cgo:hasRecommendedAction ?recommendedAction ;
cgo:hasOutcomeAction ?hasOutcomeAction .

}
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CQ 6: Why has the robot made the specific decision for obstacle avoidance?

SELECT ?robot ?obstacleType ?recommendedAction ?explanation
WHERE {

?robot a cgo:Robot ;
cgo:hasOutcomeAction ?hasOutcomeAction .

?situation a cgo:Situation ;
cgo:hasObstacleType ?obstacleType ;
cgo:hasRecommendedAction ?recommendedAction ;
cgo:hasExplanation ?explanation ;
cgo:hasOutcomeAction ?hasOutcomeAction .

}

CQ 7: Is the detected obstacle a human?

ASK
WHERE {

?situation a cgo:Situation ;
cgo:hasObstacleType cgo:Human .

}

CQ 8: Is the detected obstacle a structural component of the greenhouse?

ASK
WHERE {

?situation a cgo:Situation ;
cgo:hasObstacleType cgo:GreenhousePart .

}

CQ 9: What is the new location of the robot after obstacle avoidance?

SELECT ?robot ?newLocation
WHERE {

?robot a cgo:Robot ;
cgo:hasLocation ?newLocation ;
cgo:hasOutcomeAction ?hasOutcomeAction .

?situation a cgo:Situation ;
cgo:hasOutcomeAction ?hasOutcomeAction .

}

CQ 10: How much time did the robot take to avoid the obstacle?

SELECT ?situation ?startTime ?endTime (xsd:duration(?endTime - ?startTime) AS ?duration)
WHERE {

?situation a cgo:Situation ;
cgo:hasDetectedTime ?startTime ;
cgo:hasOutcomeAction ?hasOutcomeAction .

?hasOutcomeAction cgo:hasExplanation ?explanation ;
cgo:hasTaskDeviation false ;
cgo:hasEndTime ?endTime .

}

CQ 11: Were there any deviations from the original task after obstacle avoidance?

SELECT ?situation ?outcomeAction ?taskDeviation
WHERE {

?situation a cgo:Situation ;
cgo:hasOutcomeAction ?outcomeAction .

?outcomeAction cgo:hasTaskDeviation ?taskDeviation .
FILTER(?taskDeviation = true)

}

CQ 12: What static obstacle has been detected that requires human intervention?

SELECT ?situation ?obstacleType
WHERE {

?situation a cgo:StaticObstacleAlert ;
cgo:hasObstacleType ?obstacleType ;
cgo:hasRecommendedAction cgo:StopAndWait .

}



E.2. Demonstration results 140

CQ 13: How many obstacles have been detected within a specified timeframe?

SELECT (COUNT(?situation) AS ?obstacleCount)
WHERE {

?situation a cgo:Situation ;
cgo:hasDetectedTime ?detectedTime .

FILTER (?detectedTime >= "2023-01-01T00:00:00"^^xsd:dateTime && ?detectedTime <= "2023-12-31
T23:59:59"^^xsd:dateTime)

}

CQ 14: What are the possible actions the robot can take after detecting an obstacle?

SELECT DISTINCT ?recommendedAction
WHERE {

?situation a cgo:Situation ;
cgo:hasRecommendedAction ?recommendedAction .

}

CQ 15: What are the recommendations from the robot for human intervention in case of a static
obstacle?

SELECT ?situation ?recommendedAction
WHERE {

?situation a cgo:StaticObstacleAlert ;
cgo:hasRecommendedAction ?recommendedAction .

FILTER(?recommendedAction = cgo:StopAndWait)
}

CQ 16: What unexpected movable obstacle has been detected?

SELECT ?situation ?obstacleType
WHERE {

?situation a cgo:UnexpectedMovableObstacle ;
cgo:hasObstacleType ?obstacleType .

}

• Execution of SPARQL queries in Protégé:

Figure E.6: Output of Task 3.1 – Competency Question 2: Where is a robot currently located?. Visualized in Protégé.

E.2.14. T-4.1: Populate ontology extension with instances
• Output (examples of some individuals or instances with which the ontology extension has been

populated):
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Figure E.7: Output of Task 4.1 – Individual: exampleObstacleAvoidance. Visualized in Protégé.

Figure E.8: Output of Task 4.1 – Individual: exampleHumanPresenceDetection. Visualized in Protégé.
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Figure E.9: Output of Task 4.1 – Individual: exampleUnexpectedMovableObstacle. Visualized in Protégé.

• Execution of SPARQL queries in Protégé after populating ontology:

Figure E.10: Output of Task 4.1 – Competency Question 6: Why has the robot made the specific decision for obstacle
avoidance?. Visualized in Protégé.

E.2.15. T-4.2: Verify all CQs can be answered according to test cases
• Output:

Based on the SENS ontology extension provided in the "sens.txt" file, here is the evaluation for
each CQ:

1. What type of obstacle has the robot detected?
/ Yes / The ontology includes the class Situation with properties like hasObstacleType and

hasDetectedSituation which indicate the type of the detected obstacle.
2. Where is the robot currently located?

/ No / The ontology does not specify a property for the current location of a robot.
3. What is the severity level of the detected obstacle?

/ Yes / The ontology includes a Situation class with property hasSeverityLevel which can
indicate the severity of a detected obstacle.

4. At what time was the obstacle detected?
/ Yes / The ontology includes a Situation class with property hasDetectedTime which specifies

the detection time of an obstacle.
5. What decision has the robot made regarding the detected obstacle?

/ Yes / The ontology includes properties hasOutcomeAction , hasRecommendedAction within Situation
and linked to Robot through actions.
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6. Why has the robot made the specific decision for obstacle avoidance?
/ Yes / The ontology includes the hasExplanation , hasOutcomeAction , hasRecommendedAction within

the Situation class.
7. Is the detected obstacle a human?

/ Yes / The property hasObstacleType in Situation can be used to specify if the obstacle is a
Human.

8. Is the detected obstacle a structural component of the greenhouse?
/ Yes / The property hasObstacleType in Situation can be used to specify if the obstacle is a

GreenhousePart.
9. What is the new location of the robot after obstacle avoidance?

/ No / The ontology does not include properties for specifying the new location after obstacle
avoidance.

10. How much time did the robot take to avoid the obstacle?
/ Yes / The Situation class includes hasDetectedTime and hasOutcomeAction which further have

time-related properties for calculating duration.
11. Were there any deviations from the original task after obstacle avoidance?

/ Yes / The hasTaskDeviation property within Action or OutcomeAction can be used to indicate
deviations.

12. What static obstacle has been detected that requires human intervention?
/ Yes / The ontology includes StaticObstacleAlert subclass of Situation and can be linked to

hasObstacleType and hasRecommendedAction.
13. How many obstacles have been detected within a specified timeframe?

/ Yes / The hasDetectedTime property within Situation can be used to filter based on time frames
.

14. What are the possible actions the robot can take after detecting an obstacle?
/ Yes / The hasRecommendedAction property within Situation can be used for this purpose.

15. What are the recommendations from the robot for human intervention in case of a static obstacle?
/ Yes / The hasRecommendedAction property within StaticObstacleAlert can be used to specify

recommendations.
16. What unexpected movable obstacle has been detected?

/ Yes / The ontology includes a UnexpectedMovableObstacle subclass of Situation and properties
like hasObstacleType for unexpected movable obstacles.

Note: The ontology structure includes the necessary classes and properties , but the actual existence
of individuals in the data needs to be ensured separately.
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