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Abstract
A way to approximate the compliance of composites for optimisation is described. A two-level approximation scheme is
proposed inspired by traditional approximation concepts such as force approximations and convex linearisation. In level
one, an approximation in terms of the reciprocal in-plane stiffness matrix is made. In level two, either the lamination
parameters, or the nodal fibre angle distribution are used as design variables. A quadratic approximation is used to build the
approximations in terms of the fibre angles. The method of conservative, convex separable approximations is used for the
optimisation. Conservativeness is guaranteed by adding a convex damping function to the approximations. Two numerical
examples, one optimisng the compliance of a plate clamped on the left, loaded downwards on the bottom right, another
one optimising the compliance of a plate loaded with a shear force and a moment show the computational efficiency of the
proposed optimisation algorithm.

Keywords Composite optimisation · Structural approximations · Variable stiffness · Compliance optimisation

1 Introduction

Composite materials are attractive due to their high
stiffness-to-weight and strength-to-weight ratio. Tradition-
ally, fibres within a layer have the same orientation, leading
to constant stiffness properties. As manufacturing technol-
ogy has evolved, for example the advent of automated fibre
placement machines, the fibre orientation of a layer can
be varied continuously leading to varying stiffness proper-
ties that can be best tailored for the applied loads. These
composites are called variable stiffness laminates (VSL).

To develop constant thickness, steered laminates, a three-
step optimisation approach has been developed (Ijssel-
muiden 2011; Ijsselmuiden et al. 2010). In the first step the
optimal nodal stiffness distribution in terms of lamination
parameters is found, in the second step the optimal fibre
angles at the nodes are obtained, and in the third step the
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optimal fibre paths are retrieved. These steps are done one
after the other and are not repeated. The critical numerical
part of this optimisation are the approximations used during
the optimisation.

One way of approximating structural responses is using
response surfaces. This means a set of response surfaces is
chosen, which are scaled during optimisation. This method
has been shown to be accurate, but choosing the response sur-
faces is problem-dependant (Venter et al. 1998). To approx-
imate eigenvalues, or buckling factors, the Rayleigh-Ritz
method is often used. This method has been used to optimise
(variable stiffness) composites for buckling, but the shape
functions need to be chosen carefully (Wu et al. 2012).

One structural response which has received a lot of
attention over the years is the compliance of a structure.
Even though in design, no structure is designed using
compliance as objective or constraint, it has received a lot
of attention over the years (Rozvany et al. 1994). When
optimising composite structures, lamination parameters are
often used as design variables due to the convex feasible
region and limited number of design variables (Fukunag and
Vanderplaats 1991). Directly optimising the compliance,
discretised at design points is one example (Setoodeh et al.
2005). Disadvantage of using lamination parameters is that
no unique stacking sequence corresponds to a lamination
parameter distribution.
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An interesting approach is introduced by Hammer et al.,
who approximate the compliance in terms of the lamina-
tion parameters based on the mid-plane strain and curvature
of the elements. The distribution of lamination parame-
ters is consequently matched using three plies of which the
fibre angle and thickness are determined (Hammer et al.
1997a). This way the lamination parameters can be matched
exactly. Whilst this method proved that lamination parame-
ters are a good candidate for optimisation, and fibre angles
can be found that match it, the method has disadvantages
as well. For example, the obtained result is not physi-
cally feasible: a material has a certain ply thickness, one
cannot just scale the thickness. Furthermore, the change
in fibre angle between different points is not taken into
account, which means a fibre placement machine is unable
to lay it down. Finally, the convergence plot is not mono-
tonically decreasing, meaning the method is not globally
convergent.

Another approach is the discrete material and optimi-
sation method (DMO) (Stegmann and Lund 2005). This
method determines the best material choice throughout the
structure. The different materials are defined by a 6 × 6
stiffness matrix that can represent a different fibre angle
or completely different material. The method optimises
different patches, that may consist of multiple elements
in the FEA. The choice of the size and location of the
patches has a significant influence on the final outcome and
computational cost. Each patch can have a different mate-
rial and different orientation. To make sure the outcome
is manufacturable, extra constraints have been posed lim-
iting the rate of change over the structure (Sørensen and
Lund 2013).

A method that is related to DMO is proposed by
Kennedy and Martins, where ply-selection variables are
used (Kennedy and Martins 2013). Furthermore, the design
variables are continuous, with additional constraints to
obtain discrete values at the optimum. These additional
constraints are not adduced as constraints directly, but using
an l1 penalty function, which leads to the same solution
provided that the penalty parameter is sufficiently large
(Kennedy and Martins 2013). Additionally, manufacturing
constraints were added limiting the fibre angle difference
between adjacent layers, but not between adjacent design
regions, meaning manufacturability within a ply is not
guaranteed.

A method that tries to combine analytical and numerical
optimisation techniques is the DCOC approach (Zhou and
Rozvany 1992, 1993). It is a discrete optimality criterion
(DOC), which uses ideas from continuous optimality
criteria (COC), hence the abbreviation. The basis of the
technique is a dual formulation, but the efficiency is
increased by computing the Lagrangian multiplier of the
stress constraints explicitly. This reduces the computational

cost of optimisation compared to using a dual approach
significantly, whilst the cost of an analysis is the same.
Whilst more iterations are necessary, the total computational
time is still decreasing, and the optimum found is the same
(Zhou and Rozvany 1992).

The approximate problem that is solved using the DCOC
method in each iteration is formulated such that it decreases
the computational effort. One of the features is a constraint
selection procedure: only the constraints that are ‘close’
(the exact value is user-defined) to being active are taken
into account during optimisation. Furthermore, the internal
forces and displacements are assumed to be invariants in
each iteration. Finally, a move limit is defined to reduce the
chance that a constraint that was not selected becomes active
(Zhou and Rozvany 1993).

Another method that is not formulated for a specific
type of response is the mutual energy formulation (Taylor
and Bendsøe 2001). In this formulation, a general objec-
tive/constraint is approximated using the stiffness and strain
distribution of a structure. Both the displacement and adjoint
displacement are used in the formulation. It is shown that for
compliance optimisation, the general formulation reduces to
the general, well known, min-max formulation. However,
the paper does not provide any numerical examples, only
theoretical formulations (Taylor and Bendsøe 2001).

A method to rewrite the min-max problems to a pure
minimisation problem by posing additional constraints had
been formulated earlier by the same authors (Taylor and
Bendsøe 1984). Furthermore, some constraints are relaxed
during the optimisation, leading to the disappearance
of some singularities. Hence, by adding and relaxing
constraints, the optimisation problem becomes easier to
solve, although the number of constraints is increasing. It
is shown on relatively easy examples that the methodology
works (Taylor and Bendsøe 1984).

A method that is applicable in general is linearisation,
using for example a Taylor series. Since stress and
displacement are exact linear functions of the reciprocal
sizing variables in case of a statically determinate structure,
they are often approximated in a reciprocal way. A
generalisation of linear and reciprocal approximations is
the ‘convex linearisation’ (ConLin) method introduced by
Fleury (1989). Whether a variable is approximated in a
linear or reciprocal way is dependant of the sign of the
derivative at the approximating point: a positive derivative is
linearly approximated, a negative derivative in a reciprocal
way.

Vanderplaats recognised that approximating for example
frequency or stress constraints using the force in a
member captured the non-linearity better, which led to
better approximations and a more efficient optimisation.
This led to a two-level approximation: first, the stress
is approximated in terms of the section properties (e.g.,
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member force), then, the physical properties are used to
optimise the section properties. Once the optimal section
properties are found, the stress is calculated based on the
new properties, and a new approximation in terms of the
physical properties is made. This is repeated until the stress
converges (Vanderplaats and Thomas 1993; Vanderplaats
and Kodiyalam 1990).

In this paper the idea of force approximations is used.
In level one approximations the structural responses are
approximated in terms of the in-plane stiffness matrix.
For level two approximation, a quadratic approximation of
approximation is constructed along the lines of the Gauss-
Newton method. The two-level approximation should not be
confused with the three-step optimisation approach: in this
paper, level is used to describe the approximation, step is
used in the context of optimisation.

First the derivation is done for a truss made of an
elastic material, next, the approximations for a general two-
dimensional structure are derived. This is done since the
physical reasoning behind the approximations is clear when
a truss made of elastic material is used. For the general
two-dimensional plates the complexity of the equations may
hide their physical meaning. The approximations will be
developed for compliance only in this paper. Before diving
into the approximation strategy, the method of successive
approximations, the requirements for the approximations
and the definition of the design variables are discussed in
Section 2. The derivation for the compliance of a truss is
done in Section 3. Next, the compliance approximation for
a general composite plate is done in Section 4. Next, the
approximations in terms of the lamination parameters, and
fibre angles are discussed in Sections 5 and 6 respectively.
For all approximations, it will be proven that they have the
desired properties. The optimisation strategy is discussed in
Section 7, and a numerical example is worked out for the
compliance approximation in Section 8, two optimisation
problems are solved in Section 9. This paper is concluded in
Section 10.

2Method of successive approximations

The method of successive approximations replaces the opti-
misation of the problem by a sequence of approximate
sub-problems. The first approximate sub-problem is built
at a user-defined point. The requirements for the approx-
imation are discussed in Section 2.1. This approximate
sub-problem is optimised to find the next iterate. The pro-
cess continues by building an approximate sub-problem at
the new iterate and optimising until convergence is reached
(Schmit and Fleury 1980; Bruyneel et al. 2002). A flowchart
of the method of successive approximations can be found in
Fig. 1.

Fig. 1 Flowchart of the method of successive approximations

A standard structural optimisation problem is solved. The
worst case response of a subset of the structural responses
is optimised, subject to constraints on other responses:

min
x

max{f1, f2, ..., fn}
s.t . fn+1, ..., fm ≤ 0, (1)

where f1 to fn denote structural responses that are
optimised and fn+1 up to fm denote structural responses
that are constrained. These reponses are all functions of the
design variables, denoted by x.

The problem is defined as a minimisation problem.
Hence if we want, for example, to maximise the buckling
load, the inverse buckling load is minimised. Another
example is maximising the stiffness, which is formulated as
minimum compliance. As final example, the factor of safety
is not maximised, instead the failure index is minimised.

Defining the objective as worst case is useful when
for example performing a buckling optimisation: by taking
multiple modes into account, mode jumping is not a
problem (Seyranian et al. 1994). Another example is stress
optimisation: the maximum failure index appearing in the
structure should be minimised.

The convergence criterion used is a soft convergence
criterion. If the improvement of the objective function is less
than a certain tolerance and the constraints are satisfied, the
optimisation is assumed to have converged. The tolerance
is usually a function of the initial value of the objective: an
improvement smaller than 10−3 of the initial value is often
used. The exact function is used to determine convergence,
not the approximation.
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2.1 Requirements of the approximation

An approximation has to have certain properties to be used
during the method of successive approximations. Since the
method is gradient-based, a first-order approximation is
used, meaning (Svanberg 1987):

f (x0) = f̂ (x0)

∂f

∂x
(x0) = ∂f̂

∂x
(x0), (2)

where f denotes the exact function, f̂ the approximation,
and x0 the approximation point. For optimisation purposes,
four more properties for approximation are favourable
(Boyd and Vandenberghe 2004)

– convex: if the approximation is convex, it is guaranteed
to have a solution, thus optimising the sub-problem will
always give a solution when starting from a feasible
point. Mathematically, a function f is convex if for any
two points x1 and x2 in the feasible domain it holds that

f (tx1 + (1 − t)x2) ≤ tf (x1) + (1 − t)f (x2), (3)

where t is any value between 0 and 1. Another sufficient
condition for convexity is if the second derivative of a
function is positive:

∀xi ∈ x,
∂2f

∂x2
i

� 0, (4)

– separable: for problems with large number of design
variables, like in problems addressed in this work, a
separable approximation is desirable. This means that
the different design variables do not influence each
other. This makes the optimisation computationally
efficient. Mathematically, a function is separable if it
can be written as a summation of functions of single
variables:

f (x) =
∑

i

fi(xi). (5)

In this work, separable is interpreted slightly different:
xi does not need to be a scalar variable, it can be a
(small) vector or a tensor.

– conservative: an approximation is conservative if, at
each point in the feasible domain, the function that is
approximated is lower or equal to the approximation.
Mathematically, for a minimisation problem this means

∀x ∈ D, f (x) ≤ f̂ (x), (6)

where D denotes the feasible domain of f (Boyd
and Vandenberghe 2004). f and f̂ denote the exact
and approximate function respectively. As we shall
see in Section 7, conservativeness plays an important
role in guaranteeing global convergence of the total
optimisation problem.

– homogeneous: an approximation is homogeneous if
the response scales with a certain factor when all
design variables are scaled. Mathematically, a function
is homogeneous of degree n if

f (λx) = λnf (x). (7)

This implies a solution can always be found, even if
the starting point is infeasible, given that the upper and
lower bounds on the design variables allow the required
scaling.

These four properties are advantageous for the optimisation,
but only convexity is required to use the method of
successive approximations. The approximations used in
this approach are discussed in the following sections. The
approximations themselves are convex, separable, and, if
possible, homogeneous and conservative. To render them
conservative, an extra part, called damping function in this
work, is added to the approximation. This is discussed in
Section 7.

2.2 Definition of design variables

Before an approximation can be made, the location of the
design variables has to be defined. Since the structural
responses are calculated using a finite element analysis
(FEA), it seems a logical choice to link the design variables
to the elements. However, rather than at the elements,
the design variables are defined at the nodes of a FE
model. This has three advantages. One, the continuity of
the design variables is more likely to happen; it cannot
be mathematically guaranteed, but in all numerical results
presented continuity was preserved. Two, the number of
design variables is reduced when triangular elements are
used. This in general leads to more elements than nodes.
Three, the manufacturing constraint on the minimal turning
radius can easily be defined, as is shown in other work
by the authors (Peeters et al. 2015). The minimal turning
radius is the radius necessary to lay down the fibre when
manufacturing using an automated fibre placement. When
the design variables are defined in the element, they are
next to each other and it is hard to determine the turning
radius. When the design variables are at the nodes, the
required turning radius can be determined based on the
distance between them and the magnitude of the change in
angle.

To calculate the in-plane stiffness matrix of an element
Ae, the stiffness matrices at the nearby nodes An are
interpolated reciprocally. For instance, in triangular element
Ae is calculated according to

A−1
e = 1

3

3∑

n=1

A−1
n . (8)
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For the general case, the stiffness matrices at the different
Gauss points can be found using

A−1
g =

G∑

n=1

NngA
−1
n , (9)

where G denotes the number of nodes that have influence
on this Gauss point and Nng denotes the shape function of
node n at Gauss point g. The same equations hold for the
out-of-plane stiffness matrix D.

Once the A- and D-matrix of the elements are known,
the stiffness matrix of the entire model K can be generated.
From this point onwards, the standard FEM can be applied.
The displacement field u is found using

f = Ku. (10)

After the displacements and rotations of each node are
found, the strain and stress at each Gauss point can be
recovered. For a more detailed description of a FEM, the
reader is referred to, for example, (Felippa 2001).

3 Compliance approximation of a truss made
of elastic material

First, the compliance of a truss made of an elastic material
will be derived to illustrate the procedure. An example of a
truss can be seen in Fig. 2. The strain energy of a system is
defined as

U =
∑

e

1

2
Eε2eAele, (11)

where E denotes the Young’s modulus, l the length and the
subscript e denotes the element. The cross-sectional area of
each element Ae are the design variables in this case. The
principle of minimum total potential energy is formulated
as

min
ε,u

∑
e

1
2Eε2eAele − f T u

s.t . εe − be
T u = 0. (12)

The Lagrangian for this problem can be written as

L = min
ε,u

(
∑

e

1

2
Eε2eAele − f T u

+max
σ

∑

e

σeAele

(
εe − be

T u
))

, (13)

where σe are the Lagrangian multipliers of the constraints.
The optimum can only be reached if the constraint is
satisfied; if the constraint is not satisfied, the Lagrange
multiplier will go to either +∞ or −∞, and thus the

Fig. 2 Example of a truss

complete minimisation will go to +∞. Define the density
of complementary energy as

f c (σe) = σeεe − 1

2
Eε2e . (14)

Rewriting to combine the terms involving the displacement
vector u and interchanging the min and max, which is
allowed in this case, (13) is rewritten to

L = max
σ

(
−

∑

e

f c(σe)Aele

+min
u

uT ·
(

∑

e

σeAelebe − f

))
. (15)

Observing that u acts as a Lagrangian multiplier of an
equality constraint, this can be rewritten to the following
equivalent problem, which is the principle of minimum total
complementary energy:

min
σ

∑
e

f c (σe)Aele

s.t .
∑
e

Febele = f . (16)
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Using

σe = Fe

Ae

, (17)

where Fe is the internal force of element. Implementing the
correct expression for f c, the complementary strain energy
is found to be

U∗ = 1

2

∑

e

F 2
e · le

E · Ae

. (18)

Based on the conservation of energy, the strain energy
of the truss U equals the work done by the external force,
which equals the compliance of the structure by definition.

For structures of linear elastic continua, strain energy U

equals complementary energy U∗.
From the principle of total complementary energy, the

complementary energy of the structure which satisfies both
static and kinematic compatibility, is minimised. Therefore
the compliance of the truss is

C(A) = min
F

U∗. (19)

By assuming the internal force Fe is constant when
optimising the design variables, the compliance can be
approximated in terms of the cross-sectional areas as

I

f (A) ≈ 1

2

∑

e

F
(k)
e

2 · le
E

Ae

, (20)

where the superscript (k) denotes the force after the kth

iteration, when the current iteration is k + 1. The symbol
I

f

is used since it is a level one approximation.
Therefore, the minimal compliance can be formulated as

C∗ = min
A

(
I

f (A)

)
. (21)

Observing (20), it is noticed that the compliance is
reciprocal in terms of the cross-sectional areas.

The four desirable properties mentioned in Section 2.1
are satisfied:

– convex: The second derivative of the compliance with
respect to any design variable Ae is,

∂2
I

f

∂Ae
2

= F
(k)
e

2 · le

E · A3
e

. (22)

Since all terms are strictly positive, the second
derivative with respect to any design variable is positive,
and thus the approximation is convex.

– separable: the approximation is a summation of
different functions of Ae.

– conservative: as has been shown in (21), the compliance
C of a truss with cross-sectional area A is found by
minimising the complementary energy:

C(A) = min
F

U∗(A). (23)

F ∗, which minimises the complementary energy, is
both statically and kinematically admissible. However,
the internal force F (k) at the approximation point only
satisfies the equilibrium condition in the new loop
since this is defined as a constraint. Hence, it is not
guaranteed to be kinematically admissible. Therefore,
according to the principle of total complementary
energy, the compliance obtained from (20) is an upper
bound for the exact compliance from (23):

I

f (A) � C∗. (24)

Hence, the exact compliance is always lower than or
equal to the approximation, meaning the approximation
is conservative.

– homogeneous: the approximation is homogeneous of
order −1.

4 Compliance approximation of a general
two-dimensional composite plate

For a general two-dimensional plate with area �, and
boundary �, as shown in Fig. 3, the compliance equals the
minimum of the complementary energy of the structure,
which follows the same logic as the truss.

Since the stiffness An is estimated at each node from the
design variables, using the material law (i.e.,Nij = Aijkl ·εkl ,

Fig. 3 Example of a two-dimensional plate
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for i, j, k, l = 1, 2), the density of the complementary
energy can be rewritten as

f c (N) = 1

2
NT

n A−1
n Nn, (25)

where Nn is the resultant force at the node.
Using the Frobenius product, the approximation of the

compliance is rewritten to

I

f (A) = 1

2

∫

�

f cd� ≈
N∑

n=1

φn : A−1
n d�. (26)

where N denotes the number of nodes in the finite element
model of the plate, and defining φn as

φn = 1

2
AnNnNn

T (27)

where An denotes the area of node n.
However, this does not work well: the forces at the

nodes are a function of multiple elements. Hence, finding
an appropriate expression directly in the form of (20) is not
straightforward.

Therefore, we need to go back to the continuous model,
(26), and follow a similar procedure as described in
Section 3 to obtain a discretised version.

The strain energy of the plate is defined as

U =
∫

�

1

2
εT Aεd�, (28)

where ε is the strain vector of the structure. Discretising
the plate to be used in the finite element method, the strain
energy of the plate can be expressed as a summation at every
Gauss point using the Gauss integration scheme.

Thus the strain energy can be obtained,

U = 1

2

∑

g

wgε
T
g Agεg, (29)

where wg is the weight coefficient times the determinant of
Jacobian matrix of Gauss point g. The subscript g denotes
the variables at the Gauss point. The total potential energy
of the plate is

� = U − f T u. (30)

The principle of total potential energy leads to

min
εg,u

�

s.t. εg − Bgu = 0,

where Bg is the strain-displacement matrix at the Gauss
point. The Lagrangian is found to be

L = min
εg,u

(
1

2

∑

g

wgε
T
g Agεg − f T u

+ max
λ

∑

g

λT
g

(
εg − Bgu

)
)

, (31)

where λ is the Lagrangian multiplier. The optimality
condition with respect to εg gives

λg = −wgAgεg .

Hence,

λg = −wgNg, (32)

where Ng is the stress resultant vector at Gauss point g.
Substituting (32) into the Lagrangian (31), and replacing εg

with A−1
g Ng , (31) is rewritten as

L = min
u

max
Ng

(
∑

g

(
1

2
wgN

T
g A−1

g Ng − wgN
T
g A−1

g Ng

)

+uT (
∑

g

wgB
T
g Ng − f )

)
. (33)

Inverting the order of min and max and rearranging terms
leads to

L = max
Ng

(
∑

g

(
−1

2
wgN

T
g A−1

g Ng

)

+min
u

uT

(
∑

g

wgB
T
g Ng − f

))
. (34)

Thus the equivalent optimisation problem can be written as

minNg

∑

g

1

2
wgN

T
g A−1

g Ng

s.t .
∑

g

wgB
T
g Ng − f = 0. (35)

where the objective of this optimisation problem is the
complementary energy of the structure U∗:

U∗ =
∑

g

1

2
wgN

T
g A−1

g Ng . (36)

Using (9), the complementary energy of the plate is

U∗ =
∑

g

1

2
wgN

T
g

(
∑

n

NngA
−1
n

)
Ng . (37)

By changing the order of summation and employing the
Frobenius product, this is rewritten to

U∗ =
∑

n

(
∑

g

1

2
wgNngNgN

T
g

)
: A−1

n . (38)

Assuming the resultant force at each Gauss point Ng

remains constant when the stiffness An is changing during
the optimisation, according to (19), the approximation of
compliance of a plate in discrete form is

I

f (A) =
∑

n

φn : A−1
n . (39)
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The expression for φn is

φn =
∑

g

1

2
wgNngN

(k)
g N (k)

g T , (40)

where N
(k)
g is the internal force that is both statically and

kinematically admissible at the kth approximation point,
when this is iteration k + 1. Comparing this approximation
to the one found in the beginning, in (26), it can be seen that
the form is exactly the same.

The minimisation of the compliance is formulated as

C∗(A) = min
A

(
I

f (A)

)
, (41)

where A is the constitutive matrix of each node.
The four desirable properties mentioned in Section 2.1

are satisfied:

– convex: The approximation of the compliance can be
rewritten as
∑

n

φn : A−1
n =

∑

n

λl (φn)vlv
T
l : A−1

n

=
∑

n

λl (v
T
l A−1

n vl ), (42)

where λl(φn) is the eigenvalue of the matrix φn,
and vl is the corresponding eigenvector. Since φn is
positive definite by construction, λl(φn) is positive.
Geometrically, (42) describes ellipsoids. Since the
constitutive matrix, which is the design variable, is
guaranteed to be symmetric and positive definite, the
formulation is convex according to the theory of convex
optimisation (Boyd and Vandenberghe 2004).

– separable: observing (39), it is noted that the consti-
tutive matrices An are the design variables, which do
not influence each other, hence the approximation is
separable.

– conservative: similar to the truss, the internal force
Ng that minimises the complementary energy is both
statically and kinematically admissible. However, the
internal force N

(k)
g in (39) is only statically admissible,

and not necessarily kinematically admissible in the (k+
1)th optimisation loop. Therefore, the approximation is
equal or larger than the exact compliance in (41). As a
result, (39) is conservative.

– homogeneous: the approximation is homogeneous of
order −1.

5 Approximations in terms of the lamination
parameters

Whilst only one level one approximation exists, for level
two, multiple options exist. In the second level approxima-
tion, the stiffness matrices are approximated in terms of

physical design variables. During step one of the three-step
optimisation approach, the level two approximation is in
terms of the lamination parameters. The three-step approach
has been briefly discussed during the introduction, it was
originally proposed in the work of Ijsselmuiden (2011).
Approximating the stiffness matrix in terms of the lamina-
tion parameters is not strictly speaking an approximation
since the lamination parameters describe the stiffness matri-
ces exact. During step two, physical design variables exist:
fibre angles. The approximation in terms of the fibre angles
is discussed in the following section. This section only
focuses on the approximation in terms of the lamination
parameters.

The definition of the lamination parameters is given in
Appendix A. Using lamination parameters, the expressions
for the A- and D-matrix simplify considerably to

A = h (�0 + �1 · V1 + �2 · V2 + �3 · V3 + �4 · V4)

D = h3

12
(�0 + �1 · W1 + �2 · W2 + �3 · W3 + �4 · W4) ,

(43)

where the laminate stiffness matrices are found as functions
of the lamination parameters (LPs) and laminate thickness.
The stiffness matrices can be rewritten as

A = hĀ

D = h3

12
D̄, (44)

where Ā and D̄ are the normalised stiffness matrices.
During step one of the three-step optimisation approach,

the stiffness is optimised. The terms of the stiffness
matrices are linked, hence directly optimising them is
not easy. One would have to use a lot of constraints
to assure feasibility. By using the lamination parameters,
the feasible region can easily be described. Since the
lamination parameters describe the feasible region exact, the
level two approximation is an explicit function, much like
Vanderplaats proposed for the strength approximation.

The form of the approximation of compliance, intro-
duced in (39), hence changes to

II

f (Ā, h) ≈
N∑

n=1

φn : Ān
−1

hn

, (45)

where
II

f is used to denote it is a level two approximation.
The definition of φn does not change, it is still given by (40).

The advantage of using lamination parameters as
parametrisation is that, independent of the number of
layers, five design variables are used: 4 in-plane LPs,
and the laminate thickness. For optimisation of a constant
stiffness laminate, one set of in-plane LPs, and a thickness
is sufficient. If variable stiffness, or variable thickness
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laminates are optimised, multiple points across the structure
will have a set of LPs. The feasible region only considers
the feasibility of a single laminate, not whether the change
from one set of LPs at one point to the set at an adjacent
point is manufacturable. Disadvantage of using LPs is that
the lay-up of the laminate is unknown: a set of LPs does not
describe a unique stacking sequence.

Furthermore, the feasible region is convex. A convex
feasible region implies the optimum found during step one is
the global optimum. The details of the lamination parameter
optimisation are not discussed here, the interested reader is
referred to the PhD thesis of Ijsselmuiden (2011).

When changing the design variables, the four desirable
properties mentioned in Section 2.1 are not necessarily
preserved. Hence, they are checked again:

– convex: in terms of h and Ā, convexity can be proven
relatively straightforward. The second derivative of the
compliance with respect to h is

∂2
II

f

∂h2
= 2

φn : Ān
−1

h3
= 2

h2

φn : Ān
−1

h
, (46)

which is guaranteed to be positive: the compliance
is always positive and the thickness as well. Hence
the approximation is convex in terms of the laminate
thickness h. In terms of Ā, the same proof as in the
previous section can be used, when defining φ̄ = φ

h
.

Since h is a positive number, φ̄ is positive semi-definite,
just as φ, thus the same proof of the previous section can
be given using φ̄ and Ā instead of φ and A. Whether
the combined approximation holds as well still needs to
be proven. This is done in Appendix B.

– separable: as was explained in Section 2, strictly
speaking this function is not separable since the
laminate thickness and different lamination parameters
influence each other, but since it is still separable
per node, meaning per five design variables, the
approximation is still regarded as separable.

– conservative: since the definition of φn does not change,
the proof of conservativeness is still the same as in the
previous section.

– homogeneous: the approximation is homogeneous of
order −2.

6Approximations in terms of the fibre angles

During the second step of the three-step optimisation
approach, the fibre angles are optimised. This is done

by building a level two approximation, denoted by
II

f (θ).
Contrary to the lamination parameters, the fibre angles only
represent the stiffness matrices exactly at the approximation

point. The approximation is a second-order Taylor series,
based on (39):

II

f (θ) ≈ I

f 0 + g · 
θ + 1

2

θT · H · 
θ , (47)

where
I

f 0 denotes the value, g the gradient and H

is an approximation of the Hessian of the first level
approximation at the approximation point. The gradient and
Hessian approximation can be calculated starting from

II

f (θ) = I

f (A(θ)). (48)

Deriving this with respect to the fibre angle θi , the ith term
of the gradient is found to be

gi = ∂
I

f

∂θi

= ∂
II

f

∂θi

= ∂
I

f

∂A
· ∂A

∂θi

. (49)

Deriving again with respect to fibre angle θj , the ij th term
of the Hessian is found to be

Hij = ∂2
I

f

∂θi∂θj

= ∂2
I

f

∂A2
· ∂A

∂θi

· ∂A

∂θj

+ ∂
I

f

∂A
· ∂2A

∂θi∂θj

. (50)

Using the exact Hessian, convexity is not guaranteed.
Convexity is ensured by omitting the underlined part of (50),
which is not guaranteed to be positive definite, and leaving
the positive semi-definite leading term, called the Gauss-
Newton part. A first-order approximation only has to have
equal function and gradient values at the approximation
point as the approximated function. Thus, using only part
of the Hessian does not influence the validity of the
approximation. The derivative of the A-matrix with respect
to θk , the fibre angle of layer k, is

∂A

∂θk

= 2
dQ̄k

dθk

· (zk−1 − zk) (51)

The four desirable properties mentioned in Section 2.1
are checked:

– convex: by construction, the Hessian is positive semi-
definite, hence, the approximation is convex.

– separable: since the approximation in terms of the
stiffness was separable at the nodes, this approximation
is also separable per node.

– conservative: the approximation is not guaranteed to be
conservative. How this can be guaranteed is explained
in Section 7.

– homogeneous: the approximation is not homogeneous.

Hence, only two out of four desirable properties are
satisfied in this case. However, the function can be made
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conservative, as will be explained in Section 7, and
homogeneity is not strictly necessary for an approximation
to be used in the method of successive approximations.

7 Optimisation algorithm

The method of conservative convex separable approxima-
tions (CCSA) will be used (Svanberg 2002). This means we
start from a starting point and use the approximations to find
the next point.

As shown in the previous sections, the approximations,
either in terms of the stiffness, or the fibre angles, are always
convex and separable. The approximation in terms of the
stiffness is also conservative, however, the approximation
in terms of the fibre angles is not conservative. To render
the approximation conservative, a damping function is
added.

II

f (θ) ≈ f̂ (θ) + ρ · d(θ) (52)

where f̂ is the approximation built in Section 6, d is called
the damping shape and ρ the damping factor. The damping
function chosen for the fibre angle optimisation is

d(θ) = 1

2
�θT · H d · �θ , (53)

where �θ is the change in angles from the approximation
point of the level two approximation, and H d is a
regularisation matrix given by

H d = 1

s2

⎡

⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .
−1 2 −1

−1 1

⎤

⎥⎥⎥⎥⎥⎦
+ α

⎛

⎜⎝
1 . . . 1
...
. . .

...
1 · · · 1

⎞

⎟⎠ ,

(54)

with α given by

α = ε · 2 · (s − 1)

s3
, (55)

where ε is a damping factor, usually chosen to be 1.
This is done for the approximation in terms of the

fibre angle only since the level one approximation is
conservative without the damping function. For a more
detailed description of the damping function, and the
optimisation procedure, the reader is referred to earlier work
by the authors (Peeters et al. 2015).

The solution procedure to determine the fibre angles
which starts after step one of the three-step optimisation
is shown in Fig. 4, and is explained in Algorithm 1. For
manufacturing reasons, a steering constraint is posed to
ensure the fibres do not wrinkle whilst being laid down.

The details of the steering constraint are omitted here, the
details can be found in earlier work by the authors (Peeters
et al. 2015).

8 Results compliance approximation

In this section numerical cases are solved with the proposed
compliance approximation. A square plate with sides of
300 mm is loaded with a shear force of 675 N, divided in a
quadratic manner, and an equivalent moment of 303.75 Nm
on the left and 506.25 Nm on the right, which is applied
as a force in x-direction. To avoid rigid body motion the
plate is simply supported in the middle of the left and
right edge. A graphical representation is shown in Fig. 5.
The material used has the following properties: E1 = 177
GPa, E2 = 10.8 GPa, G12 = 7.6 GPa, and ν12 = 0.27.
To cheque the approximations, the material of the plate is
assumed to be quasi-isotropic (QI), which is defined as all
lamination parameters equal to zero. The thickness of the
plate is 10 mm.

In this section it is shown that the approximation is mesh-
independent, converges to the exact compliance and that
(40) and (27) converge to the same result.

8.1 Mesh independence

First, the mesh independency of the sensitivity φ, which is
defined in (40) is discussed. φn is the summation of internal
force Ng , shape function Nng and wg of the relevant Gauss



A compliance approximation method applied to variable stiffness composite optimisation

Fig. 4 Flowchart of the
optimisation

points. The normalised sensitivity with respect to the mesh
size at each node is defined as

φ̄n = φn∑m
g=1Ag

(56)

where Ag is the area at the gth Gauss point connected
with the nth node. Since the internal force and the shape
functions from FEM analysis are mesh independent, the
variables φ̄n should be mesh independent. Since φn is a 3×3
matrix, the mesh independency of φ̄ is illustrated by plotting
one term of the matrix at each node, in this work, φ̄(1, 1)
is used. The figures obtained using different mesh sizes are
compared visually.

Observing Figs. 6, 7 and 8, it is noticed that φ̄(1, 1)
is mesh independent. Similar phenomenon happens to the
other terms of φ̄, which is not shown in the paper for brevity.

Observing Figs. 6 to 8, the value of φ̄(1, 1) corresponds
to the top left corner in Fig. 5 changes merely from 1007
to 1094 as we double the mesh three times, with 7.9%
change. Meanwhile, the value related to the top right corner
changes only from 383.2 to 401.1, with 4.5% change. The
configuration of the φ̄(1, 1) is the same in these figures. The
distribution of φ̄(1, 1) is therefore mesh independent.

Similar phenomenon happens to the other terms of φ̄.
Hence, the compliance approximation in (39) is mesh
independent.

8.2 Convergence of sensitivity with respect tomesh

Next, the convergence of φ̄ with respect to the number
of elements is checked. Since the distribution is already
shown to be mesh independent, checking a single node is

Fig. 5 Numerical case for
compliance approximation
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Fig. 6 φ̄(1, 1) distribution using a 20 × 20 mesh

sufficient. For convenience, the node in the middle of the
plate is chosen. The normalised sensitivity at this node can
be decomposed:

φ̄c = λ1e1 · eT
1 + λ2e2 · eT

2 + λ3e3 · eT
3 , (57)

where the subscript c denotes the centre of the plate, λi

denotes the eigenvalues of φ̄c in descending order, and ei is
the corresponding eigenvector.

From (40), φc is positive definite and has rank one.
Therefore λ1 should converge to a positive value, whilst
λ2 and λ3 converge to zero. Hence, λ1e1e

T
1 can be used to

cheque the convergence of φ̄c. This essentially corresponds
to Nn · NT

n in (27).
In order to estimate the ‘exact’ N , denoted by N∗,

whilst limiting the computational work, Richardson’s
extrapolation is employed to evaluate

√
λ∗
1e

∗
1, which is the

Fig. 7 φ̄(1, 1) distribution using a 40 × 40 mesh

Fig. 8 φ̄(1, 1) distribution using a 60 × 60 mesh

exact internal force N∗. Here the exact internal force is
interpreted as:

N∗ = N1(h)+ c1
N(h)+ c2
N2(h)+ ...+O(
N i (h)),

(58)

where N1(h) denotes the initial value, which can be found
using a rough mesh with mesh size h:

N1 = √
λ1e1. (59)

Every time the mesh size h is refined in Richardson’s extrap-
olation, the order of the error in (58) is increasing. In other
words: N∗ is approximated better with every refinement,
whilst taking the information from the rougher meshes
into account. From N∗, the exact sensitivity can be found
using

φ̄
∗
c = N∗N∗T . (60)

The relative error between φ̄
h

c and the φ̄
∗
c from different

meshes size is calculated using

eh

φ̄c
= ‖φ̄h

c − φ̄
∗
c‖

‖φ̄∗
c‖

(61)

where h denotes the mesh size, and eh

φ̄c

is the relative error.

A plot of this error on a logarithmic scale is shown in Fig. 9.
Observing this figure, it is found that the error decreases
with a slope of −1, implying φ̄c converges linearly as a
function of the number of elements. Thus the compliance
approximation of a plate in discrete form, (39), has a linear
convergence rate.

8.3 Convergence of sensitivity

Finally, it is checked whether the definition of φn in (40) and
(27) converge to the same result. The central node is again
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Fig. 9 Relative error of φ̄c with respect to the number elements

used to check this. The internal force at the central node is
calculated from the summation of the internal force at the
surrounding Gauss points weighted by the area correlated to
each Gauss point

Nc =
∑4

g=1wcg · Ncg
∑4

g=1wcg

, (62)

where Ncg denotes the internal force at Gauss point g

around central node c. This is graphically shown in Fig. 10.
As a reference, the internal force N∗ from Richardson’s

extrapolation is used. The relative error is calculated as

eh
Nc

= ‖∣∣Nh
c

∣∣ − N∗‖
‖N∗‖ , (63)

where Nh
c is the internal force at the central node of the

plate with mesh size h. The absolute value is used to

Fig. 10 Calculating the internal force at the central node

Fig. 11 Relative error of Nc with respect to the number of elements

remove the influence of the sign. The relative error is
plotted against the number of elements on a logarithmic
scale in Fig. 11. Observing this plot, it can be seen that
Nc is linearly converging as a function of the number of
elements. Hence, (40) and (27) converge to the same result.
Consequently, compliance approximation derived from the
continuous form, (39), converges to the one derived from
the discrete form, (26).

9 Results: numerical examples

9.1 Plate under point load

The first example is a flat composite plate, clamped on
the left, with a vertical force downwards on the bottom
right. A graphical representation of this problem is shown
in Fig. 12. This problem has been previously solved (Nagy
et al. 2010). The material data are as follows: E11 =
148GPa, E22 = 9.65GPa, G12 = 4.55GPa and ν12 =
0.3. In this examples, 6 design layers are used. Since
the final laminate is to be balanced and symmetric, each
design layer represents 4 layers in the actual laminate: a
negative of the design layer is right next to the layer, and
the complete stack is symmetric. The only objective in
this case is the compliance, the laminate is assumed to be
balanced and symmetric, hence V2 and V4 are zero. The
dimensions are changed compared to the problem solved by
Nagy et al.: a = 0.4m, b = 2m. This is done to make
the steering constraint active during the retrieval step. The
scaling has no influence on the optimal compliance since the
aspect ratio is the same, and the compliance is normalised
using the compliance of a quasi-isotropic plate, meaning all
lamination parameters equal to zero.

When running the optimisation in terms of the lamination
parameters, the obtained result is shown in Fig. 13. Only
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Fig. 12 Problem statement for
the first numerical case

Fig. 13 Optimised in-plane
lamination parameters

Fig. 14 Optimised in-plane
lamination parameters
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Fig. 15 In-plane lamination
parameters after fibre angle
retrieval

four iterations were necessary to obtain the optimum. The
normalised compliance is 0.4300, which is even a bit lower
than was found by Nagy et al. However, the difference is
not large, so could be due to the finer mesh used in the
current work. The distribution is similar to what was found
in the paper, proving that the approximation algorithm
works well, and that the optimisation is behaving as
expected.

Studying Fig. 13 in more detail, it is noticed that in
the region of the load introduction V1 goes towards −1,
implying a fibre angle close to 90◦. This is as expected: at
the load introduction the fibres should be aligned with the
load. In the part above the load introduction, V1 is staying
constant, whilst V3 is changing, implying the angles change
to 45◦, leading the load towards the clamped region. Close
to the clamped edge, both V1 and V3 tend to 1, implying that
the fibre angle goes towards 0◦ in this region. This means
that the load is led in a straight line from the right to the
left, after being changed direction by fibre steering. Hence,
this result makes sense, and we have a clear idea of what the
fibre angles should look like.

A steering constraint of 400 mm is used during the
retrieval. Not all 6 layers are shown, just two design layers
are shown in Fig. 14. The normalised compliance after
retrieval is 0.443. This already shows that the values found
in terms of the fibre angles can match the result found in
terms of lamination parameters fairly close. To highlight
how close both cases are, the V1 and V3 distribution after
fibre angle retrieval is shown in Fig. 15. Here it is noticed
that the V3 distribution matches quite good, but the V1

distribution looks different. This is due to the steering
constraint: the angles cannot change very abrupt, so the
fast change around the load introduction point cannot be
matched in terms of the fibre angles.

9.2 Plate under shear andmoment

The same example as in Section 8 is used to optimise
the compliance of the composite plate. The objective is
to minimise the compliance, no constraints are posed.
The laminate has 36 layers in total, since the laminate is
designed to be balanced and symmetric, 9 design layers are
to be optimised.

During step one of the three-step optimisation, the
different lamination parameters are optimised. Since the
laminate is to be balanced and symmetric, V2 and V4

are zero. The optimal compliance is found after only 4
iterations, as can be seen in the convergence plot in Fig. 16.
The optimal compliance is normalised with respect to the
compliance of the initial quasi-isotropic (QI) plate. The final
result has a compliance of 0.5446. The distribution of V1

and V3 is shown in Fig. 17.

Fig. 16 Convergence of the optimisation problem in terms of the
lamination parameters
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Fig. 17 Optimised in-plane
lamination parameters

Studying the lamination parameters distribution more
closely, it is seen that at the top and bottom both V1 and
V3 tend to 1, meaning an angle of 0 deg which makes sense
since the top and bottom mainly take the moment, and thus
have to be stiff to move as little as possible due to the
moment. In the middle, V1 tends to zero, and V3 towards

−1, which means the angle are ±45◦ meaning the shear is
taken by these regions. In between the angles are a good
compromise between both loads.

During step two of the three-step optimisation, the fibre
angle distribution is optimised. A manufacturing constraint
is posed: a lower bound on the steering radius of 333 mm
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Fig. 18 Convergence of the optimisation problem in terms of the fibre
angle distribution

is posed. This optimisation is done in just four iterations,
as can be seen in Fig. 18. The final compliance found is
0.6842, hence relatively close to the theoretical optimum
found in terms of the stiffness. The reason for the decrease
in performance is the manufacturing constraint, limiting the
rate of change in stiffness, which is high in terms of the
lamination parameters, as can be seen in Fig. 17. The initial

Fig. 19 Optimised in-plane lamination parameters

point is defined as [±30 ± 70 ± 40 ± 20 ± 50 ± 65 ±
40 ±10 ±20]S , where the balanced angles are next to each
other. The starting point has a performance close to one,
which is due to the starting point, which is relatively close
to quasi-isotropic behaviour.

For the optimised fibre angle distribution step three of the
three-step optimisation, fibre path retrieval, is performed.
Not all fibre paths are shown, two design layers are selected
and shown in Fig. 19. In total, each half consist of 18 layers,
leading to a balanced, symmetric laminate of 36 layers.
On these plots, the two balanced layers, which are next
to each other, are shown on top of each other. The angles
are as expected: tending to 0◦ on the top and bottom and
towards ±45◦ in the middle part. Since each layer is slightly
different, and the steering constraint is active, the steep
change in lamination parameters cannot be matched exactly,
but in general the influence on the compliance is small.

10 Conclusion

An approximation approach for the compliance optimisa-
tion of composites is proposed. The three-step optimisation
approach for variable stiffness composites is used as a
guideline. In step one the optimal stiffness distribution is
found, in step two the optimal nodal fibre angle distribu-
tion is found, in step three the fibre paths are found. The
approximations in this paper focus on step one and two.

Analogous to the force approximation approach, a
two-level approximation is proposed. In level one, the
compliance is approximated in terms of the inverse in-plane
stiffness matrix. In step one, a level two approximation in
terms of the lamination parameters is used to optimise the
stiffness distribution. In step two, a second-order Taylor
approximation in terms of the change in fibre angles is made
at the approximation point as a level two approximation.

The conservative, convex separable approximation
method is used during the optimisation. Convexity and
separability are guaranteed by construction of the approx-
imations. Conservativeness is not guaranteed. A damp-
ing function and damping factor are added to the fibre
angle approximation to guarantee conservativeness and thus
global convergence.

Two example problems are solved: a plate clamped on
the left with a load downwards on the bottom right, and
the compliance of a flat plate loaded with a shear force
and moment were optimised. In both cases the number of
iterations necessary in step one and two was low: not more
than five iterations were necessary. This means that the
whole optimisation only requires about ten finite element
evaluations, which is computationally very efficient. This
shows that using these approximations good results can be
obtained using limited computational resources.
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Appendix A: Definition of the lamination
parameters

Starting from the general equations for the stiffness matri-
ces (Kassapoglou 2010), using trigonometry, the ele-
ments of the stiffness matrix can be rewritten as (Tsai and
Hahn 1989)

Q̄11 = 1

8
(3 · Q11 + 3 · Q22 + 2 · Q12 + 4 · Q66)

+1

2
(Q11 − Q12) cos(2θ)

+1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) cos(4θ)

Q̄22 = 1

8
(3 · Q11 + 3 · Q22 + 2 · Q12 + 4 · Q66)

−1

2
(Q11 − Q12) cos(2θ)

+1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) cos(4θ)

Q̄12 = 1

8
(Q11 + Q22 + 6 · Q12 − 4 · Q66)

−1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) cos(4θ) (64)

Q̄66 = 1

8
(Q11 + Q22 − 2 · Q12 + 4 · Q66)

−1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) cos(4θ)

Q̄16 = 1

4
(Q11 − Q12+) sin(2θ)

+1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) sin(4θ)

Q̄26 = 1

4
(Q11 − Q12+) sin(2θ)

−1

8
(Q11 + Q22 − 2 · Q12 − 4 · Q66) sin(4θ).

Using these relations, the stiffness matrix of a single layer
Q̄ can be written as

Q̄ = �0 + �1 · cos(2θ) + �2 · sin(2θ)

+�3 · cos(4θ) + �4 · sin(4θ), (65)

with the matrices �i defined as

�0 =
⎡

⎣
U1 U4 0
U4 U1 0
0 0 U5

⎤

⎦ �1 =
⎡

⎣
U2 0 0
0 −U2 0
0 0 0

⎤

⎦

�2 =
⎡

⎣
0 0 U2

2
0 0 U2

2
U2
2

U2
2 0

⎤

⎦ �3 =
⎡

⎣
U3 −U3 0

−U3 U3 0
0 0 −U3

⎤

⎦

�4 =
⎡

⎣
0 0 U3

0 0 −U3

U3 −U3 0

⎤

⎦ , (66)

where the material invariants Ui are given by

U1 = 3 · Q11 + 3 · Q22 + 2 · Q12 + 4 · Q66

8

U2 = Q11 − Q12

2

U3 = Q11 + Q22 − 2 · Q12 − 4 · Q66

8

U4 = Q11 + Q22 + 6 · Q12 − 4 · Q66

8

U5 = Q11 + Q22 − 2 · Q12 + 4 · Q66

8
. (67)

The A- and D-matrix are calculated using

A =
h
2∫

− h
2

(�0 + �1 · cos(2θ) + �2 · sin(2θ)

+ �3 · cos(4θ) + �4 · sin(4θ)) dz

D =
h
2∫

− h
2

z2 (�0 + �1 · cos(2θ) + �2 · sin(2θ)

+ �3 · cos(4θ) + �4 · sin(4θ)) dz. (68)

Introducing the normalised thickness coordinate

z̄ = z

h
, (69)

the expressions in (68) become

A = h

1
2∫

− 1
2

(�0 + �1 · cos(2θ) + �2 · sin(2θ)

+ �3 · cos(4θ) + �4 · sin(4θ)) dz̄

D = h3

12

1
2∫

− 1
2

z̄2 (�0 + �1 · cos(2θ) + �2 · sin(2θ)

+ �3 · cos(4θ) + �4 · sin(4θ)) dz̄. (70)
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The lamination parameters are defined as

(V1, V2, V3, V4) =
1
2∫

− 1
2

(cos (2θ(z̄)) , sin (2θ(z̄)) ,

cos (4θ(z̄)) , sin (4θ(z̄))) dz̄

(W1, W2, W3, W4) =
1
2∫

− 1
2

z̄2 (cos (2θ(z̄)) , sin (2θ(z̄)) ,

cos (4θ(z̄)) , sin (4θ(z̄))) dz̄, . (71)

The feasible region of the lamination parameters is
defined as the region where a stacking sequence can be
found that gives the combination of lamination parameters.
From their definition in (71), the feasible region of the in- or
out-of-plane lamination parameters separately can be found
to be (Hammer et al. 1997b):

2 · V 2
1 · (1 − V3) + 2 · V 2

2 · (1 + V3)

+V 2
3 + V 2

4 − 4 · V1 · V2 · V4 ≤ 1

V 2
1 + V 2

2 ≤ 1 (72)

−1 ≤ V3 ≤ 1.

For the combination of in- and out-of-plane lamination
parameters, the feasible region does not have an easy
definition. It can be found in for example Setoodeh et al.
(2006), Bloomfield et al. (2009), or Wu et al. (2013).

Observing (71), it can be seen that if the laminate is
balanced, meaning for every θ there is a −θ , V2 and V4

are equal to zero. The out-of-plane LPs are generally all
non-zero, also for balanced laminates.

Appendix B: Proof of convexity
of lamination parameter approximation

In Section 5, it was already proven that the approximation in
terms of the lamination parameters is convex in terms of the
laminate thickness, and in terms of the normalised in-plane
stiffness matrix separately. However, both can be changed
at the same time, hence also in terms of both convexity has
to be proven. To proof this, start from

f (x, y) = g(x) · h(y), (73)

where g is convex in terms of x, and h is convex in terms
of y. It has to be proven that f is convex in terms of the
combination of x and y.

It is assumed that g(x) and h(y) are both positive. Next,
it is assumed g(x) is homogeneous of order m, and h(y) is
homogeneous of order n, meaning

g(λx) = λmg(x)

h(λy) = λnh(y), (74)

where λ denotes a real number. Since g(x) and h(y) are
convex, the second variation is positive:

P = ∂x∂xg(x) 
 0

Q = ∂y∂yh(y) 
 0. (75)

To keep the formulas short, define

∂xg(x) = a

∂yh(y) = b. (76)

Finally, the total vector of design variables of the function
f is defined as z = [x, y].

The function f (z) is convex if the second variation with
respect to z is positive:

∂z∂zf (z) 
 0. (77)

This needs to be proven. The second variation of f with
respect to z is given by

∂z∂zf (z) =
[

h · P a · bT

b · aT g · Q

]
. (78)

This matrix has to be positive definite. Since h is positive
and P is positive definite, the upper left part of the
matrix clearly is positive definite. This implies that if
the Schur complement is positive, the complete matrix is
positive definite as is stated in Appendix A of Boyd and
Vandenberghe (2004). The Schur complement is given by

g · Q − 1

h
· b · aT · P −1 · a · bT , (79)

which is guaranteed to exist since h is positive and P is
positive definite and hence invertible.

Using Euler’s theorem for homogeneous functions, it is
known that

(∂xg)T · x = m · g. (80)

Deriving both sides with respect to x leads to

(∂x∂xg) · x + ∂xg = m · ∂xg. (81)

Substituting the expression of (75) and (76), and rearranging
terms:

P · x = (m − 1) · a. (82)

Since P is invertible, we can multiply both sides from the
left with aT P −1:

aT · x = (m − 1) · aT · P −1 · a. (83)

Using (80), this is rewritten as

aT · P −1 · a = m

m − 1
· g. (84)

In an analogous way, it can be found that

bT · Q−1 · b = n

n − 1
· h. (85)
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Substituting (84) into (79), and dividing by g which
is allowed since g is positive, the Schur complement is
rewritten as

Q − 1

h
· m

m − 1
· b · bT . (86)

Since Q is positive definite, using the Cholesky decompo-
sition, it is rewritten as Q = L · LT . Using the Cholesky
decomposition, the Schur complement is rewritten as

L

(
I − m

m − 1
· 1
h

· L−1 · b · bT · L−T

)
LT . (87)

This is positive if the part between brackets is positive. This
part can be rewritten as

I − λ · e · eT , (88)

where e is normalised, hence

e = L−1 · b
√

bT · Q−1 · b

. (89)

λ is thus defined as

λ = m

m − 1
· 1
h

· bT · Q−1 · b. (90)

Using (85), this can be rewritten as

λ = m

m − 1

n

n − 1
. (91)

Observing (88), it is noticed this is positive if λ < 1. Hence,
f (z) is convex if

m

m − 1

n

n − 1
< 1. (92)

For this specific case, (45), the approximation is homoge-
neous of order −1 in terms of both the normalised in-plane
stiffness matrix, and the thickness. Since both functions are
positive, and conservative in terms of the normalised in-
plane stiffness matrix and thickness separately, all assump-
tions used in this derivation hold. Filling in m = n = −1
in (92), it is found that the approximation is indeed convex
in terms of the combination of normalised in-plane stiffness
matrix and thickness.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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