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The scaling of the kinematic boundary layer thickness �u and the friction factor Cf at the top and bottom
walls of Rayleigh-Bénard convection is studied by direct numerical simulation �DNS�. By a detailed analysis
of the friction factor, a new parameterisation for Cf and �u is proposed. The simulations were made of an
L /H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra= �105 ,106 ,107 ,108� and Pr=1.
The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent
character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical
integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the
friction factor Cf should scale proportionally to the thermal boundary layer thickness as Cf ��� /H, while the
kinetic boundary layer thickness �u scales inversely proportionally to the thermal boundary layer thickness and
wind Reynolds number �u /H� ��� /H�−1Re−1. The predicted trends for Cf and �u are in agreement with DNS
results.
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I. INTRODUCTION

The structure of the boundary layer is of great importance
for understanding the turbulent heat transfer characteristics
of Rayleigh-Bénard convection. Inherently unstable due to
buoyancy effects, the thermal boundary layer with thickness
�� is in a dynamic equilibrium of heating �cooling� by ther-
mal diffusion and the detrainment �entrainment� of heat due
to impinging and ejecting thermals at the bottom �top� plate.
This process creates large temperature gradients across the
boundary layer, thereby enhancing the heat transfer through
the wall and thus the Nusselt number Nu. Next to a thermal
boundary layer, one can identify a kinematic boundary layer
with thickness �u, associated with the velocity field. Depend-
ing on the Prandtl number Pr=��−1, which is the ratio be-
tween the kinematic viscosity � and thermal diffusivity �, the
kinematic boundary layer can be nested inside the thermal
boundary layer or vice versa, which influences the effective-
ness of the heat transfer as a function of the Rayleigh number
Ra. The Rayleigh number Ra is defined as Ra
=�g��H3����−1, where � is the thermal expansion coeffi-
cient, g the gravitational constant, �� the temperature dif-
ference between the top and bottom plates, and H the domain
height. The scalings of �� and �u as a function of Ra and Pr
are therefore of importance for proper prediction of the heat
transfer.

In the theory of Grossmann and Lohse �1�, the wind ve-
locity U and the boundary layer thicknesses �u and �� are
central parameters, which are used to estimate the dissipation
rates of kinematic energy and temperature variance in the
bulk and the boundary layers. In the theory, �� and �u are
defined as

�� � H/�2Nu� , �1�

�u � HRe−1/2. �2�

While �1� holds excellently, the correspondence of �2� with
experiments �2,3� and simulations �4,5� is less satisfactory.
Relation �2� can be obtained by nondimensionalizing the
steady laminar two-dimensional Prandtl boundary layer
equations �6,7�, from which �2� follows immediately. How-
ever, the measured Re dependence of �u is much weaker than
predicted by �2� �see also Fig. 1�. It has been suggested that
the difference is due to geometry effects �8� �plate-filling vs
laterally restricted flow�.

In this paper, we argue that the disparity between the ex-
pected and the observed scaling of �u is because the top and
bottom boundary layers are not laminar, i.e., forcing due to
Reynolds stresses cannot be neglected in the kinematic
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FIG. 1. Thermal and kinematic boundary layer thicknesses ��

and �u as a function of Ra. The dashed and dash-dotted lines in the
graphs are predictions by the G-L theory for �u and ��,
respectively.
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boundary layer. Consequently, the arguments leading to �2�
do not hold. With a detailed direct numerical simulation
�DNS� study of the momentum and heat budgets and the
friction factor, and using the wind model of the accompany-
ing paper �9�, we derive new parametrizations for �u and Cf.

A related question is whether or not the boundary layers
can be regarded as turbulent. The Reynolds number Re is too
low to sustain a “classical” turbulent boundary layer �Re
�1500 at Ra=108�, i.e., a boundary layer where the turbu-
lence production due to shear is in local equilibrium with
dissipation. Hence, the general view is that the boundary
layers are laminar, but time dependent. Although time depen-
dence due to plume impingement and detachment prevents
laminarity in the strict sense, the assumption could be justi-
fied if the plumes are passive with respect to the scaling of
integral boundary layer parameters such as the friction factor
Cf and the kinematic boundary layer thickness �u. Several
other studies show that the friction factor scales similarly to
a Blasius boundary layer �10–12�. However, the scaling of �u
does not comply with classical laminar scaling �2�, as dis-
cussed before. Furthermore, a recent study of time spectra in
the bottom kinematic boundary layer revealed that the spec-
tra in the boundary layer and in the bulk were practically
indistinguishable �13�, a strong indication of turbulence. In
order to understand this dual behavior, we study several tur-
bulence indicators for the boundary layers, such as the spec-
tra and the shape and friction factors.

The paper is outlined as follows. A brief summary of the
code for direct simulation and symmetry-accounted en-
semble averaging is given in Sec. II. The scaling of the
boundary layer thickness, the velocity profile, the friction
factor, and the shape factor are studied in Sec. III A, Sec.
III B, and Sec. III C, respectively. Then, we study the space
and time spectra �Sec. III D�. In Sec. III E, the mean momen-
tum and temperature budgets in the boundary layers are stud-
ied to clarify the importance of fluctuations in the boundary
layers. Using the results from the momentum budgets, the
friction factor Cf is decomposed into a pressure and a
momentum-flux contribution in Sec. III F. This leads to the
insight that the main contribution is from the pressure gradi-
ent. Using the conceptual wind model derived in the accom-
panying paper �9�, scaling laws for Cf and �u are derived in
Sec. IV. As the results show that the flow has many typical
features of turbulence but also of laminarity, the interpreta-
tion of the results is discussed in Sec. V. Conclusions are
drawn in Sec. VI.

II. SIMULATIONS

Direct simulation of Rayleigh-Bénard convection has
been performed at Ra= �105 ,106 ,107 ,108� and Pr=1 in a 	
=4 aspect-ratio domain. The code is based on a second-order
variance-preserving finite-difference discretization of the
three-dimensional Navier-Stokes equations and is fully par-
allellized. For all simulations, a grid was used with sufficient
resolution to resolve the smallest turbulent scales, i.e., the
Kolmogorov scale 
K= ��3 /��1/4 and the Corrsin scale 
C
=Pr−1/2
K. The top and bottom walls are rigid �no slip� and
of fixed temperature. At the side domain boundaries, periodic

boundary conditions are applied. For each Ra except the
highest, 400 independent realizations were obtained by per-
forming ten independent simulations and sampling the veloc-
ity and temperature field roughly twice every convective
turnover time. Because of the formidable computational re-
quirements for Ra=108, we use this simulation only for the
results of Fig. 1 and confine the wind-decomposed analysis
to the lower-Ra cases, though without loss of generality.

As in domains confined by sidewalls, a wind structure
develops also in domains with lateral periodic boundary con-
ditions. However, here the wind structure can be located any-
where in the domain since it is not kept in place by sidewalls.
To extract the wind, symmetry-accounted ensemble averag-
ing is used �14�, which aligns the wind structure in different
realizations before averaging. In this way a wind structure
can be identified unambiguously for these domains, by which
a decomposition into wind and fluctuations becomes pos-
sible. The resulting average velocity and temperature �three-

dimensional fields� are denoted, respectively, by ũi and �̃.
The tildes are used to distinguish the conditional average

from the standard �long-time, ensemble, or plane� average X̄,
which is a function of z only. The symmetry-accounted av-
erage can be interpreted exactly as classical Reynolds-
averaged results. For further details we refer to the accom-
panying paper �9�.

III. RESULTS

A. Boundary layer thickness

The thicknesses of the hydrodynamic and thermal bound-
ary layers as a function of Ra are shown in Fig. 1. Here, �u
and �� are defined as the location of the maximum of the
mean squared horizontal velocity fluctuations u�u� and mean
squared temperature fluctuations ����, respectively. The
approximate power laws are �u=0.5Ra−0.13 and ��

=2.33Ra−0.27, respectively, in good agreement with other
simulations �4� and reasonable agreement with experiments
�2� �despite differences in aspect ratio, geometry, and bound-
ary conditions�.

Also shown in Fig. 1 are the predictions of the boundary
layer thickness �1� and �2� from the Grossmann-Lohse �G-L�
theory �1�, together with the DNS results. The thermal
boundary layer thickness �� is in good agreement with the
simulations. The width of the kinematic boundary layer �u
does not agree so well with the G-L theory, as the actual
exponent is −0.13 instead of −0.25 �where we have assumed
free-fall scaling Re�Ra1/2 for simplicity�.

Below we briefly recapitulate the arguments of �7� leading
to �2�. The starting point is the laminar two-dimensional
Prandtl boundary layer equation �6,15�

u�xu + w�zu = ��z
2u . �3�

Upon substituting x→Hx, z→HRe−1/2z, u→Uu, and w
→URe−1/2w, the equations become parameter independent
as

u�xu + w�zu = �z
2u . �4�

Neither this expression, nor the incompressibility conditions,
nor the boundary conditions have an explicit dependence on
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Re, so the solution has to be independent of Re as well.
Therefore, the flow pattern undergoes a similarity transfor-
mation, and the boundary layer thickness scales as �u /H
�Re−1/2. This result is rigorous, provided that �3� holds, i.e.,
that turbulent stresses do not play a role in the momentum
budget. In Sec. III E we show that forcing due to Reynolds
stresses cannot be neglected for the boundary layer equations
so that the laminarity assumption does not hold.

B. Velocity profiles

The characteristic shape of the velocity profile can be ob-
tained from the plane-averaged horizontal average velocity
as u�z���	ũũ
A. Figure 2�a� shows these profiles for various
Ra in plus units, i.e., scaled by the friction velocity
u����w / with u+=u /u� and z+=zu� /�. Here, we define a
typical wall shear stress �w as

�w = ��z��	ũũ
A�w. �5�

In Fig. 2�a�, the viscous sublayer relation u+=z+ is shown
with a dashed line, and logarithmic scaling of the velocity
profile results in a straight line. For a classical turbulent
channel flow and constant-pressure boundary layer, the vis-
cous region ends at y+=5, the logarithmic layer starts from
y+�30, and the profiles will collapse onto a single universal
curve for all Re. Here the situation is completely different.
First, in plus coordinates the profiles do not collapse onto a
single curve. Furthermore, the viscous region ends at ap-
proximately z+=1, and the velocity reaches its maximum at
z+�10 at Ra=107. A region where the velocity scales loga-

rithmically cannot be distinguished, indicating the absence of
an inner �constant-stress� layer.

Shown in Fig. 2�b� is the velocity profile normalized by
the outer variables, i.e., the boundary layer thickness �u and
the maximum velocity umax�u��u�. Although the profiles
show that there is a Ra dependence, it is very weak. The
weak influence of the Ra number—especially for the two
lower Ra numbers considered—is further evidence that the
kinematic boundary layer does not behave as a classical
forced turbulent boundary layer. Note that the approximate
universality of the velocity profiles means that inner and
outer variables can be interchanged, in the sense that �z�u�w
�umax /�u.

Several experiments have shown universality in Ra upon
an outer scaling by boundary layer thickness and maximum
velocity �2,16,17�, so it is quite interesting that the boundary
layer profile found here �Fig. 2�b�� has a �small� Ra depen-
dence. There may be several reasons for this difference. The
experiments have been carried out at much higher Ra, in the
range Ra=2�108–9�109, and at higher Pr �the working
fluid was water�. Furthermore, the presence of sidewalls and
the smaller aspect ratio will be of influence.

It is useful to express the shear Reynolds number in terms
of Re, �u, and the nondimensional velocity gradient at the
wall. Let the outer scaled variables be denoted by ẑ�z /�u
and û�u /umax. The nondimensional velocity gradient at the
wall is connected to the wall-shear stress by �w
=�umax�u

−1�ẑ�û�w, where �ẑ�û�w is the nondimensional veloc-
ity gradient at the wall. Hence, the shear Reynolds number
can be expressed as

Re� = Re1/2�u

H
�−1/2

��ẑ�û�w�1/2. �6�

All three terms Re, �u, and �ẑ�û�w depend on Ra, although the
Ra dependence of the last term is very weak as �ẑ�û�w
�Ra0.06.

C. Friction and shape factors

The friction and shape factors �e.g., �6,15�� have been
calculated for all three Ra �Table I�. The friction factor is
defined as

Cf =
�w

1
2umax

2 = 2
Re�

2

Re2 . �7�

Here we note that combining �6� and �7� and neglecting the
small Ra dependence of the wall gradient �ẑ�û�w gives that Cf
can be approximated by
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FIG. 2. Horizontal boundary layer velocity profile based on
�	ũũ
A for various Ra. �a� Semilogarithmic plot, nondimensional-
ized with friction velocity u�. Dashed line represents u+=z+; �b�
normalized by the maximum velocity umax and the kinematic
boundary layer thickness �u.

TABLE I. Characteristic numbers for the boundary layer profile
at various Ra: the shear Reynolds number Re�, the shape factor S,
and the friction coefficient Cf.

Ra Re� Cf S

1.15�105 26 1.02 2.37

1.00�106 52 0.51 2.35

1.00�107 119 0.23 2.27
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Cf �
2

Re
�u

H
�−1

. �8�

This is consistent with the approximation �w��U /�u, which
is an important assumption in the Grossmann-Lohse theory
�1�. The observation �8� will prove to be important to estab-
lish the scaling of �u /H in Sec. IV.

Based on the values of Table I and in terms of Re, the
friction factor Cf scales as Cf �Re−0.60. An empirical relation
for turbulent plane channel flow is Cf =0.073Re−0.25, with Re
based on the channel half-width and mean velocity across the
channel �18�. The friction factor of laminar boundary layers
has a stronger dependence on Re; for plane Poiseuille flow
Cf =8 /Re �Re based on full channel height� and for the Bla-
sius flat plate flow Cf =0.664Rex

−1/2. Hence, judging from the
scaling of the friction factor, the behavior of the boundary
layer would be classified as laminar. These results are con-
sistent with �10–12�.

The shape factor S is defined as S=�1 /�2, where �1 and �2
are the displacement and momentum thickness, given by

�1 = �
0

�u 1 −
u

umax
�dz ,

�2 = �
0

�u u

umax
1 −

u

umax
�dz .

For laminar profiles, such as Poiseuille flow and the Blasius
solution for the developing flow over a flat plate, the shape
factor is approximately 2.5 �e.g., �6,15��. For turbulent plane
channel flow, flat-plate constant-pressure boundary layers,
and a plane turbulent wall jet �19�, the shape factor is ap-
proximately 1.3–1.4. Based on this information, the values
from Table I indicate that the velocity profile follows a lami-
narlike distribution with a slight trend toward turbulent val-
ues as Ra increases.

If the shape and friction factors were taken to be repre-
sentative to distinguish a laminar from a turbulent boundary
layer, the boundary layer would be classified as laminar. In
the next sections we will study the momentum budgets of the
boundary layers, and compare the time and space spectra of
the boundary layer and the bulk. It will be shown that, from
this perspective, the kinematic boundary layer has many fea-
tures of turbulence.

D. Fluctuations and spectra

In Figs. 3�a�–3�c� the average velocity profile 	ũ
y /umax is
shown for Ra=1.15�105 , 106, and 107, together with the
turbulence intensity of the horizontal and vertical fluctua-

tions, 	u�u�˜
y
1/2 /umax and 	w�w�˜
y

1/2 /umax, respectively. These
are the profiles of the y-averaged wind structure �see Fig. 4�,
with the x location chosen such that the horizontal velocity is
at its maximum, i.e., where the flow is parallel to the wall
and from left to right. A striking feature of the turbulence
intensity of the horizontal fluctuations is that it is so large
compared to the mean wind, namely, 70–80 %. For turbulent
channel flow, typical turbulence intensities are 5–10 %. Out-
side the thermal boundary layer the horizontal turbulence

intensity is constant. The vertical turbulence intensity is not
as large as the horizontal due to wall blocking, but is still
20% at the edge of the thermal boundary layer, and 50% at
the edge of the kinematic boundary layer. This confirms that
fluctuations in large-aspect-ratio domains are larger relative
to the wind �20�, in comparison with those in small-aspect-
ratio domains �e.g., �2� reports turbulence intensities of
20%�.
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FIG. 3. Closeup of horizontal velocity and turbulence intensities
�legend in �b�� at the position with the maximum horizontal veloc-
ity. Ra= �a� 1.15�105, �b� 1.00�106, and �c� 1.00�107. The
horizontal dashed line indicates the edge of the thermal boundary
layer ��.

FIG. 4. y-averaged wind structure at Ra=106 and Pr=1. Color

scheme is by the relative temperature �r=�̃− 	�̃
A. Dark areas are
relatively cold, and white areas are relatively hot.
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One of the main features of turbulence is the presence of
a continuous range of active scales. A simulation at Ra
=107 is used to obtain both spatial and temporal spectra of
the horizontal velocity components. To collect temporal
spectra, eight points have been monitored: four bulk and four
boundary layer points. The bulk points are taken at zbulk
=H /2 and the boundary layer points were chosen according
to zbl=�u. The temporal spectra are generated by segmenting
the time series and a Welch window has been used. Then,
averaging was performed over the spectra of the two hori-
zontal velocity components and the four monitoring points.
The spatial spectra were collected by performing a two di-
mensional fast Fourier transform �FFT�, integrating over
circles kx

2+ky
2=k2, and averaging over approximately ten

turnovers.
The temporal spectra of the horizontal velocity compo-

nents at Ra=107 are shown in Fig. 5�a�. There is a continu-
ous range of active scales which spans about two decades,
although turbulence production and dissipation are not suffi-
ciently separated to form a clearly discernible inertial sub-
range. The spatial spectra �Fig. 5�b�� also reveal a continuous
range of active scales.

What is striking about the spectra of the bulk and the
boundary layer is how similar they are, both in range of
active scales and in amplitude. Despite a mild damping at the
intermediate frequencies and wave numbers, the similarity
indicates that the dynamics of the bulk and the boundary
layer—both temporal and spatial—are very similar. We note
that the simulation at Ra=107 is well inside the hard-
turbulence regime. The transition to hard turbulence occurs
at much lower Ra for large-aspect-ratio domains than the
generally accepted value of Ra=4�107 �21�. Indeed, for
aspect-ratio-6 domains, the flow has hard-turbulence regime

scaling from Ra=5�104 upwards �4�. If one accepts that the
flow core is turbulent, then Fig. 5 indicates that the boundary
layers are turbulent as well.

The striking similarity between the spectra in the bulk and
the boundary layers seems to be a robust and general feature
of Rayleigh-Bénard convection. In a recent paper �13�, we
present combined experimental and numerical results of an
aspect-ratio-4 cavity filled with water for Rayleigh numbers
ranging from 5�104 to 109. For all Ra from 106 upward, it is
found that the spectra in the bulk and the boundary layer are
practically identical.

E. Momentum budgets

Momentum budgets are a very direct way to get an im-
pression of the importance of the turbulent Reynolds
stresses. As before, y-averaged results �Fig. 4� are used for
convenience of presentation. Checks have been made to en-
sure that the budgets shown here are also representative for
the three-dimensional field. The x location has been chosen
such that the horizontal velocity is at its maximum, i.e.,
where the flow is parallel to the wall and from left to right.
This guarantees that horizontal gradients are small, and that
no adverse or favorable pressure gradients are present.
Shown are budgets for Ra=1.15�105 �Figs. 6�a�, 6�d�, and
6�g��, 1.00�106 �Figs. 6�b�, 6�e�, and 6�h��, and 1.00�107

�Figs. 6�c�, 6�f�, and 6�i��. The budgets for the horizontal
�Figs. 6�a�–6�c��� and vertical momentum �Figs. 6�d�–6�f���
have been nondimensionalized by U2 /H=�g��, and the
heat budget �Figs. 6�g�–6�i�� by ��U /H=��g����3 /H.
The legend for the budgets is shown in Fig. 6�e� and the
budget terms are defined in Table II. The z coordinate has
been scaled by �u and the horizontal dashed line denotes z
=��. For reference, the ratio �� /�u is 0.8, 0.6, and 0.38 for
the simulations at Ra=105, 106, and 107, respectively.

For the horizontal momentum budgets �Figs. 6�a�–6�c��,
the balance is between the horizontal pressure gradient P and
diffusion D for z���. Outside the thermal boundary layer,
R is not negligible; on the contrary, R fully balances the
pressure gradient P near z=�u. This indicates that the turbu-
lence outside the thermal boundary layer is key to the bound-
ary layer thickness, as will be outlined in Sec. VI. As the
location of the budgets has been chosen such that all hori-

zontal derivatives are small, D���z
2ũ and R�−�zw�u�˜.

Logarithmic scaling is expected in the inner layer where

w�u�˜ is constant, so that R=−�zw�u�˜=0. For channel flow,
R is zero at the wall and peaks in the buffer layer, marking
the transport of momentum from the outer to the inner layer.
After the peak, it crosses the zero axis where the logarithmic
layer is expected. This behavior of R is absent for Ra
=1.15�105, but as Ra increases a peak forms inside the
thermal boundary layer �Figs. 6�a�–6�c��. However, in terms
of forcing, P is always much larger than the small peak R
for the range of Ra under consideration, which again con-
firms that this is not a classical forced turbulent boundary
layer.

Figures 6�d�–6�f� show the budgets of the w̃ momentum
equation. Here the balance is between buoyancy B, the ver-
tical pressure gradient P, and the Reynolds stresses R=
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FIG. 5. Spectra of the horizontal velocity components in the
boundary layer and in the bulk at Ra=107 normalized by the bulk
variance: �a� temporal and �b� spatial spectrum.
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−�zw�w�˜. Very near the wall, roughly in the lower half of the
thermal boundary layer, the buoyancy B and pressure P are
in balance, so the flow is neutrally buoyant here. Further
away from the wall, at the edge of the thermal boundary
layer, the contribution of R is significant, even if it may
seem small compared to the near-wall �hydrostatic� balance
of P and B. In fact, comparing R of the vertical momentum
equation to the magnitude of terms in the horizontal momen-
tum equation shows that it is of the same magnitude as −�xp̃.
Outside the boundary layer, the pressure gradient P is posi-

tive and is balanced purely by fluctuations R.
The �̃ momentum budgets �Figs. 6�h� and 6�i�� show a

balance between thermal diffusion D=��z
2�̃, turbulence R

=−�zw���˜, and a contribution from advection A. Judging
from the peak of A around z /�u=1, the nonzero contribution
of A to the heat budget is probably caused by some spatial

variations in �̃ by which �xũ�̃�0. The peak of D and R is
always located just inside the thermal boundary layer, repre-
senting the location where diffusion and fluctuations most
effectively exchange heat.

It is striking that the dominant length scale for the budgets
is the thermal boundary layer thickness �� �which is denoted
by the horizontal dashed line in Fig. 6�, and not, as one may
expect, the kinematic boundary layer thickness. Perhaps this
should not be too much of a surprise, as the thermal bound-
ary layer thickness can be well represented by ��

=H / �2Nu�, and the Nusselt number Nu represents the effi-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. Momentum and heat budgets in the boundary layer at the position with the maximum horizontal velocity for various Ra: Ra

= �a� , �d� , �g� 1.15�105; �b�,�e�,�h� 1.00�106; �c�,�f�,�i� Ra=1.00�107. �a�,�b�,�c� ũ and �d�,�e�,�f� w̃ momentum budget; �g�,�h�,�i� �̃
budget. The legend for �a�–�i� is shown in �e� and the horizontal dashed line indicates the edge of the thermal boundary layer z=��.

TABLE II. Budget terms for momentum and heat equation.

A D P B R

�tũi= −� jũjũi +�� j
2ũi −�ip̃ +�g�̃�i3 −� juj�ui�

˜

�t�̃= −� jũj�̃ +�� j
2�̃ −� juj���˜
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ciency of the convective heat transfer mechanism of the flow,
resulting from the nonlinear coupling of temperature and ve-
locity under the action of buoyancy. Therefore, �� is equally
important for the heat budget and for the momentum bud-
gets. In fact, �� is a dominant parameter in the scaling of
both Cf and �u, as will be shown in Sec. IV.

The findings of Figs. 6�a�–6�i� can be summarized as fol-

lows for the ũ, w̃, and �̃ budgets, respectively:

�xp̃ + �zw�u�˜ = ��z
2ũ , �9�

�zp̃ + �zw�w�˜ = �g�̃ , �10�

�zw���˜ = ��z
2�̃ . �11�

These equations represent the boundary layer equations at
the x location where the flow is parallel to the wall and
horizontal derivatives are negligible �roughly halfway be-
tween the impingement and detachment region�. Note that,
even though the w̃ momentum equation is not directly
coupled to the other two equations, the vertical fluctuations

w�w�˜ are nontrivially coupled to w�u�˜ and w���˜, as these
terms represent to a large extent the plumes emerging from
and impinging on the boundary layers. The equations above
are two dimensional, but from the absence of transversal
derivatives, it can be expected that these equations are valid
for the three-dimensional case as well, in a local coordinate
system aligned with the flow and at the location where the
flow is parallel to the wall.

The boundary layer equation �9� clearly shows that one
cannot neglect the influence of turbulence in the boundary
layer dynamics. Hence, the laminar boundary layer equation
�3�, which leads to the scaling �u /H�Re−1/2, is not valid:

additional information is required about w�u�˜ to estimate �u.
In Sec. IV, the scaling behavior of �u will be derived using
flow-specific information obtained from the DNS results.

F. The friction factor decomposed

By using the boundary layer equation �9�, the dominant
contributor to the friction factor can be identified. Integrating
�9� over the kinematic boundary layer and substituting �7�,
the friction factor Cf is composed of a contribution from
pressure and a turbulent momentum flux as

Cf

2
=

1

umax
2 �

0

�u

�P + R�dz = −
1

umax
2 �

0

�u

�xp dz −
�w�u�˜��u

umax
2 .

�12�

The terms on the right-hand side of �12� have been calcu-
lated with the DNS results and are presented in Table III
�25�. The decomposition clearly demonstrates that Cf is
dominated by the pressure gradient. The turbulent momen-

tum flux w�u�˜ is small but positive, i.e., a flux out of the
boundary layer. Hence, we conclude that the dynamics of the
wall friction is not governed by turbulence �i.e., Reynolds
stress� as in a forced turbulent boundary layer. In the latter,
Cf is dominated by a large momentum flux into the boundary

layer, while the contribution of the pressure gradient is neg-
ligible.

Using �12�, Cf can be parametrized. Shown in Fig. 7 is the

effective forcing P+R=−�xp̃−�zw�u�˜. To first order, for z
���, P+R�P while for z��� the Reynolds stress forcing
R balances the pressure P to that P+R�0. Hence, Cf can
be estimated via

Cf �
1

umax
2 �

0

��

P dz �
2��

umax
2 ���xp�w� . �13�

Clearly, �13� holds at moderate Ra only, when turbulent
shear production in the boundary layer is small. The forma-
tion of the peak inside the thermal boundary layer at Ra
=106 and 107 �Fig. 7� suggests that shear production be-
comes more important as Ra increases, and this will have to
be accounted for in �13� at higher Ra. However, it was shown
in the accompanying paper �9� that the wind velocity be-
comes independent of Cf at sufficiently high Ra, because Cf
is negligible compared to the mixing parameter �. Therefore,
incorrect scaling behavior in �13� will not influence the wind
dynamics at high Ra.

IV. SCALING OF Cf AND �u

Using the simple two-equation wind model derived in the
accompanying paper �9�, we can establish the scaling behav-
ior of Cf and �u. The model uses a dimensionless wind ve-

locity Ûw=Uw /Uf and spatial temperature difference �̂w

=�w /��, where Uf =��g��H is the free-fall velocity. The
governing equations of the model are given by

dÛw

dt̂
=

2L̂w
2

2L̂w
2 + 1

 1

2L̂w

�̂w − �4� + Cf��Ûw�Ûw� , �14�

TABLE III. Decomposition of the friction factor Cf according to
�12�.

Ra Cf= −�2 /umax
2 ��0

�u�xp dz −2�w�u�˜��u
/umax

2

105 0.81 0.88 −0.07

106 0.39 0.42 −0.03

107 0.17 0.19 −0.02

0

1

2

3

4

0 0.025 0.05 0.075 0.1

P + R

z
/
λ

Θ

Ra = 105

Ra = 106

Ra = 107

FIG. 7. Effective forcing P+R=−�xp̃−�zw�u�˜, which vanishes
quickly outside the thermal boundary layer.
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d�̂w

dt̂
=

2�̂�

L̂w

Ûw −
4�

L̂w
2 PrT

�Ûw��̂w −
2

�̂�RefPr
�̂w. �15�

Here L̂w=Lw /H where Lw is the typical roll size, �̂�=�� /H,

�̂u=�u /H, and Ref =UfH /�=Ra1/2Pr−1/2. The turbulent
Prandtl number PrT and the mixing parameter � are coeffi-

cients with values 0.85 �6� and 0.6, respectively. The pres-
sure difference which drives the wind is generated by a spa-
tial temperature difference �w �it is relatively hot where the
flow ascends and relatively cold where it descends; see Fig.
4�. The temperature difference �w is in its turn generated by
large horizontal heat fluxes originating from the interaction
between the mean wind and temperature field. The model

depends on Ra, Pr, and L̂w, where �̂�= �̂��Ra,Pr� and Cf
=Cf�Ra,Pr� have to be provided. Based on the analysis of
the friction factor �Sec. III F�, an explicit expression for Cf
can be derived, by which the model depends only on empiri-

cal input for �̂� �and thus Nu�.
The steady state estimate for the pressure gradient at the

bottom wall of the wind model is �9�

− �x�p̃�w �
�gH

Lw
�w. �16�

Using �16�, Cf �13� can be further specified as

Cf �
2��

H

H

Lw

Uf
2

Uw
2

��w�
��

=
2�̂���̂w�

L̂wÛw
2

. �17�

Hence, the wall friction term is linear in the temperature
difference,

Cf�Ûw�Ûw =
2�̂�

L̂w

�̂w. �18�

Here, we assumed that sgn Ûw=sgn �̂w. With �18�, the em-
pirical specification of Cf�Ra,Pr� is no longer necessary, and
the model is given by

dÛw

dt̂
=

2L̂w
2

2L̂w
2 + 1

1 − 4�̂�

2L̂w

�̂w − 4��Ûw�Ûw� , �19�

d�̂w

dt̂
=

2�̂�

L̂w

Ûw −
4�

L̂w
2 PrT

�Ûw��̂w −
2

�̂�RefPr
�̂w. �20�

The steady state solution of the model as a function of Ra is
shown in Fig. 8. At this point, the only empirical data used in
the model is the roll size Lw and the power law for �� and
the roll size Lw. The mixing parameter � is kept at the same
value as in �9�, namely, 0.6. As can be seen, the model cap-

tures the trends of Ûw, �̂w, and Cf satisfactorily. Note that
the profiles could be made to match quantitatively as well if
some additional coefficients were introduced. However, the
focus of this paper is not to develop a carefully tuned model,
but to elicit general scaling behavior.

It is not very useful to have an expression for Cf in terms

of �̂w, as this quantity is rarely measured. However, by using

the steady state solution of �19�, �̂ can be expressed in terms

of Ûw as

10−1

10−2

10−3

1010109108107106105104

Ra

Û
w

(a)

10−1

10−2

10−3

1010109108107106105104

Ra

Θ̂
w

(b)

100

10−1

10−2

1010109108107106105104

Ra

C
f

(c)

100

10−1

10−2

1010109108107106105104

Ra

λ̂
u

(d)

FIG. 8. Predictions of the wind model �Eqs. �19� and �20�, thick
lines� compared to the DNS results �diamonds� for �a� the typical

wind Ûw, �b� the spatial temperature difference �̂w, �c� the friction
factor Cf, and �d� the kinematic boundary layer thickness �u.
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�̂w =
8�L̂w

1 − 4�̂�

�Ûw�Ûw, �21�

so that the �̂w dependence of Cf can be eliminated. Using
�18� and �21�, Cf is given by

Cf �
16�

1 − 4�̂�

�̂�. �22�

Hence, when �̂��1, the model predicts that Cf ��̂�. Note
that the �� term in the denominator represents the effects of

wall friction. Hence, when �̂��1, Cf scales independently
of wall effects. It is the turbulence in the outer flow which
fully determines the velocity at the edge of the boundary
layer.

A scaling relation for �u can be derived by using the two
different expressions for Cf, �8� and �17�. This results in

2Re−1�u

H
�−1

=
2�̂���̂w�

L̂wÛw
2

.

Using Re= �Ûw�Ref, �̂u is approximated by

�̂u �
L̂w�Ûw�

�̂���̂w�Ref

�23�

Dropping the absolute signs and using �21�, �̂u is given by

�̂u �
1 − 4�̂�

8��̂�ÛwRef

=
1 − 4�̂�

8�

1

�̂�Re
. �24�

Upon assuming that �̂��1, it follows that �̂u scales as �̂u

��̂�
−1Re−1. Figure 8�d� shows the prediction of the wind

model for �u. Although the boundary layer thickness is un-
derpredicted, the trend is in agreement with the DNS data.
Given the simplicity �with only one calibration parameter ��,
the model captures the trends of wind velocity, spatial tem-
perature difference, friction factor, and kinematic boundary
layer thickness satisfactorily.

V. TURBULENT OR NOT?

The apparently contradictory findings reported in the pre-
vious sections are quite intriguing. On the one hand, the
results indicate that the kinematic boundary layer is turbu-
lent. The deduced boundary layer equation �9� shows that
forcing due to turbulent Reynolds stresses is significant, in
particular outside the thermal boundary layer. Furthermore,
the spectra in the bulk and in the boundary layers are nearly
indistinguishable and show the existence of a continuous
range of active scales in both space and time. Both are an
indication of turbulence.

On the other hand, the results suggest that the kinematic
boundary layer does not correspond to a classical turbulent
boundary layer. The Reynolds numbers in the Ra range we
consider �Re�1500 at Ra=108� are generally considered too
low to sustain turbulence. Moreover, the friction factor Cf for

a classical forced boundary layer has a weak dependence on
Re �reflecting the quadratic wall friction�, and is dominated
by the turbulent momentum flux from the free stream. For
the boundary layers under consideration, the dominant con-
tributor to Cf is the pressure gradient �Sec. III F� and not the
momentum flux. Consequently, Cf has a significant Re de-
pendence. The near-universal profiles �found in the present
work especially for the two lower Ra numbers� as a function
of Ra based on the outer variables �u and ũmax �Fig. 2� are
further evidence against a classical turbulent boundary layer:
a turbulent boundary layer by definition cannot be univer-
sally scaled by outer variables.

The difference between classical forced turbulence
boundary layers and a boundary layer of Rayleigh-Bénard
convection may be best characterized by the way the turbu-
lence is produced and redistributed. For forced flow cases,
turbulence cannot be maintained at low Re, as the dissipation
in the boundary layer will be stronger than the production.
However, for Rayleigh-Bénard convection, the production
and transport of turbulent kinetic energy �TKE� are not con-
fined to the inner layer alone. Instead, TKE is produced in
the bulk, where it is partially dissipated. The surplus is trans-
ported to the boundary layer by pressure velocity fluctuations
�see also �22��. Therefore, there is no local equilibrium be-
tween production and dissipation, and turbulence can be
maintained in the boundary layers below the critical Re. At
sufficiently high Ra, instabilities due to shear can be ex-
pected to maintain themselves, and several experiments and
simulations show such a transition around Ra=1011

�11,12,23�.
A simple explanation for the laminarlike scaling of clas-

sical integral boundary layer parameters may be that the
forcing in the wall-parallel direction is very weak compared
to the forcing in the wall-normal direction �plume impinge-
ment and detachment�. Indeed, the forcing in the vertical
direction is the direct result of buoyancy, while the pressure
gradient in the horizontal direction forms is due to large-
scale differences in mean temperature. This can be made
explicit by considering the ratio of the forcing in the wall-
normal direction �buoyancy� and wall-parallel direction �16�,
which is given by

�g��

�gHLw
−1�w

= L̂w�̂w
−1. �25�

At Ra=105, this ratio is approximately 50, and at Ra=107,
the ratio is approximately 100. Thus, the boundary layers
under consideration here are forced primarily in the wall-
normal direction, and the force generating the wind is rela-
tively weak.

Despite the laminarlike scaling of the integral parameters,
a parallel can be drawn with a fully developed forced bound-
ary layer: both have a viscous sublayer dominated by viscos-
ity which suppresses instabilities and prevents their growth
and development of turbulence. However, as demonstrated
by seminal experiments in the 1960s �24�, despite linear ve-
locity variation, the flow within the sublayer in a forced
boundary layer is not laminar, but accompanied by consider-
able irregular fluctuations, streaks, and other structures. One
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can argue that the same dynamics occur in the boundary
layers of Rayleigh-Bénard convection. In particular, Figs.
6�a�–6�c� indicate that the thermal boundary layer 0�z
��� functions as a viscous sublayer, and the region ���z
��u as a crossover region between the exterior flow and the
thermal boundary layer. The absence of a constant-stress
layer dominated by the turbulent momentum flux suppresses
the logarithmic region and marks a fundamental difference
from forced turbulent boundary layers.

VI. CONCLUSIONS

The aim of this paper has been to study the boundary
layers that develop under the joint action of plumes and wind
in Rayleigh-Bénard convection at the top and bottom plates.
Direct numerical simulation was used for simulations at Ra
= �105 ,106 ,107 ,108� and Pr=1 for 	=4 aspect-ratio domains
with periodic side boundary conditions. For each Ra, ten
independent simulations were carried out, resulting in ap-
proximately 400 independent realizations per Ra. Processing
the results using symmetry-accounting ensemble averaging
made it possible to retain the wind structure, which would
normally cancel out due to the translational invariance of the
system.

The importance of Reynolds stresses in the boundary lay-
ers, as well as the temporal and spatial spectra, indicate un-
doubtedly a turbulent character of the boundary layer. How-
ever, the behavior is rather different from classical forced
boundary layers, as can be judged from the laminarlike scal-
ing of the classical integral boundary layer parameters. In-
deed, viscous effects play an important role within the ther-

mal boundary layer, and a large turbulent momentum flux
from the external stream is absent. This difference is prob-
ably caused by the fact that the turbulence inside the kine-
matic boundary layer of Rayleigh-Bénard convection origi-
nates from the bulk, whereas classical forced boundary
layers are in a local equilibrium between production and dis-
sipation of turbulent kinetic energy.

Due to the importance of Reynolds stresses in the bound-
ary layer, the arguments underpinning the kinematic bound-
ary layer scaling �u /H�Re−1/2 do not hold. Using the DNS
results and a conceptual wind model �9�, explicit expressions
for Cf and �u were derived. It was found that the friction
factor should scale proportionally to the thermal boundary
layer thickness as Cf ��� /H. The kinematic boundary layer
thickness scales inversely proportionally to the thermal
boundary layer thickness and the Reynolds number as
�u /H�Re−1��� /H�−1. The predicted trends for Cf and �u are
in agreement with the DNS results.

With the closure for Cf, the model �19� and �20� depends
solely on empirical input for ��, and predicts the wind Rey-
nolds number Re, friction factor Cf, and kinematic boundary
layer thickness �u.
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