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Abstract: Perovskite materials have gained a lot of interest in solid oxide fuel cell (SOFC) applications
owing to their exceptional properties; however, ideal perovskites exhibit proton conduction due
to availability of low oxygen vacancies, which limit their application as SOFC electrolytes. In the
current project, Sm was doped at the B-site of a BaCe0.7-xSmxZr0.2Y0.1O3-δ perovskite electrolyte for
intermediate-temperature solid oxide fuel cells (IT-SOFCs). BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolytes
were synthesized through a cost-effective coprecipitation method and were sintered at a low sin-
tering temperature. The effects of samarium (Sm) doping on the electrochemical performance of
BaCe0.7-xSmxZr0.2Y0.1O3-δ were investigated. X-ray diffraction (XRD) analysis confirmed that the
BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte material retained the perovskite structure. The secondary
phase of Sm2O3 was observed for BaCe0.4Sm0.3Zr0.2Y0.1O3-δ. Scanning electron microscopic (SEM)
imaging displayed the dense microstructure for all the compositions, while prominent crystal growth
was observed for composition x = 0.3. The formation of the perovskite structure and the presence of
the hydroxyl groups of metal oxides for all the compositions were confirmed by Fourier transform
infrared spectroscopy (FTIR). An increased symmetrical disturbance was also observed for the in-
creased doping ratio of the Sm. Thermogravimetric analysis (TGA) of all the compositions showed no
major weight loss in the SOFC operating temperature range. It was also noted that the conductivity
of BaCe0.7-xSmxZr0.2Y0.1O3-δ gradually decreased with the increased contents of the Sm metal. The
maximum power density of 390 mW cm−2, and an open-circuit voltage (OCV) of 1.0 V at 600 ◦C,
were obtained, showing that BaCe0.7-xSmxZr0.2Y0.1O3-δ, synthesized by a cost-effective method and
sintered at a low temperature, can be used as a proton-conducting electrolyte for IT-SOFCs.

Keywords: perovskite; electrolyte; coprecipitation; composite; SOFC

1. Introduction

During the last decade, the energy demand increased exponentially because of world-
wide economic developments and rapid industrial growth. The developed countries are
fulfilling their energy needs through nonrenewable sources, such as fossil fuels, coal,
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gas, etc. However, natural resources are depleting rapidly. The increased utilization of
conventional energy sources is also causing global warming because of the emission of
harmful gases, such as CO2, into the atmosphere [1–3]. Therefore, the most critical and
urgent concern for engineers and scientists is to find renewable energy sources that can
overcome these problems. Renewable energy sources are preferred because of their low
cost and environment-friendly aspects. Fuel cells are preferred among different energy
sources because of their high efficiency, durability, fuel flexibility, and eco-friendly nature.
Moreover, they are considered advantageous because of their reliability, longer lifetime,
cost-effectiveness, low noise, and zero air pollution [4–7]. In SOFCs, the electrolytes have
a vital role in the cell performance because of their high ionic and protonic conductivity.
Many materials cannot fulfill the requirements that are necessary for SOFCs electrolyte,
at high operating temperatures, but they can be used for low operating temperatures
through modifications [8–11].

The proton-conducting electrolyte has gained a lot of importance because of its low
activation energy and high conductivity. Perovskite structure materials are mostly proton-
conducting electrolytes. The chemical formula for perovskite is ABO3, where A and B are
the cations of metal-oxide, with charges of +2 or +3, and +4 or +3, respectively. The size
of the O-site anion is analogous to the A-cation. Barium-based perovskite materials are
preferred because of their high ionic conductivity and oxygen storage capacity compared to
barium zirconate. The protonic conductivity of these materials, when doped with different
rare earth elements and transition metals, can be enhanced [12,13].

The perfect ABO3 perovskites (A = Ca, Ba, Sr; B = Ce, Zr) have low oxygen vacancies
and, therefore, have low proton conduction. The B site doping can increase the oxy-
gen vacancies within lattices becauseof the charge compensation associated with higher
structural distortion. The Goldschmidt tolerance factor (t) is a far and wide accepted
criterion for the perovskite structure, and an ideal cubic perovskite structure exhibits
t = 1. However, many perovskite materials deviate from the ideal structure and exhibit
disordered structures upon doping [14]. The dopant concentration also changes the mi-
crostructure, ionic conductivity, and thermal stability of electrolytes. The ionic conductivity
of perovskite materials also depends on the charge carrier concentration, activation energy,
the trapping effect between the host and dopant, lattice expansion or lattice distortion,
grain size and grain boundary, etc. [15–17]. Researchers have reported that a yttrium-doped
barium cerium zirconate (BCZY) proton-conducting electrolyte showed high stability and
good proton conductivity, among other materials. When rare earth elements are doped
with a trivalent cation, such as samarium, yttrium, gadolinium, neodymium, etc., it pro-
duces enough oxygen ion vacancies in the perovskites structure, which increases the
proton conductivity [18–20].

Samarium, as a dopant in barium-cerate-type materials, is used to improve the ionic
conductivity and becomes highly proton-conductive under the influence of a hydrogen
atmosphere [21]. It has also been reported that an appropriate dopant level of samarium
is necessary because the high doping ratio of Sm increases the lattice distortion [22].
Mostly, the lanthanide materials in the perovskite structure partition over the A and B sites,
which decreases the oxygen vacancies and, therefore, ionic conductivity decreases [23]. It is
also reported that doping in a barium cerate proton-conducting electrolyte leads to larger
grain sizes and reduces the contribution of ions to the facial area [24].

K. Lee et. al. fabricated SOFC cells having a spin-coated BaCe0.6Zr0.2Y0.2O3-δ proton-
conducting electrolyte, using NiO as a sintering aid. The fabricated SOFC exhibited
a maximum power density of 106.6 mWcm−2 at 800 ◦C, using humidified H2 (3% H2O) [25].
Zhijun et. al. investigatedthe effects of Ni and Fe additives on BaCe0Zr0.1Y0.2O3-δ and
attained a power density of 120 mWcm−2 at 450 ◦C using humidified H2 (3% H2O) [26].
The researchers reported a power density of 410 mWcm−2 for a BaCe0.7XZr00.1Y0.2-xO3
proton-conducting electrolyte synthesized by the solid-state reactive method, with hu-
midified H2 (5% H2O) at 600 ◦C [22]. Amir et.al. fabricated a tubular fuel cell using
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a BaZr0.1Ce0.7Y0.1Yb0.1O3 electrolyte (25 µm thickness) and attained a power density of
331 mWcm−2 at 600 ◦C using humidified H2 (3% H2O) [27].

This work is also an effort to investigate BaCe0.7-xSmxZr0.2Y0.1O3-δ as a stoichiometric
material with the doping of Sm through the coprecipitation method. The objective of this
project was to increase the conductivity of BaCe0.7-xSmxZr0.2Y0.1O3-δ by increasing the
oxygen vacancies with Sm doping, while retaining the perovskite structure using a cost-
and time-effective synthesis route. The coprecipitation method was adapted to synthesize
the fine BaCe0.7-xSmxZr0.2Y0.1O3-δ powder materials, which were then sintered at a lower
temperature than the reported temperatures. The synthesized BaCe0.7-xSmxZr0.2Y0.1O3-δ
retained its perovskite structure upon Sm doping, and increased conductivity was obtained.
Under the possible parameters of the synthesis and measurements, the role of Sm as
a dopant on the properties of BaCe0.7-xSmxZr0.2Y0.1O3-δ is reported here.

2. Experimental

The proton-conducting electrolyte material of BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0, 0.1,
0.2, 0.3) was synthesized by the coprecipitation method. The starting materials used for
synthesis were Ba (NO3)2 (Unichem, Mumbai, India, >99%), Ce (NO3)3·6H2O (Alfa Aesar,
Haverhill, MA, USA, >99%), Zr (NO3)2·6H2O (Sigma-Aldrich, St. Louis, MO, USA, >99%),
Y (NO3)3·6H2O (Alfa Aesar, >99%), and Sm (NO3)3·6H2O (Alfa Aesar, >99%). The stoichio-
metric amount of precursor materials was added to the deionized water under constant
heating and stirring at 90 ◦C. The mixture was stirred until a transparent solution was
formed. Sodium carbonate was added separately in deionized water as a precipitation
agent, and the solution was then added, drop by drop, with continuous stirring, lead-
ing to the formation of precipitates. The prepared precipitates were then extracted by
Whatman filter paper (Grade 1) and washed with deionized water twice. The obtained
BaCe0.7-xSmxZr0.2Y0.1O3-δ powder was then calcined for 1 h at 150 ◦C to get the dehydrated
powder, and later sintered for 4 h at 1200 ◦C. Fine BaCe0.7-xSmxZr0.2Y0.1O3-δ powder were
obtained after crushing sintered electrolyte materials in a mortar pestle. Pellets were
obtained by the uniaxial pressing of the hydraulic press at a pressure of about 300 MPa.
Figure 1 represents the flowchart of the synthesis process.

Different characterization techniques were employedto examinethe properties of the
obtained samples. SEM micrographswere by SEM (Hitachi 3000 H, Hitachi, Chiyoda City,
Japan) to analyze the microstructure and surface morphology. The crystal structure and
crystallite size were deteremined through A XRD diffractometer (PANalyticalMalvern
Panalytical, Malvern, UK). A thermogravimetric analysis (TGA Q500, TA Instruments,
New Castle, DE, USA) was employed to investigate the weight loss in the temperature
range of 30–900 ◦C. Fourier transform infrared spectroscopy (JASCO 4600, Tokyo, Japan)
was employed to find the functional groups of the metal oxides and the stability of the
perovskite structure. The ionic conductivity of all prepared samples was determined
through four-probe DC method.

Cell Fabrication and Testing

The performance was evaluated at 600 ◦C by fabricating button cells having electrolyte
material, BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0-0.3), using uniaxial pressing. The materials used
as anode and cathode were Ni-BCZY and LSC, respectively. The thickness of each button
cell was 1.5 mm, with a diameter of 13 mm. Nickel foil was used alongside the anode to
avoid cell breakage. Humidified hydrogen (~3% H2O) was provided as a fuel, with a flow
rate of 50 mL min−1 at the anode, while at the cathode, oxygen as an oxidant was used.
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Figure 1. Flowchart of BaCe0.7-xSmxZr0.2Y0.1O3-δ synthesis by coprecipitation method.

3. Results
3.1. Structural Analysis

The XRD spectra of the BaCe0.7-xSmxZr0.2Y0.1O3-δ in the 2θ range, 20–70◦, are shown
in Figure 2. The Bragg peaks (002), (200), (213), (004), (220), and (611) correspond to the
cubic perovskite structure (JCPDS card no. 34-0394). The secondary peak of Sm2O3 was
observed for composition x = 0.3. The presence of a secondary peak can be attributed to the
low sintering temperature which can be eliminated if the sintering temperature is increased
to >1400 ◦C [24]. The formation of Sm2O3 was due to the lattice expansion produced from
the high doping concentration of Sm because SmO2 diffuses into the CeO2. The presence
of the second phase can also be attributed to the fact that lanthanides occupy the A-site in
the perovskite structure, and the solubility of the samarium ion that occupied the A-site is
large because of the small ionic radii difference between Sm3+(1.08 Å) and Ce4+ (0.97 Å).
Moreover, doping of Sm ions substituted the Ce ions and caused volume expansion [28].
This volume change may also occur because of the mismatched ionic radii of the host and
the dopant material [23,29].
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Figure 2. X-ray diffraction patterns of BaCe0.7-xSmxZr0.2Y0.1O3-δ.

The magnified (002) peaks for all the prepared compositions of BaCe0.7-xSmxZr0.2Y0.1O3-δ
are shown in Figure 3. The peak shifted at lower angles thatcan be attributed to the
mismatched ionic radii of Sm (1.08 Å) and Ce (0.97 Å) within the perovskite structure,
which resulted in lattice expansion [30]. It is also clear from the spectra that some BaCeO3
planes exhibited low intensity, thus showing its low degree of crystallinity, which can be
attributed to the fact that BaCeO3 has not reacted fully because of insufficient energy with
the host ceria lattice.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 16 
 

creased to >1400 °C [24]. The formation of Sm2O3 was due to the lattice expansion pro-

duced from the high doping concentration of Sm because SmO2 diffuses into the CeO2. 

The presence of the second phase can also be attributed to the fact that lanthanides oc-

cupy the A-site in the perovskite structure, and the solubility of the samarium ion that 

occupied the A-site is large because of the small ionic radii difference between Sm3+(1.08 

Å ) and Ce4+ (0.97 Å ). Moreover, doping of Sm ions substituted the Ce ions and caused 

volume expansion [28]. This volume change may also occur because of the mismatched 

ionic radii of the host and the dopant material [23,29]. 

 

Figure 2. X-ray diffraction patterns of BaCe0.7-xSmxZr0.2Y0.1O3-δ  

The magnified (002) peaks for all the prepared compositions of 

BaCe0.7-xSmxZr0.2Y0.1O3-δ are shown in Figure 3. The peak shifted at lower angles thatcan be 

attributed to the mismatched ionic radii of Sm (1.08 Å ) and Ce (0.97 Å ) within the per-

ovskite structure, which resulted in lattice expansion [30]. It is also clear from the spectra 

that some BaCeO3 planes exhibited low intensity, thus showing its low degree of crystal-

linity, which can be attributed to the fact that BaCeO3 has not reacted fully because of 

insufficient energy with the host ceria lattice. 

 

Figure 3. Peak (002) shifting of BaCe0.7-xSmxZr0.2Y0.1O3-δ by Sm doping. 

The crystallite size is calculated by the Scherrer formula [31]: 

Figure 3. Peak (002) shifting of BaCe0.7-xSmxZr0.2Y0.1O3-δ by Sm doping.

The crystallite size is calculated by the Scherrer formula [31]:

D =
Kλ

βcosθ
(1)



Sustainability 2021, 13, 12595 6 of 15

where K, λ, β, and θ represent the shape factor (0.94), the wavelength of the X-ray (0.154 nm),
full width at half maximum (FWHM), and the diffraction angle, respectively. The crystallite
sizes of BaCe0.7-xSmxZr0.2Y0.1O3-δ are given in Table 1, and an increased crystallite size
with an increased Sm concentration in BaCe0.7-xSmxZr0.2Y0.1O3-δ can be observed [32].

Table 1. Crystallite size of BaCe0.7-xSmxZr0.2Y0.1O3-δ compositions with x = 0, 0.1, 0.2, 0.3.

Material Crystallite Size (nm)

BaCe0.7Zr0.2Y0.1O3-δ 11
BaCe0.6Sm0.1Zr0.2Y0.1O3-δ 14
BaCe0.5Sm0.2Zr0.2Y0.1O3-δ 15
BaCe0.4Sm0.3Zr0.2Y0.1O3-δ 23

3.2. Surface Morphology

Figure 4 shows the SEM micrographs of the BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte
materials. Each sample exhibited a different microstructure because of the varying con-
centrations of Sm. It is well-known that a porous electrolyte is not suitable for charge
carrier transportation because an airtight structure is needed to avoid gas diffusion [33]. In
the SEM micrographs, it can be seen that a dense structure is present for all the samples,
thus making them suitable as an electrolyte.
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Figure 4a represents the surface morphology of the BaCe0.7-xSmxZr0.2Y0.1O3-δ
(x = 0) perovskite electrolyte. It can be observed from the micrographs that this com-
position exhibits a more compact and denser structure compared to other compositions.
Figure 4b–d represent the surface morphologies of the BaCe0.7-xSmxZr0.2Y0.1O3-δ compo-
sitions. It is evident from the micrographs that the density of materials decreased with
an increased content of Sm. Furthermore, crystal growth became more prominent with
increased Sm doping. The effect of increased Sm doping not only slightly decreased the
overall structure’s compactness, but also increased the crystal growth. The crystallite size,
calculated from the Scherrer equation, confirmed that the crystallite size increased with Sm
doping. The increased compactness of BaCe0.7-xSmxZr0.2Y0.1O3-δ with more concentration
of Sm can be attributed to the fact that, for higher contents of samarium, the agglomeration
of particles is large, making the structure less compact. It is also known that a higher
Sm content is favorable for crystal growth, which is evident from the micrographs in
Figure 4b–d [9,34]. The least compact structure was observed for the sample having a high
content of Sm, that is, BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0.3).

3.3. FTIR Analysis

FTIR spectra of the BaCe0.7-xSmxZ0.2Y0.1O3-δ electrolyte materials in the range of
4000–600 cm−1 are presented in Figure 5. The peaks, at 1423 cm−1 and 1413 cm1, repre-
sent O–H bending and show symmetrical disturbances in the BaCe0.7-xSmxZ0.2Y0.1O3-δ
(x = 0.1-0.3) electrolyte materials. The presence of a small O–H stretching mode is attributed
to the hydroxyl group because of the ambient moisture. Small weight loss is noticeable in
the further thermal analysis (Figure 7), which confirms the fact that moisture was present
within the sample because of the humid environment. TGA analysis was done after sin-
tering and, still, there was a small weight loss (~2.3%) up to 150 ◦C. The absence of the
sharp peak confirms the evaporation of adsorbed water completely already during the
calcination and the sintering processes, and no prominent O–H stretching was present in
the FTIR [35].
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Figure 5. Fourier transform infrared spectra of BaCe0.7-xSmxZr0.2Y0.1O3-δ.
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The peaks between 900 cm−1 and 800 cm−1 indicate M–O (M = metal) stretching
modes. The perovskite structure was confirmed by peaks present around 700 cm−1 to
650 cm−1 and can be linked to the vibration of the B-site cations [36]. It is also clear that the
intensity of peaks increases with an increase in the content of Sm because the high ratio of
Sm in BaCe0.7-xSmxZr0.2Y0.1O3-δ produces high structural symmetrical disturbances.

Figure 6 shows the magnified region of the FTIR spectra for the wavelength range of
650–1500 cm−1. Peak shifting is associated with the increased Sm concentration. Further-
more, this produces stretching and defects in the lattice structure. These variations develop
the trapping effects of the charges between the dopant and the host [37]. The Ce–O bond
length between the molecules decreases because of the difference in the electronegativity
of neighboring atoms. The decrease in the Ce–O bond length shifts the peak towards the
lower wavenumber. In BaCe0.7-xSmxZr0.2Y0.1O3-δ, the stretching is also produced because
of the increased Sm concentration, which means a decrease in the Ce–O bond [28].
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Figure 6. Peak shifts in the magnified FTIR spectra of BaCe0.7-xSmxZr0.2Y0.1O3-δ.

The high symmetrical disturbance observed through the FTIR is also confirmed by the
Goldschmidt tolerance factor. The high symmetrical disturbance means highly distorted
symmetry that results because of Sm doping at the B-site to create more oxygen vacancies.
The perfect ABO3 perovskites (A = Ca, Ba, Sr; B = Ce, Zr) have low oxygen vacancies and,
therefore, have low proton conduction. The B site doping can increase the oxygen vacancies
because of the charge compensation associated with higher structural distortion [14].

The Goldschmidt tolerance factor (t) is a broadly accepted criterion of the perovskite
structure, and an ideal cubic perovskite structure has t = 1. However, many perovskite
materials deviate from the ideal structure and exhibit disordered structures. The value
of the tolerance factor calculated for the doped BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte is
1.01, showing that Sm-doped BaCe0.7-xSmxZr0.2Y0.1O3-δ retained the perovskite structure,
but with tensile A–O bond and a compressive B–O bond due to the displacement of the
B-site cations within the BO6 octahedra, which resulted in distorted structural symmetry,
as has been reported in the literature [14]. The value also shows that the perovskite structure
obtained is cubic.
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3.4. Thermal Analysis

The TGA curves recorded for the sintered BaCe0.7-xSmxZr0.2Y0.1O3-δ materials are
shown in Figure 7. The curves are divided into two regions. Region I and Region II
correspond to 30–150 ◦C and 150–900 ◦C, respectively. A small weight loss of nearly
2.3% occurred only in Region I and can be attributed to the evaporation of the adsorbed
water within the samples because of the ambient moisture [38]. In the range between
150–900 ◦C, there was no major weight loss, as indicated by the constant curve, since all the
organic compounds were already decomposed/evaporated during the sintering process.
Furthermore, thermal testing reveals that no chemical reaction occurred in the IT-SOFC in
this temperature range [39].
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3.5. Ionic Conductivity

The ionic conductivity of the BaCe0.7-xSmxZr0.2Y0.1O3-δ materials was measured
in fuel cell condition, i.e., wet H2 was supplied to the one surface of the electrolyte,
while the other surface was supplied air. Figure 8 shows the Arrhenius plot as a function of
temperature for all the compositions of BaCe0.7-xSmxZr0.2Y0.1O3-δ. The conductivity, based
on the Arrhenius equation, is [40]:

σ =
A
T

exp
(
− Ea

KT

)
(2)

where σ, A, Ea, k, and T are the conductivity, the material-dependent constant, the activation
energy, the Boltzmann constant, and the absolute temperature, respectively. The mobility
and concentration of charge carrires strongly effects the conductivity. It is well-known
that, by an increase in concentration, the number of charge carriers increases and, hence,
mobility increases. Moreover, the charge carriers number and their mobility depend on the
pre-exponential factor and the hopping activation energy [41].
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Figure 8. The Arrhenius plot represents the conductivity of BaCe0.7-xSmxZr0.2Y0.1O3-δ as a function
of temperature.

It can be observed from the Arrhenius plot that BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0) ex-
hibits higher conductivity compared to Sm-doped BaCe0.7-xSmxZr0.2Y0.1O3-δ compositions.
The proton conductivity of the perovskite electrolyte increases because of the small trapping
effects. Trapping effects are generally produced because of the symmetrical disturbance
and defects in the lattice structure, as revealed by the FTIR analysis. Protonic conductivity
also depends on the transport mechanism. In BaCe0.7-xSmxZr0.2Y0.1O3-δ compositions,
Sm gets doped at the Ce position because of the partitioning property of the lanthanide
elements, which reduce the Ce ions and increase the trapping effects, therefore resulting in
reduced conductivity [42,43]. Moreover, in perovskites, the structure bandwidth reduces
by the distortion produced in the M–O–M bond and minimizes the mobility of the charge
carriers between the host and guest metal sites. Therefore, in the current case, the distortion
is increased by the increased concentration of Sm, also confirmed by FTIR. Hence, the lattice
distortion raises the activation energy of the charge carriers. Moreover, the charge carriers
depend on the pre-exponential factor, i.e. the concentration of available and occupied sites.
A single occupied site depends on the energy gap, and the single available site depends
upon the grain shape, controlled by the sintering conditions [44]. The obtained conductivity
is comparable to the already reported values, but it can be further increased if the sintering
temperature is greater than 1400 ◦C to crystallize the secondary phases. Thus, it can be
concluded that the higher amount of Sm doping leads to the undesirable formation of
the Sm2O3 phase because some Sm3+ ratio do not replacedthe Ce4+ ions, which further
decreases the ionic conductivity [10,45,46].

3.6. Electrochemical Performance

The electrochemical performances, evaluated at 600 ◦C, of four button cells having
BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte materials are shown in Figure 9. The cell performance
is strongly dependent on the microstructure, density, crystallite size, and conductivity [37].
The values of the conductivity of the BaCe0.7-xSmxZr0.2Y0.1O3-δ materials show that it
decreased with increased Sm content. As a result, the oxygen vacancies decreased [47].
The observed power densities of the BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte are 0.39, 0.35,
0.32, and 0.29 W cm−2 with an OCV of 1.0, 1.012, 1.017, and 1.02 V, respectively. The
achieved high power density of BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0) can be explained as
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high protonic conductivity, compared to other compositions, because the doping of Sm
produced distortion in the M–O–M bond, as confirmed by FTIR.
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Figure 9. Electrochemical performance of the cells with BaCe0.7-xSmxZr0.2Y0.1O3-δ as electrolyte
at 600 ◦C.

The presence of the secondary phase of SmO2 in BaCe0.7-xSmxZr0.2Y0.1O3-δ (x = 0.3) also
affected the cell performance because samarium belongs to the lanthanide group, having
the property of partitioning from both the A-site and the B-site in perovskite structures. It is
also reported that electron–hole conductivity in the oxidation environment can also reduce
the OCV in proton-conducting electrolytes. Another factor that can affect the performance
of the cell is the low sintering temperature (1200 ◦C), which results in a small TPB length,
therefore causing a reduced electrochemical reaction at the TPB [25,36,48]. In the present case,
the power density of 390 mW cm−2 at 600 ◦C for BaCe0.7-xSmxZr0.2Y0.1O3-δ sintered at a low
sintering temperature is better than the 300 (mWcm−2) at 550 ◦C for BaCe0.5Zr0.35Y0.15O3-δ,
which can be improvedby sintering material at a high temperature [49].

Table 2 shows the reported power densities of cells having BCZY electrolytes,
along with electrodes, fuel, operating temperatures, and OCVs.

Table 2. Power densities of SOFCs having BCZY electrolytes.

Electrolyte Cathode Anode Fuel and Temperature OCV
(V)

Power Density
(mW cm−2)

BaCe0.5Zr0.35Y0.15O3-δ [49] LSC Ni-BCZY Humidified H2 (~3% H2O)
(@550 ◦C) 1.01 300

BaZr0.4Ce0.4Y0.2O3-δ [50] BSCF Ni-BCZY Humidified H2 (~3% H2O)
(@600 ◦C) 0.9 360

BaCe0.4Zr0.4Y0.2O3-δ [51] PrNi Ni-BCZY Humidified H2 (~3% H2O)
(@550 ◦C) 1.05 63

BaZr0.1Ce00.7Y0.2 O3-δ [25] LSCF Ni-BCZY Humidified H2 (~3% H2O)
(@600 ◦C) 1.05 477
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4. Discussion

The XRD spectra reveal that the synthesized BaCe0.7-xSmxZr0.2Y0.1O3-δ proton-
conducting electrolyte retained a cubic perovskite structure. However, a secondary phase
of Sm2O3 was observed for sample x = 0.3, which can be attributed to the lattice expansion
produced by the high doping concentration of Sm. The magnified (002) plane confirmed
that the peak shifted toward a lower angle with Sm doping, which resulted in lattice
expansion because of mismatched ionic radii of Sm and Ce. The crystallite size, calculated
by the Scherrer equation, shows that it increased with an increased Sm concentration,
and ranged from 11–23 nm. SEM micrographs revealed that all samples had sufficient den-
sity to be utilized as an electrolyte in an SOFC. It was also observed that the compactness,
or density, of the electrolyte decreased with increased Sm doping because a higher content
of Sm favors the particle agglomeration that results in the decreased compactness of the
structure. The FTIR spectra confirmed the presence of M–O stretching modes, along with
high structural distortion due to Sm doping. Peak shifting was also observed, due to
Sm doping, which created stretching and defects in the lattice structure. TGA analysis
indicated a small weight loss (2.3%) up to 150 ◦C due to the evaporation of adsorbed water,
and no weight loss was observed at high temperatures, showing that all samples were
thermally stable at the SOFC operating temperature. An Arrhenius plot revealed that the
conductivity of the BaCe0.7-xSmxZr0.2Y0.1O3-δ decreased with an increased concentration
of the Sm dopant because the increased content of Sm produced increased trapping effects,
which resulted in decreased ionic conductivity. The electrochemical performance exhibited
a peak power density of 390 mW cm−2 at 600 ◦C in humidified H2 (3% H2O).

5. Conclusions

Perovskite materials are of particular interest in numerous applications because of their
exceptional properties. However, perovskite materials in their ideal structure have poor
proton conductivity because of low oxygen vacancies and cannot be used as electrolytes
in SOFCs. This project aimed to increase the oxygen vacancies in BaCeO3. Sm-doped
BaCe0.7-xSmxZr0.2Y0.1O3-δ proton-conducting electrolyte material was synthesized by the
cost- and time-effective coprecipitation method. The structural and surface analyses of
BaCe0.7-xSmxZr0.2Y0.1O3-δ provided a cubic perovskite crystalline phase and a dense mi-
crostructure, respectively. A secondary Sm2O3 phase of BaCe0.7-xSmxZr0.2Y0.1O3-δ was
observed only for the composition with x = 0.3. Peak shifting in the FTIR investigations
were observed, indicating the change in the bond length between metal and oxygen.
Among all the prepared electrolytes, the performance of BaCe0.7-xSmxZr0.2Y0.1O3-δ with
the composition, x = 0, was at the top, with 0.39 W cm−2. The power densities for the
other electrolytes of BaCe0.7-xSmxZr0.2Y0.1O3-δ, with x = 0.1, 0.2, and 0.3 were achieved as
0.35, 0.32, and 0.29 W cm−2, respectively. The doping of Zr and Y increased the oxygen
vacancies, along with structural defects, which resulted in the increased performance of the
cell. The doping of the Sm within BaCe0.7-xSmxZr0.2Y0.1O3-δ, on the other hand, produced
more oxygen vacancies but also increased the trapping effects within the structure because
of the partitioning property of the lanthanide elements that leads to a reduced perfor-
mance, compared to BaCe0.7-xZr0.2Y0.1O3-δ. The overall performance of all cells having
the perovskite electrolyte, BaCe0.7-xSmxZr0.2Y0.1O3-δ, shows that all compositions can be
used as proton-conducting electrolytes for IT-SOFCs. Furthermore, it is concluded that
the coprecipitation synthesis route is a suitable and cost-effective method for synthesizing
BaCe0.7-xSmxZr0.2Y0.1O3-δ perovskite electrolyte material.
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