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Abstract

Coaches can benefit from objective information about playing styles applied in football matches. In this work,
two methods for determining (characteristics of) the playing style of a football team in a certain match based
on statistics of ball actions are constructed.

The first method assigns a match to one of four commonly applied playing styles in football based on a set of
benchmark matches. Within this method, a relevant variable set with respect to the playing style of a team is
selected based on the so-called minimum-redundancy-maximum-relevance algorithm. This algorithm makes use
of mutual information as a measure of relevance. The mutual information between variables is estimated by
the so-called Kraskov and adjusted Kraskov estimator. After a relevant variable set has been found, matches
are assigned to one of the four playing styles by the use of a combination of a hierarchical scheme of K-means
clustering and 1-Nearest Neighbors.

The second method focuses on general playing style characteristics of matches as opposed to labeling a match
with a specific playing style. This way, details about the playing style in a match can be obtained without
limiting to the four prior labeled playing styles. Using principal component analysis combined with domain
knowledge, three characteristic variables are created which together give a general overview regarding the play-
ing style applied in a match.

Application of both models on different sets of matches show satisfying results which agree with domain know-
ledge. These models can be used to provide football coaches with information regarding playing styles applied
in matches. Coaches can use this information in order to both evaluate their own team as well as analyze their
opponents.
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Chapter 1

Objective playing style determination

Mathematics is usually not the first thing one thinks about in relation to sports. However, an increasing amount
of scientific research in the area of sports shows that statistics along with data analyses and mathematical mode-
ling are becoming more and more important in the field of sports. An example of the use of statistics in sports
is shown in the well-known book and movie Moneyball. The book tells a story in which Billy Beane, manager of
the baseball team Oakland Athletics, uses statistics such as stolen bases and batting averages to pick players for
his team in order to be able to better compete against richer opponents. Another example is written about by
Kjäll (2015), who talks about the Danish football team FC Midtjylland, which is an example of a team which
nowadays operates in a similar way using sports statistics. These examples show that statistics are becoming
increasingly important in sports.

ORTEC Sports responds to the increased need of statistics in sports by carrying out analyses of sports, in
particular football. Based on registration of ball moments1, information and insight about the performance,
strength and weaknesses of players and teams is gained. ORTEC Sports is owner of a large number of statistics
on the level of players and teams which give insight in specific qualities. Using these statistics, ORTEC Sports
supports coaches by providing them with information which can increase their odds of winning.

In sports various aspects play an important role, such as physical, mental and technical strength, physical
fitness and playing style. Especially in football, the playing style a team applies is relevant. A team will always
apply the style of play with which they think their odds of winning are highest. The coach of a team is respon-
sible for deciding on which style of play his team will apply during a match. A reason for deciding on a certain
playing style can be that the coach believes the opponent of the team can best be defeated by using this specific
playing style. Other reasons can be the form the team is in and the availability of the players. Coaches analyze
teams and players to make statements about their playing styles. This way of working is quite subjective, since
different coaches may have different opinions as to how different playing styles can be spotted. Coaches could
benefit from information by an objective source about the playing styles of teams in order to have the best
chance of defeating their opponents.

1.1 Problem description

As mentioned, it would be interesting if the playing styles of teams could be determined in an objective way,
for example, by using statistics of ball moments. The question now is whether the large amount of statistics
which ORTEC Sports owns, can be used for this purpose. The goal of this project is the following:

”Determine the playing style of a football team in a certain match based on statistics of ball moments.”

In this study this problem will be subdivided into four different sub questions, which are all based on the usage
of ball action statistics:

• Which possible styles of play exist and which properties do they have according to the literature?

1Ball moments are all moments during a match in which an action is performed on the ball. Registration of these ball moments
can be in the form of, for example, a pass. From now on the words ball moment and ball action will be used interchangeably in
this thesis.

1



2 CHAPTER 1. OBJECTIVE PLAYING STYLE DETERMINATION

• Can exploratory data analysis be used in order to get a first idea of the different playing styles in the
data?

• Which statistics are especially important in determining differences in styles of play applied by teams in
different matches?

• How can different matches of teams be subdivided into groups with similar styles of play?

The following section addresses the first sub question by giving a description of playing styles in general and of
some common playing styles in football. Furthermore, research is done in this section as to how similar problems
as the research goal in this study have been dealt with in past studies. Based on this research, the choice is
made to use K-means clustering as classification method in order to assign matches of teams to different playing
styles.

1.2 Literature study

This section gives a digression of playing styles in general as well as examples of common playing styles in
football. Furthermore, an overview is given about the way playing styles-related problems have been dealt with
in the past.

1.2.1 Styles of play

Author’s note: this subsection is confidential.

1.2.2 Past studies

Much research has been carried out in the area of sports statistics. In particular the field of playing styles in
sports has been studied quite thoroughly already. Examples of studies in this particular field are (Castellano
et al., 2012), (Lago-Peñas et al., 2010), (Lorenzo Calvo et al., 2010), (Moura et al., 2014), (Wang, 2014), (Grunz
et al., 2012), (Jäger and Schöllhorn, 2007), (Jäger and Schöllhorn, 2012), (Kempe et al., 2015), (Mooij, 2013),
(Niu et al., 2012), (Pena and Touchette, 2012), (Pfeiffer and Perl, 2006), (Pollard et al., 1988), (Wang and
Parameswaran, 2005) and (Wang et al., 2015). However, most of the found studies focus on a slightly different
research question than the one in this study. Based on the found articles, a broad subdivision in the area of
analysis of playing styles can be made. Part of the studies, up till (Wang, 2014) in the list given above, focus on
the determination of match statistics which can discriminate between successful and unsuccessful teams. These
research problems are of a supervised kind. Data about the outcome of a match, i.e. the score or winning/loss,
are known and can be used in determination of a suitable model.

The second part of the studies, from (Grunz et al., 2012) till (Wang et al., 2015) in the list given above,
focuses on the determination of the style of play a team or player applies during a match. Most studies ap-
proach this as an unsupervised problem, since experts are needed in order to provide data about the outcome
variable, i.e. the playing style of a team or player. This does not only cost a lot of time and money, it also
makes the problem less objective. These research problems are similar to the one in this study.

Most studies focusing on the latter type of research problems, however, make use of different types of data
than the data in this study. In this research aggregated statistics about ball actions during (specific parts of)
the match, such as the number of passes in a match, are used. The other studies mostly use data of consecutive
ball actions and/or positional data of all the players. Due to these differences in data, not all methods applied
in these studies can also be applied to the problem in this thesis.

Only Pollard et al. (1988) deal with the exact same research problem as in this study. They start by ana-
lyzing six statistics about the amount of ball actions during a match, namely Number of long forward passes2,
Number of long goal clearances3, Number of centers4, Number of times possession is regained in attack5, Number
of defensive possession moments6 and Number of multi-pass movements7. All these statistics are expressed in

2Number of passes (excluding goal clearances) taking the ball at least 30 meters closer to the opponent’s goal line.
3Number of long forward goal clearances made by a goalkeeper after picking up the ball.
4A center is defined as a cross, made at an angle of less than 45 degrees, taking the ball into the central 20 meters of the penalty

area.
5Number of times possession is regained within 35 meters of the opponent’s goal line.
6Number of possession moments of three or more completed passes that a team makes in its own half of the field.
7Average number of passes per match in all possession moments containing over three completed passes.

C.J. Wensveen Master of Science Thesis



1.3. THE BALL ACTIONS DATA SET 3

percentages. The study applies factor analysis in order to extract a smaller number of underlying features. The
resulting factor scores show a clear distinction between two groups of matches corresponding to two different
playing styles.

Some frequently called upon methods in the articles listed at the beginning of this section are Principal Com-
ponent Analysis (PCA), Factor analysis (FA), Linear Discriminant Analysis (LDA), K-means clustering (K-
means), Artificial neural networks (ANN) and Self-Organizing Maps (SOM). There does not seem to be one
specific study which produces the best quality of results, so the quality of results cannot be used as an indication
of which method is best suited to solve the research problem in this study.

The research problem in this study demands clustering or classification of the objects into groups of simi-
lar playing styles. One of the most important aspects of the research question is the interpretability of the
results. If a method is found by which the objects can be subdivided into groups of similar playing styles, but
the characteristics describing the different groups are not known, i.e. which playing style corresponds to which
group is not known, this adds no value. Neural networks often have the disadvantage that the results are hard
to interpret. Therefore, these methods will not be called upon in this study.

A choice has to be made between supervised or unsupervised methods. The extra time and money it costs
to obtain expert data about the playing styles of teams and the fact that using expert data makes the problem
less objective, are disadvantages of treating this research problem as a supervised problem. That is why it
would be optimal to treat the problem completely unsupervised. However, it will be shown in chapter 2 that
doing so, does not lead to satisfying results. Also, from the results of (Mooij, 2013) it can be concluded that a
completely unsupervised approach to the problem in this study will indeed not lead to satisfying results. Some
expert knowledge with respect to which statistics are important, has to be used in order to improve the results.
After this, the assignment of matches of teams to different playing styles will be done in an unsupervised way.
Since K-means clustering is a frequently applied method in similar problems related to playing styles according
to literature, as well as a popular unsupervised method in general, the choice is made to use K-means clustering
as classification method.

A choice has now been made about which method to use in order to assign matches of teams to different
playing styles. Before describing any analyses performed, it is important to give an overview of the data set
which is used in this study. The next subsection gives a description of the process of gathering the data, provides
an overview of what is in the data set at hand and describes some initial data analyses for preparation of the
data for further analyses.

1.3 The ball actions data set

In this section the data set used in this study is described. First of all, the process of gathering the data is
shown. Next, an overview is given as to what is contained in the data set used in this study. Lastly, initial data
analyses are carried out in order to prepare the data for further analyses.

1.3.1 Data process

Author’s note: this subsection is confidential.

1.3.2 Descriptive analysis

Author’s note: this subsection is confidential.

1.3.3 Initial data analysis

Author’s note: this subsection is confidential.

1.4 Outline

The first sub question in section 1.1 has been addressed in section 1.2.1. Chapter 2 is related to the second sub
question. Exploratory data analysis is performed in this chapter in order to get a first idea of the structure and

Master of Science Thesis C.J. Wensveen



4 CHAPTER 1. OBJECTIVE PLAYING STYLE DETERMINATION

the playing styles applied in the matches which are contained in the data set. This analysis shows that treating
the problem completely unsupervised does not lead to satisfying results. Therefore, some expert knowledge has
to be utilized in order to improve the results. This is done in chapter 3, which focuses on the third sub question
of this study. The relevance of different statistics with respect to the detection of differences between various
playing styles is researched in this chapter.

In chapter 4 the last sub question is addressed, i.e. matches of teams will be subdivided in different groups
corresponding to different playing styles based on the chosen relevant statistics of ball actions. Also, some
general playing style characteristics will be considered, by which properties of playing styles applied in matches
can be analyzed. Finally, chapter 5 describes some results when applying the constructed models to different
subsets of the data. The remaining chapter contains a conclusion and discussion.

C.J. Wensveen Master of Science Thesis



Chapter 2

Exploratory analysis of the data set

Before starting real statistical analyses it is useful to perform some exploratory analysis in order to get an idea
of the structure of the data. This way the presence of possible clusters1 in the data can already be discovered.
How many clusters there are exactly, what they represent and which observations lie in which clusters will be
of later issue.

To explore the data it is useful to visualize them in some way, preferably in two dimensions for clarity. Ideally,
visualizations of the data will show signs of clustering of the objects, preferably signs of five or more different
clusters corresponding to the five different playing styles mentioned in subsection 1.2.1 and perhaps other ones.
That would give an indication that the features in the ball actions data set are able of discriminating between
different styles of play. Since the data set containing the features in Feature set 1 consists of 106 features,
some type of dimensionality reduction has to be performed in order to visualize the data. Principal component
analysis (PCA) and multidimensional scaling (MDS) are considered for this goal. The next section gives a
description of these methods.

2.1 Dimensionality reduction

In order to visualize high-dimensional data, such as the ball actions data set in this study, some type of
dimensionality reduction has to be performed. For this goal, principal component analysis (PCA) is used. As
comparison, also multidimensional scaling (MDS) is considered.

2.1.1 Principal component analysis

Principal component analysis is a method to transform a high-dimensional data set into a set of new, linearly
uncorrelated variables, i.e. components, which explain a decreasing amount of variance in the original data set.
Selecting only the first k components gives a lower-dimensional representation of the original data set which
explains the most variance possible in k dimensions.

More formally, let X = (X1, . . . , Xp) be a random vector in Rp. PCA aims to transform these p random
variables into a set of p components, Z1, . . . , Zp, with Zi = αi,1X1 + αi,2X2 + · · · + αi,pXp, i = 1, . . . , p, such
that Var(Z1) > Var(Z2) > . . . > Var(Zp) and Cov(Zi, Zj) = 0 for i 6= j. The elements αi,1, . . . , αi,p, i = 1, . . . , p,
are called the loadings of the ith principal component. For these loadings

∑p
j=1 α

2
i,j = 1 holds2. These loadings

can be estimated based on n realizations of the random vector X, denoted by Xn = (x1, . . . ,xp) with xj the
vector containing n realizations of the variable Xj , and using the corresponding covariance matrix Σn. Algo-
rithm 1 describes the process of estimating the principal components Z1, . . . , Zp based on these realizations.
Denote by zi,j , i = 1, . . . , n the value of the jth principal component corresponding to the ith realization of X.
These values are called the principal component scores.

1In this case clusters are considered groups of matches of teams with similar ball actions characteristics ,possibly corresponding
to playing styles.

2If the sum of squares of αi,j , j = 1, . . . , p is not set to equal one, they can be set to equal an arbitrarily large value which can
lead to an arbitrarily large variance.

5



6 CHAPTER 2. EXPLORATORY ANALYSIS OF THE DATA SET

Algorithm 1: Principal Component Analysis

Data: n× p-dimensional matrix Xn corresponding to n realizations of the random vector
X = (X1, . . . , Xp) in Rp

Result: Estimations of the principal components Z1, . . . , Zp of the random vector X
Calculate the covariance matrix Σn of the matrix Xn;

Find the eigenvector αk of Σn corresponding to the kth largest eigenvalue λk;

Estimate the kth principal component by Zk = αk
TX;

A derivation of algorithm 1 is given in appendix B.

Before performing PCA on a data set, it can be desirable to scale the data in order for variables not to
have disproportional influence. This disproportionality can arise from differences in magnitude of variances of
the variables. A variable with high variance will weigh higher in a principal component analyses than a variable
with low variance, which might not be wishful. For example, in the ball actions data set the variable Total
possession time in milliseconds will weigh much higher than the variable Percentage of long passes, due the the
units of measurement , whilst it is wishful for them to have equally much influence. A way of overcoming this
problem is by scaling the variables. There are various ways of doing this. The most common way of scaling is
called standard scaling. Consider observation i with value x1,i for variable X1. This value is scaled to

x1,i−µ1

σ1

with µ1 the sample mean of variable X1 based on a set of realizations and σ1 its sample standard deviation.
The parameters µ1 and σ1 are called the scaling parameters. This way of scaling makes sure all observations are
transformed to the signed number of standard deviations an observation lies above the mean. Disproportionally
high variances and means will now not lead to disproportionally high influence in analyses anymore.

Note, however, that it might not be wishful for each variable to have equally much influence in analyses.
Consider a variable, such as Number of penalties, which almost always takes on the value 0, but occasionally
also the value 1 or 2. Originally, this variable has relatively low variance. It is probably not desirable for
this variable to have equally much influence in analyses regarding playing style as, for example, the variable
Percentage of long passes. However, when scaling this variable using the standard scaling procedure described
above, the resulting variance and mean is equal to that of the other variables, which makes its influence equally
high. To overcome issues like this, weighted scaling procedures could be used. This way, the variables are scaled
using weigh factors which can increase or decrease the influence of important or less important variables. In
this study, such weighted scaling is not utilized. It should be kept in mind, however, that this might improve
the final results which is why it would be an interesting adjustment for further studies.

The ball actions data set is thus scaled using standard scaling. From now on, this scaled data set is used
throughout the remaining part of this study. Data of new matches not contained in this data set yet, should
be scaled using these same, fixed scaling parameters. After performing PCA, the first couple of principal com-
ponents can be used to visualize the data. Mostly it suffices to only consider the first few components, since
principal component analysis makes sure the principal components explain a decreasing amount of the total
variance in the original data set. Therefore, in the case of the ball actions data set, the last principal compo-
nent will account for a very small amount of the original variance and will therefore probably not add much
information with respect to the playing style of a team. The first couple of components, however, have more
discriminative value.

As an example, figure 2.1 shows a plot of the first two principal components resulting from performing PCA on
the build-in data set iris in R3. This data set contains data about the sepal length, sepal width, petal length
and petal width of 150 flowers from the species setosa, virginica and versicolor.

3R is used as programming language throughout this thesis.
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2.1. DIMENSIONALITY REDUCTION 7

Figure 2.1: Plot of the first two principal components of the data set iris. Red dots correspond to flowers from
the type setosa, green dots to the type virginica and blue dots to the type versicolor. The two components
together account for 97.8% of the variance in the original data set.

It can be seen that the different species are well separated in this plot, mainly by component 1. Note that the
first and second principal component account for almost all of the variance in the original data set, namely
97.8%. Figure 2.2 shows a similar plot only now for the second and third component.

Figure 2.2: Plot of the second and third principal component of the data set iris. Red dots correspond to flowers
from the type setosa, green dots to the type virginica and blue dots to the type versicolor. The two components
together account for 7.0% of the variance in the original data set.

In this plot it can be seen that the species are not well separated. Note that the second and third principal
component account for almost none of the variance in the original data set, namely 7.0%. This shows that
it suffices to only use the first principal components, in this case mainly the first, in order to detect different
groups in the data. In subsection 2.2 similar plots will be shown for the ball actions data set.

Even though relatively only little information is lost with respect to the original data set when considering
only the first few principal components, for comparison also another dimensionality reduction technique will be
considered. The next subsection describes the method multidimensional scaling.
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8 CHAPTER 2. EXPLORATORY ANALYSIS OF THE DATA SET

2.1.2 Multidimensional scaling

When performing a dimension reduction technique on a high-dimensional data set, one is bound to lose infor-
mation obtained in the original data set. This also holds for PCA, in the case of considering only the first
couple of principal components. Therefore, it is desirable to also consider another dimensionality reduction
technique in order to be more sure about the structure of the data, such as the presence of possible clusters.
The technique multidimensional scaling (MDS) will therefore be considered as well. MDS is a method with
which a lower-dimensional representation of the original data is found by trying to preserve the original pairwise
distances as well as possible. So, if two data points in the original dimensional space are relatively close together,
they should be represented by two points in a lower-dimensional space which are also relatively close together.
Points which are far away from each other in the original space, should be represented by points which are far
away from each other in the lower-dimensional space as well.

Multidimensional scaling can be seen as a class of techniques. That is to say, different variations of this
technique exist, such as classical MDS, metric MDS and non-metric MDS. Furthermore, within these methods
various distance measures can be used. The most important difference between PCA and MDS is the fact
that PCA is based on variances of the data whereas MDS utilizes the distances or (dis)similarities of the data.
Hastie et al. (2011, Ch. 14.8, pg. 571) note that when classical multidimensional scaling is used, i.e. when the
similarities used in MDS are calculated by centered inner products, the coordinates resulting from MDS are
exactly equal to the scores resulting from PCA. A proof of this statement is outside the scope of this thesis.
Since MDS is considered in order to have a second lower-dimensional representation of the data apart from
the representation obtained by PCA, it is not useful to consider classical MDS which gives the same results as
PCA. The choice is made to consider metric MDS, which utilizes the actual distances of the data as opposed
to non-metric MDS in which rankings of the distances are used.

As mentioned, so called metric multidimensional scaling is considered. In metric multidimensional scaling
a lower-dimensional representation is found which preserves the original pairwise distances as well as possible4.
Algorithm 2 describes how the coordinates of metric multidimensional scaling using Euclidean distances can be
found.

Algorithm 2: Metric multidimensional scaling using Euclidean distances

Data: n× p-dimensional matrix Xn representing n p-dimensional data points x1, . . . , xn.
Result: k-dimensional representation of the original data Xn which preserves the original pairwise

Euclidean distances as well as possible, with k < p.
Find a random mapping of n k-dimensional data points z1, . . . , zn by sampling from a normal
distribution;

Calculate the pairwise distances ||zi − zj ||2, i, j = 1, . . . , n;

Calculate the stress function S(z1, . . . , zn) =
∑

i6=j (||zi−zj ||2−di,j)2∑
i6=j di,j

with di,j the Euclidean distance

between the original p-dimensional data points xi and xj ;
while Stress function is larger than some criterion do

Find a new mapping of the points z1, . . . , zn;
Recalculate the pairwise distances ||zi − zj ||2, i, j = 1, . . . , n;

Recalculate the stress function S(z1, . . . , zn) =
∑

i6=j (||zi−zj ||2−di,j)2∑
i6=j di,j

;

end

Note that in algorithm 2 Euclidean distance is used. This can be adjusted to any distance measure suitable
to the problem at hand. Furthermore, note that algorithm 2 does not give any details about the procedure of
finding a new low-dimensional mapping z1, . . . , zn leading to a smaller stress function. A common procedure
for this is called stress majorization, but this is outside the scope of this thesis.

As an example of MDS, figure 2.3 shows a plot of the coordinates resulting from metric MDS performed
on the iris data set using Euclidean distance.

4Note that just as with PCA scaled data should be used in order to overcome the problem of variables with disproportionally
high variances to have disproportionally high influence in the multidimensional scaling process.
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2.2. APPLICATION ON THE BALL ACTIONS DATA SET 9

Figure 2.3: Plot of the two coordinates resulting from metric MDS performed on the data set iris. Red dots
correspond to flowers from the type setosa, green dots to the type virginica and blue dots to the type versicolor.

It can be seen that the different species are again well separated in this plot. Note that reflection in the y-axis
makes the plot look quite similar to the plot in figure 2.1, but investigating the plots closely shows that there
are small differences.

Now that two dimensionality reduction methods have been considered, the next section applies these methods
to subsets of matches in the ball actions data set in order to visualize and, thereby, explore the data. In the
case of metric MDS, Euclidean distance is used.

2.2 Application on the ball actions data set

Author’s note: this section is confidential.
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Chapter 3

Information based feature selection

Chapter 2 showed that the features in Feature set 1 are not well enough capable of discriminating between the
five playing styles in subsection 1.2.1. In this chapter, the aim is to alter the set of features in order to obtain
better discrimination. This new feature set can be formed both by adding new features as well as removing
current features.

First of all, adding extra features to Feature set 1 could improve the separation between different playing
styles. The features mentioned in subsection 1.3.2 are therefore added to Feature set 1. These features were
chosen based on domain knowledge, since they might be relevant with respect to the playing style of a team.
After adding these new features the data set contains a total of 121 features, denoted by Feature set 2 1.

Similar visualizations of the set of matches of the benchmark teams as before are shown in order to check
whether the separation between the different playing styles is improved by adding the new features. Again the
standard scaled data are used. Table ??, ?? and ?? in appendix D show the features which have the top 10
highest absolute loadings on the first three principal components, resulting from principal component analysis,
along with an indication of a positive or negative loading of that feature. Given the top ten loadings on the
principal components, the first component mainly says something about the ball possession of the team. The
second component can be seen as a measure of offensive play and the third component as a measure of overall
strength. Figure 3.1 shows a scatterplot of the first two principal components.

Figure 3.1: Scatterplot of the first two principal components when performing principal component analysis on
the home matches of the benchmark teams using Feature set 2 and standard scaling. These two components
explain 32.7% of the variance in the original data set.

It can be seen that the separation between the matches of the benchmark teams is more clear in this plot

1Note that this set of new features does not contain any multicollinearity, so that no multicollinear features have to be removed.
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3.1. FEATURE SELECTION 11

than in the plot in figure ??. The matches of FC Barcelona, Ajax, Atletico Madrid and Queens Park Rangers
are all quite well separated now. Only the matches of Juventus do not seem to cluster together. This verifies
the assumption that, as expected by domain knowledge, the new features are indeed relevant with respect to
discriminating between different playing styles. Apparently, these new features were needed in order to be able
to discriminate between the different playing styles more clearly.

Adding the new features made the separation between the matches of the five different teams more clear.
However, this separation might still be improved. That is why the next section considers using only a selection
of the features. If the reader is not interested in mathematical details, the remaining part of this chapter can
be skipped.

3.1 Feature selection

Instead of adding new features, removing features from the ball actions data set could also improve the separa-
tion between different playing styles. Most of the studies considered in literature study about analysis of playing
styles do not apply feature selection. Only the studies in which the goal was to find the most discriminative vari-
ables with respect to successful and unsuccessful teams deal with feature selection. The studies in which the goal
was to determine playing styles, do not perform feature selection2. However, feature selection can improve final
results drastically, since selecting a relevant subset of features reduces the effect of noisy features to the analysis.

There are many different feature selection methods. First of all, a choice should be made between super-
vised or unsupervised feature selection methods. Notice that the set of matches of the benchmark teams could
be used in combination with a supervised method in order to select relevant features. However, the assump-
tion has been made that the benchmark teams play according to their assumed playing style in most of their
matches, so not necessarily in all. In other words, Ajax does not necessarily play according to the playing style
Hollandse School in all of their matches. Therefore, labeling all of the matches of Ajax as Hollandse School
could be wrong and using a supervised method could therefore lead to wrong results. However, if correct labels
are known, supervised methods generally lead to more satisfying results than unsupervised methods, since in
case of the former more prior information can be used. Thus, if the assumed labels of the benchmark teams are
mostly correct, supervised methods could still lead to better results than unsupervised methods. However, if
many of the assumed labels are incorrect, unsupervised methods probably lead to better results than supervised
methods. Since it is not known how many of the assumed labels of the benchmark teams are correct, the choice
is made to use a combination of supervised and unsupervised methods in order to determine the playing style
applied in a match. For feature selection the choice is made to use a supervised method, since the assumption
is made that in this interim step of the analysis, usage of wrong information causes less harm than in the final
step of assigning matches of teams to playing styles. The actual assignment of matches to playing styles will,
therefore, be done with an unsupervised method. In conclusion, the choice is made to make use of a super-
vised feature selection method by using the benchmark teams with their assumed playing styles as training data.

Within the variety of feature selection methods, a distinction can be made between wrapper and filter methods.
Wrapper methods select features based on the results they give when used in a given classifier. The selected
features are therefore dependent upon the choice of classifier. When using another classifier the chosen features
might not be optimal anymore. Filter methods are, on the contrary, independent of any classifier. They select
features based on certain statistical criteria, such as correlation or mutual information. Both of these type of
methods have advantages and disadvantages. According to Alelyani et al. (2013) wrapper methods have been
shown to outperform filter methods in terms of classification accuracy. However, in the case of a small amount
of training data, wrapper methods have a high risk of overfitting. Filter methods, on the contrary, are robust to
overfitting, as mentioned in Guyon and Elisseeff (2003). Also, if various classifiers should be tested because it
is not known yet which classifier suits the problem at hand best, a filter method does not have to be performed
over again each time a different classifier is used. A wrapper method, on the contrary, has to be applied again
each time another classifier is considered due to the dependence on the classifier. Due to the advantages and
disadvantages of both wrapper and filter methods, the choice is made to use a combination of both types of
methods. First of all, a filter method will be used in order to find a ranking of the features such that the top k
features are best capable of discriminating between the different playing styles of the benchmark teams. Next,
a wrapper method will be applied in order to find which number of features k should best be selected.

2Some of these studies do perform feature extraction though, which is the process of transforming variables into a possibly
smaller set of new features. Feature selection, on the other hand, does not alter the original variables. For interpretation purposes
this study only focuses on feature selection.
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12 CHAPTER 3. INFORMATION BASED FEATURE SELECTION

It would be optimal to select a subset of features based on considering all possible subsets. However, this
is extremely costly with respect to computational time. In the case of p original features in the data set,
there are 2p possible subsets. In the case of Feature set 2, this leads to a total number of possible subsets of
2121 ≈ 2.7 × 1036. Even if running the classifier method or calculating some statistic (wrapper versus filter
methods) would only take 0.01 seconds for each feature subset, this would result in a total computational time
of approximately 8.4× 1026 years which is clearly not feasible.

Since considering all possible feature subsets is not computationally feasible, another way has to be found
to search through the possible feature subsets. Two possible ways are to apply so-called forward selection or
backward elimination. With forward selection one starts with an empty feature subset. A new feature, which
results in the best subset of k features, with k the number of features in iteration k, is added to the feature
subset in each iteration. This can be continued until a fixed number of features is achieved or until some
stopping criterion has been reached. Backward elimination works the other way around, starting with a feature
subset containing all features. One feature, which results in the best subset of k features, with k the number of
features in iteration p− k, is removed from the feature subset in each iteration. This can be continued until a
fixed number of features is achieved or until some stopping criterion has been reached.

Backward elimination and forward selection do not necessarily give the best subset. Considering forward
selection, the best 1-feature model could contain feature x1, whereas the best 2-feature model could contain
features x2 and x3. Feature x1 has already been added to the set then, so this optimal 2-feature subset can not
be found using forward feature selection. The same holds for backward elimination. The best k-feature model
could contain features x1, . . . , xk, whereas the best k−1-feature model could contain features x1, . . . , xk−2, xk+1.
Feature xk+1 has already been removed from the set then, so this optimal k−1-feature subset can not be found
using backward feature elimination. Despite these disadvantages, forward selection and backward elimination
are frequently used selection methods in the case that considering all possible subsets is not feasible.

Since considering all possible feature subsets is not computationally feasible, forward or backward feature
selection will be used. The choice between these two depends on the number of desired features to select. If this
number is small with respect to the total number of features, it makes more sense to use forward selection, since
this method takes less time in this case. When the desired number of features to select is high with respect to
the total number of features, backward elimination makes more sense for the same reason. For the ball actions
data set it can be expected that the relevant number of features with respect to the applied playing style of a
team is relatively small compared to the total number of features. Therefore, forward feature selection will be
used.

In summary, a supervised forward, filter selection method will be used to find an appropriate ranking of the
features. A wrapper method will then be used in order to choose the best number of features to select. Accor-
ding to Dash and Liu (1997) the statistical criteria used in filter methods can be subdivided in four categories,
namely distance, correlation, consistency and information. Huang et al. (2007) note that the former three are
all sensitive to noise and outliers, whereas for information measures this is not so much the case. Furthermore,
correlation measures only take into account linear relations, whereas information measures are not limited to
linearity. For this reason, the choice is made to apply a filter method based on an information measure. In
order to measure the information that a feature gives about the output variable, i.e. the playing style of a team,
mutual information will be evaluated. The higher this mutual information between a feature and the output
variable, the more relevant the feature is with respect to the determination of the playing style of a team. The
next section gives a more detailed description of mutual information.

3.2 Mutual information

The information that one variable gives about another variable shows how relevant one variable is with respect
to predicting the other. For example, the information that the variable Percentage of own goals gives about the
variable Playing style is probably quite low, whereas the information that Total possession time in milliseconds
gives about Playing style is probably quite high. In order to measure the information between two random
variables, the mutual information between these variables can be calculated. Mutual information between two
variables is a quantification of the amount of information that one variable gives about the other (and vice
versa). Similarly, mutual information between a set of variables and another variable is a quantification of the
amount of information which that set of variables gives about the other variable. In other words, it is a measure
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3.3. KRASKOV ESTIMATOR 13

of predictability of a variable when the value of (an)other variable(s) is known.

Definition 1 and 2, as given in Yeung (2008), give formal definitions of the mutual information between two,
respectively, k continuous variables. In the case of discrete or categorical random variables the integrals in
these definitions are replaced by summation signs3. In the case of the use of log base 2, the mutual information
is calculated in bits. Appendix E.1 gives some additional definitions and theorems with respect to mutual
information which will be utilized later on.

Definition 1. Let X and Y be two continuous random variables with possible outcome sets, respectively, ΩX
and ΩY . Let pX and pY be the probability density functions of X and Y respectively and let pXY be the joint
probability density function of (X,Y ). The mutual information of X and Y , I(X;Y ), is defined as

I(X;Y ) =

∫
ΩX

∫
ΩY

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dydx

Definition 2. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1

,ΩX2
, . . . ,ΩXk

. Let pX1
, pX2

, . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively

and let pX1···Xk
be the joint probability density function of (X1, X2, . . . , Xk) and pX1···Xk−1

the joint probabi-
lity density function of (X1, X2, . . . , Xk−1). The multivariate mutual information of (X1, . . . , Xk−1) and Xk,
I(X1, . . . , Xk−1;Xk), is defined as

I(X1, . . . , Xk−1;Xk) =

∫
ΩX1

· · ·
∫

ΩXk

pX1···Xk
(x1, . . . , xk) log

(
pX1···Xk

(x1, . . . , xk)

pX1···Xk−1
(x1, . . . , xk−1)pXk

(xk)

)
dxk · · · dx1

Mutual information can be used in order to find relevant variables with respect to discrimination between diffe-
rent playing styles. A relevant variable in the ball actions data set can be seen as a variable which gives a lot of
information about the playing style. In other words, a relevant variable should have a high mutual information
value with respect to the output variable playing style. Similarly, a relevant subset of features is a subset which
has a high mutual information value with respect to the output variable.

The goal is to select a subset of k features {X1, . . . , Xk} such that I(X1, . . . , Xk;Z), with Z the output variable
playing style, is highest among all other mutual information values between subsets of k features and the output
variable Z. However, it is not known beforehand which number of features k should be selected. Therefore,
subsets of all sizes k = 1, . . . , 121 should be considered. As mentioned in the previous subsection, however, it is
not computationally feasible to consider all possible sets of features. Therefore, forward feature selection will
be used in order to select feature subsets of size k = 1, . . . , 121.

In order to calculate the mutual information value I(X1, X2, . . . , Xk;Z), according to definition 2, the joint
probability density functions pX1···Xk

and pX1···XkZ are needed. Since these density functions are not known,
they need to be estimated. Various approaches in order to estimate these densities exist, such as binning ap-
proaches and kernel densities. Doquire et al. (2012) show, however, that mutual estimation estimates based on
such density estimates can be quite inaccurate, especially in the case of many variables.

Instead of estimating the mutual information by using estimates of the probability density functions, other
mutual information estimators have been constructed which avoid the use of probability density estimates.
Kraskov et al. (2004) developed a mutual information estimator, from now on called the Kraskov estimator,
which is primarily based on nearest neighbor statistics. This estimator builds on the idea that when the nearest
neighbors of one variable (or a subset of variables) correspond to the nearest neighbors of another variable,
those variables are related to each other. Doquire et al. (2012) show that this estimator is more accurate than
estimators based on density estimates, no matter the number of dimensions. The next section gives more details
about the Kraskov estimator.

3.3 Kraskov estimator

Kraskov et al. (2004) constructed a mutual information estimator for which no probability density estimator is
needed. The estimator is based on nearest neighbor statistics. The estimator can only be used in the case of

3In the case of one/various discrete or categorical and one/various continuous random variable(s), naturally the integral(s)
corresponding to the discrete or categorical random variable(s) changes into a summation sign(s) and the integral(s) corresponding
to the continuous random variable(s) stays the same.
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14 CHAPTER 3. INFORMATION BASED FEATURE SELECTION

two (or multiple) continuous variables. Ross (2014) adjusted the Kraskov estimator in such a way that it can
also be used in the case of the combination of continuous and categorical variables4. This estimator will be
called adjusted Kraskov estimator from now on. Ross (2014) shows that this estimator is more accurate than
the estimator based on binning-based density estimates.

The Kraskov estimator and the adjusted Kraskov estimator between two random variables is based on rewriting
the mutual information between the variables as a function of their entropies and estimating these entropies
based on nearest neighbor statistics. A mathematical derivation of the Kraskov estimator for the mutual in-
formation between two continuous random variables X and Y is given below. Appendix E.4 gives a similar
derivation of the adjusted Kraskov estimator. Definitions 3 and 4 give the final expressions for the Kraskov
estimator and the adjusted Kraskov estimator.

Let X and Y be two continuous random variables with possible outcome sets, respectively, ΩX and ΩY , joint
probability density function pXY and marginal probability density functions pX with pX(x) =

∫
ΩY

pXY (x, y)dy

and pY with pY (y) =
∫

ΩX
pXY (x, y)dx.

From theorem 1 in appendix E.1 it is known that

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= −
∫

ΩX

pX(x) log(pX(x))dx−
∫

ΩY

pY (y) log(pY (y))dy +

∫
ΩX

∫
ΩY

pXY (x, y) log(pXY (x, y))dydx

= −E[log(pX(X))]− E[log(pY (Y ))] + E[log(pXY (X,Y ))] (3.1)

Since pX , pY and pX,Y are not known, equation 3.1 has to be rewritten. First consider E[log(pX(X))].

Consider drawing an independent sample of size n from the random variable X. Assume the ith point in
this sample, denoted by xi, is given. There are n− 1 remaining points. Choose a fixed, small ε. Denote by the
random variable DX(i) the distance between xi and its kth nearest neighbor.

Let g be the probability density function of DX(i). Now consider the following lemma:

Lemma 1. Consider an independent sample of size n drawn from a continuous random variable X. Assume
the ith point in this sample, denoted by xi, is given. Let DX(i) be the random variable denoting the distance
between xi and its kth nearest neighbor. In that case, the probability density function g of DX(i) approximately
equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3

with

P1 =

∫ xi+ε

xi−ε
pX(x)dx

P2 = 1−
∫ xi+ε

xi−ε
pX(x)dx

P3 = pX(xi − ε) + pX(xi + ε)

A proof of this lemma is given in appendix E.3.1.

Now, assume pX(x) is smooth in the interval [xi − ε, xi + ε] and ε is small. Using lemma 1, the probabi-
lity density function g of DX(i) now approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
(2εpX(xi))

k−1
2pX(xi) (1− 2εpX(xi))

n−k−1
(3.2)

It is known that for a random variable X with possible outcome set ΩX and probability density function f ,
E[X] =

∫
ΩX

xf(x)dx holds. Using this and equation 3.2, it is found that

E[log(2DX(i)pX(xi))] =

∫ ∞
0

log(2εpX(xi))g(ε)dε

= C

∫ ∞
0

log(2εpX(xi)) (2εpX(xi))
k−1

2pX(xi) (1− 2εpX(xi))
n−k−1

dε (3.3)

4In the case of the ball actions data set this estimator will be used for the mutual information between the output variable,
which is a categorical variable, and the explanatory variables.
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with C =
(n− 1)!

1! (k − 1)! (n− k − 1)!
Setting q = 2εpX(xi), equation 3.3 equals

(n− 1)!

1! (k − 1)! (n− k − 1)!

∫ 1

0

log(q)qk−1(2pX(xi))(1− q)n−k−1 1

2pX(xi)
dq

=
(n− 1)!

(k − 1)! (n− k − 1)!

∫ 1

0

log(q)qk−1(1− q)n−k−1dq

=
(n− 1)!

(k − 1)! (n− k − 1)!

∂B(k, n− k)

∂k
(3.4)

with B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt the beta function with x, y > 0.

Consider the following lemma:

Lemma 2. Let B(x, y) be the beta function with x and y positive integers. The following relation holds:

1

B(x, y)
=

(x+ y − 1)!

(x− 1)! (y − 1)!

A proof of this lemma is added in appendix E.3.2.
Setting x = k and y = n− k in lemma 2, equation 3.4 equals

1

B(k, n− k)

∂B(k, n− k)

∂k
(3.5)

Now consider the following lemma:

Lemma 3. Let B(x, y) be the beta function with x, y > 0. Let ψ(x) = Γ′(x)
Γ(x) be the digamma function with Γ(x)

the gamma function, x > 0. The following relation holds:

∂B(x, y)

∂x
= B(x, y)(ψ(x)− ψ(x+ y))

A proof of this lemma is added in appendix E.3.3.
Setting x = k and y = n− k in lemma 3, equation 3.5 equals

1

B(k, n− k)
B(k, n− k)(ψ(k)− ψ(n)) = ψ(k)− ψ(n)

In conclusion,
E[log(2DX(i)pX(xi))] = ψ(k)− ψ(n) (3.6)

Using equation 3.6, it is now found that

log(pX(xi)) = E[log(pX(xi))]

= E[log(2DX(i)pX(xi))− log(2DX(i))]

= E[log(2DX(i)pX(xi))]− E[log(2DX(i))]

= ψ(k)− ψ(n)− E[log(2DX(i))] (3.7)

Now, assume the points x1, . . . , xn in the sample are all known.
In that case, E[log(2DX(i))] can be estimated as follows:

E[log(2DX(i))]
∧

=
1

n

n∑
i=1

log(2dx(i)) (3.8)

with dx(i) the realization of DX(i) for the sample x1, . . . , xn.
Furthermore, E[log(pX(X))] can be estimated as follows:

E[log(pX(X))]
∧

=
1

n

n∑
i=1

log(pX(xi)) (3.9)
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Using equations 3.7, 3.8 and 3.9, it can be concluded that

E[log(pX(X))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(n)− 1

n

n∑
i=1

log(2dx(i))

)
(3.10)

Similarly, the following relation holds:

E[log(pY (Y ))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(n)− 1

n

n∑
i=1

log(2dy(i))

)
(3.11)

with dy(i) the realization for the sample y1, . . . , yn of DY (i) = |yi−Yi,k| with Yi,k the kth nearest neighbor of yi.

Now, only E[log(pXY (X,Y ))] remains to be estimated.
Again, consider drawing an independent sample of size n from the random vector (X,Y ). Assume the ith point
in this sample, denoted by (xi, yi), is given. Choose a fixed, small ε. Denote by DXY (i) the distance between
(xi, yi) and its kth nearest neighbor, where the distance is calculated using the maximum norm, i.e.

||(xi, yi)− (xj , yj)||∞= max(|xi − xj |, |yi − yj |)

Let g be the probability density function of DXY (i). Consider lemma 4, which is an extension of lemma 1 in
two dimensions:

Lemma 4. Consider an independent sample of size n drawn from a continuous random vector (X,Y ). Assume
the ith point in this sample, denoted by (xi, yi), is given. Let DXY (i) be the random variable denoting the
distance between (xi, yi) and its kth nearest neighbor, where the distance is calculated using the maximum norm,
i.e.

||(xi, yi)− (xj , yj)||∞= max(|xi − xj |, |yi − yj |)

In that case, the probability density function g of DXY (i) approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3

with

P1 =

∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx

P2 = 1−
∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx

P3 =

∫ xi+ε

xi−ε
pXY (x, yi − ε)dx+

∫ xi+ε

xi−ε
pXY (x, yi + ε)dx+

∫ yi+ε

yi−ε
pXY (xi − ε, y)dy

+

∫ yi+ε

yi−ε
pXY (xi + ε, y)dy

A proof of lemma 4 is given in appendix E.3.4.

Now, assume pXY (x, y) is smooth in the area [xi − ε, xi + ε] × [yi − ε, yi + ε] and ε is small. Using lemma
4, the probability density function g of DXY (i) now approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!

(
(2ε)2pXY (xi, yi)

)k−1
(8εpXY (xi, yi))

(
1− (2ε)2pXY (xi, yi)

)n−k−1
(3.12)

Using equation 3.12, it is now found that

E[log((2DXY (i))2pXY (xi, yi))] =

∫ ∞
0

log((2ε)2pXY (xi, yi))g(ε)dε

= C

∫ ∞
0

log(q)qk−1(1− q)n−k−18εpXY (xi, yi)dε (3.13)
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3.3. KRASKOV ESTIMATOR 17

with C =
(n− 1)!

1! (k − 1)! (n− k − 1)!
and q = (2ε)2pXY (xi, yi).

Transforming to q, equation 3.13 equals

(n− 1)!

1! (k − 1)! (n− k − 1)!

∫ 1

0

log(q)qk−1(1− q)n−k−18εpXY (xi, yi)
1

8εpXY (xi, yi)
dq

=
(n− 1)!

(k − 1)! (n− k − 1)!

∫ 1

0

log(q)qk−1(1− q)n−k−1dq

In the same way as before, it is now found that

E[log((2DXY (i))2pXY (xi, yi))] = ψ(k)− ψ(n) (3.14)

Using equation 3.14, it is now found that

log(pXY (xi, yi)) = E[log(pXY (xi, yi))]

= E[log((2DXY (i))2pXY (xi, yi))− log((2DXY (i))2)]

= E[log((2DXY (i))2pXY (xi, yi))]− E[log((2DXY (i))2)]

= ψ(k)− ψ(n)− E[log((2DXY (i))2)] (3.15)

Now, assume the points (x1, y1), . . . , (xn, yn) in the sample are all known.
In that case, E[log((2DXY (i))2)] can be estimated as follows:

E[log((2DXY (i))2)]
∧

=
2

n

n∑
i=1

log(2dxy(i)) (3.16)

with dxy(i) the realization of DXY (i) for the sample (x1, y1), . . . , (xn, yn).
Furthermore, E[log(pXY (X,Y ))] can be estimated as follows:

E[log(pXY (X,Y ))]
∧

=
1

n

n∑
i=1

log(pXY (xi, yi)) (3.17)

Using equations 3.15, 3.16 and 3.17, it can be concluded that

E[log(pXY (X,Y ))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(n)− 2

n

n∑
i=1

log(2dxy(i))

)
(3.18)

The bias in equation 3.10 mainly comes from the assumption that pX(x) is smooth in the neighborhood of xi.
The effect of this bias depends on the realization of the distance DX(i); the larger the distance, the higher the
bias. In order for the biases in equations 3.10, 3.11 and 3.18 to cancel out, the realizations of DX(i), DY (i) and
DXY (i) should therefore be the same. Note that equations 3.10, 3.11 and 3.18 hold for any value of k. Now,

only fix the value of k in the derivation of E[log(pXY (X,Y ))]
∧

, i.e.

DXY (i) = ||(xi, yi)− (Xi, Yi)k||∞

DX(i) = |xi −Xi,v|

DY (i) = |yi − Yi,w|

with v and w variable and k fixed.

Now, assume dx(i) = dy(i) = dxy(i). If dxy(i) = |xi − (xi)k|, then dx(i) is the distance to the (nx(i) + 1)th

nearest neighbor of xi with nx(i) the number of points xj for which |xi− xj |< dx(i). In other words, the above
value for v equals nx(i) + 1. This does not hold exactly if dxy(i) = |yi− (yi)k|. Similarly, if dxy(i) = |yi− (yi)k|,
then dy(i) is the distance to the (ny(i) + 1)th nearest neighbor of yi with ny(i) the number of points yj for
which |yi − yj |< dy(i). In other words, the above value for w equals ny(i) + 1. This does not hold exactly
if dxy(i) = |xi − (xi)k|. Nevertheless, Kraskov et al. (2004) state that setting v and w equal to, respectively,
nx(i) + 1 and ny(i) + 1 no matter the value of dxy(i), results in good estimations for both E[log(pX(X))] and
E[log(pY (Y ))].
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18 CHAPTER 3. INFORMATION BASED FEATURE SELECTION

Using equations 3.10, 3.11 and 3.18, the following is now found:

E[log(pX(X))] ≈ 1

n

n∑
i=1

(
ψ(nx(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dxy(i))

)

=
1

n

n∑
i=1

ψ(nx(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dxy(i))

E[log(pY (Y ))] ≈ 1

n

n∑
i=1

(
ψ(ny(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dxy(i))

)

=
1

n

n∑
i=1

ψ(ny(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dxy(i))

E[log(pXY (X,Y ))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(n)− 2

n

n∑
i=1

log(2dxy(i))

)

= ψ(k)− ψ(n)− 2

n

n∑
i=1

log(2dxy(i))

Using these equations and equation 3.1, it is now found that:

I(X;Y ) ≈ ψ(n) + ψ(k)− 1

n

n∑
i=1

(ψ(nx(i) + 1) + ψ(ny(i) + 1)) (3.19)

The following estimator is thus found:

Definition 3. The Kraskov estimator based on the kth nearest neighbor for the mutual information between
two continuous variables X and Y , based on a sample of size n is defined as

ÎK(X;Y ) = ψ(n) + ψ(k)− 1

n

n∑
i=1

(ψ(nx(i) + 1) + ψ(ny(i) + 1)) (3.20)

with ψ the digamma function, i.e. ψ(x) = Γ′(x)
Γ(x) with Γ the gamma function, nx(i) the number of xj, j 6= i,

for which |xj − xi|< ε with ε the distance5 from (xi, yi) to its kth nearest neighbor and ny(i) the number of yj,
j 6= i, for which |yj − yi|< ε.

Appendix E.4 gives a similar derivation of the adjusted Kraskov estimator, which leads to the following:

Definition 4. The adjusted Kraskov estimator based on the kth nearest neighbor for the mutual information
between categorical variable X and continuous variable Y , based on a sample of size n is defined as

ÎAK(X;Y ) = ψ(n) + ψ(k)− 1

n

n∑
i=1

(ψ(ny(i)) + ψ(nd(i) + 1)) (3.21)

with ψ the digamma function, nd(i) the number of points whose value of X equals xi and ny(i) the number of
yj, j 6= i, for which |yj − yi|< ε with ε the distance from point yi to its kth nearest neighbor among the nd(i)
points whose value of X equals xi.

Figure 3.2 and 3.3 show visual representations of the parameters used within the two estimators, n, k, nx(i),
ny(i) and nd(i). In figure 3.2, k = 1 and n = 15. The resulting values for nx(i) and ny(i) are, respectively, 5
and 3. In figure 3.3 the red points correspond to points for which the value of x equals xi. The parameter nd(i)
equals 6. In this figure, k = 3 and n = 12. The resulting value for ny(i) is 5.

5The distance from (xi, yi) to (xj , yj) is calculated by using the maximum norm, i.e. ||(xi, yi)− (xj , yj)||∞=
max(|xi − xj |, |yi − yj |).
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3.3. KRASKOV ESTIMATOR 19

Figure 3.2: Visual representation of the parameters used in the Kraskov estimator. The point for which the kth

neighbor, based on the maximum norm, is found, is indicated by the letter i. The kth = 1st nearest neighbor of
this point is indicated by the letter k. The green points lie within distance ε from point i in the x or y direction,
the red points do not.

Figure 3.3: Visual representation of the parameters used in the adjusted Kraskov estimator. The colors corre-
spond to different values of the categorical variable x. The point for which the kth neighbor, among all points
for which the value of x equals xi, is found, is indicated by the letter i. The kth = 3rd nearest neighbor of this
point among all points for which the value of x equals xi is indicated by the letter k.

Note that in the derivation of both estimators the non-categorical variables are assumed to be continuous. In
the case of the ball actions data set, however, not all non-categorical variables are continuous. In fact, only the
variables Total possession time in milliseconds, Average possession time in milliseconds, Possession percentage,
Average location of regaining the ball and Average time till the first duel after loss of possession are continuous.
All other variables, i.e. the variables which are expressed in percentages, are constructed from two discrete vari-
ables, such as Number of long passes and Total number of passes. Therefore, these variables are discrete variables
themselves as well. In order to be able to apply the Kraskov estimator and the adjusted Kraskov estimator to
these variables, very small noise6 is added to each of these variables. In their experiments, Kraskov et al. (2004)
proceed in the same way. As far as literature study shows, no other method for estimating mutual information
of discrete variables based on the Kraskov estimator has been constructed. Note that in the case of discrete
variables with relatively few different outcome states, the adjusted Kraskov estimator can be used after treating
the discrete variables as categorical. In the case of relatively many different outcome states, however, treating
the discrete variables as categorical and using the adjusted Kraskov estimator will not lead to accurate results.
Unfortunately, most discrete variables in the ball actions data set have relatively many different outcome values.

An additional issue in the case of these estimators is the choice of k. Kraskov et al. (2004) suggest using

6Random number generated from a normal distribution with mean zero and standard deviation 10−15.
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20 CHAPTER 3. INFORMATION BASED FEATURE SELECTION

a value for k in {2, 3, 4}7. Doquire et al. (2012) suggest to average the estimations obtained for all values of k
within a reasonable range. In this study, therefore, the final estimates are obtained by averaging the estimates
for k = 2, 3 and 4.

As mentioned, Doquire et al. (2012) and Ross (2014) show that, respectively, the Kraskov estimator and the
adjusted Kraskov estimator are more accurate than probability density based estimators. However, Doquire
et al. (2012) also show that the Kraskov estimator gets less accurate as the number of dimensions grows. In
other words, the mutual information between a set of k variables and the output variable can not be estimated
accurately for large k using the Kraskov estimator. Doquire et al. (2012) also state:

”Even though the task of estimating mutual information has been widely studied, it remains very challenging
for high-dimensional vectors.”

Fortunately, Peng et al. (2005) showed that instead of selecting a relevant feature subset based on these high-
dimensional mutual information values, another algorithm which is similar in the case of forward feature selection
can be used. The next section considers this substitutional algorithm.

3.4 Minimum-redundancy-maximum-relevance feature selection

As mentioned, forward feature selection can be used in order to select relevant feature subsets of size k =
1, . . . , 121. For each k this can be done by finding the subset of size k with the maximum mutual informa-
tion value I(X1, . . . , Xk;Z) among all subsets of size k. The mutual information values are estimated by the
use of the Kraskov and adjusted Kraskov estimators. Unfortunately, accurate estimation of high-dimensional
mutual information values remains an issue, according to Doquire et al. (2012). Peng et al. (2005) proposed
a substitutional algorithm, minimum-redundancy-maximum-relevance feature selection (mRMR). This feature
selection algorithm selects features based on forward feature selection by maximizing the mutual information
of the individual features with respect to the output variable and at the same time minimizing the mutual
information with respect to the already selected features. This way, the selected features are both informative
with respect to the output variable as well as not too highly dependent upon each other.

If the features are selected based on only maximizing the mutual information of the individual features with
respect to the output variable, the selected features can be dependent upon each other. If feature X1 and X2

both give a lot of information about the outcome variable but are highly correlated with each other, the increase
in information when selecting X2 after already having selected X1 is quite low. In other words, feature X2 is
redundant when feature X1 has already been selected. As opposed to irrelevant features, i.e. features which give
no information about the outcome variable, redundant features do not harm the results. However, they also do
not improve the results. Therefore, if a fixed number of features or a subset capable of discriminating between
playing styles containing as little features as possible is to be selected8, it is better to not select these redundant
features. That way, only features which give much additional information about the outcome variable with
respect to the already selected features, are taken into account.

Consider the variables X1, . . . , Xp and outcome variable Z. Let S be the set of already selected features and
F the set of non-selected features. Consider forward feature selection. In each iteration the mRMR algorithm
maximizes the individual mutual information, Ci = I(Xi;Z), with Xi ∈ F , and at the same time minimizes
the average mutual information of the new feature and the set of selected features, Bi = 1

|S|
∑
Xj∈S I(Xi;Xj),

with Xi ∈ F and Xj ∈ S. This can be combined, for example, by maximizing Ci − Bi9. Note that a possi-
ble improvement here would be to place a regularization parameter λ in front of the quantity Bi in order to
decrease or increase the penalty of selecting a feature which is partly redundant with respect to the already
selected features. Peng et al. (2005) show that in the case of forward feature selection selecting features by the
use of the mRMR algorithm is similar to selecting features based on maximization of high-dimensional mutual
information values I(X1, . . . , Xk;Z). A more detailed proof of this is given in appendix E.5. Algorithm 3 gives
a description of the mRMR forward feature selection method. The mutual information values in this algorithm
will be estimated by the Kraskov estimator and the adjusted Kraskov estimator in this thesis.

7According to Kraskov et al. (2004) high values of k lead to high systematic errors, whereas small values lead to high statistical
errors. In order for the systematic errors not to outweigh the decrease of the statistical errors, k should be chosen within {2, 3, 4}.

8A feature set containing as little features as possible is desirable since this makes the interpretation of the resulting clusters
easier.

9Another possibility would be to maximize Ci
Bi

.
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Algorithm 3: Minimum-redundancy-maximum-relevance forward feature selection

Data: X = {X1, . . . , Xp} a set of p features and output variable Z
Result: A subset S of k < p features forming a maximum-relevance minimum-redundant feature set of k

features with respect to the output variable Z
Set S = argmaxXi∈{X1,...,Xp}{I(Xi;Z)} with I(Xi;Z) the mutual information between Xi and Z;

Set F = X \ S;
while |S|< k do

S = S ∪ argmaxXi∈F {I(Xi;Z)− 1
|S|
∑
Xj∈S I(Xi;Xj)};

F = X \ S;

end

The mRMR algorithm can be performed on the ball actions data set using the matches of the benchmark teams
in order to find a feature set of size k which is most relevant and least redundant with respect to the playing
style. The mutual information values used within the mRMR algorithm are estimated using the Kraskov es-
timator and the adjusted Kraskov estimator. When performing the algorithm with k equal to 121, a ranking
for all the features in the data set is found corresponding to a decreasing amount of additional information the
features give about the playing style after higher ranked features have already been selected.

From now on, the reported results will be based on the matches of Ajax, FC Barcelona, Atletico Madrid
and Queens Park Rangers, i.e. the matches of Juventus (the playing style Catenaccio) are left aside. All the
steps have also been performed for the matches of the benchmark teams including Juventus, but the results for
Catenaccio were not satisfying. There are two main issues when dealing with Catenaccio:

• There are very few Catenaccio matches in the set of matches of benchmark teams on which the model
can be trained.

• The playing style Catenaccio is mostly characterized by defensive statistics of which not many are avai-
lable10.

These issues probably lead to the fact that Catenaccio can not be well discriminated. For that reason, the
choice is made to drop Catenaccio as playing style in the analysis. Idea for further study is to gather more
relevant statistics with respect to Catenaccio and find more Catenaccio benchmark matches. Appendix F.1
shows the ranking of the features in Feature set 2 resulting from performance of the mRMR algorithm on the
scaled data of the matches of the benchmark teams without Juventus.

A feature selection method has now been constructed with which a suitable ranking of the features in the
ball actions data set can be obtained. Notice that the mRMR algorithm denoted in algorithm 3 selects k
features based on a predefined number of features. As mentioned in section 3.1 the choice is made to choose
an appropriate value for k based on the results feature subsets of different sizes k give when used in the final
classification method. The next section deals with this issue and focuses on actually determining the playing
style applied in a match.

10As mentioned in section 1.3.2, the data set only contains information about ball actions; information about actions not related
to the ball is not available.
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Chapter 4

Determining the playing style in a
match

Chapter 3 described a feature selection method suited to the problem in this study. Applying this method to
the matches of the benchmark teams gives a ranking of the features corresponding to a decreasing amount of
additional information the features give about the playing style after higher ranked features have already been
selected. Selecting the top k features of this ranking lists results in a feature set which is most likely better
capable of discriminating between different playing styles than Feature set 2. The next step is to actually assign
matches to different playing styles by the use of some classification or clustering method. In this chapter this
classification issue is addressed and a final model with which matches can be assigned to a playing style is
constructed. Instead of assigning matches to one of the playing styles Hollandse School,Tiki Taka, Counterplay
and Kick and Rush, a method with which the scores of matches on different characteristics of playing styles in
general can be determined, is also discussed.

The number of features to select from the ranking list should now be decided upon. As mentioned before,
the choice is made to choose this number of features based on the results that feature subsets of different sizes,
i.e. the top k = 1, . . . , 121 features obtained from the ranking list using the mRMR method, give when using
the final classification method in combination with these feature subsets. That way, the resulting feature subset
is best capable of assigning matches to their corresponding playing styles using the final classification method.
Before selecting the optimal number of features in the case of the ball actions data set, the next sections will
now give details about the classification method which will be used.

4.1 Non-hierarchical clustering scheme

A choice has to be made as to which classification method will be used to assign matches to different playing
styles. As mentioned in the beginning of section 3.1, an unsupervised method will be used in order to determine
the playing style of a match. This is done, since the assumed playing styles in the matches of the benchmark
teams might be incorrect. As mentioned in subsection 1.2.2, K-means clustering is a frequently applied unsu-
pervised method in general as well as in similar problems as the one in this study. That is why the choice is
made to apply K-means clustering in order to assign matches to playing styles1. The next subsection gives some
details about the method K-means clustering.

4.1.1 K-means clustering

The choice is made to use K-means clustering in order to assign matches to playing styles. K-means clustering
is a method with which unlabeled observations can be grouped into K clusters. In short, K-means clustering
starts by choosing randomly (if not specified) K cluster centers. Within K-means clustering a cluster center
is defined as the vector of the means of the feature values of the observations belonging to the specific cluster.
Each observation then gets assigned to the cluster whose cluster center is closest with respect to the Euclidean
distance. After having assigned each observation to a cluster, the cluster centers are calculated again based on
the observations belonging to the clusters. Next, again the observations are assigned to the cluster with the

1Since other unsupervised methods might lead to better results, an idea for further studies is to also apply other methods and
choose the one which produces the best results.
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closest cluster center. This is repeated until the assignment of observations does not change anymore.

Note that within K-means clustering Euclidean distance is used as distance measure. Furthermore, the cluster
centers are calculated as the means of the feature values of the observations belonging to the specific clusters.
However, the same algorithm can be performed using different distance measures and different definitions of
cluster centers. Subsection 4.1.3 discusses such a variation of K-means clustering in which Manhattan distance
is used and cluster centers are calculated by medians instead of means. Also, weighted distances could be used
such that important features have more influence on the cluster analysis.

Next, a more formal description of the K-means algorithm is given. Let x1, . . . ,xn be n observations with
xi, i = 1, . . . , n, a p-dimensional vector. K-means clustering aims to divide these n observations into K sets
S1, . . . , SK with K ≤ n by minimizing the within-cluster sum of squares. The within-cluster sum of squares
measures the amount in which observations in a cluster differ from each other.

Definition 5. Let x1, . . . ,xn be n observations with xi, i = 1, . . . , n, a p-dimensional vector. Let S =
{S1, . . . , SK} be the set of K clusters in total containing all of the n observations. The within-cluster sum
of squares of S, W (S), is defined as

W (S) =

K∑
j=1

∑
xi∈Sj

(dE(xi, cj))
2

with dE(xi, cj) =
√∑p

l=1 (xi,l − cj,l)2 the Euclidean distance between xi and cj and cj = (c1,j , . . . , cp,j) =
1
Nj

∑
i:xi∈Sj

(xi,1, . . . , xi,p) the cluster center of cluster j.

Algorithm 4 describes the process of K-means clustering.

Algorithm 4: K-means clustering

Data: n observations x1, . . . ,xn , with xi, i = 1, . . . , n, a p-dimensional vector
Result: Subdivision of the n observations into K non-overlapping clusters S = {S1, . . . , SK}
(Randomly) choose K initial cluster centers c1, . . . , cK with ci a p-dimensional vector;
while cluster assignments change do

Calculate the Euclidean distance dE(xi, cj) between observation i, i = 1, . . . , n, and cluster center j,
j = 1, . . . ,K;

Assign observation i, i = 1, . . . , n, to the cluster corresponding to the smallest distance between
observation and cluster center;

Recalculate the cluster centers cj , j = 1, . . . ,K, based on the observations belonging to the specific
cluster;

end

Applying K-means clustering with K clusters on the set of matches in the scaled ball actions data set using
Feature set 2, divides these matches in K different groups. In theory, these groups could correspond to all
possible matters related to ball actions. Since exploratory analysis of the matches of the benchmark teams
showed that the corresponding different playing styles were separated quite well using Feature set 2, see figure
?? in appendix F.2, it is expected that the resulting clusters will correspond to different playing styles. Assuming
that this is indeed the case, these clusters can be labeled by either interpreting the clusters based on their centers
or, in the case of clustering of matches which already have been labeled with a playing style, labeling the cluster
as the playing style which is most frequently present in that cluster2. The question arises how the playing styles
of new matches, which are not in the data set yet, should be determined. There are multiple ways in which this
can be done in relation to K-means clustering:

• Perform K-means clustering again on the whole data set containing the new matches a well.
• Use the resulting clusters obtained by K-means clustering of the original data set and assign the new

matches to the cluster whose cluster center is closest.
• Use the labels obtained by K-means clustering of the original data set to train a supervised classifier.

2In the case of the latter, the interpretation of the clusters based on their centers should agree with the assigned labels based
on most present labels in the cluster.
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In case of the first option, the interpretation of the clusters can change depending on which set of data points
is being clustered. K-means clustering of the matches of the benchmark teams, with K = 4, (most likely) leads
to four clusters corresponding to the playing styles Hollandse School, Tiki Taka, Counterplay and Kick and
Rush. K-means clustering of the matches in the Eredivisie, however, might lead to four clusters with other
interpretations, since the set of matches in the Eredivisie does not necessarily need to contain those four play-
ing styles. For example, Tiki Taka might not get applied in the Eredivisie and/or some other playing style
possibly does. Therefore, a particular match might get assigned to a cluster with a certain interpretation when
it is being clustered together with a certain set of matches, whereas this same match might get assigned to a
cluster with another interpretation when being clustered together with another set of matches. It is desirable to
assign a match to a certain playing style independent of the set of matches within which it is being considered.
Therefore, this option will not be utilized.

The second option is also known as 1-Nearest Neighbors trained on the cluster centers resulting from K-means
clustering performed on the original data set. This option assigns matches to clusters independent of the set
of matches within which it is being considered. For the third option the same holds. This study applies the
second option for simplicity reasons. An idea for further studies is to consider the third option.

The choice is made to focus on the four playing styles Hollandse School, Tiki Taka, Counterplay and Kick
and Rush, i.e. to apply K-means clustering on the set of matches of the benchmark teams only. This is done,
because the feature selection method is based on only these four playing styles as well. When applying K-means
to the set of all matches in the ball actions data set described in subsection 1.3.3, other playing styles than
those four might be contained in this set, which makes the selected features less useful.

In conclusion, K-means clustering with K = 4 clusters will be applied to the matches of the benchmark
teams after which 1-NN trained on the resulting cluster centers is applied to assign new matches to one of
the four playing styles as well. Since K-means clustering chooses its initial cluster centers randomly, K-means
is performed 100 times after which the best result is chosen. The best clustering result is assumed to be the
result with the smallest within-cluster sum of squares W (S) as defined in definition 5. Using the cluster centers
corresponding to this best clustering result, other matches will be assigned to one of the four clusters. Before
doing this, the number of features to select has to be chosen. The next subsection deals with this issue.

4.1.2 Number of features and misclassification error

Author’s note: this subsection is confidential.

4.1.3 Clustering results

Author’s note: this subsection is confidential.

4.2 Hierarchical clustering scheme

Author’s note: this section is confidential.

4.3 Characteristic variables

Author’s note: this section is confidential.
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Results

Author’s note: this section is confidential.
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Chapter 6

Conclusion and further directions

Conclusion

Coaches can benefit from objective information about playing styles applied in football matches. In this the-
sis, two methods for determining (characteristics of) the playing style of a football team in a certain match
solely based on statistics of ball actions have been constructed. Exploratory analyses of the data set describing
statistics of ball moments showed that treating the problem completely unsupervised does not lead to satisfy-
ing results. That is why domain knowledge is used to choose benchmark teams from which it is known that
they play according to specific playing styles quite clearly in the majority of their matches. The playing styles
Hollandse School, Tiki Taka, Counterplay and Kick and Rush with corresponding teams Ajax, FC Barcelona,
Atletico Madrid and Queens Park Rangers are considered for this.

A subset of features from the data set is selected in order to improve the capability of discriminating be-
tween the four playing styles. This is done by using mutual information, estimated by the (adjusted) Kraskov
estimator, as a measure of relevance of the features with respect to playing style. Features are then ranked
based on the minimum-redundancy-maximum-relevance algorithm. Next, the matches of the benchmark teams
have been divided into four groups by the use of K-means clustering based on a selected subset of features. New
matches are then assigned to the cluster with the closest cluster center.

The optimal number of features to select is chosen based on the number corresponding to the smallest es-
timated expected misclassification error, which is found using 5-fold cross-validation. Splitting the matches of
the benchmark teams in four clusters at once and assigning new matches to these four clusters leads to an
estimated expected misclassification error of approximately 15%. A hierarchical structure is also built by first
splitting the matches in two clusters and consecutively splitting the resulting two clusters in two new clusters
each, by using K-means clustering based on a different selected subset of features in each clustering step. This
Hierarchical clustering model leads to an estimated expected misclassification error of approximately 11% and
is chosen as final model to assign matches to one of the four labeled playing styles.

A second method is constructed in order to obtain information about non-labeled playing styles as well. In
this Characteristic variables model, characteristic variables Dominance, Offensive play and Passing length have
been created by the use of principal component analysis. Based on these three variables important information
about characteristics of playing styles in general can be obtained without the need for prior information about
labeled playing styles.

Application of both models on subsets of the data show satisfying results which agree with domain knowledge.
These models can be used to provide coaches with information regarding playing styles applied in matches.
Coaches can use this information in order to both evaluate their own team as well as analyze their opponents.
Based on this information, coaches can, for example, adjust their training procedures or change their game
plan in order to increase their probability of winning. Even though satisfying results have been obtained in
this study, improvements are still possible. The next section discusses such possible improvements as well as
additional ideas for further studies.
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Further directions

Two models have been built in this study by which the (characteristics of the) playing style of a football team
in a match can be determined solely by the use of statistics about ball actions. Even though both models
provide satisfying results, improvements and additions are still possible. Throughout this report some possible
adjustments have already been mentioned. This section will give an overview of all these possibilities.

The first thing which should be mentioned is that the applications of the methods used in this study are
not limited to playing styles of football teams. The same methods can be used in order to determine the playing
style of players instead of teams. The only difference is that the data should give information about specific
players instead of an entire team. Furthermore, instead of benchmark teams, benchmark players should be
chosen. Also, the hierarchical clustering scheme is not necessarily better than the non-hierarchical scheme in
this case, so this should be checked. The number of clusters which ought to be constructed equals the desired
number of different benchmark playing styles for players. Also note that the applications are not limited to
football. The methods can be used for any ball sport under the condition that related data are available.

Regarding the data used in this study, some improvements and adjustments are also possible. The data in
this study are aggregated data over an entire match. However, playing styles of teams are likely to change
within a match as well. Teams can adjust their playing style after the first half of the match is over or after
a goal has been made. If data about these shorter moments within a match would be used, the playing styles
during these moments could be determined separately. Also note that the playing style Catenaccio is not consi-
dered in the final part of this study anymore, due to the lack of Catenaccio benchmark matches and possibly the
lack of suitable features. Finding more of these benchmark matches and suitable features could lead to the fact
that Catenaccio matches can also be recognized from the data. Regarding the benchmark matches in general,
one of the most important improvements would be to find more and better benchmark matches such that the
different playing styles can be discriminated between more clearly. Note that if enough benchmark matches are
available from which it is known for sure which playing style is applied during these matches, there is no need
to work (partly) unsupervised anymore. Supervised methods could be used in this case, which could lead to
more satisfying results. Furthermore, in the case of the current unsupervised classification method, when using
other benchmark matches it should be checked again whether the hierarchical clustering scheme still leads to
better results than the non-hierarchical scheme.

There are a few more issues regarding the data which could possibly be improved. First of all, in this study
standard scaling of the data has been used. This might not be the most suited scaling method for this specific
data. For example, assigning different weight factors to the variables in the data set such that specific variables
have more influence in analyses than others, could be desirable. More research as to what kind of scaling method
suits best with this data could lead to improvements of the results. Also note that the variables in the data set
have been transformed to percentage data based on domain knowledge. However, more suitable transformations
might exist which could be found by using transformation methods for classification purposes such as the one
introduced by Zhou et al. (2009). Also note that the multicollinear features have been removed from the data
set before doing any analysis. In order to check whether these multicollinear features indeed give no additional
information about playing styles, the methods could be performed on the data set including these multicollinear
features.

Another part of this study for which improvements are possible, is the feature selection method. First of
all, it should be noted that the applied feature selection method is of a supervised kind. This choice in combi-
nation with an unsupervised classification method was made due to the advantages and disadvantages of both
supervised and unsupervised methods in the case of lack of training data for which the outcome values are
known for sure. The assumption was made that usage of possibly wrong information in the feature selection
step causes less harm than in the final step of assigning matches to playing styles, which is why a super-
vised feature selection method was used. Further studies could check whether this is indeed true or whether
an unsupervised feature selection method might lead to better results after all. Furthermore, the number of
features to select is now chosen based on the smallest estimated expected misclassification error which is calcu-
lated by 5-fold cross-validation. However, due to the variance in the results it might be more suitable to choose
the number for which the upper bound of a confidence interval of the expected misclassification error is smallest.

Regarding the (adjusted) Kraskov estimator based on k nearest neighbors, an improvement would be to deter-
mine an optimal value for k. Unfortunately, during literature study no such methods have been encountered.

C.J. Wensveen Master of Science Thesis



29

Using various values for k and choosing the one resulting in the most satisfying results would be an option.
Furthermore, in this study the discrete variables have been adjusted by adding small noise in order for the vari-
ables to become continuous such that the (adjusted) Kraskov estimator can be used. Other mutual information
estimators in the case of discrete data for which the data do not have to be manipulated might lead to more ac-
curate estimates for the mutual information. Another possible improvement within the feature selection method
is related to the mRMR criterion Ci −Bi = I(Xi;Z)− 1

|S|
∑
Xj∈S I(Xi;Xj) with S the set of already selected

features and Xi 6∈ S. This criterion is maximized in order to select a feature based on high mutual information
with respect to the outcome variable and low mutual information with respect to the already selected variables.
This can also be achieved, however, by maximizing the criterion Ci

Bi
. Furthermore, a regularization parameter

can be introduced in order to control the importance of the regularization term 1
|S|
∑
Xj∈S I(Xi;Xj). Using

this different criterion or making use of a regularization parameter could improve the results.

As mentioned, if a set of benchmark matches is available for which it is known for sure which playing styles
are applied in them, a supervised classification method could be used instead of the constructed unsupervised
method. However, if this is not the case, improvements could still be possible by using another unsupervised
method than K-means clustering. Also, variations of K-means clustering, such as weighted K-means, could be
used.

In the case of the Characteristic variables model, sparse PCA could be used in order to create the charac-
teristic variables. This way, an optimal combination, with respect to maximizing the variance, of a subset of
the variables can be found by taking into account all the variables instead of focusing on a subset. Furthermore,
other characteristic variables could be created as well if information about other characteristics is desired.

All of these adjustments and additions could be investigated in further studies in order to check whether
these would improve the results. The methods constructed in this study can also be used in order to be able
to analyze new issues. For example, chapter 5 gave a short analysis of the probability of winning or losing
when playing against an opponent with a certain playing style. More issues like this, which are interesting for
coaches, can be analyzed by the use of the constructed models. Consider, for example, the issue of deciding
which players to put on the field in order to be able to optimally perform a specific playing style as a team.
Once the characteristics which are important for this specific playing style are known, players which have these
specific characteristics as their qualities can be chosen. In the case of the Characteristic variables model the
important qualities are known by considering the original variables which are used to create the characteristic
variables. In the case of the Hierarchical clustering model the important qualities are known by considering
the features which were selected by the mRMR features selection algorithm. More issues like this, which are
important for coaches, can be analyzed now that models have been constructed by which the playing style of a
football team applied in a match can be determined based on statistics of ball actions.
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Appendix A

Data

A.1 Features

Author’s note: this section is confidential.

A.2 Irrelevant features

Author’s note: this section is confidential.

A.3 Transformed features

Author’s note: this section is confidential.

A.4 Multicollinear features

Author’s note: this section is confidential.
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Appendix B

Derivation principal components

Let X = (X1, . . . , Xp) be a random vector in Rp. The principal components Z1, . . . , Zp of the random vector
X are of the form Zi = αi,1X1 + · · · + αi,pXp with

∑p
j=1 α

2
i,j = 1, Var(Z1) > Var(Z2) > · · · > Var(Zp) and

Cov(Zi, Zj) = 0 for i 6= j. In order to find values for αi,j , i, j = 1, . . . , p, such that the above requirements hold,
the covariance matrix of X, Σ, should be known. This covariance matrix Σ is not known, unfortunately, and
will therefore be estimated by taking into account a sample of size n from the random vector X.

Consider the n × p-dimensional matrix Xn = (x1, . . . ,xp), corresponding to n realizations of the random
vector X. The principal components Z1, . . . , Zp of the random vector X will be estimated by using this set of
realizations Xn. The values of these principal components corresponding to the n realizations Xn are denoted
by zi = αi,1x1 + αi,2x2 + · · ·+ αi,pxp, i = 1, . . . , p, with

∑p
j=1 α

2
i,j = 1.

By the definition of principal components, z1 should explain the maximum possible variance in the original
data set, i.e. in Xn. Therefore, Var(z1) should be maximized over all possible values of α1,j , j = 1, . . . , p. Let
zi,j , i = 1, . . . , n, j = 1, . . . , p, denote the ith score of the jth principal component. The following should then
be maximized

Var (z1) =
1

n− 1

n∑
i=1

(
zi,1 −

1

n

n∑
i=1

zi,1

)2

=
1

n− 1

n∑
i=1

 p∑
j=1

α1,jxi,j −
1

n

n∑
i=1

p∑
j=1

α1,jxi,j

2

=
1

n− 1

n∑
i=1

 p∑
j=1

α1,jxi,j −
p∑
j=1

α1,j

(
1

n

n∑
i=1

xi,j

)2

(B.1)

with xi,j the ith element of xj .
For simplicity assume x1, . . . ,xp all have mean zero1. Equation B.1 then equals

1

n− 1

n∑
i=1

 p∑
j=1

α1,jxi,j

2

(B.2)

In matrix form this equals
1

n− 1
(Xnα1)T (Xnα1) (B.3)

with α1 the vector consisting of the elements α1,1, . . . , α1,p. Equation B.3 can be rewritten as

1

n− 1
α1

TXT
nXnα1

= α1
T XT

nXn

n− 1
α1 (B.4)

1This does not influence the results, since the observations xi,j can just be replaced by their centered versions xi,j − x̂j with

x̂j = 1
n

∑n
i=1 xi,j .
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Note that the constraint
∑p
j=1 α

2
1,j = 1, i.e. α1

Tα1 = 1, still holds. The problem of maximizing equation
B.4 over all possible values of α1,j , j = 1, . . . , p, subject to this constraint can be solved using the Lagrange
multiplier. Consider the following equation:

u = α1
T XT

nXn

n− 1
α1 − λ(α1

Tα1 − 1)

Differentiating to α1 and setting equal to zero gives

∂u

∂α1
= 2

XT
nXn

n− 1
α1 − 2λα1 = 0

This equation leads to
XT
nXn

n− 1
α1 = λα1

Setting V =
XT

nXn

n−1 gives
Vα1 = λα1 (B.5)

This shows that α1 is an eigenvector of matrix V. Notice that the quantity to be maximized, i.e. equation B.4,
equals α1

Tλα1 = λα1
Tα1 = λ by substitution of equation B.5 and the constraint. Therefore, equation B.4

with constraint α1
Tα1 = 1 is maximized by choosing α1 equal to the eigenvector of V corresponding to the

largest eigenvalue λ.

The next principal components can be found in similar ways only adding a constraint which reassures that
the components are uncorrelated. Derivation of the second principal component will now be shown. Parts of
the steps are not shown, since they are exactly the same as in the derivation of the first principal component.
By the definition of principal components z1 and z2 should be uncorrelated, i.e. Cov(z1, z2) = 0. The goal

is therefore to find values for α2,1, . . . , α2,p such that 1
n−1

∑n
i=1

(∑p
j=1 α2,jxi,j

)2

is maximized under the con-

straints
∑p
j=1 α

2
2,j = 1 and Cov(z1, z2) = 0.

In the same way as before it can be shown that

Cov(z1, z2) =
1

n− 1

n∑
i=1

 p∑
j=1

α1,jxi,j

p∑
j=1

α2,jxi,j


In matrix form this equals

1

n− 1
(Xnα1)T (Xnα2)

=
1

n− 1
α1

TXT
nXnα2

= α1
T XT

nXn

n− 1
α2

= α1
TVα2 (B.6)

=
((
α1

TVα2

)T)T
=
(
α2

T (α1
TV )T

)T
=
(
α2

TV Tα1

)T
=
(
α2

TV α1

)T
=
(
α2

Tλα1

)T
= λα1

Tα2 (B.7)

Using the method of the Lagrange multiplier again, the following equation is now formed:

u = α2
TVα2 − λ2(α2

Tα2 − 1)− λ3λα1
Tα2
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Differentiating to α2 and setting equal to zero gives

∂u

∂α2
= 2Vα2 − 2λ2α2 − φα1 = 0 (B.8)

with φ = λ3λ.
Multiplying by α1

T gives
2α1

TVα2 − 2λ2α1
Tα2 − φα1

Tα1

Using equation B.6, B.7 and the constraint α1
Tα1 = 1 this equals

0− 0− φ = 0

Therefore, φ = 0 should hold. Equation B.8 now leads to

2Vα2 − 2λ2α2 = 0

This is similar to equation B.5 in the derivation of the first principal component, so α2 should again be set
equal to the eigenvector of V corresponding to the largest eigenvalue λ2. However, since in that case α2 = α1,
i.e. z2 = z1, which violates Cov(z1, z2) = 0, the eigenvector corresponding to the second largest eigenvalue
should be chosen as values for α2. The remaining principal components can be derived in a similar way.
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Appendix C

Results exploratory analysis

C.1 Eredivisie scattermatrix principal components

Author’s note: this section is confidential.

C.2 Barcelona and Queens Park Rangers principal components

Author’s note: this section is confidential.

C.3 Benchmark teams principal components

Author’s note: this section is confidential.
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Appendix D

Results additional features

Author’s note: this section is confidential.

40



Appendix E

Feature selection

E.1 Mutual information

The mutual information of the random variables X and Y can also be calculated as a function of the entropy
of the two variables. The entropy of a variable is a quantification of the uncertainty of the variable. All of the
definitions and theorems in this appendix are given in Yeung (2008).

Definition 6. Let X be a continuous random variable with possible outcome set ΩX . Let pX be the probability
density function of X. The entropy of X, H(X), is defined as

H(X) = −
∫

ΩX

pX(x) log (pX(x)) dx

One can also consider the conditional entropy of two random variables. The conditional entropy of the random
variables X and Y can be seen as a quantification of the uncertainty of variable X given the event Y .

Definition 7. Let X and Y be continuous random variables with possible outcome sets, respectively, ΩX and
ΩY . Let pX and pY be the probability density functions of X and Y respectively and let pXY be the joint
probability density function of (X,Y ). The conditional entropy of X and Y , H(X|Y ), is defined as

H(X|Y ) =

∫
ΩX

∫
ΩY

pXY (x, y) log

(
pY (y)

pXY (x, y)

)
dydx

In the case of discrete or categorical random variables the integrals in definitions 6 and 7 are replaced by sum-
mation signs over all possible values of the random variables. In the case of the use of log base 2, the entropy
is calculated in shannon.

Definitions 6 and 7 can also be extended to more than two random variables. One can consider the joint
entropy of multiple random variables. The joint entropy of random variables X1, X2, . . . , Xk can be seen as a
quantification of the uncertainty of the set of variables {X1, X2, . . . , Xk}.

Definition 8. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1

,ΩX2
, . . . ,ΩXk

. Let pX1
, pX2

, . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively and

let pX1···Xk
be the joint probability density function of (X1, X2, . . . , Xk). The joint entropy of X1, X2, . . . , Xk,

H(X1, . . . , Xk), is defined as

H(X1, . . . , Xk) = −
∫

ΩX1

· · ·
∫

ΩXk

pX1···Xk
(x1, . . . , xk) log (pX1···Xk

(x1, . . . , xk)) dxk · · · dx1

Also conditional joint entropy can be considered.

Definition 9. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1 ,ΩX2 , . . . ,ΩXk

. Let pX1 , pX2 , . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively

and let pX1···Xk
be the joint probability density function of (X1, X2, . . . , Xk). The conditional joint entropy of

X1, X2, . . . , Xk−1 given Xk, H(X1, . . . , Xk−1|Xk), is defined as

H(X1, . . . , Xk−1|Xk) =

∫
ΩX1

· · ·
∫

ΩXk

pX1···Xk
(x1, . . . , xk) log

(
pXk

(xk)

pX1···Xk
(x1, . . . , xk)

)
dxk · · · dx1
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Definition 10. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1

,ΩX2
, . . . ,ΩXk

. Let pX1
, pX2

, . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively

and let pX1···Xk
and pX2···Xk

be the joint probability density functions of, respectively, (X1, X2, . . . , Xk) and
(X2, . . . , Xk). The conditional joint entropy of X1 given X2, . . . , Xk, H(X1|X2, . . . , Xk), is defined as

H(X1|X2, . . . , Xk) =

∫
ΩX1

∫
ΩX2

· · ·
∫

ΩXk

pX1···Xk
(x1, . . . , xk) log

(
pX2···Xk

(x2, . . . , xk)

pX1···Xk
(x1, x2, . . . , xk)

)
dxk · · · dx2dx1

Figure E.1 gives a visual interpretation of the mutual information between two correlated random variables X
and Y .

Figure E.1: Visual interpretation of the mutual information and entropies between two correlated random
variables X and Y .

Also conditional mutual information can be considered.

Definition 11. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1

,ΩX2
, . . . ,ΩXk

. Let pX1
, pX2

, . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively

and let pX1···Xk
, pX2···Xk

, pX1···Xk−1
and pX2···Xk−1

be the joint probability density functions of, respectively,
(X1, X2, . . . , Xk), (X2, . . . , Xk), (X1, X2, . . . , Xk−1) and (X2, . . . , Xk−1). The conditional mutual information
of X1 and Xk given X2, . . . , Xk−1, I(X1;Xk|X2, . . . , Xk−1), is defined as

I(X1;Xk|X2, . . . , Xk−1) =

∫
ΩX1

· · ·
∫

ΩXk

pX1···Xk (x1, . . . , xk) log

(
pX2···Xk−1(x2, . . . , xk−1)pX1···Xk (x1, . . . , xk)

pX1···Xk−1(x1, . . . , xk−1)pX2···Xk (x2, . . . , xk)

)
dxk · · ·dx1

The image in figure E.1 can also be extended to three random variables as seen in figure E.2.

Figure E.2: Visual interpretation of the mutual information and entropies between three correlated random
variables X, Y and Z.
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The area included by the three circles can be interpreted as the joint entropy of the random variables X, Y and
Z. Area 1 can be interpreted as the conditional mutual information I(X;Z|Y ), area 2 as I(X;Y ;Z) and area 3
as I(Y ;Z|X). The area included by area 1, 2 and 3 can be interpreted as the multivariate mutual information
I(X,Y ;Z).

From figures E.1 and E.2 the following theorems can be deducted:

Theorem 1. Let X and Y be two random variables with possible outcome sets, respectively, ΩX and ΩY . Let
pX and pY be the probability density functions of X and Y respectively and let pXY be the joint probability
density function of (X,Y ). The following equality holds:

I(X;Y ) = H(X) +H(Y )−H(X,Y )

Theorem 2. Let X and Y be two random variables with possible outcome sets, respectively, ΩX and ΩY . Let
pX and pY be the probability density functions of X and Y respectively and let pXY be the joint probability
density function of (X,Y ). The following equality holds:

I(X;Y ) = H(X)−H(X|Y )

Appendix E.2.1 and E.2.2 give more formal proofs of the above theorems.

Furthermore, for multivariate mutual information the following theorem holds:

Theorem 3. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1 ,ΩX2 , . . . ,ΩXk

. Let pX1 , pX2 , . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively

and let pX1···Xk
be the joint probability density function of (X1, X2, . . . , Xk). For the multivariate mutual infor-

mation of (X1, . . . , Xk−1) and Xk, I(X1, . . . , Xk−1;Xk), the following equality holds:

I(X1, . . . , Xk−1;Xk) =

k−1∑
i=1

I(Xi;Xk|X1, . . . , Xi−1)

Using theorem 3, the following theorem can be conducted:

Theorem 4. Let X, Y and Z be three random variables with possible outcome sets, respectively, ΩX , ΩY and
ΩZ . Let pX , pY and pZ be the probability density functions of X, Y and Z respectively and let pXY Z be the
joint probability density function of (X,Y, Z). The following equality holds:

I(X,Y ;Z) = H(Z) +H(X,Y )−H(X,Y, Z)

Proofs of theorem 3 and 4 are given in appendix E.2.3 and E.2.4.

E.2 Proofs mutual information theorems

E.2.1 Proof theorem 1

To prove. Let X and Y be two random variables with possible outcome sets, respectively, ΩX and ΩY . Let
pX and pY be the probability density functions of X and Y respectively and let pXY be the joint probability
density function of (X,Y ). The following equality holds:

I(X;Y ) = H(X) +H(Y )−H(X,Y )
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Proof. From definition 1 it is known that

I(X;Y ) =

∫
ΩX

∫
ΩY

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log (pXY (x, y)) dydx−
∫

ΩX

∫
ΩY

pXY (x, y) log (pX(x)) dydx

−
∫

ΩX

∫
ΩY

pXY (x, y) log (pY (y)) dydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log (pXY (x, y)) dydx−
∫

ΩX

log(pX(x))

(∫
ΩY

pXY (x, y)dy

)
dx

−
∫

ΩY

log(pY (y))

(∫
ΩX

pXY (x, y)dx

)
dy

=

∫
ΩX

∫
ΩY

pXY (x, y) log (pXY (x, y)) dydx−
∫

ΩX

log(pX(x))pX(x)dx

−
∫

ΩY

log(pY (y))pY (y)dy (E.1)

Using definitions 6 and 8 it can be concluded that equation E.1 equals

−H(X,Y ) +H(X) +H(Y )

E.2.2 Proof theorem 2

To prove. Let X and Y be two random variables with possible outcome sets, respectively, ΩX and ΩY . Let
pX and pY be the probability density functions of X and Y respectively and let pXY be the joint probability
density function of (X,Y ). The following equality holds:

I(X;Y ) = H(X)−H(X|Y )

Proof. From definition 1 it is known that

I(X;Y ) =

∫
ΩX

∫
ΩY

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
dydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log

(
pXY (x, y)

pY (y)

)
dydx−

∫
ΩX

∫
ΩY

pXY (x, y) log (pX(x)) dydx

= −
∫

ΩX

∫
ΩY

pXY (x, y) log

(
pY (y)

pXY (x, y)

)
dydx−

∫
ΩX

∫
ΩY

pXY (x, y) log (pX(x)) dydx

= −
∫

ΩX

∫
ΩY

pXY (x, y) log

(
pY (y)

pXY (x, y)

)
dydx−

∫
ΩX

log(pX(x))

(∫
ΩY

pXY (x, y)dy

)
dx

= −
∫

ΩX

∫
ΩY

pXY (x, y) log

(
pY (y)

pXY (x, y)

)
dydx−

∫
ΩX

log(pX(x))pX(x)dx (E.2)

Using definitions 6 and 7 it can be concluded that equation E.2 equals

−H(X|Y ) +H(X)

In the same way it can be shown that this theorem also holds for more variables:

I(X1, . . . , Xk;Y ) = H(X1, . . . , Xk)−H(X1, . . . , Xk|Y )

E.2.3 Proof theorem 3

To prove. Let X1, X2, . . . , Xk be continuous random variables with possible outcome sets, respectively,
ΩX1

,ΩX2
, . . . ,ΩXk

. Let pX1
, pX2

, . . . , pXk
be the probability density functions of X1, X2, . . . , Xk respectively
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and let pX1···Xk
be the joint probability density function of (X1, X2, . . . , Xk). For the multivariate mutual

information of (X1, . . . , Xk−1) and Xk, I(X1, . . . , Xk−1;Xk), the following equality holds:

I(X1, . . . , Xk−1;Xk) =

k−1∑
i=1

I(Xi;Xk|X1, . . . , Xi−1)

Proof. The theorem will be proved for three variables, i.e. I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X). In this case,
pX , pY , pZ denote the probability density functions of, respectively, X, Y and Z and pXY Z , pXY , pXZ and pY Z
denote the joint probability density functions of, respectively, (X,Y, Z), (X,Y ), (X,Z) and (Y, Z). Furthermore,
the possible outcome sets of X, Y and Z are, respectively, ΩX , ΩY and ΩZ . The proof can easily be extended
to show the version with more variables holds as well. From the extension of theorem 2 it is known that

I(X,Y ;Z) = H(X,Y )−H(X,Y |Z)

= −
∫

ΩX

∫
ΩY

pXY (x, y) log (pXY (x, y)) dydx−
∫

ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pZ(z)

pXY Z(x, y, z)

)
dzdydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log

(
1

pXY (x, y)

)
dydx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
1

pZ(z)

)
dzdydx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log

(
1

pXY (x, y)

)
dydx+

∫
ΩX

∫
ΩZ

log

(
1

pZ(z)

)(∫
ΩY

pXY Z(x, y, z)dy

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

=

∫
ΩX

∫
ΩY

pXY (x, y) log

(
1

pXY (x, y)

)
dydx+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

=

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
1

pXY (x, y)

)
dzdydx+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

=

∫
ΩX

∫
ΩX

pXZ(x, z) log

(
1

pZ(z)

)
dzdx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx−

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pX(x)

pXZ(x, z)

)
dzdydx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pX(x)pXY Z(x, y, z)

pXY (x, y)pXZ(x, z)

)
dzdydx (E.3)

According to definitions 1 and 11 equation E.3 equals

I(X;Z) + I(Y ;Z|X)

E.2.4 Proof theorem 4

To prove. Let X, Y and Z be three random variables with possible outcome sets, respectively, ΩX , ΩY and
ΩZ . Let pX , pY and pZ be the probability density functions of X, Y and Z respectively and let pXY Z be the
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joint probability density function of (X,Y, Z). Furthermore, denote by pXY , pXZ and pY Z the joint probability
density functions of, respectively, (X,Y ), (X,Z) and (Y,Z). The following equality holds:

I(X,Y ;Z) = H(Z) +H(X,Y )−H(X,Y, Z)

Proof. From theorem 3 it is known that

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pX(x)pXY Z(x, y, z)

pXY (x, y)pXZ(x, z)

)
dzdydx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

−
∫

ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXZ(x, z)

pX(x)

)
dzdydx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

−
∫

ΩX

∫
ΩZ

log

(
pXZ(x, z)

pX(x)

)(∫
ΩY

pXY Z(x, y, z)dy

)
dzdx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx+

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

−
∫

ΩX

∫
ΩZ

pXZ(x, z) log

(
pXZ(x, z)

pX(x)

)
dzdx

=

∫
ΩX

∫
ΩZ

pXZ(x, z) log

(
1

pZ(z)

)
dzdx+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

=

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
1

pZ(z)

)
dzdydx

+

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log

(
pXY Z(x, y, z)

pXY (x, y)

)
dzdydx

=

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

−
∫

ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY (x, y)pZ(z)) dzdydx

=

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx

−
∫

ΩZ

log (pZ(z))

(∫
ΩX

∫
ΩY

pXY Z(x, y, z)dydx

)
dz

−
∫

ΩX

∫
ΩY

log (pXY (x, y))

(∫
ΩZ

pXY Z(x, y, z)dz

)
dydx

=

∫
ΩX

∫
ΩY

∫
ΩZ

pXY Z(x, y, z) log (pXY Z(x, y, z)) dzdydx−
∫

ΩZ

pZ(z) log (pZ(z)) dz

−
∫

ΩX

∫
ΩY

pXY (x, y) log (pXY (x, y)) dydx (E.4)

According to definitions 6 and 8 equation E.4 equals

−H(X,Y, Z) +H(Z) +H(X,Y )
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Note that this theorem can easily be extended to more variables, showing that

I(X1, X2, . . . , Xk;Z) = H(Z) +H(X1, X2, . . . , Xk)−H(X1, X2, . . . , Xk, Z) (E.5)

E.3 Proofs of lemmas used in Kraskov estimator

E.3.1 Proof of lemma 1

To prove. Consider an independent sample of size n drawn from a continuous random variable X. Assume
the ith point in this sample, denoted by xi, is given. Let DX(i) be the random variable denoting the distance
between xi and its kth nearest neighbor. In that case, the probability density function g of DX(i) approximately
equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3

with

P1 =

∫ xi+ε

xi−ε
pX(x)dx

P2 = 1−
∫ xi+ε

xi−ε
pX(x)dx

P3 = pX(xi − ε) + pX(xi + ε)

Proof. Note that for a continuous random variable X with distribution function F and density function F ′ = f
the following holds

hf(x) = hF ′(x) = lim
h↓0
{F (x+ h)− F (x)} = lim

h↓0
P(X ∈ [x, x+ h]) (E.6)

Now, let g be the probability density function of DX(i). Using equation E.6 it is found that

g(ε) = lim
h↓0

P(DX(i) ∈ [ε, ε+ h])

h
= lim

h↓0

P(|xi −Xi,k|∈ [ε, ε+ h])

h
(E.7)

with Xi,k the kth nearest neighbor of xi.

By the definition of DX(i) equation E.7 equals 1
h times the probability that

|Xj − xi|∈ [ε, ε+ h] for one j, j 6= i

|Xj − xi|< ε for k − 1 j, j 6= i

|Xj − xi|> ε+ h for n− k − 1 j, j 6= i

as h ↓ 0.
Figure E.3 visualizes these three different regions in which a point could lie.

Figure E.3: Visualization of the three different regions in which a point xj could lie.
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The probability of a point falling in region 1 equals

P1 =

∫ xi+ε

xi−ε
pX(x)dx (E.8)

The probability of a point falling in region 2 equals

P2 = 1−
∫ xi+ε

xi−ε
pX(x)dx−O(h) as h ↓ 0 (E.9)

The probability of a point falling in region 3 equals

h · P3 = h · (pX(xi − ε) + pX(xi + ε)) +O(h2) as h ↓ 0 (E.10)

In other words, the random variable Y (i) = |Xj − xi| can take on values in three mutually exclusive regions
with corresponding probabilities denoted in equations E.8, E.9 and E.10. Consider the independent sample of
size n drawn from X with given point xi, i.e. n− 1 unknown trials remain. Let Ni denote the number of times
Y (i) takes on a value in region i based on this sample. Since the possible outcomes are mutual exclusive and
the n − 1 trials are independent, the random vector N = (N1, N2, N3) follows a multinomial distribution with
parameters n− 1 and the probabilities in equations E.8, E.9 and E.10.
Consider the following definition of the probability mass function of a random variable following a multinomial
distribution:

Definition 12. Let X = (X1, . . . , Xk) be a random vector following a multinomial distribution with parameters

n and p1, . . . , pk. Let x1, . . . , xk denote realizations of this random vector with
∑k
i=1 xi = n. The probability

mass function f of this multinomial distribution is

f(x1, . . . , xk;n, p1, . . . , pk) =
n!

x1! · · ·xk!
px1

1 · · · p
xk

k

Now, setting X = N , n = n − 1, p1 = P1, p2 = P2, p3 = h · P3, x1 = k − 1, x2 = n − k − 1 and x3 = 1 in
definition 12 leads to the following probability mass function for the random vector N :

(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 · h · P3

Therefore, equation E.7, i.e. the probability density function of DX(i), approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3

E.3.2 Proof of lemma 2

To prove. Let B(x, y) be the beta function with x and y positive integers. The following relation holds:

1

B(x, y)
=

(x+ y − 1)!

(x− 1)! (y − 1)!

Proof. It is known that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(E.11)

with Γ the gamma function.
For x a positive integer, the following holds

Γ(x) = (x− 1)!

Therefore, it follows that equation E.11 equals

(x− 1)! (y − 1)!

(x+ y − 1)!

Taking the inverse gives
1

B(x, y)
=

(x+ y − 1)!

(x− 1)! (y − 1)!
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E.3.3 Proof of lemma 3

To prove. Let B(x, y) be the beta function with x, y > 0. Let ψ(x) = Γ′(x)
Γ(x) be the digamma function with Γ(x)

the gamma function, x > 0. The following relation holds:

∂B(x, y)

∂x
= B(x, y)(ψ(x)− ψ(x+ y))

Proof. It is known that

∂B(x, y)

∂x
=

∂

∂x

Γ(x)Γ(y)

Γ(x+ y)

=
Γ(x+ y)Γ′(x)Γ(y)− Γ(x)Γ(y)Γ′(x+ y)

(Γ(x+ y))2

=
Γ′(x)Γ(y)

Γ(x+ y)
− Γ(x)Γ(y)

Γ(x+ y)

Γ′(x+ y)

Γ(x+ y)

=
Γ(x)Γ(y)

Γ(x+ y)

Γ′(x)

Γ(x)
− Γ(x)Γ(y)

Γ(x+ y)

Γ′(x+ y)

Γ(x+ y)

Using ψ(x) = Γ′(x)
Γ(x) and Γ(x)Γ(y)

Γ(x+y) , it now follows that

∂B(x, y)

∂x
= B(x, y)(ψ(x)− ψ(x+ y))

E.3.4 Proof of lemma 4

To prove. Consider an independent sample of size n drawn from a continuous random vector (X,Y ). Assume
the ith point in this sample, denoted by (xi, yi), is given. Let DXY (i) be the random variable denoting the
distance between (xi, yi) and its kth nearest neighbor, where the distance is calculated using the maximum
norm, i.e.

||(xi, yi)− (xj , yj)||∞= max(|xi − xj |, |yi − yj |)
In that case, the probability density function g of DXY (i) approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3

with

P1 =

∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx

P2 = 1−
∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx

P3 =

∫ xi+ε

xi−ε
pXY (x, yi − ε)dx+

∫ xi+ε

xi−ε
pXY (x, yi + ε)dx+

∫ yi+ε

yi−ε
pXY (xi − ε, y)dy

+

∫ yi+ε

yi−ε
pXY (xi + ε, y)dy

Proof. Let g be the probability density function of DXY (i). Similarly as in appendix E.3.1, it is found that

g(ε) = lim
h↓0

P(DXY (i) ∈ [ε, ε+ h])

h
= lim

h↓0

P(max(|xi − (Xi)k|, |yi − (Yi)k|) ∈ [ε, ε+ h])

h
(E.12)

with (Xi)k and (Yi)k, respectively, the x− and y−coordinate of the kth nearest neighbor of (xi, yi).

By the definition of DXY (i) equation E.12 equals 1
h times the probability that

||(Xj , Yj)− (xi, yi)||∞∈ [ε, ε+ h] for one j, j 6= i

||(Xj , Yj)− (xi, yi)||∞< ε for k − 1 j, j 6= i

||(Xj , Yj)− (xi, yi)||∞> ε+ h for n− k − 1 j, j 6= i
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as h ↓ 0. Figure E.4 visualizes these three different regions in which a point could lie.

Figure E.4: Visualization of the three different regions in which a point (xj , yj) could lie.

The probability of a point falling in region 1 equals

P1 =

∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx (E.13)

The probability of a point falling in region 2 approximately equals

P2 = 1−
∫ xi+ε

xi−ε

∫ yi+ε

yi−ε
pXY (x, y)dydx as h ↓ 0 (E.14)

The probability of a point falling in region 3 approximately equals

h · P3 = h ·
(∫ xi+ε

xi−ε
pXY (x, yi − ε)dx+

∫ xi+ε

xi−ε
pXY (x, yi + ε)dx

+

∫ yi+ε

yi−ε
pXY (xi − ε, y)dy +

∫ yi+ε

yi−ε
pXY (xi + ε, y)dy

)
as h ↓ 0 (E.15)

In other words, the random variable Z(i) = ||(Xj , Yj)−(xi, yi)||∞ can take on values in three mutually exclusive
regions with corresponding probabilities denoted in equations E.13, E.14 and E.15. Consider the independent
sample of size n drawn from (X,Y ) with given point (xi, yi), i.e. n− 1 unknown trials remain. Let Ni denote
the number of times Z(i) takes on a value in region i based on this sample of size n − 1 and point (xi, yi).
Since the possible outcomes are mutually exclusive and the n − 1 trials are independent, the random vector
N = (N1, N2, N3) follows a multinomial distribution with parameters n − 1 and the probabilities in equations
E.13, E.14 and E.15.

Now, setting X = N , n = n − 1, p1 = P1, p2 = P2, p3 = h · P3, x1 = k − 1, x2 = n − k − 1 and x3 = 1
in definition 12 in appendix E.3.1 leads to the following probability mass function for the random vector N :

(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 · h · P3

Therefore, equation E.12, i.e. the probability density function of DXY (i), approximately equals

g(ε) =
(n− 1)!

1! (k − 1)! (n− k − 1)!
P k−1

1 Pn−k−1
2 P3
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E.4 Derivation adjusted Kraskov estimator

Let X and Y be, respectively, a categorical and a continuous random variable with possible outcome sets, re-
spectively, ΩX and ΩY , joint probability density function pXY , marginal probability (density) functions qX with
qX(x) =

∫
ΩY

pXY (x, y)dy and pY with pY (y) =
∑
x∈ΩX

pXY (x, y) and conditional probability density function

pY |X with pY |X(y|x) = pXY (x,y)
qX(x) . For a categorical variable X and continuous variable Y , define the kth nearest

neighbor of (x, y), with x ∈ ΩX , y ∈ ΩY , as the kth nearest neighbor of y among all points for which the value
of X equals x.

From theorem 2 it is known that

I(X;Y ) = H(Y )−H(Y |X)

= −
∫

ΩY

pY (y) log(pY (y))dy +
∑
x∈ΩX

∫
ΩY

pXY (x, y) log(pY |X(y|x))dy

= −E[log(pY (Y ))] + E[log(pY |X(Y |X))] (E.16)

Since pY and pY |X are not known, equation E.16 has to be rewritten. First consider E[log(pY (Y ))].
Similarly as in the derivation of the Kraskov estimator, it is found that

E[log(pY (Y ))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(n)− 1

n

n∑
i=1

log(2dy(i))

)
(E.17)

with dy(i) the realization based on the sample y1, . . . , yn of DY (i) = |yi−Yi,k| with Yi,k the kth nearest neighbor
of yi.

Now, consider E[log(pY |X(Y |X))].

Consider again drawing a sample of size n from the random vector (X,Y ). Assume the ith point in this sample,
denoted by (xi, yi), is given. Choose a fixed, small ε. Denote by the random variable DY |X(i) the distance

between yi and its kth nearest neighbor among all points for which the value of X equals xi. Furthermore,
denote by nd(i) the number of points in the sample for which the value of X equals xi.

Let g be the probability density function of DY |X(i). Now consider the following lemma:

Lemma 5. Consider an independent sample of size n drawn from a random vector (X,Y ) with X a categorical
random variable and Y a continuous random variable. Assume the ith point in this sample, denoted by (xi, yi), is
given. Let DY |X(i) be the random variable denoting the distance between yi and its kth nearest neighbor among
all points for which the value of X equals xi. Furthermore, denote by nd(i) the number of points in the sample
for which the value of X equals xi. In that case, the probability density function g of DY |X(i) approximately
equals

g(ε) =
(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!
P k−1

1 P
nd(i)−k−1
2 P3

with

P1 =

∫ yi+ε

yi−ε
pY |X(y|xi)dy

P2 = 1−
∫ yi+ε

yi−ε
pY |X(y|xi)dy

P3 = pY |X(yi − ε|xi) + pY |X(yi + ε|xi)

A proof of lemma 5 is given in appendix E.4.1.

Now, assume pY |X(y|x) is smooth in the interval [yi − ε, yi + ε] and ε is small. Using lemma 5, the proba-
bility density function g of DY |X(i) now approximately equals

g(ε) =
(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!

(
2εpY |X(yi|xi)

)k−1 (
2pY |X(yi|xi)

) (
1− 2εpY |X(yi|xi)

)nd(i)−k−1
(E.18)
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Using equation E.18, it is now found that

E[log(2DY |X(i)pY |X(yi|xi))] =

∫ ∞
0

log(2εpY |X(yi|xi))g(ε)dε

= C

∫ ∞
0

log(q)qk−1(1− q)nd(i)−k−12pY |X(yi|xi)dε(i) (E.19)

with C =
(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!
and q = 2εpY |X(yi|xi).

Transforming to q, equation E.19 equals

(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!

∫ 1

0

log(q)qk−1(1− q)nd(i)−k−12py|X(yi|xi)
1

2py|X(yi|xi)
dq

=
(nd(i)− 1)!

(k − 1)! (nd(i)− k − 1)!

∫ 1

0

log(q)qk−1(1− q)nd(i)−k−1dq

In the same way as in the derivation of the Kraskov estimator, it is now found that

E[log(2DY |X(i)pY |X(yi|xi))] = ψ(k)− ψ(nd(i)) (E.20)

Using equation E.20, it follows that

log(pY |X(yi|xi)) = E[log(pY |X(yi|xi))]
= E[log(2DY |X(i)pY |X(yi|xi))− log(2DY |X(i))]

= E[log(2DY |X(i)pY |X(yi|xi))]− E[log(2DY |X(i))]

= ψ(k)− ψ(nd(i))− E[log(2DY |X(i))] (E.21)

Now, assume the points (x1, y1), . . . , (xn, yn) in the sample are all known.
In that case, E[log(2DY |X(i))] can be estimated as follows:

E[log(2DY |X(i))]
∧

=
1

n

n∑
i=1

log(2dy|x(i)) (E.22)

with dy|x(i) the realization of DY |X(i) for the sample (x1, y1), . . . , (xn, yn).
Furthermore, E[log(pY |X(Y |X))] can be estimated as follows:

E[log(pY |X(Y |X))]
∧

=
1

n

n∑
i=1

log(pY |X(yi|xi)) (E.23)

Using equations E.21, E.22 and E.23, it can be concluded that

E[log(pY |X(Y |X))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(nd(i))−

1

n

n∑
i=1

log(2dy|x(i))

)
(E.24)

For the same reason as in the derivation of the Kraskov estimator, set dy(i) = dy|x(i) = |yi− yi,k,xi |. That way,
dy(i) is the distance to the (ny(i) + 1)th nearest neighbor of yi with ny(i) the number of points yj for which
|yi − yj |< dy(i).

Using equations E.17 and E.24, the following is now found:

E[log(pY (Y ))] ≈ 1

n

n∑
i=1

(
ψ(ny(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dy|x(i))

)

=
1

n

n∑
i=1

ψ(ny(i) + 1)− ψ(n)− 1

n

n∑
i=1

log(2dy|x(i))

E[log(pY |X(Y |X))] ≈ 1

n

n∑
i=1

(
ψ(k)− ψ(nd(i))−

1

n

n∑
i=1

log(2dy|x(i))

)

= ψ(k)− 1

n

n∑
i=1

(
ψ(nd(i)) + log(2dy|x(i))

)
Using these equations and equation E.16, it is now found that:

I(X;Y ) ≈ ψ(n) + ψ(k)− 1

n

n∑
i=1

(ψ(ny(i) + 1)− ψ(nd(i)))
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E.4.1 Proof of lemma 5

To prove. Consider an independent sample of size n drawn from a random vector (X,Y ) with X a categorical
random variable and Y a continuous random variable. Assume the ith point in this sample, denoted by (xi, yi),
is given. Let DY |X(i) be the random variable denoting the distance between yi and its kth nearest neighbor
among all points for which the value of X equals xi. Furthermore, denote by nd(i) the number of points in
the sample for which the value of X equals xi. In that case, the probability density function g of DY |X(i)
approximately equals

g(ε) =
(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!
P k−1

1 P
nd(i)−k−1
2 P3

with

P1 =

∫ yi+ε

yi−ε
pY |X(y|xi)dy

P2 = 1−
∫ yi+ε

yi−ε
pY |X(y|xi)dy

P3 = pY |X(yi − ε|xi) + pY |X(yi + ε|xi)

Proof. Let g be the probability density function of DY |X(i). Similarly as in appendix E.3.1, it is found that

g(ε) = lim
h↓0

P(DY |X(i) ∈ [ε, ε+ h])

h
= lim

h↓0

P(|yi − Yi,k,xi
|∈ [ε, ε+ h])

h
(E.25)

with Yi,k,xi
the kth nearest neighbor of yi among all points for which the value of X equals xi.

By the definition of DY |X(i) equation E.25 equals 1
h times the probability that

|yi − Yj |∈ [ε, ε+ h] for one j ∈ A(i), j 6= i

|yi − Yj |< ε for k − 1 j ∈ A(i), j 6= i

|yi − Yj |> ε+ h for nd(i)− k − 1 j ∈ A(i), j 6= i

as h ↓ 0 with A(i) ⊂ {1, . . . , n} such that Xj = xi ∀j ∈ A(i) and nd(i) = |A(i)|. Figure E.5 visualizes these
three different regions in which a point could lie.

Figure E.5: Visualization of the three different regions in which a point yj could lie.

The probability of a point falling in region 1 equals

P1 =

∫ yi+ε

yi−ε
pY |X(y|xi)dy (E.26)

The probability of a point falling in region 2 approximately equals

P2 = 1−
∫ yi+ε

yi−ε
pY |X(y|xi)dy as h ↓ 0 (E.27)

The probability of a point falling in region 3 approximately equals

h · P3 = h · (pY |X(yi − ε|xi) + pY |X(yi + ε|xi)) as h ↓ 0 (E.28)
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In other words, the random variable Z(i) = |Yj − yi| with j ∈ A(i),A(i) ⊂ {1, . . . , n} such that Xj = xi
∀j ∈ A(i), can take on values in three mutually exclusive regions with corresponding probabilities denoted in
equations E.26, E.27 and E.28. Consider the independent sample of size n drawn from (X,Y ) with given point
(xi, yi), i.e. n− 1 unknown trials remain. Let Ni denote the number of times Z(i) takes on a value in region i
based on this sample of size n − 1 and point (xi, yi). Since the possible outcomes are mutually exclusive and
the n − 1 trials are independent, the random vector N = (N1, N2, N3) follows a multinomial distribution with
parameters n− 1 and the probabilities in equations E.26, E.27 and E.28.

Now, setting X = N , n = n − 1, p1 = P1, p2 = P2, p3 = h · P3, x1 = k − 1, x2 = n − k − 1 and x3 = 1
in definition 12 in appendix E.3.1 leads to the following probability mass function for the random vector N :

(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!
P k−1

1 P
nd(i)−k−1
2 · h · P3

Therefore, equation E.25, i.e. the probability density function of DY |X(i), approximately equals

g(ε) =
(nd(i)− 1)!

1! (k − 1)! (nd(i)− k − 1)!
P k−1

1 P
nd(i)−k−1
2 P3

E.5 Proof mRMR feature selection

To prove. In the case of forward feature selection, selecting features by the use of the mRMR algorithm is similar
to selecting features based on maximization of high-dimensional mutual information values I(X1, . . . , Xk;Z).

Proof. Let X be the set of all features and Sm the set of already selected features after iteration m. In itera-
tion m+1 an optimal feature then needs to be selected from the set F = X\Sm. Note that if m = 0, Sm is empty.

The optimal feature is now found by maximizing I(Sm, Xm+1;Z) with Xm+1 ∈ F . From the extension of
theorem 4, it is known that the following equation holds:

I(Sm, Xm+1;Z) = H(Z) +H(Sm, Xm+1)−H(Sm, Xm+1, Z) (E.29)

Let pX1
, . . . , pXm+1

, pZ be the probability density functions of, respectively, X1, . . . , Xm+1 and Z. Furthermore,
let pX1···Z and pX1···Xm+1

be the joint probability density functions of, respectively, (X1, . . . , Xm+1, Z) and
(X1, . . . , Xm+1).
Define

J(Sm, Xm+1) =

∫
x1

· · ·
∫
xm+1

pX1···Xm+1(x1, . . . , xm+1) log

(
pX1···Xm+1

(x1, . . . , xm+1)

pX1
(x1) · · · pXm+1

(xm+1)

)
dxm+1 · · · dx1 (E.30)

and

J(Sm, Xm+1, Z) =

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , z) log

(
pX1···Z(x1, . . . , z)

pX1
(x1) · · · pXm+1

(xm+1)pZ(z)

)
dzdxm+1 · · · dx1

(E.31)
Equation E.30 equals∫

x1

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1) log

(
pX1···Xm+1

(x1, . . . , xm+1)
)

dxm+1 · · · dx1

−
∫
x1

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1) log

(
pX1

(x1) · · · pXm+1
(xm+1)

)
dxm+1 · · · dx1

=

∫
x1

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1) log

(
pX1···Xm+1

(x1, . . . , xm+1)
)

dxm+1 · · · dx1

−
∫
x1

log (pX1
(x1))

(∫
x2

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1)dxm+1 · · · dx2

)
dx1

− . . .−
∫
xm+1

log
(
pXm+1

(xm+1)
)(∫

x1

· · ·
∫
xm

pX1···Xm+1
(x1, . . . , xm+1)dxm · · · dx1

)
dxm+1
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=

∫
x1

· · ·
∫
xm+1

pX1···Xm+1(x1, . . . , xm+1) log
(
pX1···Xm+1(x1, . . . , xm+1)

)
dxm+1 · · · dx1

−
∫
x1

log (pX1(x1)) pX1(x1)dx1 − . . .−
∫
xm+1

log
(
pXm+1(xm+1)

)
pXm+1(xm+1)dxm+1

= −H(Sm, Xm+1) +H(X1) + · · ·+H(Xm+1)

In the same way it can be shown that equation E.31 equals

−H(Sm, Xm+1, Z) +H(X1) + · · ·+H(Xm+1) +H(Z)

The following equations are now found

H(Sm, Xm+1) =

m+1∑
i=1

H(Xi)− J(Sm, Xm+1)

H(Sm, Xm+1, Z) =

m+1∑
i=1

H(Xi) +H(Z)− J(Sm, Xm+1, Z)

Substituting these equations into E.29 leads to

I(Sm, Xm+1;Z) = H(Z) +

m+1∑
i=1

H(Xi)− J(Sm, Xm+1)−

(
m+1∑
i=1

H(Xi) +H(Z)− J(Sm, Xm+1, Z)

)
= J(Sm, Xm+1, Z)− J(Sm, Xm+1)

In summary,
I(Sm, Xm+1;Z) = J(Sm, Xm+1, Z)− J(Sm, Xm+1),

so maximizing I(Sm, Xm+1;Z) is similar to maximizing J(Sm, Xm+1, Z) − J(Sm, Xm+1), i.e. maximizing
J(Sm, Xm+1, Z) and minimizing J(Sm, Xm+1) at the same time.

Now it will be shown that maximizing J(Sm, Xm+1, Z) is equal to using the maximum relevance criterion
to find an optimal feature Xm+1 and minimizing J(Sm, Xm+1) is equal to using the minimum redundancy cri-
terion to find an optimal feature Xm+1. Combination of these two leads to the mRMR algorithm with forward
feature selection.

Denote by pX1|X2···Z and pXm+1|Z the conditional probability density functions of, respectively, (X1|X2, . . . , Xm+1, Z)
and (Xm+1|Z).
Consider J(Sm, Xm+1, Z).

J(Sm, Xm+1, Z) =

∫
x1

· · ·
∫
z

pX1···Z(x1, . . . , xm+1, z) log

(
pX1···Z(x1, . . . , xm+1, z)

pX1
(x1) · · · pXm+1

(xm+1)pZ(z)

)
dzdxm+1 · · · dx1

=

∫
x1

· · ·
∫
z

pX1···Z(x1, . . . , z) log

(
pX1|X2···Z(x1|x2, . . . , z) · · · pXm+1|Z(xm+1|z)pZ(z)

pX1(x1) · · · pXm+1(xm+1)pZ(z)

)
dz · · · dx1

=

∫
x1

· · ·
∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pX1|X2···Xm+1Z(x1|x2, . . . , xm+1, z)

)
dz · · · dx1

+ . . .+

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pXm+1|Z(xm+1|z)

)
dzdxm+1 · · · dx1

+

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log (pZ(z)) dzdxm+1 · · · dx1

−
∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log (pX1
(x1)) dzdxm+1 · · · dx1

− . . .−
∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pXm+1

(xm+1)
)

dzdxm+1 · · · dx1

−
∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log (pZ(z)) dzdxm+1 · · · dx1

=

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pX1|X2···Z(x1|x2, . . . , xm+1, z)

)
dzdxm+1 · · · dx1
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+ . . .+

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pXm+1|Z(xm+1|z)

)
dzdxm+1 · · · dx1

−
∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log (pX1(x1)) dzdxm+1 · · · dx1

− . . .−
∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log
(
pXm+1(xm+1)

)
dzdxm+1 · · · dx1

=

∫
x1

· · ·
∫
xm+1

∫
z

pX1···Z(x1, . . . , xm+1, z) log

(
pX1···Z(x1, x2, . . . , xm+1, z)

pX2···Z(x2, . . . , xm+1, z)

)
dzdxm+1 · · · dx1

+ . . .+

∫
x1

· · ·
∫
z

pX1···Z(x1, . . . , z) log

(
pXm+1Z(xm+1, z)

pZ(z)

)
dz · · · dx1 +

m+1∑
i=1

H(Xi)

= −H(X1|X2, . . . , Xm+1, Z)−H(X2|X3, . . . , Xm+1, Z)− . . .−H(Xm+1|Z) +

m+1∑
i=1

H(Xi)

≤
m+1∑
i=1

H(Xi) (E.32)

The inequality sign in equation E.32 changes into an equality sign if all the conditional entropies are zero. This
is the case if the variables X1, . . . , Xm+1, Z are maximally dependent. Since the first m features are already
selected, this dependency criterion means that feature Xm+1 and Z should be maximally dependent, which is
exactly the maximum relevance criterion.

Now consider J(Sm, Xm+1). From Jensen’s inequality it is known that

φ (E [X]) ≤ E [φ(X)] (E.33)

for X a random variable and φ a convex function. Equality holds if X is a degenerate random variable.

Now consider the random variable Y (X1, . . . , Xm+1) =
pX1

(X1)...pXm+1
(Xm+1)

pX1···Xm+1
(X1,...,Xm+1) and φ(x) = − log (x), which is a

convex function.
Using equation E.33 the following holds:

J(Sm, Xm+1) =

∫
x1

· · ·
∫
xm+1

pX1···Xm+1(x1, . . . , xm+1) log

(
pX1···Xm+1

(x1, . . . , xm+1)

pX1
(x1) · · · pXm+1

(xm+1)

)
dxm+1 · · · dx1

= −
∫
x1

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1) log

(
pX1

(x1) · · · pXm+1
(xm+1)

pX1···Xm+1
(x1, . . . , xm+1)

)
dxm+1 · · · dx1

=

∫
x1

· · ·
∫
xm+1

pX1···Xm+1(x1, . . . , xm+1)

(
− log

(
pX1(x1) · · · pXm+1(xm+1)

pX1···Xm+1(x1, . . . , xm+1)

))
dxm+1 · · · dx1

= E [φ (Y (X1, . . . , Xm+1))]

≥ φ (E [Y (X1, . . . , Xm+1)])

= − log

(∫
x1

· · ·
∫
xm+1

pX1···Xm+1
(x1, . . . , xm+1)

pX1
(x1) · · · pxm+1

(xm+1)

pX1···Xm+1
(x1, . . . , xm+1)

dxm+1 · · · dx1

)

= − log

(∫
x1

· · ·
∫
xm+1

pX1(x1) · · · pXm+1(xm+1)dxm+1 · · · dx1

)
= − log (1) = 0

In summary, J(Sm, Xm+1) is bounded from below by zero. The minimum is reached if Y (X1, . . . , Xm+1) is a
degenerate random variable, i.e. if pX1(x1) · · · pXm+1(xm+1) equals pX1···Xm+1(x1, . . . , xm+1) almost everywhere.
This is the case if the random variables X1, . . . , Xm and Xm+1 are all independent of each other. Since the
first m features are already selected, this independence criterion means that the mutual information between
the variable Xm+1 and each of the already selected variables is minimized, which is exactly the minimum re-
dundancy criterion.

In summary, selecting a feature Xm+1 by maximizing J(Sm, Xm+1, Z) and minimizing J(Sm, Xm+1) with
Sm the already selected features is the same as selecting a feature Xm+1 by using the mRMR algorithm with
forward feature selection. Since the former is also equal to maximizing I(Sm, Xm+1;Z) with forward feature
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selection, the equality between mRMR and maximizing I(Sm, Xm+1;Z) with forward feature selection has now
been shown.
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Appendix F

Results feature selection

F.1 Ranking list features

Author’s note: this section is confidential.

F.2 Principal components selected features

Author’s note: this section is confidential.
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Appendix G

Results hierarchical clustering scheme

G.1 Results accurate versus non-accurate playing styles

Author’s note: this section is confidential.

G.2 Results Hollandse School versus Tiki Taka matches

Author’s note: this section is confidential.

G.3 Results Counterplay versus Kick and Rush matches

Author’s note: this section is confidential.
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Appendix H

Results Eredivisie and chi-squared tests

H.1 Eredivisie hierarchical clustering results

Author’s note: this section is confidential.

H.2 Results Chi-squared tests

Author’s note: this section is confidential.
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