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EXECUTIVE SUMMARY 

During the COVID-19 pandemic, many elective surgeries had to be rescheduled as resources such 

as beds and ventilators were reallocated, causing significant delays in patient care. To avoid such 

disruptions in the future effective resource management and planning approaches for elective 

surgery are essential. Optimisation is a commonly used method to enhance elective operating 

theatre scheduling, it is a technique used for mathematical modeling. It can integrate various 

criteria to maximise benefits and minimise costs within specified constraints. However, 

optimisation alone often falls short in addressing the complexities and required flexibility of 

operating theatre scheduling. This is where simulation can build upon these limitations. Simulation 

techniques can model system behaviour by replicating real-world processes, introduce uncertainty, 

and evaluate responses to different policies, helping to identify bottlenecks and improve system 

efficiency. Sequencing optimisation and simulation can test theoretically sound solutions under 

real-world uncertainties and complexities. This leads to the following research question: 

“How can Discrete Event Simulation evaluate optimisation-generated Master Surgery Schedules 

for operating theatres?” 

The research question focuses on a Master Surgery Schedule, which coordinates different surgical 

specialities, sharing OTs and pre- and post-surgery resources. While this approach increases 

resource utilisation, it also adds complexity by needing to accommodate the varying requirements 

of each speciality. The research aims to evaluate different Master Surgery Schedule using Discrete 

Event Simulation to contribute to the optimisation model.  

Overall, the use of the Discrete Event Simulation model provided detailed insights into the 

performance of various schedules. Testing these schedules under different types of uncertainty 

demonstrated their robustness, as the behaviour remained consistent across scenarios. By 

comparing the schedules side by side, the simulation model effectively evaluated their 

effectiveness, ensuring the intended purposes were served and identifying areas for improvement. 

The research specifically considers Discrete Event Simulation as this method can queue patients for 

different resources and have them move throughout the system based on decision rules. It is also 

a standard applied method for modelling healthcare systems. Both Discrete Event Simulation and 

optimisation are standard methods for improving OT scheduling. Even sequencing the methods has 

been proven to contribute to OT scheduling. However, applying this approach to a Master Surgery 

Schedule is new and introduces additional complexity related to the shared OTs and pre- and post-

surgery resources. 

To explore this research question, a case study was conducted at Sophia Children’s Hospital in 

Rotterdam. Previous research developed the Master Surgery Schedule using an optimization 

model, resulting in four different schedules. These schedules either balanced ward leveling and 

operating theatre utilization equally or prioritized ward leveling. They also varied in computational 

requirements, as the model updated the bed availability either every 15 minutes or every hour. 

This research categorizes 18 different surgical departments into 50 groups based on their surgery 

duration and length of stay, assigning time slots to these groups in the schedules. 



 
 

This research uses these groupings to fit different distributions for the input variables of length of 

stay and surgery duration. Five different types of distributions were tested for each group, and the 

best-fitting distribution was assigned. Additionally, previous research provides a schedule for ward 

capacity and establishes decision rules for patient management. In collaboration with the hospital, 

the probability of Intensive Care assignment and the various decision rules were validated. 

The sensitivity analysis revealed a slight overestimation of surgery duration compared to the test 

data, but this did not significantly impact outcomes. The model is more vulnerable to ward capacity 

and length of stay, which were then selected for scenario analysis. The schedule prioritising ward 

levelling and checking availability every 15 minutes outperformed others, effectively addressing 

ward unavailability, the primary bottleneck. However, increasing capacity improves the number of 

successful surgeries but also leads to more cancellations due to operating theatre unavailability 

and increased overtime occurrences. This highlighted a trade-off between operating theatre 

utilisation and other Key Performance Indicators.  

The sensitivity analysis revealed a slight overestimation of surgery duration compared to the test 

data, but this did not significantly impact the overall outcomes. The model was found to be more 

sensitive to ward capacity and length of stay, which were then selected for scenario analysis. 

Among the different schedules, the one prioritizing ward leveling and checking bed availability 

every 15 minutes outperformed the others, effectively addressing ward unavailability, which was 

identified as the primary bottleneck. However, while increasing ward capacity improved the 

number of successful surgeries, it also resulted in more cancellations due to operating theatre 

unavailability and increased overtime occurrences. This finding highlighted a trade-off between 

operating theatre utilization and other Key Performance Indicators. 

In line with the literature, the research reveals that striving for increased operating theatre 

utilisation puts excessive pressure on other resources. Ward unavailability is identified as the main 

reason for surgery cancellations, indicating that wards require even greater focus.  An increase in 

ward capacity had the best outcomes during the scenario analysis, showing that this is the biggest 

bottleneck in the system. 

The simulation model identified new parameters for the optimisation model and highlighted 

weaknesses in the system to be improved upon. Future research should explore ward capacity in 

greater detail and develop better methods for sharing resources across different operating theatres 

and wards to reduce the differences in utilisation. Additionally, further research could investigate 

other causes of surgery cancellations and refine the definitions of surgery groups. 

ABBREVIATIONS 

DES   Discrete Event Simulation 

ICK  Intensive Care Kinderen (Children) 

KPI  Key Performance Indicator 

MCU  Medium Care Unit 

MSS  Master Surgery Schedule 

OT  Operating Theatre  
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1 INTRODUCTION 

In March 2020, the Netherlands found itself in one of the most severe healthcare crises in recent 

history, with the start of the COVID-19 pandemic. However, the healthcare sector faced significant 

challenges before the crisis, including substantial staff shortages (Kalkhoven & Van Der Aalst, 2018). 

Regrettably, the aftermath of the pandemic has persisted, with the government projecting a 

shortage of 137.000 employees by 2032 in the health and welfare sector (Ministerie van 

Volksgezondheid, Welzijn en Sport, 2024). These shortages are particularly concerning considering 

that this sector already employs 1.4 million individuals in the Netherlands (Dashboard 

Arbeidsmarkt Zorg En Welzijn (AZW), n.d.). The lack of personnel is causing the quality and 

accessibility of healthcare to be under a lot of pressure (Ministerie van Volksgezondheid, Welzijn 

en Sport, 2024). By the end of 2021, 305.000 fewer operations were performed than initially 

expected, resulting in the loss of 320.000 healthy life years (RIVM, n.d.).  

Aside from the sheer scale of personnel involved in Dutch healthcare, the government's financial 

commitment is also substantial. Prior to the pandemic, government spending on the healthcare 

sector amounted to 6.5% of the Dutch GDP, totalling €80.9 billion (CBS, 2020). Of this allocation, 

€29 billion went to hospital care and medical speciality care (Ministerie van Volksgezondheid, 

Welzijn en Sport., 2022). In 2024, the government has allocated over €103 billion for the healthcare 

sector (Ministerie van Volksgezondheid, Welzijn en Sport, 2023), representing the most significant 

expense in the Dutch governmental budget (Ministerie van Algemene Zaken, 2023).  

Effective planning can save money by allowing for (human) resources to be allocated more 

efficiently (Stanimirović & Brinovec, 2023). Various planning frameworks have been utilised to 

attain optimal outcomes within the healthcare industry. The principal objective of healthcare 

planning and management is to provide the best care while minimising expenses (Wang & 

Demeulemeester, 2023). One approach is to use optimisation to generate more efficient schedules, 

considering several performance indicators. Another could be a simulation, testing different 

interventions under uncertainties and seeing how they perform.   

The following paragraph first explains how this research is relevant within the mater Engineer and 

Policy Analysis. The paragraphs after dive into the complexity of creating efficient hospital OT 

schedules and into both optimization and simulation approaches for operating theatre scheduling, 

addressing the abilities of these methodologies to account for these  complexities and improve 

overall efficiency.  

1.1 CONNECTION TO ENGINEERING AND POLICY ANALYSIS  

The following section focuses on how this thesis aligns with the context of the Master ‘Engineering 

and Policy Analysis’. Addressing challenges within the healthcare system is inherent to the 

Engineering and Policy Analysis program. As outlined, the societal impact of this sector is evident; 

in addition, the systems present many different complexities. The implementations of change can 

be complicated by the interdependencies between different entities and departments (Brailsford, 

2007). The challenges in implementing change are attributed to the intricate interdependencies 

between various departments, highlighting the need for careful consideration, especially when 

employing operations research to drive improvements.  
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The Engineering and Policy Analysis Master's program emphasises technological and societal 
challenges involving stakeholders and relevant parties (MSc Engineering and Policy Analysis, 2024). 
This project uses an analytic approach and modelling techniques that are part of the Engineering 
and Policy Analysis program to see how new interventions can improve relevant Key Performance 
Indicators (KPIs) by studying the interaction of different entities, thus perfectly aligning with the 
key points of the program.  

1.2 COMPLEXITY OF IMPROVEMENTS IN HOSPLITAL OPERATING 
THEATRE SCHEDULING 

The COVID pandemic brought to light some critical issues in hospital OT scheduling policies. Several 

elective surgeries had to be rescheduled during the pandemic because resources, such as beds and 

ventilators, had to be allocated elsewhere. Causing significant operational delays, leading to the 

loss of numerous healthy life years in the Dutch populations. This is an example of how changes in 

scheduling and extreme cancellations can result in severe and far-reaching consequences. 

Additionally, the financial constraints within the sector mean that management missteps can lead 

to misallocated funds, depriving life-saving initiatives of essential support.  

Efficient OT scheduling is considered very complex due to the healthcare system's interconnected 

components, which involve different participants and specialties over time and across various 

locations; Kuziemsky (2016) refers to this as the nonlinear nature of the healthcare sector. The 

system of a healthcare setting consists of people, processes, and resources which are 

interdependent, requiring each part to adapt flexibly to disruptions (Tien & Goldschmidt‐Clermont, 

2009). Understanding how these components respond to changes and how they depend on each 

other is crucial for effective OT scheduling (Robone et al., 2011). It is not only beneficial to look at 

these components separately but even more to look beyond the individual behaviour of the parts 

and study how the system interacts as a whole (Boon et al., 2007).  

These complexities require scheduling methodologies that can integrate various criteria to enhance 

the efficiency of scheduling and provide a structured approach. One of the techniques that can 

achieve this is mathematical optimisation. Optimisation techniques can help create more efficient 

schedules that better allocate resources, minimize delays, reduce bottlenecks, and improve overall 

system outcomes. The following section will explore the use optimisation generated scheduling for 

operating theatres.  

1.2.1 OPTIMISATION OF HOSPITAL OPERATING THEATRE SCHEDULING 

Optimization can be a powerful tool for improving the scheduling of hospital operating theatres. 

These models integrate multiple criteria to maximize benefits and minimize costs or resource usage 

within specific limits (Crown et al., 2018). Mathematical optimization models aim to enhance the 

overall performance of the system while considering key indicators and constraints (Reddy & 

Scheinker, 2020). Constraints could include budget limitations or resource availability, such as the 

availability of operating theatres (Crown et al., 2018).  

While optimisation models aim to maximise the number of surgeries and patient throughput, 

resource scarcity often gets in the way of creating optimal utilisation (Oliveira et al., 2022). 

Insufficient resources often result in patients being held up, leading to delays and backups at each 

stage of the process, consequently prolonging overall processing times (Abedini et al., 2017). 

Considering the impact on downstream resources, such as (intensive care unit) beds, adds another 
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layer of complexity to creating efficient operating theatre schedules (Abedini et al., 2017). This 

complexity increases even further when the demands of different departments are factored in. 

Mathematical optimisation cannot fully capture the inherent complexities of the efficient OT 

scheduling (Jun et al., 1999). Integrating all the complexities into the model reduces the likelihood 

of effective implementation, as the computational challenges in achieving an optimal solution 

increase (Asghari et al., 2022). Factors such as methodology, data quality, and underlying 

assumptions must be carefully considered and pose significant challenges for successful 

implementation (Crown et al., 2018). Consequently, the number of effectively implemented 

optimization-generated solutions that provide sustainable improvements in operating theatre 

scheduling remains limited (Xie et al., 2022). 

Therefore, it is crucial to consider strategies that address these challenges and account for the 

complexity of the system to successfully implement optimised scheduling for OTs. The flowing 

section on simulation will explore the application of simulation modelling in the complex OT 

scheduling setting and the specific use of discrete event simulation to test and evaluate various 

interventions for OT scheduling. It gives an insight in how simulation can account for the complexity 

within the healthcare sector.  

1.2.2 SIMULATION MODELING FOR OPERATING THEATRE SCHEDULING 

Simulation modeling is a about creating an virtual environment that represents a real word system 

in order to make adjustment and see how the system responds (Smith et al., 2020). It can improve 

efficient resource allocation, managing wait times and patient flows, and optimising bed occupancy 

and scheduling (Almagooshi, 2015). Simulation aids in understanding the intricate behaviour of 

healthcare systems which is crucial for decision-makers (Traoré et al., 2019). When the system is 

understood, informed adjustments can be made to enhance efficiency.  

When considering potential changes, it is essential to consider as much complexity as possible to 

anticipate various outcomes better and increase the likelihood of success. Simulation is a valuable 

tool in this regard, enabling testing changes across diverse environments to comprehensively 

assess their potential impact before implementation (Forsberg et al., 2011). Simulation modelling 

enables the exploration of various parameters and experimentation with policies without the fear 

of real-world consequences (Forsberg et al., 2011).  It offers immediate insights into the results of 

proposed changes (Forsberg et al., 2011), empowering management to adjust parameters and 

explore ways to improve outcomes. 

Simulation modelling provides estimated outcomes and helps reveal unintended consequences 

(Smith et al., 2020). By enabling a virtual environment of the hospital processes where different 

scenarios can be evaluated, simulation modelling helps to identify the bottlenecks and improve the 

system's efficiency by testing and comparing multiple policies in an environment where failures do 

not have consequences. The strength of simulation lies in its capability to consider greater 

complexity and accommodate diverse stakeholder interests (Almagooshi, 2015). It leads to notable 

enhancements such as increased patient satisfaction, improved quality of care, cost reduction, and 

enhanced patient flows (Feili, 2013).  

On of the methods to mirror the complexities of the real-world system is Discrete Event Simulation 

(DES). DES is a powerful tool widely applied within the healthcare sector (Zhang, 2018). Section 3.2 

delves into the inherent characteristics of DES, elaborating on why it was selected as the simulation 

methodology for this thesis and its application. 
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Despite the potential of simulation to provide insights, the adoption rates of proposed solutions 

for hospital scheduling remain remarkably low, primarily due to implementers' hesitancy to trust 

the validity of these solutions (Harper et al., 2022). Indicating the need for further improvements 

to enhance trust and confidence in simulation-generated results. 

1.3 KNOWLEDGE GAP 

Given the complexities of OTs scheduling and the need for improved efficiency this research looks 

into how optimisation and simulation contribute to this domain. The previous sections have 

highlighted that both optimisation and simulation print the potential of improving healthcare 

policy. Numerous optimisation studies have explored the potential benefits of the method, yielding 

theoretically sound results. However, the complexity of OT scheduling contains inherent 

uncertainties due to downstream resources and interdepartmental dependencies, which are hard 

to include in optimisation modelling. The application of these optimisation models often overlooks 

the dynamic complexities and variable nature, limiting their practical adaptability and, thus 

effectiveness of the schedules.  

Before implementing these theoretically sound scheduling solutions, more detail needs to be 

considered to take into account these complexities, and test for different uncertainties with the 

system. This leads to the following problem statement: Optimisation enhances OT scheduling but 

fails to account for its complexities and uncertainties, highlighting the necessity for a deeper 

exploration of these theoretically sound solutions. 

Simulation presents a viable remedy to these issues, offering a tool capable of replicating the real-

world effects of optimised schedules amidst OT operations' intricate and fluctuating demands. 

Simulation has the ability to model complex systems; this approach enables the detailed modelling 

of entity interactions and event flows over time. 

By integrating optimisation techniques and simulation, decision-makers can leverage the strengths 

of both approaches. Optimisation seeks the ideal solution, whereas simulation rigorously evaluates 

the performance in practical scenarios, identifying unforeseen variables that must be considered. 

This sequenced  approach allows for the thorough assessment and refinement of solutions prior to 

their actual implementation. While integrating these methodologies appears promising, it may also 

unveil new challenges. Therefore, this thesis is dedicated to exploring the following pivotal research 

question:  

“How can Discrete Event Simulation evaluate optimisation-generated Master Surgery Schedules 

for operating theatres?” 

The research question mainly focuses on a Master Surgery Schedule (MSS); this type of schedule 

means it is planned across multiple different surgical specialties. These specialities share resources 

but also require different arrangements that need consideration. This thesis will use the term 

operating theatres (OT) to refer to the rooms in a hospital where surgeries are performed. Although 

the literature often uses ‘Operating theatres’ and 'Operating Room' interchangeably, this thesis will 

consistently use OT to avoid confusion with other terms. 
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1.4 STRUCTURE 

This thesis is built up of seven chapters. The first chapter introduces the problem and defines the 

knowledge gap this thesis will attempt to bridge. Chapter 2 presents a literature review covering 

the complexity of using simulation and optimisation for OT scheduling and what can be learned 

from previous research. Chapter 3 describes the research design, defining the different sub-

questions that will aid in answering the main research questions and elaborating on the method 

used in this thesis.  

Chapter 4 further elaborates on the case of using the simulation model, including the key 

performance indicators and the definition of the model parameters. Chapter 5 discusses the setup 

of the simulation model, including the validation and the verification step. Chapter 6 outlines the 

experiments and scenario analysis performed on the schedules under evaluation. Chapter 7 

addresses the main research question by answering the in Chapter 3 defined sub-question and 

using these answers to build up to the conclusion. Lasty chapter 8 will comment on the academic 

contribution provided by the study, the studies limitations and the recommendations for further 

research.   

The model developed during the research for the case study can be accessed using: 

https://github.com/LunavanV/Thesis  

  

https://github.com/LunavanV/Thesis
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2 LITERATURE REVIEW 

The previous chapter laid the groundwork for this thesis by diving into the complexity of the 

problem, defining the knowledge gap, and the following research question. This chapter presents 

a literature review on similar research and what can be incorporated from previous experiences. 

First, 2.1 Introduces how the data for the thesis was gathered while 2.2 further elaborates on the 

type of papers that were used. Using this information, section 2.3 and 2.4. use the literature to 

confirm the knowledge gap and outline the challenges in applying simulation and optimisation for 

OT scheduling. Section 2.5 dives into what can be learned from previous research about building a 

simulation model for testing OT scheduling.  

2.1 METHOD OF LITERATURE REVIEW 

The literature review for this chapter has been split up into two parts, each with its own search 

string. It first focuses on identifying comparable research to further elaborate on the knowledge 

gap of Chapter 1 showing what has been done before and to which domain this research would 

contribute. Secondly, it focuses on what can be learned from previous research to answer the 

research question successfully. This is approached using peer-reviewed articles from Scopus, 

employing the following methodology. Both searches were refined to include articles published 

within the last 20 years (2004-2024); this limit was chosen due to the intensive research performed 

in the domain and wanting only to include recent, relevant improvements. Table 1 outlines the 

search strings used. After defining a fitting string, papers were then selected based on their titles 

or through an initial scan of the abstract. The flow of the paper selection for either string is further 

elaborated by PRISMA in Figure 1, the blue figures represent the flow of string one, and the green 

figures represent the flow of string two.  

TABLE 1: SEARCH STRING RESULTS 

 SEARCH TERM SCOPUS 

1.  ( optimis* OR optimis* ) AND ( "Discrete Event Simulation" OR des ) AND ( ( operating AND theatre ) OR ( 
operation AND room ) OR (surger* OR surgic* )) AND schedul* 

2.  ( "Discrete Event Simulation" OR des ) AND ( ( operating AND theatre ) OR ( operation AND room ) OR (surger* 
OR surgic* )) AND schedul* 
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FIGURE 1: PRISMA SCOPUS SEARCH 

2.2 GENERAL INFORMATION ABOUT LITERATURE 

This research consists of a diverse range of studies. The first string focuses on research that provides 
information on sequencing optimisation and simulation, such as Discrete Event simulation, in a 
healthcare setting. It gives examples of healthcare problems and information about where the 
current research is still lacking. The second string focuses on research that aims to improve hospital 
room operations using discrete event simulation and research that builds discrete event simulation 
models of hospital settings. These techniques support decision-making, handling uncertainty, and 
evaluating the impact of different scheduling policies. Additionally, they discuss the input 
parameters and common testing and validation methods to ensure accuracy and reliability.  

Most studies are published in peer-reviewed journals, ensuring the high quality and credibility of 

the findings. The research is internationally distributed, giving different settings for the research 

for general applicability. To provide a little more context on what type of information is included, 

a research table is presented in Table 2. It gives an overview of the type of data that is included in 

each part of the literature review. 
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TABLE 2: SUMMARY LITERATURE REVIEW DATA 

 String 1 + snowballing String 2 

Total number of studies 13 19 
Publishing year 2010-2022 2005-2023 

Research focus 

- Surgery scheduling and resource management 
using various optimisation techniques 

- Integrated approaches for operating theatre and 
intensive care unit management 

- Stochastic optimisation and simulation for 
healthcare scheduling 

- Patient flow optimisation in elective surgeries 
- Bed-occupancy simulation in critical care units 

- Operating theatre efficiency and utilisation 
- Simulation modelling for decision support 
- Handling uncertainty and variability 
- Scheduling policies 
 

Common keywords 
Scheduling; OT; Simulation, Optimisation, Resource 
allocation; Ant colony optimisation; Mixed integer 
programming; Discrete event simulation 

Discrete Event Simulation; Operating Room 
Scheduling; Simulation; Optimisation; 
Scheduling; Healthcare Management; Capacity 
Utilisation 

Methodologies 

- Simulation studies 
- Optimisation studies 
- Integrated approach studies 
- Stochastic optimisation 
- Survey studies 
- Review studies 

- Discrete event simulation 
- Scenario analysis 
- Validating simulation models 
- Distributions  
 

Country of research (some 
originate from more than 
one country) 

Tunisia; China; Iran (2); Germany; Canada (2); 
Netherlands; France; Italy (3); UK (2); USA (2) 

Australia; France (2); Tunisia; USA (7); Hong 
Kong; UK (2); Belgium; Sweden; Canada (2); 
Taiwan; Italy (2) 

Publication type 
Journal articles (10); conference paper; conference 
proceedings; book chapter 

Journal articles (13); conference paper (2); 
conference proceedings (3); book chapter 

The goal of the first search string was to have a broad focus, to explore research that has taken 

similar approaches and to identify the limitations across the field. This can be seen by the broad 

research focus and range of methodologies shown in Table 2. The search information helps better 

understand the different gaps in the literature and the domain to which this thesis will contribute. 

Table 3 gives an overview of all the papers selected from the search string that is used to write a 

section 2.3 and 2.4. It gives an overview of the techniques these papers apply, the interesting 

takeaways for this research. The last paragraphs talks about the limitations or differences that need 

to be considered when using the information and conclusions from that paper. These sections aim 

to explain what has been found in these papers and the currently available information about 

applying DES to evaluate optimisation-generated scheduling. 
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TABLE 3: RESOURCE TABLE, FIRST STRING 

Source Technique Information/conclusions The usefulness of the article relevant limitations 
or differences from 
the focus of this 
research 

Xiao and 
Yoogalingam 
(2022)  

simulation 
optimisation 
and DES 

The use of open scheduling, allocating a mix 
of surgeries to available operating theatre 
slots, improves OT utilisation.  
Simulation optimisation can consider many 
different aspects while accounting for the 
uncertainty. 
Highlight the complexity brought by changing 
the duration of surgery and how the 
scheduling of surgery is considered complex 
due to this and other uncertainties.    
Proposes using open slots in a schedule for 
emergent surgeries or same-day 
rescheduling. 

The article highlights the 
complexity of considering 
scheduling in healthcare. It is an 
example of how operational 
research can aid in this 
complexity and what potential 
contributions are. However, the 
conclusions focus on scheduling 
policy rather than schedule 
testing.   

Does not consider 
post-operative 
resource availability.  
Considers the extra 
uncertainty brought 
by emergent arrivals.  

Hamid et al. 
(2018) 

mathematical 
optimisation 
and DES 

The sequencing of DES after optimisation 
leads to the optimal number of ICU beds to 
support operative recovery. The study 
illustrates the potential for optimisation 
techniques for scheduling to enhance OT 
performance and utilisation significantly.  

The article provides an example 
of using a mathematical model 
to schedule surgeries.  
The optimisation model was 
updated based on the simulation 
model recommendation.  
It showed that optimisation 
generated scheduling is better 
than human scheduling.  
 

Focus on a singular 
department limits the 
applicability across 
the broader MSS. 
The objective is to 
minimise waiting time 
and the maximum 
completion time.  
Considers the extra 
uncertainty brought 
by emergent arrivals. 

Rachuba et 
al. (2022) 

optimisation 
and 
simulation 

Developed a framework for scheduling to 
streamline patient scheduling decisions. The 
human planning decisions are tested in the 
simulation.  
They consider the effects of different rules on 
the utilisation of intensive care and OT, 
overtime, cancellations and the number of 
patients fully treated.  
Mimic human planning decisions to consider 
their effectiveness.  
Compares the use of optimisation and 
simulation.  

An example of useful KPIs for 
evaluating the effectiveness of 
policy.  
They consider the acceptable 
risk, as there are clear trade-offs 
to be made when evaluating 
policy.  

Research focuses 
solely on operating 
theatre and intensive 
care unit availability 
and is not integrated 
with the hospital-
wide MSS. Does not 
address dynamic 
responses to changes 
in capacity or other 
hospital-wide 
resources 

Debats et al. 
(2021)  

DES  Established surgical planning guidelines that 
prioritise surgical and post-anaesthesia care 
unit resources. The goal is not only to 
increase the number of planned surgeries but 
also to smoothen the workload for both 
surgical staff and nursing staff in the Post 
Anesthesia Care Unit. Integrating both OT 
utilisation, OT resources and postoperative 
resources into the schedule improves hospital 
operations.  

Looking at the problem with a 
more holistic view and also 
considering factors such as 
resources helps to manage the 
flow more efficiently.  
Decreasing the variability in the 
bed demand improves the 
workload.  
However, to get a complete 
picture, the entire patient flow 
should be considered, including 
all the required resources 
throughout the entire patient 
flow.    

Neglects to consider 
variations in the 
length of patient 
stays. 
Does not consider the 
outflow of patients to 
departments other 
than the Post 
Anesthesia Care Unit 

Antonelli et 
al. (2018) 

simulation  This study utilised data from ward logs and 
questionnaires completed by hospital staff to 
develop a simulation model aimed at 
reducing waiting lists and hospital length of 
stay while optimising hospital capacity 
utilisation. The model provides a 
comprehensive analysis of patient flow. 
The research also proposes to consider a 
redesign of the activities as it can improve the 
potential delays and waiting times before 
surgery.  

When looking at the complete 
patient flow to investigate the 
improvement in the waiting list, 
waiting time and bed utilisation, 
a compromise between bed 
utilisation and waiting times 
comes to light.   

The system is very 
sensitive to the 
variability in the 
length of stay and 
does not allow for 
buffers in the system.  
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Davoudkhani 
et al. (2019)  

simulation-
based 
optimisation 

The use of a mathematical model to set up a 
schedule and then using different rules, such 
as longest duration or shorter duration first, 
to attach a surgery to a schedule slot reduces 
the total waiting time and improves OT 
utilisation.  
They considered the different rules and the 
base case schedule as different scenarios, 
which were then compared.  

The study considers the 
complexity of non-identical 
operating rooms for elective 
patients and how to most 
effectively schedule these.  

The focus is on 
assigning patients to 
slots from the waiting 
list, not focused on 
the effect on other 
resources of the 
system.  

Xiang et al. 
(2015)  

Ant Colony 
Optimisation  

Using Anto Colon Optimisation to solve the 
surgery scheduling problem and comparing 
them using DES can help to efficiently 
determine surgery duration and allocate 
resources such as personnel facilities, taking 
into consideration staff qualification.  
The use of Ant Colony Optimisation improves 
the scheduling within acceptable calculation 
times.  
The study also considers a surgent speciality 
and level of experience, resulting in different 
expected surgery durations.  

Considers the effect and 
advantage of shared resources 
between different departments. 
It also considers there is more to 
surgery than simply the 
availability of the OT and the 
surgeon.  
The use of open scheduling 
makes surgery scheduling more 
complex.  
For the uncertain variable of 
surgery duration, there can be 
more to consider than the 
average surgery time of the 
surgery in question. 
 

The type of 
optimisation is 
different from what 
this literature review 
generally refers to. 
Considers the extra 
uncertainty brought 
by emergent arrivals.  

Saadouli et 
al. (2015)  

Optimisation 
and DES 

This research combines the use of 
optimisation to generate schedules and test 
them using simulation. This tackles the 
scheduling challenge taking into account 
uncertainties (such as surgery duration, 
recovery times and resource capacity).  

Provides an example of how DES 
can aid in the evaluation of 
different optimisation generated 
schedules.  
The paper also mentions 
simulations limitation to only be 
able to consider a limited 
number of variables, which is 
where optimisation can prove 
useful.  
It highlights the importance of 
considering the stochastic 
nature of the input variables.  

The research is 
department-specific, 
suggesting that 
extending the 
application to other 
disciplines or a 
multiservice system 
(MSS) might present 
additional challenges. 

Griffiths et 
al. (2010)  

scenario 
analysis using 
DES 

This research minimises elective surgery 
cancellation by levelling the bed occupancy. 
And considers the trade-offs that are to be 
made between the utilisation of resources 
and the cost of resources.  
Effective management of ward utilisation 
requires a combined approach to bed 
capacity, improving patient scheduling and 
optimising discharge procedures. Scenario 
testing is proven to be a valuable insight 
when testing the combination of different 
interventions. Focussing on bed-blocking 
emerges as the best strategy for reducing 
occupancy levels and cancellation rates. 
However, chaining practices of staff can be 
beneficial as well.  

Mentions that the unavailability 
of beds is often a reason for the 
cancellation of elective surgery.  
To improve efficiency, the focus 
needs to be on more than one of 
the elements, including, but not 
limited to, the number of beds, 
scheduling methodology and 
patient flow.  

- 

Abedini et 
al. (2017) 

Optimisation 
and DES 

When improving the MSS it is important to 
consider blockings between the OT and 
downstream resources. Using optimisation, 
these blockings can be reduced, and their 
effectiveness should be tested under 
variation using simulation.  

An Example of improving a MSS 
using optimisation and testing 
changes in healthcare using 
simulation.  
The complexity in MSS 
scheduling is often caused by 
other resources, and 
unavailability of these resources 
causing blocking in these flows.  

Only consider 
uncertainty in input 
variables and not 
scenario analysis of 
system uncertainty. 
Resources in the 
system are shared 
with emergency 
cases. 
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Cappanera 
et al. (2014) 

optimisation 
simulation 

Compares different scheduling policies, each 
prioritising different areas of interest. The 
study reveals the causal mechanism that, 
under certain circumstances, makes certain 
balancing criteria perform better than others. 

The main takeaway focuses on 
the trade-offs that are to be 
made when considering 
effective healthcare policy. 
However reasonable trade-offs 
are most likely possible to be 
found.  
Aiming for high utilisation of the 
wards should not be the priority 
as these are often 
underestimated, causing 
overbooking.  

No clear solution in 
terms of efficiency, 
balancing and 
robustness. The 
optimisation does not 
consider the actual 
hospital dimension, 
and many hospital 
resources are left out. 

Guerriero & 
Guido (2010) 

Literature 
review on 
operational 
research 

Operational research, including simulation 
and optimisation, focuses on increasing the 
number of patients, increasing satisfaction of 
all involved, maximising resource utilisation, 
reducing cancellations and reducing delays.  

Efficient use of resources 
improves most system KPIs.  
Explains that literature highlights 
trade-offs between the different 
KPIs in order to find acceptable 
levels on all fronts, including 
weighing costs. Most of the 
literature does not deal with all 
system constraints 
simultaneously.  

- 

Erdogan et 
al. (2011) 

Analysis of 
surgery 
scheduling 

Little time has been spent on considering 
rules for schedule deviations. More attention 
should be spent on the waiting lists and 
uncertainty cancellations. Additionally, other 
resources than OT should also be considered. 
Uncertainty in demand is a subject that has 
minimally been subjected to research.  

There are a lot of factors, no-
shows, cancelations and 
additional cases that cause 
deviations in surgical schedules, 
which are often not considered 
in the creation of elective 
surgery schedules.  
Additionally, the consideration 
of post-surgery resources is 
important.  
Uncertainty in patient inflow is 
important to consider; surgeries 
can be cancelled for numerous 
reasons, which causes resources 
to go to waste.  

- 

 

The goal of the second string was to explore what can be learned from previously produced 

healthcare simulations. Looking specifically into common practices for input data, model validation, 

sensitivity analysis and scenario testing in healthcare. The selection of papers was chosen to 

contribute to these subjects as these are of interest for the writing of the rest of the thesis. The 

papers of string two were used to write the rest of the literature review, specifically section 0. 

Unlike the first part, where the research table was employed to briefly state the practices of the 

different research, for the second part, the narrative is led by the exploration of these research 

practices, so the decision was made to forgo a research table. By presenting this information in a 

narrative format, the literature review aims to provide a clear understanding of common practices 

and what can be learned from these for the rest of the thesis. The exploration of the second string 

provided information on how to handle some of the systems complexity, common practices for 

input data for a DES, validating a DES model and scenario testing in a DES model  

2.3 THE TRADE-OFF BETWEEN OT UTILISATION AND OTHER 
RESOURCES 

One of the key insights derived from the analysis of the research papers in Table 3 is the trade-off 

between striving for full utilisation of the OT and the resulting pressure on other resources, which 

could then become bottlenecks. While an MSS often improves the OT utilisation it also increases 

the complexities by sharing the system's resources.  
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Efficient utilisation of resources minimises delays, costs and excessive waiting times (Guerriero & 

Guido, 2010). Balancing these resources is considered even more complex when employing an MSS 

where specialities share resources. MSS is considered an open schedule which mixes different 

specialities; the advantage of using such a schedule is an increase in the utilisation of the OT (Xiao 

and Yoogalingam, 2022). According to Abedini et al. (2017), efficient scheduling prioritises OT 

utilisation and ensures a smooth flow of patients through all hospital flows, eliminating 

bottlenecks. Fully utilising the capacity of the OT leads to efficient utilisation of system capacity and 

reduces waiting lists (Antonelli et al., 2018). However, OT capacity might not always be the primary 

bottleneck in scheduling problems. The increase in the utilisation of OTs increases the pressure on 

post-surgery resources, resulting in a trade-off between how many extra surgeries can be planned 

without overutilisation of other resources (Debats et al., 2021). Misaligned scheduling occurs when 

there is a mismatch between demand and the availability of resources, leading to inefficiencies 

(Erdogan et al., 2011). Even more, when the strain on these post-surgery resources increases, such 

as increased bed utilisation, this can lead to shortages when unexpected extreme lengths of stay 

occur. 

Few efforts have been made to integrate post-surgery resource limitation into optimisation models 

focused on increasing OT utilisation (Erdogan et al., 2011). Capacity and resource constraints, 

admission limitations, and medical staff preferences constitute the primary constraints, creating a 

trade-off between OT time, patient waiting list, and surgical and post-surgical resources (Guerriero 

& Guido, 2010). 

To conclude, using a MSS brings advantages for the utilisation of the OT. However, this increases 

the complexities of the shared resources. As highlighted in section 1.2 optimisation cannot fully 

take into account these detailed complexities of the interdependent department resources, which 

is where simulation might come in. The next paragraph will consider how simulation can be used 

as a tool for guiding decision makers about scheduling changes.  

2.4 SIMULATION AS A DECISION SUPPORT SYSTEM FOR 
OPTIMISATION-GENERATED SCHEDULING 

The use of simulation for testing optimisation-generated solutions in the healthcare sector emerges 

as an interesting strategy to navigate and enhance the complex landscape of healthcare 

improvement. Many researchers have already looked into applying these operational research 

methodologies in the healthcare sector, employing various techniques to refine scheduling 

processes and evaluate the efficacy of interventions.  

Evaluating an optimisation model for surgical scheduling using a DES model offers valuable insights 

into enhancing surgical scheduling efficiency (Davoudkhani et al., 2019). Optimisation can generate 

a scheduling framework that can enhance the efficiency of both operating theatres and intensive 

care units. Simulation can then be used for effective resource management, such as ward beds, 

which requires a combination of strategies, including adjusting bed numbers, refining patient 

scheduling, and optimising discharge processes (Griffiths et al., 2010). It has been shown that 

sequencing these methods by applying simulation tools, such as DES, after optimisation can lead 

to valuable insights for decision-makers (Hamid et al., 2018). A simulation model can enhance the 

operational efficiency of a framework (Rachuba et al., 2022).  

Both Saadouli et al. (2015) and Hamid et al. (2018) effectively use DES to validate optimisation-

generated schedules. They show that optimisation accounts for a wide range of parameters, 
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therefore reducing costs and enhancing operation efficiency. Optimisation thus addresses the 

limitations of simulation of only being able to address a limited number of variables, enabling the 

incorporation of diverse parameter variabilities (Saadouli et al., 2015). The dual approach also 

enables testing real-life scenarios, leading to recommendations for the optimal number of intensive 

care unit beds to support post-operative recovery. The studies illustrate the potential for 

optimisation techniques for scheduling to enhance OT performance and utilisation significantly. 

However, neither of their approaches considered the complexity a MSS introduced. Considering 

more departments and a complete patient flow can create a more comprehensive approach 

(Debats et al., 2021).  

One use of simulation modelling is scenario testing, which involves exposing the system to potential 

future settings and exploring how the environment responds, allowing evaluation of possible 

changes while exploring how they would respond in different potential futures (Sciomachen et al., 

2005). Several studies have explored the use of scenario testing to evaluate specific policies. 

Griffiths et al. (2010) employed various "what-if" scenarios, concluding that effective bed 

management requires a combination of strategies. The scenario testing made possible by DES 

offered valuable insights into the potential outcomes of different combinations of interventions. 

As highlighted by the studies, exploring optimisation and simulation techniques for scheduling 

within healthcare demonstrates considerable advancements in this domain. Optimisation can 

strive to create more efficient schedules, and simulation can consider how these new schedules 

affect the system and perform in different future scenarios. However, this has not yet been 

explored when considering the additional complexity of a MSS. Key issues that arise in such a 

setting include managing capacity constraints across various departments, handling the 

unpredictable durations of surgeries, and dealing with fluctuations in resource availability.  

2.5 ADVANCEMENT AND CHALLENGES IN USING DISCRETE EVENT 
SIMULATION FOR HEALTHCARE SCHEDULING 

The upcoming section of the chapter delves deeper into the application of simulation for testing 

surgical schedules, with a particular emphasis on DES. DES is recognised as a standard method for 

addressing planning challenges in healthcare management, as DES offers a dynamic environment 

to test and refine scheduling strategies (Sciomachen et al., 2005). The paragraph talks about what 

can be learned from the literature about the input variables for the system, model validation and 

scenario testing.  

Another major challenge they highlight is stakeholder buy-in, which is the notion that managers 

are often averse to risk and might oppose new tools to prevent disruptions. Cox (2019) adds to this 

that the design and execution of a schedule are often very different. Managers might not recognise 

how schedules and departments are intertwined, impacting each other's ability to execute 

correctly. Addressing these differences required assessing bottlenecks and room for improvement. 

Simulation is a great tool to aid in this process; after creating a valid representation of reality, 

changing parameters can provide great insight into how bottlenecks can be addressed, thus 

decreasing the gap between management planning and reality.  
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2.5.1 THE USE OF DISTRIBUTIONS FOR INPUT DATA 

To create accurate representations of reality, accurate parameters are required. Simulation models 

heavily rely on the accurate representation of input variables through statistical distributions, a 

point emphasised across multiple of the included studies to assess their impact on hospital 

operations and cost efficiency.  

In their exploration of improving a surgical schedule and utilising DES to test the application of such 

a schedule, Chabouh et al. (2021) tested various scheduling policies. They highlight the importance 

of considering the variability in patient arrival and surgery conditions to reflect real-world 

uncertainties and not leave out any complexities. However, they also highlight that it is equally 

important to consider factors that can be simplified while keeping the core dynamics. They 

advocate for using machine learning software to set up input variables such as length of stay and 

surgery duration. 

Wang and Dexter (2022), on the other hand, state that using this kind of application will only 

increase complexity, which is not compensated equally by the decrease in predictive errors. Their 

application of DES for schedule implementation evaluated the impact of enhanced predictive 

accuracy on labour productivity without increasing the allocated times for surgeries. Their study 

examined the assumption that increased computational complexity from machine learning reduces 

predictive errors proportionally. Wang and Dexter (2022) found that the improvements in 

prediction accuracy, while statistically significant, resulted in only negligible enhancements in 

productivity when the allocated times were not adjusted. 

The study by Fairley et al. (2018) at Lucile Packard Children’s Hospital Stanford also implemented 

machine learning to optimise surgical schedules, specifically to reduce congestion in the post-

anaesthesia care unit. They found they could use machine learning to develop models to sequence 

operations effectively, minimising post-anaesthesia care unit-related delays without compromising 

OT utilisation. However, the approach's reliance on detailed patient records for their algorithms 

points to a significant barrier.  

Monnickendam and De Asmundis (2018) illustrate how the distribution of procedure times 

significantly affects OT utilisation and the economic evaluation of hospital procedures. Their study 

demonstrates that not accounting for the full range of variability in procedure times can lead to 

underestimating resource consumption and procedure costs, particularly for procedures with 

longer and more variable durations.  

Both Zeng et al. (2014) and Johnston et al. (2009) find the best fit for their event estimations, 

including surgery duration, in the gamma distribution. In contrast, Persson et al. (2017) find their 

best fit for surgery duration in the log-normal distribution. Determining a good fit is crucial in a 

simulation's ability to mimic real-world operations.  

To validate these models and ensure their practical relevance, statistical tests such as the chi-

squared test for goodness of fit are commonly used, which Johnston et al. (2009) apply to affirm 

the alignment of their simulation models with observed data at a 95% confidence level. Chabouh 

et al. (2021) additionally employ the Kolmogorov–Smirnov test. Choosing and validating good 

statistical distributions in simulation models enhances the accuracy of predicting operational 

impacts and ensures that the scheduling solutions are robust and applicable across different 

surgical settings. 
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2.5.2 MODEL VALIDATION AND SENSITIVITY ANALYSIS OF HEALTHCARE SIMULATION MODELS 

Validation in simulation modelling involves testing if the model faithfully represents the actual 

system it aims to emulate (Yuen & Wu, 2017). This process typically employs real-world data to 

compare the model's outcomes against actual operational data. Huschka et al. (2007) built a DES 

model to improve the OT and recovery bed utilisation. They used existing data on the utilisation to 

validate the simulation model in a base case scenario. Additionally, the accuracy and relevance of 

the simulation can be enhanced through collaboration with hospital staff (Persson et al., 2017). In 

their study, Gül et al. (2011) applied these principles by comparing the outcomes from their DES 

models, such as the number of surgeries and expected overtime, against the real data from a 

baseline schedule of outpatient procedures. Using real patient data and expert feedback ensures 

that the model accurately reflects the operational realities of the surgical centre. Their primary 

objective was to optimise scheduling under the uncertainty of procedure durations to minimise 

patient waiting times and reduce OT overtime. The DES model is used to test various scheduling 

heuristics. 

Sensitivity analysis plays a pivotal role in model validation by determining how changes in input 

parameters affect outputs, thereby assessing the robustness of the model. Bam et al. (2017) utilised 

this technique to explore efficient resource allocation within hospitals, particularly focusing on 

operating theatres and hospital beds. They assessed impacts on critical performance indicators by 

varying key parameters such as surgery duration, length of stay and bed availability. This way, they 

can understand how this changes their KPIs and how robust the model is. Similarly, Marcon and 

Dexter (2006) emphasised the importance of sensitivity analysis to see how the adjustment of the 

model changes the outcomes for the model. By altering resource allocations and prioritizations, 

they demonstrated the model's sensitivity to operational settings, particularly how the presence of 

nurses throughout the day significantly influences outcomes. These studies underscore that 

sensitivity analysis not only tests model validity but also informs necessary adjustments to enhance 

system efficiency and responsiveness. 

2.5.3 SCENARIO TESTING IN HEALTHCARE SIMULATION MODELS 

Scenario testing is a pivotal component of applying DES. It enables operational enhancements by 

varying parameters such as resources or procedures to assess their impact on KPIs (Johnston et al., 

2009). Banditori et al. (2013) discuss the complexities of Master Surgical Scheduling, focusing on 

balancing resources such as OTs and post-surgical beds to enhance both the efficiency and 

robustness of schedules. In their scenario analysis, they consider different OT utilisation ranges and 

perform 30 simulation runs; they conclude that it is best not to aim for full utilisation for both beds 

and OTs as it does not leave much room for flexibility.  Azari-Rad et al. (2014) also utilised DES to 

evaluate different surgical scheduling policies. They demonstrated how such policies could 

significantly reduce surgical cancellations by prioritising surgeries based on expected length of stay 

and adjusting bed availability. This not only tested the robustness of the system but also the 

adaptability to changes. Furthermore, Rifi et al. (2022) introduced uncertainty into their model 

during their scenarios. By varying the uncertainty in the duration of activities and patient arrival 

times, vulnerabilities in the system can be revealed and potential bottlenecks pinpointed.  By 

identifying where bottlenecks are located in different circumstances, they can also highlight 

potential points of intervention (Marmor et al., 2013). 
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2.5.4 CONCLUSIONS 

The papers that are part of the second research string, discussed in this paragraph, were focused 

on the general application of simulation in a healthcare setting. They talk about aspects that need 

to be considered when building a DES model. None of these papers consider the additional of using 

an optimisation model to setup the policy to be tested in the DES. The information from these 

papers that are valuable to this research is about common methods and approaches. First of all the 

papers highlight that using using traditional distributions for modelling input variables is more 

efficient than using advanced machine learning. These distributions accurately represent the 

variability in surgery durations and can be rigorously tested for fit using statistical tests such as the 

chi-squared or the Kolmogorov–Smirnov test, a standard practice in the domain. 

Furthermore, these simulation models benefit from validation against real-world data and the 

application of sensitivity analysis to assess how parameter changes affect model outcomes. Such 

validation is crucial for ensuring the models' practical relevance and reliability. Notably, the 

literature advises against targeting full resource utilisation within scheduling models. This approach 

helps prevent potential bottlenecks and issues related to exceeding capacity. The methods for data 

input and model validation will be further explored in Chapter three, providing detail on how these 

techniques will be employed effectively in this research. 
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3 RESEARCH DESIGN 

The following chapter outlines the approach that is used in the thesis. Initially, it will identify and 

define a series of sub-questions. These sub-questions are designed to support and facilitate an 

answer to the main research question: 

“How can Discrete Event Simulation be used to evaluate an optimisation-generated Master 

Surgery Schedule for operating theatres?” 

The chapter then concentrates on the rationale behind selecting DES as an analytical tool. It details 

the reasons behind this choice and describes how DES can be specifically applied within the context 

of this thesis to explore and evaluate optimisation-generated MSS in operating theatres.  

3.1 SUB-QUESTIONS 

This research is split up into four sub-questions. Each guides a stage of the research.  

1. What are the key considerations and performance indicators for setting up a Discrete Event 

Simulation model to evaluate an optimisation-generated Master Surgery Schedule? 

When setting up a simulation model to test an optimisation-generated MSS, it is crucial to 

determine what the model should focus on and how it influences the outcome. This is the goal for 

answering the first research question. The literature review in Chapter 2 has begun this process by 

examining similar research and experiences for using DES in healthcare scheduling. This review 

highlights the features that need to be considered when constructing a simulation model for a MSS 

and standard practices in the domain. Chapter 4 discusses how these lessons are incorporated into 

our simulation model, detailing the specific considerations and KPIs that can be utilised in this 

research. Additionally, the assumptions for the model setup and the decisions made in the model 

are validated by an expert from the hospital.. 

2. What type of uncertainties does the discrete simulation model need to take into account 

when evaluating Master Surgery Schedules? 

Once the model is set up, it is important to see how it performs under different types of uncertainty 

to see how robust the MSS is. The research will explore two different types of uncertainty: model 

uncertainty and system uncertainty. The first is uncertainty in the input variables, Chapter 4 defines 

the setup of the model, including the assumptions and decisions about the input variables (Bai & 

Jin, 2015). During the validation phase, the simulation model's sensitivity to this uncertainty is 

further tested and explored so the conclusions can be considered during the experimentation 

phase. This phase tests for the second type of uncertainty, system uncertainty, which is about the 

uncertainties posed by the system under evaluation (Kuzmin, 2014). The future is unknown, and a 

good solution would be as robust as possible; the goal of this research would be to evaluate the 

different schedules under these uncertainties and see which schedule performs better or worse 

and how their behaviour might change.  

This research question aims to identify the uncertainties that the DES model needs to consider. The 

objective is to ensure that the MSS remains effective despite unexpected events. Chapter 2 has 

already outlined different examples of similar research and their approach to applying DES to 

simulating schedules. Here, it was found that common practices in varying parameters are the 

length of stay, surgery beds and surgery duration. Additionally, the research provides examples of 
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how to formulate these input variables and validate the model when applying simulation models 

in healthcare.  Here, several lessons can be learned that can be taken into account. Chapter 5  

explains the different scenarios of uncertainty that can be used to test the scheduling.  

3. How do the identified uncertainties impact the performance of the Master Surgery schedule? 

The last research question will continue with the identified uncertainties and aim to set up different 

scenarios under which the schedules will be tested. Exposing the system to these different 

uncertainties allows the modeller to make conclusions about the robustness of the schedules and 

compare them across different potential scenarios. Studying the behaviour of the model under 

each of these scenarios will provide extra insight into the effectiveness of all schedules. Using this 

information to answer this question will aid in answering the main research question about the 

contributions of using simulation for testing optimisation generation MSS.  

3.2 DISCRETE EVENT SIMULATION 

This research aims to explore the application of DES in evaluating optimisation-generated MSS. By 

delving into considerations for setting up simulation models, understanding uncertainties, 

analysing simulation experiment findings, and examining simulation insights for decision-making, 

this study seeks to provide valuable insights into the effectiveness and practical implications of 

optimisation-driven scheduling strategies. The subsequent sections delve into the methodology 

behind DES, providing insights into the rationale, advantages, and relevance to the research 

objectives.  

Simulation manifests in various forms; however, this paper will concentrate on DES. DES is known 

to help healthcare decision-makers assess the effectiveness of implementing new policies, is used 

as a forecasting tool to analyse the impact of changes in flows or resource allocation and is used to 

understand complex systems better (Jacobson et al., 2013). It can capture the dynamic behaviour 

of such systems and interactions among individuals, populations, and environments. These systems 

operate stably, involving components, planned tasks, queues, and decision rules (Brailsford & 

Hilton, 2000). It allows users to test policies and system changes without changing the original 

system (Jacobson et al., 2013), which is the application that will be used in this thesis.  

The aim is to compare various policies to find how to effectively implement the most efficient ones 

(Zhang, 2018). According to Brailsford & Hilton (2000), DES has often been applied to a tactical or 

operational level. By providing insights into management alternatives, it empowers administrators 

and analysts to enhance system performance, reconfigure existing systems, or plan new ones while 

maintaining continuity (Jacobson et al., 2013). 

In DES, state changes happen at each step, with the state staying constant between steps. DES 

represents the systems as an interconnected network featuring quests and activities. Behaviour is 

determined by characteristics assigned to each individual. (Brailsford & Hilton, 2000) 

However, it is essential to acknowledge that DES models offer simplified depictions of reality, 

similar to the abstractions found in other modelling techniques (Zhang, 2018). DES is not an 

optimisation tool but provides estimates of potential outcomes when implementing specific 

policies (Jacobson et al., 2013). Optimisation techniques such as linear programming are often 

limited when applied in complex systems. They can often not study the details of day-to-day 

operations (Jacobson et al., 2013), which is where DES can come in. Its flexibility, adeptness in 

handling variability and uncertainty, and utilisation of graphical interfaces make it the preferred 
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method for modelling healthcare systems (Brailsford & Hilton, 2000). Integrating Discrete-Event 

Simulation (DES) when evaluating changes in healthcare systems can expand perspectives and 

facilitate a deeper understanding of interdependencies. By providing a more comprehensive view, 

DES enables users to make informed decisions, ensuring a more realistic assessment of the 

potential impacts (Zhang, 2018). 

3.2.1 CHALLENGES IN USING DISCRETE EVENT SIMULATION 

Sadly, barely any of the uses of DES in healthcare result in the actual implementation of the 

solutions (Hassanzadeh et al., 2023). Applying DES in healthcare has some limitations; firstly, DES 

models are subject to complexity, often expensive to develop, experience long running times and 

require a lot of data as input (Brailsford & Hilton, 2000). Another issue with applying DES for health 

care applications is generalizability; when using local data, the policies are often limited to the 

application of that specific case (Zhang, 2018). Testing an intervention in a simulation at one 

hospital does not necessarily imply that it will be applicable or beneficial to other hospitals. When 

creating a DES model, often different assumptions need to be made about system behaviour which 

might oversimplify the system, not taking into account some of the dynamics and uncertainty (Qiao 

& Wang, 2021). These limits highlight that there are some challenges in applying DES and that there 

might be more steps to take before implementing a solution. However, this does not mean that the 

results are not valuable in learning more about a system and how to improve it further.  

3.2.2 HOW WILL DISCRETE EVENT SIMULATION BE USED IN THIS THESIS 

Using simulation in healthcare is seen as a widely researched topic. Liu et al. (2020) define 22 

different research areas in healthcare using DES, with most showing increasing trends in the 

amount of research being performed. However, most research is focused on improving the 

emergency department (Vázquez-Serrano et al., 2021). This thesis, however, will focus on the 

application of scheduling elective procedures and how to utilise the available resources best.  

The research question focuses on testing an optimisation-generated MSS using DES. This way, other 

effects or improvements can be considered when applying the new scheduling method. By testing 

the MSS under different scenarios, it could provide feedback on how best to make the scheduling 

more robust.  

The previous section mentions that an important characteristic of DES is the use of queuing and 

decision rules. The schedule determines when the entities will enter the simulation, but then 

different queues will be part of different elements of the system. The decision rules will determine 

when the entities are moved to another space or out of the system, creating more space for new 

entities and shortening the queues. This characteristic is why DES was chosen as a modelling 

technique since the goal is to investigate the length of time patients are waiting for resources, 

queues, and move patients throughout the system based on predefined procedures, decision rules.  

3.2.3 THE DES PACKAGES USED IN THIS THESIS 

Many different packages are available for setting up a DES model, one of which is the package 

Salabim. At the end of 2016, Salabim was developed to improve existing packages by offering a 

powerful animation tool and simplifying the process of enabling entities to hold, activate, passivate, 

and stand by (Van der Ham, 2024). Salabim comes in two versions: a 'yield' version and a 'yieldless' 

version. The version used in this thesis is the ‘yieldless’ version released in March 2024. While the 

‘yieldless’ version does not run on all hardware, it is considered more intuitive (Van der Ham, 2024). 
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3.3 THEORETICAL DISTRIBUTIONS FOR INPUT DATA 

Section 2.5 already mentioned that using theoretical distributions for input data is considered 

common practice for uncertain variables such as the length of stay and surgery duration. This thesis 

will also employ this method by fitting distributions for the length of stay and surgery durations 

used in the simulation model. Considering uncertainty in these variables' duration is an important 

aspect of simulation modelling in healthcare scheduling.  The selection of appropriate distributions 

is guided by the book “Simulation modelling and analysis” (Law, 2014), was used. This book 

presents a methodical approach for identifying suitable distributions for a given dataset. It 

advocates for the use of theoretical distributions as preferable to empirical distributions or the 

direct use of data values in simulations. 

Chapter 6 of the book (Law, 2014) discusses twelve distinct distributions, each with specific 

applications and characteristics suited for various analytical scenarios. By examining the 

descriptions of these distributions and common applications of these distributions, the selection 

has been narrowed down to six potentially suitable distributions. Table 4 provides an overview of 

these distributions and their explanations, as outlined in chapter 6 of the book (Law, 2014). Chapter 

4 will delve into the different model inputs to find which distributions fit well with the available 

data. 

TABLE 4: SELECTED DISTRIBUTIONS 

Distribution Possible application 

Gamma Time to complete some task, e.g., customer service or machine repair 

Weibull 
Time to complete some task, time to failure of a piece of equipment; used as an application rough model without 
data.  

Log-Normal 
Time to perform some task [density takes on shapes similar to gamma(a, b) and Weibull(a, b) densities for a > 1, but 
can have a large “spike” close to x = 0 that is often useful]; quantities that are the product of a large number of 
other quantities (by virtue of central limit theorem); used as a rough model in the absence of data 

Log-Logistic Time to perform some task 

Pearson type V 
Time to perform some task (density takes on shapes similar to lognormal, but can have a larger “spike” close to x = 
0) 

To see which distributions fit best, different tests are performed to compare the distributions to 

the original data. The literature  review of section 2.5 identifies using the Chi-Squared and 

Kolmogorov-Smirnov tests to assess the distributions as a common practice. The chi-square test 

compares the histogram with the fitted density or mass function, the KS-test compares the 

empirical distribution with the distribution function of the hypothesised distribution (Law, 2014). 

The KS test is applicable for any sample size and does not necessitate data binning, thereby 

preserving information and avoiding issues related to interval specification. Conversely, the Chi-

square test is more suitable for categorical data. Given that this research does not require 

distinctions based on categories within the different distributions, the KS test is the most 

appropriate choice.   

If this does not provide enough insight, another evaluation method is to visually examine using a 

QQ-Plot. These plots are used to compare the sample quantiles on the Y-axis as the real values are 

plotted on the X-axis. A 45-degree line can be drawn as a guide; the closer the data points are to 

this line, the more linear the data points are, and the better the distribution fit (Kafadar & 

Spiegelman, 1986). So, together, the KS test and the QQ plots should help decide which distribution 

is the best fit for the input data. First, with the statistical test, and if that does not provide a 

significant fit, a visual inspection of the QQ-Plot will aid in choosing the best fit.  
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3.4 MODEL VALIDATION 

Validation is about showing that the model that has been created is an accurate representation of 

the system (Yuen & Wu, 2017). A model can only be used as a tool for aiding decision-makers if a 

model is considered valid (Law, 2014). A standard practice in validating a simulation model is 

comparing the model output to real-life data. However, this is not always possible either due to the 

unavailability of data or the uncertainty in the system (Kleijnen, 1995).  

“All models are wrong, but some are useful.” 

- Professor George E.P. Box 

The goal of the simulation model is to compare the performance of different schedules and 

determine what simulation can offer additionally when evaluating the different MSS. This goal is 

kept in mind when validating the model; to use the model in the future, this application needs also 

be considered as the model might not be helpful for other purposes (Law, 2014).  

The previous section talked about how the input variables setup by distribution are assessed for 

their goodness of fit by using tests and visual inspection. These can also be validated using cross-

validation, which is about comparing the outcomes of the model using the distribution with the 

outcomes of the model when the raw data was used (Yates et al., 2023). Another form of validation 

is to perform a sensitivity analysis. Sensitivity analysis involves identifying which variables 

significantly impact the model's output when altered. This helps determine which variables have 

the largest effect on the model. Additionally, it assesses whether the model's behaviour changes 

according to expectations (Law, 2014).  

Another version of data input involves decision rules, as discussed in section 3.2, making entities 

move through the system based on several predefined rules. The decision flows, and assumptions 

within the DES model can be validated through expert input from a stakeholder. Expert validation, 

or face validation, is considered a standard operational validation technique and a minimum level 

of validation is necessary (Olsen & Raunak, 2019). An expert is someone whose experience with 

the system's environment is relevant to the subject (Krueger et al., 2012). For this research, an 

expert opinion was used to validate the different decision flows for the patient that were used as 

the model input. For the case used in this research, the expert is a paediatric Anaesthesiologist at 

the Sophia Childres Hospital in Rotterdam.  

So, this research used expert validation, cross-validation and sensitivity analysis and considered 

lessons learned from the literature to validate the model, including the assumptions and the 

approach.  

3.5 APPROVAL BY THE HUMAN RESEARCH ETHICS COMMITTEE  

To build the simulation model past data is needed about surgery events, including the duration of 

the surgery, length of stay and surgery name. The data used in this model was already anonymised. 

The ethics committee of the TU Delft has approved the use of this data, the study is in compliance 

with the ethical and data management standards by the TU Delft. The letter of approval can be 

found in Appendix A. 
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3.6 THE USE OF ADDITIONAL TOOLS 

The first tool that was used as an aid in this thesis is AI. For the writing of this thesis, there are 

several aspects in which Chat GPT was used as a tool. First, chat GTP was used to understand the 

packages, including Salabim, better. The user could easily find the commands that best fit the 

defined goal by uploading the package's description into the AI tool. Additionally, Chat GPT was 

used to clean up the code and as inspiration for further improvement, making it more efficient and 

reliable. For the writing of the thesis, the AI tool was mostly used on an inspirational level, an aid 

for ordering the information and improving the sentences so it more clearly stated the goal as 

intended.  

The second tool is the use of Grammarly. This program was used for spelling and grammar 

corrections throughout the thesis.  
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4 MODEL FORMULATION 

This chapter focuses on the optimisation model, the MSS, and how it is used as input for the 

simulation model in this thesis. It will also outline a detailed explanation of the setup of the 

simulation model and the input data. The entire simulation model can be found on 

https://github.com/LunavanV/Thesis  

First, the case is introduced by outlining the optimisation model and the known information. This 

includes defining the KPIs, a conceptualisation of the system and the model flow. Next, all the input 

variables are explained one by one, and an overview of all the model's assumptions is provided. 

Finally, the type of output generated by the model is described and explained. 

4.1 CASE INTRODUCTION 

The optimisation-generated schedule that will be used for the case in this thesis was created by 

Vos (2022). A mathematical optimisation model creates a schedule template for the operating 

theatres of the Sophia Children’s Hospital in Rotterdam, utilising four years of surgical data from 

2018 to 2022, three years for training and one for testing. The model optimises operating theatre 

utilisation and levelling bed occupancy across various wards.  This is achieved by considering factors 

such as OT availability, speciality needs, and patient group scheduling. 

Vos categorises surgeries into groups within each speciality based on the expected length of stay 

and surgery durations. Appendix C details what the characteristics of each group look like. For each 

day and each operating theatre, a certain speciality is assigned, and from which groups they can 

perform surgery. Each of these groups has about 2 to 128 different types of surgeries that can be 

assigned to a corresponding slot. 

Vos developed an optimisation model which designed four different OT schedules. The simulation 

model will evaluate the performance of these schedules against the KPIs (defined in  4.1.2). Detailed 

definitions of each schedule are provided in Table 5, while the schedules themselves are presented 

in Appendix B. The first parameter either equally prioritises increased OT utilisation and the 

levelling of the ward capacity or prioritises levelling the wards. The second parameter determines 

how often per hour the optimisation model updates and checks ward availability, impacting 

computational efficiency. The more times the availability is checked, the more variables are part of 

the model, which means it takes more time to get to a solution. 

TABLE 5: MSS CHARACTERISTICS 

Schedule  OT Utilisation vs Ward levelling Ward availability check 

A Equal priority Every hour 
B Equal priority Every time block (15 min) 
C Priority on ward levelling Every hour 
D Priority on ward levelling Every time block (15 min) 

4.1.1 INPUT DATA 

The simulation model uses the same data as input as the optimisation model did. The data consists 

of 18 082 patient entries, including their surgery durations, the type of surgery, the length of 

hospital stay, and under which speciality that surgery was performed. How this data will be used 

as input variables will be explained further in section 4.3.  

https://github.com/LunavanV/Thesis
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The simulation model also incorporates information provided by the hospital, including decision 

rules about which ward a patient is assigned to during their stay, see section 4.3.4 for the flow. 

Additionally, in collaboration with the hospital and using data from a previous thesis, the capacities 

for all the wards were determined, see section 4.3.5. 

4.1.2 KEY PERFORMANCE INDICATORS 

Based on the previous thesis and discussion, several KPIs were identified. These were chosen as 

they provide information about the scheduled performance. Table 6 displays an overview of these 

KPIs. The first, utilisation of wards, is about how much of the availability capacity of the wards is 

used. Following are the number of cancelled surgeries; here, a distinction is made between 

surgeries cancelled due to the unavailability of the wards and the unavailability of the OT; other 

reasons for surgery cancellation are out of the scope of the simulation model. Similar to ward 

utilisation, there is a KPI for OT utilisation: an OT is opened from 8:00 in the morning until 15:30. 

This variable is calculated using the hours of surgery performed each day compared to the total 

time the OT is opened; overtime will cause overutilisation. Overtime is also a separate KPI, 

calculating the number of times an OT goes into overtime and the length of this overtime. The 

hospital allows the OTs to work overtime for 25% of the OTs for a maximum of 45 minutes, including 

cleaning time. 

TABLE 6: MODEL KPIS 

KPI Unit 
Utilisation of wards % of the ward capacity that is used 
Surgeries cancelled due to OT unavailability # of Surgeries 
Surgeries cancelled due to ward unavailability # of Surgeries 
OT utilisation % of the time OT is used 
OT overtime (per OT) # of days OT goes into overtime 
Length of overtime Minutes an OT goes into overtime 

4.1.3 CONCEPTUALISATION 

Figure 2 provides an overview of the entire system, illustrating the relationship between the 

optimisation model from previous research and the simulation model used in this thesis. In the 

prior research, surgery groups were created based on surgery duration and patient length of stay. 

Each surgery was assigned to a specific group, and a discrete probability distribution was chosen 

for each group, serving as input for the optimisation model. This model then produced four 

different schedules, as explained at the beginning of this section.  

 

FIGURE 2: SYSTEM CONCEPTUALISATION 
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In Figure 2, if data is used to set up input data for the next step, it is called secondary input. Since 

the distributions were set up using input data for surgery time or length of stay, they are considered 

secondary input. Additionally, the OT schedules, used as input data for the simulation model based 

on the optimisation model output, are also identified as secondary input because they serve as 

input for the simulation model but are set up using the provided data. 

The simulation model uses the same surgery groups and input data as the optimisation to fit 

theoretical distributions rather than discrete distributions, section 4.3 explains how these are set 

up. The distributions for length of stay and surgery duration, the schedules generated for the 

optimisation model and the availability of the wards and operating theatre all serve as input for the 

simulation model. On the right side of the figure, the various KPIs used to compare the results are 

displayed, providing a clear framework for evaluating the effectiveness of the different schedules. 

4.2 MODEL FLOW 

Figure 3 provides an of the total model flow. Specifically, the model will take the schedule and 

assign each surgery grouping slot a surgery duration, length of stay, and a fitting ward, and 

determine if the patient will be moved to the Intensive Care Unit, called ‘Intensive Care Kinderen’ 

(ICK), post-surgery. Sixty minutes before surgery, the entity (the patient) is created in the model 

and enters a queue for a specific ward. The maximum waiting time for a patient to get a ward 

depends on the average duration of their surgery. The time until the OT closes is calculated, and 

the average time for a surgery from that surgery group is subtracted and considered the maximum 

waiting time. If a bed becomes available but there is not enough time left before the OT closes to 

complete the surgery, the patient leaves. However, in the simulation model, the patient's 

information is recorded under "cancelled surgery due to ward unavailability”. The simulation model 

checks every time step of one minute if a bed on the ward has become available; this would happen 

if another patient leaves and releases the resource back to the system. In reality, the surgery would 

be rescheduled.  

This requirement for average surgery duration to fit in the time left can be quite strict, or 

sometimes quite loose, since the ranges within surgery groups vary quite a bit, see Appendix C. 

However, the actual surgery duration would not be known, and in reality, an estimation would have 

to be made as well. Given the information available for the simulation model, this is the best 

estimation possible. 
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FIGURE 3: MODEL FLOW 

When a patient has been assigned a bed, OT still needs to become available. Since the patient 

arrives 60 minutes before surgery, the patient almost always has to wait for this. However, suppose 

the patient needs to wait longer than the designated start time, the patient can wait maximum 

until it is estimated, using the average surgery duration, that the patient will no longer finish in 
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time. The model checks every time step, which is a minute, if the OT has become available. 

Available means that the previous surgery has finished and the OT has been cleaned. If this 

maximum waiting time has passed and the OT has not become available, the surgery will be 

cancelled. If this happens in reality, the surgery would be rescheduled; however, in the simulation 

model, the patient's information will be stored under “cancelled surgery due to OT unavailability”. 

If the surgery is estimated to finish on time, it will proceed. 

After the surgery is completed, the patient will be moved to either the daycare unit, a MCU or an 

ICK, as predetermined based on length of stay and the probability of the ICK assignment, and after 

that has passed, the bed will become available again, and the patient leaves the system.  

After each surgery, the OT needs to be cleaned. If the next surgery is of the same speciality, the 

cleaning takes 15 minutes. If a different speciality performs the next surgery, the cleaning takes 30 

minutes.  

4.3 MODEL PARAMETERS AND VARIABLES 

The following section will discuss the simulation model's various input variables and parameters. 

First, it will explain how the distributions used for surgery duration and length of stay are 

established. This will be followed by a description of how a ward is assigned to a patient and how 

ward availability is determined in the model. 

4.3.1 DISCRETE VS THEORETICAL DISTRIBUTIONS 

For the optimisation model, discrete random variables were established for the input variables such 

as length of stay and surgery duration. Probability distributions were created to determine the 

likelihood of a surgery lasting a certain number of time blocks or a patient staying for a specific 

duration, based on their surgery group. These distributions were derived from historical hospital 

data by calculating the frequency of different surgery durations and lengths of stay to obtain 

probabilities. One disadvantage of using discrete probability distributions is that they are not 

uniquely identified by their mean and variance; different distributions can share the same mean 

and variance (Montgomery & Runger, 2010). The discrete probability distributions provide a more 

straightforward approach for modelling input variables. 

As mentioned in section 2.5.1 theoretical distributions, such as the gamma and log-normal 

distribution, are more commonly used to describe the surgery duration, taking into account rare 

but critical extreme values. These distributions, as detailed in Table 4 in section 3.3, are frequently 

associated with estimating the time required for a task. They can generate a full spectrum of 

possible outcomes, including extreme values, presenting the data more compactly. Additionally, 

they capture the nuanced characteristics of the underlying distribution by smoothing out the data 

(Law, 2014).     

4.3.2 DURATION SURGERY 

The following sections will define a theoretical distribution for surgery duration that can be used 

as input for the simulation model. To evaluate the suitability of various empirical distributions, 

initial analysis involves creating a histogram to visualise the general shape of the distribution and a 

boxplot to identify any extreme outliers. Following this preliminary analysis, more precise fitting 

methods such as QQ plots, and the Kolmogorov-Smirnov test are employed to assess the adequacy 

of each distribution. 
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4.3.2.1 TOTAL DATASET EXPLORATION FOR SURGERY DURATION 

The dataset comprises more than 18 000 data points. Figure 4 illustrates these data points in both 

a histogram and a boxplot. Based on these it can be seen that the data is quite centred around the 

100 minutes. The boxplot does show some extreme outliers in these data points. The only 

adjustment that is made is removing negative data points since having a negative surgery duration 

is not logical.  

 

FIGURE 4: BOXPLOT AND HISTOGRAM OF THE TOTAL DATASET 

The dataset is divided into training and testing data to validate the model later. The training 

comprises three years of the dataset, 14 178 data points, and the testing covers one year, 4 402 

data points. Figure 5 present histograms and boxplots for the training data of surgery duration and 

Figure 6 present histograms and boxplots for the test data of surgery duration. The figures show 

similar shapes, differing mainly in frequency. However, the training data has some additional 

extreme cases compared to the testing data.  

 

FIGURE 5: BOXPLOT AND HISTOGRAM TRAINING DATA SURGERY DURATION 
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FIGURE 6: BOXPLOT AND HISTOGRAM TESTING DATA SURGERY DURATION 

Figure 7 presents the QQ plots for each of the six chosen distributions, providing a visual method 

to compare the theoretical quantiles of the distributions against the dataset. Table 7 offers an 

overview of the Kolmogorov-Smirnov (KS) test results assessing the goodness of fit.  

 

FIGURE 7: QQ-PLOTS FOR THE CHOSEN DISTRIBUTIONS 

TABLE 7: RESULTS OF STATISTICAL TESTS 

Distributions KS statistic KS P-value 

Gamma 0,0866 5,2618ꞏ10-87 
Log-Normal 0,0407 6,9340ꞏ10-15 

Weibull 0,0930 3,1260ꞏ10-101 
Log-Logistic 0,0316 9,1441ꞏ10-7 

Pearson type V 0,0309 3,3117ꞏ10-6 

Based on the QQ plots in Figure 7 , it would seem that the lognormal distribution might be a good 

fit for the overall data. However, considering the P-values of Table 7 it would seem none of the 

distributions are a proper fit. This could be explained by the data distribution, which is unclear from 

the QQ plots. Table 8 reveals that the majority of the data points are under 200 minutes. 

Interestingly, the final 10% of the data spans a range five times wider than the preceding 90%. 

TABLE 8: DISTRIBUTION OF THE DATA SURGERY DURATION 

RANGE IN MINUTES NR OF SURGERY DATA POINTS 

0-200 12660 
200-400 1220 
400-600 249 
600-800 38 

800-1000 9 
1000< 2 
TOTAL 14 178 
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Considering the extensive spread of the total dataset, it might be more effective to analyse the data 

by specific groupings. Group-specific differences might impact the model's behaviour, so it is 

essential to account for these differences in the input data to ensure a more accurate analysis. The 

following section will detail the assignment of distributions per grouping. 

4.3.2.2 PER GROUP ASSIGNMENT OF DISTRIBUTIONS FOR SURGERY DURATION 

This section will explore the possibility of segmenting the dataset into the predefined surgery 

groups to determine if distinct distributions can be defined separately for each group. All of the 

histograms and boxplots of these groupings are shown in Appendix D. Additionally, the second part 

of Appendix C also shows the sample size for each of the groupings. 

When considering whether a data set is significant, using a significance level of 0,05 is standard 

practice. If the p-value is above 0,05, there is evidence to expect the observed data not to differ 

too much from the distributed data (Law, 2014). Table 9 Provides an overview detailing the number 

of groups out of 50 for which the p-value of the KS-test was statistically significant at various levels 

of significance.  

TABLE 9: SIGNIFICANT NUMBER OF TEST RESULTS PER DISTRIBUTION 

Distributions 
Significant KS P-value 

(α = 0,05) 
Significant KS P-value 

(α = 0,01) 

Gamma 36 39 
Weibull 21 31 

Log-Normal 35 41 
Log-Logistic 45 47 

Pearson type V 33 37 

When looking more closely into the distribution, it can be found that only four groupings cannot fit 

in any of the distributions according KS-test with a significance level of 0,05. The KS-test has a p-

value below the significance level of 0,05 for all of the fitted distributions.  

The next step would be to see which distributions fit best based on the QQ plots for the remaining 

groupings. Figure 8 shows an example of one of these groupings, group 43; the closer the dots are 

to the red line, the better the distribution fits. So, for this group, the Weibull distribution (top 

middle graph) is chosen; here, the data points are closest to the 45-dree guideline. For the other 

groupings that were not yet assigned a distribution, these graphs and their chosen distributions are 

provided in Appendix D, additionally the P-value of the KS test is also provided for all of the assigned 

distributions.  
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FIGURE 8: EXAMPLE GROUP QQ PLOT, GROUP 43 

Table 10 provides an overview of how many groupings are chosen for each distribution, either by 

visual inspection or assignment based on the KS test. Interestingly, most groupings are assigned a 

log-logistic or a Pearson type V distribution, while the literature highlighted the Gamma or the Log-

Normal distributions as best fitting for data such as surgery duration. 

TABLE 10: NUMBER OF GROUPS PER DISTRIBUTION, SURGERY DURATION 

Distributions Number of groups 

Gamma 5 
Weibull 3 

Log-Normal 3 
Log-Logistic 24 

Pearson type V 15 

4.3.3 LENGTH OF STAY 

The following input variable for the model is the length of stay. It was considered that this variable 

might also be influenced by surgery duration. If this were the case, a multiple linear regression 

model could be a suitable analytical approach, allowing the inclusion of both group and surgery 

duration as independent variables. Multiple linear regression facilitates examining relationships 

between a dependent variable and multiple independent variables. As outlined by Montgomery & 

Runger (2010), employing this type of model involves setting hypotheses: the null hypothesis states 

there is no significant relationship between the dependent and independent variables, while the 

alternative hypothesis suggests a significant relationship exists.  

However, the correlation between surgery duration and length of stay needed to be assessed to 

determine if this approach would be appropriate. The total dataset exhibited a correlation of only 

0,4 between these variables. When examining individual groups, most showed even lower 

correlations. This weak correlation indicated that a multiple linear regression model might not be 

suitable for this data. The scatterplot in Figure 9 visually demonstrates the relationship between 

surgery duration and length of stay of the training data, visualising the weak correlation between 

these variables. Since the relationship between these variables was not considered strong, it was 

decided also to fit the distributions for the Length of Stay variable. 
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FIGURE 9: SCATTER PLOT SURGERY DURATION AND LENGTH OF STAY 

 

 

FIGURE 10: HISTOGRAM AND BOXPLOT LENGTH OF STAY TRAINING DATA (LEFT)  AND TEST DATA (RIGHT) 
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Figure 10 shows the histograms and the boxplots for the total length of stay, which immediately 

reveals many extreme outliers in the dataset. For more specific insight into the data, Appendix E 

gives an overview of the histograms and boxplots per grouping.  

To provide better insight into the total dataset, Figure 11 displays the QQ plots for the distributions 

defined in Table 4, and Table 11 provides an overview of the statistical tests. To enhance 

visualisation, outliers have been excluded from the QQ plots in Figure 11. The statistical tests in 

Table 11 indicate that none of the distributions fit the data properly, as all p-values for the KS-test 

are below the chosen significance level of 0,05. This is then confirmed by the plots of Figure 11 

where it can be seen that the data occurrences are not even close to the 45-degree line, meaning 

that the distribution does not fit the data.   

 

FIGURE 11: QQ-PLOTS FOR THE CHOSEN DISTRIBUTIONS 

TABLE 11: RESULTS OF STATISTICAL TESTS 

Distributions KS statistic KS P-value 

Gamma 0,2343 0,00 
Log-Normal 0,1836 0,00 

Weibull 0,1980 0,00 
Log-Logistic 0,1435 2,4907ꞏ10-249 

Pearson type V 0,1399 2,0686ꞏ10-236 

Table 8 shows that the data is also very centred on the lowest variables. As length of stay varies 

between 0 and 80 000, but 50% of the values are lower than 500.   

TABLE 12: DISTRIBUTION OF THE DATA LENGTH OF STAY 

RANGE IN MINUTES NR OF SURGERY DATA POINTS 

0-500 6992 
500-1000 1635 

1000-1500 527 
1500-2000 1754 
2000-3000 295 
3000-4000 797 
4000-5000 450 

5000-10000 805 
10000-15000 345 
15000-20000 91 
20000-30000 155 

30000+ 332 
TOTAL 14 178 

Because the differences in groups would, similar to the length of stay variable, impact the model 

behaviour and the total dataset does not seem to provide proper fitting, the variable is also split 

up in the surgery groups. Table 13 presents the test results for each distribution.  
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TABLE 13: OUTCOMES DISTRIBUTION TEST LENGTH OF STAY 

Distributions 
Significant KS P-
value (α = 0,05) 

Significant KS P-
value (α = 0,01) 

Gamma 3 3 
Log-Normal 7 9 

Weibull 3 5 
Log-Logistic 13 17 

Pearson type V 6 9 

When looking more closely into the distribution, it can be found that only 37 groupings cannot fit 

in any of the distributions according to the KS-test with a significance level of 0,05. When lowering 

the significance level, to 0,01, 4 more groupings are able to find a fitting distribution. Similarly, as 

done with the groupings for surgery duration, the next step is to see which distribution fit best 

based on the QQ plots for these last groups that did not score sufficiently on the KS-test. Based on 

visual inspection, each of these groupings is assigned distributions; both the QQ plots and 

parameters for the chosen distributions are provided in Appendix E. However, since so many of 

them do not fit any grouping based on the KS-test also when choosing a best fit based on visual 

inspection there are some doubts on whether the distributions can give a good representation of 

the length of stay.  

TABLE 14: NUMBER OF GROUPS PER DISTRIBUTION, LENGTH OF STAY 

Distributions Number of groups 

Gamma 7 
Weibull 9 

Log-Normal 14 
Log-Logistic 15 

Pearson type V 5 

Table 10 gives an overview of how many groupings are assigned to each distribution. Again it is 

interesting to see that the distributions highlighted by the literature as fitting for this type of data 

does not get the highest number of distributions assigned.  

4.3.4 WARD ASSIGNMENT 

The model needs strict rules to decide which bed a patient needs to be assigned. These rules were 

set up using the information available in previous research and validated by an expert from the 

hospital. The assignment of wards is divided into three stages. The total flow of the conceptual 

model is provided in Figure 3. The first stage occurs before surgery, where a patient is assigned a 

bed in either the medium care unit or the daycare ward. The second stage takes place after surgery. 

Suppose the patient was initially assigned to the medium care unit. In that case, there is a 

probability that the patient was also assigned to an intensive care unit and has to be moved after 

surgery to intensive care. The third and final stage concerns patients initially assigned to the 

daycare unit. It is possible that the patient's ward time runs long, and they may need to stay 

overnight and are subsequently moved to a medium care unit. 
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4.3.4.1 STAGE 1: BED ASSIGNMENT UPON ARRIVAL 

 

FIGURE 12: STAGE 1, ASSIGNING A BED ON ARRIVAL 

Figure 12 Illustrates the bed assignment flow for patients upon their arrival at the hospital. Patients 

from the gynaecology speciality are always placed in the SK4 or SPN 4 ward. If it is known that a 

patient will have a short stay after their surgery, they are assigned to the daycare unit and will be 

discharged the same day. If they require a longer stay, the patient is assigned to a medium care 

unit. The specific medium care unit to which a patient is assigned depends on the speciality 

associated with their surgery (for the speciality full names, see Appendix C).  
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For some medium care units, beds can be interchangeable if needed. For instance, a patient can be 

moved to an alternate unit if one unit is full. This is the case for the pairs of units on the left, 

between KTC and MCKG, and on the right, between KCZ and KCN. If no beds are available in either 

of these units, the patient will be discharged, and the surgery will be rescheduled.  

Some medium-care unit patients might have to be moved to the ICK after surgery. It needs to be 

checked if a bed is going to be available for this patient after the surgery. If not, the surgery can’t 

continue and is cancelled.  

4.3.4.2 STAGE 2: ICK ASSIGNMENT AFTER SURGERY 

 

FIGURE 13: STAGE 2, ASSIGNING AN ICK AFTER SURGERY 

Figure 13 illustrates the process of the patient post-surgery. Patients not assigned an ICK bed 

remain in their designated medium care unit until their stay is completed. For patients assigned an 

ICK bed, this assignment is determined before surgery, but the actual transfer occurs after surgery. 

There are two types of ICK: patients can be vented, ICK 2 and ICK 3, and patients cannot, ICK1 and 

ICK 4. Whether patients need to be vented after surgery is determined by the surgeon and the 

patient's status. However, this is subjective, so in the model, assumptions are made about this. 

Here, it is assumed that patients operated on by the Cardiac (CAS) or Neurology (NEU) speciality 

are moved to the vented ICKs if they need to be transferred to the ICK. All other patients are moved 

to the unvented, lower-care ICKs. The availability of these beds should have been checked before 

surgery, but if, due to any unforeseen circumstances, no bed is available, the ICK is forced to exceed 

its capacity 
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4.3.4.3 STAGE 3: MCU ASSIGNMENT AFTER SURGERY 

 

FIGURE 14: STAGE 3, ASSIGNING A MCU AFTER BEING PLACED ON DAYCARE 

Figure 14 illustrates the patient flow for those assigned to a daycare unit. Patients can leave without 

issue if they complete their stay before the daycare unit closes. However, if the patient needs to 

remain in the hospital after the daycare unit is closed, they must be moved. A boundary level of 60 

minutes is used to determine the course of action. If patients have less than 60 minutes remaining, 

they are discharged early. If more than 60 minutes are left, the patient is transferred to a medium 
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care unit. The process for assigning the medium care unit is the same as the pre-surgery assignment 

shown in Figure 12. The difference is that now, the assignment is not the final step of the flow. 

After being assigned to a medium care unit, the patient remains there until their ward time is 

completed, after which they are discharged from the hospital. Additionally, suppose the patient 

has to be moved to a medium care unit but none can handle that specific patient's requirements. 

In that case, one of the units has to exceed its capacity and take up a bed that was not initially 

designated for an elective surgery patient.  

4.3.4.4 ASSIGNING THE INTENSIVE CARE BED 

The previous section mentioned that in stage 2, there is a possibility of a patient being transferred 

to the ICK. However, the surgeon decides which patient is moved before surgery, as they request 

the ICK bed when scheduling the surgery. In collaboration with the hospital, it was determined 

which surgeries often get assigned an ICK bed after surgery. Some procedures had a probability 

greater than 95% of being assigned an ICK bed; some had an approximate 30% probability, while 

others had a 0% probability. Based on the frequency of each surgery occurring during the four years 

and the share of surgeries that are (sometimes) assigned an ICK bed in the total group frequency, 

the probability of the patient being transferred to the ICK after surgery is determined. The model 

then uses a binomial distribution with the given probability.   

4.3.5 WARD AVAILABILITY 

After a patient has been assigned a ward, it still needs to be checked to see if a ward is available. 

The availability of the ward is dependent on the ward's capacity for surgical patients. However, the 

number of beds available for these patients varies, depending on the inflow of other patients and 

the resources available. In collaboration with the hospital, Kelly Vos set up averages for each of the 

wards; however, these averages were not rounded. Using the available bed usage over time, it 

could be seen that, on average, fewer beds were actually used compared to the capacity. So in the 

simulation model, these averages will be rounded down. Table 15 gives an overview of the 

unrounded capacity. Every ward is open 24 hours a day, seven days a week, except for the daycare 

unit, which is only open on working days from 7:00 until 18:00. For some wards, the availability 

varies during the different shifts of the schedule. Additionally, the KCN unit has extra availability on 

the shift from 7:00 until 16:00 on Tuesdays and Fridays.  

TABLE 15: WARD AVAILABILITY 

Ward Time Weekday Weekend 

ICK1/ICK4 00:00-23:59 4,5 3 

iCK2/ICK3 00:00-23:59 4 4 

KCZ 

07:00 – 16:00 10 8,5 

16:00 – 23:00 9,5 8 

23:00 – 07:00 9 8 

KTC 
07:00 – 23:00 4,5 3 

23:00 – 07:00 4 3 

MCKG 
07:00 – 23:00 3,5 2,5 

23:00 – 07:00 3 2,5 

SK4/SP4 
07:00 – 16:00 4 3,3 

16:00 – 07:00 3,9 2,2 

KCN 

07:00 – 16:00 10 8,5 

16:00 – 23:00 9,5 8 

23:00 – 07:00 9 8 

KCN 

07:00 – 16:00 
8,5  

(10,5 on Tue and Fri) 
5 

16:00 – 23:00 8 4,5 

23:00 – 07:00 7,5 4,5 

Daycare 

07:00 – 10:00 8,5 

CLOSED 10:00 – 14:00 9 

14:00 – 18:00 5,5 
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4.4 MODEL ASSUMPTIONS 

Table 16 provides an overview of all the assumptions incorporated into the model. It also explains 

each assumption's rationale and the foundation for its inclusion. In instances where previous 

sections have addressed these subjects, the relevant sections are referenced within the table, or 

the last column of the table includes supporting evidence from the literature for certain 

assumptions. 

TABLE 16: MODEL ASSUMPTIONS 

ASSUMPTION EXPLANATION SUPPORT FOR 
ASSUMPTION 

Patients arrive on time. This model does not consider a patient arriving too late for their surgery.  
Patients don’t cancel surgeries. In reality the lack of availability is not the only reason for a surgery to get cancelled. 

For example patient could fail to show up, or their health is not fitting to go 
through surgery. However, in this model, the only form of cancellation considered 
is due to the lack of availability of the OT or the wards.  

 

As soon as a patient arrives, the 
surgery can start. 

Since the patient is asked to be there an hour in advance the pre-surgery procedure 
can start before a bed has been assigned. So, even though a bed might be assigned 
later, the procedure can start as soon as the bed is assigned and the OT is available.  

Validated by 
hospital 
expert. 

Patients are in the hospital for one 
surgery. 

Even though patients, in reality, might need multiple surgeries since the surgeries 
are considered electives, they are also seen as separate from one another since 
they need to be planned differently. 

 

The capacity for elective surgery 
patients is independent of that of 
other patients in the hospital. 

The resources in all specialties are specifically for patients in the hospital for 
elective surgery. In reality, the availability is influenced by the stream of other 
patients, including emergency surgery.  

(Cappanera et 
al., 2014) 
Section 4.3.5 

A surgery is cancelled if, on 
average, a surgery can’t finish on 
time anymore. 

In the system, as soon as a patient arrives, it ques for a bed on a specific ward. And 
surgery can only start as soon as the bed has become available. However, the 
maximum waiting time is determined based on the closing of the OT and the 
average length of the surgery that needs to be performed. If, on average, a surgery 
will cause overtime, the patient is sent home.  

 

The assignment of the wards is set 
using the expert-validated flow  

For the assignment of a bed, decision flows are set and validated by an expert from 
the hospital 

Section 4.3.4 

Patients have to go to the ICK after 
surgery based on the probability 

Before the patient is assigned a regular ward, the probability is used to determine if 
a patient requires an ICK bed after surgery 

Section 4.3.4.4 

The operating theatres have a 
capacity of 1 when opened  

There are ten operating theatres and MRI on the schedule. They open at 8 in the 
morning and close at 15:30 (or when they go into overtime at 16:15). Each can 
handle one patient at a time 

(Vos, 2022) 

Cleaning takes 15 minutes or 30 
minutes for different specialties 

When surgery is finished, and the same type of speciality needs to use that same 
OT, there must be 15 minutes between each surgery. When there are different 
specialties, there needs to be 30 minutes between each surgery because more 
changes need to be made.  

(Vos, 2022) 

There is a 25% occurrence of 
overtime allowed 

25% of the OTs are allowed to go into overtime with a maximum of 45 minutes.  (Vos, 2022) 

The length of stay and surgery 
duration is determined by the 
distribution set for each grouping. 

Common practice is to use distribution to set the input variables.  See section 
2.3.1 

The NICU is left out.  In the input model, no distinction is available on the patient's age, so it cannot be 
determined if a patient needs to go to the NICU. So, these are left out, and all 
patients are placed in the regular ICK if required.  

 

The year does not have any 
holidays. 

On holidays, the hospital performs no elective surgery; however, this is not 
considered.  

 

4.5 MODEL OUTPUT 

The following section gives an output example of the system. The mode output presented is not 

based on any of the schedules that will be evaluated. The schedule used to set up these plots is 

generated by the optimisation model but is not part of the evaluation of this thesis. These plots 

only serve as an example to explain what the visualisation of the model output means. This section 

outlines the different forms of model output and how each KPI is reflected.  

The first KPI is the utilisation of the wards, which measures the percentage of total capacity used. 

Figure 15 illustrates the overall ward capacity utilisation in the system across the 28-day cycle while 
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Figure 16 provides a breakdown of utilisation per ward. The utilisation is the percentage of time 

the ward is used, so if the utilisation is 1, 100% of the capacity is used. When it is higher than 1, 

there is overutilisation, and for lower than 1, underutilisation. In Figure 15 the different boxplots 

represent the different wards throughout the hospital, while in Figure 16 the x-axis represents the 

different wards in the hospital.  

This visualisation illustrates how the utilisation differs between the different wards or cycle days. 

It enables the ability to find wards with an increased utilisation compared to others or whether the 

utilisation is levelled throughout the entire cycle. 

 
FIGURE 15: EXAMPLE VISUALISATION OF TOTAL WARD UTILISATION 

 
FIGURE 16: EXAMPLE VISUALISATION WARD UTILISATION PER WARD 

The following KPI focuses on the utilisation of the OTs, measuring the percentage of available time 

occupied by surgeries. In the same manner as the wards, the utilisation of the OT is presented to 

analyse the efficiency of surgical scheduling. Figure 17 illustrates the OT capacity used across the 

28-day cycle; the x-axis here represents the day of each cycle, providing insight into the fluctuations 

of the OT utilisation of the entire hospital.   
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Figure 18 offers a breakdown of OT utilisation per individual theatre. The number on the x-axis 

represents the different OTs. The boxplot per OT enables comparison of the different schedules for 

all of the OTs.  These visualisations help identify which OTs experience more extreme utilisation 

than others and can show across schedules if there are overscheduled or under-scheduled days.  

There is no data for days 6, 7, 13, 14,20, 21, 27 and 28 as there are weekend days and no elective 

procedures are performed on weekends.   

 
FIGURE 17: EXAMPLE VISUALISATION OF TOTAL OT UTILISATION 

 
FIGURE 18: EXAMPLE VISUALISATION OF OT UTILISATION PER OT 

The following KPI with a visual output is the overtime of the OTs. Figure 19 illustrates the total 

hospital overtime. The figure on the left shows the percentage of days each OT has overtime during 

the cycle. For instance, a value of 20 means that 4 out of 20 days experience overtime. 
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The figure on the right depicts the number of overtime occurrences for different durations. The y-

axis shows the percentage of surgery days with overtime, and the x-axis shows the length of 

overtime. For example, the first bin indicates that about 0,8% of all surgeries experience a 15-

minute overtime. The red line at 45 minutes marks the acceptable threshold for the hospital, which 

allows for 45 minutes of overtime (including cleaning time) for 25% of the OTs. This visualisation 

helps assess the acceptability of overtime occurrences. 

 

FIGURE 19: TOTAL OVERTIME VISUALISATION 

Figure 20 provides a more detailed overview of the overtime as it provides the overtime per OT. 

The first and last visualisations are similar to that of the total overtime. The second figure gives the 

length of overtime for each occurrence per scheduled day. They provide an insight that if the cycle 

day experiences overtime the average overtime per cycle can be considered long or short. Because 

even if an OT experiences low occurrences of overtime, these occurrences might still be longer.  
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FIGURE 20: EXAMPLE OUTPUT OVERTIME 
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The last two KPIs that have to be defined are the number of surgeries cancelled due to the 

unavailability of the OT or the unavailability of the ward. As explained earlier, a surgery is cancelled 

after a maximum number of waiting time has passed and a bed or OT has not yet become available. 

This waiting is calculated using the average time of the surgery, cleaning time and time left in the 

day when the patient arrives. Table 17 and Table 18 give these overviews per ward and OT; the last 

column is the percentage of the times a surgery had to be cancelled because that specific ward or OT 

was unavailable and caused the cancellation. It gives an insight into which OTs or wards cause the 

most surgeries to be cancelled. The standard deviation shows whether this varies across the 

different runs.  

TABLE 17: EXAMPLE OVERVIEW SURGERIES CANCELLED DUE TO OT UNAVAILABILITY 

OT AVERAGE 
STANDARD 
DEVIATION 

PERCENTAGE 

1 0 0 0 
2 18,43 6,02 36,24 
3 40,00 6,70 44,86 
4 393,86 9,16 83,84 
5 766,43 44,93 2018,53 
6 247,43 12,07 145,67 
7 230,71 16,56 274,20 
8 24,71 4,13 17,06 
9 279,86 11,83 139,84 

10 13,43 6,21 38,53 
MRI 1,43 1,05 1,10 

TABLE 18: EXAMPLE OVERVIEW SURGERIES CANCELLED DUE TO WARD UNAVAILABILITY 

WARD AVERAGE 
STANDARD 
DEVIATION 

PERCENTAGE 

Daycare 0 0 0 
ICK1_4 0 0 0 
ICK2_3 0 0 0 
SK4SP4 42,71 17,22 296,49 

KCN 4322,14 121,78 14830,41 
KCZ 7608,29 200,37 40147,92 
KTC 540,00 18,76 352,00 

MCKG 3351,71 72,29 5226,49 

 

Lastly, Table 19 gives an overall summary of the simulation results, providing the number of 

attempted surgeries and how many were successful, cancelled or caused over time. Additionally, 

sometimes a ward is forced to exceed its capacity because surgery has already happened; this is also 

shown in Table 19. Lastly, a value for the average utilisation of all the OTs and wards in the hospital 

is presented. It gives an overview of the overall performance of the model. It aids in comparing some 

of the different KPIs as they are presented in a summarised format next to one another. 

TABLE 19: SUMMARY MODEL OUTPUT 

Run 
Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Overtime 
Occurrences 

Total 
number of 
surgeries 

Times a ward 
had to exceed 

capacity 

Average OT 
utilisation 

Average 
ward 

utilisation 

1 13725 2030 15667 2145 31434 860 0,93 0,66 
2 13096 1914 16407 2162 31434 905 0,93 0,67 
3 13655 2035 15728 2106 31434 871 0,94 0,66 
4 13974 2182 15264 2259 31434 843 0,95 0,65 
5 13603 2034 15778 2146 31434 841 0,93 0,66 
6 13278 1955 16183 2142 31434 896 0,92 0,67 
7 13425 1964 16027 2190 31434 876 0,92 0,66 
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5 SIMULATION MODEL SETUP 

The upcoming chapter details the setup of the simulation, including determining the simulation 

length and the number of replications. After which, the chapter will focus on verifying the model 

and finally validating the model. It is important to note that during these steps, the model's output 

is not based on any of the schedules that will be tested in the experimentation phase. The 

scheduled version being used is known to maximise operating theatre usage but does not 

adequately account for levelling bed occupancy. The optimisation model also created this schedule 

but was not proposed as one of the solutions. This approach was chosen to more rigorously test 

the model, exposing it to extremes in patient flows without yet taking into consideration the 

levelling of the wards. This method allows for a thorough assessment of the model's functionality. 

5.1 SIMULATION RUNS AND RUNNING LENGTH 

When running a simulation model, a decision needs to be made about how many times the model 

needs to run and for how long a period the model needs to run. The model works with a four-week 

schedule, so when deciding on the length, it is considered how many times this schedule should be 

repeated. The outcomes of several combinations of run lengths and repetitions are compared to 

determine the correct number of runs. For this, the model was first run for 1, 2, 3, 6 or 10 years 

with either 1, 3, 5, 10 or 20 repeats. The model then seemed to stabilise between 5 and 10 repeats, 

so another run was done for 6,7,8 and 9 repeats to provide additional detail. 

After inspecting this bundle of runs, the correct number of repetitions is identified when outcome 

variations stabilise (Lorscheid et al., 2011). This point where the variation in the outcomes seemed 

to stabilise was found when the model was run for seven repetitions, each spanning six years. 

Increasing the number of runs or the duration beyond this point did not result in significant changes 

in the outcomes. 

5.2 MODEL VERIFICATION 

Verification is about discovering whether the model is designed as intended and proof that the 

model is validly debugged (Law, 2014). That is what this section intends demonstrate. The previous 

sections have outlined the intent of the model and the type of decision that needs to be made. The 

next parts will discuss how this translates into the model. Each section outlines a part of the model 

and how it does what the previous sections have outlined.  

5.2.1 ASSIGNING SURGERY DURATION AND LENGTH OF STAY 

The initial step of the model involves assigning patients and their respective characteristics to each 

surgery slot. Every day, the model reviews the scheduled surgeries for each OT and uses the chosen 

distributions for each surgery type, as explained in section 4.3, to determine the surgery duration 

and length of stay. This assignment process includes setting a start time for each surgery; the 

subsequent expected arrival time for the patient is 60 minutes in advance. For the first surgery of 

the day, the start time is set to the opening of the OT at 8:00 in the morning. For surgeries later in 

the day, this depends on the previous scheduled surgeries. 
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Additionally, the model calculates when the OT will be available again by determining the expected 

ending time. It adds the average surgery duration for that specific surgery group and the necessary 

cleaning time. The cleaning time is 15 minutes for surgeries within the same speciality and 30 

minutes for surgeries from different specialities. This estimation can then be used to determine the 

scheduled start time for the next surgery. The patient's arrival time is set to 60 minutes before the 

expected start time of their surgery. This ensures that if the surgery takes less time than expected, 

the next patient will already be in the hospital, and the surgery can start earlier. However, if a 

surgery exceeds the expected duration, the next patient will have to wait longer than the 

predetermined 60 minutes, and a bed will be occupied for longer. 

All this information is utilised to initialise the generation of patients accurately. At the start of each 

day, patients are generated and assigned to wait until their actual start time arrives before 

proceeding with further actions. This detailed scheduling and assignment process ensures that each 

entity has all the necessary information to model the patient flow accurately. This process aligns 

with the expected setup for the model and, considering several assumptions is correct compared 

to realistic procedures. 

To verify that all of this is done correctly, the schedule information of the generation of the first 

two days for the MRI, first OT and second OT is shown in Table 20. The table shows the line of 

information that the entity is given. Additionally it can be seen that the generation and starting 

time is done correctly. During the second day, the MRI has multiple elements in the schedule, as 

can be seen in schedule A in Appendix B. The duration of the first scheduled MRI surgery is at 

minute 480 (which represents 8:00 when the OT opens), and the average time in an MRI is 51 

minutes, so the next surgery is planned 51 minutes later, plus a cleaning time of 15 minutes. As can 

be seen, the next start time is at 546, which is 66 minutes later. So, this is correctly assigned.  

TABLE 20: EXAMPLE OF PATIENT INFORMATION GENERATION 

Day OT Category Group Surgery 
duration 

Length 
of stay 

Start 
time 

arrival 
time 

Average 
Length of stay 

Average 
duration surgery 

1 MRI - - - - - - - - 

1 1 GYN 2 79 88 480 420 3190 81 

1 2 LOS 1 272 59 480 420 346 63 

2 MRI RON 1 58 33 480 420 269 51 

2 MRI RON 1 57 56 546 486 269 51 

2 MRI RON 1 39 38 612 552 269 51 

2 MRI RON 1 44 46 678 618 269 51 

2 MRI RON 1 53 49 744 684 269 51 

2 MRI RON 1 80 36 810 750 269 51 

2 1 GYN 2 63 60 480 420 3190 81 

2 2 KNO 1 113 29 480 420 289 36 

2 2 KNO 2 50 37 531 471 720 67 

2 2 KNO 1 425 22 613 553 289 36 

2 2 KNO 3 92 107 664 604 448 127 

5.2.2 PATIENT FLOW 

The second part of the model is the patient's flow after being generated. As mentioned in the 

previous section, the first thing the patient does is wait until the process can start, until the arrival 

time is initiated, using the ‘hold’ function built into Salabim. When that hold has passed, and the 

model is at the current time, the patient starts by requesting a bed. However, which ward the 

patient is assigned depends on the surgery speciality and availability. Figure 21 Shows an example 

of different specialities requesting a bed and the KCN unit. Every time a bed is assigned, the 

availability is lowered by one. However, for the last one, the availability is zero, so the KCZ unit is 

assigned. This is an example of the application explained in the flow of Figure 12.   
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FIGURE 21: WARD SELECTION FOR CATEGORIES BELONGING TO KCZ 

However, if neither ward is available, the patient waits for the ward that becomes available first, 

this wait is limited by the maximum waiting time, which is determined by calculating the time until 

the OT closes and the average time of the surgery plus cleaning time. This means that if it is already, 

on average, expected that the surgery will take too long, the surgery won’t start, and it is cancelled 

and reported due to ward unavailability.  

 
FIGURE 22: EXAMPLE WARD UNAVAILABILITY 

Figure 22 shows an example of a surgery that was cancelled due to the unavailability of the ward. 

It can be seen that the patient was assigned to ward MCKG; however, they could use KTC if that 

one became available earlier. The patient arrived 60 minutes before the start time of the surgery. 

So the maximum allowed waiting was the time until closing which is at 15:30 (930 minutes) minus 

the average duration of that surgery and the cleaning time of 15 minutes. It is also possible that 

the patient is assigned a bed on time but did have to wait for the bed to become available; this is 

shown in Figure 23. When a patient has to wait for a ward to become available, it is always assigned 

a backup ward, as can be seen in the figure. The patient's maximum waiting time would have been 

134 minutes, a bed seemed to have become available in 55 minutes so the patient could continue.  

  
FIGURE 23: EXAMPLE OF A PATIENT THAT HAD TO WAIT, BUT THE BED DID BECOME AVAILABLE IN TIME 

If a patient requires to go to an ICK after surgery, this is already determined ahead of time, and one 

of these beds needs to be available after the surgery finishes. Figure 24 shows an example of a 

surgery being cancelled because there is assumed to be no space on the ICK after the surgery is 

finished. So, the patient has to go to the ICK, which has no venting option. However, the next bed 

will only be available in 3 hours and 48 minutes. Even though the patient still has to wait 60 minutes 

until it surgery starts and the surgery will take 71 minutes, there still will be no bed for this patient 

after surgery, so the patient is sent home.  

 
FIGURE 24: EXAMPLE ICK BED UNAVAILABLE 

Assuming the patient gest assigned a ward before the maximum allowed waiting time has passed, 

and if necessary, an ICK is available for the patient after surgery, the patient enters the next queue 

for the OT. Again, here, a maximum waiting time is used based on the same criteria as the closing 
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time of the OT. If the OT does not become available before the maximum waiting has passed, the 

patient is sent home. In the context of the model, the patient's flow is done and is documented 

under surgery cancelled due to OT unavailability. One of the model outputs is a data frame that 

includes all the surgeries that have been cancelled due to the unavailability of an operating theatre. 

Table 21 shows a snippet of this table for a certain run. Here, it can be seen for several surgeries 

that the patient has a planned start time and arrives 60 minutes before that time. The maximum 

waiting time is then determined by calculating the time until the OT closes and subtracting the 

average and, with that expected, surgery duration. The patient waits for the OT to become 

available, but none do, so the patient leaves after the time has passed.  

TABLE 21: EXAMPLE OUTPUT SURGERIES CANCELLED DUE TO OT UNAVAILABILITY 

category group OT 
Planned 

start time 
Arrival time 

patient 
Average 

duration surgery 
Maximum 

waiting time 
Time 

patient left 

KNO 3 2 669 609 127 194 803 

ORTO 4 10 480 420 221 230 709 

PLCO 3 6 605 545 161 19 769 

KAA 3 6 654 594 159 18 771 

URO 5 5 687 627 178 125 752 

However, it is also possible that a patient does have to wait, but there is no need to cancel the 

surgery because the OT becomes available in time. Figure 25 shows an example of a patient whose 

surgery should have started at 10:05; however, the OT was unavailable then, so the surgery started 

with a 5-minute delay. The patient could have waited for 3 hours and 29 minutes; however, this 

was unnecessary.  

 
FIGURE 25: AN EXAMPLE OF A DELAYED PATIENT WHOSE SURGERY WAS NOT CANCELLED 

If the OT does become available in time, the resource is claimed, and the surgery is started. Except 

for the OTs where surgery of a different speciality was performed before, in this case, the OT is held 

for an extra 15 minutes of cleaning time before the surgery can start; the start time is then reported 

as the time after those 15 minutes. Starting the surgery means the patient ‘holds’ for the surgery 

duration pulled from the distribution.  

After the surgery duration has passed, the entity waits an additional 15 minutes for cleaning before 

the resource of OT is released. If the surgery is finished after the OT's closing time, including 

cleaning time, the surgery is reported as a surgery that went into overtime. 

After surgery, it is possible that a patient assigned to the daycare unit has to be moved to the MCU 

because the daycare unit is closing. The model uses a 60-minute boundary; if the patient has more 

than 60 minutes to go, the patient is moved to the MCU. Based on the characteristics of the surgery, 

the patient is transferred. However, if no space is available on any fitting wards, the ward is forced 

to exceed capacitation. This means the capacity is temporarily increased and, after that, decreased 

immediately only to allow the patient to claim a bed. The model then notes this as an occurrence 

of exceeding capacity. The patient remains on this ward until the time is finished. Figure 26 shows 

an example of a ward being forced to exceed capacity. The patient has over an hour left while the 

daycare is closing. However, the KCN and the backup ward both do not have the capacity. However, 

the package used can’t force a resource use above its capacity, so KCN is increased so the resource 

can be claimed but is again lowered to achieve the exceeding of the capacity.  
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FIGURE 26: PATIENT HAS TO BE MOVED, BUT THERE IS NO AVAILABILITY ONWARD 

Similarly, this is done for the patients who must be moved to ICK after surgery. It is checked before 

surgery if the assigned ICK is available; however, due to unforeseen delays, it is possible that the 

ICK is unavailable. The ICK is also forced to exceed its capacity since the patient has already had the 

surgery. 

The patient is counted as a successfully finished surgery if nothing goes wrong. This detailed 

tracking and management ensure the model can accurately simulate the hospital's operations and 

provide insights into improving efficiency and patient care quality. These stages are critical for 

validating that the model performs as expected, accurately representing the scheduling, patient 

generation, and patient flow processes within a hospital environment. Based on the information 

and examples shown in this section, it can be seen that the model achieves the flow that was set 

out during the formulation.  

5.3 MODEL VALIDATION 

The following section discusses several validation tests performed in order to validate the model. 

First, cross-validation was conducted to test the model behaviour when run with the training 

compared to the behaviour when the raw testing data was used to validate the model's input. This 

was followed by a sensitivity analysis where a range of variables are changed to extreme values to 

see if the model behaves as expected.  

5.3.1 CROSS-VALIDATION 

Cross-validation is the first type of validation performed on the model, a validation of the defined 

input distribution. In Chapter 4, different distributions were determined for the dataset. Before 

that, the dataset was split into training data and testing data. Cross-validation is about comparing 

the model's output using the defined distribution against the model's outcomes when using the 

testing data (Yates et al., 2023). This means the input for the model will be real data, combinations 

of the real surgery duration and following the ward time of the patient.  

 
FIGURE 27: AVERAGE OT(LEFT) AND WARD (RIGHT) UTILISATION DISTRIBUTION DATA 
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FIGURE 28: AVERAGE OT AND WARD UTILISATION REAL-DATA 

TABLE 22: SUMMARY MODEL OUTPUT COMPARISON OF REAL AND DISTRIBUTED DATA 

 Mean distributed data 
Standard deviation 

distributed data 
Mean  real data 

Standard deviation 
real data 

Successful Surgeries 13537 294,02 15538 350,29 
Cancelled Surgeries (OT Unavailability) 2016 86,86 36 7,23 
Cancelled Surgeries (Ward Unavailability) 15865 375,92 15845 350,24 
Overtime Occurrences 2164 48,71 648 17,78 
Total number of surgeries 31434 0,00 31434 0,00 
Times a ward had to exceed capacity 870 24,52 2148 21,42 
Average OT utilisation 0,93 0,0082 0,35 0,0033 
Average ward utilisation 0,66 0,0053 0,65 0,0057 

Table 22 presents an overview of all summarised variables from the model. The comparison reveals 

critical discrepancies between the results obtained using the distributed data and those from the 

testing data. Firstly Table 22 shows that the number of overtime occurrences and cancelled 

surgeries are considerably higher when using the distribution data, while the number of successful 

surgeries is considerably lower. Interestingly, the times the ward had to exceed its capacity were 

lower when using the distributed data.  

Additionally, the plots in Figure 27 and Figure 28 illustrate that for the real data, the utilisation rates 

of the OTs seem to lower so much that the scale of the graph had to be changed. Table 22 shows 

that while using the distributed data, the OT utilisation is over two times as high. This overall trend 

suggests that the real data contains shorter surgery durations compared to those produced by the 

fitted distributions. A lower value for this parameter would decrease OT utilisation. It would also 

cause fewer surgeries to be cancelled due to OT unavailability. Using less extreme values for these 

parameters would also reduce the overtime occurrences. Interestingly, is the increase in the 

number of times a ward had to exceed its capacity, the wards are forced into exceeding capacity 

more when the surgery duration is shorter. However, this can be caused by an overall increase in 

the number of surgeries performed.  

For the length of stay variable, it seems that they are quite similar. The ward utilisation is almost 

the same and the number of surgeries cancelled due to ward unavailability is as well. Both runs 

would suggest no full utilisation of the wards but do have a high cancellation rate due to ward 

unavailability. However, when considering the utilisation per ward, it can be seen that the average 

is brought down by the ICKs and the Daycare unit who experience relatively low utilisation.  

So, there seems to be an overestimation in the parameters for the distributions for surgery 

duration, showing more extremes than the underlying data does. Upon re-examining the 

differences between the plots of the tested and training data (comparing Figure 5 and Figure 6), it 
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could be said that more extreme data points are included in the training data compared to the 

testing data for surgery duration. This could result in longer surgery durations in the distributed 

data. For the purpose of this model this does not necessarily propose a problem since the objective 

is to compare different schedules all using the same inputs. However, it is worth noting that the 

surgery durations might be slightly overestimated. 

5.3.2 VALIDATION THROUGH SENSITIVITY ANALYSIS 

The following section shares the results of a validation through sensitivity analysis. The goal is to 

drastically change the input variables and asses the model's response. Each section first explains 

which variable will be changed and the hypothesised behaviour. Subsequently, the relevant 

outputs are displayed and determined whether the observed changes align with the expectations.  

5.3.2.1 SENSITIVITY ANALYSIS CAPACITY  

During the sensitivity analysis for the ward capacity, the capacity for each of the wards is adjusted 

to 10%, 50%, 200% and 1000% of the original capacity. This adjustment involves multiplying the 

original capacity by the chosen factor and rounding the result to an integer. Lowering the capacity 

to 10% would cause some capacities to be reduced to zero.  

It is to be expected that when the ward capacity decreases, the number of surgeries cancelled due 

to the lack of capacity will increase. Additionally, the utilisation of each ward is expected to 

increase, potentially reaching or exceeding full capacity, as ICKs or MCUs might be pushed towards 

exceeding their capacity. The number of surgeries cancelled due to OT unavailability will decrease 

as fewer surgeries will progress to the stage of waiting for OT due to prior patient discharge caused 

by bed unavailability.  Both are directly related to a decrease in the expected overtime.  

On the other hand, when the capacity is increased significantly, fewer surgeries are cancelled due 

to capacity constraints, and the utilisation would decrease. However, this will increase the number 

of surgeries cancelled due to OT unavailability since more surgeries will secure a bed and request 

the OT to be available.  

TABLE 23: SUMMARY TABLE SENSITIVITY ANALYSIS WARD CAPACITY 

Capacity 
Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Overtime 
Occurrences 

Total 
number of 
surgeries 

Times a ward 
had to exceed 

capacity 

OT 
utilisation 

Ward 
utilisation 

10% 1241 0 30192 269 31434 0 0,92 2,34 

50% 7664 634 23128 1338 31434 931 0,82 0,77 

100% 13537 2016 15865 2164 31434 870 0,93 0,66 

200% 23461 6560 1388 3657 31434 237 1,18 0,49 

1000% 24195 7213 0 3683 31434 0 1,19 0,10 

Table 23 shows that at 10% capacity, all cancelled surgeries were due to ward unavailability. This 

extreme limitation also led to a minimal number of successful surgeries and a low number of 

overtime occurrences. However, the latter is most likely caused by the increased number of 

cancelled surgeries. The behaviour for the run for 50% of the capacity is similar; slightly fewer 

surgeries are cancelled due to ward unavailability, leading to a few surgeries being cancelled due 

to OT unavailability and increasing overtime occurrence.  

Doubling the capacity to 200% further improved the number of successful surgeries and 

drastically reduced the cancellations due to ward unavailability. The increase in the number of 

successful surgeries, when increasing to 1000%, is even higher. No surgeries are cancelled due to 

ward unavailability. However, with fewer patients being sent home due to the lack of bed 

availability, more are sent home due to OT unavailability. However, interestingly, the increase in 
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cancellations due to OT unavailability is not as large as the decrease in cancellations due to ward 

unavailability, which might suggest ward capacity be a bigger bottleneck than surgery duration.  

Table 23 also confirms that with the increase in capacity, a decrease in utilisation of the ward can 

also be noted. Additionally, 50% capacity shows lower OT utilisation, and with the increase in 

capacity, this utilisation seems to grow along. With over utilisation rates being reached at a 100% 

capacity.  

The interesting behaviour is the increase in the number of times a ward is exceeding its capacity 

when going from 10% to 50%. While the capacity increases, so does this number, while we would 

expect more beds to be available, having less need to exceed capacity. However, this is most 

likely caused due to more surgeries being performed, increasing the number of occurrences that 

patients have to be moved after surgery. Since the capacity is already low and probably near full 

utilisation, the patients who must be moved will almost always cause a ward to exceed its 

capacity.  

The sensitivity analysis reveals that increasing ward capacity significantly reduces cancellations 

due to ward unavailability and increases the number of successful surgeries. However, it also 

leads to a rise in cancellations due to OT unavailability and increases overtime occurrences. 

Balancing ward capacity with OT availability is crucial for optimising overall hospital performance 

and minimising cancellations and overtime. 

5.3.2.2 SENSITIVITY ANALYSIS LENGTH OF STAY 

For the sensitivity analysis of the variable length of stay, the total time a patient spends in the 

hospital surrounding the surgery is adjusted. First, the length of stay is lowered to 10% and 50% of 

the time drawn from the distribution; second, this time is increased to 200% and 1000% of the time 

drawn from the distribution. When lowering to 10% and 50%, the patient's surgery duration might 

be longer than the length of stay. However, then the patient would be released straight away after 

surgery.   

When lowering the length of stay, there is an increased turnover of the number of beds, decreasing 

the utilisation rate of the wards as patients will occupy the bed for shorter durations. This likely 

reduced the number of surgeries cancelled due to the lack of bed availability. However, similarly to 

the increased availability, the number of patients requesting an OT will increase, increasing the 

number of surgeries cancelled due to OT unavailability and OT utilisation.  

Conversely, when the length of stay is greatly increased, fewer surgeries can be performed since 

an increased number of patients will already have been sent home due to a lack of bed availability. 

Ward utilisation rates will rise, potentially reaching or exceeding capacity limits. Additionally, 

similarly to the increase of capacity, fewer patients will reach the stage of waiting for the OT due 

to the extended occupancy of a smaller number of patients, reducing OT utilisation and a number 

of surgeries cancelled due to OT unavailability. 

TABLE 24: SUMMARY TABLE SENSITIVITY ANALYSIS LENGTH OF STAY 

Capacity 
Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Overtime 
Occurrences 

Total 
number of 
surgeries 

Times a ward 
had to exceed 

capacity 

OT 
utilisation 

Ward 
utilisation 

10% 24147 7207 80 3675 31434 0 1,19 0,18 

50% 19667 4171 7588 3252 31434 569 1,10 0,50 

100% 13537 2016 15865 2164 31434 870 0,93 0,66 

200% 9168 1080 21167 1535 31434 482 0,85 0,77 

1000% 4484 557 26362 968 31434 15 0,93 0,93 
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Table 24 shows that reducing the length of stay to 10% resulted in a significant increase in 

successful surgeries and a relatively low number of cancellations due to ward unavailability. 

However, combined at the same time with a substantial number of cancellations due to OT 

unavailability and increased occurrences of overtime. When increasing to 50%, these went down 

again, but with an incomparable increase in surgeries cancelled due to ward unavailability.  

Doubling the length of stay to 200% resulted in an expected further decrease in successful 

surgeries, which was even worse at 1000%. More surgeries are cancelled due to ward availability 

and fewer due to OT; since more surgeries are already cancelled, there are fewer overtime 

occurrences. Interestingly, the need for exceeding capacity decreases as well. This is explained by 

the occurrence of over-occupation, which only happens when a patient needs to be moved after 

surgery; since more surgeries are cancelled, this happens less frequently. As the length of stay 

increased, the OT utilisation decreased as the ward utilisation increased. Overall, the model 

behaves as expected when decreasing and increasing the length of stay.  

5.3.2.3 SENSITIVITY ANALYSIS SURGERY DURATIONS 

During the sensitivity analysis for the variable surgery duration, the time drawn from the 

distribution is first lowered to 10% and 50% and later increased to 200% and 1000%. However, the 

averages and the values the distributions are based on are unchanged; this would entail that the 

expected surgery duration remains the same.  

When the surgery duration is lowered, there will be an increased turnover of the number of 

surgeries, and the utilisation of the OTs will be reduced along with the overtime. Additionally, the 

OT will become available faster since surgeries take up less time and fewer surgeries will be 

cancelled due to OT unavailability. However, based on the previous analysis, the biggest reason for 

cancelling surgeries was the availability of wards, so the increase in the number of successful 

surgeries will most likely be limited.  

Increasing the surgery duration would mean surgeries take longer than expected, more surgeries 

will be cancelled due to delays caused earlier in the day, and surgeries that are performed will cause 

increased overtime. The increased surgery durations and overtime will also have an increasing 

effect on OT utilisation. Ward utilisation will decrease slightly since fewer patients will be operated 

on, so they will not require a bed after surgery. However, during the waiting time before surgeries, 

patients will also occupy a bed and only be sent home when it is no longer expected that the 

surgeries can finish in time, which means it is still possible they take up a bed for the larger part of 

the day, increasing the ward utilisation.  

TABLE 25: SUMMARY TABLE SENSITIVITY ANALYSIS SURGERY DURATION 

Capacity 
Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Overtime 
Occurrences 

Total 
number of 
surgeries 

Times a ward 
had to exceed 

capacity 

OT 
utilisation 

Ward 
utilisation 

10% 14413 7 16998 35 31434 1781 0,11 0,68 

50% 14005 1146 16267 1803 31434 1412 0,49 0,67 

100% 13537 2016 15865 2164 31434 870 0,93 0,66 

200% 12495 3550 15374 2832 31434 382 1,74 0,65 

1000% 7213 13067 11138 3844 31434 4 6,33 0,61 

Table 25 shows that reducing the surgery duration to 50% slightly increases the number of 

successful surgeries, with another slight increase when reducing to 10%. It is caused by the 

decrease in the total number of surgeries cancelled due to OT unavailability. However, the lack of 

ward availability seems to be the biggest bottleneck. Table 25 shows a decreasing OT utilisation for 

the decreasing surgery duration.  
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Doubling the surgery duration to 200% resulted in a decrease in successful surgeries and an 

increase in cancellations due to OT unavailability. Cancellations from ward unavailability slightly 

decreased. When the surgery duration was increased to 1000%, the number of successful surgeries 

decreased fast, along with fewer surgeries cancelled due to ward unavailability. Most likely because 

more surgeries are being cancelled due to OT unavailability, the patients are not staying after the 

surgery. However, the average ward utilisation remains the same. Table 25 shows extreme OT 

utilisation when the surgery durations increase along with spikes in overtime. 

So overall, the system is more vulnerable to an increase in surgery duration than a decrease. 

Increased surgery durations can cause additional bottlenecks, causing extra KPIs to worsen. So, the 

model's tendency to overestimate surgery duration, according to section 0, does not cause 

significant problems since a decrease would not significantly change the system. Overall the model 

does behave as expected with the changes in surgery duration. 

5.3.2.4 SENSITIVITY ANALYSIS ICK ASSIGNMENT 

The percentage of patients required to go to ICK was determined in collaboration with the hospital 

as an estimation per surgery group for how many of the surgeries it would be likely that a request 

would be made for the patient to be moved to ICK afterwards. In total, this averaged about 7% of all 

surgeries. An example in literature estimated this number to be a lot smaller (Patel et al., 2018), so 

another variable to be checked in the sensitivity analysis to see the system impact and to consider is 

the percentage of patients sent to the ICK. However, the probability is defined per surgery group, so 

it cannot be higher than 100%, and when multiplying this factor, surgeries with zero probability will 

remain zero. This means the factor of multiplying is not the same as the output.  

Since the ICKs are not causing any surgeries to be cancelled in the base run, it is assumed that the 

system will not be very vulnerable to a decrease in the percentage of patients sent to the ICK. A 

slight increase in the number of surgeries cancelled due to ward unavailability is expected due to 

more patients staying on the already full MCUs. The impact on the other KPIs is expected to be 

relatively minor.  

When the percentage of patients sent to the ICK increases, the number of ward occupations in the 

ICKs is also expected to increase. Some surgeries might be cancelled due to, in advance, already 

known unavailability of the ICK. However, this will also cause a decrease in the number of surgeries 

cancelled due to ward unavailability since the capacity for the ICK will be used more. It is not likely 

that there will be a significant impact on the OT utilisation or overtime since patients are only moved 

to the ICK after surgery, and patients cancelled due to ICK unavailability will still be filled up by 

patients that would have otherwise been sent home due to lack in MCU availably.  

TABLE 26: SUMMARY TABLE SENSITIVITY ANALYSIS ICK 

Capacity 
Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Overtime 
Occurrences 

Total 
number of 
surgeries 

Times a ward 
had to exceed 

capacity 

OT 
utilisation 

Ward 
utilisation 

0,1 0,66% 13502 2006 15910 2155 31434 870 0,93 

0,5 3,29% 13492 2002 15923 2152 31434 871 0,93 

1 6,58% 13537 2016 15865 2164 31434 870 0,93 

2 11,32% 13495 2003 15920 2155 31434 871 0,93 

10 21,02% 13489 2002 15927 2153 31434 874 0,93 
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Table 26  presents the results of the sensitivity analysis for the ICK probability. As expected, no 

changes are found in the average utilisation. Additionally, no fundamental changes are seen in any 

of the other runs as the percentage of patients being sent to the ICK increases. This indicates that 

the capacity of the ICK might be overestimated since, in reality, it is known to cause surgery 

cancellation.   

5.4 CONCLUSION MODEL SETUP 

Based on the validation and verification of this chapter, the model performs as intended and 

behaves as expected, deeming it valid for its purpose. Despite some vulnerabilities identified in this 

chapter, the simulation model is capable of evaluating and comparing various input schedules. 

However, when considering the results in the experimental phase, it is essential to acknowledge 

several findings from this chapter. These include an overestimation in surgery duration when using 

the distributions compared to the empirical data. This means that surgeries often take longer in 

the model than in real life, which could cause an increase in overtime or surgeries being cancelled 

due to OT availability. However, the latter is not seen as a significant factor since the biggest 

bottleneck in the system, the number of surgeries cancelled due to ward unavailability, seems to 

cause the number of surgeries cancelled due to OT unavailable to remain low.  

The estimation for the length of stay when using the distributions seemed similar to the real data, 

which is interesting since fewer groupings appeared to find a fitting distribution, as discussed in 

section 4.3. 

The model behaviour of sensitivity analysis would suggest that ward capacity is a more significant 

bottleneck than the capacity of the OT. However, in this conclusion, it should be considered that 

the schedule used in this chapter prioritises OT utilisation and does not consider the levelling of the 

wards. Additionally, the increased vulnerability to ward capacity implies that the incorrect 

estimation of the length of stay is more problematic than the overestimation of surgery duration, 

according to the validation results. Lastly, the model seems not to be influenced by changes in 

probability for the ICK, suggesting there might be a slight overestimation in the capacity.  

An exploration of the model concerning the allowed overtime was also conducted. Various analyses 

revealed that overtime did not surpass the acceptable limit when the other restrictions were 

enforced. Although instances of excessively long overtime occurred the frequency of overtime is 

low. Even with the cutoff adjustment to 16:15, the 25% threshold for overtime occurrences was 

not exceeded. Consequently, the general guideline for determining whether to proceed with 

surgery was adjusted to a closing time of 16:15 instead of 15:30. However, any surgery extending 

beyond 15:30 is still considered overtime.  
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6 EXPERIMENTATION AND SCENARIOS 

The goal of this chapter is to explore the different schedules as explained in 0. This outlined four 

different schedules that already consider the model's ward capacity and processing capabilities, 

the models are named A, B, C and D. The first two schedules, A and B, give equal priority to 

improving OT utilisation and ward levelling. In contrast, schedules C and D give higher priority to 

the levelling of the wards. The second characteristic is the processing ability of the model. In A and 

C, the availability of the wards is checked every hour, and in B and D, every 15 minutes. The 

experiment will aim to explore these different schedules under different scenarios. Running the 

simulation for each schedule and for each of the scenarios. As defined in 5.1 the model runs for six 

years, each time running seven times. So, when considering the summary table, these are the 

number of surgeries over six years. The overtime is considered to be acceptable for two days a 

week for a maximum of 45 minutes, which would mean overtime is acceptable for 624 days across 

the 11 OTs.  

The first step in this chapter is to show the model results under regular circumstances in the base 

run. The base run means the run without changing anything else in the system. All variables are set 

the way they are explained in Chapter 4. After this, the schedules will be tested under two different 

types of uncertainty: the capacity of the wards and the Length of Stay. Which will be further 

elaborated on in the following section.   

Section 4.5 explained how all the model output was set up; this similar way of output setup is used 

in this chapter. However, since for each type of scenario, the model is run for each schedule, a 

summarised overview is presented here; the other results can be viewed in Appendix F.  

The values are put into percentages for the scenario output to enable a quicker comparison. The 

number of surgeries cancelled and successful are set to percentages of the total number of 

attempted surgeries. The number of overtime occurrences is a percentage of the total number of 

surgery days in the system.  

6.1 BASE RUN 

This section discusses the base run for the entire system. Meaning all models are run with the 

settings discussed in the previous chapters across seven repeats for six years. This section discusses 

the results, the full detailed output including the full summary table, the OT utilisation across the 

28-day cycle, the ward utilisation across the 28-day cycle and the overtime visualised per OT can 

be found in Appendix F.  
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FIGURE 29: OT UTILISATION BASE RUN 

First Figure 29 show the OT utilisation for the base run, comparing the four different types of 

schedules. Here it can be seen that some OTs experience much higher utilisation rates than others. 

For OT 9, all schedules increase to over 200%, while OT 1 and MRI come closer to 0. However, there 

seems to be little to no difference between schedules A and B, who equally prioritise the levelling 

of the wards and increase the OT utilisation, and C and D, who prioritise the levelling of the wards.   



58 
 

 
FIGURE 30: WARD UTILISATION BASE RUN 

However according to Figure 30 the ward utilisation is stable throughout all the models and does 

not exceed 1.  Slight differences can be found for the schedules that prioritise ward levelling, 

models C and D, as they experience slightly lower utilisation, except for the daycare unit, which 

experiences an increased utilisation throughout some of the runs.   

In Table 27 the number cancelled due to ward unavailability is significantly lower in the schedules 

that level ward occupancy, C and D. As this number lowers, the number of surgeries cancelled due 

to OT availability and overtime occurrences increases. However, the number of scheduled surgeries 

has also dropped. Because there is a difference between the number of scheduled surgeries across 

the different models, the results will be compared using percentages. For Successful surgeries and 

cancelled surgeries, this will be a share of the total number of planned surgeries. For overtime 

occurrences, this will be a percentage of the total number of surgery days. In the case of this model 

defined simulation time, this is 20 surgery days per schedule repeated across six years for 11 OTs, 

resulting in a share out of 17 160. Good to note is that none of the schedules even come close to 

the acceptable limits for overtime.  

Another interesting fact when comparing the schedules is that the models prioritising bed levelling, 

C and D, have a higher share of successful surgeries. However, they do not have a higher OT 

utilisation. If more surgeries are being performed, but that does not cause an increase in average 

OT utilisation, it could mean that shorter surgeries can continue while longer surgeries are 

cancelled.   
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Also, even though over 45% of all surgeries are cancelled across all models, OTs are all fully utilised. 

For this result, it has to be considered that the model had a slight overestimation of surgery 

duration, which could lead to this extreme utilisation. However, it might also be the case that all 

schedules are already planning too many surgeries to begin with because the OTs and wards are 

already quite fully utilised.     

TABLE 27: SUMMARIZATION BASE RUN 

Model 
version 

Successful 
Surgeries 

Cancelled 
Surgeries; OT 
Unavailability 

Cancelled 
Surgeries; ward 
Unavailability 

Overtime 
Occurrences 

Surgery 
total 

Times a ward 
had to exceed 

capacity 

Average OT 
utilisation 

Average ward 
utilisation 

A 13976 44% 2573 8% 14949 47% 2421 14% 31512 755 0,99 0,65 
B 14387 46% 2489 8% 14467 46% 2481 14% 31356 770 1,01 0,64 
C 15229 52% 3111 11% 10741 37% 2687 16% 29094 781 0,97 0,61 
D 15693 54% 2718 9% 10748 37% 2611 15% 29172 973 1,01 0,62 

 

 

FIGURE 31: OVERTIME VISUALISATION MODEL A 

 
FIGURE 32: OVERTIME VISUALISATION MODEL B 
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FIGURE 33: OVERTIME VISUALISATION MODEL C 

 
FIGURE 34: OVERTIME VISUALISATION MODEL D 

Table 27 already concluded that the overtime levels were not problematic when looking at the 

count of occurrences for all schedules. It also showed that the overtime increased for the schedules 

that prioritised levelling of the wards, models C and D. Figure 31, Figure 32, Figure 33, and Figure 

34 give a more detailed insight into the occurrences of overtime. The figures on the left show the 

percentage of days that experience overtime across a 28-day cycle (containing 20 surgery days) for 

each OT. It can be seen that across three of the four schedules, OT 5 and OT 7 show unacceptable 

levels of overtime, while in schedule A, only OT 5 shows extreme levels. In all other OTs, the 

overtime count is not worrying.  

The figures on the right show the percentage of days that experience a certain length of overtime. 

Every bin represents 15 minutes of overtime. Considering this, it can be seen that even though the 

counts of overtime might be acceptable the length of overtime is not. The red line represents the 

45-minute limit. Across all schedules, about 3% of the 20 surgery days in a cycle experience an 

acceptable length of overtime. However since the overtime is between 14% and 16% across the 

different schedules, the other 11-13% of surgery days experience unacceptable levels of overtime. 

However, the number of unacceptable overtime occurrences does not vary much across the 

different schedules. Appendix F includes an overview of the overtime across the cycle per OT. 
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TABLE 28: SURGERY CANCELATION DUE TO OT UNAVAILABILITY 

OT A B C D 

1 0,0% 0,1% 0,1% 0,1% 
2 0,6% 0,9% 0,7% 6,4% 
3 0,6% 2,0% 2,8% 4,2% 
4 14,9% 16,3% 20,6% 16,3% 
5 38,9% 38,0% 32,9% 34,5% 
6 12,9% 9,7% 8,6% 9,7% 
7 11,2% 12,2% 17,1% 9,3% 
8 2,0% 1,5% 0,5% 1,2% 
9 16,1% 18,0% 13,0% 15,1% 

10 1,4% 1,2% 3,6% 3,2% 
MRI 0,1% 0,1% 0,1% 0,1% 

Table 28 gives an overview of which OTs are the main cause of the cancellation. For the OTs, it can 

be seen that especially OT 5 is causing problems. Figure 29 underlines that this is an OT with high 

utilisation value, so it is to be expected that this would take up a fair share of the number of 

cancellations. However, across all schedules, the highest utilisation can be found across OT 9, and 

this one is not even the main cause of the cancellations. This might suggest that this OT might 

especially be vulnerable to surgery duration overestimation.  When also considering the schedule 

itself, found in Appendix B, it can be seen that OT 9 does not even have surgery scheduled every 

day. This OT is always used for paediatric cardiac surgery; it can be seen that especially the third 

surgery group of this department seems to have a high value for the scale parameter of the 

distribution, indicating extreme values for surgery duration in this category. This means the average 

is most likely an underestimation when considering whether the surgery would be cancelled, 

increasing the overtime occurrences. Overall, the share in cancellations does not differ a lot across 

the different schedules. As the OT becomes a bigger bottleneck, the share for OT 5 and 9 decreases 

while many others increase (not all). It is showing that the pressure for the different OTs level out. 

TABLE 29: SURGERY CANCELATION DUE TO WARD UNAVAILABILITY 
 A B C D 

Daycare 0% 0,0% 0,0% 0,0% 
ICK 1_4 0,0% 0,0% 0,0% 0,0% 
ICK 2_3 0,0% 0,0% 0,0% 0,0% 

SK4 / SP4 0,4% 0,4% 0,1% 0,2% 
KCN 27,3% 28,5% 26,0% 27,4% 
KCZ 46,7% 46,0% 41,9% 41,2% 
KTC 3,3% 3,0% 4,0% 3,0% 

MCKG 22,3% 22,1% 28,0% 28,1% 

Table 29 presents an overview of which wards are the leading cause of cancellation. Here, it can be 

seen that the Daycare unit and ICKs never cause the surgeries to be cancelled. Which is aligned 

with the visualisation in Figure 30 as these show low utilisation rates for these wards. SK4 / SP4 

have slightly higher utilisation rates but are still not the cause of cancellation; they also, for most 

schedules, do not come close to 100% utilisation. The KCN and KCZ seem to cause the biggest 

problems. The contribution of the KCZ is also higher in the schedules not prioritizing ward levelling, 

models A and B. At the same time, for MCKG, it is a little higher for those that are prioritizing 

levelling the wards, models C and D. It would seem that when prioritising levelling the bed 

occupancy, the pressure is spread out a little more across the wards; however, some are still under 

more pressure than others.   



62 
 

A detailed examination of the base run highlights significant system pressures, particularly 

considering the high cancellation rates across various OTs and wards. This suggests that the new 

scheduling strategy remains insufficient, with disparities in OT utilisation. Some of the OTS are 

being overutilised, while others are underutilised. Additionally, while overtime frequency is 

acceptable, the excessive duration of these overtime occurrences across all schedules suggests 

room for improvement (see Appendix F for more detail on overtime). 

While the schedules that prioritise the levelling of ward occupancy, C and D, at first glance, seem 

to execute more successful surgeries, the effectiveness is questioned due to the lack of increase in 

OT utilisation or changes in pressure across the different OTs, which could mean the system 

preferers shorter surgeries over longer ones.  

When considering increased capacity, it can also be seen that some wards are more pressured by 

capacity constraints than others. This is improved when prioritising levelling the wards, but still, 

great differences can be seen across the different wards. So, overall, slight changes can be seen 

across the different schedules; these results would suggest it is insufficient.  

In conclusion, while slight improvements are observed with different scheduling strategies, the 

simulation model would suggest the system is still insufficient, and the differences across the 

different prioritisation levels are not very prominent.  

6.2 SCENARIO’S 

To test the robustness of the different models and their behaviour under uncertainty, the scenario 

analysis will vary two variables: Length of stay and capacity of the wards. These two variables are 

selected because the validation showed that the system is mainly impacted by changes in these 

variables. 

First, let's focus on the choice of the capacity of the wards. As explained in section 4.3.5, the 

capacity used in the model is based on historic use and availability. But the actual capacity depends 

on even more factors, including the availability of the resources (beds, nurses, machinery) and the 

inflow of patients from other specialties. For example, if a major accident happens, the number of 

ICK beds available for elective patients will decrease since the emergent patient inflow will 

increase. Or something even worse that would also not allow the patients to be able to be moved 

to other hospitals, a global pandemic. The lack of ICK beds was a common topic during the 

pandemic. However regular beds, MCU beds, were also very much limited not only by physical 

resources but also by the shortage of qualified workers (Federatie Medisch Specialisten & V&VN, 

2021). Even though the virus did not significantly impact children, the resources dedicated to these 

specialities were also limited because they had to be dedicated to adult patients (NOS, 2020).  The 

Dutch government determined that regular care had to be at least 80% of what it had been before 

the outbreak of the pandemic (Ministerie van VWS, 2023). Additionally, the number of non-

emergent patients lowered in 2020, with respect to 2019, by about 19% (CBS, 2023). So, for the 

insecurity of the capacity of the wards, the model will be tested under a lowered capacity of 20%.  

During the sensitivity analysis, it was found that the ward capacity was one of the more limiting 

factors in the number of successful surgeries. In section 4.3.5 it was explained that the ward 

capacity was rounded down because past data suggested that the actual number of elective 

patients on the wards was often lower. And in Chapter 1 it was noted that the resources, specifically 

healthcare employees, required up to a 10% increase in the upcoming ten years. So, for the 

uncertainty increase of capacity, it will be seen if schedules start performing differently when the 
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capacity is increased by 10% and the ward capacity is rounded up instead of down. This last step is 

also required because otherwise, for most wards, the slight increase of 10% would not make a 

difference because they would be rounded back down again.  

The validation found that the model was specifically vulnerable to the length of stay variable. Cross-

validation revealed that while the distributions for length of stay do not differ much from the real 

data in the testing data, the average LOS in the testing data was consistently 10% lower than in the 

training data. This shows the potential for uncertainty in the model, which needs to be considered 

during the scenario analysis, especially since the model seems sensitive to the length of stay. 

Therefore, for the scenario analysis, the length of stay will be systematically increased and 

decreased by 10%. 

6.3 RESULTS SCENARIOS 

The combination of the variation in the two variables creates four different scenarios of 

uncertainty. Table 30 gives an overview of each of the scenarios and what their exact changes are. 

The following sections present the results for the schedule performance under each of these 

scenarios. Additional information on the model output can be found in Appendix F. 

TABLE 30: SCENARIO OVERVIEW 

Scenario Length of stay Ward capacity 

1 110% 80% 
2 90% 80% 
3 110% 110% 
4 90% 110% 

6.3.1 SCENARIO 1: ENHANCED PATIENT AND STAFF SATISFACTION 

The first scenario is about the lowering of the capacity and the increase in the length of stay. So 

simultaneously, as patients stay longer, the wards also have lower availability. This ‘Enhanced 

patient and staff satisfaction’ scenario is about balancing the extreme challenges in the healthcare 

system. Patients require more care, but the staff needs breathing room to stay afloat. 
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FIGURE 35: OT UTILISATION SCENARIO 1 

 
FIGURE 36: WARD UTILISATION SCENARIO 1 
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Figure 35 show minor changes in the OT utilisation. As in schedules A and B, a higher number of 

OTs experience over-utilisation compared to C and D. Overall, it can be seen that all schedules still 

experience big differences in utilisation across the OTs. Table 31 suggest a slightly higher utilisation 

for the schedules checking availability every hour (B and D)  instead of every 15 minutes and again 

somewhat higher for those levelling bed occupancy (C and D). However, the differences in OT total 

utilisation are quite small. Overall, the overall utilisation has decreased, as more surgeries are 

cancelled due to ward unavailability caused by the constraints on the capacity.  

Figure 36 illustrates that models that do not prioritise ward occupancy levelling experience, A and 

B, overutilisation in the SK4/SP4 ward. Similar to the base case, the daycare unit experiences slightly 

higher utilisation in model D. However, other wards maintain relatively stable utilisation rates. 

Interestingly Table 31 shows that the ward utilisation experiences an increase in the schedules not 

levelling for bed occupancy, models A and B. Meaning that these models are slightly less resilient 

to the extra pressure on the capacity. Overall the ward utilisation has increased compared to be 

base run caused by less capacity and an increased number of times a ward had to exceed its 

capacity.  

Similar to the base run, the number of cancelled surgeries due to ward unavailability is lower in the 

schedules levelling the wards. However, in this case, cancellations due to OT unavailability see 

barely see any increase. Overall, the number of successful surgeries is higher when there is a focus 

on ward levelling. Although the values differ slightly due to longer patient stays and reduced 

capacity, the general behaviour remains the same. In conclusion, when comparing the schedules, 

none appear exceptionally vulnerable to the uncertainties of this scenario as the behaviour stays 

the same. However the values do worsen caused by the extra pressure on the system.  

TABLE 31: SUMMARY TABLE SCENARIO 1 

Model 
version 

Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Total 
number of 
surgeries 

Days 
with 

overtime 

Times a ward 
had to exceed 

capacity 

Average 
OT 

utilisation 

Average 
ward 

utilisation 

A 34% 5% 61% 31512 11% 817 0,92 0,71 
B 35% 5% 60% 31356 12% 829 0,94 0,71 
C 41% 6% 53% 29094 13% 926 0,93 0,68 
D 42% 5% 53% 29172 12% 1054 0,95 0,68 

6.3.2 SCENARIO 2: SOFTENING THE DAMAGE 

The second scenario is about the circumstances where the capacity is lowered, and the length of 

stay of the patient is also lower. So even though there is a lower capacity this should be slightly 

compensated by patient staying shorter. This "softening the damage" scenario explores the 

uncertainty of having lower-than-estimated capacity coupled with overestimated lengths of stay.  
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FIGURE 37: OT UTILISATION SCENARIO 2 

The primary observation based on Figure 37 is that the differences across the OTs are still quite 

large in this scenario. In all cases, three or four OTs experience overutilisation while the other 7 or 

8 experience underutilisation. According to Table 32 overall, this scenario decreased the average 

utilisation of the OTs, with the schedules checking for the availability every 15 minutes, B and D, 

experiencing higher utilisation than those checking every hour.  
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FIGURE 38: WARD UTILISATION SCENARIO 2 

Figure 38 shows similar behaviour compared to the base case. With none of the wards 

overutilisation on average, especially the medium care units are getting close to full utilisation. So 

even though the patients are staying shorter the pressure still seems to be high on these units. 

Table 32 still, the ward utilisation is slightly lower for those levelling bed occupancy. Interestingly 

the ward utilisation is higher compared to the base case, even though patients are staying shorter. 

However, this is probably caused by the decrease in capacity.  

Table 32 shows a lower number of successful surgeries. Less of these are caused by OT 

unavailability and more by ward unavailable, demonstrating the increased pressure on the wards 

caused by the lowered capacity. Showing that the decrease in length of stay is insufficient to 

compensate for the decrease in capacity. Overtime experiences a slight decline, which can be 

explained by fewer successful surgeries. Model A now performs slightly better when it comes to 

overtime, while model B and D are equal.  

The experiment demonstrates that while the scenario constraints affect performance metrics, the 

overall behaviours and trends from the base run remain stable. None of the schedules exhibit 

exceptional vulnerability to the uncertainties of the scenario, highlighting the robustness of the 

schedules. 

TABLE 32: SUMMARY TABLE SCENARIO 2 

Model 
version 

Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Total 
number of 
surgeries 

Days 
with 

overtime 

Times a ward 
had to exceed 

capacity 

Average 
OT 

utilisation 

Average 
ward 

utilisation 

A 38% 6% 56% 31512 12% 815 0,94 0,67 
B 39% 6% 55% 31356 13% 843 0,96 0,67 
C 45% 8% 47% 29094 14% 932 0,94 0,64 
D 46% 7% 47% 29172 13% 1106 0,96 0,64 
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6.3.3 SCENARIO 3: FUTILE ATTEMPT TO IMPROVE 

In this scenario, the healthcare facility experiences higher capacity and longer lengths of stay. So 

even though they were able to increase the capacity, the improvements are dumped by the 

increased length of stay. This "Futile attempt to improve" highlights the challenges of expanding 

capacity while the length of stays turns out higher than expected.  

 
FIGURE 39: OT UTILISATION SCENARIO 3 

The first thing that can be noticed in Figure 39 is the extremely long range for OT 10 for the 

schedules A, B and C. The utilisation rates for this OT can be quite high in some circumstances. A 

first glance would also say that utilisation for some of the OTs, such as 5,6 and 9, are quite higher 

in the models levelling for bed occupancy, C and D. Overall Table 33 shows that this scenario 

experiences increased OT utilisation rates across all schedules. With model C getting the closest 

100% and all the others experiencing overutilisation. 
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FIGURE 40: WARD UTILISATION SCENARIO 3 

The most interesting thing to be seen in Figure 40 is that the SK4 / SP4 experiences decreased 

utilisation rates for schedules A and B compared to the based case. Overall Table 33 proves that 

the average utilisation rates for the wards are slightly lower compared to the base case. Especially 

for schedules C and D, a decrease in the number of times a ward had to exceed capacity. 

Additionally, a significantly lower number of surgeries is cancelled due to ward unavailability, 

causing an increase in surgeries cancelled due to OT unavailability. Overall the number of successful 

surgeries increases. This shows once again that the availability of the wards is the biggest 

bottleneck in the system, and the increase in capacity is more effective than the negative effects of 

the increase in the length of stay.  

The behaviour maintains consistent trends despite the scenario changes. Models prioritising ward 

levelling continue to outperform others in minimising cancelled surgeries due to ward unavailability 

and maximising successful surgeries within acceptable over time. In conclusion, none of the 

schedules are vulnerable to the uncertainty of this scenario. 

TABLE 33: SUMMARY TABLE SCENARIO 3 

Model 
version 

Successful 
Surgeries 

Cancelled 
Surgeries (OT 

Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Total 
number of 
surgeries 

Days 
with 

overtime 

Times a ward 
had to exceed 

capacity 

Average 
OT 

utilisation 

Average 
ward 

utilisation 

A 49% 10% 41% 31512 15% 751 1,03 0,62 
B 52% 10% 38% 31356 16% 733 1,05 0,61 
C 58% 13% 29% 29094 17% 685 1,00 0,58 
D 61% 12% 27% 29172 17% 850 1,04 0,58 
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6.3.4 SCENARIO 4: THE GOLDEN ERA 

In this scenario, the healthcare facility operates under optimal conditions, with both high capacity 

and low lengths of stay. This "The Golden Era" scenario highlights the best-case scenario where the 

system efficiently can increase the capacity and all the lengths of stays are shorter than originally 

estimated.  

 
FIGURE 41: OT UTILISATION SCENARIO 4 

According to Figure 41 the gap between the different utilisation rates across the OTs seems to have 

decreased slightly in the schedules levelling ward occupancy, models C and D, with increased 

utilisation for the typically lower utilised OTs, especially in schedule D. According to Table 34 in all 

schedules the OTs, on average, are overutilised. Schedule C has the utilisation closest to 1, while 

schedule B is the furthest from 1. This behaviour is in accordance with the base case; however, the 

fact that schedule A has the same level of utilisation as schedule D is not. 
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FIGURE 42: WARD UTILISATION SCENARIO 4 

The ward utilisation, in Figure 42, is slightly lowered for the schedules levelling the ward occupancy, 

models C and D, especially for the normally quite overutilised medium care units. For schedules A 

and B, it can be seen that even though they are still quite close to one, they do not experience over-

utilisation either. The results in Table 34 confirm this, the average utilisation is significantly lower 

than the base case and is the lowest in the schedule C and D.  

However, the gaps between the different models are bigger and based on successful surgeries, the 

outperformance of schedule D over the others increases. Except for the variable cancelled surgeries 

due to OT availability, most likely due to the extreme decrease in the number of surgeries cancelled 

due to ward unavailability. Having more surgeries requires the resources of the OT.  

TABLE 34: SUMMARY TABLE SCENARIO 4 

Model 
version 

Successful 
Surgeries 

Cancelled 
Surgeries (OT 
Unavailability) 

Cancelled 
Surgeries (Ward 
Unavailability) 

Total 
number of 
surgeries 

Days 
with 
overtime 

Times a ward 
had to exceed 
capacity 

Average 
OT 
utilisation 

Average 
ward 
utilisation 

A 56% 12% 32% 31512 17% 719 1,07 0,57 
B 58% 12% 30% 31356 18% 718 1,08 0,56 
C 64% 15% 20% 29094 18% 618 1,02 0,53 
D 67% 15% 18% 29172 18% 783 1,07 0,53 

 

6.4 CONCLUSION SCHEDULE PERFORMANCE  

Based on the model's conclusions, it can be said that the general behaviour is quite robust under 

uncertainty. The system is not vulnerable to changes in the length of stay and when the capacity 

decreases. However, the size of the differences between the different models does change a little 

throughout the various scenarios. This analysis begins with an examination of the successful 
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surgeries, Table 35. In each scenario, the models considering levelling of the wards, C and D, 

outperform A and B. And then again, D outperforms C. The differences are small in the scenarios 

that decrease ward capacity but increase in those that increase ward capacity. So, the effectiveness 

of the optimisation model checking the availability more often increases when there is an increase 

in ward capacity.  

TABLE 35: SUCCESSFUL SURGERIES, SCENARIO ANALYSIS 

 A B C D 

Base run 44% 46% 52% 54% 
Scenario 1 34% 35% 41% 42% 
Scenario 2 38% 39% 45% 46% 
Scenario 3 49% 52% 58% 61% 
Scenario 4 56% 58% 64% 67% 

TABLE 36: CANCELLED SURGERIES DUE TO WARD, SCENARIO ANALYSIS 

 A B C D 

Base run 47% 46% 37% 37% 
Scenario 1 61% 60% 53% 53% 
Scenario 2 56% 55% 47% 47% 
Scenario 3 41% 38% 29% 27% 
Scenario 4 32% 30% 20% 18% 

Similar results can be seen for the number of cancelled surgeries due to ward unavailability, which 

is the lowest across all scenarios for schedule C and D. With a difference between the two in 

scenarios 3 and 4. So, when the pressure on the ward capacity decreases, the optimisation model's 

effectiveness also increases.   

For the overtime occurrences given in Table 37, , slight increases can be seen in models C and D. 

However, they consistently remain below the allowed 25% limit with minimal differences across 

the models. In Appendix F the length of these overtime occurrences can be found. While the 

frequency of unacceptably long overtime varies across different scenarios, it remains consistent 

across the models. Thus, the optimisation model impacts the occurrence of overtime but does not 

affect the occurrence of unacceptably long overtime. 

Table 38 shows that the number of times a ward had to exceed its capacity is always the highest in 

model D. However, since the average utilisation of the wards remains below zero, see Table 39, 

and the plots across the experiments show that the overutilisation occurrence where lower in the 

models levelling ward occupancy, C and D, which would indicate that exceedance of capacity is an 

incident of a small number of patients on a spread out number of occurrences.  

TABLE 37: DAYS WITH OT OVERTIME, SCENARIO ANALYSIS 

 A B C D 

Base run 14% 14% 16% 15% 
Scenario 1 11% 12% 13% 12% 
Scenario 2 12% 13% 14% 13% 
Scenario 3 15% 16% 17% 17% 
Scenario 4 17% 18% 18% 18% 

TABLE 38: EXCEEDING OF WARD CAPACITY, SCENARIO ANALYSIS 

 A B C D 

Base run 755 770 781 973 
Scenario 1 817 829 926 1054 
Scenario 2 815 843 932 1106 
Scenario 3 751 733 685 850 
Scenario 4 719 718 618 783 

TABLE 39: OVERVIEW, UTLISATION, SCENARIO ANALYSIS 

 A - OT B - OT C - OT D - OT A -  Ward B - ward C - Ward D -ward 

Base run 0,99 1,01 0,97 1,01 0,65 0,64 0,61 0,62 
Scenario 1 0,92 0,94 0,93 0,95 0,71 0,71 0,68 0,68 
Scenario 2 0,94 0,96 0,94 0,96 0,67 0,67 0,64 0,64 
Scenario 3 1,03 1,05 1,00 1,04 0,62 0,61 0,58 0,58 
Scenario 4 1,07 1,08 1,02 1,07 0,57 0,56 0,53 0,53 

Based on the results across the different scenarios, it can be concluded that model D outperforms 

the other models. This is primarily because cancellations due to ward unavailability are the biggest 

bottleneck in the system, and model D is the most effective in levelling the wards. However, model 

D requires greater computational resources compared to the other models.  
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According to the simulation model results, an increased capacity, scenarios 3 and 4, does improve 

the general number of successful surgeries. However, it is accompanied by more surgeries being 

cancelled due to OT unavailability and overtime, highlighting a trade-off within the system. Even 

though ward unavailability is the biggest bottleneck in the system, an increase does not 

automatically solve your problem since more surgeries will be cancelled due to OT unavailability. 

Additionally, it is good to note that the ward occupancies show that the number of elective surgery 

patients on the ICK is limited, so if the overflow of the ICK happens, it is most likely not caused by 

the elective patients. According to the literature, the model overestimates the number of patients 

sent to the ICK post-surgery, and even when this number increases, the utilisation of the available 

beds remains low. However, they are considered in the average utilisation, so this might cause the 

average utilisation to be lowered, which might be higher if the ICK was not considered.  

If further research would look into improving the model it would be recommended to have a more 

detailed look into ward capacity. As noted in the section on the ward capacity, 4.5, the capacity is 

determined by more factors than just the physical bed. Having a more detailed look could further 

explore the bottlenecks within the system and give better advice on what needs to be done to 

decrease this number. The simulation model built for this research does not fit this purpose, as the 

focus was to compare the effectiveness of each of the schedules.  
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7 CONCLUSION 

This research began by addressing the complexities of the healthcare sector and the need for 

solutions to improve the efficiency of OT scheduling. The study explored two primary methods: 

optimisation and simulation modelling. The application of these methods revealed both strengths 

and limitations. Optimisation modelling has the ability to optimise across various parameters. 

Simulation modelling excelled at accounting for system complexities and environmental variability. 

However, a problem statement was identified: Optimisation enhances OT scheduling but fails to 

account for its complexities and uncertainties, highlighting the necessity for a deeper exploration 

of these theoretically sound solutions. Using this information, the study identified a knowledge gap, 

leading to the formulation of the following research question: 

“How can Discrete Event Simulation be used to evaluate an optimisation-generated Master 

Surgery Schedule for operating theatres?” 

To effectively answer this question, it is decomposed into three sub-questions. The literature aided 

in answering the first research question by further exploring the knowledge gap. It mainly 

highlighted that the sequencing of simulation and optimisation enables the ability to improve on 

each other's weaknesses. Together, they can address various parameters tested under uncertainty 

and different scenarios. It also showed that this application had been successfully used before but 

in a less complex setting, as it was used only for singular specialities. Simulation is considered a 

common method to aid as a decision support tool.  

Using a MSS increases the complexity of shared resources, but it also enables a more efficient use 

of these resources, including higher OT utilisation. Additionally, this part of the literature review 

brought to light a trade-off between utilising the OTs and the pressure on the reset of the system, 

including the wards. Often when the system was further explored, the biggest bottleneck was not 

necessarily the utilisation of the OTs, and aiming to increase OT utilisation was futile if not properly 

considering all resources in the system. These conclusions aided in answering the first sub-

question: 

1) What are the key considerations and performance indicators for setting up a Discrete Event 

Simulation model to evaluate an optimisation-generated Master Surgery Schedule? 

The next step for answering this sub-question was taking these lessons learned and using them in 

the model's setup. This information was used to set up the KPIs that explored beyond the OT 

utilisation and looked into the resources across different specialties, considering the total hospital 

resources and the use of resources per ward and OT used by the different specialties. Many of the 

case studies in the research advised against striving for full utilisation, as aiming for full utilisation 

often caused other factors in the system to be overutilized and left less room for the uncertain 

nature of the healthcare system. By including different KPI’s the focus was on improving more than 

just OT utilisation. The research also considered the utilisation of the wards, the surgeries cancelled 

the occurrence of overtime and the length of overtime. Enabling a more complete picture of the 

system performance.  
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The second part of the literature review focused on exploring standard practices in healthcare 

simulation modeling. First, it highlighted the use of distributions to set up input variables, with their 

fit tested using a KS test. Secondly, to address system behaviour, it demonstrated that applying 

sensitivity analysis is useful for managing model uncertainties, which often occur in variables such 

as length of stay and surgery duration. Thirdly, it identified how these uncertainties could be 

utilized in a scenario analysis during the experimentation phase. These conclusions then aided in 

answering the second research question: 

2) What type of uncertainties does the discrete simulation model need to take into account 

when evaluating Master Surgery Schedules? 

During the model's setup and development, several variables were identified as potential sources 

of uncertainty, including length of stay, surgery duration, ward capacity, and the assignment of 

ICKs. A sensitivity analysis was conducted to explore the impact of these uncertainties, revealing 

that the most significant uncertainties were in ward capacity and length of stay, as variations in 

these variables had the largest impact on the system. Cross-validation indicated that the length of 

stay was overestimated in the model, as the output showed higher values compared to real data. 

However, this overestimation did not significantly affect overall system behaviour. This information 

could then be used to set up the different scenarios for the experimentation phase. 

The final sub-question focuses on what can be learned from the model and how simulation 

modelling can be utilised to evaluate optimisation-generated MSS: 

3) How do the identified uncertainties impact the performance of the Master Surgery 

schedule? 

Chapter 6 begins to address this question by comparing different scheduling methods. Initially, the 

chapter examines the behaviour of each schedule under normal conditions, revealing that ward 

utilisation remained stable and, on average, below full capacity across the various scheduling 

methods. There were some changes in OT utilisation as, in some schedules, the OTs were 

overutilised. Nevertheless, the behaviour across the different schedules remained quite similar. 

Across all scheduling models, many surgeries were cancelled due to ward unavailability, resulting 

in a relatively low number of successful surgeries. However this number did decrease for the 

schedules prioritising on levelling the wards.  

In the base case, schedules that prioritised ward levelling outperformed those with equal 

prioritisation on OT utilisation and ward levelling. Schedule D performed better than Schedule C on 

all but two variables. As the number of successful surgeries increased and cancellations due to ward 

unavailability decreased, the occurrences of overtime and instances of wards operating above 

capacity also increased. While the increase in overtime occurrences remained below the 25% 

threshold, the overtime duration frequently exceeded the 45-minute limit. For instances of wards 

operating above capacity, no threshold had been defined. 

Considering the uncertainties identified during the validation phase, particularly the potential 

impact of the uncertainty in the length of stay variable, the outcome of almost half of the surgeries 

being cancelled due to ward unavailability may be somewhat high. Additionally, ward capacity was 

another significant uncertainty. These two factors were chosen for further exploration in the 

scenario analysis across the schedules, resulting in four scenarios. In each of these scenarios, 

different combinations of an increase or decrease in the capacity of the wards and the length of 

stay were combined. The main conclusion from these scenarios was that the behaviour of the 

generated schedules remained consistent. The ranking of schedules for each KPI remained 
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unchanged. While some performance gaps widened slightly, Schedule D consistently outperformed 

the others when decision-makers were willing to accept a certain level of ward exceeding its 

capacity. These schedules not only prioritise on levelling the wards, but the system also has a more 

frequent check of the bed availability. The latter requires a high er computational ability for the 

model.  

So, to answer the third research question, the uncertainties change the outcome of the system 

across all scenarios but do not change the behaviour across the different models. Across all 

scenarios model D outperforms the others when the decision maker is willing to accept an increase 

in the overtime occurrences and the occurrences of exceedance of the ward capacity.   

The system is primarily constrained by ward capacity. However, increasing this capacity does not 

result in an equally sized increase in the successful number of surgeries as the limitation presented 

by the availability of the OT becomes a limiting factor, and other KPIs, including overtime, also 

worsen. The optimisation model only considered the goal of levelling the bed occupancy and did 

not look directly at the capacity of the wards. The goal was to avoid high peaks in the wards so 

fewer surgeries would have to be cancelled due to the unavailability of the wards. The simulation 

model showed that this is true; the schedules considering the levelling of the wards have a lower 

level of the number of surgeries being cancelled due to ward unavailability.  

The optimisation model focused on levelling bed occupancy without directly addressing the 

limitation of the ward capacity. The goal was to avoid high peaks in ward occupancy to reduce the 

number of surgeries cancelled due to ward unavailability. The simulation showed that schedules 

prioritising ward levelling resulted in fewer cancellations, confirming that the set goal was 

achieved. However, it also indicates that a schedule levelling the wards does not solve the problems 

that the hospital is facing. Even though fewer surgeries are cancelled, it seems that the system is 

still not performing as intended, and many surgeries continue to be cancelled. 

In addressing the main research question, this study has demonstrated that using simulation for 

further exploration of the system enables a more detailed analysis of the different schedules. The 

scenario analysis indicates that the optimisation model fulfils the intended purpose and remains 

robust under system uncertainty. However, it would call into question not the model itself but the 

goal. The simulation model revealed that while high peaks in ward occupancy were initially defined 

as the primary problem, they might be a symptom of deeper issues within the system. So, 

simulation modelling did not only effectively evaluate the schedules to see if they serve their 

purpose but also identified new directions for improvement.  

Furthermore, the simulation highlighted trade-offs that decision-makers need to consider. Defining 

thresholds for certain KPIs can be beneficial when determining policy, such as the trade-off 

between overtime occurrences and the number of cancelled surgeries. This research contributes 

to the domain by providing insights into the complexities of hospital scheduling and the potential 

of simulation modelling to evaluate healthcare scheduling and identify domains of improvement 

for the optimisation models. 
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8 DISCUSSION  

Now that the research question has been answered, this chapter focuses on how that answer 

contributes to the broader domain of study, how this study has been limited and how further 

research can continue on the outcomes of this research.  

8.1 ACADEMIC CONTRIBUTION 

The literature review of Chapter 2 discussed that simulation to asses an optimisation-generated 

solution in a healthcare setting has proven to be a valuable tool. It enables the ability to expose a 

solution to different what-if scenarios and test the system under uncertainty. DES was identified as 

a standard simulation method and chosen for this research due to its ability to queue entities and 

use decision rules to move them through the system. The DES model has provided several 

conclusions that contributed that have contributed to the domain of OT scheduling. This section 

discusses the contributions specific to the model conclusion and the contributions made based on 

the method.   

8.1.1 MODEL CONTRIBUTIONS 

The research table, Table 3, identified that applying DES to testing a MSS generated by an 

optimisation model was still an unresearched topic. The MSS brings about additional complexity in 

the system as different departments share different resources. Some of these departments have 

different requirements for the type of OT or the pre- or post-surgery care. The main advantage of 

open scheduling, or MSS, is the increased OT utilisation (Xiao and Yoogalingam, 2022). This is crucial 

as OT unavailability is an important factor in the cancellation of surgeries (Fayed et al., 2016). 

However, the literature review of Chapter 2 highlighted clear trade-offs for healthcare scheduling 

decision-making. While it is possible to increase OT utilisation, this often places additional strain on 

other resources within the system. This finding is supported by experiments and tests conducted 

using the simulation model. Even though the OTs were already experiencing high utilisation levels, 

most surgeries were cancelled due to the constraints of the wards. The models with a higher 

priority on OT utilisation performed worse on almost all KPIs across the different scenarios. 

Nevertheless, not all OTs experienced similar strains. Some OTs did not even come close to full 

utilisation, while others experienced extreme overutilisation, indicating that the optimisation 

model did not adequately account for fluctuations across different OTs. Therefore, when using the 

MSS efficiently, the primary challenge is not merely to increase OT utilisation. Instead, it is crucial 

to balance this with the efficient use of other essential resources and consider OT-specific 

characteristics to improve individual utilisation.  

According to the research table the largest uncertainties were found in the length of stay and the 

surgery duration. Chapter 5 discussed that the surgery duration was slightly overestimated in the 

simulation model. This overestimation was visual in the model's outcome during both the 

sensitivity analysis and scenario experimentation. However, it did not significantly impact the 

outcome as surgery duration was not a real limitation of the system. The more critical factor was 

the uncertainty in the length of stay. Thought the cross-validation highlights this factor as very 

different from the real data, many distributions were considered an improper fit. As the length of 

stay is one of the more limiting factors of the system, this uncertainty in its fit is also considered an 

important factor to consider in the model outcomes.   
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Lastly, the most impactful factor was the capacity of the wards. The schedule for the capacity of 

the wards was an estimation of how many beds are, on average, available for elective surgery 

patients. Changes in this capacity had the biggest impact on the system, with most surgeries being 

successful during an increase and the least number of surgeries being successful during a decrease. 

So the system is mostly impacted by the limitations posed by this variable.  

So, all in all, the model highlights the trade-off where an increase in OT utilisation and the other 

KPIs in the system, which is considered even more important when using an MSS. Additionally, the 

model provided insight into the differences in utilisation across the different OTs and wards that 

were not properly addressed in the optimisation model. The length of stay and the capacity of the 

ward as the most important factors, and the uncertainty in these variables have the largest impact 

on system behaviour.   

8.1.2 METHOD CONTRIBUTIONS 

Erdogan et al. (2011) highlighted that few studies have focused on the effects on post-surgery 

resources when optimising OT utilisation. This study has started to address this gap by investigating 

the use of simulation to evaluate optimisation-generated scheduling and looking at a broader range 

of KPIs that also consider additional resources. By employing an optimisation model that balances 

OT utilisation and ward levelling, the simulation model revealed significant differences in the 

number of successful surgeries based on the prioritisation of these variables. This highlights the 

importance of this more global approach and correctly considering the trade-off.  

Section 2.4 of the literature review discussed how simulation modelling enables the system to be 

tested under different uncertainties, which is considered an advantage compared to only using the 

optimisation approach. The simulation model demonstrated that the schedules generated by the 

optimisation approach are robust across different scenarios, indicating low sensitivity to future 

uncertainty. However, the validation phase showed that the model's effectiveness is sensitive to 

uncertainty in the input parameters. This means carefully considering the input data and the 

uncertainty of the input variables is important. Changes in the input data seem to have different 

effects on the strain on the other resources, which are more complex considering the MSS 

approach.  

The literature review discussed that the advantage of optimisation was the ability to consider a 

wide range of parameters. Simulation can also consider different parameters, but the 

computational capacity required increases when the parameters do. However, this research has 

shown that the simulation model proves helpful in identifying new parameters to be considered in 

the optimisation phase. This allows for an adaptive approach, where the considerations in the 

optimisation process can be adjusted accordingly. In the context of this study, the simulation model 

showed that simply levelling the wards is not enough, and more factors must be considered to 

improve the system effectively. For example, here, it could be the capacity of the wards and the 

exact reasons for cancellation.  
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Overall, the model demonstrated the added value of using simulation to evaluate optimisation-

generated scheduling, aligning with findings from similar research by Saadouli et al. (2015) and 

Hamid et al. (2018). While previous studies focused on individual specialities, this research extends 

the analysis to the entire surgery speciality of the Sophia Children’s Hospital. This increases the 

number of factors to be considered, for which optimisation lends itself well. At the same time, 

simulation contributes by accounting for the complexity of shared resources across multiple 

specialities. Different trade-offs and areas of improvement can be found, enabling an iterative 

approach. This method of testing optimisation-generated scheduling using simulation proves to be 

a valuable tool in the decision-making process.  

8.2 LIMITATIONS 

The healthcare sector is highly interconnected, making establishing clear boundaries within the 

system difficult. For this model, the decision was made to focus solely on elective patients. This 

scope brought about some uncertainty regarding ward capacity assumptions. The hospital does not 

allocate beds exclusively for elective patients, and the number of beds available for these patients 

often varies based on the demand of other patient flows. Consequently, setting a fixed capacity in 

the simulation model limits the validity compared to the real system. 

Across all scenarios, the model indicates a high number of surgeries being called due to ward 

unavailability. One of the model's assumptions, see Table 16, was that surgeries are only cancelled 

due to either the unavailability of the wards or the unavailability of the OTs. However, in reality, 

other factors can also lead to surgery cancellations. Less than one-third of all elective surgeries are 

called on the surgery day itself (Garg et al., 2009), which would be the case for the unavailability of 

resources. This implies that the actual number of surgeries cancelled due to ward unavailability 

may be lower. One of the reasons for same-day cancellations is patients not showing up for surgery 

or medical reasons (Kumar & Gandhi, 2012). Additionally the system assumed that patients always 

arrive on time so all pre-surgery procedures can be concluded before the start time of the surgery. 

Delays caused by late arrivals can also impact the system's efficiency. 

In determining the surgery duration and the length of stay, the surgeries are split up into pre-

defined groupings and their occurrences of the surgery duration and length of stay are used to set 

up a distribution for each grouping, as explained in a section 4.3.2 and 4.3.3. However, there are a 

few limitations to this approach. Firstly, the type of surgery is not the only factor influencing a 

patient's surgery duration and length of stay (Fairley et al., 2018). Other variables, such as weight, 

age, and sex, can also significantly impact the required care, which this model does not consider. 

Secondly, when assigning the distributions, many groupings could not find a suitable fit among the 

chosen distributions based on the KS test. While only a few groupings of surgery durations faced 

this issue, a significant number of groupings for the length of stay variable did. The QQ plots were 

then used to find the best fit, but it is important to note that the best fit does not necessarily imply 

a good fit, and some groupings are most likely not well represented by these distributions. 

Lastly, the model relies on the average duration of a surgery to determine if the surgery can be 

completed in time. However, even though surgeries are grouped based on duration, there can still 

be significant variability within each grouping. As a result, the average duration for the entire group 

may sometimes be too strict or too lenient as a constraint. They are causing underutilisation or 

extreme lengths of overtime. 
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One more noteworthy thing is that the literature review does not delve into simulation applications 

for schedule testing in sectors beyond healthcare. This decision was made due to the broad scope 

of the topic, which necessitated a more focused approach. By narrowing the focus to healthcare, 

the review could provide better analysis and more insights into the specific challenges, 

methodologies, and findings within the relevance to that sector. 

The DES model developed for this research was designed to compare various schedules produced 

by the optimisation model for the OTs of the Sophia Children’s Hospital. So, the simulation model's 

input variables and decision rules are also specific to this setting. While input variables such as 

capacity and schedule can be modified without altering the model, other elements, including model 

assumptions and ward assignments, require code changes. So, using the exact model in a different 

setting might be less effective. However, the model's structure and approach can be reused and 

adapted for different environments. 

Additionally, if further research would continue in a similar setting, the model could be reused, 

provided the model's original purpose is considered. It can be directly employed to compare 

different schedules. However, additional modifications and a new validation will be necessary if the 

model is intended for a different purpose. 

8.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The previous section identified some limitations that influenced the model and the ability to 

represent the real world. Future research should consider these limitations and how they can be 

improved. The first part of this section will elaborate on how these limitations result in 

recommendations for further research.  

Despite the impact of these limitations, the model has provided valuable insight for the evaluation 

of MSS, and the findings of this research have contributed to the academic domain of healthcare 

simulation modelling and optimisation-generated MSS. The second part of this section elaborates 

on how future research can build upon these findings. 

8.3.1 FURTHER RESEARCH BASED ON LIMITATIONS 

While capacity is identified as a significant limitation, the complexity necessitates further 

investigation. The Sophia Children's Hospital wards and other resources are shared with emergent 

patients which are left out of the scope in both the simulation and optimisation model. So, even 

though estimations can be made about the available capacity, the exact capacity can vary based on 

these inflows. This made it hard for the hospital to give precise values of this capacity. Future 

research should focus on a more detailed definition of capacity to pinpoint specific areas for 

improvement. 
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The different surgery groups used posed some limitations during the research for both the 

optimisation and the simulation model. The 50 groupings were based on the length of stay, surgery 

duration, and different surgical specialities. However, the number of surgeries for each group 

varied significantly for both the test and the training data. They were posing challenges when fitting 

distributions. Further research should explore alternative grouping methods and assess their 

impact on performance in both optimisation and simulation models. The definition of the grouping 

could have a significant impact on the estimated surgery duration and length of stay within the 

simulation. Refining these groupings might improve simulation modelling. There also might be 

other factors that influence these variables rather than only the type of surgery they are in for. 

Methods such as regression analysis on a more detailed patient dataset might provide further 

insight.  

8.3.2 RESEARCH EXPANDING ON FINDINGS  

The limitations highlighted several scopes on which the input data could be improved for the model 

to provide a more realistic view. Additionally, further research not only should have better insight 

into these variables but might also look into what other factors influence and define these input 

variables. The capacity is not only defined by the number of beds in a particular ward. It is also 

about the number of resources available to aid this patient, such as nurses or machinery. A more 

detailed approach could look into what is used to define this capacity and more clearly identify its 

bottleneck and how it could be improved. 

The model concluded that the different schedules can improve different KPIs. So, when improving 

the number of successful surgeries, there was an increase in overtime and over-occupation of the 

wards. As already defined for overtime, some negative KPIs might be acceptable. Further research 

could explore what trade-offs are acceptable and unacceptable, exploring which improvements are 

highly important to a hospital and which would simply be good to have. 

Additionally, the model highlighted the effect of full utilisation of the OTs on the cancellations and 

the pressure on the other resources. Further research could expand on this and research the impact 

of aiming for lower utilisation rates on the number of surgeries that have to be cancelled. To 

consider changing the goal of the optimisation model to improve the overall performance.  

Lastly, considering a more ward and OT specific approach when defining the optimisation model. 

The model highlighted large differences between the utilisation across the OTs and the wards. 

Further research should examine the cause of these differences and whether the schedule can 

better utilise this or whether these underutilised resources can be used more effectively.   
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APPENDIX B SCHEDULES 
 

TABLE  B.1: SCHEDULE FROM MODEL A 

DAY MRI 1 2 3 4 5 6 7 8 9 10 

1 
 

GYN: 2 LOS: 1 KIC: 3 
 

PLCH: 1,1 PLCH: 1,1 URO: 2,1,4 ORTR: 1 CAS: 3,2,1 NEC: 3 

2 RON: 1,1,1,1,1,1 GYN: 2 KNO: 1,2,1,3 GAS: 1,3 
 

KNO: 2,5 
 

KIC: 2,2,2,1 ORTO: 3,1 
 

PLCO: 5 

3 
 

GYN: 2 
 

KNO: 2,4 KNO: 1,2,5 URO: 2,1,5 
 

KIC: 2,2,2,2,1 ORTO: 3,1 CAS: 1,1,3 PLCO: 4,1 

4 
 

GYN: 1 LOS: 1 KIC: 1 ORTO: 2,1 URO: 1,1,5 PLCO: 2,3 KIC: 3,1 ORTR: 1 
 

NEC: 4 

5 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 4,2 OOG: 2,2 

DER: 1,1 
URO: 2,1,4 KIC: 5 KIC: 3,2,1 ORTO: 4 

 
ORTO: 4 

8 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,2,1 NEC: 4 

9 RON: 1,1,1,1,1,2 GYN: 2 KNO: 4,2 GAS: 1,3,2 
 

KNO: 1,1,1,2,3 
 

KIC: 3,2,3 ORTO: 3,1 
 

PLCO: 4,1 

10 
 

GYN: 2 
  

KNO: 4,2 URO: 2,2,5 KAA: 2,3,2 KIC: 5,1 ORTO: 3,1 CAS: 3,3 PLCO: 2,2,1 

11 
 

GYN: 2 LOS: 1 KIC: 5 ORTO: 2,1 URO: 1,2,4 PLCO: 2,2,1 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 2,2,1 

12 RON: 1,1,1,1,1,2 GYN: 3 
 

KNO: 2,1,5 TAN: 1,1 URO: 1,3,5 KIC: 4 KIC: 3,2,1 ORTO: 3,1 
 

ORTO: 3,1 

15 
 

GYN: 2 LOS: 1 KIC: 5 
 

PLCH: 1,1 PLCH: 1,1 URO: 2,1,4 ORTR: 1 CAS: 3,2,1 NEC: 4 

16 RON: 1,1,1,1,1,2 GYN: 2 KNO: 5,2 GAS: 1,2 
 

KNO: 1,1,1,1,3 
 

KIC: 2,2,2,1 ORTO: 4 
 

PLCO: 2,3 

17 
 

GYN: 2 
  

KNO: 2,2,1,3 URO: 1,2,4 KAA: 3,3 KIC: 2,2,2,2,1 ORTO: 3,1 CAS: 3,2 PLCO: 4,1 

18 
 

GYN: 1 LOS: 1 KIC: 3 ORTO: 2,1 URO: 3,1,3 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 1,1,1 

19 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 2,2,1,2 OOG: 2,2 

DER: 1,1 
URO: 2,1,4 KIC: 3 KIC: 3,2,1 ORTO: 3,1 

 
ORTO: 4 

22 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 5 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,3 NEC: 2,2 

23 RON: 1,1,1 GYN: 2 KNO: 1,2,5 GAS: 1,1,1 NEU: 1,1,1 KNO: 1,1,1,1,1,3 
 

KIC: 5,3 ORTO: 2,1 
 

PLCO: 5 

24 
 

GYN: 2 
  

KNO: 4,2 URO: 2,2,2,1 KAA: 1,1,1,1 KIC: 5,1 ORTO: 2,1 CAS: 2,1,3 PLCO: 5 

25 
 

GYN: 2 LOS: 1 KIC: 4 ORTO: 2,1 URO: 2,2,2,1 PLCO: 2,3 KIC: 2,3,1 ORTR: 1 
 

NEC: 1,1,1 

26 RON: 1,1,1,1,1,2 GYN: 3 
 

KNO: 2,1,2,3 OOG: 2,2,1,1,1 URO: 2,2,5 KIC: 4 KIC: 3,2,1 ORTO: 4 
 

ORTO: 4 

 

TABLE  B.2: SCHEDULE FROM MODEL B 

Day MRI 1 2 3 4 5 6 7 8 9 10 

1 
 

GYN: 2 LOS: 1 KIC: 4 
 

PLCH: 1,1 PLCH: 1,1 URO: 1,1,5 ORTR: 1 CAS: 1,2,3 NEC: 3 

2 RON: 1,1,1,1,1,1 GYN: 3 KNO: 1,2,1,3 GAS: 2,1 
 

KNO: 2,5 
 

KIC: 3,1 ORTO: 3,1 
 

PLCO: 2,3 

3 
 

GYN: 2 
 

KNO: 2,4 KNO: 1,2,5 URO: 2,1,4 
 

KIC: 2,3,1 ORTO: 3,1 CAS: 3,3 PLCO: 4,1 

4 
 

GYN: 1 LOS: 1 KIC: 1 ORTO: 2,1 URO: 3,4 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 4 

5 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 4,2 OOG: 2,2 

DER,1,1 
URO: 2,2,5 KIC: 5 KIC: 2,3,1 ORTO: 2,1 

 
ORTO: 2,1 

8 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,1 NEC: 4 

9 RON: 1,1,1,1,1,2 GYN: 3 KNO: 4,2 GAS: 3,1,2 
 

KNO: 1,1,1,2,3 
 

KIC: 3,5 ORTO: 3,1 
 

PLCO: 4,1 

10 
 

GYN: 2 
  

KNO: 4,2 URO: 1,3,5 KAA: 3,2,2 KIC: 2,3,3 ORTO: 3,1 CAS: 3,1,2 PLCO: 2,2,1 

11 
 

GYN: 2 LOS: 1 KIC: 5 ORTO: 2,1 URO: 1,2,4 PLCO: 2,2,1 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 4 

12 RON: 1,1,1,1,1,2 GYN: 2 
 

KNO: 2,1,5 TAN: 1,1 URO: 1,2,4 KIC: 5 KIC: 2,2,2,2,1 ORTO: 2,1 
 

ORTO: 4 

15 
 

GYN: 2 LOS: 1 KIC: 5 
 

PLCH: 1,1 PLCH: 1,1 URO: 2,2,5 ORTR: 1 CAS: 3,1,2 NEC: 2,1,2 

16 RON: 1,1,1,1,2 GYN: 2 KNO: 5,2 GAS: 1,1 
 

KNO: 1,1,1,1,3 
 

KIC: 3,3 ORTO: 3,1 
 

PLCO: 5 

17 
 

GYN: 2 
  

KNO: 2,2,1,3 URO: 1,2,4 KAA: 3,1,1 KIC: 3,2,1 ORTO: 2,1 CAS: 3,1,2 PLCO: 4,1 

18 
 

GYN: 1 LOS: 1 KIC: 4 ORTO: 1 URO: 1,2,2 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 2,1,1 

19 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 2,2,1,2 OOG: 2,2 

DER,1,1 
URO: 5,3 KIC: 1 KIC: 3,2,1 ORTO: 3,1 

 
ORTO: 3,1 

22 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,3 NEC: 2,1,1 

23 RON: 1,1,1 GYN: 2 KNO: 1,2,5 GAS: 3,1,1 NEU: 1,1,1 KNO: 1,1,1,1,1,3 
 

KIC: 2,2,2,2,1 ORTO: 4 
 

PLCO: 5 

24 
 

GYN: 2 
  

KNO: 4,2 URO: 2,2,2,1 KAA: 3,1,1 KIC: 3,2,1 ORTO: 4 CAS: 2,1,3 PLCO: 5 

25 
 

GYN: 2 LOS: 1 KIC: 1 ORTO: 4 URO: 2,2,2,1 PLCO: 2,3 KIC: 2,2,2,2,1 ORTR: 1 
 

NEC: 1,1,1 

26 RON: 1,1,1,1,1,2 GYN: 2 
 

KNO: 2,1,2,3 OOG: 2,2,1,1,1 URO: 1,2,1 KIC: 5 KIC: 3,5 ORTO: 4 
 

ORTO: 4 

 

  



4 
 

 

TABLE  B.3: SCHEDULE FROM MODEL C 

Day MRI 1 2 3 4 5 6 7 8 9 10 

1 
 

GYN: 2 LOS: 1 KIC: 3 
 

PLCH: 1,1 PLCH: 1,1 URO: 2,2,2,1 ORTR: 1 
 

NEC: 2,1,2 

2 RON: 1,1,1,1,1,1 GYN: 2 KNO: 2,2,3 GAS: 3,1 
 

KNO: 2,1,1,2 
 

KIC: 3,3 ORTO: 2,1 
 

PLCO: 5 

3 
   

KNO: 1,2,1,2 KNO: 4,2 URO: 2,1,4 
 

KIC: 2,2,2,3 ORTO: 1 CAS: 3,3 PLCO: 5 

4 
 

GYN: 2 LOS: 1 KIC: 1 ORTO: 2,1 URO: 2,1,3 PLCO: 2,3 KIC: 2,2,1 ORTR: 1 
 

NEC: 1,1 

5 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 2,3,2 OOG: 2,2 

DER,1,1 
URO: 2,2,5 KIC: 5 KIC: 5,1 ORTO: 4 

 
ORTO: 4 

8 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 2,1,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,1,2 NEC: 4 

9 RON: 1,1,1,1,1,2 GYN: 2 KNO: 4,2 GAS: 1,1,2 
 

KNO: 1,1,1,5 
 

KIC: 3,5 ORTO: 3,1 
 

PLCO: 4,1 

10 
 

GYN: 2 
  

KNO: 2,4 URO: 2,1,4 KAA: 3,2,2 KIC: 2,2,2,1 ORTO: 2,1 CAS: 3,1,1 PLCO: 5 

11 
 

GYN: 1 LOS: 1 KIC: 3 ORTO: 2,1 URO: 1,2,4 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 2 

12 RON: 1,1,1,1,1,2 GYN: 2 
 

KNO: 2,1,5 TAN: 1,1 URO: 5,5 
 

KIC: 3,1 ORTO: 1 
 

ORTO: 3,1 

15 
 

GYN: 2 LOS: 1 KIC: 5 
 

PLCH: 1,1 PLCH: 1,1 URO: 2,1,4 ORTR: 1 CAS: 3,2 NEC: 3 

16 RON: 1,1,1,1,2 GYN: 3 KNO: 2,5 GAS: 1,3 
 

KNO: 1,1,2,3 
 

KIC: 3,1 ORTO: 2,1 
 

PLCO: 2,1 

17 
 

GYN: 2 
  

KNO: 1,2,1,1,2 URO: 1,2,4 KAA: 3,1,1 KIC: 3,2,1 ORTO: 1 CAS: 3,3 PLCO: 4,1 

18 
 

GYN: 2 LOS: 1 KIC: 4 ORTO: 2,1 URO: 1,1,1 PLCO: 2,3 KIC: 2,2,1 ORTR: 1 
 

NEC: 4 

19 
RON: 1,1,1,1,1,2 

  
KNO: 4,2 OOG: 2,2 

DER,1,1 
URO: 3,3,2 KIC: 5 KIC: 4,1 ORTO: 4 

 
ORTO: 4 

22 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,1,2 NEC: 4 

23 RON: 1,1,1 GYN: 2 KNO: 3,1,1,3 GAS: 2,1,1 NEU: 1,1,1 KNO: 3,5 
 

KIC: 3,5 ORTO: 3,1 
 

PLCO: 1 

24 
 

GYN: 1 
  

KNO: 2,1,1,1,1 URO: 2,2,5 KAA: 3,1,1 KIC: 2,2,2,1 ORTO: 1 CAS: 1,2,3 PLCO: 4,1 

25 
 

GYN: 2 LOS: 1 KIC: 2 ORTO: 1 URO: 2,2,2,1 PLCO: 2,3 KIC: 2,2,2 ORTR: 1 
 

NEC: 1,2 

26 RON: 1,1,1,1,1,2 GYN: 2 
 

KNO: 4 OOG: 2,2,1,1,1 URO: 5,1 
 

KIC: 2,2,1 ORTO: 4 
 

ORTO: 4 

 

TABLE  B.4: SCHEDULE FROM MODEL D 

Day MRI 1 2 3 4 5 6 7 8 9 10 

1 
 

GYN: 2 LOS: 1 KIC: 3 
 

PLCH: 1,1 PLCH: 1,1 URO: 1,2,4 ORTR: 1 CAS: 3,1,2 NEC: 4 

2 RON: 1,1,1,1,1,1 GYN: 2 KNO: 1,1,2,3 GAS: 1,1 
 

KNO: 1,1,5 
 

KIC: 3,3 ORTO: 2,1 
 

PLCO: 5 

3 
 

GYN: 2 
 

KNO: 1,2,1,1,2 KNO: 2,1,1,3 URO: 3,1,5 
 

KIC: 2,2,2,1 ORTO: 2,1 CAS: 3,3 PLCO: 4,1 

4 
 

GYN: 1 LOS: 1 KIC: 1 ORTO: 1 URO: 3,2,2 PLCO: 2,3 KIC: 2,2,2 ORTR: 1 
 

NEC: 1,1,1 

5 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 4,1 OOG: 2,2 

DER,1,1 
URO: 2,1,4 KIC: 5 KIC: 5,1 ORTO: 4 

 
ORTO: 4 

8 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 
 

NEC: 2,2 

9 RON: 1,1,1,1,1,2 GYN: 2 KNO: 1,1,2,1,3 GAS: 1,3,1 
 

KNO: 4,2 
 

KIC: 3,5 ORTO: 3,1 
 

PLCO: 5 

10 
 

GYN: 2 
  

KNO: 2,2,1,2 URO: 3,1,5 KAA: 3,1,1 KIC: 2,2,2,1 ORTO: 2,1 CAS: 2,3 PLCO: 4,1 

11 
 

GYN: 1 LOS: 1 KIC: 1 ORTO: 2,1 URO: 2,2,2 PLCO: 2,3 KIC: 2,2,1 ORTR: 1 
 

NEC: 1,2 

12 RON: 1,1,1,1,1,2 GYN: 2 
 

KNO: 2,5 TAN: 1,1 URO: 2,2,5 
 

KIC: 4,1 ORTO: 4 
 

ORTO: 1 

15 
 

GYN: 2 LOS: 1 KIC: 3 
 

PLCH: 1,1 PLCH: 1,1 URO: 1,2,5 ORTR: 1 CAS: 1,3,2 NEC: 4 

16 RON: 1,1,1,1,2 GYN: 3 KNO: 1,1,5 GAS: 3,2 
 

KNO: 1,1,2,2 
 

KIC: 2,5 ORTO: 2,1 
 

PLCO: 2,1 

17 
 

GYN: 2 
  

KNO: 2,4 URO: 1,2,4 KAA: 3,1,1 KIC: 2,2,2,1 ORTO: 3,1 CAS: 3,1,2 PLCO: 4,1 

18 
  

LOS: 1 KIC: 1 ORTO: 1 URO: 1,2,1 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 3 

19 
RON: 1,1,1,1,1,2 GYN: 2 

 
KNO: 4,2 OOG: 2,2 

DER,1,1 
URO: 2,1,4 

 
KIC: 3,5 ORTO: 4 

 
ORTO: 4 

22 RON: 1,1,1,1,1,2 GYN: 2 LOS: 1 KIC: 4 
 

URO: 1,2,4 PLCH: 1,1 
 

ORTR: 1 CAS: 3,3 NEC: 2 

23 RON: 1,1,1 GYN: 2 KNO: 4,2 GAS: 1,1,2 NEU: 1,1,1 KNO: 2,3,3 
 

KIC: 2,3,1 ORTO: 3,1 
 

PLCO: 1 

24 
 

GYN: 2 
  

KNO: 2,2,1,3 URO: 1,2,4 KAA: 2,2,3 KIC: 2,3,3 ORTO: 2,1 CAS: 1,3,1 PLCO: 5 

25 
 

GYN: 2 LOS: 1 KIC: 1 ORTO: 1 URO: 2,2,2,1 PLCO: 2,3 KIC: 2,2,2,1 ORTR: 1 
 

NEC: 4 

26 RON: 1,1,1,1,1,2 
  

KNO: 2,5 OOG: 2,2,1,1,1 URO: 5,1 
 

KIC: 3,5 ORTO: 4 
 

ORTO: 4 

  



5 
 

APPENDIX C GROUPINGS 
TABLE  C.1: SURGERY GROUPINGS 

 1 2 3 4 5 
 SURGERY 

DURATIO
N 

LOS SURGERY 
DURATIO
N 

LOS SURGERY 
DURATIO
N 

LOS SURGERY 
DURATIO
N 

LOS SURGERY 
DURATIO
N 

LOS 

Dental surgery (TAN) 79 - 147  
 

 
 

 
 

 
 

 
Dermatology (DER) 20 - 159  

 
 

 
 

 
 

 
 

Gastroenterology (GAS)  ≤ 48  48 - 58  > 58  
 

 
 

 
Gynecology (GYN) ≤ 68  68 - 95  > 95  

 
 

 
 

Maxillofacial surgery (KAA) ≤ 84  84 - 128  > 128  
 

 
 

 
Neurological surgery (NEC) ≤ 117 ≤ 7392 117 - 154 ≤ 7392 > 154 ≤ 7392 

 
> 7392 

 
 

Neurology (NEU)  26-168  
 

 
 

 
 

 
 

 
Ophthalmology (OOG) ≤ 71  > 71  

 
 

 
 

 
 

Orthopedic surgery - spinal (ORT) 98-743  
 

 
 

 
 

 
 

 
Orthopedic surgery - others (ORT)  ≤ 108 ≤ 2636 108 - 154 ≤ 2636 > 154  ≤ 2636 

 
> 2636 

 
 

Otorhinolaryngology (KNO) ≤ 54 ≤ 1516 54 - 100 ≤ 1516 100 - 148 ≤ 1516 > 148  ≤ 1516 
 

> 1516 
Pediatric cardiac surgery (CAS) ≤ 96  96 - 134  > 134  

 
 

 
 

Pediatric pulmonary disease (LOS) 21-391  
 

 
 

 
 

 
 

 
Pediatric surgery (KIC) ≤ 59 ≤ 9006 59 - 84 ≤ 9006 84 - 163 ≤ 9006 > 163 ≤ 9006 

 
> 9006 

Plastic surgery - hand (PLC) 64-237  
 

 
 

 
 

 
 

 

Plastic surgery - others (PLC) ≤ 92 ≤ 3489 92 - 135 ≤ 3489 135 - 183 ≤ 3489 > 183 ≤ 3489 
 

> 3489 

Radiology (RON) ≤ 76  > 76  
 

 
 

 
 

 
Urology (URO) ≤ 73  ≤ 3406 73 - 107 ≤ 3406 107 - 127 ≤ 3406 > 127 ≤ 3406 

 
> 3406 
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TABLE  C.2: OVERVIEW OF THE DIFFERENT GOUPINGS AND SIZES OF TEST AND TRAIN DATA 

Group Category Group number Size of train data Size of test data 

1 CAS 1 150 38 

2 CAS 2 98 45 

3 CAS 3 288 63 

4 DER 1 7 15 

5 GAS 1 340 103 

6 GAS 2 111 33 

7 GAS 3 133 24 

8 GYN 1 84 29 

9 GYN 2 635 266 

10 GYN 3 38 13 

11 KAA 1 253 65 

12 KAA 2 60 34 

13 KAA 3 128 40 

14 KIC 1 513 136 

15 KIC 2 856 317 

16 KIC 3 389 116 

17 KIC 4 125 26 

18 KIC 5 230 84 

19 KNO 1 803 205 

20 KNO 2 739 247 

21 KNO 3 244 60 

22 KNO 4 201 68 

23 KNO 5 178 39 

24 LOS 1 231 66 

25 NEC 1 138 50 

26 NEC 2 165 39 

27 NEC 3 48 13 

28 NEC 4 148 37 

29 NEU 1 49 19 

30 OOG 1 87 20 

31 OOG 2 181 63 

32 ORTO 1 643 208 

33 ORTO 2 263 66 

34 ORTO 3 126 46 

35 ORTO 4 265 91 

36 ORTR 1 216 73 

37 PLCH 1 142 50 

38 PLCO 1 313 98 

39 PLCO 2 304 80 

40 PLCO 3 230 69 

41 PLCO 4 199 42 

42 PLCO 5 199 75 

43 RON 1 1643 490 

44 RON 2 242 103 

45 TAN 1 83 23 

46 URO 1 492 156 

47 URO 2 649 197 

48 URO 3 115 22 

49 URO 4 243 82 

50 URO 5 161 58 
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APPENDIX D DISTRIBUTIONS SURGERY DURATION 

D.1 BOXPLOTS AND HISTOGRAMS INSIGNIFICANT DISTRIBUTIONS 

 

FIGURE  D.1: BOXPLOTS AND HISTOGRAMS GROUP 1-18 
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FIGURE  D.2: BOXPLOTS AND HISTOGRAMS GROUPS 19-40 
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FIGURE  D.3: BOXPLOTS AND HISTOGRAMS GROUPS 41-50 

D.2 QQ PLOTS 

 

FIGURE  D.4: QQ PLOTS GROUPS 43,44,46 AND 49 
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D.3 PARAMETERS AND CHOSEN DISTRIBUTIONS 

TABLE  D.1: PARAMETERS DISTRIBUTIONS SURGERY DURATION 

Group Category Group number Chosen distribution Shape Scale KS-Test P-value 
1 CAS 1 log-logistic 4,236810 69,057729 0,334489 
2 CAS 2 log-logistic 4,866781 109,214794 0,765186 
3 CAS 3 pearsonV 8,642639 1152,255234 0,765314 
4 DER 1 lognorm 0,653978 49,558821 0,747239 
5 GAS 1 log-logistic 4,270866 38,628583 0,430337 
6 GAS 2 log-logistic 4,106239 44,756759 0,466767 
7 GAS 3 pearsonV 7,681114 434,984572 0,744853 
8 GYN 1 weibull 3,519952 59,793009 0,091554 
9 GYN 2 log-logistic 6,241202 76,655155 0,144942 
10 GYN 3 pearsonV 6,065362 681,728814 0,532789 
11 KAA 1 pearsonV 5,613337 339,027153 0,220895 
12 KAA 2 gamma 8,421799 11,877906 0,701329 
13 KAA 3 log-logistic 6,523587 150,592656 0,654185 
14 KIC 1 log-logistic 4,489324 44,743484 0,294456 
15 KIC 2 log-logistic 5,691900 64,029860 0,633162 
16 KIC 3 pearsonV 5,951093 583,085562 0,455238 
17 KIC 4 gamma 11,663125 16,698783 0,309663 
18 KIC 5 log-logistic 3,196743 181,785443 0,630435 
19 KNO 1 pearsonV 5,547880 167,444301 0,409824 
20 KNO 2 log-logistic 4,724789 64,453431 0,352014 
21 KNO 3 log-logistic 5,141025 124,508361 0,630799 
22 KNO 4 log-logistic 5,198326 277,107754 0,067931 
23 KNO 5 pearsonV 2,226594 213,665328 0,144902 
24 LOS 1 log-logistic 4,025880 57,129014 0,568990 
25 NEC 1 log-logistic 5,873789 94,902278 0,257308 
26 NEC 2 log-logistic 7,453696 131,807591 0,934236 
27 NEC 3 log-logistic 2,741511 222,528130 0,838525 
28 NEC 4 pearsonV 2,135145 417,892770 0,088504 
29 NEU 1 log-logistic 4,533624 36,876278 0,689544 
30 OOG 1 log-logistic 4,574814 39,974655 0,830841 
31 OOG 2 pearsonV 10,431100 949,216493 0,215185 
32 ORTO 1 log-logistic 4,157636 78,554852 0,172505 
33 ORTO 2 log-logistic 4,644299 124,409240 0,647356 
34 ORTO 3 pearsonV 6,598911 1036,051604 0,352098 
35 ORTO 4 log-logistic 4,389780 202,939472 0,995646 
36 ORTR 1 weibull 4,082891 498,876471 0,052917 
37 PLCH 1 pearsonV 4,955444 499,357081 0,104709 
38 PLCO 1 gamma 4,270718 16,752015 0,412436 
39 PLCO 2 log-logistic 4,535536 103,301132 0,936728 
40 PLCO 3 log-logistic 4,869976 147,000897 0,775669 
41 PLCO 4 pearsonV 10,044147 1882,171991 0,275146 
42 PLCO 5 gamma 6,360031 42,262996 0,441046 
43 RON 1 weibull 4,340449 55,095229 0,003027 
44 RON 2 lognorm 0,266985 98,997899 0,000112 
45 TAN 1 log-logistic 7,160879 137,993236 0,983345 
46 URO 1 lognorm 0,456665 50,410367 0,000005 
47 URO 2 pearsonV 11,029817 926,795474 0,099983 
48 URO 3 pearsonV 14,605072 1628,089678 0,903369 
49 URO 4 gamma 6,854349 25,682964 0,000008 
50 URO 5 pearsonV 6,465899 980,222100 0,080290 
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APPENDIX E DISTRIBUTIONS LENGTH OF STAY 

E.1 HISTOGRAMS AND BOXPLOTS 

  

FIGURE  E.1: HISTOGRAMS AND BOXPLOTS GROUP 1-20 
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FIGURE  E.2: HISTOGRAMS AND BOXPLOTS GROUP 21-40 
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FIGURE  E.3: HISTOGRAMS AND BOXPLOTS GROUPS 41-50 

E.2 QQ PLOTS 

 

FIGURE  E.4: QQ PLOTS GROUP 1,2,3 AND 5 
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FIGURE  E.5: QQ PLOTS GROUP 6,7,9,13,14,15,16,20,21 AND 22 
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FIGURE  E.6: QQ PLOTS GROUP 23,24,25,31,32,33,34,35,36 AND 39 
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FIGURE  E.7: QQ PLOTS GROUP 40,41,42,43,44,46,47,48 AND 49 
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E.3 PARAMETERS AND CHOSEN DISTRIBUTIONS 

Table  E.1 gives an overview of all the chosen distributions per grouping and their corresponding parameters.  

TABLE  E.1: PARAMETERS DISTRIBUTIONS LENGTH OF STAY 

Group Category Group number Chosen distribution Shape Scale KS-test p-value 
1 CAS 1 gamma 0,393095 15823,361889 0,000000 
2 CAS 2 weibull 0,678949 3675,452094 0,000000 
3 CAS 3 weibull 0,606203 5209,047263 0,000000 
4 DER 1 log-logistic 1,788520 411,434712 0,882125 
5 GAS 1 lognorm 1,098694 442,020374 0,000000 
6 GAS 2 weibull 0,719582 5061,690866 0,000000 
7 GAS 3 lognorm 1,435348 773,553540 0,000001 
8 GYN 1 log-logistic 2,400391 701,517048 0,012519 
9 GYN 2 lognorm 0,550147 4051,696612 0,000000 
10 GYN 3 pearsonV 1,687151 2991,731565 0,078820 
11 KAA 1 log-logistic 4,613646 381,804716 0,276278 
12 KAA 2 log-logistic 4,133158 416,442033 0,236581 
13 KAA 3 lognorm 0,399983 1645,602256 0,000000 
14 KIC 1 weibull 0,656411 674,783191 0,000000 
15 KIC 2 weibull 0,603223 1166,226575 0,000000 
16 KIC 3 lognorm 1,350135 1598,036174 0,000000 
17 KIC 4 log-logistic 2,496057 6523,513244 0,341982 
18 KIC 5 weibull 0,798319 39218,245233 0,035977 
19 KNO 1 log-logistic 3,714949 292,553771 0,028574 
20 KNO 2 pearsonV 1,198625 708,885399 0,000000 
21 KNO 3 gamma 2,312305 323,661780 0,000000 
22 KNO 4 lognorm 0,510131 1117,928875 0,000000 
23 KNO 5 weibull 0,596904 6726,209092 0,000000 
24 LOS 1 gamma 0,307250 25907,269722 0,000000 
25 NEC 1 lognorm 0,875421 991,691410 0,000236 
26 NEC 2 log-logistic 2,689668 2963,861813 0,014662 
27 NEC 3 log-logistic 1,607037 4868,470834 0,252155 
28 NEC 4 pearsonV 1,055438 6710,548888 0,028603 
29 NEU 1 log-logistic 2,766252 319,299982 0,320551 
30 OOG 1 pearsonV 8,680143 2679,420329 0,786770 
31 OOG 2 weibull 1,460764 656,195392 0,000000 
32 ORTO 1 lognorm 0,643743 490,582156 0,000000 
33 ORTO 2 pearsonV 2,080048 1265,795426 0,000007 
34 ORTO 3 lognorm 0,772622 1362,870983 0,004891 
35 ORTO 4 gamma 1,204363 4980,066410 0,000000 
36 ORTR 1 lognorm 0,458150 9474,346515 0,000000 
37 PLCH 1 log-logistic 3,983073 438,653431 0,538421 
38 PLCO 1 log-logistic 3,746540 343,472420 0,251661 
39 PLCO 2 lognorm 0,701253 557,667676 0,000000 
40 PLCO 3 log-logistic 2,290153 823,376759 0,000000 
41 PLCO 4 lognorm 0,329345 1625,677546 0,000000 
42 PLCO 5 log-logistic 3,957160 5817,999665 0,000020 
43 RON 1 weibull 0,543813 781,028724 0,000000 
44 RON 2 gamma 0,360416 12327,356760 0,000000 
45 TAN 1 log-logistic 3,144840 515,623951 0,149317 
46 URO 1 gamma 0,608609 2402,870189 0,000000 
47 URO 2 gamma 0,943945 1062,107126 0,000000 
48 URO 3 lognorm 1,038105 842,108344 0,000000 
49 URO 4 lognorm 0,990243 1036,151171 0,000000 
50 URO 5 log-logistic 2,589625 7647,418854 0,018393 
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APPENDIX F MODEL EXPERIMENTATION 

F.1 BASE RUN MODEL 

F.1.1 SUMMARY TABLE 

TABLE  F.1: SUMMARY TABLE BASE RUN, MODEL A 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 14134 2634 14731 2486 31512 763 1,01 0,64 
2 13700 2472 15325 2328 31512 782 0,97 0,66 
3 14167 2715 14614 2482 31512 756 1,01 0,64 
4 14240 2633 14624 2459 31512 757 0,99 0,64 
5 13912 2536 15049 2407 31512 736 0,99 0,65 
6 13757 2484 15260 2388 31512 772 0,98 0,66 
7 13924 2536 15038 2395 31512 722 0,98 0,65 

TABLE  F.2: SUMMARY TABLE BASE RUN, MODEL B 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 14121 2378 14846 2427 31356 778 0,99 0,65 
2 14059 2426 14856 2435 31356 760 1,00 0,66 
3 14054 2452 14836 2416 31356 811 0,99 0,65 
4 14540 2567 14237 2486 31356 756 1,02 0,64 
5 14807 2621 13917 2579 31356 776 1,02 0,63 
6 14701 2619 14025 2516 31356 745 1,01 0,63 
7 14427 2362 14554 2508 31356 764 1,00 0,65 

TABLE  F.3: SUMMARY TABLE BASE RUN, MODEL C 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 15159 3108 10812 2708 29094 796 0,97 0,61 
2 15484 3223 10372 2759 29094 743 0,97 0,61 
3 14921 2982 11176 2598 29094 840 0,97 0,62 
4 15374 3170 10538 2690 29094 726 0,98 0,61 
5 15462 3204 10414 2741 29094 769 0,98 0,61 
6 14959 2976 11149 2633 29094 794 0,97 0,62 
7 15241 3114 10723 2681 29094 797 0,98 0,62 

TABLE  F.4: SUMMARY TABLE BASE RUN, MODEL D 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 16066 2766 10326 2685 29172 971 1,00 0,61 
2 15715 2710 10735 2645 29172 951 1,01 0,61 
3 15366 2648 11142 2534 29172 976 1,01 0,62 
4 15898 2849 10411 2697 29172 959 1,02 0,62 
5 15554 2676 10932 2565 29172 986 1,00 0,61 
6 15679 2744 10736 2616 29172 939 1,01 0,62 
7 15574 2630 10954 2537 29172 1031 1,00 0,62 
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F.1.2 OT UTILSIATION ACROSS SCHEDULE CYCLE 

 

FIGURE  F.1: OT UTILSATION ACROSS 28 DAY CYCLE, MODEL A 

 
FIGURE  F.2: OT UTILSATION ACROSS 28 DAY CYCLE, MODEL B 

 
FIGURE  F.3: OT UTILSATION ACROSS 28 DAY CYCLE, MODEL C 
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FIGURE  F.4: OT UTILSATION ACROSS 28 DAY CYCLE, MODEL D 

F.1.3 WARD UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.5: WARD UTILISATION ACROSS 28 DAY CYCLE, MODEL A 

 
FIGURE  F.6: WARD UTILISATION ACROSS 28 DAY CYCLE, MODEL B 
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FIGURE  F.7: WARD UTILISATION ACROSS 28 DAY CYCLE, MODEL C 

 
FIGURE  F.8: WARD UTILISATION ACROSS 28 DAY CYCLE, MODEL D 
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F.1.4 OVERTIME PER OT 

 

FIGURE  F.9: OVERTIME PER OT, MODEL A 
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FIGURE  F.10: OVERTIME PER OT, MODEL B 
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FIGURE  F.11: OVERTIME PER OT, MODEL C 
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FIGURE  F.12: OVERTIME PER OT, MODEL D 
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F.2 SCENARIO 1 

F.2.1 SUMMARY TABLE 

TABLE  F.5: SUMMARY TABLE SCENARIO 1, MODEL A 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 10798 1631 19069 1911 31512 799 0,92 0,71 
2 10338 1436 19725 1823 31512 848 0,91 0,72 
3 10781 1596 19122 1920 31512 808 0,93 0,71 
4 10742 1579 19182 1921 31512 813 0,93 0,71 
5 10421 1490 19589 1846 31512 816 0,91 0,72 
6 10652 1575 19276 1887 31512 820 0,91 0,71 
7 10769 1579 19152 1880 31512 807 0,92 0,71 

TABLE  F.6: SUMMARY TABLE SCENARIO 1, MODEL B 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 10997 1549 18799 2018 31356 816 0,95 0,71 
2 10953 1473 18917 1974 31356 862 0,92 0,71 
3 10953 1416 18973 2003 31356 848 0,94 0,71 
4 11210 1464 18668 2004 31356 812 0,95 0,70 
5 10660 1356 19327 1947 31356 841 0,91 0,72 
6 11232 1525 18589 2002 31356 805 0,94 0,70 
7 11256 1485 18604 2015 31356 828 0,94 0,70 

TABLE  F.7: SUMMARY TABLE SCENARIO 1, MODEL C 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 11890 1832 15356 2187 29094 913 0,92 0,68 
2 12223 1939 14919 2292 29094 914 0,95 0,67 
3 11731 1858 15495 2152 29094 979 0,93 0,68 
4 11830 1800 15452 2167 29094 882 0,93 0,68 
5 11704 1716 15666 2147 29094 932 0,92 0,69 
6 12018 1912 15152 2231 29094 915 0,93 0,68 
7 11791 1815 15474 2206 29094 943 0,92 0,69 

TABLE  F.8: SUMMARY TABLE SCENARIO 1, MODEL D 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 12111 1511 15537 2084 29172 1043 0,96 0,69 
2 12478 1578 15105 2133 29172 1053 0,94 0,68 
3 12442 1550 15169 2171 29172 1049 0,95 0,68 
4 12370 1633 15154 2186 29172 1048 0,96 0,69 
5 12177 1544 15437 2098 29172 1010 0,95 0,69 
6 12255 1497 15406 2071 29172 1084 0,94 0,68 
7 11934 1434 15795 2017 29172 1101 0,92 0,69 

F.2.2 OT UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.13: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL A 
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FIGURE  F.14: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL B 

 
FIGURE  F.15: OT UTILISATION ACROSS 28 DAY CYCL SCENARIO 1, MODEL C 

 
FIGURE  F.16: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL D 
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F.2.3 WARD UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.17: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL A 

 
FIGURE  F.18: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL B 

 
FIGURE  F.19: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL C 
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FIGURE  F.20: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 1, MODEL D 

F.2.4 TOTAL OVERTIME 

 
FIGURE  F.21: TOTAL OVERTIME SCENARIO 1, MODEL A 

 
FIGURE  F.22: TOTAL OVERTIME SCENARIO 1, MODEL B 
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FIGURE  F.23: TOTAL OVERTIME SCENARIO 1, MODEL C 

 
FIGURE  F.24: TOTAL OVERTIME SCENARIO 1, MODEL D 
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F.2.5 OVERTIME PER OT 

 

FIGURE  F.25: OVERTIME PER OT SCENARIO 1, MODEL A 
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FIGURE  F.26: OVERTIME PER OT SCENARIO 1, MODEL B 
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FIGURE  F.27: OVERTIME PER OT SCENARIO 1, MODEL C 
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FIGURE  F.28: OVERTIME PER OT SCENARIO 1, MODEL D 
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F.3 SCENARIO 2  

F.3.1 SUMMARY TABLE 

TABLE  F.9: SUMMARY TABLE SCENARIO 2 , MODEL A 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 12163 1957 17384 2127 31512 835 0,95 0,67 
2 12043 1987 17470 2132 31512 809 0,96 0,67 
3 12228 1998 17275 2205 31512 821 0,95 0,67 
4 11692 1796 18011 2027 31512 842 0,94 0,68 
5 11601 1791 18111 2047 31512 830 0,93 0,68 
6 12062 1936 17504 2178 31512 788 0,94 0,67 
7 11921 1898 17682 2086 31512 783 0,93 0,67 

TABLE  F.10: SUMMARY TABLE SCENARIO 2 , MODEL B 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 11968 1708 17669 2091 31356 868 0,94 0,68 
2 12310 1794 17240 2198 31356 867 0,97 0,67 
3 11982 1754 17611 2132 31356 818 0,95 0,68 
4 12252 1784 17313 2198 31356 849 0,96 0,67 
5 12612 1840 16897 2217 31356 823 0,97 0,66 
6 12135 1721 17489 2241 31356 847 0,94 0,68 
7 12426 1768 17154 2151 31356 831 0,96 0,67 

TABLE  F.11: SUMMARY TABLE SCENARIO 2 , MODEL C 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 12998 2241 13843 2355 29094 962 0,95 0,64 
2 13025 2138 13920 2375 29094 950 0,93 0,65 
3 13144 2242 13693 2396 29094 934 0,94 0,64 
4 13309 2348 13428 2351 29094 887 0,95 0,63 
5 13127 2197 13763 2382 29094 912 0,94 0,64 
6 13213 2302 13568 2420 29094 936 0,94 0,64 
7 13013 2201 13871 2379 29094 941 0,94 0,65 

TABLE  F.12: SUMMARY TABLE SCENARIO 2 , MODEL D 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 13628 1911 13622 2331 29172 1064 0,96 0,64 
2 13439 1931 13791 2334 29172 1098 0,97 0,65 
3 13976 2003 13183 2396 29172 1099 0,96 0,63 
4 13390 1904 13866 2299 29172 1108 0,98 0,65 
5 13267 1812 14083 2272 29172 1084 0,96 0,65 
6 13505 1850 13806 2279 29172 1163 0,96 0,65 
7 13363 1875 13925 2257 29172 1128 0,96 0,64 

F.3.2 OT UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.29: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL A 
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FIGURE  F.30: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL B 

 
FIGURE  F.31: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL C 

 
FIGURE  F.32: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL D 
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F.3.3 WARD UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.33: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL A 

 
FIGURE  F.34: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL B 

 
FIGURE  F.35: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL C 
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FIGURE  F.36: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 2, MODEL D 

F.3.4 TOTAL OVERTIME 

 
FIGURE  F.37: TOTAL OVERTIME SCENARIO 2, MODEL A 

 
FIGURE  F.38: TOTAL OVERTIME SCENARIO 2, MODEL B 
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FIGURE  F.39: TOTAL OVERTIME SCENARIO 2, MODEL C 

 
FIGURE  F.40: TOTAL OVERTIME SCENARIO 2, MODEL D 

 



40 
 

F.3.5 OVERTIME PER OT 

 

FIGURE  F.41: OVERTIME PER OT SCENARIO 2, MODEL A 
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FIGURE  F.42: OVERTIME PER OT SCENARIO 2, MODEL B 
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FIGURE  F.43: OVERTIME PER OT SCENARIO 2, MODEL C 
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FIGURE  F.44: OVERTIME PER OT SCENARIO 2, MODEL D 
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F.4 SCENARIO 3 

F.4.1 SUMMARY TABLE 

TABLE  F.13: SUMMARY TABLE SCENARIO 3, MODEL A 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 15327 2934 13233 2569 31512 768 1,02 0,63 
2 15514 3003 12980 2643 31512 761 1,04 0,62 
3 15686 3103 12702 2700 31512 747 1,04 0,62 
4 15834 3200 12455 2743 31512 743 1,06 0,62 
5 15300 2931 13267 2609 31512 772 1,02 0,63 
6 15519 3009 12969 2655 31512 743 1,03 0,62 
7 15712 3063 12716 2651 31512 723 1,03 0,62 

TABLE  F.14: SUMMARY TABLE SCENARIO 3, MODEL B 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 15477 2807 13053 2624 31356 753 1,03 0,62 
2 15861 2963 12513 2671 31356 783 1,02 0,61 
3 16556 3191 11590 2778 31356 690 1,06 0,61 
4 16372 3125 11840 2707 31356 740 1,05 0,62 
5 16450 3117 11771 2704 31356 724 1,05 0,60 
6 16738 3288 11317 2826 31356 710 1,07 0,60 
7 16308 2996 12036 2767 31356 729 1,05 0,61 

TABLE  F.15: SUMMARY TABLE SCENARIO 3, MODEL C 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 17246 3845 7985 2977 29094 632 1,00 0,58 
2 17040 3725 8310 2905 29094 637 1,00 0,58 
3 16783 3683 8608 2874 29094 695 0,99 0,59 
4 16838 3640 8601 2843 29094 717 0,99 0,58 
5 16589 3511 8982 2888 29094 727 1,00 0,59 
6 16894 3700 8482 2895 29094 706 1,00 0,59 
7 17494 3909 7674 2979 29094 681 1,01 0,58 

TABLE  F.16: SUMMARY TABLE SCENARIO 3, MODEL D 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 18121 3550 7487 2971 29172 841 1,04 0,57 
2 17817 3410 7929 2917 29172 829 1,04 0,58 
3 17746 3472 7937 2856 29172 831 1,05 0,58 
4 18151 3606 7396 2958 29172 844 1,04 0,58 
5 17490 3258 8409 2875 29172 830 1,04 0,59 
6 17508 3282 8367 2780 29172 901 1,04 0,58 
7 17845 3405 7904 2848 29172 876 1,04 0,57 
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F.4.2 OT UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.45: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL A 

 
FIGURE  F.46: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL B 

 
FIGURE  F.47: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL C 
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FIGURE  F.48: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL D 

F.4.3 WARD UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.49: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL A 

 
FIGURE  F.50: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL B 
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FIGURE  F.51: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL C 

 
FIGURE  F.52: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 3, MODEL D 

F.4.4 TOTAL OVERTIME 

 
FIGURE  F.53: TOTAL OVERTIME SCENARIO 3, MODEL A 
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FIGURE  F.54: TOTAL OVERTIME SCENARIO 3, MODEL B 

 

FIGURE  F.55: TOTAL OVERTIME SCENARIO 3, MODEL C 

 

FIGURE  F.56: TOTAL OVERTIME SCENARIO 3, MODEL D 
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F.4.5 OVERTIME PER OT 

 

FIGURE  F.57: OVERTIME PER OT SCENARIO 3, MODEL A 



50 
 

 

FIGURE  F.58: OVERTIME PER OT SCENARIO 3, MODEL B 
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FIGURE  F.59: OVERTIME PER OT SCENARIO 3, MODEL C 
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FIGURE  F.60: OVERTIME PER OT SCENARIO 3, MODEL D 
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F.5 SCENARIO 4 

F.5.1 SUMMARY TABLE 

TABLE  F.17: SUMMARY TABLE SCENARIO 4, MODEL A 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 17006 3469 11019 2853 31512 783 1,06 0,58 
2 17849 4018 9627 3050 31512 699 1,09 0,56 
3 17615 3778 10099 3018 31512 738 1,07 0,57 
4 17764 3819 9913 3015 31512 697 1,08 0,56 
5 17316 3612 10567 2921 31512 711 1,06 0,57 
6 17310 3654 10536 2961 31512 721 1,06 0,58 
7 17836 3923 9737 3020 31512 687 1,07 0,56 

TABLE  F.18: SUMMARY TABLE SCENARIO 4, MODEL B 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 17984 3847 9508 2998 31356 727 1,07 0,56 
2 18179 3838 9324 3008 31356 699 1,08 0,57 
3 17362 3559 10423 2916 31356 750 1,06 0,58 
4 18679 4182 8479 3118 31356 686 1,11 0,56 
5 18214 3842 9287 3037 31356 717 1,09 0,56 
6 18083 3719 9540 3058 31356 726 1,08 0,56 
7 18390 4008 8946 3117 31356 719 1,09 0,56 

TABLE  F.19: SUMMARY TABLE SCENARIO 4, MODEL C 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 18938 4577 5561 3209 29094 563 1,02 0,53 
2 18935 4571 5571 3139 29094 613 1,02 0,52 
3 18706 4418 5952 3134 29094 621 1,02 0,54 
4 18364 4218 6497 3064 29094 638 1,01 0,54 
5 19232 4697 5151 3203 29094 586 1,03 0,52 
6 18561 4305 6217 3134 29094 668 1,02 0,54 
7 18552 4375 6155 3080 29094 636 1,02 0,54 

TABLE  F.20: SUMMARY TABLE SCENARIO 4, MODEL D 

Run 
Successful 
Surgeries 

Canceled Surgeries 
(OT Unavailability) 

Canceled Surgeries 
(Ward Unavailability) 

Overtime 
Occurrences 

Total number 
of surgeries 

Times a ward had 
to exceed capacity 

Average 
utilisation OT 

Average 
utilisation ward 

1 19648 4429 5079 3140 29172 774 1,06 0,53 
2 19666 4446 5042 3111 29172 747 1,08 0,52 
3 19891 4482 4783 3215 29172 767 1,06 0,51 
4 19198 4109 5851 3111 29172 780 1,07 0,54 
5 19020 4082 6057 3052 29172 825 1,06 0,54 
6 19734 4459 4964 3106 29172 780 1,07 0,52 
7 19361 4197 5602 3101 29172 810 1,06 0,53 
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F.5.2 OT UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.61: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL A 

 
FIGURE  F.62: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL B 

 
FIGURE  F.63: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL C 
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FIGURE  F.64: OT UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL D 

F.5.3 WARD UTILSIATION ACROSS SCHEDULE CYCLE 

 
FIGURE  F.65: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL A 

 
FIGURE  F.66: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL B 
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FIGURE  F.67: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL C 

 
FIGURE  F.68: WARD UTILISATION ACROSS 28 DAY CYCLE SCENARIO 4, MODEL D 

F.5.4 TOTAL OVERTIME 

 
FIGURE  F.69: TOTAL OVERTIME SCENARIO 4, MODEL A 
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FIGURE  F.70: TOTAL OVERTIME SCENARIO 4, MODEL B 

 
FIGURE  F.71: TOTAL OVERTIME SCENARIO 4, MODEL C 

 
FIGURE  F.72: TOTAL OVERTIME SCENARIO 4, MODEL D 
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F.5.5 OVERTIME PER OT 

 

FIGURE  F.73: OVERTIME PER OT SCENARIO 4, MODEL A 
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FIGURE  F.74: OVERTIME PER OT SCENARIO 4, MODEL B 



60 
 

 

FIGURE  F.75: OVERTIME PER OT SCENARIO 4, MODEL C 
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FIGURE  F.76: OVERTIME PER OT SCENARIO 4, MODEL D 
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