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Abstract

Ever since its invention in the 1930s, photoplethysmography (PPG) is a wide-
spread technique used for health-monitoring. Via illumination of the human skin
with a light source and capturing the light, an estimate of important physiolo-
gical properties such as the heart rate can be made. This is commonly done
with dedicated medical equipment, but studies from the last decade have shown
that the smartphone could also be an adequate sensor, using the flash light and
camera as transmitter and receiver respectively. Small, mobile and off-the-shelf,
the smartphone provides many advantages over the conventional sensor. How-
ever, the quality of the PPG signals measured is a point of concern, as these
could lead to incorrect estimates and several challenges need to be addressed.

Firstly, user movement disturbs the contact area between the skin and sensor,
introducing distortions in the PPG signal. Especially subtle motion artifacts like
finger contact pressure impact the PPG signal quality. Secondly, the smartphone
camera has a wide range of settings that can be used, but a proper analysis was
lacking in literature. Thirdly, recent research has shown that PPG signals from
an individual are unique. There is no common morphology. This means that
algorithms developed for PPG need to account for unknown characteristics of
PPG signals. Fourthly, analysis on PPG signals from the smartphone is mainly
done offline and as such, a real-time implementation is desired.

This thesis introduces a smartphone application that tackles these challenges
and provides PPG signals of high quality. A real-time multi-stage PPG qual-
ification pipeline combined with a pulse segmentation algorithm is proposed.
Furthermore, analysis of the camera settings and finger detection algorithm res-
ulted in PPG signals with 12.63% higher quality than a dedicated PPG sensor.
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Preface

The human body is more ‘talkative’ than most people know. There are so
many things that can be inferred by simply listening, looking and measuring
the signals it produces. All that is needed, is a method to detect these signals,
which in this day and age is possible for anyone with the right tools. Especially
in a world where monitoring our health has become important to prevent rather
than cure an illness. This forms the basis of this thesis, a beautiful fusion
of biology and technology. However, the available tools are expensive or offer
limited quality, which hinders further research. The great musical minds of the
previous centuries were all limited to the same set of instruments, yet composed
many different pieces that are still played today. The smartphone in the 21st

century is what these classical instruments were in the past: tools accessible to
many people such that only greatness can ensue. I hope to support people in
achieving their goals with the system I have developed.
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for all the guidance he has provided me within the past 11 months. Secondly,
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face-to-face meetings and later online meetings, I have learned a lot and hope I
have returned the favor. Next, I would like to thank the people of our group, for
the high-level weekly discussions we held. I would also like to thank my dearest
brother, Maksym, for his valuable input and support during my research and
thesis writing.

Finally, I would like to thank my family for their unconditional support and
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Chapter 1

Introduction

The introduction of the first smartphone in 2007, the iPhone, would revolution-
ize the world. Its ease of use, high mobility and compactness, while packing
good computational performance made its applications endless, without even
mentioning the large number of sensors embedded into the device. Many types
of sensors such as cameras, accelerometers, gyroscopes, thermometers, air hu-
midity sensors, barometers, fingerprint sensors, compass, you name it and the
smartphone has it. Besides the original intent of these sensors, such as cameras
for photography, their applications are also extended to other domains. Accel-
erometers and gyroscopes are used for e.g. steering in racing games or counting
steps, the microphone can be used to interact with the device for voice command
or speech-to-text, but for this Master thesis, the camera is the point of focus as
it can be used for more than only photography.

In the 1930s, a method was developed for obtaining the heart rate. For this
method, a light source is placed on a part of the skin, usually the fingertip, and
is illuminated, whereafter a photoreceiver next to the light source captures the
remainder of the light after absorption due to the skin and underlying tissue.
The idea was that, as blood pumps through the finger at the rate of our heart
beat, the amount of light being absorbed and reflected would change at the
same rate, which is observed by the photoreceiver. This method is called Pho-
toplethysmography, abbreviated as PPG. This simple yet elegant method can
also be used with a smartphone, which was discovered by researchers in 2010.
The smartphone is equipped with a camera (the photoreceiver) and a flash light
(light source) that is often located next to the camera. By placing the finger
over the camera and flash light, PPG can be performed similarly as was done
at the time of its discovery. Besides the heart rate, several other health related
features such as blood pressure, glucose level, blood oxygen and respiration can
be extracted from the PPG signal.

Another important discovery related to PPG is the shape of the signals that
are extracted. Essentially, a PPG signal consists of a continuous repetition of
the same shape, the pulse, at the same rate as the heart rate. This shape, called
the pulse waveform, has a somewhat general shape but contains unique features
for individuals. What this means is that everyone has a slightly different and
unique waveform, which elevates the field of PPG sensing. Not only do health-
feature algorithms have to take this into account, but it also opens up a field not
related to health monitoring, security, since the pulse waveform stays ‘relatively’
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constant over long periods of time. Similarly to other biometric features such
as the fingerprint and iris, the PPG pulse carries information that allows for
authentication/identification of individuals.

However, both health-monitoring and security applications need clean PPG
signals in order to function correctly. Obtaining clean PPG signals is chal-
lenging. Medical measuring devices at hospitals use expensive but extremely
accurate sensors, whereas the smartphones use off-the-shelf equipment, using
sensors that are not initially intended for health measurements and often suffer
from noise.

1.1 Motivation

As has been emphasized, the quality of the PPG signal makes or breaks the
application. Several effects play a direct or indirect role in the signal quality.

Known influences are related to motion and noise artifacts (MNAs), such as
body movement, that disturb the contact between camera and measurement
site. The contact pressure between the camera and the finger is often named as
a crucial artifact, but is not properly explored. Originally, medical PPG sensors
use finger-clips to alleviate these movement and pressure variations, but this
is not available for the smartphone. Many studies [49],[4],[7] introduce add-on
devices for the smartphone such as pressure sensors, light sources, photodetect-
ors and more to improve their results, but the addition of hardware completely
defeats the idea of using the smartphone. As such, the first challenge is to de-
velop a system that overcomes these MNAs using only the bare smartphone. Here
the focus is on MNAs that are more subtle, such as finger pressure, which are
hard to regulate for users by themselves. A user can be instructed to not move
during measurements, but still minor movements will be present and controlling
the level of applied finger pressure is difficult.

Another challenge is related to the smartphone itself. There are so many
different devices, all with different cameras and hardware that can affect the
PPG signal extraction process. Furthermore, there is such a wide range of
possible camera settings that can be used, but that is not properly explored in
literature. Thus the impact of the camera settings on the PPG signal needs to
be explored.

The third challenge was already introduced, which is related to the uniqueness
of the pulse waveform for individuals. The system is developed for unknown
users of whom no data is available, yet the developed algorithms need to be
robust and work for any person. An extensive study on the pulse waveform is
required to understand what general features are shared by all individuals.

Fourthly, the system needs to operate in real-time. Many studies in literature
record videos of the PPG signal with a smartphone, transfer the video to a PC
and process it in an offline environment to evaluate their methods. However,
these signals are obtained under circumstances that do not mimic the situations
for which the method is intended.

To conclude, the goal of the system is to obtain clean PPG signals under real-
time conditions. In order to achieve this, the aforementioned challenges need to
be overcome.
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1.2 Contributions

In this thesis, a real-time smartphone application is proposed that tackles the
aforementioned challenges. Besides building on existing studies, the following
contributions are made:

• An analysis of the available smartphone camera settings and their impact
on the PPG signal (Chapter 5).

• A fingertip detection method to automate the signal extraction process
(Section 6.1).

• A pulse segmentation algorithm to extract the cardiac pulses from the
PPG signal (Chapter 7).

• A pulse qualification algorithm to improve the pulse quality and discard
corrupt pulses (Chapter 8).

• A real-time smartphone application that implements all the above.

1.3 Thesis Organisation

In order to understand the developed system, first an understanding of the con-
cepts related to PPG is required, which will be discussed in Chapter 2. Chapter
3 discusses the related methods developed in literature. Then, in Chapter 4, an
overview of the developed system and smartphone application is given. Here-
after, the modules are explained in detail in the following chapters, starting
with the evaluation of the different possible camera settings in Chapter 5. This
is followed by Chapter 6, covering the first evaluation of the quality of the PPG
signal as it comes from the camera. Hereafter, Chapter 7 discusses the extrac-
tion of the PPG pulses from the signal which then need to be tested on their
quality, covered in Chapter 8. In Chapter 9 the proposed system is evaluated,
followed by Chapter 10 which summarizes the observations, conclusions and fu-
ture work. Appendix A goes into detail on the image processing pipeline, which
is related to the camera settings of the smartphone.
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Chapter 2

Background

This chapter serves as an introduction to the fundamental concepts needed to
understand the proposed system. The first section (Section 2.1) describes the
different aspects related to the generation of the PPG signal, the different types
of applications and how it has been used since its discovery. Hereafter, the
physiological meaning of the contents of the PPG signal are discussed (Section
2.2). The chapter is concluded with a comparison of PPG signals obtained from
the green and red light spectrum in Section 2.3, with a revision of the PPG
model as it has been known to date.

2.1 PPG signal

2.1.1 Introduction

Photoplethysmography (PPG) is a technique where changes in blood volume
in the micro-vascular tissue bed can be monitored via an optical light source
and detector. Light in the human body is transmitted, reflected or absorbed,
depending on multiple factors such as the properties of the different skin layers,
the presence of capillaries, arteries or veins. PPG has been around for a long
time, ever since the term has been coined by A.B. Hertzman in 1937 [16]. The
relationship between blood volume change and light had already been demon-
strated in 1935 by K. Matthes, father of the pulse oximeter [36], but the actual
term PPG as it is used today originates from Hertzman’s work. Hertzman
demonstrated that the PPG signal is divided into two components: A relatively
static (DC) component and a dynamic (AC) component due to blood volume
changes in the arteries. As the heart pumps blood into the arteries, the blood
volume at a point under observation changes. This is illustrated with figure
2.1. The blood volume present at a certain time, is inversely proportional to
the amount of light received at the detector. This is because when more blood
is present, it absorbs more light and thus less light is transmitted, scattered or
reflected to the detector.

Over decades of research, the principles of PPG have stayed the same, but
the sensor implementations have changed continuously. Hertzman used a single
‘pencil flashlight bulb’ and photoelectric cell [17]. Matthes [36] used two light
sources with green and red wavelengths to obtain information about the blood-
oxygen levels. Later works by T. Aoyagi in 1972 [43] demonstrated that com-
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Figure 2.1: The differentiation of the AC and DC components of the
PPG signal, together with their sources of origin [47].

paring the difference in blood absorption by red and infrared light would prove
to be more accurate, which became the foundation for commercially-used pulse
oximeters as they are known today. In 2010, Pelegris et. al. proposed the first
PPG heart rate detection method using a smartphone [37]. After this discovery,
a surge in interest for mobile PPG sensing was seen, but several challenges had
to be overcome.

From the PPG signal, information can be extracted that can give an estimate
of a wide range of clinical features such as heart rate, respiration and blood oxy-
gen levels but also helps in the detection of arterial diseases or even aging. The
medical applications of PPG have been extensively studied, but more recently
other types of applications such as security have become popular. Liu et. al.
showed that the biometric information carried by the PPG signal can be used
to differentiate between people [30]. Although the types of applications vary, a
‘clean’ PPG signal that is noise-free is desired in all cases. If the quality of the
PPG signal cannot be guaranteed, it could have disastrous consequences for the
application.

Since light consists of different wavelengths that interact differently with the
skin and tissue of our human body, an evaluation is required on which light
source and receiver should be used. These transmitter and receiver related
properties will be discussed in the following sections.
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Figure 2.2: Transmissive (left) and reflective (right) PPG signal meas-
uring modes [48].

2.1.2 Reflective and Transmissive Modes

The light emitted by the transmitter propagates through the skin, tissue and
blood of the human body and is either reflected, absorbed or transmitted. There
exist two modes for capturing the light after it has propagated: reflective mode
and transmissive mode. In reflective mode, the transmitter and receiver are on
the same side of the skin and the receiver observes the light that has passed
through the human body and is reflected back to the skin surface. In trans-
missive mode, the transmitter and receiver are opposite of each other, such
that the receiver mainly observers the light capable of propagating through the
human body. Figure 2.2 showcases both applications. Transmissive mode is
usually limited to thin areas such as fingers or earlobes due to the fact that
large amounts of tissue would absorb all light. Reflective mode on the other
hand can be applied to any body area and has the additional advantage of be-
ing on the same side, which means they can be incorporated in a single device.
An important dual relationship exists between the chosen mode and wavelength
for the light emitter. In transmissive mode the light needs to penetrate e.g. the
entire finger, which can only be accomplished with a large wavelength such as
infrared (IR) light or with a powerful light source.

2.2 Physiological Interpretation Cardiac Pulse

As has been mentioned previously, the captured PPG signal represents the volu-
metric blood changes within the veins and arteries of the finger. These changes
in blood volume are a result of the systolic and diastolic pressure, exerted by
the heart as it pumps. Since the pumping of the heart happens periodically
with the same sequence of physiological steps, it is reflected in the PPG signal
obtained by the smartphone camera. The sequence of physiological steps can
be fitted in a single period: the cardiac pulse or cycle. These cardiac pulses
contain valuable information. It is important to understand the meaning and
origin of the captured PPG signal. Figure 2.3 identifies the key characteristics
of a single pulse.

At the start of a cardiac pulse, the heart pumps and the blood-volume rapidly
increases up until a maximum has been reached: the systolic peak. Hereafter,
the blood-volume slowly declines until the dicrotic notch. At this moment, the
pressure wave that accompanied the blood pump is reflected back and the blood-
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Figure 2.3: (Left) Theoretical PPG pulse with characteristics. (Right)
PPG pulse extracted from the smartphone camera.

volume slightly increases till the diastolic peak. After the reflected pressure wave
declines, the blood-volume decreases accordingly, until a minimum is reached.
The process is repeated with the next heart-pump.

An important aspect of figure 2.3 is that the left pulse represents the blood
volume present at the measurement location over time. This is the general
morphology used in literature. In contrast, the right figure shows a PPG signal
captured with a smartphone camera. In this case, the PPG signal represents
the averaged pixel intensity (PI). At first sight, it seems that the PPG signal
is mirrored. Recall the different physical quantities the left and right images in
figure 2.3 represent. As the heart pumps blood into the aorta, blood will flow
into the finger, which is being observed. As the blood volume increases, more
light will be absorbed. This is visible in the right figure where the pixel intensity
decreases. Once the blood starts flowing and the blood volume decreases, the
pixel intensity increases which confirms our hypothesis that blood volume and
pixel intensity are inversely related. This is a fundamental aspect to keep in
mind when considering the physiological properties of the PPG signal. Some
papers, such as [49], incorrectly identify the peaks in the captured PPG signal
from the smartphone camera as systolic or diastolic, because they do not account
for the relation between pixel intensity and blood volume.

2.3 Red and Green Wavelength Comparison

As was mentioned in Section 2.1 all that is needed for obtaining PPG signals
is a light emitter and receiver. Furthermore, a wide range of wavelengths is
available that can be used for the light emitter. Two important factors play a
role in the wavelength selection:

• Penetration depth

• Skin color

The red wavelength penetrates more deeply than green, as it is a longer wave-
length, but also due to lower absorption by skin and tissue. The skin and tissue
consist of multiple layers with arteries, veins, arterioles and capillaries, that all
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have an effect on the PPG signal [31]. Red light reaches these deeper layers and
thus contains much information whereas green light only reaches the superficial
layers. Skin color is mainly determined by a chromophore called melanin which
is a strong absorber of green light. Darker skin contains more melanin, and
thus very little light reaches the blood vessels, whereas red light is much less
absorbed [29]. Each wavelength carries different pieces of information.

That’s why medical equipment such as pulse oximeters use specific LEDs
with the desired wavelengths for e.g. red (670nm) and IR (779nm) light. After
scattering and reflection, the light detector measures the changing absorbance
at each of the wavelengths over time. By comparing the PPG signals, the
blood volume change of only the arteries can be deduced, excluding the blood
volume changes in the capillaries and arterioles, and constant factors such as
skin, muscle, bone and fat.

In the smartphone implementation of PPG signal extraction, things work
differently. Firstly, there is a (usually white) LED with a wide range of emitted
wavelengths, differing per device. Secondly, the camera is used as a detector and
the captured light is mapped to three channels with a range of [0-255] values:
the red, green and blue (RGB) channels. At the time of the introduction of the
smartphone, multiple studies have tried to implement and design methods to
detect heart rate, measure blood pressure, blood oxygen etc. During this time,
a comparison was made for the different PPG signals obtained from each RGB
channel. Some studies use Signal-to-Noise Ratios (SNR) [35] or AC-DC ratios
[34] to identify the best performing channel. They reported the green channel
as the best channel without accounting for the information each channel carries
nor giving an explanation for scoring better on their defined metric. Due to the
limited penetration of the green light, few disturbances are collected, resulting
in a ‘good’ SNR value. For the red wavelength, the signal reaches much deeper
and captures more information, but is more ‘chaotic’ and thus a higher signal
value is accompanied with more noise. Table 2.1 summarizes the observations
with regards to used wavelengths.

Wavelength Penetration depth SNR Information captured

Red High Low Large
Green Medium High Small
Blue Low High Small

Table 2.1: Red light penetrate deeper and thus obtains more informa-
tion, yet is more chaotic and scores low on SNR metrics.

For heart rate measurements, only the peak in the PPG signal is of interest,
which means that the remainder of the signal can be as noisy as possible, as
long as the peaks can be extracted. Furthermore, any other information related
to the skin, vessel, bone or muscle structure is simply irrelevant, which is why
the earlier smartphone PPG methods used green light.
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Figure 2.4: Origin of the PPG waveform for green light [23].

A fundamental paradox remains with the PPG signal obtained from the green
channel, since it cannot reach the arteries yet produces a ‘stronger’ PPG signal.
This paradox was explored by [23], where they proposed a new physiological
model of the green PPG signal, displayed in figure 2.4. Recall from Section
2.2 that the blood is pumped into the arteries during the systole phase and as
such the blood volume at the measurement site increases, expanding not only
the diameter of the artery, but also the skin as can be seen in 2.4(b). After
the blood flows out of the artery it decreases in size. The PPG signal obtained
from the green channel does not originate from these blood-volume pulsations
because of the short penetration. In the case of smartphone PPG signal ex-
traction, the finger is pressed against the lens and the situation as is illustrated
in figure 2.4(c) occurs. Due to the pressure from the blood during systole and
the external pressure from the finger, the capillaries situated in the dermis are
compressed. Due to this compression, the density of the capillaries changes and
as such the absorption and scattering coefficients change. Thus the PPG signal
captured by the green channel is an indirect result of the pulsating pressure
of the arteries and external pressure of the finger [23], which explains why the
heart rate can be derived.

In conclusion, the red channel carries a lot of information with regards to the
blood-volume changes in the arteries but also the structure of the human tissue,
blood vessels, bone, muscles and fat. These are all necessary for applications
such as identification and/or authentication via PPG. Therefore, the remainder
of this thesis focuses mainly on the red channel.
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Chapter 3

Related Work

This chapter serves as a guide to understand the relevance and contributions of
this thesis to the mobile PPG sensing field. First, Section 3.1 gives an overview
of all the different types of studies that have been done, and the different aspects
on which they differ. Then in Section 3.2 a more detailed overview is given of
the specific sub-field that this thesis fits in and all the comparable state of the
art (SoA) work that has been done. The relevant studies are shortly discussed
and their shortcomings are listed, which this thesis tries to tackle and improve.
Throughout this thesis, these studies should be kept in mind, because some
of them are used as benchmarks to quantify the improvement of the methods
developed here.

3.1 Related Studies that Use PPG

Because photoplethysmography (PPG) is so simple to apply, you only need a
light source and a photoreceiver, its applications are wide-spread and there are
multiple ways to classify them. Some of these aspects are inter-dependent, but
for now they are considered as separate categories. The first few aspects are
related to sensing itself, starting with the application method. PPG signals
can be obtained in a remote setting, for instance using a camera or a webcam
that is monitoring someone’s face [38]. The other method is using a PPG sensor
set-up that requires contact with the person [4],[49],[7],[50]. Since both methods
differ greatly they also offer different challenges. For example, contact-based
methods need to consider the pressure and movement between sensor and skin,
whereas remote-based methods need to consider ambient light and distance or
even privacy given that it is essentially camera monitoring.

The second aspect is related to the photoreceiver. Originally, photodiodes
were used to detect changes in light intensity, which are converted to an electric
current [16]. Later, the camera present in smartphones or webcams became an
interesting alternative, since they are omnipresent in the current digital era [37].
The challenge here, is that many factors need to be considered regarding the
extraction and the quality of PPG signals. Instead of an electric current, pixel
values in consecutive images are evaluated. There are many of them as opposed
to one in the photodiode case and each pixel measures a different light intensity,
which makes combining their values challenging. Furthermore, the large number
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Figure 3.1: Classification of the PPG research field with aspects relev-
ant to this thesis highlighted in green.

of different cameras can affect the PPG sensing differently, making it difficult
to develop a single method that works for any device.

The third property is related to the used light source. The skin and underly-
ing tissue interacts differently based on the wavelength of light that is projected
on to it. It determines the penetration depth, rate of absorption, reflection or
transmission and as such, the information collected by the photoreceiver is light-
spectrum dependent. To tackle this, conventional medical equipment uses light
sources with a single dedicated wavelength such as red or infra-red. However,
smartphones use the flash light usually located next to the back-end camera,
which is normally white and consists of a wide range of unknown wavelengths
with different power distributions. Similarly to the camera, smartphones are
equipped with different types of flash lights making it challenging to establish a
relationship between light source and photoreceiver. The previously mentioned
light sources are active, whereas there also exist passive light source PPG tech-
niques that use ambient light, but this is limited to remote sensing [38].

Slightly related to the sensor hardware is the fourth property, which considers
the measurement site of the human body where PPG signals are extracted.
Remote sensing techniques are mainly limited to the face and forehead [38],
whereas contact-based methods can be applied to any place of the body although
the PPG signal quality and information differ. The most common methods
measure at the finger [49], wrist [44] or ear [5] as they are located on the
periphery of the human body, are easily accessible and the blood vessels are
located close to the skin surface.

The diagram in figure 3.1 gives a summary of the classification aspects and
highlights the aspects related to this thesis. The focus will lie on contact-based
methods using the smartphone camera and flash to obtain PPG signals from the
finger.
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3.2 Related Smartphone-based Studies

In the sub-field of PPG sensing outlined by figure 3.1, several studies have a
large overlap with the goal outlined in the introduction (Chapter 1), namely
the extraction of high quality PPG signals. Albeit this goal is the same for all
studies, it is not a goal on its own. By having a method that provides high qual-
ity signals, the measurement of physiological features such as heart-rate, blood
pressure and blood oxygen can be more accurately estimated. Other studies
require high quality signals to differentiate between individuals for authentica-
tion and identification methods. As such, the challenge of obtaining clean PPG
signals is the same yet achieved differently due to the application goals being
different. The most important works will be discussed in the following sections
and are divided based on the degree of PPG quality. Trivial physiological fea-
tures such as heart rate estimations are more robust and allow for more noise
and distortion as opposed to advanced features such as blood oxygen or glucose
estimations. The last category is the non-medical variant related to security,
which requires equal or higher quality PPG signals than the advanced physiolo-
gical features. At the end of this chapter, a summary of the most important
studies is presented.

3.2.1 Trivial Physiological Features

The early works on smartphone PPG sensing after its invention in 2010 were fo-
cused on obtaining accurate heart rate estimations [37]. This is most commonly
done via a time or frequency analysis of the PPG signal. For time analysis, the
systolic peaks are identified with a peak detection algorithm. Then, the time
between subsequent peaks is used to estimate the heart rate [41]. For frequency
analysis, a Fast Fourier Transform (FFT) is applied on the PPG signal [37].
The general idea is that the most dominant component in the spectral density
distribution corresponds to the heart rate, as the PPG signal is a repetition of
the same pulse with the same period as the heart rate. Another trivial feature
is the respiration rate, which was also done by [41]. Due to the triviality and
leniency towards noise and distortions, the methods proposed by these studies
cannot be used in more quality-demanding domains. Furthermore, these studies
are from a time when PPG sensing with the smartphone was novel and as such
not everything was properly explored.

3.2.2 Advanced Physiological Features

After the initial studies on the trivial features, more interest was put into imple-
menting methods that obtain other physiological features, normally done with
medical equipment. Examples of these are:

1. Hemoglobin estimations with HemaApp [49] - 2016

2. Blood oxygen level estimations with PhO2 [4] - 2017

3. Blood pressure estimations by Chandrasekhar et. al. [7] - 2018

4. Blood glucose estimations by Zhang et. al. [50] - 2020
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HemaApp is a smartphone application that estimates hemoglobin concentra-
tions by evaluating the PPG signals obtained at different wavelengths, which all
represent different biometric information as was explained in Section 2.1. From
these PPG signals, 5 features need to be extracted and provided to a regression
model (SVM) to produce an estimate of the hemoglobin levels. However, the
authors propose an LED attachment instead of using the flashlight present on
the smartphone, because their method requires IR light (970nm) to function.
Furthermore, some camera settings such as white balance, exposure and camera
sensitivity are only superficially explored and no concrete parameters are given.

Another smartphone application, PhO2 [4], was developed to measure blood
oxygen levels which are referred to as SpO2 levels. PhO2 is very similar to
HemaApp as they also use an attachment for the smartphone and have a com-
plicated algorithm to determine the SpO2 levels. PhO2 recognizes the problem
of using IR light in smartphone applications such as HemaApp, as the flash
light is unable to produce this wavelength. To accomplish this, an attachment
is introduced to differentiate between red light (670nm to 690nm) and near IR
(NIR) light (700nm to 779nm). For this, two optical filters are designed with a
divider that splits the red and NIR light which are then mapped by the camera
to two separate sides of an image. Two separate PPG signals are obtained from
the two areas, representing the red and NIR light intensity respectively. They
use a region of interest (RoI) technique to only select a part of the area for
evaluation, to preserve the quality of the PPG signal. Moreover, PhO2 is one
of the first to propose a finger pressure detection that only uses the information
of the PPG signal. No additional pressure sensors are used and as such their
method will be evaluated in this thesis. On the other hand, evaluation of cam-
era settings is largely neglected, but then again the camera is circumvented by
using the attachment to do the bulk of processing.

The third application that will be discussed is a blood pressure estimation
technique by Chandrasekhar et. al. [7]. Although it also uses an attachment
just like the previous 2 methods, it is quite different. HemaApp mainly focused
on tackling the noisy quality and limitations of the smartphone camera and
flash, which form the camera sensor. PhO2 does the same but also considers
finger pressure as an important factor. Chandrasekhar et. al. completely ignore
the smartphone camera and flash and use a separate PPG sensor, only using
the smartphone to display data. However, they use a force sensor to detect the
finger pressure applied by the user. Via visual feedback, the user is instructed
to obtain an optimal contact pressure. Furthermore, the user is guided in the
placement of the finger by the attachment. These proposed solutions in addi-
tion to the finger pressure detection by PhO2 try to tackle the human related
artifacts.

The previous methods try to overcome the smartphone limitations with a
custom hardware attachment, because the quality of the signal needs to be sim-
ilar to medical devices. This defeats the entire point of using a smartphone,
namely, its ease of use, mobility and ubiquitous presence. By introducing addi-
tional hardware, users need to go out of their way to get this hardware, whereas
smartphone-exclusive based solutions require no additional work from the user
besides downloading the app. The apps can only be used in combination with
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the hardware, which the user is required to carry with them. That is why
Zhang et. al. [50] introduced a method that can differentiate between three
glucose levels, using PPG signals obtained with the bare smartphone camera.
The goal was to achieve the same accuracy as with a regular PPG sensor. They
use an algorithm to detect the presence of a fingertip to initiate measurements
and propose a PPG extraction algorithm that combines information from the
RGB channels in images. By not adding an attachment to improve the sensor
quality, the settings of the smartphone camera become more important than
previously was the case. However, the authors completely neglect the camera
settings to possible boost the PPG signal quality. The consequences of this will
be discussed in 6.1.

3.2.3 Novel Application of PPG

Whereas the previous SoA methods were focused on conventional health mon-
itoring applications, the work here introduce a new field for PPG signal usage.
CardioCam [30] by Liu et. al. proposes a method to identify and authenticate
humans based on their PPG signals. Using large amounts of features extrac-
ted from a PPG pulse, a unique biometric cluster can be created to distinguish
between individuals. The authors of CardioCam use a fingertip detection al-
gorithm to automate the start of measurements. In order to achieve similar
results as with PPG signals obtained from medical devices, they evaluated the
impact of several camera settings. However, CardioCam only records a video
with only two dynamic camera settings: ISO and flash intensity. The other
camera settings such as light exposure or white balanced are locked to unknown
values. There is no explicit mentioning that the system is a smartphone applic-
ation.

3.2.4 Summary

Based on the previously described studies, there seems to be a lack of research
in an area that covers online methods that tackle both the camera sensor and
human artifacts without the usages of attachments. The methods that do not
use attachments have only done superficial research on the camera settings or
operate in an offline setting. The SoA works from this section and the proposed
method in this thesis can then be classified based on these metrics as shown by
table 3.1:

Author Year Description Meth. Attach. Camera
Sensor

Human
Artifact

Wang [49] 2016 HemaApp: Hemoglobin online Yes Yes No
Bui [4] 2017 PhO2: blood Oxygen Level online Yes Yes Yes
Chandrasekhar [7] 2018 Blood Pressure online Yes Yes Yes
Zhang [50] 2020 Blood Glucose offline No Yes No
Liu [30] 2019 CardioCam: Id+Auth offline No Yes Yes
Proposed method 2020 Pulse Qualification online No Yes Yes

Table 3.1: State of the art methods using smartphone PPG sensing.
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Chapter 4

System Overview

This chapter describes the developed system. Firstly, a slight introduction is
required to elaborate on the design choices and system structure in Section 4.1.
Then in Section 4.2 a general overview of the entire system is given. Hereafter,
each module of the proposed system is discussed shortly, whereas the extensive
analysis is reserved for Chapters 5, 6, 7 and 8. The chapter concludes with a
couple of illustrations to showcase the developed smartphone application.

4.1 System Design

In order to understand the design decisions, a revision of the thesis problem is
required. The goal of this thesis is to design a system that operates in real-time
and obtains high quality PPG signals. As the related studies have shown in
Section 3.2, two important challenges need to be overcome:

1. Camera sensor configuration

2. Human related artifacts

The former consists of all factors related to the light source, photo-receiver and
the sensing of the blood volume change via light intensity change. Since the
smartphone hardware will not be changed as was done in prior SoA studies, the
solutions proposed in this thesis are software-based and related to the settings
of the smartphone camera. The idea is that there exists an optimal camera
sensor configuration for obtaining clean PPG signals. The human related arti-
facts affect the quality of the PPG signal by introducing distortions. Examples
of these influences are body motions, finger movement, finger placement, finger
pressure and respiration. A repeating pattern in these influences is that they are
all related to motion or displacement of the contact between sensor and finger.
Some of these motion artifacts can be prevented by instructing the user before
measurements. Finger pressure however, is an artifact that is unconsciously
applied by the user and is hard to self-regulate. As such, mechanism need to
be in place to detect finger pressure and inform the user to increase or decrease
this pressure.

Up to this point, the importance of clean PPG signals is clear but how the
degree of quality can be measured is not discussed. As was stated before, clean
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Figure 4.1: The three qualification stages proposed in the system.
From top to bottom: 1) Finger pressure detection with frequency
analysis of the entire PPG signal part. 2) Qualification using the
peaks & valleys after pulse segmentation. 3) Qualification of the
single pulses.

PPG signals are a means to an end and only improve the performance of ap-
plications. A framework is required to quantitatively measure the PPG signal
quality. The PPG signal consists of a repetition of cardiac pulses as was shown
in 2.2 and the information provided by these pulses is used. However, to obtain
these pulses from the PPG signal, a segmentation algorithm is required. There
exist several algorithms for pulse segmentation and at the time of writing, re-
search on this topic continues. Moreover, these methods need to be able to
handle and detect corruption of the PPG signal.

Another important design choice is related to time and computing power as
they are a precious resources that should be conserved. As such, the testing
of the signal quality is spread out over the several modules in the system. Via
this way, corrupt signals can be detected at an earlier stage, preventing the
continuation of processing a corrupt signal. This spread of signal qualification
over multiple modules has a structure to it, illustrated by figure 4.1. After a
couple seconds of PPG signal generation, first the finger pressure is checked by
evaluating the generated PPG part, shown by stage 1. Then if a good finger
pressure is detected, the PPG signal can be segmented which results in a couple
PPG pulses. A PPG pulse consists of a start, end and systolic peak. The start
and end of a pulse are always the lowest values and will be called ‘valleys’.
Qualification can be done using only these three features of all the identified
pulses in the PPG part shown by stage 2. The entire PPG part is discarded
if this stage is not passed. The last step, stage 3, is the actual pulse qualific-
ation. Here, all data of the pulse is used to check whether the pulse is clean
or corrupt. This is in contrast with the previous qualification stage which used
only three features of the pulse and discards all pulses if the PPG part is corrupt.
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Figure 4.2: The subsequent stages that encompass the PPG processing
system inside the smartphone.

4.2 System Diagram

With the different design choices in mind, an illustration of the proposed system
is shown in figure 4.2. First, the camera settings related to image capture are
configured. Examples of these settings are frame rate, image resolution, light
exposure and white balance which will be extensively discussed in Chapter 5.
After an image is captured, a PPG value needs to be constructed based on
all the pixel intensity values in the image, which is done by the PPG Signal

Extraction module. Only the red color channel of a pixel is used for the
construction of the PPG value. If no fingertip is present the system will simply
ignore the signal and wait for the next image. After 4 seconds of signal capture
and PPG value extraction, the resulting PPG signal is then passed on to the Raw
PPG Analysis stage (Chapter 6). Here, the PPG signal is filtered, interpolated
and the signal is centered around the horizontal axis. Then, a frequency analysis
takes place to determine the finger pressure. Only if the finger pressure is
qualified as ‘good’, the PPG signal is passed to the Pulse Segmentation stage
(Chapter 7). Here, the systolic peaks are identified, where each peak corresponds
to one PPG pulse. Then, based on the peaks, the start and end of a pulse are
identified where the latter two are called ‘valleys’. Based on the peaks and
valleys in the 4 second PPG signal, some additional qualification can be done
by evaluating the amplitude and time distances of the peaks and valleys. The
amplitude distance between a valley and peak represents the pulse amplitude
whereas the distance between subsequent valleys or peaks the pulse period.
This qualification and segmentation method uses thresholds that are adaptively
changed over time to account for variations in e.g. heart-rate. The entire PPG
signal is discarded if it fails to pass this qualification stage. In case of a pass,
the PPG pulses segmented in the previous stage are then passed 1-by-1 to the
Pulse Qualification stage (Chapter 8). Here, the pulses are normalized on a
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(a) Interface during PPG signal ex-
traction.

(b) Plot of all collected and quali-
fied pulses for a user.

Figure 4.3: Screenshots of the smartphone application.

time and amplitude scale such that they can be compared independent of heart
rate and amplitude. This is followed by the actual pulse qualification which
consists of two parts:

1. Improve the PPG pulse quality

2. Detect corrupt pulses

Finally, the pulses labelled as ‘corrupt’ are discarded whereas the ‘clean’ pulses
are stored in a database.

The system is implemented on an Android smartphone. Figure 4.3 shows two
screenshots of the smartphone application. Figure 4.3(a) shows a preview of the
camera, real-time statistics, finger pressure feedback and a real-time plot of the
extracted PPG signal. Figure 4.3(b) shows the aggregated normalized pulses
for an individual with specific camera settings.
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Chapter 5

Camera Settings

Section 5.1 introduces PPG metrics that will be monitored to track the effects
of the camera settings. Then, the different camera settings available in modern
smartphones to configure the camera sensor will be discussed in Section 5.2.
Thereafter, the relationship between the different settings and the PPG signal
is evaluated in Section 5.3. As to why only these settings have been considered
is discussed in appendix A.

5.1 PPG Evaluation Metrics

The first metric is the PPG amplitude of the PPG waveform as it is captured
over time. The importance of this property is related to Signal-to-Noise-Ratios
(SNRs). Recall that the pixel intensities in a frame are averaged, which pro-
duces a value between [0-255]. As the blood volume and the captured red color
change over time, the values fluctuate between a maximum and a minimum
pixel intensity value as can be seen in figure 5.1. The distance between upper
and lower envelope in figure 5.1 is referred to as the PPG amplitude.

Figure 5.1: A raw PPG signal with upper and lower envelopes. The
line that propagates through the middle of the signal represents the
pixel offset.

The second metric is the pixel offset, which defines the level along which
the PPG waveform propagates in time and can be approximated with the lower
and upper envelope. The physical meaning behind the value itself is related to
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how bright or dark the captured images are. Section 5.2 will discuss multiple
camera settings that influence the brightness of the captured frames, which can
be tracked via this metric.

The third and last property is related to the PPG waveform morphology.
Since the morphology of a cardiac pulse is used to identify or authenticate indi-
viduals, it is crucial to establish whether the camera settings have any influences.
However, at this stage a quantitative evaluation is very complex. The quantit-
ative evaluation of the individual pulses from the PPG takes place in chapter 9,
as it needs a segmentation algorithm which will be covered in chapter 7.

5.2 Smartphone Camera Settings

With the introduction of the smartphone, large scale improvements have taken
place with regards to photography and video recording. Part of these improve-
ments is related to the customizability of the camera settings, which tries to
mimic the features of the analog cameras. The influences of these settings on
the PPG signal need to be explored. The following sections discuss the relev-
ant camera settings related to recording, light exposure and image-processing
techniques.

5.2.1 Video Recording

Recording encompasses the settings related to the actual recording of the video
but unrelated to the color of the pixels. Two main factors are the number of
frames collected for the video and the number of pixels in a single frame.

Frame Rate

The PPG signal contains important features that need to be captured, such as
the start and end of cycles, systolic and diastolic peaks, and dicrotic notches. A
high frame rate is desired, but smartphones come with a maximum supported
frame rate. A study by Fujita et. al. [13] showed that a frame rate between
[30-60Hz] resulted in comparable PPG signals as for frame rates above 60Hz.
As such, a frame rate equal or above 30fps is desired. Another important aspect
here, is that the frame rate is an approximation. In reality, the time between
each frame suffers from a slight variability, called frame rate jitter. Since this is
mainly device and application dependent, an evaluation is only performed for
the used smartphone, a Motorola Moto G7 Plus, in section 5.3.

Frame Resolution

Before frame resolution can be discussed, first an understanding of the camera
sensor is required. A digital smartphone camera consists of arrays of light-
sensitive areas which are called ‘photosites’. These photosites are often in-
correctly called pixels, which causes confusion when used for expressing image
resolution. The number and arrangement of these photosites is fixed and so is
the sensor resolution since they are physical elements. These photosites capture
light entering the camera lens and quantifies a value for the light intensity. The
information from these photosite can then be mapped to pixels to create an
image. The frame resolution is variable as it determines how many photosites
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are used for the construction of a single pixel value. The sensor resolution varies
on a per device-basis and is uncontrollable by the user, whereas the frame res-
olution is standardized and can be changed. Although the details of each PPG
extraction method vary, the main component remains the same: the averaging
of pixel intensities in a Region-of-Interest (RoI) within the frame, which will be
discussed in section 5.2.4. Furthermore, an analysis is required for the bene-
fit of large resolutions, which come at the cost of added computational weight
(section 5.3).

5.2.2 Light Exposure

This section covers the different settings affecting pixel intensity values during
frame generation. Depending on the type of smartphone, different settings re-
lated to light exposure can be adjusted manually. The settings related to light
exposure are usually introduced as the ‘exposure triangle’ due to their interde-
pendent interaction with light.

Figure 5.2: Exposure triangle demonstrating the relationship between
ISO, shutter speed and aperture aspects [20].

As is shown with figure 5.2, the exposure triangle consists of ISO, shutter
speed and aperture, where each parameter will be explained in more detail
in the following sections. The combination of these settings affect the PPG
amplitude and pixel offset and will be evaluated in section 5.3.

Flash Light LED

Most smartphones are equipped with a flashlight LED, but because of the
wide range of smartphones available, the used flash lights differ greatly. The
wavelength and intensity of the emitted light play an important role in capturing
the PPG signal as was shown in chapter 2. Unfortunately, almost all Android
devices are hardware-limited with respect to the flash light usage and as such its
influences cannot be controlled and have to be taken into consideration during
development.
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ISO

ISO stands for ‘International Organization of Standardization’ and expresses
the digital camera’s sensitivity to light. ISO numbers generally range from [100-
6400] (unit-less) and represent low to high sensitivity to light. This parameter
allows video recording in darker areas by using a higher ISO value, but comes
with a trade-off that the video would contain more grain and digital noise,
degrading the quality of the video or image.

Shutter Speed

The shutter speed describes the amount of time that the shutter is open, during
which the photosites are exposed to light, expressed as a fraction of seconds,
e.g. 1/200 s. The longer the shutter is open, the more light is exposed to the
photosites and the brighter the image will be.

Aperture

The Aperture is the size of the opening of the camera and is used to create depth
of field. The smaller the hole, the less light is exposed to the photosites and vice
versa for larger holes. However, most smartphone cameras have a fixed aperture
setting that cannot be changed and thus needs to be considered a constant. The
specific value is model depedendent.

5.2.3 Image-Processing

This section covers the different settings affecting pixel intensity values after
frame generation. In comparison with the previous settings, the influence of
these on the PPG signal is harder to grasp.

White Balance

In order to understand white balance, an introduction to ‘color temperature’
is required. Color temperature, measured in Kelvins [K], is the warmth or
coolness of white light as perceived by the camera. Different light sources have
different color temperatures also known as color casts. Although named ‘white
light’, the distribution of the visible colors in the light spectrum varies with
color temperature [18]. An analogy can be made with a gas-flame. At lower
temperatures, the flame has a red or yellowish color, but as the temperature
increases the flame turns more white or even blueish. In photography, low
color temperatures (3000K) produce images primarily dominated by red colors
whereas high color temperatures are dominated by blue colors (9000K). The
human eyes automatically adjust for the differences in temperatures such that
e.g. white color will always be perceived as white, whereas cameras cannot.
The mathematical relationship between color temperature and the specific RGB
values has been studied by T. Helland [15]. Figure 5.3(a) shows this relation.
The white color point occurs at 6500K-6600K, for which the RGB channels are
all equal to a pixel intensity value of 255. This is the maximum brightness.

Since only the red color channel is relevant for constructing the PPG signal, it
is important to keep the maximum range of [0-255] PI, which is [1000K-6600K]
for color temperatures.
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(a) Relationship between color temperature and
maximum RGB values (Modified from [15]).

(b) In order to mimic the human eyes, a gamma
correction is applied to the linear camera curve.
However, linearity is desired for PPG so gamma
decoding is applied.

Figure 5.3: Non-linear transformations on the pixels need to be ac-
counted for.

Gamma Correction

An important but often forgotten aspect related to digital cameras is the gamma
correction. This technique comes from the fact that human eyes and digital
cameras perceive light differently. The intensity or brightness of light can be
quantified with ‘luminance’. The link between luminance and pixel intensity is
defined by ‘gamma’ (γ) and the differences in perception of light between the
human eyes and smartphone camera is bridged with gamma correction. Figure
5.3(b) shows the linear response between the light present and the light observed
for the camera. This is because if twice as many photons (thus light) hit the
camera sensors, the resulting response is twice as large. In the case of human
eyes, the relation shows a non-linear response, which stems from a biological
advantage, that enables human eyes to work over a wider range of luminance,
because more dark tones can be distinguished. In order to go from what our eyes
see to a linear response, a gamma decoding or correction is required, illustrated
by the orange curve in figure 5.3(b). Fortunately, the mapping between actual
and perceived light can be set manually. The gamma curve can be approximated
with a mathematical formula:

Y = 255×
(
X

255

)γ
[PI] (5.1)

Here, X is the original scene luminance (PI), γ a constant and Y the output
pixel intensity recorded (PI). A γ value of 1

2.2 is commonly used in digital
cameras, but for the PPG extraction a linear mapping is desired to preserve the
PPG waveform. As such, γ is set to 1.0 to maintain the linear relation between
observed light intensity and pixel intensity value.
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Paper Author Date Description

[49] E.J. Wang 2016 RoI chosen as a square around the center of the frame with
dimensions: 1

2×width and 1
2×height of the frame. Average

pixel intensity to obtain the PPG signal.
[4] N. Bui 2017 K-means clustering of all pixels in clusters of good/bad

pixels with enough variation. Compare time variation with
heart rate obtained with FFT. Average remaining pixel in-
tensities.

[22] E. Jonathan 2010 Arbitrary 10x10 pixel RoI selection based on empirical ob-
servations.

[42] C.G. Scully 2012 Frames with resolution 720x480. RoI size of 50x50 pixels
but location in the frame unspecified. Average pixel intens-
ity to obtain the PPG signal.

[46] F. Tabei 2019 Average all pixels in the entire frame.
[30] J. Liu 2019 Average of all pixels in the entire frame, for multiple frames,

to obtain PPG information about the cardiac cycles. De-
termine the frames corresponding to the min-max PPG
amplitude values. In the min-max frames, determine the
pixels that satisfy the ‘distance condition’ to obtain a mask.
Apply the mask to all frames of cycle to improve the PPG
signal.

[21] W.J. Jiang 2014 Average all pixels in the entire frame.
[50] G. Zhang 2019 Pixel selection on a per frame basis with empirically de-

termined thresholds. Sum all pixel intensities to obtain the
PPG signal.

[28] F. Lamonaca 2012 Adaptive RoI circle

Table 5.1: State of the art RoI selection methods.

5.2.4 Region of Interest Selection

The last parameter to be discussed is not a camera settings, but related to
the PPG signal extraction process. Region of Interest (RoI) is defined as the
pixel region from a frame used to construct the PPG signal. Regular PPG
sensors usually consist of a single photo-diode, whereas the camera sensor has
a large array of photosites. As a result, instead of one light intensity value
as for the traditional case, multiple pixels are to be considered. Not all pixels
within a frame carry valuable information. Some are distorted by noise, others
by motion of the finger on the camera lens. Some studies do not take RoI
selection into account and use all pixels in the entire frame to construct the
PPG signal. Other studies do consider RoI selection and offer solutions that
vary in complexity and computational intensity. Table 5.1 shows an overview
of the state of the art solutions.

As can be seen, a couple of studies ([46],[21]) average all pixels in the entire
frame. Before discussing the other methods, it is important to explain why
averaging the entire frame is detrimental for proper PPG signal extraction.
Recall that a camera tries to capture the changes in blood volume over time
via changes in light intensity, which is subsequently mapped to pixel intensity
values in frames.
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(a) Average PI of a video over time (sample
rate = 30 Hz).

(b) PI of the frame corresponding to the min-
imum.

(c) PI of the frame corresponding to the max-
imum.

(d) PI difference between minimum and max-
imum frames.

Figure 5.4: Pixel intensity change over time in a single PPG cycle.

(a) ISO: 100 and shutter: 1
400

. (b) ISO: 100 and shutter: 1
800

.

(c) ISO: 100 and shutter: 1
2000

. (d) RoI selection as was proposed by [49].

Figure 5.5: Influence of shutter speed on PI variations over time
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Figures 5.4(b) and 5.4(c) show the frames at the time instances when the
red color intensity of the averaged PPG signal is locally minimal and maximal
in figure 5.4(a), corresponding to a diastolic peak and start valley of cycle re-
spectively1. The flash light is located in the bottom-right with respect to the
finger and the closer a pixel is to the flash, the higher the pixel intensity (PI).
By calculating the differences in PI for each pixel in the min. and max. frame,
as shown with figure 5.4(d), it can be seen that the pixels near the flash light
are saturated with a maximum value of 255. The light intensity as perceived
in reality is much stronger, but cannot be quantified due to the arbitrary PI
range. Fortunately, this can be solved by changing the camera settings, such as
reducing the sensitivity to light or reducing the exposure time. Figure 5.5(c)
shows the opposite case, where the pixels furthest from the flash are not reached
by light. No saturation occurs in figure 5.5(a) and only slightly in figure 5.5(b).

The solution proposed by [49] is illustrated with figure 5.5(d). By selecting
only the center part of the frame, the previous problems are eliminated, no mat-
ter the orientation of the flash with respect to the camera, making it suitable
for different smartphones. Furthermore, the outer regions of the frame are more
subject to ambient light if the finger is moved slightly. An additional advantage
is that previously all PI values in the frame were averaged, whereas now only a
fraction

(
1
4 th

)
of the frame is considered, speeding up the computational process

significantly. This RoI will be used for the system in this thesis.

Methods proposed by [4], [30] and [50] do not select a continuous region, but
individual pixels based on how they change over time, which gives rise to two
different problems. The first problem is related to computational intensity. If a
720x480 pixel frame is considered, 345,600 pixels need to be evaluated individu-
ally and given the fact that a frame rate of 30fps (or more) is not uncommon,
10,368,000 pixels need to be evaluated in the span of single second which is not
feasible for a real-time system. The second problem is that the authors assumes
that the location where the blood volume changes occur is stationary, but in
reality the resulting changes in light intensity are not necessarily mapped to
the same pixel over time, because of e.g. finger movement. The influences of
minor movements (a couple of pixels) can be prevented by considering larger
continuous pixel regions, as was proposed by [49], instead of individual pixels.

Now that the RoI is defined, the pixel values in a frame need to combined
into a single value. Some methods simply average the pixel values in the frame,
but this might lead to incorrect values if the RoI is not chosen carefully. A
solution could be to use the median value of the pixel values but then the gran-
ularity of the signal becomes an integer which is very large. Fortunately, there
exists a middle ground between the mean and median methods: α-trimmed
mean filtering [9]. With this method, the outliers of the pixel intensity distri-
bution are removed and the remainder is averaged. By carefully choosing α,
saturated values can be excluded. An α-value of 0 corresponds to the mean and
a value of 0.5 to the median. An α-value of 0.10 removes the values till the first
10th percentile and the values higher than the 90th percentile of the sorted pixel
intensity values and will be used in the system.

1Recall that light intensity and blood volume are inversely related (Section 2.1)
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5.2.5 Summary

Due to the large amount of possible parameters, evaluating each one without
even considering the possible inter-relations is a tedious and unnecessary task.
Several parameters can be fixed or their ranges of values can be limited, based
on what the system desires. Starting with the frame rate, 30 fps is the max-
imum frame rate the Motorola Moto G7 Plus offers. Secondly, large resolutions
are unfeasible due to real-time constraints with all the processing overhead.
Thirdly, any color temperature in the range of 1000K-6600K would suffice, but
information from the blue and green channel can be valuable for e.g. finger
detection which will be discussed in Section 6.1. As such, the color temper-
ature for white balance is fixed to 6600K, since the red channel needs to take
benefit of the entire pixel range [0-255]. Since aperture is fixed, only ISO and
shutter speed are to be considered for the evaluation regarding light exposure.
The range of values ISO and shutter speed can take is reduced substantially
after some preliminary experiments. High ISO settings (ISO>800) would result
in over-saturated images. What this means is that the camera sensor is too
light-sensitive and would remain at its maximum value of 255 over time, irre-
spective of blood volume change. Shutter speed on the other hand, would result
in images that are mostly black (near 0 pixel intensity) for very fast speeds
(< 50µs) and as such no blood volume change could be measured. For slow
speeds (> 1ms), the camera sensor would be over-exposed and the pixel values
would be saturated with brightness. Summarised in table format:

Camera Setting Value

Frame Rate 30 fps
White Balance 6600K
Gamma (γ 1.0
Aperture f/1.7

Resolution 320x240, 640x480, 800x600, 1024x768
ISO 100, 200, 400, 800
Shutter Speed 1/200, 1/400, 1/800, 1/2000 [s]

Table 5.2: Camera settings for evaluation with the used smartphone.
The settings colored in red are variable and will be studied in section
5.3, whereas the others are fixed.
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5.3 Evaluation

5.3.1 Frame Resolution

Recall the difference between sensor resolution and frame resolution as was
discussed in Section 5.2. The sensor resolution is fixed, and expresses the number
of photosites in the camera sensor. The frame resolution indicates how many
photosites are combined to produce a single pixel value. The construction of
the PPG signal is similar: multiple pixel values are combined (averaged) in
the RoI to produce single PPG value. Decreasing or increasing the number
of pixels would only affect the granularity of the PPG signal. What is meant
with granularity is the size of the change in PPG value due to a change in one
pixel with magnitude 1. As an example, the theoretical granularity of the PPG
signal can be calculated for a frame resolution of 320x240 pixels. The size of RoI
was defined as a square in the center of the frame and amounts to 1

4 th of the
original area. The pixels in the RoI are then averaged via α-trimming and with
an α = 0.10 only 80% of the pixels in this frame are retained. The granularity
is than calculated as:

Granularity = 80%× 4

Width ∗Height
=

1

15360
= 0.000065 (5.2)

The interpretation of this value is that if a single pixel increases in intensity
with magnitude 1, this results in a change of 0.000065 in amplitude value of the
averaged PPG value, which should not be the limiting factor for the PPG signal
quality. The decision on which frame resolution should be used depends on two
factors:

• Computational weight

• PPG signal quality

The first metric can be measured by monitoring the time it takes to process
a frame. Ideally, this time should be low enough such that the desired frame
rate of 30fps can be achieved. There are several ways to measure the processing
time but one needs to be careful by not introducing unnecessary overhead that
could affect the measurements. The method used performs measurements of
60 seconds with a timer that triggers each 4 seconds reporting the number of
frames processed and the corresponding PPG values. Ideally for a frame rate
of 30fps this will be 120 frames for each segment.

The second metric is more difficult to quantitatively measure. It is important
that key PPG pulse properties remain identifiable, such as the dicrotic notch or
diastolic peaks and that the granularity is high enough. The evaluation of this
metric will be discussed in chapter 9.

Figure 5.6(a) shows the influence of large images on the system performance.
The larger resolutions significantly affect the actual sample rate, which is not
alleviated until a resolution of 320x240 is used. It can be concluded that frame
resolutions above 320x240 are detrimental for the system application.

Figure 5.6(b) shows a PPG signal obtained with resolution of 320x240. It can
be observed that PPG features such as the dicrotic notch and diastolic peak are
clearly distinguishable.
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(a) Average number of samples processed in
4 second segments.

(b) A 4 second PPG segment for 320x240
frame resolution.

Figure 5.6: Impact of resolution on application performance and PPG
quality.

(a) Histogram of the calculated time periods. (b) Histogram of the frame jitter, which is
the absolute difference between period and
mean.

Figure 5.7: Evaluation of the time periods and frame jitter in the
smartphone application.

5.3.2 Frame Jitter

Now that the frame resolution is determined, the second frame-related aspect
can be evaluated which is jitter. The periodic task of processing the frame
consists of the following sub-tasks:

1. Acquire the image from the camera

2. Obtain a single PPG value by evaluating the pixels in the image

3. Perform fingertip detection (which will be discussed in section 6.1)

Since the frame-rate is 30fps, it means that a delay of ≈33.33ms between
consecutive frames is desired. Any deviation from this expected period is jitter.
To evaluate this, a 60 second long measurement at 30fps is performed to obtain
‘periods’. A period is defined as the time passed between 2 timestamped tasks.
For this experiment, 1731 periods with a resolution of 1 ms were collected.
Figure 5.7(a) shows a histogram distribution of the periods. The mean period
is equal to 33.33ms, as was expected. To get a better grasp of the jitter variance,
the mean is subtracted from the time period, and the result is shown by figure
5.7(b). The standard deviation of the time periods, σ(T ), is equal to 2.83ms
which for a bell-shaped curve is the 68th percentile. The 95th percentile =
5.67ms which also happens to be ≈ 2σ(T ). Another important observation is
the severity of the outliers. Albeit their occurrences are unlikely, 25ms of jitter
is considerable when compared to the mean period. However, the overhead
introduced by tracking these periods can also play a role in the variability of
the periods. Given the jitter variance, the frames will not be time-stamped.
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5.3.3 Light Exposure

The range of ISO and shutter speed values that will be evaluated are displayed
in table 5.3.

Camera Setting Value Range

ISO 100, 200, 400, 800
Shutter Speed 1/200, 1/400, 1/800, 1/2000 [s]

Table 5.3: ISO and shutter speed values that will be evaluated.

With 2 variables and 4 possible values, 16 experiments need to be done to
explore all combinations. A single experiment consists of 120 seconds of PPG
measurements on the right index finger. The metrics used to compare the
ISO and shutter speed combinations are the PPG amplitude and pixel offset.
The measurements are videos recorded with the different camera settings and
evaluated offline in MATLABr ver. R2018b. The results are displayed in tables
5.4 and 5.5.

Exposure Time
ISO 1/200 1/400 1/800 1/2000
100 170.7348 98.5701 47.5453 11.4754
200 222.6345 164.9828 112.3258 39.3939
400 247.9105 228.9164 179.2379 81.7558
800 254.9863 249.6753 212.4715 150.9384

Table 5.4: Pixel offset along which the PPG signal propagates over
time. The intensity values range from 0 (black) to 255 (white).

Table 5.4 shows the pixel offset at which the PPG signal fluctuates. Although
the pixel offset is not constant over time and also depends on finger related
factors, it does give a good approximation whether the PPG signal is created
with saturated pixels or not. Large values close to the maximum pixel intensity
of 255 indicated saturation due to extreme exposure to light. On the other
hand, low values close to the minimum pixel intensity value of 0 suffer from
under-exposure, because very little light is able to reach the camera. This idea
is confirmed by the findings of table 5.5, where the saturated PPG signals have
very small PPG amplitudes.

Exposure Time
ISO 1/200 1/400 1/800 1/2000
100 12.1565 13.0804 6.7899 3.3339
200 5.8817 6.9425 12.8817 4.4928
400 2.9864 5.4884 11.6682 10.324
800 0.0261 3.6198 8.9487 9.0787

Table 5.5: The mean PPG amplitude expressed in pixel intensity (PI)
for the different camera settings, where lower (red) values indicate
worse performance.
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Figure 5.8: Pixel offset plotted versus mean PPG amplitude. The curve
is a cubic approximation of the data-points.

Combining the values from tables 5.4 and 5.5 results in the curve shown in
figure 5.8. It can be seen that the PPG amplitude is maximized for values
located in the middle of the pixel intensity range [80-179], centered around ≈
123. However, the pixel offset can easily shift by motion artifacts and a single
optimal configuration is hard to obtain. For instance, ambient light can increase
the pixel offset of the signal. The skin color, structure and underlying tissue
in combination with finger thickness also play an important role. As such, any
setting that does not result in pixel-intensity saturation as a result of over- or
under-exposure can be used.

5.3.4 PPG Signal Generation

Recall from section 5.2.4 that only a part of the frame (the RoI) is used and the
PPG signal is generated via α-filtering. SoA studies that operate in real-time,
average the pixel values in the entire frame and do not consider the camera
settings. To compare the two methods, first, an experiment is conducted where
a 60 second video is recorded using a standard smartphone camera application
with automatic camera control. This video is then processed using the SoA
method to generate a PPG signal. For the second experiment, the camera is
manually controlled with an ISO = 100, shutter speed= 1

400 , and fixed paramet-
ers from table 5.2, whereafter the RoI and α-filter are applied. Table 5.6 shows
that for the automatic parameters, the pixels are saturated, demonstrated by
the high pixel offset and the small PPG amplitude.

Camera Control PPG Amplitude Pixel Offset

Manual + Average Frame 7.2 134.0
Manual + RoI & α-filter 7.2 144.9

Automatic 2.9 250.8

Table 5.6: Automatic camera control leads to saturated pixels, which
negatively affect the PPG amplitude and waveform.

Furthermore, there is no difference in PPG amplitude between averaging the
frame or using an RoI with the α-filter. However, the latter is faster and more
efficient as it only needs to evaluate 1

4 th of the frame.
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5.3.5 Conclusions

Summarizing this chapter, there are some general conclusions that can be drawn.
Automatic camera control is dangerous as it leads to pixel saturation and incor-
rect PPG signal generation, thus manually choosing the camera parameters is
desired. Table 5.7 shows the settings that should hold for any device. Because
the aperture is different per device, the ISO and shutter speed should be chosen
in such a way that the saturation of the pixel intensity values is avoided. A gen-
eral approach for determining the right ISO and shutter speed settings would
be as follows. First, set the ISO to a low value, e.g. 100. Then, increase the
shutter speed until the image is no longer saturated by light and the pixel offset
lies within the [80-179] PI range.

Camera Setting Value

Frame Rate ≥30 fps
White Balance 6600K
Gamma (γ) 1.0
Resolution 320x240

Table 5.7: Camera settings that apply to all smartphones.

Furthermore, RoI selection of the center of a frame and α-trimming is intro-
duced to decrease the influences of pixel saturation. Analysis of the frame rate
jitter showed that 95% of the occurrences has a jitter of ≤5.67ms with only a
few large outliers. Because this jitter is relatively low and several other factors
play a role in the frame capture, tracking the time-stamp of a frame is deemed
unnecessary.
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Chapter 6

Raw PPG Signal Analysis

The previous chapter covered the first steps to extracting the PPG signal from
the smartphone camera. However, the quality of this reconstructed PPG signal
is subject to several sources of disturbances and noise.
In this chapter, a method is introduced in Section 6.1 that automatically detects
a fingertip to start measurements. Lastly, the finger pressure on the camera lens
impact the PPG signal and needs to be tackled, which will be covered in Section
6.2.

6.1 Fingertip Detection

6.1.1 Methods

With the intention of using the system as a smartphone app, an automatic
finger detection algorithm would alleviate the need for users to start/stop the
testing and measuring. The placement and position of the fingertip play an
important role. Two similar methods to handle this have been implemented in
literature. The first method by Liu et. al. [30] evaluates the dominance of the
red channel over the green and blue channel for each pixel. Equation 6.1 shows
the calculation of the dominance of the red channel for frame t:

T ≤ Pr(x, y) =
r(x,y)(t)

r(x,y)(t) + g(x,y)(t) + b(x,y)(t)
(6.1)

where T (=0.85) is the threshold and r(x, y), g(x, y), b(x, y) denote the light
intensity in the red, green and blue channel at pixel location (x, y), respectively.
If Pr is higher than the threshold T , the pixel is said to be dominated by the
red channel. If 95% of the pixels are dominated by the red channel, a fingertip is
detected. The dominance depends on the fact that the RGB values have equal
ranges (0-255) which is dictated by the white balance as was demonstrated in
Section 5.2. Liu et. al. only mention that white balance is locked, but not at
what temperature and thus RGB ranges are unknown.

The second method was proposed by Zhang et. al. [50]. Here they empir-
ically derived thresholds for the averaged RGB channels and also the standard
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deviation of the red channel (σR) within a frame. Table 6.1 shows the used
settings where the values represent pixel intensity values in a range of [0-255].

Threshold Condition

Ave(R) ≥ 240
σR ≤ 20
Ave(G) < 1
Ave(B) < 75

Table 6.1: Conditions for evaluating Video Usability [50].

Observe the requirements for the red channelR. The average intensityAve(R)
needs to be 240 but the standard deviation σR is required to be smaller than
20. These values are alarming because the maximum pixel intensity is 255
which is only 15 more than the average-threshold, while σR is allowed to exceed
this. This means that for these thresholds, several pixel values will be saturated
resulting in incorrect PPG pulses. Furthermore, the values for these thresholds
are extremely dependent on the used camera settings as was described in Section
5.2, which are not considered.

6.1.2 Evaluation

Before the method proposed by Liu et. al. could be implemented, a modification
was required. The threshold for dominance, T , had to be lowered from 0.85 to
0.70 because no fingertip would detected at all. During evaluation, the fingertip
was sometimes placed improperly yet the system ‘detects’ a fingertip. Examples
of this are shown in figures 6.1(a) and 6.1(b) on the next page, where the camera
is not entirely covered by the fingertip, yet the black areas are dominated by
the red channel. There is a reason why the finger detection algorithm fails.
Consider a black pixel with a RGB value of R = 1, G = 0 and B = 0, equation
6.1 would produce a domination value of 1.0 (100%), yet no finger is present.
Since the shutter speed is fast and ISO is low, images are very dark if no finger
is applied to the camera-lens, making the previously described scenario likely.

6.1.3 Solution

A new algorithm is proposed that can properly detect the finger, illustrated
with figure 6.1(c). An 8x8 raster is applied on top of the frame, where each
cell is of equal size. The average red pixel intensity is calculated for each cell
and compared to a threshold, minR = 30. If one of the cells fails to satisfy the
threshold, the finger is not placed correctly and further processing is stopped
while informing the user to adjust their finger. In figure 6.1(c) the top left cells
would fail the threshold, indicating incorrect finger placement. The threshold
value is based on figure 5.8 from chapter 5, because values below 30 would result
in signals with too small of a PPG amplitude and this way the threshold can
accommodate multiple camera setting configurations.
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(a) Upper left corner not
covered.

(b) Lower left corner not
covered.

(c) 8x8 Raster on top of the
frame.

Figure 6.1: a), b) The original algorithm does not account for fingertip
placement as it ‘detects’ a fingertip in the situations depicted above.
c) Proposed method to evaluate cells in the raster for correct place-
ment detection.

6.2 Finger Pressure Detection

Although some disturbances on the PPG signal are exclusive to smartphone
sensing, others been around since the birth of PPG sensing in 1937 [16]. A.B.
Hertzman, who coined the term PPG, stated in his early works: “The most
important source of error and the one most difficult to control is movement of
the skin with respect to the plethysmograph”[17]. Furthermore, Hertzman also
found that the contact pressure between the skin and plethysmograph is crucial
for PPG. Most of these artifacts can be limited as they are very noticeable but
the finger pressure is more subtle as it is difficult for the user to control. When
the finger is pressed against the smartphone camera lens, a force is applied on
the blood vessels under the skin surface. As a result, the blood occupying these
regions is pushed out which ‘flattens’ the skin slightly at the fingertip as could
be seen in figure 2.4. While the heart keeps pumping, blood cannot easily flow
into these capillaries due to the obstructions.

6.2.1 Methods

The effect of finger pressure is application dependent. Trivial physiological fea-
tures such as heart rate estimations [37] do not tackle finger pressure, yet obtain
good results. As more research was put in PPG sensing and the smartphone
was introduced, medical applications extended to more complex medical features
and security that require a higher PPG signal quality than before.

A recent study by Chandrasekhar et. al. [8] underlines the fact that neglect-
ing finger pressure in scenarios without finger-cuff severely affects features used
for determining medical conditions, which is also supported by [14] regarding
arterial stiffness. Figure 6.2 highlights the influence of contact pressure on the
PPG pulse morphology. As the finger pressure increases, the dicrotic notch and
diastolic peak decrease with respect to the systolic peak.
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Figure 6.2: Impact of contact pressure (CP) on PPG pulse waveform
[8]. The dicrotic notch and diastolic peak vary in amplitude depend-
ing on the CP.

Medically-certified PPG sensors such as pulse oximeters use finger-cuffs to
regulate the pressure. There are multiple studies that build devices which can
be attached to a smartphone for PPG signal extraction, often including a finger-
cuff [49] to regulate finger pressure, or to measure the contact pressure separ-
ately, as demonstrated by [45] and [7]. This approach is similar to what was
done for movement artifacts. The downside of these methods, is the require-
ment of additional hardware. More recently, there have been studies for PPG
measurements methods without finger-cuff. Tabei et. al. [46] use the PPG
amplitude and compare it to an average of the entire frame, but this only works
in an offline setting since it requires knowledge of multiple minutes of data. Bui
et. al. [4] apply spectral analysis in real-time to detect finger pressure. Table
6.2 summarizes the finger pressure detection SoA works, highlighting the most
relevant method in green.

Author Date Description

Wang [49] 2016 (Hardware) HemaApp: finger-cuff
Sim [45] 2018 (Hardware) Thermo-pneumatic regulator to

measure and regulate contact pressure at the
wrist site.

Chandrasekhar [7] 2018 (Hardware) Measure with separate force
transducer and obtain optimum via user feed-
back.

Tabei [46] 2018 (Software) Compares the Average Amplitude
Value of the entire signal with segments of the
signal in an offline setting.

Bui [4] 2017 (Software) PhO2: Fast Fourier Transform of
PPG signal and evaluated amplitude of HR
component in an online setting.

Table 6.2: State of the art techniques to combat finger pressure using
either hardware or software solutions.
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Figure 6.3: Finger above smart-
phone [4].

Figure 6.4: Finger below smart-
phone.

6.2.2 Method Description

Bui et. al. [4] are the only authors that tackles finger pressure using only
information from the PPG signal in a real-time smartphone design. In their
study, the authors distinguished between three types of pressure: weak pres-
sure, appropriate pressure and strong pressure. Weak pressure occurs when the
fingertip barely makes contact with the camera lens and only a faint pulse can
be detected, whereas strong pressure completely occludes the capillaries and ar-
teries. The definition of appropriate pressure is rather obscure, since it is defined
as ‘the pulse is clearly observed ’. The authors state that in clean PPG signals
with appropriate pressure, a large fraction of the signal power is concentrated
in the heart rate frequency. The less noise and distortions in a short segment
of 4 seconds, the stronger the amplitude corresponding to the heart rate com-
ponent. The Fast Fourier Transform (FFT) is applied to a PPG segment and
the largest peak correspond to the heart rate. The amplitude is then evaluated
to determine the finger pressure.

6.2.3 Limitation

Recall that under normal conditions, the heart rate ranges from [30-240bpm]
which correspond to a frequency range of [0.5-4Hz]. The spectrum is assumed
to be clean in this range, but noise and distortions within this range cannot be
filtered. Furthermore, the frequency resolution is very low (0.25Hz) due to the
short segment time (4 seconds). Another important factor for finger pressure is
how the finger is applied to the smartphone camera-lens. To elaborate on this
matter, two possible scenarios for holding the smartphone are shown in figures
6.3 and 6.4. In the first scenario (figure 6.3), the user is entirely responsible
for the applied finger pressure, whereas in the second scenario (figure 6.4), the
smartphone also applies a pressure to the finger due to gravitational forces. This
force on the finger depends on the angle at which the smartphone is held, further
complicating the problem. The first scenario is desired in a controlled research
environment because the only pressure applied is from the user, however it is
unrealistic for commercial usage. This is because the PPG signal extraction
is used in combination with an app that provides visual feedback to the user,
which is only possible if the screen faces the user. Although some smartphones
are equipped with a back and front facing camera, the flash is normally located
on the back and as such, the second scenario, as depicted in figure 6.4, is more
realistic.
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(a) Original PI signal. (b) Filtered PPG signal.

Figure 6.5: Strong finger pressure results in small PI amplitude of 2
and changes the waveform morphology.

(a) Original PI signal. (b) Filtered PPG signal.

Figure 6.6: Appropriate finger pressure with large PI amplitude of 8.

(a) Strong finger pressure. (b) Appropriate finger pressure

Figure 6.7: Power Spectral Density Distribution after the Fast Fourier
Transform (FFT). Strong finger pressure results in small amplitudes
for the heart rate frequency.

40



6.2.4 Results

Before the FFT can be applied, the signal needs to be filtered and the pixel
offset needs to be accounted for. If the latter is not done, an extremely large DC-
component is included in the spectral-analysis, because the signal is not centered
around the horizontal axis. The filtering is discussed in detail in Section 7.2.1.
Figures 6.5 and 6.6 show that different finger pressures result in PPG signals
with different PI amplitude and waveform in the original and filtered segments.
There is a large amplitude drop going from the systolic peak to the dicrotic notch
and peak for strong finger pressure (figure 6.5). This amplitude drop is much
smaller for appropriate finger pressure (figure 6.6) and the overall amplitude is
much larger. These observations are in correspondence with the measurements
done by [8] in figure 6.2. Here, the dicrotic notch and diastolic peak become more
distant from the systolic peak as the contact pressure (CP) increases. Figure 6.7
shows the frequency distribution for both strong and appropriate pressure. The
heart rate frequency corresponds to the largest peak. It can be seen that for
appropriate pressure, a much larger peak amplitude (×7) is detected than for
strong finger pressure. Since strong pressure results in undesired distortions in
the PPG waveform, it is important to detect it. Because the peak amplitudes
for the heart rate component differ so greatly for the two cases, they can be
distinguished by using a threshold. However, the threshold should hold for
multiple individuals.

The peak amplitude should be larger than 0.5 and the heart rate frequency
should lie within the heart rate range of 0.5 ≤ HR ≤ 4 [Hz]. This threshold was
empirically determined. If these conditions are satisfied, the finger pressure is
deemed correct. Otherwise, the user will be informed to adjust the pressure.

Another important observation during measuring was the impact of finger
temperature. This was already discovered by Hertzman [17] in 1938, where
under cold conditions, the blood circulation rapidly diminished in the finger and
thus a low-amplitude PPG signal was observed. Although the heat generated by
the flash light can increase the finger temperature, it can also lead to discomfort
or even damage the skin for measurements in the order of minutes.

6.3 Conclusions

In this chapter, a new method was introduced to detect the presence of the
fingertip by rasterizing frames and evaluating the resulting cells. Moreover, it
was shown that finger pressure is a subtle artifact that has a large impact on the
PPG signal amplitude and waveform. It is important to track the finger pressure
and provide feedback to the user to obtain an appropriate amount. Despite the
impact, finger pressure was neglected during the early periods of PPG sensing
with the smartphone (2010). Only recently it was addressed and a method
from the literature is implemented to track finger pressure (Bui et. al. [4]).
This method evaluates the frequency domain characteristics of the PPG signal
and can differentiate between strong and appropriate finger pressure. In the
former case, the user is informed to adjust the pressure. Finger temperature
also plays an important role, as the blood circulation in the finger is highly
susceptible to heat. Before measuring, the finger should be warm to obtain
good PPG signals. All in all, the first stage of qualifying the PPG signal is done
and the signal can now be segmented, covered in the next chapter.
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Chapter 7

Pulse Segmentation

The goal of this thesis is to develop a system that provides PPG signals of
high quality. In order to obtain PPG pulses, the original PPG signal needs to
segmented. This is a complex process and several studies have been done on
parts of the segmentation progress.

Section 7.1 covers the methods developed in literature that aid in this seg-
mentation process and a set of metrics is used to evaluate them. Hereafter,
Section 7.2 introduces a pulse segmentation algorithm proposed by this thesis,
which uses a few elements of a state of the art (SoA) method. The chapter
concludes with a summary in Section 7.3.

7.1 State of the Art

Although the details vary, the segmentation fundamentally depends on the de-
tection of the systolic peaks. There exist several studies that explore this systolic
peak detection, but not many studies actually segment the PPG signal. In order
to segment the actual pulses, the start and end point need to be identified, which
will be referred to as valley detection. However, it is still worth to consider these
systolic peak detection studies, since elements of the different methods can be
combined. Since PPG signals are not obtained from perfect scenarios but the
real world, motion and noise artifacts (MNAs) [46] are present. MNAs are dis-
turbances on the PPG signal due to noise or user movement. Additionally, the
sensor type plays an important role. PPG signals from dedicated medical equip-
ment provide higher quality than from a smartphone camera. Furthermore, the
method needs to be able to segment pulses for all possible waveform types, since
each individual has a unique one.

In order to develop and test a method, PPG data from several subjects is
needed, which can be hard to collect due to time restrictions and requirement
of authorization. Fortunately, many public PPG databases are available, but
there are drawbacks because PPG signals are too clean:

• PPG signals are collected with high quality medical equipment.

• PPG signals have been processed with unknown methods.

• PPG signals are collected under ideal conditions with as few as possible
MNAs, from e.g. the intensive care and from subjects under anesthesia.
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These databases can be used to develop algorithms, but only as complement for
datasets with both clean and corrupt signals.

Furthermore, data used for training the method should be different than the
data used for testing. Otherwise the parameters would be too tailored for a
specific dataset. Another important factor is whether the method is intended
for real-time pulse segmentation. For instance, a segmentation method in an
offline environment has complete knowledge of e.g. 120 seconds of PPG data
of a subject, whereas in a real-time environment only a fraction of this data is
available. Another important metric that is related to the real-time constraint
is the complexity. A method could obtain near perfect results with e.g. a neural
network (NN), but the training of this NN takes egregious amounts of time.
Furthermore, the verification of the method is important. For credibility, the
method should be compared with SoA methods in the paper.

Implementing and evaluating every possible method is a tedious and time
consuming task, but fortunately several methods can be eliminated based on
the information provided in their papers. Table 7.1 shows the methods and how
they compare with each other based on the previously described metrics. All
methods were developed with PPG signals from medical equipment or online
databases and not with PPG signals from a smartphone camera. The methods
are in chronological order and it can be seen that the early methods did not
account for MNAs as they obtained PPG signals from MNA-free environments.
From the methods in table 7.1, only two methods score positively on almost all
metrics, where MNA elimination played an important role. These methods are:

• [10] Event-Related Moving Average by Elgendi et. al. (2013)

• [12] Moving Average + thresholds by Fischer et. al. (2017)

The first method only detects systolic peaks and has a couple other limitations
that can be overcome, which will be discussed in section 7.2. The second method
does more and actually segments pulses and uses a large list with thresholds con-
ditions. The problem with these threshold values is that they are completely
tailored for the databases with which the algorithm was developed. Implement-
ing this method would require re-calibrating all thresholds which are device
dependent. This is in conflict with the goal of having a generalized application.
However, certain fundamental aspects are used to determine the PPG signal
quality, which will be discussed in section 7.2.4.
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Author Year Description MNA elimination Real-time Complexity Dataset Verification

[1] Aboy et. al. 2005 Peak detection: Multi
Stage bpf and HR estim-
ation

No, HR estimation
not robust

Iterative
stages

Medium IC, fingerclip, anes-
thesia

Acceptance inter-
vals of 8.0, 16.0,
24.0 and 48 ms

[11] Farooq et. al. 2010 Pulse segmentation:
Zero-crossing of first
derivative + thresholds

Fingerclip and cover
to reduce ambient
light

Yes Low Fingerclip x

[27] Karlen et. al. 2011 Peak detection: Adapt-
ive Frequency Estimators

Unable to detect
large and rapid
changes in HR

Yes Medium Intensive Care, fin-
ger clip, anesthesia

Comparison with 2
old and outdated
algorithms

[3] E. Billauer
MATLABr

2012 Peak detection: Local
Min/Max + threshold
between potential peak
and surrounding values.

No. Yes Low - -

[26] Karlen et. al. 2012 Pulse segmentation:
Gaussian Filters + HR
filtering

Yes, but high recov-
ery cost after arti-
fact detection.

Yes High Intensive Care, fin-
ger clip, anesthesia

Long recalibration
→ good pulses
missed

[25] Karlen et. al. 2012 Pulse segmentation:
Incremental Line Seg-
mentation (ILS)

Yes, but bad per-
formance

Yes Low Intensive Care, fin-
ger clip, anesthesia

Artifacts are 50%
classified incor-
rectly as pulse

[10] Elgendi et. al. 2013 Peak detection: Event-
Related Moving Average

Yes, but uses static
thresholds

Possible High Dataset with a lot
of motion artifacts
etc.

High stress situ-
ation: heat, phys-
ical exercises etc.

[19] Dae-geun et.
al.

2014 Peak detection: Slope
Sum Function (SSF)

Only peak qualific-
ation, initialization
requires clean PPG

Yes Low Strict peak location
deviation → 5 ms

Separation of train-
ing and testing sets

[12] Fischer et. al. 2017 Pulse segmentation:
Moving average fil-
ter + abs min/max +
thresholds.

Uses a checklist for
artifact detection,
but many arbitrary
thresholds

Yes High No pre-processed
datasets, diverse
data

Good analysis of
datasets used by
others (that are
bad)

[6] Campbell et. al. 2018 Peak detection: Wave-
let decomposition

No Yes Low Only tested on a
single person

No comparison
with other contem-
porary methods

Table 7.1: State of the art pulse segmentation and peak detection methods.
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7.2 Proposed Method

This section introduces an algorithm for the extraction of cardiac pulses from the
captured PPG signal. Inspiration was given by Elgendi et. al. [10], whose peak
detection method for systolic peaks in PPG signals will be discussed in section
7.2.2. During development, PPG signals from a private data set containing
24 people with 4 minute smartphone recordings each was used. Additionally,
public datasets with regular PPG sensor data were used [32],[33].

7.2.1 De-Noising

The goal of this stage is to reduce the noise artifacts in the PPG signal while pre-
serving crucial information. The most conventional method is a band-pass filter.
The existence of the dicrotic notch should be preserved and thus a bandwidth of
[0.5Hz - 12.5Hz] is chosen [30]. A 2nd order Butterworth meets the requirements
as it has an almost flat frequency response in the pass-band. The PPG signal is
‘spline-interpolated’ from 30Hz to 60Hz and mirrored in the horizontal axis to
obtain the known PPG waveform (Discussed in section 2.2). From this stage on,
the specific amplitude of the signal is irrelevant and only the waveform, pulse
duration and proportions matter. A 4 second segment before and after filtering
is shown in figures 7.1(a) and 7.1(b).

(a) Original segment (b) Band-pass filtering

(c) Amplitude clipping (d) Amplitude squaring

Figure 7.1: A 4 second PPG segment that undergoes different pro-
cessing techniques.
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Figure 7.2: A 4 second segment after BoI generation.

7.2.2 Systolic Peak Detection

For peak detection, a copy of the filtered signal is used, whereas the original
is left unmodified. First, the potential peak locations are amplified whereas
the other parts of the PPG signal are attenuated. This is accomplished by
first ‘clipping’ the filtered ppg signal amplitude below zero. Then, the clipped
signal is squared to amplify the stronger components, shown in figures 7.1(c)
and 7.1(d).

It should now be possible to detect the systolic peak area via a method called
‘Block of Interest’ (BoI) generation. Two moving average filters MA peak and
MA beat are required with different window sizes, W1 and W2. As the names
already indicate, MA peak is used to amplify the systolic peak area whereas
MA beat represents the average of a cardiac pulse. The corresponding window
sizes W1 and W2 are static in the method of [10] with values of W1 = 111ms
and W2 = 667ms, where the latter corresponds to a heart rate of 90bpm. A
threshold is generated by adding an offset, α, to MA beat to account for slight
baseline drift in the PPG signal. The threshold value is given by equation 7.1:

TH = MA beat[n] + α [a.u.] (7.1)

A BoI is generated any time MA peak exceeds the TH up until MA peak falls
below the threshold. This is repeated for the entire segment. Figure 7.2 shows
how blocks are generated. Each BoI is tested whether it actually captures a
systolic peak or not. This is done by comparing the time-length of a block
with W1, the window size of the MA peak. Since the systolic peaks have been
identified in a heavily processed PPG signal, they need to be mapped back to
the original filtered segment. The maximum value within in window of 50ms
left and right from the detected peak position is labelled as the systolic peak.

Limitations

The previously described method has several limitations that need to be over-
come, before it can be used in a smartphone applications. Firstly, the method
was developed and tested in an entirely offline environment. This has already
been addressed by only providing 4 seconds segments to the algorithm. Secondly,
the window sizes W1 and W2 for the moving average algorithms are static val-
ues. These values were obtained by brute-forcing the optimal values from a
large PPG data-set. Due to these static thresholds, the method fails for cases
where the heart rate is much higher or lower than 90 bpm, since systolic peaks
are either missed or over-detected because diastolic peaks are incorrectly iden-
tified as systolic peaks. Thirdly, the same data used for development was also
used for testing. Lastly, only peak detection was performed and for proper pulse
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segmentation the detection of valleys is required. In short, the following aspects
need to be addressed:

1. Offline → Real-time environment

2. Static → Dynamic window sizes

3. One dataset → Different training and testing datasets

4. Systolic peak detection → Pulse segmentation

Improvements

A PPG smartphone application needs to be robust against any external factors.
One of these factors is the heart rate of the user. As was mentioned in section
7.2.1, the heart rate of healthy people lies in the range of [25bpm - 240bpm],
which corresponds to pulses of [2400ms - 250ms] respectively. Elgendi et. al.
[10] only considers pulse widths of W2 = 667ms, thus an estimate of the pulse
width is needed, prior to the construction of the moving average filters. One way
to solve this is to analyze the segment in the frequency domain. Fortunately, this
was already done for the finger pressure detection method discussed in section
6.2 and the heart rate obtained in that step can be used here. In the original
method the window sizes were chosen as W1 = 111ms and W2 = 667ms, which
are assumed to be related. Dynamic window sizes can be derived from the
estimated heart rate: W1 = W2

6 and W2 = fs
fhr

where fhr is the heart rate in

[Hz] and fs the sample frequency in [Hz]. After the window sizes W1 and W2,
have been set, the algorithm continues as described at the start of Section 7.2.2
till the peaks have been derived from the BoIs. Section 7.2.4 will go more in
depth on the details of the heart rate estimation.

7.2.3 Valley Detection

While systolic peak detection is a relatively complex process, the valley detection
of a cardiac pulse is simple. As was extensively discussed in Section 2.2, a cardiac
pulse starts with a rapid rise in amplitude until the systolic peak is reached,
whereafter it gradually declines. This steep rise is common to all cardiac pulses.
The systolic peak is always preceded by the start of the pulse, which can easily
be identified as the local minimum in a window before the systolic peak. This
window, W3, is a fraction of the original cardiac pulse and can be derived from
W2 as follows: W3 = W2

3 . If the minimum value in this window is the furthest
away from the systolic peak, it means that the PPG signal is still descending
and the window size W3 is expanded to W4 = 1.5 ·W3. If no local minimum
can be found, the peak is discarded. The peaks and valleys are displayed in
figure 7.3(a) on the next page.

7.2.4 Peak & Valley Decision Logic

Due to MNAs or over-detection due to diastolic peaks, some of the peaks and
valleys derived in the previous sections can be incorrectly identified. Figure
7.4 shows two diastolic peaks incorrectly being identified as a systolic peak.
To combat this incorrect classification, some qualification indicators are put in
place: only the peaks and valleys will be used for qualification.
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(a) Original segment (b) Annotated pulse waveform amplitude
(PWA) and period.

Figure 7.3: The pulse width amplitude (PWA) is calculated with the
first valley and systolic peak of a pulse. The period is the distance
between 2 subsequent valleys.

There should be at least 2 valleys in the segment, as otherwise no pulse can
be detected. Then, there are two ways in which the peaks and valleys can
be evaluated by using the physiological properties inherent to cardiac cycles.
The first method is related to the ‘vertical’ distance between a peak-valley pair.
This is referred to as ‘Vertical Distancing’ and the distance is called the Pulse
Waveform Amplitude (PWA). The second method uses the duration of pulses,
the period, and looks at the time between subsequent valleys or peaks. An
illustration of both properties within a segment is given in figure 7.3(b).

Figure 7.4: A 4 second segment with correct peak-valley pairs in green
and an incorrect peak-valley pair in red.

Vertical Distancing

Inspiration was drawn from a PWA method proposed by Fischer et. al. [12].
The general idea is that the PWA of subsequent pulses does not change rap-
idly. This can be quantified by comparing the calculated PWA of a peak-valley
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pair to a threshold value. This threshold can be either static or dynamic. Static
thresholds have the downside of becoming less robust over time whereas dynamic
thresholds need to be initialized and derived. Fischer et. al. [12] compare the
PWA values of the previous correct pulse and the current pulse under obser-
vation. If the PWAs lie within a range of [25% - 400%], the current PWA is
also deemed correct. But determining the right range has a trade-off. If the
bounds are too loose, diastolic peaks as in figure 7.4 were classified as correct,
but making them too strict did not cope with the natural variance in PWA of
subsequent pulses. As such, the following solution is proposed. The three most
recent ‘correct’ PWA values are stored in a FIFO (First In First Out) buffer.
Each new PWA value is then compared with the mean of the buffer and if the
values lie within a range of [50% - 200%] of each other the new PWA value
is deemed correct [40]. These thresholds were empirically determined. The
buffer is then updated with this value and the process continues. In case of
initialization or re-calibration, the buffer needs to be filled with new values.

Pulse Duration

The pulse duration can be derived by calculating the time passed between sub-
sequent systolic peaks. Previously the heart rate was estimated via the FFT
with a resolution of 0.25Hz, which gave a coarse estimate. By calculating the
average pulse duration in the segment, a new estimate of the HR can be made.
As was shown in section 5.2, the camera frame rate is 30fps which results in
a sample resolution of 1

30Hz. This new resolution is a significant improvement
from 0.25Hz. If the old and new estimates differ less than T Hz, the segment is
deemed clean and the old estimated heart rate can be updated. T is defined as:

T = ±2fs

n
[Hz] (7.2)

Here fs is the sample frequency in [Hz] and n the number of data samples. The
moving average window sizes W1, W2 and W3 are updated with the estimated
heart rate from the pulse duration. In case the estimated heart rates from the
pulse duration and FFT are in disagreement, the peaks and valleys are labeled
as corrupt and a re-initialization is requested. This means that for the next
segment, the moving average window sizes W1, W2 and W3 are reinitialized
with the heart rate estimate of the FFT. The PWA buffer is also emptied and
reinitialized as described in Section 7.2.4.

7.3 Conclusions

The proposed pulse segmentation method uses elements of the SoA. However,
the peak detection method by Elgendi et. al. [10] had several limitations.
Firstly, it used static thresholds and was evaluated with offline data-sets, which
severely limits the applicability to a real-time domain. Secondly, only peak
detection was performed, whereas for proper segmentation the start and end of
a pulse are required. As such, improvements to the algorithm are proposed in
order to make it adaptive, real-time and let it segment pulses. Finally, the pulse
waveform amplitude (PWA) and periods are use to determine whether the PPG
signal is of good quality.
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Chapter 8

Pulse Qualification

Before the segmented ‘candidate pulses’ can be used, some form of qualification
is required. However, many challenges need to be overcome regarding the ques-
tion: “What is a correct PPG pulse?”. The uniqueness of the PPG signal on
a person-by-person basis makes it challenging to create a reference signal that
applies to all cases. As such, the following sections cover methods that mainly
tackle large anomalies. The first section explains the normalization process.
Section 8.2 covers a method for separating two pulses that have been incor-
rectly classified as one pulse. Lastly, section 8.3.2 discusses several methods
related to only a fraction of the signal: the rising slope from the start of the
pulse till the systolic peak.

8.1 Pulse Normalization

In the previous chapter, the systolic peaks and pulse valleys have been identified
within the segment, such that the pulses can be extracted. During this process,
the amplitude of the PPG signal was altered due to e.g. filtering, but the
morphology remains largely intact. Furthermore, the heart rate of the user
at the time of extraction influences the pulse duration. In order to compare
different pulse periods with each other, the amplitude is normalized, and the
waveform is interpolated to 100 samples.

8.2 Double Pulse Problem

On some occasions, the segmentation algorithm introduced in the previous
chapter misses a peak, and as a result 2 pulses are classified as one. Fortu-
nately, these double pulses can be detected and more importantly separated,
such that they can be processed individually. This way, the PPG signal is cor-
rected instead of discarded. The detection of a double pulse is relatively easy
and the used method is demonstrated in section 8.2.1. Then, the pulses need
to be separated, which will be discussed in section 8.2.2.
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Figure 8.1: Green segments indicate a positive slope. Each pulse starts
with a positive slope segment with large amplitude.

8.2.1 Detection

The detection of double pulses can be illustrated with figure 8.1, which shows
a normal single pulse and a double pulse. If we only consider the normal pulse,
it always starts with a positive slope segment till the systolic peak. Then, the
pulse can continue in two possible ways:

• A negative slope till the end of the pulse in absence of the dicrotic notch.

• A negative slope till the dicrotic notch, positive till the diastolic peak and
negative till the end of the pulse.

The focus here lies on the positive segments, marked with green in figure 8.1.
No matter what waveform, the first positive slope part is substantially larger in
amplitude than any other positive slope segment and is dominant. To conclude,
a single pulse consists of either:

• A single large positive slope segment.

• Two positive slope segments, where the first dominates the latter.

A double pulse is simply the combination of two pulses, and the properties
from above hold in twofold, which means:

• There are always two large positive slope segments.

These two large segments are comparable in size and do not dominate each
other, making it clearly distinguishable from the single pulse.

8.2.2 Separation

Now that the double pulses are detected, they need to be separated, such that
they can be processed individually. For this, the end of the first and the start of
the second pulse need to be detected, which is located somewhere in the middle,
within in a range of [40-60] in normalized time as demonstrated by figure 8.1.
The local minimum in this range indicates the separation point, after which the
whole pulse normalization and qualification can be repeated.
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(a) Original PPG pulses. (b) Corrected PPG pulses.

Figure 8.2: Delayed starts of the pulses result in shifted copies of similar
pulse waveforms (green), which can be corrected.

8.3 Systolic Pulse Part

First, a method is proposed for detecting and correcting pulses where the rise-
time is delayed, which is discussed in Section 8.3.1. The second method is a
simple threshold check for the time when the systolic peak occurs. This method
discards incorrect pulses.

8.3.1 Rise-time Correction

Whilst the systolic peak has a strong definition and its occurrence can be easily
detected, this is not the case for the start of the pulse. The start of a pulse is the
tipping point whereafter the PPG signal monotonically increases till the systolic
peak. However, the precise location of this point is difficult to determine, which
can be illustrated with figure 8.2(a). The figure shows 3 delayed pulses, which
can be corrected.

Solution

To correct the delayed start, a solution is proposed in figure 8.3 on the next
page. In figure 8.3(a), a pulse from the set visible in figure 8.2 is displayed with
an obvious delay at the beginning. This delay can be detected via a method
using the euclidean distance. First, a straight line is drawn from point (0,0)
to the occurrence of the systolic peak, (tpeak,100). This line holds the same
number of samples as the waveform in this specific range. Then, the smallest
euclidean distance from each point to the straight line is calculated and the
largest euclidean distance of all these points is used to determine the start.

In the case of correct pulses, the pulse will be very close to the straight
line, whereas for delayed pulses a large value is measured. The threshold is
determined as THdist = 25. The point at which the euclidean distance is the
largest (black cross), corresponds to the rough area of the start of the pulse.
However, this point is slightly too far up the slope and an offset to the left is
required. The offset was empirically determined as 5 samples, shown with a
red cross in figure 8.3(b). Because the pulse no longer consists of 100 samples,
it needs to be normalized again. The resulting corrected pulse is illustrated in
figure 8.3(c). Applying this method on all pulses from figure 8.2(a) results in
the pulses illustrated in figure 8.2(b), which are more compact. However, care
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(a) Delayed PPG pulse. (b) Linearization & euclidean distance.

(c) Corrected pulse.

Figure 8.3: Rise-time correction. Red cross is the new pulse start.

needs to be taken with this method, because it could remove a large part of the
pulse due to severe corruption. In those cases, the pulse needs to be discarded.
This can be easily detected by comparing the amplitude of the start and end of
the pulse, which should not deviate more than half the peak amplitude, Apeak.

8.3.2 Discarding Incorrect Pulses

There is one aspect of the PPG pulse that is common to all pulses: the systolic
peak. This fundamental property can be used to discard incorrect pulses. The
peak always occurs in the first half of the waveform. In normalized time [0-100],
it always occurs in the first 40% of the pulse. As such, a simple threshold can
be used to discard incorrect pulses:

tpeak ≤ 40 (8.1)

Where tpeak is the occurrence in time of the systolic peak.
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Chapter 9

Evaluation

This chapter covers the evaluation of the developed smartphone application, the
individual contribution of each stage in the system and how it fares versus a state
of the art (SoA) PPG sensor. Two metrics are used to compare the methods,
one focuses on the quality of the extracted PPG pulses and the other that
measures the efficiency at which they are obtained, the acceptance rate. These
performance metrics will be discussed in section 9.1 and 9.2 respectively. Section
9.3 covers the contribution of each system component and the improvement
achieved. Finally, section 9.4 compares the smartphone application with the
dedicated PPG sensor.

9.1 Measure of Pulse Variation

There are many ways to express the variation between pulses in a dataset. The
most obvious way is to calculate the variance V ar or standard deviation σ of
each pulse, but there is a downside illustrated with figure 9.1. The orange
pulse is identical to the blue mean-pulse, but delayed by 3 samples. Features
extracted from these pulses would produce the exact same values, which should
be reflected in the quality metric. However, the variance is calculated between
points occurring at the exact same time (horizontal arrow in the figure). The
large distance between the points in figure 9.1 will result in a large variance,
which would mean the quality of the orange pulse is graded worse than is the
case in reality.

Figure 9.1: The blue line represents the mean of all pulses collected in
one experiment and the orange line is a pulse from this set.
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The cross track error (CTE), derived from the cross track distance (CTD),
does not have this problem [39]. The cross track distance is obtained by cal-
culating the smallest euclidean distance from the point on the blue pulse to
the orange pulse, as shown in figure 9.1. A pulse consists of 100 points and
the 100 resulting CTDs are averaged to obtain a single CTD representing that
pulse. Finally, averaging the CTDs for all pulses in the dataset results in the
cross track error (CTE), which is the performance metric for the quality of PPG
pulses. Large CTE values indicate large variance and thus a low quality dataset,
whereas small CTE values mean that the dataset is of good quality.

9.2 Acceptance Rate

As the PPG signals are obtained from the smartphone camera, there is a long
process with stages of qualification involved which either keep or discard the
PPG pulses. If the qualification is strict, it can take a very long time to obtain
enough pulses for the desired application. On the other hand, if the qualification
is too loose, many corrupt pulses are graded as clean. The quality aspect is
measured by the cross track distance and for determining the efficiency at which
pulses are collected, the acceptance rate, ra, can be used:

ra =
ncollected
nhr

(9.1)

Where ncollected is the number of pulses extracted and nhr the total number of
pulses possible, derived from the heart rate in the experiment. The heart rate
is calculated via the FFT over the entire data for the PPG sensor case. For the
smartphone application, only the pulses are stored and the heart rate is obtained
by averaging the duration of the pulses collected. However, the PPG signal is
collected over a period of 4 seconds to offer real-time feedback, whereafter it is
processed to extract the pulses. Sometimes, a pulse is only partially captured
in this window and the other part will be collected in the next segment, shown
with figure 9.2.

Figure 9.2: The red pulses are lost as they fall between 2 segments.

Due to processing overhead of the application between the 4 second periods,
these parts cannot simply be stitched together to create a pulse, because no
samples are collected during that downtime. Furthermore, the lower the heart
rate the greater the impact of losing one pulse due to overlap, as there are less
pulses in the segment than with a high heart rate. With the current system, only
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70% of the pulses in the PPG signal are collected at best. Since the PPG sensor
and smartphone operate with the same design limitations, the acceptance rate
needs to be adjusted. In the worst case, there is one pulse lost in the overlap
per segment and equation 9.1 is adjusted to:

ra =
ncollected

nhr − nsegments
(9.2)

where nsegments is the number of segments in the experiment. This way, ra
takes not only the design implementation into account, but also the heart rate.
ra as defined in equation 9.2 will be used for the evaluation in section 9.4.

9.3 Impact of Individual System Stages

The system proposed in this thesis consists of several stages and the influence of
each stage needs to be evaluated. However, in order to obtain the CTE a pulse
segmentation (PS) algorithm is needed at minimum. The following aspects will
be evaluated:

1. The peak detection by Elgendi et. al [10] only detect peaks, not pulses
and as such, the valley detection from section 7.2.3 is added. This method
will be refered to as ‘Original PS’.

2. The proposed pulse segmentation (New PS) including all algorithms pro-
posed in chapter 7.

3. Finger pressure detection (FPD) from chapter 6 is added to the New PS
stage.

4. Pulse qualification (PQ), which checks the quality of individual pulses from
chapter 8. With the addition of this stage, the entire pipeline consists of
New PS, FPD and PQ.

9.3.1 Experiment Setup

For the evaluation, 4 individuals participated in the experiments. Measurements
were obtained from the right index finger. It is difficult to evaluate each stage
within the smartphone application and instead a video is recorded which will
then be processed offline in MATLABr ver. R2018b. The camera settings are
manually set according to the recommendations in section 5.3.5. The real-time
environment is simulated by providing the algorithms with non-overlapping 4
second PPG segments one at a time. As was mentioned in section 6.2, continu-
ous measurements can only be done for a relatively short time due to the heat
of the flash light, which is why a period of 60 seconds was chosen. Subjects were
asked to first apply 30 seconds of appropriate pressure, whereafter they would
increase the pressure to a level of ‘strong pressure’ and hold that pressure for 30
seconds. This way, the obtained PPG signal consists of a ‘clean’ and ‘corrupt’
portion.
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Figure 9.3: The improvements on Elgendi’s [10] method reduce the
CTE by 67.94% on average.

Firstly, a comparison is made between the pulse segmentation algorithms.
Figure 9.3 shows that the original PS algorithm by Elgendi et. al. is unable
to handle user-related distortions for all subjects to varying degrees. The peak
& valley decision logic from the new PS plays an important role in discarding
corrupt segments. Although the average reduction in CTE of 67.94% is substan-
tial, The average CTE = 9.87 is still too large. Further processing is required
by adding FPD and PQ to New PS and their effects are displayed in figure 9.4.

Figure 9.4: Adding FPD and PQ to the system reduces the CTE by
50% on average, compared to only using the new PS.

The orange bar in figure 9.4 refers to the pulse segmentation as proposed in
this thesis, which was evaluated above and corresponds to the same orange bar
from figure 9.3. The other bars introduce the addition of finger pressure detec-
tion (FPD) and pulse qualification (PQ). This means that ‘PQ’ in figure 9.4 is
the complete combination of the new PS, FPD and PQ. Figure 9.4 shows that
the finger pressure detection reduces the CTE with 52.57% on average, which
is to be expected. Pulse qualification only reduces the CTE with 8.89% for all
subjects, as it eliminates only a few corrupt pulses.
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9.3.2 Summary of Improvements

Figure 9.5 shows the average CTE reduction per stage. The CTE with the
original pulse segmentation method from figure 9.3 serves as the baseline.

Figure 9.5: The addition of each stage reduces the CTE with 86.15%,
where the CTE with the original pulse segmentation serves as the
100% baseline.

Because each of the three stages checks the signal quality, severe distortions
are easily detected and thus removed at an earlier stage. As such, the first stage,
the new pulse segmentation (PS), is responsible for the largest CTE reduction
(67.94%). A large part of the PPG signals in the experiment were so distorted
due to the strong finger pressure, that even without finger pressure detection
(FPD) several corrupt PPG signal parts could be eliminated. The addition of
FPD stage detects the remaining distorted pulses. As the pulses get further
in the qualification pipeline, there are less distortions in the signal and those
present are more subtle. This is why only a very small improvement is observed
for the pulse qualification (PQ) stage. Finally, the combination of all stages
leads to a reduction in CTE of 86.15% when compared with the bare minimum,
the SoA pulse segmentation.
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9.4 PPG Sensor versus Smartphone App

In order to evaluate the smartphone application and the influence of the camera
settings, a comparison with an actual PPG sensor needs to be made. Both will
use the same pulse segmentation and pulse qualification methods to aggregated
pulses. The only difference is how they perceive light intensity changes and how
this is converted to a PPG signal. Furthermore, the finger pressure is handled
differently. Two experiments of 60 seconds with 2 weeks between them are held
to also account for the time-invariance of PPG signals.

9.4.1 Experiment Setup

The PPG sensor is called SDPPG by APMKorea [2] and is depicted in figures
9.6(a).

(a) PPG sensor. (b) No cuff. (c) Finger cuff.

Figure 9.6: PPG sensor modification to make it similar to medical
devices.

The sensor unit consists of a red LED and photodiode. Furthermore, a finger
mould helps the user in correctly placing the finger. However, 2 modifications are
required for the sensor to be comparable with SoA medical equipment. The first
modification is related to the finger pressure. With the setup illustrated in figure
9.6(b), the user is entirely responsible for the degree of pressure. Fortunately
this is easily solved with a custom-made finger-cuff of ‘velcro’, as depicted in
figure 9.6(c). The finger pressure is now constant and no longer controlled by
the user. The second modification is related to ambient light. Medical PPG
sensors try to eliminate disturbances of ambient light via a cover over the finger.
Here this is accomplished by covering the finger with a cloth, such that only
the light of the LED is received by the photodiode. The device is provided with
software that allows for logging the data with a sample rate of fs = 2000Hz.
This data is then provided as 4 second segments to the algorithms to simulate
the real-time environment.

The smartphone requires two hands to operate which means that first the
PPG sensor is tested and not long thereafter the smartphone. The pulses are
stored in a SQlite database on the smartphone and the database can either be
moved from the smartphone to PC, or simply evaluated in the application itself.

9.4.2 Results

Figures 9.7, 9.8, 9.9 and 9.10 show the pulses collected in the two experiments
of 60 seconds each for 4 different people.
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(a) PPG Sensor: ra = 0.86, CTE = 3.44 (b) Smartphone: ra = 0.92, CTE = 3.43

Figure 9.7: Subject 1: Aggregated plot of pulses collected within two
experiments of 60 seconds.

(a) PPG Sensor:ra = 0.86, CTE = 3.33 (b) Smartphone:ra = 0.72, CTE = 3.23

Figure 9.8: Subject 2: Aggregated plot of pulses collected within two
experiments of 60 seconds.

(a) PPG Sensor: ra = 0.74, CTE = 3.91 (b) Smartphone: ra = 0.94, CTE = 3.54

Figure 9.9: Subject 3: Aggregated plot of pulses collected within two
experiments of 60 seconds.

(a) PPG Sensor: ra = 0.96, CTE = 4.50 (b) Smartphone: ra = 0.70, CTE = 2.80

Figure 9.10: Subject 4: Aggregated plot of pulses collected within two
experiments of 60 seconds.
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The heart-rate of the subjects was in the range of [50-73] BPM, which means
that in theory, 50 to 73 pulses are present in a 60 second window, which should
result in at least 100 pulses for 2 experiments. However, the number of pulses
actually collected is much lower as was explained in section 9.2. Furthermore,
the ra=0.96 with the PPG sensor for subject 4 indicates that, from the pulses
available, almost all were good enough to keep.

Surprisingly, all subjects obtain a lower CTE for the pulses collected with the
smartphone compared with the regular PPG sensor. This is only at the cost of
5,7 and 24 pulses for subjects 1, 2 and 4 respectively. Subject 3 on the other
hand saw an increase of 19 in the number of pulses collected. The reduced num-
ber of pulses is due to the finger pressure detection. Users are responsible for
exerting the correct pressure via feedback from the smartphone, which means
that segments will be discarded if the pressure is incorrect. Users need to con-
tinuously monitor the finger pressure themselves. This is not the case for the
PPG sensor as the finger pressure is fixed by the finger-cuff.

Subjects 2, 3 and 4 show a couple pulses with large deviation from the other
pulses in the smartphone case. During the real-time pulse collection, these
pulses passed all requirements for being ‘clean’. They can only be removed
after the PPG pulse aggregation if desired. For the PPG sensor, two different
waveforms can be distinguished for subject 4, as shown by figure 9.11.

Figure 9.11: Two different pulse waveforms are obtained per experi-
ment with CTEs of 2.97 and 2.55 for experiments 1 and 2 respectively.

These ‘waveform classes’ are obtained during the two separate experiments
and the change in shape is due to the contact pressure between sensor and finger.
In hindsight, for experiment 1 the finger-cuff was too tight, which gives rise to
a waveform corresponding to a strong contact finger pressure as was shown in
section 6.2. Although no dicrotic notch or diastolic peak are present, the signal
initially rapidly declines from the systolic peak towards the end. For experiment
2, the finger-cuff was less tight, and the decline is more gradual.
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9.4.3 Summary of Improvements

Figure 9.12 shows a summary of the CTE for all tests where figure 9.12(a)
shows the comparison in CTE per sensor device and figure 9.12(b) shows the
acceptance rate ra. For the CTE, an average reduction of 12.63% is obtained
by going from the PPG sensor to the smartphone. The average ra only drops
with 3.53% going from the PPG sensor to the smartphone.

(a) Cross Track Error (CTE). (b) Acceptance Rate (ra).

Figure 9.12: The CTE of the aggregated pulses is lower for the smart-
phone application. The average reduction in CTE by using the smart-
phone is 12.63%.

Although the CTE for subject 4 with the PPG sensor is worse due to the
finger pressure difference, it is shown that overall the smartphone application
can perform equally or even better.
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Chapter 10

Conclusions

10.1 Conclusions

In the recent years, a surge in interest for mobile health monitoring is seen. Sev-
eral smartphone applications are developed to estimate e.g. heart rate, blood
pressure or blood oxygen level, but the correctness of these estimates has be-
come more concerning. More specifically, photoplethysmography (PPG) via the
smartphone camera and flash light proves to be challenging, as different sources
of noise and motion by the user can distort the PPG signal. For instance, the
pressure applied by the finger on the sensor severely impacts signal quality. This
was originally solved with a finger-clip or cuff, but a method without additional
hardware is desired. Furthermore, the different parameters of the smartphone
camera are not properly explored and as such there is a risk that sub-optimal
settings are used. Moreover, many methods involving PPG signals are evaluated
in an offline setting. Lastly, PPG signals from a single individual are similar, but
different from other individuals. This uniqueness of the PPG signal complicates
the robustness of algorithms, as they need be as general as possible.

In this thesis, a more extensive study of the smartphone camera settings is
provided than was previously done in literature, highlighting their importance
for correct PPG signal extraction. A smartphone application was developed
that not only extracts the PPG signal but also verifies the quality. PPG signals
obtained are 86.15% more compact than with a SoA method. A novel real-time
pulse segmentation algorithm is proposed to extract pulses from the PPG signal.
As pulses are aggregated over time, they can be viewed in the application and
a quality indicator, the cross track error, is calculated to show the variation
between the captured pulses.

The smartphone application was compared with a dedicated PPG sensor for
evaluation purposes. 4 Subjects were asked to participate in the experiments
and on average the signals obtained from the smartphone were 12.63% more
compact, indicating pulses of higher quality. This came only at the cost of a
3.53% lower acceptance rate. As a result, the developed system performs better
or in the worst case, similarly as the regular PPG sensor.

Lastly, this thesis introduced a real-time system that provides high quality
pulses, which is a means to an end. Other related studies can take advantage
of the contributions and recommendations done here to improve their meth-
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ods. Furthermore, the evaluation of the smartphone camera settings revealed
an unexplored rabbit hole, covering the image processing pipeline present in
smartphones (appendix A). These unexplored research areas keep the future
uncertain but promising.

10.2 Future Work

Although the initial goals of this thesis were achieved, the system cannot be
considered as finished. First of all, the task scheduling and PPG signal extrac-
tion can be done more efficiently, such that more pulses can be collected in a
period. Right now a pulse that is split between 2 measurement windows is lost,
which can be prevented by buffering the frames. However, a complex scheduler
is required that manages the tasks, their priority and duration.

Secondly, only the tip of the veil was lifted concerning the camera settings and
processing techniques in the smartphone. Many transformations are applied on
an image captured by the camera before it finally is displayed. These transform-
ations could be non-linear, which affect the pulse shape in an unknown way. In
chapter 9 it could be seen that using a different sensor device already affects
the shape of the pulses collected. Appendix A goes into more detail regarding
the image processing pipeline and the related future work.

Thirdly, the application was only tested with a single smartphone, the Mo-
torola G7 Plus. Attempts were made to test with the Redmi 5A phones available
at the TU Delft, but they require several modifications of the firmware such that
the camera settings can be manually adjusted. This was not possible to do in
time for this thesis. The application will behave differently on another device, as
the camera, flashlight and image processing pipeline are different. Furthermore,
older smartphones are unable to use the application due to the need of manual
camera access, which was only released in 2014.

Last but not least, in order to make the system more robust for different
individuals, a large and varied data set is required. This way, edge cases can be
discovered and a better understanding of the features shared among all pulses is
obtained. Furthermore, physical factors such as skin color and thickness need to
be properly explored, as the skin tone influences the penetration and reflection
of light.
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Appendix A

Image Processing Pipeline

Before addressing the main concern provided with the information here, first a
revisit of the history of PPG and its fundamental is required.

Figure A.1: Signal transformations required before blood volume
change can be monitored.

PPG can be briefly described as follows: A change in blood volume can be
observed by measuring the change in light intensity at that specific site, given a
light emitter and receiver. This relationship has been proven over and over again
and will be referred to as the qualitative relation. This property applies to all
methods developed in literature with regards to PPG monitoring. The second
property is called the quantitative relation which mathematically describes the
relationship between blood volume change and light intensity change. Blood
volume changes cannot be directly observed and as such a sensor is required that
introduces an additional transformation to e.g. electric current, as is illustrated
with figure A.1. In contrast with the previous property, this transformation is
completely dependent on the used method.

Before the invention of smartphones, PPG monitoring in medical applications
was done with sensors consisting of an emitting light with a known wavelength
from the visible light spectrum and a photodiode as receiver. A photodiode is
a device that converts light to an electric current with a known quantitative
relation, since these devices have been studies broadly. Important to note here
is that based on the generated current, a mapping back to light intensity can
be made since that relation is known.

The invention of the smartphone would revolutionize the world as was known
before then, providing endless possibilities including for the measurement of bio-
metric signals. Smartphones were equipped with cameras and flashlights and it
took not very long for researchers to find a link with contemporary PPG mon-
itoring [37]. The flashlight would act as the light emitter and the smartphone

67



camera as the receiver. The general idea is that as the blood volume changes
and results in a change of light intensity, this change can be tracked by mon-
itoring the pixel intensity levels of images shot by the camera over time. More
specifically, the RGB channels of the pixels in an image. However, the flashlight
consists of a wide range of wavelengths instead of one and information about
these wavelengths is often kept private by the manufacturers. Furthermore, the
wide range of different commercial smartphones with different flashlights com-
plicates the matter since specific hardware information is also kept secret. As
such, the relation between light intensity levels and generated pixel intensity
levels is unknown and has not been thoroughly studied, in stark contrast with
the contemporary PPG monitoring methods. Initially, many studies assumed
that the mapping of light intensity to observed output is the same as for the
regular state of the art sensors, without considering the aforementioned factors.

Fortunately, some studies recognized the importance of considering the smart-
phone camera properties for proper PPG monitoring. For instance, there have
been many studies on the RGB channel selection for the pixels in an image;
which channel provides the ‘best’ information [23]. Algorithms have been de-
veloped to construct PPG signals from these channels with mathematical for-
mulas or even select individual pixels in an image as was depicted in table 5.1 of
Section 5.2. In 2019, Liu et. al. [30] considered multiple camera settings such as
sensor sensitivity (ISO), flashlight intensity, focus, shutter speed and white bal-
ance for their PPG application. However, they only cover superficial parameters
that can be changed in a smartphone, which happen to be mainly photography
related parameters, whereas PPG monitoring is completely different. For some
studies, this could be attributed to the limited access to the camera hardware.

“The ability to edit its image processing pipeline has been held exclusively by
the camera manufacturers. Google is trying to change the game with the

release of the Camera 2 API for Android1.

The case of limited access to the camera only applies to the studies before
the release of the Camera 2 API in 2014. Liu et. al. [30] consider only a minus-
cule fraction of the settings that interact with the Camera 2 API. Figure A.2
shows a generalized image processing pipeline present in smartphones, with the
several stages required to go from the raw sensor values to an image that can
be displayed. Only stage 6, White-balancing and stage 8, Exposure curve, have
been covered in literature with the addition of stage 12, Gamma curve by this
thesis. This is only 3

12 th of the entire pipeline. Recall that the goal of con-
trolling these settings is to obtain a quantitative relation between the changing
light intensity and pixel intensity. Each of the stages in figure A.2 introduces
a transformation or modification on the raw values as perceived by the smart-
phone camera sensor, altering the original information it carried. At the time
of writing, no research has been done on the contributions of each stage to the
final PPG signal extracted from the RGB pixel intensity levels.

There is no clear reason as to why nobody has investigated the image pro-
cessing pipeline, but there are a few possible explanations. Disclaimer : the

1Min Jae Kim - May 15 2019 - https://medium.com/@kimmminjae/android-camera2-api-
pipeline-manipulation-dc3becd59a36
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Figure A.2: A generalized image processing pipeline of a smartphone
[24].

following is based on what I have researched the past year and the knowledge
that I have gained about the topic and as such is mostly opinion driven.

The first reason is that several papers covering smartphone PPG monitoring
verify their methods offline. What this means is that first, a video is recorded
with a smartphone and then on a PC the method is applied to obtain results.
Developing a custom app to record videos is seen as unnecessary since many
apps on the AppStore or PlayStore are available. However, these apps are
intended for ‘normal’ photography and allow users to tune camera parameters
on a rather basic and limited level even with Camera 2 API capabilities.

The second reason is that the image processing pipeline is a complicated
process that even varies per device. Investigating each stage would be a very
tough and tedious task. Smartphones do allow for raw sensor output captures,
but the interpretation is device dependent which introduces the portability issue
of apps developed on one device and then used on another.

Thirdly, a large part of smartphone PPG monitoring has been focused on
obtaining the heart-rate, which is rather trivial. This is because only the peak
of the PPG pulse is required. The quality of the remainder of the pulse is irrel-
evant, which means that such methods are much more robust versus MNAs and
image processing transformations. The moment features of the pulse waveform
are considered, these influences become important.

Based on these findings, we are left with many questions. Can we omit the
entire pipeline and directly convert the raw sensor data to a PPG signal? What
is the influence of each stage on the PPG signal? Can we use the pipeline to
increase the PPG signal quality? In order to answer these questions, research
on the image processing pipeline is required, which is well beyond the scope of
this thesis and could be a thesis on its own. What I have tried to do here, is
bring attention to a research area yearning for exposure as it has been neglected,
despite its possibly crucial impact on the PPG signal.
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