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ABSTRACT 
 
The material point method is a finite element variant which allows the material, represented by a 
point-wise discretization, to move through the background mesh. This means that large 
deformations, such as those observed post slope failure, can be computed.  By coupling this 
material level discretization to the spatial variability of the material generated by random fields 
and embedding this into a Monte Carlo framework, a new method called the Random Material 
Point Method (RMPM) has been developed.  This method retains the advantages of the so-called 
random finite element method, that is, a risk based interpretation of the influence of spatial 
variability of the material properties, but additionally enables the effective modeling of large 
deformations to give a risk based interpretation of post-failure mechanisms. After a brief 
introduction to the RMPM methodology, the analysis of an idealized cohesion strain-softening 
clay slope is presented, which illustrates the influence of anisotropy of the material variability on 
the evolution of retrogressive slope failures. 
 
INTRODUCTION 
 
Soils exhibit substantial spatial variability, which has been more recently included in 
geotechnical analyses, for example, using the random finite element method, RFEM (e.g. Hicks 
and Samy 2002; Fenton and Griffiths 2008). Additionally, soil failures often involve large 
deformations which are typically unsuitable for simulations using static mesh-based methods 
such as the finite element method. The material point method (MPM) was proposed by Sulsky et 
al. (1994) to tackle large deformations and has been recently used in geotechnical simulations 
(e.g. Wang et al. 2016b,c), to model the entire slope failure process, from initiation to the 
development of multiple failures and the final failed configuration. 
 This paper presents a recent development, where the spatial variability and large 
deformations are captured in a method called the random material point method (RMPM) (Wang 
et al., 2016a). In this method, the spatial variability is captured by the generation of random 
fields and the large deformations are modeled by the material point method. This development 
sits alongside further developments in RFEM, which can also be used in conjunction with 
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RMPM, such as reducing uncertainties by including measured data (Vardon et al. 2016; Li et al. 
2016), detecting scales of fluctuation in practice (Lloret-Cabot et al. 2014; de Gast et al. 2017), 
and efficiently dealing with low computed probabilities (van den Eijnden et al. 2017). It is seen 
that methods such as RFEM and RMPM, while computationally intensive, offer greater accuracy 
and flexibility than simpler methods utilizing probabilistic methods (Li et al. 2015; Varkey et al. 
2017). 
 
THEORETICAL BASIS 
 
The material point method uses the same spatial discretization and, therefore, solution methods, 
as the finite element method (FEM).  The major differences are that, in contrast to FEM, 
numerical integration (e.g. to form the mass matrix) and state variables (e.g. velocity and 
position, in this case) are associated with the material points rather than Gauss points, and that 
the mesh is reset after each solution step. This involves mapping between the material points and 
mesh nodes, and vice versa, at the beginning and end of the solution step, respectively.   
 Figure 1 shows the main stages of the computational procedure. In Figure 1(a), state 
variables are mapped to an arbitrarily located mesh; in Figure 1(b), a FEM calculation is 
undertaken to update the state variables on the mesh, with numerical integration undertaken via 
use of the material points; in Figure 1(c), the material point positions and state variables are 
updated. For the next step in the analysis the mesh is typically reset, although the mesh can be 
positioned differently, if required.  

In this paper, the conservation of momentum is used as the governing equation and the 
equation is solved explicitly. In the work of Wang et al. (2016b,c), the equations were solved 
implicitly, which offers advantages with respect to the time step size. However, due to the wide 
range of material parameter values and plastic behaviors modeled in an RMPM analysis, it was 
decided to use the explicit version here. More details of the respective formulations are given by 
Wang et al. (2016a,b,c).  

 
Figure 1. The stages of the material point method (after Wang et al. 2016a). 

Random field theory allows the numerical generation of possible property fields, or 
realizations, based upon a statistical description of the field (Fenton and Griffiths, 2008). The 
required statistics are the point statistics of a probability density function, e.g. the mean and 

Analysis step (e.g. time)
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standard deviation, and a description of the spatial correlation, e.g. a function characterized by 
the scale of fluctuation. Random fields are typically produced for a standard normal distribution 
and isotropic spatial correlation, and then transformed to the required statistical distribution and 
anisotropic properties. 

The combination of random fields and FEM, called the random finite element method 
(RFEM), maps cell values from the random fields onto the Gauss points of an FEM mesh and 
each realization is then calculated deterministically (e.g. Hicks and Spencer 2010) in a Monte 
Carlo analysis. The main result of such an analysis is the quantification of the probability of any 
particular outcome, e.g. the stability of a slope.  
 RMPM maps values from the cells of the random fields to the material points, which, in 
this case, are located initially on the Gauss point locations of the background mesh. To quantify 
the range of possible responses, a Monte Carlo analysis is carried out (as in RFEM). However, 
this paper confines itself to illustrations (i.e. single realizations) of failure mechanism 
development, rather than to a quantification of risk. For more information on the Monte Carlo 
analysis technique and the quantification of slope-run out risk using RMPM, see Wang et al. 
(2016a).  
 
ANALYSES 
 
A simple slope analysis is presented to demonstrate the potential of RMPM in computing various 
failure mechanisms.   
 
Domain and boundary conditions 
A 5 m thick clay layer overlays a sloping bedrock, as shown in Figure 2. The main slope is 20° 
to the horizontal and, towards the bottom of the slope, a steeper slope (45° to the main slope 
surface) is cut. The upper-most section of the slope is horizontal. The domain is discretized into 
4600 finite elements, with 4 material point initially placed in each element. 
 

 
Figure 2. Domain and boundary conditions (not to scale). 

 
Material properties 
A simple linear elastic, cohesion softening model is used, with a Von Mises yield criterion. The 
Young’s modulus and Poisson’s ratio are 1000 kPa and 0.33, respectively, the soil self-weight is 
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20.0 kN/m3, the mean peak cohesion is 20.0 kPa and the mean residual cohesion is 4.0 kPa. The 
coefficient of variation, i.e. the ratio between the standard deviation and mean, for both the peak 
and residual cohesion is 0.25. For each realization, a single random field of peak cohesion is 
generated, from which the random field of residual cohesion is back-figured, i.e. the peak and 
residual cohesion are proportional to each other. The material properties have been selected so 
that the slope is initially unstable, i.e. the slope instability is triggered by its self-weight. 
 Four case studies have been examined here: (i) a homogenous case, (ii) an isotropic 
spatial correlation, (iii) a mid-range anisotropic spatial correlation, and (iv) an extended 
anisotropic spatial correlation, where the appearance is almost layered.  The vertical scale of 
fluctuation, θv, in cases (ii)-(iv) is 0.5 m, and the degree of anisotropy (ξ = θh / θv) for cases (ii), 
(iii) and (iv) are 1, 12 and 48, respectively. Single realizations of the peak cohesion for cases (ii)-
(iv) are shown in Figure 3. 

 
Figure 3. Realizations of the peak cohesion for different anisotropies of the heterogeneity. 
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RESULTS 
 
The result of the case (i) analysis is shown in Figure 4. As expected, and as would be predicted 
by an FEM analysis, the failure is a long translational slide along the base of the soil layer (as 
indicated by the high plastic shear strain invariant values). The MPM analysis also shows the 
subsequent breaking up of the slope mass as the deformation evolves into a succession of almost 
rotational slip planes. 

 
Figure 4. Plastic shear strain invariant contours for case (i): mean properties. 

 
The results from cases (ii)-(iv) are shown in Figure 5(a)-(c). In Figure 5(a), there are only 

limited differences between the observed failure mechanism and that seen in Figure 4. The 
general failure mechanism is still that of a translational failure with the basal failure plane at the 
base of the soil layer. Similar sized and shaped sub-blocks are formed when the large sliding 
mass breaks up.  A limited number of additional shear planes are seen moving away from the 
base and at the toe of the slope where weak zones are connected together.  
 For case (iv), where the highest level of anisotropy occurs, the material properties give 
the soil an almost layered appearance. This leads to a translational failure of the entire slope (see 
Figure 5(c)), though not at the base of the soil layer but at approximately one third of the depth 
from the base. The slope does not break up as much as in case (i), although some sub-blocks are 
formed at the top of the slope. 
 For the mid-range anisotropy, case (iii), shown in Figure 5(b) a more complex failure 
scenario is seen. A rotational failure is observed at the toe of the slope, and smaller rotational 
failures at the crest of the slope. A series of translational failures are also seen, interacting with 
each other. The material is observed to be the most disturbed of the three cases (i.e. it has the 
largest number of sub-blocks). 
 The differences in the observed failure mechanisms give rise to different amounts of 
material moving downslope, different early indications of slope failure and a range of outcomes, 
in contrast to the single outcome calculated in the homogenous case shown in Figure 4. Noting 
that each of the analyses presented here is statistically equal (with respect to the mean and 
standard deviation), the results suggest that, to quantify the risk associated with such slope 
failures requires knowledge of the uncertainty and spatial correlation of material parameters, in 
particular where the degree of anisotropy falls into the mid-range exemplified by case (iii). 
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Figure 5. Plastic shear strain invariant contours for cases (ii)-(iv): random realizations with 

different anisotropies of the heterogeneity. 
 
CONCLUSION 
 
The random material point method, a combination of random field theory and the material point 
method has been outlined. Example analyses, based on a long slope which typically would fail 
by translation, are shown, demonstrating the range of failure mechanisms observed. This method 
can be incorporated into a Monte Carlo analysis to quantify risk, based upon, for example, 
material sliding, or run-out length.  
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