
Algebraic Effects and Handlers for Software
Transactional Memory

Matej Tomášek
Supervisor(s): Casper Bach Poulsen, Jaro Reinders
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Matej Tomášek
Final project course: CSE3000 Research Project
Thesis committee: Casper Bach Poulsen, Jaro Reinders, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Algebraic effects and handlers has been a popular approach for modelling side-effects
in functional programming languages. Focusing on composability and modularity, this
approach separates the effectful syntax from its semantics, which helps programmers
to create effect abstractions such that their implementation can be modified without
changing the syntax. However, there exist mainstream functional programming lan-
guages, like Haskell, which lack built-in frameworks to accommodate specifying side-
effects in this manner. In this paper, we provide an interface for Haskell’s Software
Transactional Memory (STM), a concurrency abstraction, in the framework of alge-
braic effects and handlers from prior literature. We embed our implementation into
a simple concurrency model using higher-order effects, in order to demonstrate it is
possible to define and execute effectful concurrent programs that obey the semantics of
Haskell’s STM. Furthermore, we prove that our implementation satisfies the necessary
laws governing our interface, such that programmers can easily reason about programs
using our STM model.

1 Introduction

In purely functional programming, monads [7] have been the standard approach for mod-
elling and building programs with side-effects. These include I/O operations, exceptions,
mutable state, non-determinism, concurrency and more. More recently, however, an in-
creasingly attractive technique of modelling computational effects has emerged in the form
of algebraic effects [10] and their handlers [11]. Using this approach, one can separately
define the effectful operations (syntax) following algebraic equations from the handlers im-
plementing the algebra, which gives way to concisely combining multiple effects in a single
program.

For example, by declaring throw to be an operation that raises an exception with a given
message, and get and put to be operations for getting and setting the contents of a mutable
state holding an Int, we can define a program for safely dividing the number in the mutable
state shown in Figure 1 (omitting the function signature). In order to execute the program,
we have to implement handlers for each effect. Here, the handler hExc defines the effects
of the throw operation, and the handler hState s defines the effects of the get and put
operations on a state s. In Figure 2, we evaluate our program by applying these handlers
in sequence, which outputs either the return value paired value currently held by the state,
or the message from a thrown exception (depending on the actual implementation).

safeDiv d = do
n <- get
if d == 0 then

throw "Division by 0!"
else do

set (n `div` d)
get

> hExc (hState 4 (safeDiv 2))
Right (2, 2)

> hExc (hState 4 (safeDiv 0))
Left "Division by 0!"

Figure 1: The program for safe division Figure 2: Evaluations of the program

Such out-of-the-box modularity is not available with the traditional monadic approach.
Additionally, a different order of handler applications may in turn imply a different

interpretation of the underlying program. This is the case for our handlers hState and

1

hExc. If we were to extend our example by declaring a scoped operation catch m n that
catches potential exceptions in m and continues with n (handled by hExc), and consider a
new program called transact [19] from Figure 3, then swapping the application order of
handler would yield to different results as shown in Figure 4.

transact = do
put 1
catch

(put 2 >> throw "Error")
get

> hExc (hState 0 transact)
Right (1, 1)

> hState 0 (hExc transact)
(Right 2, 2)

Figure 3: The transactional program Figure 4: Different orders of evaluation

Thus, for the first ordering, we can observe so-called transactional semantics, discarding
the changes to the state inside the catch, between the these two effects by virtue of catch
being scoped, i.e. containing inner computations [20].

Although there has been extensive research of algebraic effects and handlers in recent
years [10] [3], there are functional programming languages, like Haskell, which lack mean-
ingful built-in implementations for specifying computational effects this way. Fortunately,
Haskell’s community built multiple libraries 1 2 for implementing algebraic effects, with the
literature also offering proposing frameworks to model algebraic effects [12], and even higher-
order effects [2] [20]. These frameworks are mainly based on the free monad approach [15].

One of the more famous transactional effects in Haskell is Software Transactional Memory
(STM) [8]. It is a concurrency abstraction where threads can interact through memory,
using database-like transactions instead of locks. Its main feature is that it allows to easily
compose concurrent program fragments into a larger fragment without the programmer
worrying about possible failures, e.g. deadlock. We would like to explore how STM would
look like in the framework of algebraic effects and handlers, to what extent it resembles
transactional interactions of different effects, and how other effects can be extended with
similar semantics as those of the STM. Thus, the purpose of this research paper is to answer
the following question: "How can we implement and reason about an algebraic effect model of
STM in Haskell?", combining the previously outlined concepts. More precisely, the following
sub-questions have been identified:

1. How can an implementation of algebraic effects that implements the intended behavior
of STM look like in correspondence with the literature?

2. What are the mathematical laws describing the intended behavior of STM and prove
the proposed implementation is correct with respect to them?

3. How do the operations of our STM interface interact with the operations of other
effects, and what the "extension" of transactional memory to other effects looks like?

There are several contributions made in this paper which aid us in answering these research
questions:

• We introduce a framework for defining algebraic effects and handlers in Haskell for-
mulated in [12].

1https://hackage.haskell.org/package/fused-effects
2https://hackage.haskell.org/package/freer-simple

2

https://hackage.haskell.org/package/fused-effects
https://hackage.haskell.org/package/freer-simple

• In this framework, we propose an abstraction of STM, modelling its semantics accord-
ing to [5], and demonstrating it on an example program in a concurrent setting.

• We establish a technique of verifying our implementation in a formal way, i.e. proving
that it respects the algebraic theory of STM operations from [4].

• We analyze the composition of the STM effect with different effects, how changing the
order of handling changes the semantics.

The rest of this paper is structured as follows. We start with a problem description
regarding the framework for algebraic effects and handlers in Section 2, as well as Haskell’s
STM abstraction and its operational semantics. In Section 3, we outline the implementation
of our abstraction of STM as an algebraic effect. We verify our implementation against a
formal reasoning technique for STM abstractions in Section 4, and in Section 5, we apply the
implementation to an example program and propose the extension of transactional memory
to other effects. In Section 6, we talk about ethical considerations and reproducibility of our
research. The discussion of our implementation in a broader context is provided in Section
7. Section 8 describes related work. And finally, the conclusion and the overview of possible
future improvements are in Section 9.

2 Background and Methodology

This section offers a complete overview of the problem tackled in this research paper, namely
the implementation of algebraic effects and handlers for Software Transactional Memory
in Haskell. Choosing a problem-oriented approach, we focus on presenting the necessary
background concepts that form the basis of our research. The aim is to provide the necessary
context to the methodology with which we will develop our implementation. We start with
providing a short introduction to algebraic effects and handlers and their implementation
in Haskell. Afterwards, we explain the operational semantics of STM Haskell and how it
differs from lock-based concurrency.

2.1 Algebraic Effects and Handlers in Haskell
Unfortunately, Haskell does not provide a way to implement algebraic effects out of the box.
In order to do so, we adopt an "à la carte" approach of expressing effectful programs as free
monads borrowed from [12] that was inspired by [15].

Free monads represent abstract syntax trees, where Pure corresponds to a value, and Op
corresponds to an effectful operation given by a signature functor f. In general, the type f k
encodes a the syntax of an operation whose continuation is of type k, so f (Free f a) repre-
sents an operation whose continuation is the syntax tree itself Free f a. As was previously
mentioned, these programs may be written against more than one syntax interface. They
are modelled as rows of effect types in Free using the functor co-product +. Additionally, we
intend for the programmer to easily compose individual operations together. Thus, we intro-
duce signature subtyping with the type class < to automatically inject a piece of syntax into
a larger row of effects, which allows us to define smart constructors for any effect operation.
Finally, free monads provide semantics to the encoded effects by (recursively) folding over
its syntax tree. The function fold uses a generator function (a -> b) to transform values
from Pure a to b, and an algebra (f b -> b) to extract recursively-folded continuations
from the signature functor of type b. Figure 5 encapsulates this entire framework.

3

data Free f a where
Pure :: a -> Free f a
Op :: f (Free f a) -> Free f a

data (f + g) a = L (f a) | R (g a)
deriving Functor

class f < g where
inj :: f k -> g k

fold :: Functor f
=> (a -> b) -> (f b -> b)
-> Free f a -> b

Figure 5: Free monad framework

fold is also used to implement the instance of Monad, Applicative and Functor for Free.
To mark the end of the effect row, we use the End functor with no constructors and the
function un :: Free End a -> a to extract the result a, after handling all other effects
before End. For the sake of brevity, we do not include their definitions in this paper.

For example, in Figure 6, the syntax of State effect can be represented by a signature
functor and smart constructors from [12].

data State s k where
Get :: (s -> k) -> State s k
Put :: s -> k -> State s k
deriving Functor

get :: State s < f => Free f s
get = Op $ inj $ Get Pure

put :: State s < f => s -> Free f ()
put s = Op $ inj $ Put s (Pure ())

Figure 6: State effect signature

An effect handler implements a specific interface by defining the interpretation of each
operation associated with an effect. The idea is that a handler should forward the rest of
the computation to other handlers, thus we can model handlers as the following:

data Handler f a f' b = Handler {
ret :: a -> Free f' b,
hdlr :: f (Free f' b) -> Free f' b

}

handle :: (Functor f, Functor f')
=> Handler f a f' b
-> Free (f + f') a
-> Free f' b

Figure 7: The handler framework

The function handle takes a handler Handler f a f' b, that handles an effect f, leaving
behind the effects f', and transforming the return type of the computation from a to b, by
the means of fold.

For the sake of brevity, the definitions of StatefulHandler with its handling function
and hState are not included here as well. All omitted code of our paper is available in [16]
and in [12].

2.2 Software Transactional Memory in Haskell
Software Transactional Memory is a programming abstraction for shared-memory concur-
rency [5]. Most prevalent form of concurrency is lock-based concurrency, although there are
several fundamental drawbacks to this approach

• As simple as the approach might be, lock-based programs do not scale well. The
problem of ensuring correctness, liveness and good performance becomes unmanagable
with complexity

4

• Lock-based programs do not compose. Even though, the fragments of the concurrent
program are correct, they may fail when combined in isolation, thus we have to expose
the locking protocol to merge them correctly

Basing concurrency control on atomic memory transactions alleviates these problems, as
the abstractions are separated from the semantics of concurrency. The key insight is that a
block of code, including nested calls, enclosed in atomically, is guaranteed to run atomically
with respect to every other block. More precisely, it makes the following guarantees:

1. Atomicity — the effects of one block become visible to other threads all at once

2. Isolation — the block is completely unaffected by other threads

The transactional memory shared between the atomic blocks is traditionally implemented
using optimistic synchronisation. Each block takes snapshot of the memory at the beginning
of its execution and then executes against that snapshot, keeping track of all reads and writes
in a thread-local log. Once the block finishes execution, it validates that the initial view
of the memory is consistent with its current contents - i.e. no concurrent transaction has
committed conflicting changes. If so, it commits the changes recorded in the log to memory,
otherwise, the transaction aborts and runs at a later time.

In Figure 8, we outline operations of Haskell’s STM interface [8] (not including throw
and catch operations from [5]).

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Figure 8: The STM interface

We can interact with the transactional memory using transactional variables (TVar).
The newTVar, readTVar and writeTVar return STM actions, since only memory actions and
pure computations can be performed in atomic blocks - this is guaranteed by the virtue of
STM being a monad. Additionally, STM action cannot be executed without the protection of
atomically.

Operations retry and orElse represent concurrency primitives blocking and choice.
Conceptually, retry aborts the transaction with no effect and restarts it at the beginning.
orElse lets us compose transactions as alternatives - i.e. if the first one retries, it is aban-
doned with no effect and the second transaction is run instead.

The transactional semantics of STM also simplify the process of formal reasoning about
concurrency, as opposed to lock-based approach [4], which we utilize in Section 4.

3 Implementing the STM Interface

This section outline the main contribution of this paper, as we present the implementation
of STM in the framework of algebraic effects and handlers from 2.1.

3.1 Effect Interface and Single-Threaded Handler
In order to define our effect interface, we need to model the structure and behaviour of
the transactional memory. In Haskell’s STM, this is done using optimistic synchronisation,

5

which requires validation and commiting of thread-local transaction logs. In the single-
threaded case, there is no need for validating a transaction log, or keeping a log for that
matter. Since, there are no transactions running in parallel that can commit their changes
before validation happens, it is evident all transactions on a single thread are executed in
sequence. Therefore, the reads and write of single-threaded transactions are immediately
reflected in the transactional memory, which is in correspondence with the formal reasoning
[4]. In this section, we initially focus on implementing the effect on single-threaded programs,
i.e. without atomically, as it provides the necessary foundation that can be easily extended
into multi-threaded environment with optimistic synchronisation.

Since newTVar can allocate TVars of any type into the transactional memory, our model
must be able to store values of any type in easily accessible and orderly manner. The simplest
solution is to represent the transactional memory as a list of dynamic cells, which we name
Heap [4] (Figure 9), and the transactional variables become references to these cells. Also,
Heap should be an instance of Eq, as later on we will require means of comparing snapshots
of the transactional memory to properly implement optimistic synchronisation. In order
to perform type-safe reads and writes to any arbitrary cell in the heap, we define helper
functions alloc, update and lookup. Thus, we can now introduce the signature functor of
our STM effect (and its smart constructors) that corresponds very closely to Haskell’s STM
interface (Figure 11).

data Cell = forall a. (Show a, Eq a)
=> Cell a

deriving instance Show Cell

instance Eq Cell where
(==) :: Cell -> Cell -> Bool
Cell a == Cell b =

show a == show b

newtype TVar a = TVar Int
deriving (Eq, Show)

type Heap = [Cell]

alloc :: (Show a, Eq a)
=> a -> Heap -> (TVar a, Heap)

update :: (Show a, Eq a)
=> TVar a -> a -> Heap -> Heap

lookup :: (Show a, Eq a)
=> TVar a -> Heap -> a

Figure 9: Our Heap implementation

data STM k where
New :: (Show a, Eq a) => a -> (TVar a -> k) -> STM k
Read :: (Show a, Eq a) => TVar a -> (a -> k) -> STM k
Write :: (Show a, Eq a) => TVar a -> a -> k -> STM k
Retry :: STM k
OrElse :: k -> k -> STM k

deriving instance Functor STM

Figure 10: Our STM interface

Ideally, we would like that each operation has access to the Heap at all times, so that
New corresponds to performing alloc on the heap, and passing the resulting TVar and the
new heap into the continuation, Read correponds to performing lookup on the heap, and
passing the resulting value of type a into the continuation, and Write corresponds passing

6

the modified heap from update to the rest of the computation. It is interesting to note that
OrElse is parameterized by two continuations (transactions), which is essentially a way to
contain the two alternative transactions in different scopes. Handlers can then evaluate
their effects in isolation, and then decide with which continuation to proceed next. Addi-
tionally, in the single-threaded case, the Retry operation essentially becomes an aborting
operation, since under no circumstances the transactional memory would be modified before
the transaction’s re-execution and the transaction would possibly end up in an infinite loop.
By reinterpreting the semantics in this way, the behaviour of Retry and OrElse closely
resembles that of throw and catch operations of the exception effect in Section 1. Taking
all of this in mind, we arrive at our single-threaded handler implementation for the STM
interface, statefully threading the Heap through the computation, as shown in Figure 7.

hSTM :: Functor f => StatefulHandler STM a Heap f (Maybe (a, Heap))
hSTM = StatefulHandler {

retS = \a h -> return $ Just (a, h),
hdlrS = \op h -> case op of

New a k -> let (t, h') = alloc a h in k t h'
Read t k -> let a = lookup t h in k a h
Write t a k -> k $ update t a h
Retry -> return Nothing
OrElse t1 t2 -> t1 h >>= maybe (t2 h) (return . Just)

}

Figure 11: The single-threaded STM handler

3.2 Modelling Multi-Threading with Atomic Transactions
In order to actually model STM transactions running in parallel, we need a way to express
and implement multi-threaded programs using algebraic effects. Wu et al. [20] proposed
a concurrency effect modelling cooperative multi-threading, in which threads themselves re-
linquish control to the scheduler, so that it may decide to run a different thread instead.
However, the framework of algebraic effects is not expressive enough to model this effect,
as they shown it is a higher-order effect. In particular, Fork w k, which spawns a new
worker thread w and continues with k on the main thread, is a scoped operation, and thus
does not compose with traditional sequencing like algebraic effects: Fork w k >>= f ̸=
Fork (w >>= f) (k >>= f), but Fork w k >>= f = Fork w (k >>= f)

To that end, we adopt a framework for defining higher-order effectful programs called
Hefty trees [2], which is a generalization of the free monad that supports higher-order ef-
fects (defined by higher-order functors), and allows their modular elaboration into algebraic
effects. We borrow the code for the framework from [13]. Additionally, we extend these
higher-order functors with the weave operation for ad-hoc handling of scoped effects di-
rectly on Hefty trees, as demonstrated by Wu et al., which greatly simplifies our scheduler
implementation.

The signature higher-order functor of our Thread effect is an more of extension to the
cooperative multi-threading, whilst discarding the Yield operation in favour of immediate
yielding of the current thread after an operation finishes execution. Being able to declare
operations like atomic and wait will prove essential in demonstrating our STM effect on a
fully concurrent application in 5.1.

atomic :: Thread <: h => Hefty h a -> Hefty h a
fork :: Thread <: h => Hefty h a -> Hefty h ()

7

wait :: (Alg Out <: h, Thread <: h) => Int -> Hefty h ()

execute :: (Alg Err <: h, Alg Out <: h)
=> Hefty (Thread :+: h) a -> Hefty h a

executeAll :: (Alg Err <: h, Alg NonDet <: h, Alg Out <: h)
=> Hefty (Thread :+: h) a -> Hefty h a

Figure 12: The Thread effect and its schedulers

In the Figure 12, the operation atomic m delimits a block m which is then executed all at
once, i.e. no other thread starts running before it finishes execution. Its implementation also
disallows any Thread operations (nested atomic blocks, forks and waits) to happen inside
this block. The operation wait d suspends the the thread for d microseconds and then
resumes the continuation (using an operation from Out [16]). The evaluation of concurrent
programs can be modelled two ways:

• Using execute function — the program is run by a scheduler implemented similarly
to the one from [20], it cycles through the currently being evaluated main thread (the
input program) and the currently being evaluated worker threads (spawned with fork
in the input program) in a round-robin manner. It switches from one thread to the
other after a single (or atomic) operation is performed. The worker threads are kept
track of in a two queues, the first queue is used to pop the currently running workers
one by one, and the second queue is used to collect these workers to be evaluated in
the next cycle by pushing the running workers’ remaining computations. Additionally,
the main thread does not terminate unless all worker threads terminate first. With
this evaluation, it is possible to simulate a "real" scheduler, which proves useful when
we demonstrate our STM interface on the example program in Section 5.

• Using executeAll function — every possible interleavings of the input program’s main
and worker threads using non-determinism. The switching between threads is now non-
deterministic — every time a thread yields or forks, our model non-deterministically
chooses a permutation of the current spawned workers ordering, where for each per-
mutation it, again non-deterministically, chooses to either run the main thread or the
first worker thread from permuted ordering. Just as with the previous evaluation
scheme, the main thread terminates when all other worker threads have terminated
first, which means all non-determinstic computations where the main thread termi-
nates first are discarded. This evaluation scheme is useful when verifying whether our
implementation computes the desired result for all thread interleavings of the given
input program.

For more in-depth explanation of the semantics, we refer you to the code from this paper [16].
Since it is by definition a scoped effect, different composition with other effects yields

different semantics. As example, Wu et al. mention the interaction with the State s
effect, i.e. local state vs. global state semantics. When handling the state effect first,
fork creates a local copy of the state within the individual thread and the changes to it
are not shared. However, when it is the other way around, all threads interact with the
global state and the changes are shared between them. Thus, the only way we can have
parallel STM transactions validate and commit to the shared transactional memory at any
point in the program’s execution, is to handle the Thread effect first and then evaluate
the logged changes to the global Heap. Unfortunately, these semantics (and also the actual

8

semantics of Haskell’s STM in literature) introduce several drawbacks to our implementation
of atomically:

• We cannot simply introduce the STM effect into the effect row of Hefty, as that would
allow us to introduce STM operations outside of the atomically block.

• Since the optimistic synchronisation necessitates isolation, the transaction inside atomically
has to be unaffected by other threads, i.e. it has to be executed against a snapshot
of the transactional memory. Even though this behaviour corresponds to the transac-
tional state interpretation of the effect interaction between state and exception catch-
ing from 1, with the scoped Thread, it is simply not possible to share the local updates
with the main thread. Thus, we have to follow the global state interpretation.

The only option we are left with is to model the optimistic synchronisation by embedding
the single-threaded handler from 3.1 into the implementation of atomically in Figure 13,
at the cost of modularity.

atomically :: (Thread <: h, Alg (State Heap) <: h)
=> Free (STM + End) a -> Hefty h a

atomically t = do
initial <- get'
let eval = un $ handleStateful hSTM initial t
case eval of

Just (r, changed) -> do
commit <- atomic $ do

current <- get'
if current == initial then

put' changed >> return True
else

return False
if commit then return a else atomically t

Nothing -> atomically t

Figure 13: Our implementation of atomically

The global Heap would then be provided by the State Heap effect. The implementation
exactly follows the optimistic synchronisation, in a sense that, the transaction is executed
against the snapshot initial, which produces either the result paired with the changed heap
changed or fails. If the transaction fails, we recursivelly call atomically, at which point
the thread would automatically yield, and the scheduler would run another thread. If the
transaction succeeds, the contents of changed are commited and the result returned if and
only if the initial heap is consistent with/equal to the current heap, otherwise we re-run
the transaction again. The commiting part is executed in a e interleaved with other thread
which break consistency. In general, one might want to compose and execute these multi-
threaded programs with STM transactions with type signature that yields the correct se-
mantics, such as Hefty (Thread :+: Alg (State Heap) :+: Alg Err :+: Alg Out) a.
In the Appendix A, we provide an example of a limited account withdrawal from [8].

4 Verifying the Model Implementation

With the implementation in place, the question arises as to how we can prove that our
STM semantics follow a sound equational theory for STM abstractions. Such theory was

9

proposed by Borgström et al. [4], and allows reasoning about programs which use Haskell’s
STM. In this section, we outline correspondences between its formalisation of Haskell’s STM
expressions and our STM abstraction utilizing Free monads, and prove equivalences which
should hold for our implementation for evaluating STM expression in atomically.

4.1 Core Calculus Correspondence
The core calculus for STM expressions from the given theory is defined as "a concurrent
non-strict lambda calculus, with memory cells (TVars) and atomic blocks (atomically)",
so it does not concern the specifics of the concurrency model of IO monad, except that
it allows parallel execution of transaction. Thus it is not necessary to verify whether our
implementation of the Thread effect follows any specific process calculus laws, since the
theory does not provide any, and because it is also outside of the scope of this paper). For
the purposes of our implementation, we are interested only in specifying the single-threaded
handling behaviour of our handleSTM function, on which atomically relies on.

As given by the formal definition by Borgström et al., (single-threaded) STM expressions
have the form of H | M which is a parallel composition of a heap of transactional variables
H and a running transaction M . Moreover, the operational semantics of operations in M
do not consist parallel compositions with the full heap, but only with an adjacent piece of
the heap with which we actually perform the transaction. In essence, each transaction has
to be accompanied with a view of the memory (heap) shared with other transactions in the
program. The equivalence between two transaction expressions M and N is established
succinctly using heap transformer equivalence (↔). Two STM expressions satisfy such
equivalence if and only if for any arbitrary heap both expression reduce to the same result
or the retry operation together with structurally equivalent heaps.

In comparison with our implementation, the operational semantics are modelled by eval-
uating Free (STM + f) a transactions with handleSTM. Although the equivalences concern
isolated STM expressions, the functor f may possibly introduce other effects. Therefore, we
consider Free expressions where we take f to be the End effect, as it does not have any con-
structors, and thus does not introduce other arbitrary syntax into the expressions. We now
have a correspondence with the type system, such that expressions >>=STM and returnSTM
are equivalent to >>=Free and returnFree. Additionally, handleSTM’s inner workings neces-
sitate a view of the heap threaded in its computation, which is either returned along with
the result (commit) or discarded (retry) in terms of Maybe. This behaviour actually corre-
sponds to the formalism of STM expressions and their parallel composition with the heap.
Therefore, in a single-threaded case, it is possible to establish heap transformer equivalence
between two transactions, as when we have means of comparing the heap after execution
and the outcome using equational reasoning. Proving that M ↔ N is now analogous to
evaluating handleSTM M h = handleSTM N h for arbitrary heap h.

4.2 Proofs of Imperative Equivalences and Properties of Opera-
tions

We focus on outlining the proofs of the necessary equivalences our implementation has to
satisfy using the established reasoning technique. These are summarized in Lemma 15 and
16 in the paper by orgström et al. Since the proofs are too extensive to put into this paper,
we include them with the code of this paper [16] which includes also the proofs of these
equivalences:

10

1. (readTVar a >>=STM λx.writeTVar a x) ↔ returnSTM()

2. (writeTVar a M >>STM writeTVar b N) ↔
(writeTVar b N >>STM writeTVar a M) if a ̸= b

3. (readTVar a >>=STM λx.writeTVar b M >>=STM returnSTM x) ↔
(writeTVar b N >>STM readTVar a) if a ̸= b

4. orElse retry M ↔ M

5. orElse M retry ↔ M

6. orElse M1 (orElse M2 M3) ↔ orElse (orElse M1 M2) M3

5 Applications

This section elaborates on the uses of our STM model in different applications, namely
translating an existing Dining Philosophers implementation using Haskell’s STM into a
multi-threaded Hefty program, and extending the notion of transational memory for other
algebraic effects.

5.1 Dining Philosophers

The Dining Philosophers3 problem is a classic exercise in concurrent programming which
illustrates that concurrent synchronisation primitives, like lock-based semaphores and mu-
texes, do not compose well. This is precisely the issue which STM tries to alleviate, which
makes solving the problem relatively straightforward. We found a solution4 to the din-
ing philosophers problem, which uses Haskell’s STM, that we decided to translate into our
framework of algebraic effects. It turns out that by simply changing the type signatures of
the provided functions from monadic effects (STM and IO) to either Free or Hefty, we can
essentially reinterpret the solution whilst keeping the syntax and the functionality intact,
apart from implementing TMVars5. The adapted solution is supplied with the code to this
paper [16].

5.2 Extending Transactional Memory For Other Effects
Although embedding the single-threaded handler in the syntax atomically certainly di-
minishes the modularity of STM as an algebraic effect, it is still possible to generalize this
encoding for any effect that might follow the same transactional semantics.

The goal is to model different effects as transactions acting on a transactional memory,
possibly allowing operations retry and orElse. The transactional memory in the case of
STM was a Heap, which was passed along and returned with the result in the parameterized
handler hSTM. We can surmise that if we can implement a parameterized handler passing
around and returning a parameter s for a particular effect whose set of operations act on
this parameter, then s can represent the transactional memory for that effect, just as Heap

3https://en.wikipedia.org/wiki/Dining_philosophers_problem
4https://rosettacode.org/wiki/Dining_philosophers%23Haskell
5TMVars are a transactional synchronising primitive used for communication between

threads(e.g. signaling resource availability) https://hackage.haskell.org/package/stm-2.5.3.1/
docs/Control-Concurrent-STM-TMVar.html

11

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://rosettacode.org/wiki/Dining_philosophers%23Haskell
https://hackage.haskell.org/package/stm-2.5.3.1/docs/Control-Concurrent-STM-TMVar.html
https://hackage.haskell.org/package/stm-2.5.3.1/docs/Control-Concurrent-STM-TMVar.html

represented the transactional memory for our STM effect. Additionally, the effect in question
does not need to implement retry and orElse operations in its interface. We can decouple
these operations from STM to a different effect which we call Transactional, as shown in
Figure 14.

data Transactional k where
Retry :: Transactional k
OrElse :: k -> k -> Transactional k
deriving Functor

retry :: Transactional < f => Free f a
orElse :: Transactional < f => Free f a -> Free f a -> Free f a
hTransactional :: Functor f => Handler Transactional a f (Maybe a)

Figure 14: Our implementation of atomically

The semantics of hTransactional are the same as the semantics of hSTM for Retry and
OrElse. Thus, we now have the means of constructing a generalized version of atomically,
which we name atomically' (Figure 15).

atomically' :: (Eq m, Functor f, Thread <: h, Alg (State m) <: h)
=> (forall f'. Functor f' => StatefulHandler f a m f' (a, m))
-> Free (f + Transactional + End) a -> Hefty h a

Figure 15: Extended version of atomically to other effects

The implementation of atomically' is practically identical to atomically, with the addi-
tion of passing the StatefulHandler to specify the relationship between the effect f and its
transactional memory m, but isolates the effect. We evaluate the effect with Transactional
by first applying the StatefulHandler with the current view of the transactional memory m
and then applying hTransactional, where we get either the result paired with the changed
memory or a failed computation. Afterwards, we proceed as with the atomically for STM.
Thus, we do not introduce any duplicate effects from f into the Hefty program, as it is not
present in its effect row. Moreover, m needs to be an instance of Eq for the consistency check.
In the Appendix B, we provide an example of extending the Writer effect.

6 Responsible Research

In this section, we discuss the measures undertaken in our study, in order to conduct research
that aligns with responsible and ethical principles. A particular attention was given to ensure
our research is both reproducible and transparent.

The code from this paper is available freely on GitHub [16], which we refer to throughout
our work multiple times. It includes the entire framework for Free monad, Hefty trees, our
STM interface and its handler, Thread effect with its schedulers, and everything else from
Sections 2, Section 3 and Section 5.

Furthermore, we constructed proofs about the operations of our interface that ensure
correctness of our implementation in Section 4. In the context of STM transactions, incorrect
program behaviour could lead to runtime errors, the corruption of shared data and race
conditions. Unfortunately, for the sake of brevity, they could not be included in the paper.
However, they are included with the code on GitHub as well, so that others may easily verify
them.

12

Following the responsible research practices such as reproducibility and transparency,
our work aims to promote responsible practices in the field.

7 Discussion

In this section, we critically assess the proposed implementation of STM in our work, its
advantages and limitations. We are particularly interested in exploring possibilities for im-
proving our current model, and whether it is viable to implement Haskell’s STM abstraction
in terms of algebraic effects and handlers.

By composing our STM interface with other effects in sequential programs in Section 3.1,
we have found their effect interaction resembling the transactional semantics between state
and exception catching from Section 1. However, this interpretation was not possible to
replicate when the interface was brought into a concurrent setting. The main reason for this
difference is re-execution, a concept specific to STM only. In single-threaded programs, our
implementation interprets retry operation as an aborting operation and orElse operation
as a catching operation. These programs can be thought of as being separate transactions
(possibly containing other effects), which makes them not particularly useful as a model,
since they do not respect the proper semantics of Haskell’s STM, and that STM is primarily
a concurrency abstraction. Therefore, we introduced a simple concurrency model using
scoped effects in which it is possible to use shared (global) mutable state between different
threads, and hence we are able to implement re-execution in atomically. In this case, our
implementation cannot rely on transactional semantics, because they simply do not emerge
from the interaction our concurrency effect has with other effects, and because no STM
operations cannot be executed outside atomically, as explained in Section 3.2.

These restrictions limit our implementation in terms of modularity that makes algebraic
effects so attractive. To answer the research question within the given timeframe. With our
concurrency model, our only option was to embed the single-threaded STM handler in order
to evaluate the transaction block and provide correct optimistic synchronisation semantics in
atomically. We can argue that this approach is modular in a sense that it can be extended
to other effects by embedding their own handlers to atomically (see Section 5.2), however,
coupling syntax (operations) with implementation (handlers) defeats the purpose algebraic
effects and handlers. As there is striking lack of models and literature regarding integration
of transactional memories into algebraic effects and handlers, without depending on ad-hoc
solutions, we propose that it is explored further as part of the future development.

8 Related Work

Algebraic Effects and Handlers For many years, since their introduction into functional
programming languages [7], monads have been the most dominant approach for modelling
computational effects. However, they were notoriously difficult to compose, which lead to
the development of monad transformers [6]. Plotkin and Powell [10] were then the first to
develop an algebraic approach to effects whose operations follow a set of equations, offering
higher modularity than monad transformers. Later Plotkin and Pretnar later extended this
idea with the concept of handlers [11] to support handling exceptions.

Higher-Order Effects One of the more closely related work to this paper is the work of Wu
et al. [20], introducing the notion of scoped effects and providing us with an implementation

13

of a concurrency model based on cooperative multi-threading. In our work, we extend their
concurrency model with atomic operations, automatic relinquishing of control and tracing all
possible interleavings of threads using non-determinism. Apart from their ad-hoc approach
to scoped effects, Bach et al. [2] provided a general encoding of higher-order effects, including
scoped and latent effects [18], using their so-called hefty algebras, which we adopt in this
paper as well. Instead of handling these effects, they provide their elaborations into algebraic
effects. Even more general framework was explored by van der Berg and Schrijvens [17],
which we have not yet investigated, although it might be an interesting structure to apply
in the future work.

Software Transactional Memory STM in Haskell [8] [5] as concurrency abstraction
was developed to alleviate previous short-comings of Concurrent Haskell [9] with atomic
transactions, and has been the guiding resource for our implementation. Later, there have
been explorations of formal calculus for Haskell’s STM by Acciai et al. [1], however these
did not provide any equational theory for Haskell code, nor any significant examples. Their
work was superceded by Borgstöm et al. [4].

Unfortunately, there seems to be a lack of research in the field of integrating STM into
algebraic effects, which makes our approach quite novel. However, Punchihewa and Wu [14]
have attempted to implement safe mutation in concurrent programs using algebraic effects,
however, their focus is on region-based memory management rather than transactional mem-
ory.

9 Conclusions and Future Work

In our work, we first implemented an STM interface and its handler (hSTM) for sequential
(single-threaded) Free programs [12], modelling the operations of Haskell’s STM [8] [5].
Then we provided an implementation of atomically that embeds the STM’s single-threaded
handler into the syntax of concurrent programs using higher-order effects [13] [2] [20], which
emulates optimistic synchronisation of Haskell’s STM. Additionally, we provided formal
proofs that the implementation satisfies the necessary laws and equivalences for the opera-
tions of Haskell’s STM transactions [4]. Finally, we demonstrated our implementation on an
example solution of the dining philosophers problem using Haskell’s STM transactions, and
extended the notion of concurrent atomic transactions and transactional memory to other
(stateful) effects by implementing their atomically-equivalent operation — atomically'.
With these contributions made, we have answered all of our research questions.

For future work, it should be explored how to decouple the single-threaded handler from
the syntax of atomically, as it breaks the separation of syntax and semantics. More-
over, composing multiple effects in the transaction block that can be effectively re-executed
without accidental duplication of these effects also remains to be investigated, as our imple-
mentation allows execution of only a single effect in atomically.

An additional development for future work would be extending our interface with throw
and catch actions for STM [5]. Furthermore, extending our current concurrency model
such that it prevents transactions that block their thread indefinitely, e.g. transactions
consisting of a single retry operation. Also regarding the concurrency model, there is lack
of any formal reasoning regarding the behaviour of atomically operation, since the resource
we used to prove laws about our STM interface [4] does not provide equivalences which hold
of this operation, which might be an interesting piece of future work to explore.

14

References

[1] Lucia Acciai, Michele Boreale, and Silvano Dal Zilio. A Concurrent Calculus with
Atomic Transactions, 2006. arXiv:cs/0610137.

[2] Casper Bach Poulsen and Cas van der Rest. Hefty algebras: Modular elaboration
of higher-order algebraic effects. Proc. ACM Program. Lang., 7(POPL), jan 2023.
doi:10.1145/3571255.

[3] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.
Journal of Logical and Algebraic Methods in Programming, 84(1):108–123, 01 2015.
URL: http://dx.doi.org/10.1016/j.jlamp.2014.02.001, doi:10.1016/j.jlamp.
2014.02.001.

[4] Johannes Borgström, Karthikeyan Bhargavan, and Andrew D. Gordon. A composi-
tional theory for STM Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell, Haskell ’09, pages 69–80, New York, NY, USA, 2009. Association for Com-
puting Machinery. doi:10.1145/1596638.1596648.

[5] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. PPoPP ’05, pages 48–60, New York, NY, USA, 2005. Association
for Computing Machinery. doi:10.1145/1065944.1065952.

[6] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular inter-
preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’95, pages 333–343, New York, NY, USA, 1995.
Association for Computing Machinery. URL: https://doi-org.tudelft.idm.oclc.
org/10.1145/199448.199528, doi:10.1145/199448.199528.

[7] E. Moggi. Computational lambda-calculus and monads. In [1989] Proceedings. Fourth
Annual Symposium on Logic in Computer Science, pages 14–23, 1989. doi:10.1109/
LICS.1989.39155.

[8] Simon Peyton Jones. Beautiful concurrency. O’Reilly, beautiful code edi-
tion, 01 2007. URL: https://www.microsoft.com/en-us/research/publication/
beautiful-concurrency/.

[9] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. Confer-
ence Record of the Annual ACM Symposium on Principles of Programming Languages,
11 1995. doi:10.1145/237721.237794.

[10] Gordon Plotkin and John Power. Algebraic Operations and Generic Effects. Ap-
plied Categorical Structures, 11(1):69–94, 2003. URL: http://dx.doi.org/10.1023/A:
1023064908962, doi:10.1023/a:1023064908962.

[11] Gordon D Plotkin and Matija Pretnar. Handling Algebraic Effects. Logical Methods in
Computer Science, Volume 9, Issue 4, 12 2013. URL: http://dx.doi.org/10.2168/
LMCS-9(4:23)2013, doi:10.2168/lmcs-9(4:23)2013.

[12] Casper Bach Poulsen. Algebraic Effects and Handlers in Haskell, 07 2023. URL:
http://casperbp.net/posts/2023-07-algebraic-effects/.

15

https://arxiv.org/abs/cs/0610137
https://doi.org/10.1145/3571255
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/1596638.1596648
https://doi.org/10.1145/1065944.1065952
https://doi-org.tudelft.idm.oclc.org/10.1145/199448.199528
https://doi-org.tudelft.idm.oclc.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://www.microsoft.com/en-us/research/publication/beautiful-concurrency/
https://www.microsoft.com/en-us/research/publication/beautiful-concurrency/
https://doi.org/10.1145/237721.237794
http://dx.doi.org/10.1023/A:1023064908962
http://dx.doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/a:1023064908962
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/lmcs-9(4:23)2013
http://casperbp.net/posts/2023-07-algebraic-effects/

[13] Casper Bach Poulsen. Algebras of Higher-Order Effects in Haskell, 08 2023. URL:
http://casperbp.net/posts/2023-08-algebras-of-higher-order-effects/.

[14] Hashan Punchihewa and Nicolas Wu. Safe mutation with algebraic effects. In Proceed-
ings of the 14th ACM SIGPLAN International Symposium on Haskell, Haskell 2021,
pages 122–135, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3471874.3472988.

[15] Wouter Swiestra. Data types à la carte. Journal of Functional Programming, 18(4):423–
436, 2008. doi:10.1017/S0956796808006758.

[16] Matej Tomášek. Algebraic Effects and Handlers for Software Trans-
actional Memory, 2024. URL: https://github.com/watc4d0gg/
Algebraic-Effects-and-Handlers-for-Software-Transactional-Memory.

[17] Birthe van den Berg and Tom Schrijvers. A framework for higher-order ef-
fects handlers. Science of Computer Programming, 234:103086, 2024. URL:
https://www.sciencedirect.com/science/article/pii/S0167642324000091,
doi:10.1016/j.scico.2024.103086.

[18] Birthe van den Berg, Tom Schrijvers, Casper Bach-Poulsen, and Nicolas Wu. Latent
Effects for Reusable Language Components: Extended Version, 2021. arXiv:2108.
11155.

[19] Cas van der Rest, Jaro Reinders, and Casper Bach Poulsen. Handling Higher-Order
Effects, 2022. arXiv:2203.03288.

[20] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect Handlers in Scope. In Proceedings
of the 2014 Haskell Symposium, Haskell ’14, New York, NY, USA, 2014. ACM. URL:
http://www.cs.ox.ac.uk/people/nicolas.wu/papers/Scope.pdf.

Appendix A: An Example with Limited Withdrawal

runProg :: Show a => Hefty (Thread :+: Alg (State Heap) :+: Alg Err :+: Alg Out) a -> IO ()
runProg prog = do

r <- io
$ handleError
$ handleState ([] :: Heap)
$ hfold Pure (eAlg /\ eAlg /\ eAlg)
$ execute prog

print r

transactTest :: IO ()
transactTest = runProg $ do

acc <- atomically $ do newTVar 0
fork $ atomically $ limitedWithdraw acc 42
fork $ atomically $ writeTVar acc 1337
where

limitedWithdraw :: STM < f => TVar Int -> Int -> Free f ()
limitedWithdraw acc amount = do

16

http://casperbp.net/posts/2023-08-algebras-of-higher-order-effects/
https://doi.org/10.1145/3471874.3472988
https://doi.org/10.1017/S0956796808006758
https://github.com/watc4d0gg/Algebraic-Effects-and-Handlers-for-Software-Transactional-Memory
https://github.com/watc4d0gg/Algebraic-Effects-and-Handlers-for-Software-Transactional-Memory
https://www.sciencedirect.com/science/article/pii/S0167642324000091
https://doi.org/10.1016/j.scico.2024.103086
https://arxiv.org/abs/2108.11155
https://arxiv.org/abs/2108.11155
https://arxiv.org/abs/2203.03288
http://www.cs.ox.ac.uk/people/nicolas.wu/papers/Scope.pdf

bal <- readTVar acc
check (amount <= 0 || amount <= bal)
writeTVar acc (bal - amount)

> Right ((),[Cell 1295])

Appendix B: An Example Extension of the Writer effect
data Writer m k where

Tell :: m -> k -> Writer m k
deriving Functor

tell :: Writer m < f => m -> Free f ()
tell m = Op $ inj $ Tell m (Pure ())

hWriter :: (Monoid m, Functor f) => StatefulHandler (Writer m) a m f (a, m)
hWriter = StatefulHandler {

retS = curry pure,
hdlrS = \(Tell m' k) m -> k $ m <> m'

}

atomicallyWriter :: (Eq m, Monoid m, Thread <: h, Alg (State m) <: h, Alg Out <: h)
=> Free (Writer m + Transactional + End) a -> Hefty h a

atomicallyWriter = atomically' hWriter

17

	Introduction
	Background and Methodology
	Algebraic Effects and Handlers in Haskell
	Software Transactional Memory in Haskell

	Implementing the STM Interface
	Effect Interface and Single-Threaded Handler
	Modelling Multi-Threading with Atomic Transactions

	Verifying the Model Implementation
	Core Calculus Correspondence
	Proofs of Imperative Equivalences and Properties of Operations

	Applications
	Dining Philosophers
	Extending Transactional Memory For Other Effects

	Responsible Research
	Discussion
	Related Work
	Conclusions and Future Work
	An Example with Limited Withdrawal
	An Example Extension of the Writer effect

