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Science is a wonderful thing
if one does not have to earn one’s living at it.

Albert Einstein



Abstract

Mimetic formulations, also known as structure-preserving methods, are numerical
schemes that preserve fundamental properties of the continuous differential opera-
tors at a discrete level. Additionally, they are well-known for satisfying constraints
such as conservation of mass or momentum.

In the present work, a Mimetic Spectral Element Method based on quadrilater-
als is explored. As an introduction, the framework is first implemented and tested
on the classical Poisson equation, the Hartmann Flow system and several eigen-
value problems for the Laplacian operator. Solutions are attained by direct/mixed
formulations and the extension to multi-element approaches is dealt with using ei-
ther gathering or connectivity matrices. Different boundary conditions and various
geometries are utilized.

Afterwards, the Maxwell Eigenvalue problem for the electric field E with general
material properties is tackled in an attempt to generate spurious-free solutions by
incorporating the condition ∇ · D = 0 into the discrete system. The formulation
is further scrutinized on geometries with Betti number b1 > 0 as to verify if the
proposed scheme captures the physical zero eigenvalues.

In the end, a mixed formulation for the eigenproblem is proposed in which the
curl-curl operator is separated. The approximation of the electrostatic field energy
is then computed with this formulation and compared to the solution obtained with
a direct method allowing to create an upper and a lower bound for this variable.
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1
Introduction

1.1 Relation Between Geometry and Physics
There are plenty of different physical quantities spread along the many areas of
science and, as weird as it may sound, all of them have an association to a specific
geometric object. Consider, for instance, the density which is computed as ρ = m/V .
Mathematically, however, the exact value would be given by the expression:

ρ = lim
V −→0

m

V

Once the mathematically correct concept of limit has been applied, the notion
of the density being associated to a volume has disappeared and the new variable is
now associated to a point. Such result might be irrelevant if equations are considered
only as mathematical entities. Nevertheless, if equations are regarded as instruments
that model reality, it is odd to give up such association. It would make sense to
nurture equations with as much reality as possible in hopes of better results.

Unfortunately, removing the association of variables to their geometric objects
is quite common in many numerical methods where variables end up being linked
to points even though such association is false. Ideally, numerical methods would
translate all physical notions into an appropriate mathematical language. This
change of paradigm would start by, firstly, not emptying physical quantities from
their properties and, secondly, by not thinking of differential equations but rather
of physical problems [66].

1



2 1 Introduction

The idea of relating geometry and physics was explored, at least, about a hundred
of years ago. In [25], James Clerk Maxwell points out the analogy between certain
kind of problems such as equations in electromagnetism resembling problems from
heat conduction and vice versa. Thus, the results from Fourier regarding heat
could explain situations in electrical problems while the knowledge for the Poisson
equation in electricity could be applied to heat conduction.

From Maxwell’s perspective, there must be principles that are of a more funda-
mental nature for such analogies to exist. The latter had remained well hidden since
all physical quantities are treated the same way once a problem has been reduced to
a mathematical form. Hence, maintaining the physical ideas of nature itself within
the equations might be a step in the right direction to unveil such principles.

Developing the aforementioned concept would commence with a classification
of physical quantities. By categorizing variables, it would be readily known how
to treat them within the mathematical framework. Additionally, it would allow
to detect similarities between areas of science so that, according to Maxwell [25,
p. 225], “we should lose no time in availing ourselves of the mathematical labours
of those who had already solved problems essentially the same".

The notion of a more fundamental concept within nature was mentioned also by
the physicist Richard Feynman. Such idea arose by wondering about how so different
phenomena could be described by so similar-looking equations. In Feynman’s terms,
the answer would be the underlying unity of nature [35, Section 12-7]. In fact, the
physicist would also argue that the common ground between problems is that they
all involve space which all differential equations attempt to imitate.

Around the mid-1970s, Enzo Tonti [88] came up with a whole mathematical
structure that was common to all physical theories and which took into consideration
the geometric features of variables. This study relied not only on a thorough analysis
of variables (as previously suggested by Maxwell) but also on an examination of
the equations within each area of science. This framework became a numerical
technique on itself called Cell Method1 but the general ideas permeated into the
scientific community and spread to other methods as well.

The aforementioned concepts are predominant in the development of numerical
methods in electromagnetism by Bossavit who utilized differential forms to mimic
the topological structures of the Tonti diagrams. Furthermore, he successfully dis-
cretized such diagrams with the so-called Whitney Forms. This pioneering work is
presented and summarized in the Japanese papers2 where it is further elucidated
1 Additional information on the method can be found in references [230-232, 234] from [89].
2 The whole documentation can be easily read from a website hosted by the University of Wash-
ington: https://faculty.washington.edu/seattle/physics544/2011-lectures/bossavit.pdf

https://faculty.washington.edu/seattle/physics544/2011-lectures/bossavit.pdf


1.2 What are mimetic methods? 3

how the geometric content can be captured by means of differential forms and its
applications in solving PDEs.

Plenty of other authors from a variety of disciplines have adopted such frame-
work by taking into consideration geometry. Some of them have been named above
but others worth reading are Brezzi [23], Hiptmair [42, 46], Bochev [7, 8], Perot
[74], Flanders [36] and Teixeira. Additionally, for time-dependent problems, the dis-
cretization for the temporal variable is treated by Mattiusi [66] following a frame-
work compatible with these principles.

Nowadays, the literature related to numerical schemes based on this school of
thought is still ongoing. The latter is only a testament of the benefits of considering
the geometry embedded in the differential equations is a characteristic worth being
exploited to create physically accurate numerical schemes.

1.2 What are mimetic methods?
Mimetic methods (also known as structure-preserving methods) are numerical meth-
ods that aim to preserve fundamental properties of the continuous problems. For
these techniques, the main premise is to capture the physics that are intrinsic to a
PDE rather than solely focusing on the mathematical properties. In fact, experience
has confirmed that the best results are usually obtained when the discrete model
preserves the underlying properties of the physical system [64].

One of the main characteristics of these types of discretizations is their robustness
and accuracy. Additionally, they are well-known for conserving mass, momentum
or kinetic energy [70] which is one of the main reasons their popularity has been
increasing throughout the years3. As a consequence of satisfying properties at a dis-
crete level, these methods are quite convenient since they cannot produce solutions
that violate physical constraints. Typical examples of such constraints include the
continuity equation for incompressible flows or, in electromagnetism, the condition
∇ · B = 0 stating the nonexistence of magnetic monopoles.

Creating these kind of schemes, however, is not entirely trivial and some princi-
ples should be satisfied. According to Robidoux [79], there are five conditions that
must be met to attain a complete mimetic discretization of vector calculus:

1. Discretization of the differential operators gradient, divergence and curl.

2. Discretization of integrals over curves, surfaces and volumes.

3. Discrete analogs of the fundamental theorems of vector calculus.
3 A short historic perspective detailing the evolution of mimetic methods is shown in [64].
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4. A discrete analog of the exact commuting diagram.

5. Discrete analogs of the product rules.

The first condition is obvious since any differential equation possesses at least
one of those operators and, as a result, a proper discretization for each must be
available. By proper it is meant, as explained in [64], that a correct characterization
of the null spaces must be obtained. The popular examples are the known facts that
the divergence of the curl must vanish as well as the curl of a gradient. Failure to
achieve the latter will inevitably lead to non-physical parasitic solutions.

The second point stems from the fact that degrees of freedom may be associated
not only to nodes but also to lines, surfaces or volumes, hence, a proper represen-
tation for those cases is needed. In [8], this condition is denoted as the reduction
operation R or De Rham map that establishes a discrete representation of the
continuous variables. This step is further supplemented with a reconstruction oper-
ation I or Whitney map in which the continuous variables are retrieved from the
discrete values via interpolation.

The third condition requires the potential theorem, Stokes’ theorem and the
divergence theorem (differential geometry condenses all three in the so-called Gen-
eralized Stokes Theorem) to hold at a discrete level.

The fourth condition is related to mimic the diagram shown in Figure 1.1 where
HP and HV are scalar fields related to points and volumes, respectively, while HC

and HS denote vector fields where the subscript C means curves and S means
surfaces. Copying such structure on the discrete level requires the introduction
of an analog of the Hodge star from differential geometry as to create a bijection
identifying point scalars with volume scalar fields and curve vector fields with surface
vector fields [79]. If differential forms are preferred, then the Hodge star identifies
k-forms with (n − k)-forms with n being the dimension of the embedding space.

Figure 1.1: Dual De Rham sequence as shown in [79].

The fifth point requires equations such as ∇·(fv) = ∇f ·v+f∇·v to have a proper
analog in the discrete setting. This is related to the products between quantities
belonging to different spaces. For example, by following the exact sequence shown in
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Figure 1.1, the previous equation only makes sense if f ∈ HP and v ∈ HS such that
∇ · (fv) ∈ HV . In the language of differential forms, this point means that a proper
wedge product between forms must be recreated. A mimetic scheme must find a way
to make sure that using differential operators on products between different spaces
lead to the correct spots from the diagram described in the fourth condition.

It could be thought that since all mimetic methods must satisfy the same re-
quirements then they are all essentially the same. It is true, however, that the
underlying structure is identical but the main differences (at least from a pragmatic
point of view) arise on the choice of the Whitney Map. The latter has an effect
on the domain discretization too since some maps are created to handle triangular
meshes while others are suited for quadrilateral grids. A clear example of the former
are the classical Whitney forms [11] while for the latter the literature presented in
the next section is a good example.

1.3 Where has it been used?
The literature presented in this section utilizes a reconstruction operator I on
quadrilaterals on a variety of problems from different areas of science. The present
work attempts to, hopefully, use the same methodology and achieve the same quality
of results on the area of electromagnetism.

The following list is meant to provide a swift look into the problems the mimetic
spectral element method (MSEM) methodology has handled when the basis func-
tions from [51] were utilized as the Whitney Map. Such list is comprised by the
following:

• The scalar Poisson Equation is solved in [72] using differential forms in single
and dual grids. The analysis is extended to anisotropic tensors K in the
constitutive equation leading to equations of the type u = -K∇ϕ coupled
with ∇ · u = f .

• In [39], the Darcy problem is further analyzed in 2 examples. Firstly, a sand-
shale system of 400 blocks is solved for K = k I. Secondly, an imperme-
able streak system with 3 regions is solved in which one subdomain has an
anisotropic permeability tensor. Both cases are solved in Ω = [0, π]2.

• The mimetic discretization method was applied to the mixed formulation of
the Stokes problem which had vorticity, velocity and pressure as variables.
More importantly, pointwise divergence-free solutions for the velocity were
computed for a number of benchmark problems [58].

• Regarding non-linear elliptic PDEs, an Eulerian Grad–Shafranov solver based
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on the mimetic spectral element framework was developed in [71] where the
computed equilibrium solutions were accurate up to machine precision.

• In [62], a mixed mimetic spectral element method was utilized to solve the
rotating shallow water equations where mass conservation was satisified point-
wise and the vorticity was globally conserved.

• Concerning linear Elasticity, hybrid approaches were used in [93] for 3D prob-
lems were sparse algebraic systems were obtained by using dual basis functions.
The method proved to satisfy equilibrium forces point wise and was free of
spurious kinematic modes in both orthogonal and curvilinear meshes.

1.4 Research Questions
As stated before, the present work develops upon the concepts of mimetic discretiza-
tion and follows the approach presented in the literature shown in Section 1.3 by
incorporating a very specific set of basis functions as Whitney Map. Even when the
problems being discussed are not exaggeratedly complicated, they should serve as
an introduction of the methodology to electromagnetism.

A priori, the method should work efficiently since the geometric structure in-
herent to electromagnetism is perfectly suited for such mimetic framework. Thus,
a positive outcome of this thesis should rely on the correct implementation of the
methodology. Particularly, work will be done to respond to the following questions:

• Is it possible to produce a mimetic spectral element method formulation to
Maxwell’s Eigenvalue Problem that avoids spurious solutions and provides
faster rates of convergence than traditional FEM?

– If so, is the proposed formulation able to detect zero eigenvalues for
geometries with arbitrary Betti numbers b1 in 2D geometries?

• What effect does anisotropy and geometry have on the eigenvalue convergence?

Finally, an additional question will be answered which is not totally related to
the previous ones but arose from a genuine curiosity on how to adapt the MSEM
machinery from the literature in Section 1.3 to problems in 1D that involve the first
derivative. Thus, the following question should be considered a minor deviation
from the previously stated ones.

• Can the mimetic framework described in literature like [72] be modified to
tackle 1D differential equations such as d2y

dx2 + α dy
dx + βy = -f(x) for x ∈ [a, b]?



2
Theoretical Background

Along this chapter most of the theory required for the thesis will be explored. The
mathematical side of the story, however, will be described in Chapter 3. This chapter
contains information on a variety of topics as detailed in the following list:

• Some of the methods used in Computational Electromagnetics (CEM) will be
explored along with a swift history of the method.

• The framework created by Enzo Tonti is introduced and will conclude with
the classification diagram for electromagnetism.

• The importance of differential forms will be described along with other topics
such as the De Rham complex and the Hodge Operators. The section will
conclude on how differential forms shaped their way into CEM.

• The Maxwell equations are introduced along with the respective constitutive
relations and boundary conditions. The equations for time harmonic fields are
also obtained for the electric and magnetic fields.

• The cavity eigenvalue problem is explored and the topic of spurious solutions
is addressed. Additionally, variational formulations for the problem are shown.

2.1 Computational Methods in Electromagnetics
In this section, some of the commonly used methods in Computational Electromag-
netics (CEM) are detailed. Moreover, their history and characteristics are quickly

7



8 2 Theoretical Background

reviewed. The list is by no means exhaustive since covering every single available
method is out of the scope of the present work but references to specialized literature
are mentioned.

2.1.1 Finite-Difference Time-Domain Method
The finite-difference time-domain (FDTD) scheme was originally introduced by Yee
[92] in 1966 and it has remained relevant along the years due to its simplicity,
efficiency and ease of adaptation to a variety of problems.

This scheme is built on a structured cartesian mesh where the space and time
derivatives are approximated by finite differences. Both of the field variables E and
H are staggered in space with a very peculiar arrangement as depicted in Figure 2.1.

Figure 2.1: Unit Yee cell in R3 used in the FDTD algorithm from [80, p. 72].

A weakness of the method in its basic form, however, is related to how it deals
with boundaries that cannot be aligned with its grid. This issue leads to the use of
staircase approximations that harm its accuracy. Additionally, for a given cell size
h, the scheme has a time-step limit t <

√
3h/c in R3 [80, p. 66] with c denoting the

speed of light. The latter imposes limitations for applications such as eddy current
problems. On the other hand, for cavity problems requiring resonant frequencies
the method can be used by computing the Fourier transform of selected signals.

Extensions and tweaks to the method are countless. In [50], for example, a
mimetic finite difference method was constructed to approximate Maxwell’s equa-
tions with approximations that actually satisfied discrete versions of vector and ten-
sor calculus identities. Trying to list all the relevant literature would be extremely
challenging. Instead, the books of Taflove, such as [85], should give a great overview
of FDTD and its implementation/application as well as extension to general meshes.
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2.1.2 Finite Element Method
This method is widely known for being extensively utilized to solve problems of
structural analysis. However, its usage has extended to a wide variety of other
engineering and mathematical problems. Unlike Finite Difference Methods where
the differential operators on the governing equations are directly discretized, the
Finite Element Method (FEM) discretizes the space of solutions.

In electromagnetics, the first application of FEM can be traced back to 1969 [55,
p. 510] when Peter P. Silvester utilized the method for wave propagation problems
on hollow waveguides and, since then, its use spread throughout the community.

Without a doubt, a quite important breakthrough in the finite element analysis
for vector problems came with the introduction of the edge-based vector elements
[68] by Nédélec which allowed tangential continuity between elements. Such char-
acteristics allowed to accurately model the physical nature of the fields in electro-
magnetism and got rid of many of the issues that traditional node-based elements
had such as spectral pollution for eigenvalue problems.

More generally, finite elements related to geometric objects gained popularity due
to the pioneering work of Bossavit who, in 1988, introduced the so-called Whitney
forms [11]. Under such theoretical framework, the lowest order Nédélec elements
fell under the category of edge wij Whitney elements while the notation wijk was
reserved for facet elements as the ones described by Raviart & Thomas [78].

2.1.3 Method of Moments
The method was first utilized for CEM on scattering problems around 1960s by
Mei & Van Bladel, Andreasen and Richmond [54, Chapter 10, Ref. 1, 2, 4] but the
unified formulation is attributed to Harrington who presented the scheme in [44].

The Method of Moments (MoM) is closely related to FEM. Consider, for exam-
ple, the equation Lϕ = f where L is a linear operator, ϕ is the unknown and f is the
forcing function. A system of the type

∑M
m=1

∑N
n=1 cn (wm, Lvn) =

∑M
m=1(wm, f)

is obtained by expanding the solution as
∑N

n=1 cnvn and using test functions wm to
perform the inner product. The expansion coefficients are then retrieved by solving
the matrix system [S]{c} = {b} with Smn = (wm, Lvn) and bm = (wm, f).

Such procedure is valid for both differential and integral operators. In fact, it is
widely used to formulate the finite element method when L is a differential operator.
In CEM, however, the term moment method is reserved for the case when L is an
integral operator involving a Green’s function [55, p. 561] whereas, in mathematics,
the same scheme is known as the Boundary Element Method (BEM) [80, p. 185].
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Due to the difference in the nature of the operator L, the choice of the basis and
the test functions changes dramatically. For instance, in FEM, due to differentiation,
the basis needs to be at least linear while the test functions tend to be chosen the
same as the basis. In MoM the basis could be a constant while the test functions
could be chosen as delta peaks as to simplify integration [55, Chapter 10.1].

Another drastic difference with respect to FEM is that formulations using MoM
end up with integrals over surfaces which means that for problems in R3 a surface
has to be discretized while for FEM the discretization of a volume is needed. Thus,
MoM effectively reduces the problem dimension.

A basic introduction about MoM can be found in [55, Chapter 10] while the
references therein serve as examples of applications of the method. For a more
specific compilation about the topic, [40] might be a good starting point.

2.1.4 Other Methods
The very swift introduction to some of the methods commonly used in CEM should
have made it clear that each scheme possesses advantages and disadvantages. Com-
bining the previously discussed methods can improve their respective strengths and
eliminate some of their weaknesses. This idea gives rise to the so-called Hybrid
Techniques.

A scheme combining FEM in time domain (FETD) with the classic FDTD could,
for example, overcome the need for staircase approximations to curved boundaries
and take advantage of all the algorithms that have been used throughout the years in
FDTD (quite useful for treating boundary conditions for instance). In Figure 2.2,
the transition between the meshes of the FDTD and FETD is shown where the
interface region is utilized to exchange information between both schemes.

Figure 2.2: Meshing regions with a hybrid FETD-FDTD approach from [55, p. 737].
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Another possible hybrid method could be obtained by putting together FEM
and MoM. The former is known for its capability to adapt to complex geometries,
however, it requires special treatments when dealing with unbounded problems such
as the ones arising from scattering. The latter, on the other hand, is very well suited
for open region problems while it struggles handling complex geometries/materials.

The result of merging those schemes is the Finite Element - Boundary Integral
method (FE-BI) which uses a surface to delimit the computational domain. Outside
such surface, MoM is used while FEM is applied at the interior. The coupling be-
tween both computations is done at the surface via continuity conditions. Examples
of formulations of the FE-BI method are shown at [55, Chapter 11.8]. Its use for
eddy current problems using Nédélec elements can be found in [20] while approxi-
mations utilizing Whitney forms and boundary-stiffness operators can be found in
[13], both by Bossavit.

The area of mimetic discretizations is also active in CEM and mostly focused on
Mimetic Finite Differences (MFD). In [23], for example, a structure is presented for
electromagnetic problems at high and low frequencies in the time-harmonic regime
which shown to be adaptable to basically any polyhedral decomposition. The ex-
tension of MFD to 3D and its application to engineering problems can be found in
[63]. For very recent literature of MFD on triangular meshes the work by Adler
et al. found in [1, 2] is relevant, however, for general knowledge and up-to-date
information on this method [91] is certainly the place to start.

Regarding mimetic implementations of the Finite Element Method, it should be
noted that any framework in FEM utilizing Whitney Forms4 should be considered
as a mimetic method. This is because this specific choice of Whitney map is an
example of a regular mimetic reconstruction operator [8].

2.2 Tonti’s diagrams
The notion of geometry playing a fundamental role in the mathematical description
of physics can, at least, be traced back to James Clerk Maxwell [25]. During the
1970s, however, Enzo Tonti, in [88], described how physical quantities of any theory
could be associated to geometrical and chrono-metrical objects. This idea gave rise
to the so-called Tonti diagrams which, essentially, classify variables and equations
from many physical theories using the notion of geometry as a cornerstone.

4 Bossavit was among the many authors who extended Whitney Forms to various supporting shapes
[19] and higher order forms [18, 77]. A summary of this evolution, up to 2020, is found in [65].
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2.2.1 Space and Time Elements
In the framework described by Tonti, orientation is key and such topic is described
in the following sections for space and time elements. The latter is described briefly
for completeness since this thesis will not analyze time-dependent problems.

2.2.1.1 Space Elements and Their Orientation

In Tonti’s notation, space elements are denoted by the boldface letters P, L, S and
V which refer to points, lines, surfaces and volumes5.

The idea of orientation is, essentially, a notion of order [89, p. 40] and a set of
elements is said to be oriented whenever a decision has been made specifying which
is the preceding element and which is the next. This concept is important because
the sign of a variable (with its previous association to a space element) is inverted
whenever the orientation is reversed. A classic example would be the mass balance
within a volume where the outward normal is usually chosen as positive.

An additional distinction should be made when referring to orientation: inner
and outer orientation. The idea of inner orientation is based on the fact that
imposing a notion of order requires only elements from the given set. For instance,
consider a set of points on a surface forming a curvilinear triangle, setting an order
for the vertices will fix its orientation [89, p. 44]. On the other hand, an outer
orientation is determined when the notion of order is established by elements outside
the given set. The outer orientation for the previous example would require crossing
the surface which cannot be imposed by the elements of the set. An example for
the different orientations is shown in Figure 2.3.

Discerning between orientations is done by its notation. A bar is placed above
space elements with inner orientation as P̄ , L̄, S̄, V̄ while a tilde is used for outer
orientation as P̃ , L̃, S̃, Ṽ . For additional remarks on this topic, reading [89, pp. 39-
57] is recommended.

2.2.1.2 Time Elements and Their Orientation

Time elements refer to instants and intervals and are denoted as I and T, respec-
tively, and their analysis requires a geometric representation of time. If an analogue
clock were to be used as an example, its hands would indicate instants in time while
its angle of rotation would be associated to an interval. Since such a construction
is impractical, time is set on a straight line referred to as time axis where instants
are matched to points and intervals are matched to segments.

5 Refers to a region in space not the scalar denoting the amount of 3D space enclosed by a surface.
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Figure 2.3: Inner and Outer orientations for P, L, S and V from [90].

By dividing the time axis, a cell complex in time is obtained in which the seg-
ments correspond to time intervals while its boundaries correspond to instants. Such
complex is known as primal and denoted with the time elements Ī and T̄. Intervals
T̄ are oriented from preceding time instant to the following one while instants Ī are
given an inner orientation as sinks.

A dual complex is used with dual instants, Ĩ, and dual intervals, T̃. The former
are defined as time instants between primal intervals while the latter are the intervals
between dual instants. Both complexes are shown in Figure 2.4. For the interested
reader, further information about the relevance of such complexes can be found in
[89, Chapter 3.8].

Figure 2.4: Primal and Dual Complex for Time Elements from [90].

2.2.2 Cell Complexes
Translating any physical notion into an appropriate mathematical language requires
the use of geometry as an intermediary via coordinate systems. Such systems must
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not contain only sets of points since physical variables are not always associated
to nodes but also to lines, surfaces and volumes. Thus, the appropriate coordinate
system to utilize is the so-called cell complex which offer all the required space
elements, namely, vertices, edges, faces and volumes.

Cell complexes are a subdivision of a space region in Rn into smaller sections
named cells. The latter receive their name from algebraic topology. In numerical
analysis, for example, cells are usually known as elements while the collection of
elements is usually denoted as a mesh/grid. The simplest elements to create such
subdivisions are triangles (R2) and tetrahedra (R3), hence, cell complexes discretized
with such elements are creatively named as simplicial complexes [89]. However, any
kind of shape can be utilized.

At this point, it should be recalled that all space elements can be endowed with
two types of orientation, hence, cell complexes inherit such characteristic. Some
physical variables might be better suited for an inner orientation while for others
an outer one would be preferred. In order to accommodate for both cases, two
complexes are built, one for each orientation leading to a staggered scheme6 and
shown for the 2D case in Figure 2.5. It is customary to distinguish both complexes
by the name primal and dual having inner and outer orientations, respectively.

Figure 2.5: Oriented Cartesian complex and its dual (thick lines) from [89, p. 77].

In the figure above, the following can be noticed: (1) Primal vertices lie in the
center of dual 2D volumes, (2) primal edges cross dual edges and (3) dual nodes
are located at the center of each primal 2D volume. Such connections between the
elements of each complex are known as a duality relation. In fact, for the presented
2D complex, the number of interior elements in P̄ and L̄ equal the number of
elements in S̃ and L̃, respectively, where the term interior refers to elements not at
the boundary. Similarly, dim

(
V̄
)

= dim
(

P̃
)

.

6A typical scheme using staggered grids in electromagnetics is the one from Yee [92].
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Consider the primal space elements in R2 given by P̄, L̄, S̄ and their duals P̃, L̃,
Ṽ. The duality relation is further emphasized by inverting the dual space elements
and relating them to the primal elements as shown in Figure 2.6. In each row, the
sum of dimensions equals the dimension of the embedding space which, in this case,
is 2. Hence, primal points are related to dual surfaces, primal edges to dual edges
and primal surfaces to dual vertices.

Figure 2.6: Duality Relation in R2 from [89, p. 85].

The dimension of the dual element associated to the primal space element is
obtained by the formula d̃ = n − d where n is the dimension of the embedding
space and d the dimension of the space element. Due to the latter, it is obvious
that the dimension of the dual elements depend on the embedding space. Thus, in
R3, primal points (d = 0) are related to dual volumes (d̃ = 3) such that adding up
the dimensions of both space elements, a value of n = 3 is obtained. The duality
relations for R3 and R1 can be found in [89, Figure 4.28 & Figure 4.29], respectively.

2.2.3 Global Variables & Field Variables
In Tonti’s view, a distinction should be made between variables. Firstly, there are
global variables which are not line/surface/volume densities of another variable. On
the other hand, there are field variables which are, indeed, a density of a global
variable [90].

Forming field variables in the traditional manner deletes any of the geometric
association to a space element. This is because computing a density requires per-
forming a limiting process and all field functions end up referring to points. In this
sense, the use of field variables leads to the classical differential formulations.
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According to Tonti, by the so-called Association Principle, global physical vari-
ables have a natural association with the space-time elements from Section 2.2.1.
Similarly, field variables can also be associated to a space element (instead of being
typically associated to nodes). This is due to the notion of inherit association by
which the field variables share the space-time elements of its parent global variable
[89, Chapter 5.13]. For instance, the electric field strength E is associated to inner
oriented lines and dual time instants just as the voltage or the mass density inherits
an association with volumes just as mass content.

2.2.4 Classification Diagrams
Due to the duality relation, classification diagrams of physical variables contain two
columns. One of those columns has space elements with inner orientation while the
other one is exclusive to outer oriented variables and each row satisfies d̃ = n − d as
described in Section 2.2.2.

Each diagram compiles the physical variables relevant to a specific theory and
assigns them to oriented space-time elements. In doing the latter, each diagram
suggests how each variable is related to a cell complex (or its dual). Additionally,
basic equations from each theory are included. Topological relations are written out
on vertical links while constitutive equations are contained in horizontal links.

For electromagnetism, the Tonti diagram is shown in Figure 2.7. This Maxwell
House7 is contained within four pillars where each row contains the same dimensional
value (time instants correspond to zero while intervals correspond to a value of one).
The variables on the primal cell complex are linked to those on the dual complex via
constitutive equations where the material parameters are included. Finally, from
top to bottom, each of the vertical links on the left side of the diagram is related
to the vector operators grad, curl and div, respectively. For the right side, the
relation is reversed such that div, curl and grad is utilized.

Using Tonti diagrams for computational simulations is greatly beneficial since it
immediately gives an idea of where to place the degrees of freedom in a cell complex.
Additionally, depending on the variables being analyzed, relying on the diagrams
helps in realizing if both primal and dual complexes need to be constructed.

A closer look at Figure 2.7 reveals that E and H belong to primal and dual
edges, respectively. The former belongs to inner oriented complexes while the latter
has to be connected to a complex with outer orientation. In fact, looking back at
Figure 2.1, it is evident that degrees of freedom for both the electric and magnetic
field are, indeed, arranged according to what the presented Tonti Diagram describes.
7As named by Bossavit [14].
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Figure 2.7: Tonti Diagram for Electromagnetism with vector notation from [90].
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2.3 Differential Forms
Differential forms are, as absurdly or simplistic as it may sound, the objects that
are found under the integral sign [36] and, as a result, are perfect candidates to be
integrated over oriented k-dimensional manifolds.

Even though the current work will not use the language of differential forms,
it is important to delineate some of the aspects related to this area since they will
provide useful intuition into the framework to be used.

In this section, some of the concepts surrounding the so-called De Rham complex
will be discussed. The main ideas to be described are the Hodge operator and the
exterior derivative as to make the connection on how they will be discretized when
the MSEM formulation is utilized in the upcoming chapters.

2.3.1 The De Rham Complex
An important notion in the calculus of differential forms is the De Rham complex
which establishes a relation between spaces of oriented differential forms of different
degrees. This complex is, essentially, a sequence of spaces and mappings [3] which,
for R3, is given by,

R −→ Λ0(Ω) d−−→ Λ1(Ω) d−−→ Λ2(Ω) d−−→ Λ3(Ω) −→ 0 (2.1)

with d denoting the so-called exterior derivative that allows the differentiation of
forms and is a generalization of the operators grad, curl and div from vector calcu-
lus. The notation Λk(Ω) indicates the space of k-forms in Ω with k = {0, 1, · · · , n}
and n being the dimension of the embedding space. Additionally, the sequence is
exact on contractible domains meaning that the range of one space equals the kernel
of the next space.

Even though this diagram originates from the language of differential forms, an
equivalent can be created using vector operators instead of the more general exterior
derivative while the space of forms is modified to represent scalar fields associated
to points/volumes and vector fields related to curves/surfaces as shown in [79].

R −−→ HP
∇−−→ HC

∇×−−−→ HS
∇·−−−→ HV −−→ 0 (2.2)

Regardless of the notation, the sequences created by the space of differential
forms in (2.1) or the scalar/vector spaces in (2.2) do not have an inner or outer
orientation specified yet. The only requirement is that the whole sequence from
start to finish possesses the same orientation. The latter immediately suggests that



2.3 Differential Forms 19

a second sequence can be constructed with the remaining choice of orientation. In
doing so, the so-called double De Rham complex is obtained.

This complex will now be written in terms of the Hilbert space of functions (L2

De Rham complex) such that diagram is now composed as:

R −→ H1(Ω) ∇−−→ H(curl; Ω) ∇×−−−−→ H(div; Ω) ∇·−−−→ L2(Ω) −→ 0

⋆

xy ⋆

xy ⋆

xy ⋆

xy
0 ←− L̃2(Ω) ∇·←−−− H̃(div; Ω) ∇×←−−−− H̃(curl; Ω) ∇←−− H̃1(Ω) ←− R

(2.3)
where the tilde is meant to denote that the lower row of the complex has a different
orientation that the upper row.

Comparing (2.3) with the Tonti diagram from Figure 2.7 makes it quite evident
that both are closely related. In fact, the complex seems to be a purely mathematical
description while the diagram focuses on the geometric description of the theory.
Consider, for instance, the following examples detailing the synergy between both
descriptions.

• The electric potential ϕ, according to the Tonti diagram, is associated to nodes.
Comparing this to the De Rham complex leads to the fact that ϕ ∈ H1(Ω).

• The magnetic potential ϕ̌m belonging to nodes on the dual mesh. From the
De Rham complex then ϕ̌m ∈ H̃1(Ω).

• Computing E from the electric potential requires the gradient operator. Hence,
according to the flow of the complex, the electric field belongs to H(curl; Ω).
Thus, the operator grad is effectively mapping from H1(Ω) to the new space.

• Consider the constitutive law D = ϵ E where no differential operators are
involved. From the diagram, both variables belong to different grids. However,
thanks to the complex, it can be quickly realized that communication between
both is achieved due to the Hodge star. Thence, a map from H(curl; Ω) to
H̃(div; Ω) is obtained.

If the function spaces shown in (2.3) can be discretized and then appropriate de-
scriptions for the differential operators are found, then a scheme will truly mimic
such sequences. Since the physically reliable Tonti diagrams are quite entangled to
the De Rham complex, a proper discretization of the latter will inevitably lead to
physically sound results.

In the present work, the vector operators will be obtained by means of incidence
matrices which are quite sparse constructions containing only -1, 0 and 1. Finding
discrete descriptions for operator ⋆ allows for much freedom since they are not
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uniquely defined and many approaches are possible. The approach to be followed
will be the next topic of discussion.

2.3.2 Hodge Operator
In the language of differential forms, the operator ⋆ : Λk(Ω) −→ Λ(n−k)(Ω) which
means that it acts as a link between forms associated to different geometric objects.
In this case, such forms have different orientation.

For the current framework, the Hodge matrices will appear as a consequence of
using the basis functions and will be associated to the so-called mass matrices. In
[87], Bossavit establishes the relation between the Hodge and the mass matrices in
the context of FEM when tackling a curl-curl problem for the potential ϕ̌m.

Additionally, Hiptmair, in [45], establishes how mass matrices are, indeed, linear
mappings between spaces of discrete differential forms based on a primary mesh Th

and a secondary mesh T̃h which is exactly the behavior to be expected the Hodge
to simulate according to the Tonti diagrams.

2.3.3 Differential Forms in Electromagnetics
The discussion of differential forms can be traced back to many years ago. For
instance, the book by Flanders [36] in 1964 was born as an attempt to introduce
the topic to a wider audience.

In electromagnetics, however, the first appearance of exterior differential forms
can be tracked back to George A. Deschamps [31] in 1970. Nearly a decade later, the
topic arose again in a conference paper named Applications of Exterior Differential
Forms to Electromagnetics where it is discussed how differential forms are the most
natural and convenient representation of electromagnetic quantities. Shortly after,
in [30], the topic is once again reviewed and the so-called Deschamps graphs make
their first appearance which were constructions as the ones from Tonti but only
relating k-forms by means of the exterior derivative.

These publications were amongst the first that attempted to introduce the lan-
guage of differential forms in electromagnetism. Probably hoping that the prediction
of Flanders about exterior calculus became true: “Physicists are beginning to realize
its usefulness. Perhaps it will soon make its way into engineering.”

The latter, up to some extent, started to become true. The biggest breakthrough
of differential forms in electromagnetism occurred thanks to Alain Bossavit. Back
in 1988, in [11], he addressed a problem that had been hindering numerical approx-
imations in electromagnetism. It was known that magnetic fields required elements
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whose degrees of freedom were not values at mesh nodes which was the common pro-
cedure in classic Finite Element Method. His cure relied on expressing the equations
in terms of differential forms instead of the regular vector notation.

The work from Bossavit resounded orders of magnitude above any other work
on the topic at that time and, up to the present day, is still a predominant figure.
Such impact was, probably, not related to the idea of utilizing differential forms but
rather related to the fact that he offered a concrete way to apply such framework.
By introducing Whitney Forms8, differential forms stopped being entirely theoreti-
cal and became an effective tool for problem solving in engineering. Additionally, it
was soon realized that the lowest order Nédélec edge elements [68] created in pre-
vious years to deal with electromagnetic problems were, in fact, the Whitney edge
elements. The latter gave further credibility to the whole machinery and catapulted
the use of edge elements to new heights.

The complete set of ideas from Bossavit appeared years later in what today is
known as the Japanese Papers [16]. Even though this series of papers focuses on
electromagnetism, the ideas are general enough as to be applied to any other field
of science. The latter is probably the reason why it is one of his most well-known
works.

The consequences of associating Whitney forms to the discretization of differ-
ential forms ended up having a huge impact outside electromagnetism. If Whitney
forms are considered to be a natural tool to discretize the De Rham complex, then
any theory that could be fitted into such complex would be a candidate for the novel
framework. Luckily, there was not a lack of prospects since plenty of theories met
the requirement. This was particularly possible due to the work from Tonti [88]
since his classification diagrams had a very close connection to the de Rham theory
as shown in [89, p. 416] and, in this way, the geometric concepts brought by the use
of differential forms quickly migrated to several other areas of science. Testament
of the latter is the literature presented in Section 1.3.

There is plenty of up-to-date literature using differential forms as a cornerstone
but, perhaps, one of the most relevant is the one from Hiptmair [46] who was
strongly influenced by the ideas of Bossavit. Even though Whitney forms are used
throughout the whole text, the theory applies to any other basis forming part of a
De Rham sequence.

8 Funnily enough, the original purpose of Whitney forms was far from the Finite Element Theory.
The first documented connection between both was given by G. Strang at the end of [32] who
informed Dodziuk that the techniques used in his paper were very closely related to FEM.
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2.4 Maxwell Equations
Electromagnetic analysis has been quite a fundamental part of many engineering
and scientific analyses/studies since the electromagnetic theory was completed back
in the 1870s. Its importance has been predominant through the years due to its
predictive power that extends from static to optical regimes and from subatomic to
intergalactic length scales [54].

Throughout the years, the equations have undergone a series of changes in their
notation. This topic is lightly touched upon by Bossavit [17, p. 1] for the original
formulation, the contemporary vector notation and the modern differential geomet-
ric formalism by stating that despite describing the same phenomena, ‘they are as
different as 3 sentences with the same meaning can be in three different languages’.

2.4.1 Differential Equations

∇ × H = J + ∂D
∂t

Maxwell - Ampère’s Law (2.4a)

∇ × E = − ∂B
∂t

Faraday’s Law (2.4b)

∇ · D = ρ Gauss’s Law (2.4c)

∇ · B = 0 Gauss’s Law: Magnetic (2.4d)

where the vectors used are E, electric field intensity (V/m); D, electric flux density
(C/m2); H, magnetic field intensity (A/m); B, magnetic flux density (Wb/m2); J,
electric current density (A/m2) and ρ, electric charge density (C/m3).

When charge is conserved, both of Gauss’s equations are a direct consequence
of (2.4a) and (2.4b). Such result is obtained by taking the divergence of the latter
equations and switching the time and space derivatives for B and D. Thus,

∇ · ∂B
∂t

= ∂

∂t
(∇ · B) = 0 and ∇ · ∂D

∂t
= ∂

∂t
(∇ · D) = −∇ · J

and by supplementing the above with the equation of continuity ∇ · J + ∂ρ
∂t = 0 (due

to charge conservation), the second equation is rewritten as:

∂

∂t
(∇ · D) = ∂ρ

∂t
−→ ∂

∂t
(∇ · D − ρ) = 0 ∴ ∇ · D = ρ

Therefore, if (2.4c) and (2.4d) hold at one instant in time, they will automatically
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hold for all t ∈ R. This argument might propose the fact that the divergence
equations are, indeed, useless and can be discarded. However, any sensible numerical
approximation of the Maxwell equations must satisfy at some degree the discrete
analogues of both Gauss’s Laws [67, Chapter 1]. Failing to do so will give rise to
spurious solutions.

As an aside note, in [15], Bossavit considers computational electromagnetism
to be concerned with a different system of equations which include both (2.4a)
and (2.4b) supplemented by two constitutive laws accounting for the presence of
matter and its interaction with the fields. The reasoning for this is based on the
fact that the solenoidal condition for B stems from Faraday’s Law and enforcing it
only requires to satisfy it at the initial time. Gauss’s Law, however, is considered
as a mere definition. Hence, in his eyes, both equations are demoted to a lower tier
of importance.

2.4.2 Integral Equations
The differential formulation (2.4a)-(2.4d) hides quite well the geometric objects the
variables are acting onto. A formulation based on integral equations would, on the
other hand, give more insight about this topic since the variables would have to be
integrated on appropriate manifolds. For the general time-varying fields, Maxwell’s
equations are given by [54, Chapter 1.2]:

˛
C

H · dl = d
dt

¨
S

D · ds +
¨

S

J · ds Maxwell - Ampère’s Law (2.5a)

˛
C

E · dl = − d
dt

¨
S

B · ds Faraday’s Law (2.5b)

‹
S

D · ds =
˚

V

ρ dV Gauss’s Law (2.5c)

‹
S

B · ds = 0 Gauss’s Law: Magnetic (2.5d)

‹
S

J · ds = − d
dt

˚
V

ρ dV Equation of Continuity (2.5e)

where (2.5a) & (2.5b) are integrated over an open surface S bounded by a contour
C while for (2.5c) & (2.5e) S denotes a closed surface delimiting a volume V [54].

The integral formulation is valid regardless of the medium or shape of the inte-
gration manifold and might be considered as the fundamental equations governing
the behavior of EM fields [54]. Historically, such integral formulations came first
and, up to some extent, are more germane to physics [15].
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2.4.3 Differential Forms
By using differential forms, the Maxwell’s equations are written as follows [46]:

dh = ∂t d + j Maxwell - Ampère’s Law (2.6a)

de = −∂t b Faraday’s Law (2.6b)

dd = ρ Gauss’s Law (2.6c)

db = 0 Gauss’s Law: Magnetic (2.6d)

where e and h denote the electric and magnetic field intensities which are 1-forms.
There is a triplet of 2-forms: d, b and j with the first two being the electric and
magnetic flux density, respectively, while the last is the electric current density. The
only 3-form in the system is the electric charge density ρ. Finally, the operator d
denotes the exterior derivative which is the generalization of the vector operators
grad, curl and div and maps k-forms to (k+1)-forms.

2.4.4 Constitutive Relations
Maxwell’s equations must be augmented to have equal number of equations and
variables. This is done by supplementing the system with a set of constitutive laws
relating E and H to D and B, respectively. Under the framework established by
Tonti, the equations explored in this section are the horizontal links from Figure 2.7.
Constitutive relations describe the macroscopic properties of the medium [54] and
how it affects the surrounding field. Specifically, a medium can affect electromag-
netic fields through three phenomena, namely, electric polarization, magnetization
and electric conduction [55, Chapter 1.3].

2.4.4.1 Electric Polarization

The first constitutive law considered reads,

D = ε0E + P

where P is the so-called polarization intensity or polarization vector P which ac-
counts for the effects of tiny dipoles on the material [55] and ε0 is the permittivity
of free space which is 8.854 × 10 -12 F/m in the MKS unit system. In most dielectric
materials this quantity is proportional to E such that P = ε0χcE with χc being the
electric susceptibility. As a result, the electric flux density can be rewritten as:

D = ε0 (1 + χc) E = ε E (2.7)
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and the new variable is denoted as permittivity of the dielectric. For engineering
purposes, however, the relative permittivity is often used εr = ε/ε0 = 1 + χc. In
vacuum, the vector P vanishes while in air it is often negligible which reduces the
constitutive relation to simply D = ε0 E.

2.4.4.2 Magnetization

The constitutive law relating H and B reads,

B = µ0 (H + M)

where M denotes a magnetization intensity which is defined as the sum of the
magnetic dipole moments per unit volume [55] and µ0 is the permeability of free
space with a value of 4π ×10-7 H/m in the MKS unit system. Similarly to the electric
polarization case, in most materials the vector M is proportional to H using the
so-called magnetic susceptibility χm. Thus, the magnetic flux can be rewritten as:

B = µ0 (1 + χm) H = µH (2.8)

and the new variable is simply and originally called permeability of the material.
The use of the relative permeability µr = µ/µ0 = 1 + χm is common in engineering
practice. In vacuum, M vanishes while in air (and any other non-magnetic medium)
its value is negligible such that the constitutive equation reduces to B = µ0 H.

2.4.4.3 Electric Conduction

This phenomenon happens in a medium containing free charges such that when an
electric field is applied, those charges tend to flow forming conduction currents [55].
In most materials, the current density is proportional to the electric field such that
J = σ E where σ is called conductivity.

2.4.4.4 Classification of Media

The parameters ε, µ and σ allow to characterize the electromagnetic properties of
the medium under consideration. For example, if any of the variables is a function of
space, the medium is called heterogeneous; otherwise, it is an homogeneous medium
[81]. If the parameters show time dependence, they are named non-stationary;
otherwise, they are called stationary.

More importantly, perhaps, is the classification concerning the direction of D and
B relative to E and H. When, for instance, the electric flux density is parallel to its
intensity, the medium is called isotropic; otherwise, is called anisotropic. The same
logic applies for the relation between the B and H. For anisotropy to be accounted
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for, some modifications have to be made to both (2.7) and (2.8) as follows:[
Dx

Dy

Dz

]
︸ ︷︷ ︸

D

=
[

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
︸ ︷︷ ︸

ε

[
Ex

Ey

Ez

]
︸ ︷︷ ︸

E

,

[
Bx

By

Bz

]
︸ ︷︷ ︸

B

=
[

µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

]
︸ ︷︷ ︸

µ

[
Hx

Hy

Hz

]
︸ ︷︷ ︸

H

(2.9)
where ε and µ are the permittivity and permeability tensors, respectively. In case
the former is purely diagonal, the medium is denoted as biaxial if all three entries
are different and uniaxial if any two of the three are equal.

Unsurprisingly, categories also exist based on conductivity and permeability. For
the former, if σ = 0, the medium is a perfect dielectric (insulator) whereas if σ −→ ∞
then the medium is catalogued as a perfect electric conductor.

If permeability is to be used as a classification criterion, diamagnetic and para-
magnetic media are two well known categories. The first one refers to media where
χm is a very small negative number while for the second category 0 < χm << 1.
In any case, both categories can be approximated by µr = 1 since the difference
between value of χm for those classifications is rarely higher than 10 -4. Additional
categories include ferromagnetics (µr >> 1, σ >> 1) and ferrites (µr >> 1, σ > 1).

More complex classifications can be found in literature which are associated to
equally intricate constitutive laws. Notorious examples include the so-called bi-
isotropic laws [69, Chapter 2.2.2] in which D = ε E + ξ H and B = µ H + ζ E (ξ and
ζ measure magneto-electric effects). Classifications based on frequency also exist in
which ε = ε(f) or µ = µ(f) leading to dispersive media. Finally, perhaps one of the
most well-recognized categories is the non-linear media in which ε = ε(E) and/or
µ = µ(H).

2.4.4.5 Constitutive Relations for Differential Forms

In the language of differential forms, the material parameters relate the 1-forms
e, h to the 2-forms d, b, j by means of the Hodge operator ⋆ which induces the
isomorphisms Λ1(Rn) ∼= Λn−1(Rn) [46]. The constitutive relations are written as:

d = ⋆ϵ e b = ⋆µ h j = ⋆σ e

where the subscripts are used as to remind that either the parameter ϵ, µ or σ has
to be included. A similar notation is followed, for instance, by Bossavit [15] who
also extrapolates the notation of subscripts to mass matrices depending on material
parameters.
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2.4.5 Time-Harmonic Fields
The four dimensional system of the Maxwell’s equations can be reduced by using
the so-called time-Harmonic Maxwell system which might be desirable whenever
the source currents vary in a sinusoidally in time [67]. Firstly, it is assumed that
the variables behave as follows:

E(t, x) = ℜ
(

e −iωt E (x)
)

, D(t, x) = ℜ
(

e −iωt D (x)
)

H(t, x) = ℜ
(

e −iωt H (x)
)

, B(t, x) = ℜ
(

e −iωt B (x)
)

J (t, x) = ℜ
(

e −iωt J (x)
)

, ρ̂(t, x) = ℜ
(

e −iωt ρ(x)
)

where ℜ denotes the real part of the function. The time-harmonic equations are
obtained by inserting the above relations in the system (2.4a) - (2.4d). The most
notable changes appear in the Maxwell - Ampère Law and Faraday’s Law since those
equations contain the time derivatives and, hence, are the ones shown below:

∇ × H + i ω ε E = J (2.10a)

∇ × E − i ω µ H = 0 (2.10b)

where the constitutive relations have been introduced to replace D and B.

It is a usual practice to eliminate either E or H from the equations above to
work with a second order system rather than doing it with two first order equations.
Eliminating, for example, H is done by isolating the magnetic intensity from the
time-harmonic Faraday’s equation and substituting it into the remaining equation
as follows:

H = 1
i ω

µ -1 ∇ × E substituting−−−−−−−−−−→
into (2.10a)

∇ ×
(

1
i ω

µ -1 ∇ × E
)

+ i ω ε E = J

which after reshuffling the terms leads to the final second-order equation for E:

∇ ×
(

µ -1 × E
)

= i ω J + ω2 ε E (2.11)

The choice of setting up an equation for the electric field intensity rather than
for the magnetic field intensity was, of course, arbitrary. Obtaining the system for
H is done by solving for E in (2.10a) and then substituting the result back into
(2.10b) which leads to the following equation:

∇ ×
(

ε -1 ∇ × H
)

= ∇ ×
(

ε -1 J
)

+ ω2µ H (2.12)
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2.4.6 Boundary Conditions
No problem is complete without boundary conditions and the Maxwell system is no
exception to the rule. Consider, for example, the interface S between two media
with different electric and magnetic properties. The behavior of the fields is then
governed by boundary relations which can be formulated using the integral form as
a starting point [80]. At the interface, the equations to be satisfied are:

n ×
(

E1 − E2

)
= 0 (2.13a)

n ×
(

H1 − H2

)
= Js (2.13b)

n ·
(

D1 − D2

)
= ρs (2.13c)

n ·
(

B1 − B2

)
= 0 (2.13d)

where n is the unit normal vector pointing from region 2 to 1 while Js and ρs are
the surface current and surface charge density on the interface, respectively [54].

Both (2.13c) and (2.13d), even if ρs and Js are negligible, will lead to non-
continuous fields if ε and µ are discontinuous across the interface. Hence, any
numerical scheme that attempts to approximate the Maxwell system with discon-
tinuous material properties must take into account that tangential components are
continuous while normal ones are allowed to jump across boundaries [67, p. 8].

Whenever the media at one side of the interface is a perfect conductor, σ −→ ∞
and, from Ohm’s Law, if J is to remain bounded then E −→ 0 which immediately
suggests that for such conditions, the electric field vanishes. So, if the media with
label 2 is a PEC (perfect electric conductor), then the fields with such label disappear
from the boundary relations. Even when this might not be feasible in reality, it really
simplifies engineering calculations and, for the present work, it will be the mainly
utilized boundary condition.

A more realistic situation might be one where the neither side is a PEC but one
of them allows the field to slightly penetrate. This leads to the so-called imperfectly
conducting boundary condition described as n×H−λ(n×E)×n = 0 where the index
“1” denotes the region with the good conducting properties and λ is the impedance
[67, Section 1.2.2].

A more complete summary of boundary conditions for several cases can be found
in [5, Table 1-3] with the relations to be followed for all the fields across the interfaces
between media. Some other conditions, such as radiation ones, are discussed in
several literature such as [54, Chapter 1.6] while an overview of conditions for open
regions can be found in [80, Chapter 5.3].
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2.5 The Cavity Eigenvalue Problem
In eigenvalue problems, differential equations and boundary conditions are homoge-
neous which means that there is no source or excitation at all. Upon discretization,
these type of problems lead to the so-called generalized eigenvalue equation such
that its representation in algebraic form is given by [54, Chapter 7]:

[A]{ϕ} − λ[B]{ϕ} = {0} (2.14)

where both A and B are matrices related to the discretization while {ϕ} denotes
the unknowns. The objective of the problem is to determine λ such that the system
becomes singular which means finding an eigenvalue for which det |A−λB| vanishes.
The non-trivial solution associated to the eigenvalue is then called eigenvector.

In electromagnetics, eigenvalue problems are often encountered in the form of
cavity resonance and wave propagation problems in closed/open structures. The
objective of such problems is determining the resonant frequencies corresponding to
eigenvalues and its associated resonant modes related to the eigenvectors.

For closed waveguides, two approaches are usually considered: scalar and vector
formulations. For the former, a behavior u(x, y, z) = u(x, y) exp [j(ωt − kzz)] is
assumed for both E and H where the z-axis is taken as aligned to the infinite axis
of the waveguide. In doing so, both Ez and Hz determine all the other components.
Hence the reason why this approach is known as Ez-Hz formulation. As a downside,
this approach has the inability to treat general anisotropic materials for which the
permittivity/permeability tensors cannot be diagonalized [54].

For vector formulations, the eigenvalue problem can be cast for either E or H.
The equations are quite similar to (2.11) and (2.12), the only difference being that
J = 0. Thus, the problem reads,

∇ ×
(

µ-1 ∇ × E
)

= ω2 ε E
{

n × E = 0, electric walls
n · E = 0, magnetic walls

(2.15a)

∇ ×
(

ε-1 ∇ × H
)

= ω2 µ H
{

n × H = 0, magnetic conducting surface

n · H = 0, electric conducting surface
(2.15b)

As any eigenvalue problem, the solution is sought for scalars ω2 and non-trivial
eigenfunctions E or H and, depending of the chosen formulation, the appropriate
divergence relation should be included to discard non-physical solutions.
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2.5.1 Variational Formulation
Using the Galerkin method, the variational formulation for the cavity problem can be
found by multiplying either (2.15a) or (2.15b) with a test function and integrating.
As usual, the highest order term (in this case the curl-curl term) is split by standard
integration by parts formulas [61]. The eigenvalue problem for the field E reads,
ˆ

Ω

(
∇ × Ẽ

)
·
(

µ-1 ∇ × E
)

dΩ −
ˆ

∂Ω

(
n × Ẽ

)
·
(

µ-1 ∇ × E
)

dΓ = ω2
ˆ

Ω
Ẽ ε E dΩ

while for the field H the formulation reads,
ˆ

Ω

(
∇ × H̃

)
·
(

ε-1 ∇ × H
)

dΩ −
ˆ

∂Ω

(
n × H̃

)
·
(
ε-1 ∇ × H

)
dΓ = ω2

ˆ
Ω

H̃ µ H dΩ

After imposing boundary conditions, appropriate function spaces can be defined
for the solution. For instance, in the E formulation, considering a PEC would require
to satisfy the relation n × E = 0 at ∂Ω. Thus, the problem reduces to finding non-
trivial eigenfunctions E ∈ H0(curl; Ω) and eigenvalues ω2 ∈ R. The formulation for
this configuration would then read,
ˆ

Ω

(
∇ × Ẽ

)
·
(

µ-1 ∇ × E
)

dΩ = ω2
ˆ

Ω
Ẽ ε E dΩ, ∀ Ẽ ∈ H0(curl; Ω) (2.16)

where the function space for Ẽ is chosen as to eliminate the boundary term.

The same result can be obtained by using the functional J(E) [54] given by:

J(E) = 1
2

ˆ
Ω

µ -1 (∇ × E) · (∇ × E) dΩ − ω2
ˆ

Ω

1
2 ε E · E dΩ (2.17)

and perform a process known as taking variations. The latter consists in evaluating
the modified functional V = J

(
E + αẼ

)
with α << 1 and then computing dV

dα = 0.
In case the magnetic field is preferred, the positions of the tensors µ and ε are
switched and H replaces E in the functional.

2.5.2 Spurious Solutions
The term spurious solutions refers to numerical solutions that converge to a wrong
solution of a PDE (or system of PDEs). If not possible to recognize them and tell
them apart from the true solutions, they are quite dangerous for applications [49].

In [84], these unphysical solutions are named vector parasites while Bossavit, in
[12], refers to these solutions as a curse and even a plague. A general concensus is,



2.5 The Cavity Eigenvalue Problem 31

however, that the reason these unwanted solutions arise is mainly due to violating
the divergence-free conditions of any of the fields [49].

In several publications, such as [84], it is pointed out that the root of the problem
is not failing to satisfy the solenoidal conditions at the discrete level, but, instead,
a poor discretization of the kernel and range of the operators. In simpler terms, it
means that the Lagrange finite elements fail to accommodate within a De Rham
complex. However, in [33], Lagrange vector elements were used that avoided spu-
rious solutions. These elements were part of a smoother version of the de Rham
complex (a Stokes complex) and the solution obtained on Powell-Sabin triangula-
tions with a modified variational formulation. Thus, nodal elements seem to be
usable on specific situations under severe modifications.

Careless use of nodal approximations, however, will lead to spurious solutions
also in source problems as shown in [3] where the vector Laplacian problem led to
wrong solutions on L-shape domains and annuli.

In words of Bossavit, the plague of spurious solutions must be eliminated or, at
least, frightened away. Such solutions can be sorted out by monitoring the divergence
of the fields or kept at bay by penalizing the divergence.

2.5.3 Untreated Disease
If (2.15a) or (2.15b) are not coupled with their correspondent divergence-free con-
ditions, the obtained eigenvalues can potentially be polluted by unwanted solutions.

Even when edge elements are utilized, the presence of spurious zero eigenvalues
is observed. This is, technically speaking, not a huge problem since they are easily
identifiable. In fact, the number of zero eigenvalues is known a priori to be equal to
the number of internal nodes in the mesh when the boundary is simply connected
[80, p. 127]. The appearance of these spurious zeros is due to the fact that the
formulations do not enforce the zero divergence conditions at such nodes [54] which
allows for the non-physical solutions E = grad Ψ and H = grad Φ to pollute the
computations [15, Chapter 9.3.3].

2.5.4 Kikuchi Formulation
Around 1987, a mixed method was proposed by Kikuchi [56] which attempted to
solve a problem of the type rot (rotu) = λu with boundary conditions u×n = 0 sub-
ject to the constraint div u = 0 for domains with continuous boundaries ∂Ω. This
proposed mixed method was supported by the work of Brezzi [22] on the approx-
imation of saddle-point problems using Lagrangian Multipliers and resembled the



32 2 Theoretical Background

so-called displacement method used in structural mechanics. The mixed formulation
from [56] requires finding (λ, u, p) ∈ R1 × U(Ω) × H1

0 (Ω):(
rot u, rot v

)
+
(

grad p, v
)

= λ
(

u, v
)

∀v ∈ U(Ω) (2.18a)(
u, grad q

)
= 0 ∀q ∈ H1

0 (Ω) (2.18b)

where U(Ω) =
{

v ∈ L2(Ω) | rot(v) ∈ L2(Ω), n×v = 0
}

, p is the Lagrange multiplier
and (· , ·) indicates the standard inner product where integration is performed on Ω.

Consider, for instance, that the material parameters in (2.16) are set to the
identity tensor and the problem is rewritten in terms of u, p, v. It can be stated
that both (2.16) and the system (2.18) solve the same problem and are, indeed,
equivalent. Such claim is proved in two steps. Firstly, it is clear that any pair (λ, u)
satisfying (2.16) satisfies (2.18a) by setting p = 0. Secondly, if v = grad p in (2.18a),
then (grad p, grad p) = λ(u, grad p) and using the fact that the sought solution was
forced to be orthogonal to all gradients in (2.18b) only (grad p, grad p) = 0 remains
which implies grad p = 0. Since the multiplier is sought in H1

0 (Ω), then p = 0 9 and
any eigenpair from (2.18) satisfies (2.16) and the divergence-free condition.

In the original article by Kikuchi, Nédéelec elements were utilized such that the
mixed formulation removed the large null space of the curl operator and, as a result,
all the spurious zero eigenvalues were eliminated in a domain with a continuous
boundary ∂Ω.

2.5.5 Penalty Methods
At the beginning of the 1980s, the so-called penalty methods starting to be used for
the Maxwell Equations. This is the case of [48] where an interior boundary value
problem was analyzed with a penalty parameter γ used on the boundary terms.

In 1983, a penalty method was discussed for the eigenvalue problem of the sec-
ond order curl-curl problem of the electric field E [43]. If the penalty parameter is
not chosen appropriately, eigenvalues of physical and non-physical solutions may be
similar and the whole spectra becomes unreliable. Unfortunately, an appropriate
value selection for the penalty parameter is an ad hoc (problem-dependent) treat-
ment. Assuring that the solutions extracted with this type of formulations are,
indeed, physical has to be done by examining either ∇ · D = 0 or ∇ · B = 0.

Adding penalty terms to the variational formulations to eliminate the spurious
solutions is, in the words of Konrad [57], unacceptable since no reduction occurs
9 Had a general tensor ϵ been considered, the fact that it is positive definite has to be used.
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in the size of the matrix eigenvalue problem. In fact, what really happens with
this type of solution is that the non-physical modes are not eliminated but rather
pushed towards higher frequencies and therefore do not show up among the first
few physically meaningful modes.

Examples for penalty methods for the eigenvalue problem (2.16) for ϵ = µ = I
are shown also in [56] apart from the mixed problem shown in the previous section.
Such formulations require finding s > 0 10 and an eigenpair (λ, u) ∈ R1 ×V (Ω) with
u ̸= 0: (

rot u, rot v
)

+ s -1
(

div u, div v
)

= λ
(

u, v
)

∀ v ∈ V (Ω) (2.19)

with V (Ω) =
{

v ∈ U(Ω) | div(v) ∈ L2(Ω)
}

. Any (λ, u) from (2.19) is also an
eigenpair of (2.18) but some solutions from the penalty equation might not be the
ones from the original problem [56]. The latter just supports the fact that spurious
solutions are not eliminated but rather moved around within the spectra.

A combination of a perturbation problem and a penalty method can also be
utilized which requires finding (λ, u, p) ∈ R1 × U(Ω) × H1

0 (Ω) with s > 0 and u ̸= 0:

(
rot u, rot v

)
+
(

grad p, v
)

= λ
(

u, v
)

∀ v ∈ U(Ω) (2.20a)(
u, grad q

)
= s

(
p, q
)

∀ q ∈ H1
0 (Ω) (2.20b)

which is the same size as the formulation shown in Section 2.5.4 but requires solving
the additional eigenvalue problem given by (grad r, grad q) = β(r, q) for all q ∈
H1

0 (Ω) which helps determining the penalty parameter s since the relation 0 < s <
β/λ0 has to be satisfied with λ0 being an arbitrary fixed positive number.

10 In [56] ε denotes the penalty parameter but s is used as to not confuse it with the permittivity.





3
Mathematical Background

In this segment of the thesis, the mathematical background required to implement
the mimetic spectral formulation is explored. The first half of the chapter deals
with the grid construction, the De Rham Maps and the interpolation functions,
Whitney Maps, to be utilized. Additionally, mass matrices and incidence matrices
are discussed. The second half of the chapter considers topics such as domain
partitioning, weak forms and error computation.

3.1 Construction of Finite Elements
The construction of the finite elements used within this thesis is shown in [51] by
defining the triplet (K, P, N ) as described by Brenner & Scott [6] following classical
definitions by Ciarlet.

Such triplet consists of the following elements:

• K: bounded closed set with non-empty interior and smooth boundary.

• P: a finite dimensional space of functions on K with dimension dP .

• N : linear functionals representing the degrees of freedom. In [6], this is defined
as the set of nodal variables but such delineation is not strictly followed
as some functionals Ni will not be attached to nodes. Furthermore, the set N
(with dimension RdP ) acts on elements of P such that the linear map

ph ∈ P 7→
(

N1
(
ph
)

, · · · , NdP

(
ph
) )

is bijective.

35
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To create a basis in P, the Kronecker-delta condition must be satisfied [51]:

A basis {Ψ1, ..., ΨdP } exists in P such that Ni(Ψj) = δij , 1 ≤ i, j ≤ dP

The next sections detail the mesh construction and the basis utilized in the
remainder of the thesis.

3.2 Grid Construction
A domain K = [ -1, 1] is considered and a Gauss-Lobatto-Legendre (GLL) grid is
constructed. The mesh points are determined by finding the roots of the equation

(
1 − ξ2) dLN

dξ
= 0 (3.1)

where LN represents the Legendre’s polynomial of degree N which arises as one of
the possible eigenfunctions of the singular Sturm-Liouville problem given by

d
dξ

(
(1 − ξ)1+α(1 + ξ)1+β du

dξ

)
+ λ(1 − ξ)α(1 + ξ)βu = 0, ξ ∈ [−1, 1] (3.2)

For α = β = 0, the eigenvalue becomes λ = N(N + 1) and the eigenfunction
u(ξ) becomes the sought Legendre polynomial LN(ξ) [24, p. 75]. The derivative of a
Legendre polynomial of degree N has N − 1 roots within [ -1, 1] which means that
(3.1) produces N +1 solutions due to the added roots from the polynomial

(
1 − ξ2).

Direct solution of (3.2) is not the only available method to compute the Legendre
polynomials for arbitrary values of N . The use of Rodrigues’ Formula [86] allows to
compute directly a polynomial of order N by means of the equation,

LN(ξ) = 1
2N N !

dN

dξN

[
(x2 − 1)N

]
however, other methods rely on recurrence relations such as Bonnet’s formula [24],

LN+1(ξ) = (2N + 1) ξ LN(ξ) − N LN−1(ξ)
N + 1 where L0(ξ) = 1, L1(ξ) = ξ (3.3)

The last approach was used to compute the polynomials up to degree N using as
a first guess for ξj the Chebyshev-Gauss-Lobatto nodes xj = cos

(
jπ
N

)
, 0 ≤ j ≤ N,

and then (3.3) was solved using a Newton-Raphson method. The distribution of
the GLL nodes on [-1, 1]2 is shown in Figure 3.1 where it is observed that the
mesh allocates more points towards the boundaries. In this case, the nodes ξj were
distributed for both axis and then spread within the domain.
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-1 1 

-1

1 

Figure 3.1: Node distribution for a Gauss-Lobatto-Legendre grid on Ω = [ -1, 1]2 with N = 6

3.3 Basis and Degrees of Freedom
This section is devoted to define both degrees of freedom and basis functions (the
Whitney Map) for 1D and 2D cases. These two components are essential to represent
a function at every single point within a given mesh.

3.3.1 Primal Basis
Firstly, the nodal basis functions are introduced followed by the edge functions.
Following the notation from [51], a canonical domain K = [ -1, 1] with polynomial
spaces P and Q are defined such that they represent the space of polynomials of
degree N and (N − 1), respectively. This notation is kept throughout this chapter.

For any αh ∈ P and for any βh ∈ Q, the degrees of freedom for the nodal and
the edge functions are defined, respectively, by the following terms:

N 0
i (αh) := αh(ξi), i = 0, 1, ..., N (3.4a)

N 1
i (βh) :=

´ ξj

ξj−1
βh(ξi) dξ, i = 1, 2, ..., N (3.4b)

In the equations above, ξi denotes the GLL nodes obtained in Section 3.2 and the
superscripts d in N d(·) indicate the geometrical dimension onto which the degrees
of freedom are attached to. For instance, N 0(·) indicates sampling on points while
N 1(·) specifies association to line segments [51].

Once the degrees of freedom for both P and Q have been defined, the basis func-
tions are constructed such that the condition Ni(Ψj) = δij described in Section 3.1
is fulfilled. For the functionals N 0

i (·), the Lagrange polynomials h(ξ) are the correct
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set of functions while the functionals N 1
i (·) require the edge functions e(ξ):

hi(ξ) =
(
ξ2 − 1

)
L′

N
N(N + 1)LN(ξi)(ξ − ξi)

, i ∈ ZN∗ (3.5a)

ei(ξ) = −
i−1∑
k=0

dhk

dξ
(ξ), i ∈ ZN+ (3.5b)

The values for the index i are defined by using the set of integers Z such that
Zµ∗ = {m ∈ Z

∣∣ 0 ≤ m ≤ µ} and Zµ+ = {m ∈ Z
∣∣ 0 < m ≤ µ} with µ = N . A

more detailed study and analysis of the edge functions is presented in [38] which
also includes the rationale behind the need for such formulation.

Both sets of basis functions are shown in Figure 3.2. The Kronecker-delta
condition for nodal basis functions is clearly satisfied by observing that at ξ = ξi

only one function peaks at an amplitude of unity while the rest of the set goes
to zero. For edge functions, however, the integral between consecutive GLL nodes
equals unity for only one function while the integral for the other ones vanishes.
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Figure 3.2: Primal Basis functions. Nodal (left) and edge (right) functions for N = 4. The
shaded area shows the region where

´ ξ1
ξ0

e1(ξ) dξ = 1 while for the rest the integral equals zero.

With the basis defined, then it becomes possible to represent functions belonging
to the function spaces P and Q. If, for example, the functions αh and βh are sought
to be represented by nodal basis functions and edge functions, respectively, then:

αh =
N∑

i=0
N 0

i (αh) hi(ξ) and βh =
N∑

i=1
N 1

i (βh) ei(ξ) (3.6)

In order to minimize notation, and following the one in [51], the collection of
degrees of freedom is gathered into column vectors N d(·) while basis functions are
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grouped in row vectors Ψd(ξ). The superscript d describes the dimension of the
geometric object the basis/functional is attached to. Thus, with this new notation,
the functions αh and βh are succinctly expressed as:

αh = Ψ0(ξ) N 0(αh) and βh = Ψ1(ξ) N 1(βh) (3.7)

3.3.2 Mass Matrices for Primal Basis
Mass matrices are an important part of the methodology since they act as Hodge
matrices which means that they communicate the primal and the dual complexes.
Even if the latter concept is not familiar, it will be observed in Chapter 4 that these
matrices arise naturally from the formulation itself.

The mass matrix M(0) is defined by considering products between nodal basis
functions while the matrix M(1) is constructed by utilizing edge basis functions.

M(0) =
ˆ

K

Ψ0(ξ)T Ψ0(ξ) dK and M(1) =
ˆ

K

Ψ1(ξ)T Ψ1(ξ) dK (3.8)

If the components of the basis functions belong to different polynomial spaces,
the matrices to be obtained would be rectangular. This would be the case for
integrals of the form

´
K

Ψ1(ξ)TΨ0(ξ) dK or
´

K
Ψ0(ξ)TΨ1(ξ) dK and, as for now,

there is not a notation for such cases11. In Chapter 4, this issue will be addressed
and further discussed when solving ordinary differential equations in which the first
derivative is present.

3.3.3 Dual Basis
A thorough overview of what is shown in the forthcoming paragraphs can be found
in [51]. Defining an algebraic dual basis is quite useful to increase the sparsity
pattern of problems that would usually involve full matrices. Additionally, in more
complicated problems arising in 2D and 3D cases, it is likely that not all variables are
represented on the primal mesh but also on a dual mesh as depicted in Figure 2.5 on
page 14. The latter requires its own type of degrees of freedom and basis functions
for interpolation. Thus, a section is devoted to describe both.

Dual operators are denoted by placing a tilde above the primal notation and,
similarly to the latter, are attached to a geometric object which is calculated as
d̃ = n − d. The parameter n indicates the dimension of the embedding space while
the parameter d satisfies 0 ≤ d ≤ n.

11 In terms of differential forms, this can be interpreted as the wedge product.
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The case n = 1 is now described. A function αh expanded in nodal basis func-
tions with degrees of freedom N 0(αh) and a function βh expanded in edge basis func-
tions with degrees of freedom N 1(βh) are considered. For αh −→ d = 0 and d̃ = 1
while for βh −→ d = 1 and d̃ = 0 and the associated dual degrees of freedom become:

Ñ 1(αh) := M(0) N 0(αh) and Ñ 0(βh) := M(1) N 1(βh)

The basis functions are determined using the Kronecker-delta condition. By
letting R(j) and C(j) denote the matrix column and row number, respectively, the
following is obtained for Ñ 1:

Ñ 1
i

(
Ψ̃1

j

)
= M(0)

R(j) Ψ̃1
j (ξi) = δij

The choice that resolves the problem is Ψ̃1
j (ξi) = hj(ξi)

(
M(0))-1

C(j) which allows
to use the fact that hj(ξi) = δij leading to the final result:

Ñ 1
i (Ψ̃1

j ) = M(0)
R(j) δij

(
M(0)

)-1

C(j)
=
{

1, if i = j

0, if i ̸= j

Doing the latter for all columns in M(0) produces Ψ̃1(ξ). In order to obtain Ψ̃0(ξ)
an an identical analysis has to be done using Ñ 0. In doing so, the dual functions
end up being represented by (3.9) and are shown in Figure 3.3.

Ψ̃1(ξ) := Ψ0(ξ)
(
M(0)

)-1
and Ψ̃0(ξ) := Ψ1(ξ)

(
M(1)

)-1
(3.9)
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Figure 3.3: Dual Basis functions. Dual nodal (left) and dual edge (right) functions for N = 4.

At the end of Section 3.3.1, it was shown that any αh ∈ P could be expanded
using Ψ0(ξ) while any βh ∈ Q could be rewritten using Ψ1(ξ). Due to the inclusion
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of the dual space, a new representation using the dual basis functions in P ′ and Q′

is possible. The functions αh and βh can be written as [51]:

αh = Ψ(0)(ξ) N 0(αh) = Ψ(0)
(
M(0)

)-1
M(0) N 0(αh) = Ψ̃1(ξ) Ñ 1(αh)

βh = Ψ(1)(ξ) N 1(αh) = Ψ(1)
(
M(1)

)-1
M(1) N 1(αh) = Ψ̃0(ξ) Ñ 0(αh)

The fact that βh can be rewritten in two formats is relevant for problems solved
with Mixed Formulations. In primal-primal methods, the solutions are sought in
P − Q while in primal-dual formulations P − Q′ is utilized. For the former, the
reconstruction of βh ∈ Q is done with Ψ1(ξ) whereas the latter requires Ψ̃0(ξ).

3.3.4 Mass Matrices for Dual Basis
In Section 3.3.2, the primal mass matrices were introduced by using the L2-inner
product between functions in the same polynomial space. For the dual mass matri-
ces, this would be the appropriate manner to define them. However, such matrices
were already utilized and disguised in (3.9). Thus, notation is now formalized as:

M̃(1) :=
(
M(0)

)-1
and M̃(0) :=

(
M(1)

)-1
(3.10)

where it is clear that M̃(1)M(0) and M̃(0)M(1) lead to identity matrices. Writing the
dual mass matrices with L2-inner products leads to the following definitions:

M̃(0) =
ˆ

K

Ψ̃0(ξ)T Ψ̃0(ξ) dK and M̃(1) =
ˆ

K

Ψ̃1(ξ)T Ψ̃1(ξ) dK (3.11)

There might be an inclination to favour (3.11) over the first definition since it
does not require the computation of an inverse matrix. This, however, would be
far from true since the mere definition of Ψ̃d̃(ξ) requires the explicit computation of
such inverse as shown in (3.9).

For the work presented in this thesis, the dual basis will be utilized to increase
the sparsity of the algebraic systems as to alleviate the computational effort when
seeking a solution. This point will be further elaborated in future chapters when
primal-dual formulations are explored.

3.3.5 Two-Dimensional Basis Functions and Mass Matrices
More challenging problems/applications rely on 2D geometries and, as a result, finite
element basis for such cases must be constructed as described in [51].
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For the two-dimensional case, the canonical domain is given by K = [ -1, 1]2
and its mesh is constructed by GLL points ξi, ηi ∈ [-1, 1]. Three sets of degrees of
freedom and three sets of basis functions have to be specified to represent functions
represented on points, lines and surfaces on the primal space. Similarly, the dual
space would require the same number of degrees of freedom/basis functions.

The degrees of freedom for functions represented on nodes are given by nodal
sampling and its basis is built as a tensor product of the 1D basis presented in
(3.5a) such that a polynomial space C(K) := P ⊗ P is established. Thus, for any
αh ∈ C(K) the correspondent degrees of freedom and basis are given by:

N 0
i(N+1)+j

(
αh
)

:= αh(ξi, ηj) and i, j ∈ ZN∗ (3.12)

Ψ0(ξ, η) = Ψ0(ξ) ⊗ Ψ0(η) and dim
(

Ψ0(ξ, η)
)

= (N + 1)2 (3.13)

where Ψ0(ξ, η) is arranged such that Ψ0
i(N+1)+j(ξ, η) = Ψ0

i (ξ)Ψ0
j (η). For functions

represented on lines, the spaces Dξ := P ⊗ Q and Dη := Q ⊗ P are combined to
construct D(K) = Dξ × Dη such that the basis becomes

Ψ1(ξ, η) =


Ψ1

ξ(ξ, η) = Ψ0(ξ) ⊗ Ψ1(η), dim
(

Ψ1
ξ(ξ, η)

)
= N (N + 1)

Ψ1
η(ξ, η) = Ψ1(ξ) ⊗ Ψ0(η), dim

(
Ψ1

η(ξ, η)
)

= N (N + 1)
(3.14)

with Ψ0(·) and Ψ1(·) being described in Section 3.3.1. In this case, the k-th com-
ponent of Ψ1(ξ, η) =

[
Ψ1

ξ(ξ, η) Ψ1
η(ξ, η)

]T
is given by:

Ψ1
k1

(ξ, η) = hi(ξ)ej(η)eξ

{
i ∈ ZN∗ and j ∈ ZN+

k1 = iN + j
(3.15a)

Ψ1
k2

(ξ, η) = ei(ξ)hj(η)eη

{
i ∈ ZN+ and j ∈ ZN∗

k2 = (i − 1)(N + 1) + j + 1 + N(N + 1)
(3.15b)

where eξ and eη denote the unit vectors in the ξ and η directions [51]. By following
the same numbering as for Ψ1 (ξ, η), the degrees of freedom for any αh ∈ D(K) are:

N 1
k1

:=
ˆ ηj

ηj−1

αh(ξi, η) · eξ dη (3.16a)

N 1
k2

:=
ˆ ξj

ξj−1

αh(ξ, ηj) · eη dξ (3.16b)
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Finally, the space S(K) := Q ⊗ Q. The latter requires edge functions while the
degrees of freedom are defined as integrals over surfaces. Thus, for any αh ∈ S(K):

N 2
(i−1)N+j

(
αh
)

:=
ˆ ηj

ηj−1

ˆ ξi

ξi−1

αh(ξ, η) dξ dη and i, j ∈ ZN+ (3.17)

Ψ2(ξ, η) = Ψ1(ξ) ⊗ Ψ1(η) and dim
(

Ψ2(ξ, η)
)

= N2 (3.18)

The primal mass matrices are defined via an L2-inner product. In this case,
however, there are three different definitions since 3 function spaces have been con-
sidered. Nevertheless, the notation can be combined in a single expression as,

M(d) =
¨

K

Ψd(ξ, η)T Ψd(ξ, η) dK (3.19)

For d = {0, 2}, the components M(d)
i,j are given by the scalar multiplication of

Ψd
m(ξ)Ψd

n(ξ) while for M(1)
i,j the dot product is required. Once M(d) is defined, the

dual basis is constructed. For simplicity, its definition follows the notation from
(3.11) instead of an L2-inner product. The dual basis functions are given as:

Ψ̃d̃(ξ, η) = Ψd(ξ, η)
(
M(d)

)-1
= Ψd(ξ, η) M̃(d̃) (3.20)

where d̃ = n − d. Hence, S̃(K), D̃(K) and C̃(K) are represented by d̃ = {0, 1, 2},
respectively. Additionally, the same convention used in (3.10) has been applied to
the dual mass matrices by defining them as the inverse of a primal mass matrix.

Finally, all the different basis functions presented in this section can be visualized
in Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7.

(a) Primal basis Ψ0(ξ, η) (b) Dual basis Ψ̃2(ξ, η)

Figure 3.4: To the left, basis functions on C(K) and its dual C̃(K) to the right. N = 2.
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(a) Primal Basis Ψ1
ξ (b) Dual Basis Ψ̃1

ξ

Figure 3.5: To the left, basis functions on Dξ(K) and its dual D̃ξ(K) to the right. N = 2.

(a) Primal Basis Ψ1
η (b) Dual Basis Ψ̃1

η

Figure 3.6: To the left, basis functions on Dη(K) and its dual on D̃η(K) to the right. N = 2.

(a) Primal Basis Ψ2 (b) Dual Basis Ψ̃0

Figure 3.7: To the left, basis Ψ2(ξ, η) and its dual Ψ̃0(ξ, η) to the right. N = 2.
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3.4 Non-Canonical Domains in R1 and R2

The framework presented up to this point has been specified in the canonical domain
K = [ -1, 1]. However, situations may arise in which such domain is not suitable
and the basis functions need to be modified to accommodate for the new domain.

Such inconvenience may arise from two circumstances. Firstly, the problem is
defined on an interval I ̸= K or, secondly, a multi-element approach is sought such
that the sub-domains Ik do not coincide with K. Whatever the case may be, using

x = Φ(ξ) = a

2 (1 − ξ) + b

2 (1 + ξ) (3.21)

allows to change from ξ ∈ K to x ∈ I or Ik and vice-versa. If only one element is
used within the domain, then a refers to the left boundary of I while b denotes its
right boundary. If a multi-element approach is utilized, then a and b are the left
and right boundary of Ik, respectively. Thus, the basis h(x) and e(x) become [51]:

Ψ0
i (x) = hi ◦ Φ−1(x) and Ψ1

i (x) = ei ◦ Φ−1(x)
J (3.22)

where J = b−a
2 denotes the Jacobian. In order to perform interpolation on the new

elements, the equations above are required to reconstruct the solution. The mass
matrices, however, do not require explicit construction of the new basis since they
can be computed using information from the canonical domain as:

M(0) =
ˆ

Ω
Ψ0(x)T Ψ0(x) dΩ = J

ˆ
K

Ψ0(ξ)T Ψ0(ξ) dK, (3.23)

M(1) =
ˆ

Ω
Ψ1(x)T Ψ1(x) dΩ = 1

J

ˆ
K

Ψ1(ξ)T Ψ1(ξ) dK (3.24)

Similarly to the one-dimensional case, in 2D it is essential to define the mathe-
matical framework on more general domains since most applications would seldom
coincide with the canonical domain K = [ -1, 1]2 from Figure 3.1 and, as a result,
the basis functions need to be extended to arbitrary 2D domains.

A mapping function Φ(ξ) = [Φ1(ξ) Φ2(ξ)]T cannot be determined a priori as
was done for the 1D case. Its construction can be done, for example, by using
the Gordon-Hall transform [28]. This procedure creates an invertible map from a
reference square domain onto a closed and bounded region which is very well suited
to approximate curved boundaries. The expressions for the latter method as well
as its methodology can be found in [41] while examples of different mappings from
the canonical domain to the physical domain are shown in Figure 3.8.
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Figure 3.8: Mapping Functions Φ : ξ ∈ K 7→ x ∈ Ω from the canonical to the physical domain.

The transfinite mapping method, unlike isoparametric element formulations, de-
couples the mapping of the independent variables and the interpolation of the de-
pendent variables [41]. Therefore, it is possible to use Ψd(ξ) only to build the
independent variable of the problem.

Regardless of the method, the mapping Φ(ξ) allows to compute the Jacobian as:

J =
[

∂Φ1
∂ξ

∂Φ1
∂η

∂Φ2
∂ξ

∂Φ2
∂η

]

which is required for the transformation of functions to and from the canonical
domain. For functions f ∈ C(K), u ∈ D(K) and g ∈ S(K) the transformations to
the physical domain Ω are given by [51]:

f = f ◦ Φ−1

∣∣∣∣∣ u = J ◦ Φ−1

det (J ◦ Φ−1)
(
u ◦ Φ−1) ∣∣∣∣∣ g = g ◦ Φ−1

det (J ◦ Φ−1)

A relevant application of the transformations above is their use in integration as
¨

Ω
f1 f2 dΩ =

¨
K

f1 f2 det(J) dK, f1, f2 ∈ C(K) (3.25)

¨
Ω

uT
1 u2 dΩ =

¨
K

uT
1 JT J u2

det(J) dK, u1, u2 ∈ D(K) (3.26)
¨

Ω
g1 g2 dΩ =

¨
K

g1 g2
det(J) dK, g1, g2 ∈ S(K) (3.27)

which, among other things, allows the calculation of mass matrices for any domain.

3.5 Incidence Matrices
The sections above have dealt with the interpolation of functions. This next seg-
ment, however, focuses on the discretization of differential operators such that prob-
lems in the continuous setting can be fully converted to discrete algebraic problems.
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3.5.1 Incidence Matrix in R1

The 1D case is certainly not a very interesting one, however, it constitutes the
base to understand the fundamentals on how the differential operators in higher
dimensions will be discretized. As a result, this case will be reviewed first.

An important analytical tool to generate such matrices with relative ease comes
from a property that connects the nodal and the edge basis functions via the deriva-
tive. The latter is further explained and proved in [38, 51]. Consider a function
αh ∈ P which is expanded using nodal basis functions. If its derivative dαh

dξ is
sought, then it can be computed as:

dαh

dξ
= d

dξ

[
N∑

i=0
αh

i hi(ξ)
]

=
N∑

i=1

[
αh

i − αh
i−1
]

ei(ξ) (3.28)

Thus, the nodal degrees of freedom are modified by the differential operator
such that they become suitable degrees of freedom for the edge functions. With this
property defined, the incidence matrix E1,0 is introduced. Its notation indicates that
the matrix requires nodal degrees of freedom (dimension d = 0) as input and the
output is a set of degrees of freedom based on lines (dimension d = 1). When this
matrix is introduced into (3.28), it will collect all the signs from the nodal degrees
of freedom and, as a result, its construction only requires the entries -1, 0 and 1.

To settle the idea, suppose αh =
∑3

i=0 αh
i hi(ξ). Using (3.28) leads to:

dαh

dξ
=
[
αh

1 − αh
0

]
e1(ξ) +

[
αh

2 − αh
1

]
e2(ξ) +

[
αh

3 − αh
2

]
e3(ξ) =

= Ψ1(ξ)

 -1 1 0 0
0 -1 1 0
0 0 -1 1


︸ ︷︷ ︸

E1,0

N 0(αh) (3.29)

where Ψ1(ξ) = [ e1(ξ) e2(ξ) e3(ξ) ] and N 0(αh) =
[

αh
0 αh

1 αh
2 αh

3
]T. The size

of E1,0 is given by N × (N + 1) and its sparsity keeps increasing as N increases.
For this matrix, unlike the mass matrices, the shape of the mesh is irrelevant since
only the connectivity between the degrees of freedom matters. Thus, if the degrees
of freedom are labeled in a different way, the placement of the entries will change.
For the R1 problems presented in this thesis, the degrees of freedom, either N 0(·)
or N 1(·), are always labeled from left to right as it is customary.
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3.5.2 Incidence Matrices in R2

In this section, the differential operators ∇, ∇· and ∇× are constructed. However,
similarly to the R1 case, the distribution of the entries -1, 0, 1 within the incidence
matrices depends on the labeling of the degrees of freedom. Therefore, such issue
will be addressed first in a canonical element in R2 by using the labeling of outer
and inner oriented variables presented in Figure 3.9.

(a) Outer-oriented variables (b) Inner-oriented variables

Figure 3.9: Outer and inner oriented nodal, edge and surface degrees of freedom.

The arrangement of the nodal degrees of freedom N 0(·) is:

N 0(ω) =
[
ω0,0 ω0,1 ω0,2 ω1,0 ω1,1 ω1,2 ω2,0 ω2,1 ω2,2

]T

N 0(φ) =
[
φ0,0 φ0,1 φ0,2 φ1,0 φ1,1 φ1,2 φ2,0 φ2,1 φ2,2

]T (3.30)

Edge degrees of freedom N 1(·) are written as:

N 1(u) =
[
u0,1 u0,2 u1,1 u1,2 u2,1 u2,2 v1,0 v1,1 v1,2 v2,0 v2,1 v2,2

]T

N 1(E) =
[

E
(2)
0,1 E

(2)
0,2 E

(2)
1,1 E

(2)
1,2 E

(2)
2,1 E

(2)
2,2 E

(1)
1,0 E

(1)
1,1 E

(1)
1,2 E

(1)
2,0 E

(1)
2,1 E

(1)
2,2

]T (3.31)

The degrees of freedom N 2(·) are arranged as:

N 2(ϕ) =
[
ϕ1,1 ϕ1,2 ϕ2,1 ϕ2,2

]T

N 2(ρ) =
[
ρ1,1 ρ1,2 ρ2,1 ρ2,2

]T (3.32)
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3.5.2.1 Incidence Matrix for Gradient

The gradient acts on scalar functions and results in vector-valued functions. Con-
sider a scalar function φ ∈ K such that ∇φ = ( ∂φ

∂ξ , ∂φ
∂η )T. Using the expansion

φ =
∑N

i=0
∑N

j=0 φi,j hi(ξ) hj(η) and applying (3.28) leads to the required incidence
matrix. In order to visualize it, suppose N = 2 such that the individual components
of the gradient are defined by,

∂φ

∂η
=

2∑
i=0

2∑
j=1

(φi,j − φi,j−1) hi(ξ) ej(η) = (φ0,1 − φ0,0) Ψ1
1(ξ) + (φ0,2 − φ0,1) Ψ1

2(ξ)+

+ (φ1,1 − φ1,0) Ψ1
3(ξ) + (φ1,2 − φ1,1) Ψ1

4(ξ) + (φ2,1 − φ2,0) Ψ1
5(ξ) + (φ2,2 − φ2,1) Ψ1

6(ξ)

∂φ

∂ξ
=

2∑
i=1

2∑
j=0

(φi,j − φi−1,j) ei(ξ) hj(η) = (φ1,0 − φ0,0) Ψ1
7(ξ) + (φ1,1 − φ0,1) Ψ1

8(ξ)+

+ (φ1,2 − φ0,2) Ψ1
9(ξ) + (φ2,0 − φ1,0) Ψ1

10(ξ) + (φ2,1 − φ1,1) Ψ1
11(ξ) + (φ2,2 − φ1,2) Ψ1

12(ξ)

From here onwards, the second component of the gradient is written out first as
to follow the numbering of Ψ1(ξ) described in Section 3.3.5. By using Figure 3.9 to
allocate the degrees of freedom in the correct order, the gradient can be written as,

∇φ =
( ∂φ

∂η

∂φ
∂ξ

)
= Ψ1(ξ)



-1 1 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0
0 0 0 -1 1 0 0 0 0
0 0 0 0 -1 1 0 0 0
0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 -1 1

-1 0 0 1 0 0 0 0 0
0 -1 0 0 1 0 0 0 0
0 0 -1 0 0 1 0 0 0
0 0 0 -1 0 0 1 0 0
0 0 0 0 -1 0 0 1 0
0 0 0 0 0 -1 0 0 1


︸ ︷︷ ︸

E1,0
grad=

[
E1,0

η

E1,0
ξ

]

N 0(φ) (3.33)

Subscripts η and ξ denote that the former is related to ∂
∂η , upper half of E1,0

grad,
while the latter is associated to ∂

∂ξ , lower half of E1,0
grad. Even when (3.33) leads to a

flipped gradient ∇φ = (φη, φξ)T which should not be an issue as long as the correct
basis functions are utilized.

3.5.2.2 Incidence Matrix for Divergence

The divergence acts on vector-valued functions and results in a scalar one. Con-
sider a function u = (u(ξ) v(ξ))T ∈ K such that ∇ · u = ∂u

∂ξ + ∂v
∂η . The ex-
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pansions for the individual components are u =
∑N

i=0
∑N

j=1 ui,j hi(ξ) ej(η) and
v =

∑N
i=1
∑N

j=0 vi,j ei(ξ) hj(η). Once again, by implementing (3.28), the individual
derivatives are obtained. To fix ideas, the polynomial degree is set to N = 2 which
leads to the following:

∂u

∂ξ
=

2∑
i=1

2∑
j=1

(ui,j − ui−1,j) ei(ξ) ej(η) = (u1,1 − u0,1) Ψ2
1(ξ) + (u1,2 − u0,2) Ψ2

2(ξ)+

+ (u2,1 − u1,1) Ψ2
3(ξ) + (u2,2 − u1,2) Ψ2

4(ξ)

∂v

∂η
=

2∑
i=1

2∑
j=1

(vi,j − vi,j−1) ei(ξ) ej(η) = (v1,1 − v1,0) Ψ2
1(ξ) + (v1,2 − v1,1) Ψ2

2(ξ)+

+ (v2,1 − v2,0) Ψ2
3(ξ) + (v2,2 − v2,1) Ψ2

4(ξ)

The incidence matrix for the divergence is then given by:

∇ · u = ∂u

∂ξ
+ ∂v

∂η
= Ψ2(ξ)

 -1 0 1 0 0 0 -1 1 0 0 0 0
0 -1 0 1 0 0 0 -1 1 0 0 0
0 0 -1 0 1 0 0 0 0 -1 1 0
0 0 0 -1 0 1 0 0 0 0 -1 1


︸ ︷︷ ︸

E2,1
div=[ E2,1

ξ
E2,1

η ]

N 1(u) (3.34)

Similarly to the gradient case, subscripts η and ξ are denote that the former is
related to ∂

∂η , right half of E2,1
div, while the latter is associated to ∂

∂ξ , left half of E2,1
div.

3.5.2.3 Incidence Matrix for Curl

In this section, the curl applied to scalar and vector fields is examined.

Firstly, a scalar field ω is considered such that ∇ × ω =
(

∂ω
∂η , - ∂ω

∂ξ

)T
. It is clear

the similitude with the discretization of the gradient operator, hence, the incidence
matrix for the curl applied to scalars can be immediately written as:

E1,0
curl =

[
E1,0

η

-E1,0
ξ

]
(3.35)

Secondly, the curl applied to vector fields E =
(

E(1), E(2))T is considered such
that the following operation holds ∇ × E = ∂E(2)

∂ξ − ∂E(1)

∂η . The components, unlike
the divergence case, are chosen to be expanded as E(1) =

∑N
i=1
∑N

j=0 E(1)
i,j ei(ξ) hj(η)

and E(2) =
∑N

i=0
∑N

j=1 E(2)
i,j hi(ξ) ej(η). For N = 2, the following is obtained:
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∂E(2)

∂ξ
=

2∑
i=1

2∑
j=1

(
E(2)

i,j − E(2)
i−1,j

)
ei(ξ) ej(η) =

(
E(2)

1,1 − E(2)
0,1

)
Ψ2

1(ξ) +
(

E(2)
1,2 − E(2)

0,2

)
Ψ2

2(ξ) +

+
(

E(2)
2,1 − E(2)

1,1

)
Ψ2

3(ξ) +
(

E(2)
2,2 − E(2)

1,2

)
Ψ2

4(ξ)

∂E(1)

∂η
=

2∑
i=1

2∑
j=1

(
E(1)

i,j − E(1)
i,j−1

)
ei(ξ) ej(η) =

(
E(1)

1,1 − E(1)
1,0

)
Ψ2

1(ξ) +
(

E(1)
1,2 − E(1)

1,1

)
Ψ2

2(ξ) +

+
(

E(1)
2,1 − E(1)

2,0

)
Ψ2

3(ξ) +
(

E(1)
2,2 − E(1)

2,1

)
Ψ2

4(ξ)

The incidence matrix for the curl applied to vectors is given by:

∇ × E = ∂E(2)

∂ξ
+ ∂E(1)

∂η
= Ψ2(ξ)

 -1 0 1 0 0 0 1 -1 0 0 0 0
0 -1 0 1 0 0 0 1 -1 0 0 0
0 0 -1 0 1 0 0 0 0 1 -1 0
0 0 0 -1 0 1 0 0 0 0 1 -1


︸ ︷︷ ︸

E2,1
curl

N 1(E)

Comparing the matrix above with the one obtained in (3.34) for the divergence
makes it clear that both are quite similar. In fact, the matrix E2,1

curl can be assembled
with the block matrices from the discrete divergence operator as:

E2,1
curl =

[
E2,1

ξ -E2,1
η

]
(3.36)

3.5.3 A Geometric Approach Towards Incidence Matrices
So far all the incidence matrices were put together by using (3.28) and then the
assembly relied on the signs of the degrees of freedom. However, as specified before,
these matrices depend on the connectivity of the variables and, as a result, are
independent of the basis functions used. The latter just means that the procedure
used in the previous sections is not the only course of action.

An approach relying on the orientations of the degrees of freedom is discussed:

• Consider the gradient which links N 0(·) to N 1(·). In Figure 3.9b, nodes are
given a default orientation as sinks as illustrated by the central orange node.
On the other hand, E(1) and E(2) have default orientations from west-to-east
and south-to-north, respectively.

Building E1,0
grad is done by examining the orientation of each line and of those

nodes corresponding to its boundary. For example, for E(2)
0,1, the boundary
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nodes are φ0,0 and φ0,1. The sink-type orientation of the former does not agree
with the south-to-north orientation of E(2)

0,1 while the sink-type orientation of
φ0,1 does. If the orientations match, then a value 1 is assigned, otherwise, -1
is used. Thus, this first equation would simply read:

E(2)
0,1 =

[
-1 1 0 0 0 0 0 0 0

]
N 0(φ)

Doing the same for all the other lines on the mesh following the numbering of
N 1(E) retrieves E1,0

grad exactly as shown in (3.33).

• Consider the divergence which links N 1(·) to N 2(·). In Figure 3.9a, surface
degrees of freedom N 2(ϕ) are given default orientations as sources. For N 1(u),
ui,j has a default orientation west-to-east while for vi,j it is south-to-north.

Building E2,1
div is done by examining the orientation of each surface and the 4

lines from its boundary. For ϕ1,1, the boundary lines are u0,1, u1,1, v1,0 and
v1,1. The source-type orientation of ϕ1,1 agrees with the orientation of both
u1,1 and v1,1 but not with u0,1 and v1,0. Thus, this relation is written out as:

ϕ1,1 =
[

-1 0 1 0 0 0 -1 1 0 0 0 0
]

N 1(u)

Doing the same for all the other surfaces following the numbering of N 2(ϕ)
retrieves E2,1

div exactly as shown in (3.34).

• The curl applied to scalar quantities links N 0(·) to N 1(·). In Figure 3.9a,
nodes are given a default orientation anti-clockwise while the orientation of
lines is the same as the one discussed previously for the divergence operator.

Building E1,0
curl is done by examining the orientation of each line and of those

nodes corresponding to its boundary. The boundary nodes of u0,1 are ω0,0 &
ω0,1. The anti-clockwise rotation of the former agrees with the orientation of
u0,1 while the orientation of the later does not. This first relation reads:

u0,1 =
[

-1 1 0 0 0 0 0 0 0
]

N 0(ω)

Doing the same for all the other lines on the mesh following the numbering of
N 1(u) retrieves E1,0

curl exactly as shown in Equation 3.35.

• The curl applied to vectors links N 1(·) to N 2(·). In Figure 3.9b, surfaces
are given a default orientation anti-clockwise while lines have the orientation
discussed for the gradient operator.

Building E2,1
curl is done by examining the orientation of each surface and the 4
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lines from its boundary. The boundary lines of ρ1,1 are E(1)
1,0, E(1)

1,1, E(2)
0,1 and

E(2)
1,1. The orientation of the surface agrees with E(1)

1,0 and E(2)
1,1 but not with

E(1)
1,1 and E(2)

0,1. Thus, the following is obtained:

ρ1,1 =
[

-1 0 1 0 0 0 1 -1 0 0 0 0
]

N 1(E)

Doing the same for all the other surfaces on the mesh following the numbering
of N 2(ρ) retrieves E2,1

curl exactly as shown in (3.36).

3.6 Domain Partitioning
Back in Section 3.4 it was mentioned that there are instances in which a single
spectral element cannot be used. For such cases, a mesh covering the computational
domain Ω is split into non-overlapping M subdomains:

Ω =
M⋃

k=1
Ωk, Ωn ∩ Ωl = ∅ for n ̸= l

where each Ωk is discretized using a Gauss-Lobatto-Legendre mesh such as the one
shown in Figure 3.1 for the 2D case. Even though there is no overlap between
elements, such the case is not true for their boundaries ∂Ωk.

The latter will pose a problem for any degrees of freedom are located at the
boundaries since these will be shared between two or, possibly, more elements. To
settle the idea, consider a domain Ω = [ -1, 1 ]2 which is split into four subdomains
using a GLL-mesh with N = 1 as shown in Figure 3.10 where the indices for the
degrees of freedom have been reduced to a single index to minimize notation.

Figure 3.10: Domain Ω = [ -1, 1]2, subdomains Ωk and degrees of freedom N 0(φ) & N 1(u)
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By following the numbering of the nodal and edge degrees of freedom shown in
(3.30) and (3.31), respectively, the degrees of freedom for Ωk are:

Ω1 −→ N 0
Ω1

(φ) = ( φ1 φ2 φ4 φ5 )T
, N 1

Ω1
(u) = ( u1 u3 v1 v2 )T

Ω2 −→ N 0
Ω2

(φ) = ( φ2 φ3 φ5 φ6 )T
, N 1

Ω2
(u) = ( u2 u4 v2 v3 )T

Ω3 −→ N 0
Ω3

(φ) = ( φ4 φ5 φ7 φ8 )T
, N 1

Ω3
(u) = ( u3 u5 v4 v5 )T

Ω4 −→ N 0
Ω4

(φ) = ( φ1 φ2 φ4 φ5 )T
, N 1

Ω4
(u) = ( u4 u6 v5 v6 )T

Assume that the equation being solved in Ωk is discretized such that an algebraic
system of the form Ak x k = F k is obtained, then the discretized system for the
entirety of Ω would be given by the following matrix structure,

A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4




x 1
x 2
x 3
x 4

 =


F 1
F 2
F 3
F 4

 −→ A x = F (3.37)

where x k could correspond to any of N d(·), d = {0, 1, 2}. Since all surfaces are non-
overlapping, N 2

Ωn
(·) ∩ N 2

Ωl
(·) = ∅. However, for d = {0, 1}, N d

Ωn
(·) ∩ N d

Ωl
(·) ̸= ∅

and some degrees of freedom in x are repeated. For a solution to be obtained, the
degrees of freedom belonging to d = {0, 1} have to somehow get glued together which
will inevitably have an impact on the shape of matrix A and the vector F. This
topic is treated in Section 3.6.1 and Section 3.6.2.

3.6.1 Gathering Matrix
This approach reorganizes the structure of the matrices Ak and the vectors F k using
a map relating the degrees of freedom in Ωk to global degrees of freedom in Ω. Such
map is called Gathering Matrix (GM) which has the following form:

GM
(

# Element, # Local Degree of Freedom
)

= Global Degree of Freedom

If the definition above is applied to the geometry presented in Figure 3.10, the
gathering matrices GM for N 0(φ) and N 1(u) would read,

GMφ =


1 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

 GMu =


1 3 7 8
2 4 8 9
3 5 10 11
4 6 11 12

 (3.38)
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By utilizing this map, Ak and F k are reshuffled and merged accounting for the
connectivity of the degrees of freedom in a process called assembly. Such process
results in the global matrix and vector AGM and F GM, respectively. A method to
derive such matrices is via a sequence of nested for-loops as follows,

AGM = [ ]; F GM = [ ];
for k = 1 to Number of Elements

for i = 1 to dim
(
N d

Ωk
(·)
)

for j = 1 to dim
(
N d

Ωk
(·)
)

AGM

(
GM(k, i), GM(k, j)

)
= AGM

(
GM(k, i), GM(k, j)

)
+ Ak (i, j)

end

F GM

(
GM(k, i)

)
= F GM

(
GM(k, i)

)
+ F k(i)

end
end

where dim
(
N d

Ωk
(·)
)

is the number of degrees of freedom N d(·) in each subdomain
which remains unchanged since the same degree N is used for all Ωk. By performing
the aforementioned steps, the system from (3.37) becomes AGM N d

Ω(·) = F GM where
all the shared degrees of freedom have been merged and a solution can now be sought.

3.6.2 Connectivity Matrix
Contrary to the previous section which focused on reorganizing Ak and F k, this
approach uses the non-connected matrix A and vector F from (3.37) and enforces
continuity between the shared degrees of freedom via a connectivity matrix.

Figure 3.11: Domain Ω = [ -1, 1]2 from Figure 3.10 with non-connected degrees of freedom N 0(φ).
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To illustrate the idea behind this approach, consider the disjointed discretization
of the domain from Figure 3.11 where each degree of freedom in all subdomains is
accounted for even if it is shared with another element. The degrees of freedom are
arranged according to the numbering described in (3.30) such that,

N 0
Ω1

(φ) = ( φ1 φ2 φ3 φ4 )T
, N 0

Ω3
(φ) = ( φ9 φ10 φ11 φ12 )T

N 0
Ω2

(φ) = ( φ5 φ6 φ7 φ8 )T
, N 0

Ω4
(φ) = ( φ13 φ14 φ15 φ16 )T

↓

N 0(φ) =
(

N 0
Ω1

(φ) N 0
Ω2

(φ) N 0
Ω3

(φ) N 0
Ω4

(φ)
)T

dim
(

N 0(φ)
)

=
(

# Elements
)(

N + 1
)2

At this point, a connectivity matrix, N, is utilized to couple the shared degrees
of freedom by equating them. This is shown below for the geometry of Figure 3.11:

0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0
0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0


︸ ︷︷ ︸

N

N 0(φ) =


0
0
0
0
0
0
0


(3.39)

A column of zeros is added to the right-hand side such that the shared degrees
of freedom in Ω are forced to be equal. Thus, either N or -N could be used as
a connectivity matrix and the decision to use either could be deemed as personal
preference. Geometrically speaking, however, the correct matrix to use should obey
the orientation being utilized within the grid. In this case, the matrix N from (3.39)
follows the sign convention from Section 3.5 which considers nodes as sources.

Denoting by S the number of degrees of freedom N 0(φ) that must be equated,
the size of the connectivity matrix should be given by S × dim(N 0(φ)). For the
present example, S = 8, such that the equivalences to enforce are φ2 = φ5, φ3 = φ9,
φ8 = φ14, φ12 = φ15, φ4 = φ10, φ7 = φ13, φ4 = φ7 and φ10 = φ13 where the last
four equations belong to the central node in Figure 3.11.

Nonetheless, the size of N is 7 × dim
(
N 0(φ)

)
. The discrepancy arises from

the fact that only 3 out of the 4 equations from the central node can be enforced
otherwise erroneous results are obtained. In this case, φ7 = φ13 is omitted. As an
aside note, this issue is present in R2 only for N 0(φ). In R3, however, this would
occur for N 0(·) and N 1(·).
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Once the matrix N is obtained, it can be used to solve the problem as follows:[
A NT

N 0

](
N 0(φ)

λ

)
=
(

F
0

)
(3.40)

where A and F are those in (3.37). It can be noted that by including N, extra
equations are added to the global matrix such that the latter is no longer square.
This issue is solved by adding NT and a set of variables λ which are called La-
grange Multipliers. Using this type of formulations gives rise to the so-called Hybrid
Formulations which will be explored in Chapter 4.

Even though the matrix N for N 1(u) is not discussed, its construction follows
the same logic as for N 0(φ). The main difference, however, is that the size of N will
indeed coincide with S×dim(N 1(u)) where dim(N 1(u)) = 2N(# Elements)(N+1).

3.7 Weak Forms
The starting point of any Finite Element methodology begins by defining the so-
called weak form from which an algebraic system of equations can then be obtained.

There are 2 main ways to obtain the weak formulation, via a minimisation prob-
lem or by using test functions and performing integration by parts. Both of the
approaches are described below.

3.7.1 Minimization Problem
To exemplify this approach, consider the following functional [10]:

J(q; f) = 1
2

ˆ
Ω

|grad q|2 dΩ −
ˆ

Ω
f q dΩ −

ˆ
∂Ω

g q dΓ

where |grad q|2 = grad q · grad q and g = ∂q
∂n on ∂Ω. The next step consists on

taking small variations on the functional which means evaluating the functional at
J(q + εq̃; f) with ε << 1:

V = J(q + εq̃; f) = 1
2

ˆ
Ω

|grad (q + εq̃)|2 dΩ −
ˆ

Ω
f (q + εq̃) dΩ −

ˆ
∂Ω

g (q + εq̃) dΓ

Then, the derivative of the functional is taken with respect to the small parameter
and set equal to zero so that the weak form is obtained:

dV

dε

∣∣∣
ε=0

= 0 −→
ˆ

Ω
grad q · grad q̃ dΩ =

ˆ
Ω

f q̃ dΩ +
ˆ

∂Ω
g q̃ dΓ (3.41)



58 3 Mathematical Background

A natural question would be what kind of equation is associated to the weak
form described above. Consider the following:

ˆ
Ω

∇ · (q̃ ∇q) dΩ =
ˆ

Ω
∇q̃ · ∇q dΩ +

ˆ
Ω

q̃ ∇2q dΩ

↓ˆ
∂Ω

q̃ (∇q · n)︸ ︷︷ ︸
g

dΓ −
ˆ

Ω
∇q̃ · ∇q dΩ =

ˆ
Ω

q̃ ∇2q dΩ

Inserting the equations above into (3.41) leads to,
ˆ

Ω
f q̃ dΩ +

ˆ
Ω

q̃ ∇2q dΩ = 0 −→
ˆ

Ω
q̃
(
f + ∇2 q

)
dΩ = 0 ∴ ∇2 q = −f

and the functional from above satisfies a Poisson equation with Neumann bound-
ary conditions. There are many situations, however, in which the problem has
no relation whatsoever to optimization [7]. A typical example is the convection-
diffusion-reaction problem given by,

−ε∇2ϕ + b · ∇ϕ + cϕ = f in Ω and ϕ = 0 on ∂Ω

for which Galerkin principles should be used as described in the next section.

3.7.2 Test Functions
For this approach, the strong form of the equation is required. The same problem
from the previous section is used as an example, that is, the Poisson problem with
∂q
∂n = g at ∂Ω. The first step consists on multiplying the strong form by a test
function and performing integration by parts on the term with the highest derivative:
ˆ

Ω
q̃ ∇2 q dΩ = −

ˆ
Ω

q̃ f dΩ −→
ˆ

∂Ω
q̃ (∇q ·n) dΓ −

ˆ
Ω

∇q̃ ·∇q dΩ = −
ˆ

Ω
q̃ f dΩ

By reorganizing the terms becomes, the final result is obtained,

ˆ
Ω

∇q̃ · ∇q dΩ =
ˆ

Ω
q̃ f dΩ +

ˆ
∂Ω

q̃ (∇q · n)︸ ︷︷ ︸
g

dΓ (3.42)

and it can be noticed that both 3.41 and 3.42 are identical. Even if the minimization
problem arising from the functional J is unknown, it is clear now that Galerkin
principles retrieve the optimality system [7].
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Even though this methodology might look simpler than working with the func-
tional J , there is some arbitrariness to it as shown in [34, p. 4-7] where the Dirichlet
problem is given 3 different formulations. The first formulation is related to the one
already shown, while the second and third are obtained by splitting the problem
into two first order systems leading to mixed formulations. The key difference in
the last two resides, however, on whether or not integration by parts is used.

For the problems described in the remainder of this thesis, this last approach
will be utilized and, when possible, the associated functional will be annexed.

3.8 Error Computation
Numerical solutions can be compared qualitatively to the analytical results by cre-
ating, for example, contour plots. Nevertheless, a quantitative approach based on
measuring the error with a set of specified norms allows to verify the effect of mesh or
polynomial refinement such that the convergence of the method can be determined.
The required tools to measure the error are explored in the succeeding sections.

3.8.1 Function Spaces
Function spaces dictate the properties a function possesses and also determine the
norm to utilize when measuring the error of the numerical solution relative to the
exact solution (or a highly precise approximation to the real solution). As a common
practice, when considering any problem, the function space onto which the solution
belongs is specified prior to solving the problem.

A function space is accompanied by the domain on which it is acting. Thus,
the notation Ω is used to refer to the computational domain while ∂Ω refers to
its boundary which will be assumed to be Lipschitz continuous. Firstly, the most
general function space is considered, the space of square integrable functions [10],

L2(Ω) :=
{

v
∣∣∣ ˆ

Ω
| v |2 dΩ = || v ||2L2(Ω) < ∞

}
, (3.43)

which makes it possible to define to the following spaces:

H1(Ω) :=
{

v ∈ L2(Ω)
∣∣∣ ∇v ∈ L2(Ω)n

}
, (3.44a)

H(div; Ω) :=
{

v ∈ L2(Ω)n
∣∣∣ ∇ · v ∈ L2(Ω)n

}
, (3.44b)

H(curl; Ω) :=
{

v ∈ L2(Ω)n
∣∣∣ ∇ × v ∈ L2(Ω)d

}
. (3.44c)
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where, for the curl space, d = 1 in R2 and d = 3 in R2 [10]. Functions in H(div; Ω)
and H(curl; Ω) admit traces of the normal and tangential component, respectively,
on ∂Ω which allows to define the following subspaces:

H1
0 (Ω) :=

{
v
∣∣∣ v ∈ H1(Ω), v|∂Ω = 0

}
, (3.45a)

H0(div; Ω) :=
{

v
∣∣∣ v ∈ H(div; Ω), v · n = 0 on ∂Ω

}
, (3.45b)

H0(curl; Ω) :=
{

v
∣∣∣ v ∈ H(div; Ω), v × n = 0 on ∂Ω

}
. (3.45c)

3.8.2 Norms
Firstly, the L2(Ω) norm for scalar functions ϕ(x) is defined and then used as a
starting point for vector-valued functions u(x) = [u(x) v(x)]T as follows,

|| ϵϕ ||2L2(Ω) =
ˆ

Ω

(
ϕex(x) − ϕh(x)

)2
dΩ (3.46a)

|| ϵu ||2L2(Ω) = || ϵu ||2L2(Ω) + || ϵv ||2L2(Ω) (3.46b)

where the L2(Ω) norm form a vector-valued function in R3 would simply include
the additional component. Finally, the norms for the spaces H1

0 (Ω), H0(div; Ω) and
H0(curl; Ω) are given by,

|| ϵϕ ||2H1(Ω) = || ϵϕ ||2L2(Ω) + || ϵ ∇ϕ ||2L2(Ω) (3.47a)

|| ϵu ||2H(div;Ω) = || ϵu ||2L2(Ω) + ℓ2 || ϵdiv u ||2L2(Ω) (3.47b)

|| ϵu ||2H(curl;Ω) = || ϵu ||2L2(Ω) + ℓ2 || ϵcurl u ||2L2(Ω) (3.47c)

where the term ℓ2 denotes a characteristic length which could be, for example, the
diameter of Ω and its purpose is to avoid adding up objects of different physical
dimensions [10]. In this thesis, ℓ2 = 1 will be used as to follow what is popularly
utilized in most literature even if physical dimensions are still present in the problem.

Finally, it is worth mentioning that in two dimensions, the space H(curl; Ω) is
isomorphic to H(div; Ω), [10], such that the following statements

curl u = −div
(

u⊥
)

and curl ϕ = −
(

grad ϕ
)⊥

are true. The latter supports the fact that E2,1
curl and E1,0

curl can be constructed using
the block matrices from the divergence and the gradient, respectively.
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3.8.3 Convergence
Once the function space and its associated norm are specified, the influence of
either the mesh or the polynomial refinement can be determined quantitatively by
considering that the error behaves as

ϵ = Chk

where C is a positive constant, h is a measure of the mesh spacing and k is the
so-called order of convergence which may be affected by a number of factors such
as boundary conditions, mesh quality or singularities.

When using multi-element approaches, the measure of h when computing the
error will be given by the average of all the lengths of the elements which will be
useful if, for any reason, non-uniform meshes are used.

For refinements of the polynomial order, plots with a linear scale for N and
a logarithmic scale for ϵ will be used where a straight line is expected showing
exponential convergence. Showcasing mesh refinements requires logarithmic scales
for the error and the mesh spacing will be used and optimal convergence will be
achieved whenever the slope of the plot matches the value of the polynomial degree.





4
Introductory Application of

Mimetic Discretization

In the following sections, the concepts described throughout Chapter 3 are applied to
a series of problems to showcase how the mimetic spectral element method works and
the results it produces. In Section 4.1 & Section 4.2, problems in R1 are examined
while in Section 4.3 equations in R2 are considered for simple geometries.

4.1 The Poisson Problem in R1

The problem discussed in this section is given by:

d2ϕ

dx2 = -f(x) in I (4.1)

where either Dirichlet or Neumann boundary conditions are imposed at ∂I. De-
pending on the choice, either a Direct Method or a Mixed Formulation will be more
suitable for solving the problem.

4.1.1 Direct Method
This approach is showcased by solving the Poisson problem supplemented with
dϕ
dx = g at ∂I. The weak formulation for the R1 case is quite similar as the one shown

63
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in Section 3.7 where the gradient operators are switched to the regular derivative,

ϕ̃ g|∂I −
ˆ

I

ϕ̃ ′ϕ′ dI = −
ˆ

I

ϕ̃ f dI

↓(
ϕ̃ ′, ϕ′)

I
=
(
ϕ̃, f

)
I

+ B, ∀ ϕ̃ ∈ H1(I) (4.2)

where the notation (· , ·)Ω denotes a regular integral over the domain Ω and B rep-
resents the boundary contribution. Due to the boundary conditions, the solution is
defined up to a constant. Additionally, the forcing function needs to meet the com-
patibility condition

´
I

f dI = - (gR − gL) which can be concluded by setting ϕ̃ = 1
in the formulation above.

For simplicity, the contribution B is dropped. Both ϕ and ϕ̃ are expanded using
the basis Ψ0(x) and, by property (3.28), their derivatives can be written using the
basis Ψ1(x) and the incidence matrix E1,0 from (3.29) leading to the following:(

dϕ̃

dx
,

dϕ

dx

)
I

−→
ˆ

I

Ψ1(x)E1,0 N 0 (ϕ̃h
)

Ψ1(x)E1,0 N 0(ϕh) dI =

= N 0 (ϕ̃h
)T (E1,0)T

[ ˆ
I

Ψ1(x)T Ψ1(x) dI︸ ︷︷ ︸
M(1)

]
E1,0N

(
ϕh
)

= N 0 (ϕ̃h
)T (E1,0)T M(1) E1,0N

(
ϕh
)

(
ϕ̃h, f

)
I

−→
ˆ

I

Ψ0(x) N 0 (ϕ̃h
)

f dI = N 0 (ϕ̃h
)T
ˆ

I

Ψ0(x)T f dI

The degrees of freedom N 0 (ϕ̃h
)

are eliminated by realizing that the system
should hold for all ϕ̃ which leads to the algebraic system to solve:

(
E1,0)T M(1) E1,0N

(
ϕh
)

= F with Fi =
ˆ

I

Ψ0
i (x) f dI (4.3)

which allows to solve for N
(
ϕh
)
. At this point, however, the solution is still defined

up to a constant and, hence, not unique. This can be solved easily by imposing an
extra condition such as

´
I

ϕh dI = 0 or by imposing a pseudo Dirichlet condition
ϕ(x0) = a with x0 ∈ I. Along this thesis, the latter approach will be used since it
will be slightly easier to compare the numerical solutions to the analytical ones.

If a multi-element approach were to be used such that K elements span the
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domain I, then the system would be written as:
AI1 0 0 0
0 AI2 0 0

0 0 . . . 0
0 0 0 AIK




NI1

(
ϕh
)

NI2

(
ϕh
)

...
NIK

(
ϕh
)

 =


F I1

F I2
...

F IK


where AIk

=
(
E1,0)T M(1)

Ik
E1,0 and FIk

=
´

Ik
Ψ0

Ik
(x)T f dIk. The subindices Ik

indicate that they must be computed according to the new domain following what
was explained in Section 3.4. Additionally, the system would have to be glued by
either using a Gathering Matrix or a Connectivity Matrix as depicted in Section 3.6.

Regardless of the choice, once the degrees of freedom are known, the continuous
solution is reconstructed by ϕh = Ψ0(x) N

(
ϕh
)

and, if for some reason its derivative
is required, then it can be computed as dϕh

dx = Ψ1(x)E1,0N
(
ϕh
)
.

4.1.2 Mixed Formulation
This formulation can easily incorporate Dirichlet conditions since they appear natu-
rally through the process of obtaining the weak form. The process starts by splitting
the original strong form equation into a system of coupled first order equations as:

u = dϕ

dx
& du

dx
= -f

After multiplying each equation in the system with an appropriate test function
and integrating by parts the term containing dϕ

dx on the first equation, the formula-
tion becomes,

(p, u)I = (p, ϕ′)I −→ (p, u)I = ⟨p, ϕ⟩∂I − (p′, ϕ)I ∀ p ∈ H1
0 (I) (4.4a)

(q, u′)I = (q, -f)I ∀ q ∈ L2(I) (4.4b)

where the boundary term will be replaced by B. The weak form for the case ϕ |∂Ω = 0
can be also obtained by using the functional,

J(v, q; f) = 1
2

ˆ
I

v2 dI +
ˆ

I

f q dI −
ˆ

I

q
dv

dx
dI,

and taking variations with respect to both v and q to obtain V1 = J(v + ε1ṽ, q; f)
and V2 = J(v, q + ε2q̃; f). The last step would correspond to compute dV1

dε1
= 0 and

dV2
dε2

= 0 which will retrieve the optimality system as discussed in Section 3.7.
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At this point, it is clear that this approach is based on two main unknowns.
Mixed formulations might be preferred in cases in which the dual variable is of
as much interest as the primary variable. Consider, for example, the stress in
elasticity or a flux in thermo-diffusion problems [4] where the heat flux is often
more important than the temperature [10]. If a direct approach were to be utilized,
the secondary variable would have to be computed by subsequent differentiation
leading to a possible loss of accuracy.

4.1.2.1 Primal - Primal Formulation

The primal-primal algebraic system is obtained by expanding u and p with nodal
basis functions while for ϕ and q edge basis functions are used. The remaining terms
from the weak formulation (4.4b) become:

(p, u)Ω −→ N 0 (ph
)T
[ˆ

I

Ψ0(x)T Ψ0(x) dI

]
N
(
ϕh
)

=

= N 0 (ph
)T M(0) N

(
ϕh
)

(p′, ϕ)Ω −→ N 0 (ph
)T (E1,0)T

[ˆ
I

Ψ1(x)T Ψ1(x) dI

]
N 0 (ϕh

)
=

= N 0 (ph
)T (E1,0)T M(1) N

(
ϕh
)

(q, u′)Ω −→ N 0 (qh
)T
[ˆ

I

Ψ1(x)T Ψ1(x) dI

]
E1,0 N 0 (ϕh

)
=

= N 0 (qh
)T M(1) E1,0 N 0 (uh

)
(q, -f)Ω −→ - N 0 (qh

)T
ˆ

I

Ψ0(x)T f dI

A system for the unknowns can be assembled as:[
M(0) (

E1,0)T M(1)

M(1) E1,0 0

](
N 0(uh)
N 1(ϕh)

)
=
(

0
F

)
(4.6)

with Fi = -
´

I
Ψ1

i (x) f dI. If K elements span the mesh, consider the system:[
Ã B̃T

B̃ 0

](
N 0(uh)
N 1(ϕh)

)
=
(

B
F

)

where Ã = diag
(
M(0)

1 , · · · , M(0)
K

)
, B̃ = diag

(
M(1)

1 E1,0, · · · M(1)
K E1,0

)
while the

last term is B̃T = diag
((

B̃1
)T

, · · · ,
(
B̃K

)T). If the system is glued using a Gath-
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ering Matrix, the process follows the algorithm shown in Section 3.6.1. However,
if a Connectivity Matrix is utilized, then the so-called Lagrange Multipliers, λ, are
incorporated into the system as, Ã B̃T NT

B̃ 0 0
N 0 0


 N 0(uh)

N 1(ϕh)
λ

 =

 B
F
0


and the opportunity to use the so-called static condensation arises such that the
system decouples. The technicalities of this procedure are shown in Appendix A.

4.1.2.2 Primal - Dual Formulation

The primal-dual formulation can be deduced from the primal-primal system from
(4.6) by following 3 main steps:

• Firstly, the forcing function f(x) is interpolated using edge functions such that
f(x) = Ψ1(x) N 1(fh) where the degrees of freedom are calculated according
to (3.4b). Hence, the term F becomes: -M(1)N (1)(fh).

• Next, the second row is multiplied by M̃(0) =
(
M(1))-1.

• Finally, following the theory from Section 3.3.3, the dual degrees of freedom
Ñ 0(ϕh) = M(1) N 1(ϕh) are used instead of N 1(ϕh).

This 3-step process exploits the fact that M̃(0) M(1) = I leading to the system,[
M(0) (

E1,0)T

E1,0 0

](
N 0(uh)
Ñ 0(ϕh)

)
=
(

B
- N 1(fh)

)
(4.7)

which is much sparser than the one shown in (4.6). Additionally, the use of dual
polynomials can also be thought as a type of inverse type mixed preconditioning [51]
which alleviates the increment of the condition number of the left-hand side matrix
caused by increasing the polynomial degree N .

Once the system is solved, the functions are reconstructed as uh = Ψ0(x) N 0(uh)
and ϕh = Ψ̃0(x) Ñ 0(ϕh). If, as stated before, the secondary variable u is of more
importance than the primary variable, then the inverse mass matrices required for
the basis will not have to be computed, otherwise, they are mandatory.

As a final note, the multi-element approach follows the same logic as shown
for the Primal-Primal formulation. The Gathering Matrix and Connectivity Matrix
used for element gluing are the same as before. Special care must be taken when
reconstructing ϕh when the mesh has non-uniform elements since the basis Ψ̃(0)(x)
will vary from element to element.
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4.1.3 Dirichlet Problem
This approach is tested with a forcing function f(x) = π2 sin(πx) on I = [ -2, 1] such
that ϕex = sin(πx) and the convergence of the method is investigated. By using a
mixed formulation with 2 spectral elements and a polynomial degree N = 6 in each
of them, the solution for ϕ(x), Figure 4.1, and u(x), Figure 4.2, are obtained.

Figure 4.1: Primary Variable ϕex(x) and its approximation ϕh = Ψ1(x)N 1(ϕh) for the
Homogeneous Dirichlet Poisson problem. Obtained using N = 6 and K = 2.

The functions ϕh, uh and duh

dx are interpolated with their correspondent basis.
To keep a clean layout, the numerical solutions are plotted by a collection of points
instead of lines to avoid an overlap with the exact solutions.
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(a) uh = Ψ0(x) N 0(ϕh)
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dx = Ψ1(x) E1,0N 0(uh)

Figure 4.2: Secondary variable u(x) from the Poisson problem using ϕ|∂I = 0, N = 6 and K = 2.

A variety of multi-element approaches can be utilized and, when implemented,
they lead to the same values for the degrees of freedom. The sparsity patterns for
the primal-primal formulations are shown in Figure 4.3 where the blocks for the
connectivity matrix approach are the blocks for a one element formulation as shown
in (4.6). For primal-dual formulations, the patterns are shown in Figure 4.4.
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(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.3: Sparsity patterns for Primal-Primal Formulation. N = 4 and K = 4.

(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.4: Sparsity patterns for Primal-Dual Formulation. N = 4 and K = 4.

Since ϕ ∈ L2(I) and u ∈ H1(I), the norms to use are ||ϵϕ||L2(I) and ||ϵu||H1(I),
respectively. The convergence trends for both are shown in Figure 4.5 and Figure 4.6.

(a) p-convergence (b) h-convergence

Figure 4.5: Convergence trends for ϕh in the Homogeneous Dirichlet Poisson Problem.
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(a) p-convergence (b) h-convergence

Figure 4.6: Convergence trends for uh in the Homogeneous Dirichlet Poisson Problem.

In the error trends above, for p-convergence, a logarithmic scale for the error is
utilized and the variation of N depicts exponential convergence. For mesh refine-
ment, however, log-log plots are implemented where h = 1

K (uniform mesh). In this
case, the slopes of the lines coincide with the degree N utilized.

4.1.4 Neumann Problem
This approach is tested with a forcing function f(x) = π2 cos(πx) on I = [-1, 2] such
that ϕex = cos(πx) and the convergence of the method is investigated. By using a
direct method and 2 spectral elements with a polynomial degree N = 6 in each of
them, the results of Figure 4.7 are obtained.

(a) ϕh = Ψ0(x) N 0(ϕh) (b) dϕh

dx = Ψ1(x) E1,0N 0(ϕh)

Figure 4.7: Solution to the Poisson problem using ϕ′|∂I = 0, N = 6 & K = 2.

Even though the approximations are shown as dots, they were interpolated and
only some points were used to shape the numerical solution. Had a continuous ap-
proximation been plotted, it would have overlapped completely the exact solutions.
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The multi-element approach using the Gathering Matrix or the Connectivity
Matrix procedure leads to the exact same results. The only difference, however, is
the size of the system to solve. In Figure 4.8, this is observed for a discretization
using a polynomial degree N = 6 and K = 5 spectral elements.

(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.8: Sparsity patterns after imposing ϕ(a) = cos(aπ)

In reality, the size of the system should be increased by one. Since there is not
a unique solution, an extra condition has to be enforced (for instance

´
I

ϕ dI = 0).
In this case, ϕ(a) = cos(aπ) was opted for and the first row in (4.3) was replaced
by N 0

I1
(ϕh

1 ) = cos(aπ). Before solving, the known values are sent to the right-hand
side and the first row is excluded from the computations to obtain a square system.

Since ϕ ∈ H1(I), the correct norm for the error is ||ϵϕ||H1(I). In Figure 4.9a,
p-convergence is shown where a logarithmic scale is used to depict exponential con-
vergence for varying N . In Figure 4.9b, refinement of the element size is shown
where h = 1

K and the slopes of the lines coincide with the degree N utilized.

(a) p-convergence (b) h-convergence

Figure 4.9: Convergence trends for the Homogeneous Neumann Poisson problem in I = [-1, 2].
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4.2 Full Second Order ODE
The next subsections showcase the discretization of differential equations of the type

d2ϕ

dx2 + α
dϕ

dx
+ βϕ = −f(x) and I = [-1, 1]

where α and β are constants. The process starts by multiplying the equation by a
test function ϕ̃ and then integrating the second order derivative as follows:〈

ϕ̃, ϕ′〉
∂I

−
(
ϕ̃′, ϕ′)

I
+ α

(
ϕ̃, ϕ′)

I
+ β

(
ϕ̃, ϕ)I = −(ϕ̃, f

)
I

where ⟨· , ·⟩∂I indicates a boundary term. If in the next step, we were to expand both
ϕ̃ and ϕ with nodal basis functions, then the term

(
ϕ̃, ϕ′)

I
would pose a problem

since the test function is a polynomial of degree N while ϕ′ is a polynomial of degree
N − 1 and the resulting mass matrix would be rectangular of size N + 1 × N .

Rewriting the problem in terms of the known mass matrices, a variable Q = ϕ′

expanded using Ψ0(x) is introduced. In doing so, the spaces of all inner products
are compatible to the current notation. The following is obtained:〈

ϕ̃, ϕ′〉
∂I

−
(
ϕ̃′, ϕ′)

I
+ α

(
ϕ̃, Q

)
I

+ β
(
ϕ̃, ϕ)I = −(ϕ̃, f

)
I

↓

B −
(
E1,0)T M(1) E1,0N 0(ϕh) + αM(0)N 0(Qh) + β M(0)N 0(ϕh) = −F

To find the discrete relation between Q and ϕ, both are expanded with their
correspondent basis functions. To fix ideas, assume N = 3:

N 0
(

Qh
0
)

h0(ξ) +N 0
(

Qh
1
)

h1(ξ) +N 0
(

Qh
2
)

h2(ξ) +N 0
(

Qh
3
)

h3(ξ) +N 0
(

Qh
4
)

h4(ξ) =

=
[
N 0
(

ϕh
1
)
−N 0

(
ϕh

0
) ]

e1(ξ) +
[
N 0
(

ϕh
2
)
−N 0

(
ϕh

1
) ]

e2(ξ) +
[
N 0
(

ϕh
3
)
−N 0

(
ϕh

2
) ]

e3(ξ)

To find a relation between N 0(Qh) and N 0(ϕh), the equation above is evaluated
at the Gauss-Lobatto-Legendre nodes. Since the nodal basis functions satisfy the
Kronecker-delta condition, the following relation is obtained:

N 0 (Qh
0
)

= (ϕh
1 − ϕh

0 ) e1(ξ0) + (ϕh
2 − ϕh

1 ) e2(ξ0) + (ϕh
3 − ϕh

2 ) e3(ξ0)
N 0 (Qh

1
)

= (ϕh
1 − ϕh

0 ) e1(ξ1) + (ϕh
2 − ϕh

1 ) e2(ξ1) + (ϕh
3 − ϕh

2 ) e3(ξ1)
N 0 (Qh

2
)

= (ϕh
1 − ϕh

0 ) e1(ξ2) + (ϕh
2 − ϕh

1 ) e2(ξ2) + (ϕh
3 − ϕh

2 ) e3(ξ2)
N 0 (Qh

3
)

= (ϕh
1 − ϕh

0 ) e1(ξ3) + (ϕh
2 − ϕh

1 ) e2(ξ3) + (ϕh
3 − ϕh

2 ) e3(ξ3)
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In matrix notation, a more succinct relation is obtained:

N 0(Qh) =

 e1(ξ0) e2(ξ0) e3(ξ0)
e1(ξ1) e2(ξ1) e3(ξ1)
e1(ξ2) e2(ξ2) e3(ξ2)
e1(ξ3) e2(ξ3) e3(ξ3)

 E1,0 N 0(ϕh) =

 Ψ1(ξ0)
Ψ1(ξ1)
Ψ1(ξ2)
Ψ1(ξ3)


︸ ︷︷ ︸

C0,1

E1,0 N 0(ϕh)

(4.8)
where in lack of a better notation C0,1 is used as the matrix changes/maps the
degrees of freedom of geometric dimension one (lines) to degrees of freedom of geo-
metric dimension zero (nodes). As a result, the algebraic system to solve is:[(

E1,0)T M(1) E1,0 − αM(0)C0,1 E1,0 − β M(0)
]

N 0(ϕ) = F − B (4.9)

where it is clear that α = β = 0 supplemented with ϕ′|∂I = 0 retrieves the formula-
tion from the Direct Method shown previously in (4.3).

4.2.1 Manufactured Solution
The following sample equation is tested:

d2ϕ

dx2 + dϕ

dx
+ ϕ = −f, x ∈ [0, 3] (4.10)

where f(x) is computed such that ϕex(x) = − cos(πx). Additionally, ϕ′|∂I = 0 is
imposed. By using 3 spectral elements and N = 6, Figure 4.10 is obtained:

(a) ϕh = Ψ0(x) N 0(ϕh) (b) dϕh

dx = Ψ1(x) E1,0N 0(ϕh)

Figure 4.10: Solution to ϕ′′ + ϕ′ + ϕ = -f using ϕ′|∂I = 0, N = 6 & K = 2.

The derivative was computed using N 0(ϕh) but it can also be computed using
N 0(Qh) which will lead to the same result. If the latter is used, then even the
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term ϕ′′ could be computed as Ψ1(x)E1,0N 0(Qh). This approach was not followed
because, even if the second derivative is required, it can be obtained directly from
the differential equation since ϕh, dϕh

dx and f are known.

The sparsity patterns for this formulation for either a Gathering Matrix or a
Connectivity Matrix approach is the same as the one from the Dirichlet problem
shown in Section 4.1 and, hence, not shown here. The error norm for ϕ is taken to
be ||ϵϕ||H1(I) such that the trends from Figure 4.11 are obtained.

(a) p-convergence (b) h-convergence

Figure 4.11: Convergence trends for ϕh.

4.2.2 Hartmann Flow
This section analyzes a typical flow studied in Magnetohydrodynamics (MHD).
Hartmann flows are the MHD analogous of Poiseuille flows and consist of an in-
compressible fluid traveling in the presence of a transverse magnetic field B.

Hartmann flows are often utilized to validate MHD solvers and, as a result, are
covered in plenty of literature. For the interested reader, an excellent introduction
to the topic is given by Shercliff [83] who focuses mainly on physical understanding
of the MHD phenomena rather than utilizing complex mathematical refinement.

The derivation from the 3D-MHD problem to the system examined in this section
can be found in [52, p. 132-133]. The latter showcases a coupled system of differential
equations for the velocity u and the first component of the magnetic field B plus
their boundary conditions as shown below:

d2u

dy2 + S Re db

dy
= - G Re

d2b

dy2 + Rm du

dy
= 0


u(-1) = 0, u(1) = 0
b(-1) = 0, b(1) = 0

(4.11)
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where Rm is the Magnetic Reynolds Number, Re is the Reynolds Number, G is a
given constant, S is a coupling parameter equal to Ha2

Re Rm and Ha is the Hartmann
Number equal to B L(σ/η)1/2 with B being a reference magnetic field intensity, L

being a characteristic length scale while σ and η are the electrical conductivity and
dynamic viscosity, respectively.

The discretization of the system follows the same logic as the one presented for
the manufactured solution. The terms d

dy are replaced by the product M(0) C0,1 E1,0

while the other terms follow the conventional procedure. Since the system is coupled,
the discrete system will have a mixed formulation type structure. The degrees of
freedom for the system are set as N 0 = [N 0(uh) N 0(bh)]T and, as done throughout
the thesis, labeled from left to right. In doing so, the following system is obtained,[ (

E1,0)T M(1) E1,0 −S ReM(0) C0,1 E1,0

−RmM(0) C0,1 E1,0 (
E1,0)T M(1) E1,0

](
N 0(uh)
N 0(bh)

)
=
(

F
0

)
(4.12)

where the boundary term has disappeared since the test functions are chosen to
be zero at the boundary. The boundary conditions are applied by deleting the
correspondent rows and columns from the system. Once the latter is done, the
numerical approximations can be compared to the analytical solutions [52, p. 133],

u(y) = G Re
Ha tanh (Ha)

(
1 − cosh (Ha y)

cosh (Ha)

)
and b(y) = G

S

(
sinh (Ha y)
sinh (Ha) − y

)
.

In Figure 4.12, the approximation for the horizontal velocity and the magnetic
field is found to match very well the exact solutions. The system was solved us-
ing a Gathering Matrix and the sparsity pattern after incorporating the boundary
information can be observed in Figure 4.13 for the left-hand side matrix.

(a) uh = Ψ0(x) N 0(uh) (b) bh = Ψ0(x) N 0(bh)

Figure 4.12: Solution to the Hartmann Flow system. N = 6 and K = 3.



76 4 Introductory Application of Mimetic Discretization

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Matrix size: 34#34.   Non-zero Entries: 470

Figure 4.13: Sparsity pattern with N = 6 & K = 2 after imposing u|∂I = 0 & b|∂I = 0.

The convergence trends for u(y) and b(y) are shown in Figure 4.14 and Fig-
ure 4.15, respectively. For the h-convergence, the slopes are basically equal to the
polynomial degree N which matches the observed trends of the previous cases.

(a) p-convergence (b) h-convergence

Figure 4.14: Convergence trends for uh.

(a) p-convergence (b) h-convergence

Figure 4.15: Convergence trends for bh.
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4.3 The Poisson Problem in R2

The problem considered in this section is:

∇2ϕ = −f in Ω

where the explored domains will be rectangles Ω = [a, b] × [c, d] and (a, b, c, d) ∈ Z.

4.3.1 Direct Method
The direct method for the R2 problem follows the same procedure as the one for the
one-dimensional problem. Once again, the weak form can be obtained performing
variations on the functional shown in Section 3.7 or by Galerkin principles.

If the information at boundary is given by ∂ϕ
∂n |∂Ω = g(x) and the functions ϕ

and ϕ̃ are expanded using the nodal basis Ψ0(x), then the formulation becomes,(
∇ϕ̃, ∇ϕ

)
Ω =

(
ϕ̃, f

)
Ω +

〈
ϕ̃ , g

〉
∂Ω , ∀ ϕ̃ ∈ H1(Ω)

↓(
E1,0)T M(1) E1,0 N 0(ϕh) = F + B (4.13)

with Fi =
´

Ω Ψ1
i (x) f(x) dΩ and B represents the contribution from the boundary

∂Ω. Even though the notation is the same, the matrix E1,0 is the one from (3.33)
instead of the matrix used for the previous R1 cases.

4.3.2 Mixed Formulation
Deriving the weak form, follows the same logic as for the one-dimensional case.
The main difference relies on the test functions to use and their respective function
spaces. A combination of both scalar and vector-valued functions are utilized.

Such as before, the weak form for this problem can be obtained by taking vari-
ations of a given functional. For the case with homogeneous Dirichlet conditions,
the functional J(v, q; f) below leads to the weak form:

J(v, q; f) = 1
2

ˆ
Ω

|v2| dΩ −
ˆ

Ω
f q dΩ +

ˆ
Ω

v · ∇ q dΩ

where variations with respect to v and q need to be computed. If Galerkin principles
are favored, the process starts by splitting the system into two first order equations
and multiplying by test functions. Then, integration by parts on the term containing
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∇ϕ is performed which easily allows to introduce Dirichlet boundary conditions:

(p, u)Ω = (p, ∇ ϕ)Ω −→ (p, u)Ω = ⟨p · n , ϕ⟩∂Ω − (∇ · p, ϕ)Ω , ∀ p ∈ H0(div, Ω)
(q, ∇ · u)Ω = (q, -f)Ω , ∀ q ∈ L2(Ω)

The functions u and p are expanded with the basis Ψ1(x) while ϕ and q are ex-
panded with Ψ2(x). In doing so, the primal-primal formulation system is obtained:[

M(1) (
E2,1)T M(2)

M(2) E2,1 0

](
N 1(uh)
N 2(ϕh)

)
=
(

B
F

)
(4.14)

where Fi = -
´

Ω Ψ2
i (x)f(x) dΩ and the boundary term is squeezed into B. For the

primal-dual formulation, the same logic as for the R1 case is followed:

• Interpolate the forcing function as f(x) = Ψ2(x) N 2(fh) where N 2(fh) is
calculated according to (3.17) such that F becomes -M(2)N (2)(fh).

• The second row is multiplied by M̃(0) =
(
M(2))-1.

• Use the dual degrees of freedom Ñ 0(ϕh) = M(2)N 2(ϕh) instead of N 2(ϕh).

The primal-dual formulation in R2 reads:[
M(1) (

E2,1)T

E2,1 0

](
N 1(uh)
N 2(ϕh)

)
=
(

B
- N 2(fh)

)
(4.15)

4.3.3 Dirichlet Problem: Square Domain
In this section, a Mixed Formulation for the Dirichlet problem of the Poisson equa-
tion is set up for the variables ϕ and u = [u , v]T. The manufactured solutions
ϕex(x) = sin(πx) sin(πy), uex = π cos(πx) sin(πy) and vex = π sin(πx) cos(πy) are
used which fixes the forcing term as f(x) = -2π2 sin(πx) sin(πy).

The rectangular domain Ω = [-1, 1] × [0, 2] is used and, due to the nature of the
manufactured solution, ϕ|Ω = 0 is imposed. In this formulation the primary variable
is sought in ϕ ∈ L2(Ω) and, for this problem, the secondary variable is sought in
u ∈ H0(div, Ω) which defines the error norms to compute.

The domain is covered by a mesh of K = 4 elements with Kx = 2 elements
in the x-direction and Ky = 2 elements in the y-direction. A polynomial degree
N = 6 is utilized. The subdomains Ωk used for this problem are reminiscent to the
mesh shown in Figure 3.10 or Figure 3.11. The approximations for the primary and
secondary variables are found in Figure 4.16 and Figure 4.17, respectively.
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(a) ϕh = Ψ2(x)N 2(ϕh) (b) Comparison between ϕh and ϕex

Figure 4.16: Primary variable ϕh. Obtained using N = 6, Kx = 2, Ky = 2.

(a) uh = Ψ1
x(x)N 1(uh) (b) vh = Ψ1

y(x)N 1(vh)

Figure 4.17: Secondary variable uh = Ψ1(x)N 1(uh). Obtained using N = 6, Kx = 2, Ky = 2.

(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.18: Sparsity patterns for Primal-Primal Formulation. N = 4, Kx = 2, Ky = 2.
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(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.19: Sparsity patterns for Primal-Dual Formulation. N = 4, Kx = 2, Ky = 2.

(a) p-convergence (b) h-convergence

Figure 4.20: Convergence trends for the primary variable ϕh.

(a) p-convergence (b) h-convergence

Figure 4.21: Convergence trends for the secondary variable uh.
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The different sparsity patterns from Figure 4.18 and Figure 4.19 shows that the
smallest system arises from a primal-dual formulation using a Gathering Matrix.
This approach is especially useful if the interest resides on the secondary variable
since its interpolation does not require to compute any inverse mass matrices.

Finally, the error for both the primary and the secondary variable follow the
optimal convergence of order N as shown in Figure 4.20 and Figure 4.21.

4.3.4 Neumann Problem: Square Domain
In this section, the Neumann problem for the Poisson equation is solved using a
Direct Method. A manufactured solution is set as ϕex(x) = cos(πx) cos(πy) such
that ∇ϕex = [ -π sin(πx) cos(πy), -π cos(πx) sin(πy) ]T. The forcing function that
matches the manufactured solution is f(x) = -2π2 cos(πx) cos(πy).

The problem is analyzed on the rectangular domain Ω = [0, 2] × [-1, 1] and,
due to the choice of the solution ϕex(x), the term ∂ϕ

∂n |Ω = 0 is imposed. Since the
solution is sought in the space ϕ ∈ H1(Ω), the term ∇ϕh is required for the norm
||ϵϕ||H1(Ω) and it is also computed.

The domain is covered by a mesh of K = 4 elements with Kx = 2 elements in
the x-direction and Ky = 2 elements in the y-direction. Additionally, a polynomial
degree N = 6 is utilized. The problem is solved using a Gathering Matrix and a
Connectivity Matrix which yield the same results. Examples of the sparsity of the
systems for the different approaches are shown in Figure 4.24.

Finally, the convergence trends, Figure 4.25, follow the behavior from previous
cases where optimal convergence is achieved under the appropriate error norm.

(a) ϕh = Ψ0(x)N 0(ϕh) (b) Comparison between ϕh and ϕex

Figure 4.22: Solution to ∇2ϕ = -f using ∂ϕ
∂n
|∂Ω = 0. Obtained using N = 6, Kx = 2, Ky = 2.
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Figure 4.23: ∇ϕh = Ψ1(x)E1,0N 0(ϕh). To the left, ϕh
x(x) and ϕh

y (x) to the right.

(a) Gathering Matrix (b) Connectivity Matrix N

Figure 4.24: Sparsity patterns after imposing ϕ(a, c) = cos(aπ) cos(cπ). N = 4, Kx = 2, Ky = 2.

(a) p-convergence (b) h-convergence

Figure 4.25: Convergence trends Poisson problem using ∂ϕ
∂n
|∂Ω = 0 in Ω = [0, 2]× [-1, 1].



5
Scalar Eigenvalue Problems

Throughout this chapter, the Mimetic Spectral Element Method will be applied
to eigenvalue problems related to the Laplacian operator. In Section 5.1, a short
introduction is given about the so-called Generalized Eigenvalue Problems while
Section 5.2 deals with problems on a < x < b. In Section 5.3, eigenvalue problems
in R2 are explored in square, L-shape and cracked domains.

5.1 Generalized Eigenvalue Problems
The problems examined in this chapter are known as Generalized Eigenvalue Prob-
lems and have the form A x = λ B x. In the latter equation, A and B are both n × n

matrices and the pair (A, B) is usually named pencil [37]. Then, the objective of
the problem becomes to define the eigenpairs (λ, x) to the pencil (A, B).

The more generally known standard eigenvalue problem is retrieved when B = I
such that the problem reduces to A x = λ x. On the other hand, if A = I, then
the standard problem λ̂ x = B x is obtained where λ̂ = 1

λ . If B were to be different
from the identity matrix, the standard problem can be obtained by multiplying both
sides of the equation by B -1, if it exists, such that,

A x = λ B x −→ B -1A x = λ x
C = B -1A−−−−−−−→ C x = λ x

and, if the inversion is not possible, a bit of a dirty numeric hack can be implemented
by replacing B with Bs = B + εI as to strengthen the main diagonal and make it

83



84 5 Scalar Eigenvalue Problems

full rank with, maybe, ε ≈ 10 -5. Unfortunately, by doing this, the matrix C will
be neither symmetric nor sparse and the procedure is not recommended when B -1A
has to be formed explicitly or the components of the pencil (A, B) are sparse [76].

An alternative to the burden of computing B -1 relies on applying the Cholesky
factorization to either A or B to solve an equivalent problem with easier inversions,

B = U T
B UB −−→

(
U -T

B A U -1
B

)(
UB x

)
= λ

(
UB x

)
−−→ A U = λ U

A = U T
A UA −−→

(
U -T

A B U -1
A

)(
UA x

)
= 1

λ

(
UB x

)
−−→ B V = λ̂V

where U indicates an upper triangular matrix, the subindices specify the part of the
stencil that is being rewritten and, abusing notation, -T indicates both transposition
and inversion. In a similar manner, the procedure above can be repeated with lower
triangular matrices ς = L L T to obtain formulations for either λ or λ̂.

Discussing all the variety of methods available to solve these type of problems
is out of the scope of this thesis, however, the interested reader should definitely
explore The Symmetric Eigenvalue Problem by Parlett [73]. The latter explores
the basics required to compute eigenvalues of real symmetric systems while also
discussing algorithms explaining its pros and cons.

In the present work, the standard MATLAB function eig12 was utilized. This
function uses either a Cholesky factorization on B to solve systems similar to the ones
shown above or a QZ-algorithm (generalized Schur decomposition) which, much to
Parlett’s misfortune, ignores the symmetry of the input matrices but is impervious to
hazards such as B being singular or even indefinite [73]. For additional information
about the QZ-algorithm, Kressner [59, Chapter 2] is recommended.

5.2 Laplacian Eigenvalue Problems in R1

The problem discussed in this section is given by:

d2ϕ

dx2 = −λϕ, I ∈ [a, b]

where either homogeneous Dirichlet or Neumann boundary conditions are imposed
at ∂I. The algebraic systems obtained will be quite similar as the ones observed in
Section 4.1 so that the formulations will be more swiftly introduced.

In [9, p. 7], Boffi analyzes this problem and deduces the optimal approximation
estimates using polynomials of degree p for eigenfunctions and eigenvalues as:
12MATLAB Documentation for eig: https://www.mathworks.com/help/matlab/ref/eig.html

https://www.mathworks.com/help/matlab/ref/eig.html
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||u(k) − u
(k)
h ||V = O(hp) |λ(k) − λ

(k)
h | = O(h2p) (5.1)

where the function space V is selected according to the space in which the solution
is sought. Therefore, the approximation rate for λi doubles with respect to the one
at which their corresponding eigenfunctions are approximated [9]. Another result
comes from the so-called min-max property which establishes the following bounds:

λ(k) ≤ λ
(k)
h ≤ λ(k) + C(k)h2p

where C(k) is a positive function depending on the eigenvalue. This statement
implies that the numerical eigenvalues are all approximated from above. More
detailed information about this property can be found in [9, Proposition 7.2]

5.2.1 Dirichlet Problem
For the Dirichlet problem, a mixed formulation is utilized. The weak form is,

(p, u)I = - (p′, ϕ)I ∀ p ∈ H1
0 (I)

(q, u′)I = -λ (q, ϕ)I ∀ q ∈ L2(I)

such that its associated discrete algebraic system is written as,[
M(0) (

E1,0)T M(1)

M(1) E1,0 0

](
N 0(uh)
N 1(ϕh)

)
= -λ

[
0 0
0 M(1)

](
N 0(uh)
N 1(ϕh)

)
(5.2)

where the functions were expanded as shown in Section 4.1.2. In this case, a true
primal-dual formulation cannot be built by following the ideas from Chapter 4 since
the inverse of M(1) would appear on the right-hand side but doing so would lead to
a much more sparse left-hand side matrix and is, definitely, an option to consider.

Avoiding the appearance of inverse matrices on the formulation could be done
by multiplying the second row by inv

(
M(1)) such that M(1)E1,0 becomes E1,0. Al-

ternatively, Ñ 0(ϕh) could be used such that
(
E1,0)T M(1) becomes

(
E1,0)T on the

first row. In both cases, the term M(1) from the right-hand side becomes I.

Another idea worth considering would be to use the so-called Schur Complement
Method (SCM), discussed in Appendix B, such that the following system is obtained:

E(1,0) M̃(1)
(
E(1,0)

)T
Ñ 0(ϕh) = λ M̃(0)Ñ 0(ϕh) (5.3)

If one spectral element were to be used, the unknowns would reduce from 2N +1
to N at the cost of computing inverse matrices. This is not limited to eigenvalue
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problems and could be implemented, for example, to the problems from Section 4.3.

The eigenvalues in I ∈ [a, b] are known to be λm =
(

mπ
L

)2 for m ∈ N while
the eigenfunctions are ϕm(x) = sin

(
mπ
L x
)

with L = b − a. For simplicity, the
formulation is tested in I = [0, π] such that the eigenvalues are the integers squared.

After setting up the system, the first step consists on solving for either N 1(ϕh
m)

or Ñ 0(ϕh
m). The latter is done by using the eigenvectors associated to a specific

eigenvalue or, equivalently, finding the null space of the discrete system after fixing
λh

m. Once the degrees of freedom are known, interpolation is possible by computing
either ϕh

m(x) = Ψ1(x)N 1(ϕh
m) or ϕh

m(x) = Ψ̃0(x)Ñ 0(ϕh
m).

Before comparing ϕh
m and ϕm, the amplitudes of both have to be matched which

is done by finding a constant cm that forces ϕh
m to follow ϕm. In this case, a least-

squares approach was used to determine cm such that the error between ϕh
m and ϕm

was minimized. Other criteria could be used such as finding the absolute maximum
of the approximation and match it to an amplitude of unity, however, this method
proved to not always be accurate since the functions would occasionally be flipped.

The fact that such step has to be done comes as no surprise since the null space of
the algebraic system is different from the zero vector which means the eigenvectors
are not unique. The process of multiplying by a constant to perform the matching is
entirely justified by the fact that the null space is closed under scalar multiplication
[82, p. 60] meaning that a multiple of any eigenvector is still an eigenvector.

With the matching complete, comparisons between cmϕh
m and ϕex

m can be per-
formed. In order to minimize notation, numerical eigenfunctions will be denoted
only by ϕh

m since the constant cm lacks importance.

In Figure 5.1, ϕh
6 (x) and ϕh

7 (x) are plotted using N = 6 and K = 3. With
this parameters, ϕex

6 (x) is precisely followed by its approximation. For ϕex
7 (x), the

amplitudes of the numerical eigenfunction are a bit off near x = π
2 . As m −→ ∞, ϕex

m

presents more oscillations which require an increase of mesh/polynomial refinement
to keep up with the quality of the approximation. The fact that an eigenvalue
is quite close to its true value should not be considered as an indication that its
eigenfunction will also be since the former converges twice as fast.

The convergence properties for the eigenfunctions ϕh
6 and ϕh

7 are shown in Fig-
ure 5.2 and Figure 5.3 where optimal convergence is observed for the eigenfunctions
as the slopes of the mesh refinement plots match the polynomial degree of approxi-
mation N confirming the error estimates shown in (5.1).
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(a) Comparison between ϕex
6 and ϕh

6 (b) Comparison between ϕex
7 and ϕh

7

Figure 5.1: Eigenfunctions ϕh
6 and ϕh

7 for the Dirichlet Problem. N = 6, K = 3.

(a) p-convergence (b) h-convergence

Figure 5.2: Convergence trends for ϕh
6

(a) p-convergence (b) h-convergence

Figure 5.3: Convergence trends for ϕh
7
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Table 5.1: Order of Convergence for λ3, λ4, λ5 and λ6. Dirichlet Problem in R1.

h λex N = 1 N = 3 N = 5

λh OC λh OC λh OC

π
5

9 11.765152 — 9.003532 — 9+5×10 -7 —
16 23.084931 — 16.031954 — 16.000013 —
25 30.396355 — 25.013614 — 25.000006 —
36 — — 36.642306 — 36.001513 —

π
10

9 9.683821 2.01 9.000060 5.86 9+5×10 -10 9.92
16 18.192473 1.69 16.000591 5.76 16+2×10 -8 9.85
25 30.396355 0 25.003415 2.03 25+2×10 -7 9.94
36 47.060609 — 36.014128 5.51 36.000001 9.66

π
18

9 9.207440 2.02 9.000001 5.96 9+1×10 -12 10.33
16 16.659836 2.04 16.000018 5.93 16+4×10 -11 9.94
25 26.623231 2.04 25.000106 5.90 25+6×10 -10 9.93
36 39.393676 2.01 36.000453 5.85 36+5×10 -9 9.91

Table 5.2: First 11 eigenvalues of the Dirichlet Laplacian Eigenvalue Problem in R1.

h λex N = 3 N = 5 N = 7 Trend
λh λh λh

π
4

1 1.000002 1+9×10 -12 1+6×10 -14 ↙
4 4.000546 4+3×10 -8 4+6×10 -13 ↙
9 9.012545 9.000004 9+3×10 -10 ↙
16 16.008905 16.000004 16+5×10 -10 ↙
25 25.548281 25.001538 25+9×10 -7 ↙
36 37.920473 36.011740 36.000014 ↙
49 54.033661 49.061864 49.000153 ↙
64 97.268336 64.464376 64.002139 ↙
81 123.637761 81.807848 81.006140 ↙
100 176.932736 102.176611 100.027052 ↙
121 241.732546 125.968059 121.098843 ↙

As an aside note, the multi-element approach was implemented with a Gathering
Matrix. Using a Connectivity Matrix leads to the same result for ϕh

m, however,
2(K − 1) eigenvalues λ = 1 are added to the system. The number of spurious
eigenvalues coincides with the number of non-zero entries in N. This proved to be
true for all the cases and only Gathering Matrices are utilized from here onwards.

In Table 5.1, the order of convergence for some eigenvalues is shown to be almost
the double of the predicted convergence of ϕm confirming, once again, the estimates
from (5.1). For the cases N = 3 and N = 5, this value is either very close to 2N

estimate or shows an increasing trend. The actual value might be reached by further
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element refinement. The information from Table 5.2 shows the approximations for
the first 11 eigenvalues which all show a decreasing tendency which confirms the
fact that all λh

m are being approached from above.

5.2.2 Neumann Problem
A direct method is utilized as to incorporate the prescribed values at the boundary
conditions easily. The weak form is found to be,(

ϕ̃′, ϕ′)
I

= λ
(
ϕ̃, ϕ

)
I

, ∀ q ∈ H1(I)

such that its associated discrete algebraic system is given by,(
E1,0)T M(1)N 0(ϕ) = λM(0)N 0(ϕ) (5.4)

the problem, just as before, has an infinite countable set of solutions (ϕm, λm, m ∈ N)
with λm −→ ∞ as m increases. This result is attributed to the compact inclusion
of H1(I) into L2(I) [10]. For an arbitrary domain I ∈ [a, b], the eigenvalues are
given by λm =

(
mπ
L

)2 for m ∈ Z∗ (non-negative integers) while the associated
eigenfunctions are given by ϕm(x) = cos

(
mπ
L x
)
.

Solving the Neumann problem follows the same logic used for the Dirichlet prob-
lem. However, since the eigenfunction is sought on the function space ϕ ∈ H1(I),
some extra steps are required. The general procedure is synthesized below:

• For simplicity, the formulation is tested on I ∈ [0, π] such that the eigenvalues
become the set of natural numbers squared and ϕm = cos(mx).

• The eigenvectors associated to each λh
m are used to define N 0(ϕh

m).

• The eigenfunctions are interpolated as ϕh
m(x) = Ψ0(x)N 0(ϕh

m).

• The functions ϕh
m(x) are matched to ϕm(x) with a constant cm. Since the

analytic functions are now cosines, the matching is made simpler by using the
fact that ϕm(0) = 1, ∀ m ∈ Z∗. As a result, cm = 1

ϕh
m(0) .

• The derivative of the eigenfunctions is computed as ϕh
m = Ψ1(x)E1,0N 0(ϕh

m).

• The functions dϕh
m

dx are matched to their analytical counterparts. Since the
functions are now sines which are always zero at the boundaries, the matching
constants are obtained as explained in Section 5.2.1 for the Dirichlet problem.

• Convergence plots are computed for ϕh
m(x) using the norm ||ϵϕ||H1(I).

• The order of convergence for λh
m is computed for several N and K.
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(a) Comparison between ϕex
7 and ϕh

7 (b) Comparison between ϕex
8 and ϕh

8

Figure 5.4: Eigenfunctions ϕh
7 & ϕh

8 for the Neumann Problem. N = 6 & K = 3.

(a) p-convergence (b) h-convergence

Figure 5.5: Convergence trends for ϕh
7

(a) p-convergence (b) h-convergence

Figure 5.6: Convergence trends for ϕh
8
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Table 5.3: Order of Convergence for λ4, λ5, λ6 & λ7. Neumann problem in I = [0, π].

h λex N = 1 N = 2 N = 4

λh OC λh OC λh OC

π
5

9 11.765152 — 9.134005 — 9.000051 —
16 23.084931 — 16.663257 — 16.000844 —
25 30.396355 — 30.396355 — 25.013914 —
36 — — 43.889597 — 36.039171 —

π
10

9 9.683821 1.69 9.009431 3.69 9+2×10 -7 7.81
16 18.192473 1.70 16.051295 4.84 16.000003 8.67
25 30.396355 0 25.188058 3.88 25.000034 7.58
36 47.060609 — 36.536021 3.79 36.000205 7.42

π
20

9 9.167753 2.04 9.000609 3.92 9+8× 10 -10 7.95
16 16.533007 2.04 16.003393 3.88 16+1×10 -8 7.93
25 26.309671 2.02 25.012803 3.83 25+1×10 -7 7.90
36 38.735287 1.92 36.037726 3.77 36+8×10 -7 7.86

π
30

9 9.074263 2.02 9.000121 3.97 9+3× 10 -11 7.98
16 16.235289 2.02 16.000677 3.96 16+6×10 -10 7.98
25 25.576224 2.03 25.002573 3.94 25+5×10 -9 7.97
36 37.199266 2.04 36.007636 3.92 36+3×10 -8 7.96

Table 5.4: First 12 eigenvalues of the Neumann Laplacian Eigenvalue Problem in I = [0, π].

h λex N = 2 N = 4 N = 6 Trend
λh λh λh

π
4

0 -6.17× 10 -15 4.95× 10 -15 -7.66× 10 -15 -
1 1.000512 1+5×10 -9 1+1×10 -14 ↙
4 4.030089 4+5×10 -6 4+1×10 -10 ↙
9 9.299730 9.000289 9+4×10 -8 ↙
16 16.453667 16.008905 16.000004 ↙
25 31.232513 25.036454 25.000043 ↙
36 52.169393 36.186675 36.000494 ↙
49 80.529469 49.692788 49.003662 ↙
64 97.268336 64.464376 64.002139 ↙
81 — 86.794054 81.083580 ↙
100 — 112.514094 100.287822 ↙
121 — 143.871848 121.833099 ↙

In Table 5.3, the order of convergence gets closer to the optimal values since
further mesh refinements were utilized. The values λh

m in Table 5.4 approach λex
m

from above except for the zero eigenvalue which bounces between positive and neg-
ative values. However, the values are within machine precision. Thus, by choosing
V = H1(I) in (5.1) the error estimates for the eigenfunctions and the eigenvectors
turn out to be the expected ones.
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5.3 Laplacian Eigenvalue Problems in R2

The problem discussed in this section is given by:

∇2ϕ = −λϕ

which is referred to as Helmholtz equation whenever λ is a prescribed parameter
rather than an eigenvalue. Dirichlet and Neumann conditions on a square are con-
sidered and then Neumann conditions on L-shape and cracked domain are explored.

For the square geometries, both the eigenfunctions and the eigenvalues will be
compared to the analytical results. On the other hand, the L-shape domain together
with the cracked domain will be compared to benchmarks13 to assess their validity.

5.3.1 Dirichlet Problem: Square Domain
Pairing ∇2ϕ = -λϕ with ϕ|∂Ω = 0 leads to problems often found in science. For
instance, if the domain were a membrane, then λ and ϕ(x) would be related to fre-
quencies of vibration and shape of modes [60], respectively. If, however, Ω portrayed
a waveguide, ϕ(x) would correspond to TM-modes and λ would be associated to a
cut-off frequency [47, p. 298]. Thus, even when elementary, appropriate solutions of
this problem have a wide range of applications.

Similarly to the R1 case, a mixed formulation is implemented as to easily incor-
porate the boundary conditions. In doing so, the weak formulation becomes:

(p, u)Ω = - (∇ · p, ϕ)Ω , ∀ p ∈ H0(div, Ω)
(q, ∇ · u)Ω = -λ (q, ϕ)Ω , ∀ q ∈ L2(Ω)

By expanding the functions u, p with the basis Ψ1(x) and ϕ, q with the basis
Ψ2(x), the following system is obtained:[

M(1) (
E2,1)T M(2)

M(2) E2,1 0

](
N 1(uh)
N 2(ϕh)

)
= -λ

[
0 0
0 M(2)

](
N 1(uh)
N 2(ϕh)

)
(5.5)

where SCM can be used to further reduce the size of the system.

In a general rectangular domain, the eigenvalues can be analytically computed
to be λm,n =

(
mπ
Lx

)2
+
(

nπ
Ly

)2
for (m, n) ∈ N where Lx and Ly denote the lengths of

the rectangle. For simplicity, the problem to be analyzed is set on Ω = [0, π]2 such
that λm,n = m2 + n2 with associated eigenfunctions ϕm,n(x, y) = sin(mx) sin(ny).
13 https://perso.univ-rennes1.fr/monique.dauge/benchmax.html, hosted by Université de Rennes

https://perso.univ-rennes1.fr/monique.dauge/benchmax.html
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The logic of the solution procedure does not differ from the R1 case. With the
domain defined and the solutions λex

m,n and ϕex
m,n(x) known, the next step is to find

the eigenvalues of the system in order to define its associated eigenvectors. Once the
latter is done, the eigenfunctions are interpolated as ϕh

m,n = Ψ0(x)N 0(ϕh
m,n) and

then matched to ϕex
m,n(x). As last step, the convergence properties for both λh

m,n

and ϕh
m,n(x) are computed.

The eigenfunctions ϕh
1,1 and ϕh

2,2 are shown in Figure 5.7 and Figure 5.8, respec-
tively, where they are compared to the exact results. In Figure 5.9, the convergence
for h- and p-refinements was computed for ϕh

1,1 while the same is true for ϕh
2,2 in

Figure 5.10. In both, the order of convergence for h-refinements would stabilize
towards the optimal values of N had further mesh elements been used.

(a) ϕh
1,1 = Ψ2(x)N 2(ϕh

1,1) (b) Comparison between ϕh
1,1 and ϕex

1,1

Figure 5.7: Eigenfunction ϕh
1,1(x). Computed using N = 6, Kx = 2, Ky = 2.

(a) ϕh
2,2 = Ψ2(x)N 2(ϕh

2,2) (b) Comparison between ϕh
2,2 and ϕex

2,2

Figure 5.8: Eigenfunction ϕh
2,2(x). Computed using N = 6, Kx = 2, Ky = 2.
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(a) p-convergence (b) h-convergence

Figure 5.9: Convergence trends for ϕh
1,1

(a) p-convergence (b) h-convergence

Figure 5.10: Convergence trends for ϕh
2,2

The convergence properties for λh
m,n are shown in Table 5.5 and Table 5.6. Unlike

the R1 case where all λ were unique, this problem has eigenvalues with multiplicity
M > 1. For general domains, this value is obtained by observing the number of
times a specific λ repeats itself. For this choice of Ω, however, M ≥ 2 whenever
m ̸= n and the the multiplicity can be obtained by decomposing each λm,n into its
prime components and applying the formulae in [60, pp. 169-170].

The eigenvalues are sorted from smallest to largest and matched according to
their multiplicities. Consider, for example, λh in Table 5.6 for N = 3. Had Mh

not been taken into account, λh = 34.47 would be the approximation to λ = 17.
Moreover, it would be spurious as it would approximate an eigenvalue with a distinct
multiplicity. Instead, it is set as the estimate of λ = 18. This is because 18 is the
next smallest eigenvalue that matches the multiplicity of λh after λ = 13.
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A similar procedure is shown in [9, pp. 39-43] where the rearrangement aims to
have a better understanding of the convergence of spurious eigenvalues arising from
the approximation of Maxwell Eigenvalue Problem with a nodal basis. However, it
was deemed appropriate to use it in this setting.

Table 5.5: Order of Convergence for λ1,1, λ2,2, λ1,4 = λ4,1 and λ5,5 for the
Dirichlet problem in Ω = [0, π]2.

h λex N = 1 N = 3 N = 5

λh OC λh OC λh OC

π

2 2.431708 — 2.001113 — 2+5×10 -7 —
8 — — 12.158542 — 8.058047 —
17 — — — — 39.525873 —
25 — — — — 47.768944 —

π
3

2 2.188537 0.75 2.000025 3.45 2+3×10 -10 6.78
8 10.942687 — 8.005735 5.99 8.000001 9.84
17 — — 17.484064 — 17.001788 8.59
25 — — 25.489060 — 25.001791 8.60

π
6

2 2.046097 2.03 2+4×10 -7 5.96 2 6.71
8 8.754150 1.96 8.000100 5.83 8+1×10 -9 9.89
17 22.908424 — 17.011470 5.40 17.000002 9.57
25 32.828063 — 25.012699 5.27 25.000002 9.53

π
10

2 2.016502 2.01 2+2×10 -8 5.99 2 2.36
8 8.266503 2.04 8.000004 5.95 8+1×10 -11 8.46
17 19.200724 1.93 17.000591 5.80 17+1×10 -8 9.88
25 27.876295 1.96 25.000651 5.81 25+1×10 -8 9.88

Table 5.6: First 12 eigenvalues of the Dirichlet Laplacian Eigenvalue Problem in Ω = [0, π]2.

h λex Mex N = 3 N = 5 N = 7 Trend
λh Mh λh Mh λh Mh

π

2 1 2.001113 1 2+5×10 -7 1 2+6×10 -11 1 ↙
5 2 7.079827 2 5.029023 2 5.000133 2 ↙
8 1 12.158542 1 8.058047 1 8.000267 1 ↙
10 2 18.237813 2 10.243071 2 10.003785 2 ↙
13 2 23.316527 2 13.272094 2 13.003918 2 ↙
17 2 — — 39.528738 2 18.013568 2 ↙
18 1 34.474512 1 18.486142 1 18.000757 1 ↙
20 2 — — 49.692788 2 21.013702 2 ↙
25 2 — — 64.464376 2 26.017354 2 ↙
26 2 — — 86.794054 2 28.941313 2 ↙
29 2 — — 143.871848 2 31.941447 2 ↙
32 1 — — 112.514094 1 34.027137 1 ↙
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5.3.2 Neumann Problem: Square Domain
A direct formulation is implemented as to easily incorporate the boundary condi-
tions. In doing so, the weak form for the eigenvalue problem reads,(

∇ϕ̃, ∇ϕ
)

Ω = λ
(
ϕ̃, ϕ

)
Ω , ∀ ϕ̃ ∈ H1(Ω)

and, by expanding ϕ and ϕ̃ with Ψ0(x), the algebraic system to solve becomes,(
E1,0)T M(1) E1,0 N 0(ϕh) = λM(0)N 0(ϕh) (5.6)

Similarly to the Dirichlet problem, in a general rectangular domain the eigenval-
ues are given by λm,n =

(
mπ
Lx

)2
+
(

nπ
Ly

)2
where Lx and Ly still denote the lengths of

the rectangle. However, the pair (m, n) belongs to non-negative integers Z∗ instead
of the natural numbers.

For simplicity, the problem to be analyzed is set on Ω = [0, π]2 such that λm,n =
m2 + n2 with associated eigenfunctions ϕm,n(x, y) = cos(mx) cos(ny). Similarly to
its R1 counterpart, the solution method follows the same step-by-step procedure
and only certain steps are pointed out:

• Since ϕm,n ∈ H1(Ω), the norm ||ϵϕm,n ||H1(Ω) requires ∇ϕm,n to be computed.
Thus, a complete error analysis per pair (m, n) requires the computation of 3
functions. The gradient is obtained from ∇ϕh

m,n = Ψ1(x)E1,0 N 0(ϕh
m,n).

• The fact that ϕm,n(0, 0) = 1, ∀ (m, n) ∈ Z∗ is used to match ϕh
m,n to ϕex

m,n

by using a constant cm,n = 1
ϕh

m,n(0,0) . Thus, the numerical eigenfunction be-
comes ϕ̂h

m,n = cm,nϕh
m,n. In an attempt to minimize notation, the normalized

approximation is still identified as ϕh
m,n since cm,n lacks importance.

• The components of ∇ϕh
m,n are matched to ∇ϕex

m,n.

– For ∂
∂x ϕh

m,n, a matching constant c x
m,n = m

max(| ∂
∂x ϕh

m,n|) is utilized.

– A new variable α = max
(

∂
∂x ϕex

m,n − ∂
∂x ϕh

m,n

)
is introduced.

– If α > 1, then cm,n is multiplied by -1, otherwise it stays the same.

– Thus, ∂
∂x ϕ̂h

m,n = c x
m,n

∂
∂x ϕh

m,n but still referred to as ∂
∂x ϕh

m,n.

– The procedure is repeated for ∂
∂y ϕh

m,n using c y
m,n = n

max(| ∂
∂y ϕh

m,n|) .

• The set of λh
m,n are sorted following the ideas described in Section 5.3.1.

• The error analysis is then normally computed for both λh
m,n and ϕh

m,n.
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The eigenfunctions ϕ1,1(x) and ϕ3,3(x) are represented in Figure 5.11 and Fig-
ure 5.12, respectively. The numerical approximations prove to be very close to the
analytical results as evidenced by the coefficients on the color bars. The fact that
ϕh

1,1(x) is much closer to its analytical counterpart than ϕh
3,3(x) is to ϕex

3,3(x) can be
understood as a consequence of the former corresponding to the fourth eigenvalue
while the latter corresponds to the twentieth eigenvalue.

In Figure 5.13 and Figure 5.14 the convergence for ϕh
1,1(x) and ϕh

3,3(x) is shown.
Even though the convergence rates for the h-refinement plots do not achieve the
optimal rates of N , they are quite close. The disagreement between the values
is attributed to the fact that mesh should have been refined with even a further
number elements.

(a) ϕh
1,1 = Ψ0(x)N 0(ϕh

1,1) (b) Comparison between ϕh
1,1 and ϕex

1,1

Figure 5.11: Eigenfunction ϕ1,1(x). Computed using N = 6, Kx = 2, Ky = 2.

(a) ϕh
3,3 = Ψ0(x)N 0(ϕh

3,3) (b) Comparison between ϕh
3,3 and ϕex

3,3

Figure 5.12: Eigenfunction ϕ3,3(x). Computed using N = 6, Kx = 2, Ky = 2.
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(a) p-convergence (b) h-convergence

Figure 5.13: Convergence trends for ϕh
1,1

(a) p-convergence (b) h-convergence

Figure 5.14: Convergence trends for ϕh
3,3

In Table 5.7 different values of λh
m,n are obtained for a combination of mesh

lengths and polynomial approximations. The order of convergence is observed to
nearly match the predicted values of 2N where, once again, further mesh refinements
would lead to the expected values. However, considering the fact that a rate of
convergence of 1.96 was obtained for ϕh

1,1 with N = 2, the value 3.98 for λh
1,1 seems

to be a reasonable approximation.

In Table 5.8, it is confirmed that λh
m,n approaches λex

m,n from above. Since
λh

m,n = λh
n,m, the multiplicity of the eigenvalues is taken into account when they

are sorted from smallest to largest. In this case, there is no need to use Mh to sort
the eigenvalues for the case N = 2 since the discrete multiplicities match the exact
multiplicities. Nevertheless, this is observed for λh

3,3 and λh
4,0 = λh

0,4 in the N = 4
case where the approximations are swapped to match the exact multiplicities.
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Had the latter not been done, 34.47 would have been the approximation to λex
4,0

when using N = 2. In the end, this arrangement gives a better understanding
of the early convergence for the discrete eigenvalues but the convergence rates are,
nevertheless, reached when either the elements or the polynomial degree is increased.

Table 5.7: Order of Convergence for λ1,1, λ1,2 = λ2,1, λ3,2 = λ2,3 & λ4,0 = λ0,4

for the Neumann problem in Ω = [0, π]2.

h λex N = 1 N = 2 N = 4

λh OC λh OC λh OC

π

2 2.431708 — 2.431708 — 2.001113 —
5 — — 7.295125 — 5.029580 —
13 — — — — 21.266280 —
16 — — — — 38.525873 —

π
3

2 2.188537 0.75 2.003162 4.48 2+1×10 -7 8.39
5 6.565612 — 5.089199 2.96 5.000051 5.78
13 16.414031 — 15.030305 — 13.005060 6.73
16 21.885375 — 20.924240 — 16.036842 5.83

π
6

2 2.046097 2.03 2.000205 3.94 2+4× 10 -10 7.97
5 5.400124 1.97 5.006428 3.79 5+2×10 -7 7.87
13 15.319762 0.56 13.074026 4.78 13.000012 8.66
16 21.885375 0 16.350471 3.81 16.000207 7.47

π
10

2 2.016502 2.01 2.000002 3.98 2+7× 10 -12 8.00
5 5.141503 2.03 5.000861 3.93 5+3×10 -9 7.96
13 13.817073 2.04 13.010280 3.86 13+2×10 -7 7.92
16 18.192473 1.93 16.051295 3.86 16.000001 7.85

Table 5.8: First 12 eigenvalues of the Neumann Laplacian Eigenvalue Problem in Ω = [0, π]2.

h λex Mex N = 2 N = 4 N = 6 Trend
λh Mh λh Mh λh Mh

π

0 1 -1.6× 10 -16 1 -6.1× 10 -16 1 9.83× 10 -16 1 -
1 2 1.215854 2 1.000556 2 1+2×10 -7 2 ↙
2 1 2.431708 1 2.001113 1 2+5×10 -7 1 ↙
4 2 6.079271 2 4.029023 2 4.000133 2 ↙
5 2 7.295125 2 5.029580 2 5.000133 2 ↙
8 1 12.158542 1 8.058047 1 8.000267 1 ↙
9 2 — — 17.237256 2 9.243071 2 ↙
10 2 — — 18.237813 2 10.243071 2 ↙
13 2 — — 21.266280 2 13.243204 2 ↙
16 2 — — 38.525873 2 17.013568 2 ↙
17 2 — — 39.526430 2 18.013569 2 ↙
18 1 — — 34.474512 1 18.486142 1 ↙
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5.3.3 Neumann Problem: L-shape Domain
A slight variation of the canonical domain is analyzed in this section where Ω is
defined as Ω = [−1, 1]2\ ([0, 1]) × [−1, 0]) and shown in Figure 5.15 where homoge-
neous Neumann conditions are applied at ∂Ω.

The domain is divided into 3 subdomains as to guarantee that the mesh covers
the geometry correctly. Each subdomain Ωk can further be divided into additional
subdomains which will be useful when testing the order of convergence of the eigen-
values when decreasing the element dimensions.

Figure 5.15: L-Shape domain with subdomains Ω1, Ω2 & Ω3.

A direct method is utilized. The weak form and its associated algebraic system
follows what was described in Section 5.3.2. The shape of the domain is taken
into consideration in the discrete algebraic system by the Gathering Matrix which
ensures the correct degrees of freedom are glued together.

A first look at the eigenvalues of the system is shown in Table 5.9. The data was
obtained using 4 elements inside each subdomain Ωk and rounded to 10 decimals
for better visualization. The number of digits the approximation shares with the
reference data is highlighted in orange.

Table 5.9: First 4 unique eigenvalues λ > 0 of ∇2ϕ = -λϕ on the L-shape domain with
Neumann boundary conditions. λ3 = λ4.

h λ, Ref. [29] M N = 3 N = 6 N = 12 Trend
λh λh λh

1
2

λ1 = 1.4756218239 1 1.4806823505 1.4766193150 1.4758040123 ↙
λ2 = 3.5340313667 1 3.5341855045 3.5340363069 3.5340315259 ↙
λ3 = 9.8696044010 2 9.8709526500 9.8696044014 9.8696044010 ↙
λ5 = 11.3894793979 1 11.3909756632 11.3894864072 11.3894796256 ↙
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It might come as a surprise that the first eigenvalue in Table 5.9 shows such a
poor convergence. This is due to the fact that it is connected to a strong unbounded
singularity [29]. The eigenvalue with multiplicity 2 is analytic with exact value π2.
The other two eigenvalues are linked to functions with rapid changes at the re-
entrant corner which affects their convergence.

A more quantitative approach to the latter issue is shown in Table 5.10 where
the order of convergence is computed for a series of parameters h and N .

Table 5.10: Order of Convergence for the first 4 unique eigenvalues λ > 0.
Neumann problem in Ω = [-1, 1]2\ ([0, 1])× [−1, 0]).

h λ, Ref. [29] N = 3 N = 4 N = 6

λh OC λh OC λh OC

1

1.4756218239 1.4882540083 — 1.4821290680 — 1.4781256929 —
3.5340313667 3.5355705135 — 3.5342665658 — 3.5340624602 —
9.8696044010 9.8750975039 — 9.8750975039 — 9.8696070069 —
11.3894793979 11.3969742650 — 11.3950366850 — 11.3895253478 —

1
2

λ1 1.4806823505 1.31 1.4782275811 1.32 1.4766193150 1.32
λ2 3.5341855045 3.32 3.5340667750 2.73 3.5340363069 2.65
λ3 9.8709526500 2.03 9.8696178789 8.67 9.8696044015 12.6
λ5 11.3909756635 2.32 11.3895416689 6.48 11.3894864072 2.71

1
4

λ1 1.4776315157 1.33 1.4766561029 1.33 1.4760176666 1.33
λ2 3.5340541285 2.76 3.5340369641 2.66 3.5340321453 2.66
λ3 9.8696268913 5.91 9.8696044564 7.93 9.8696044010 2.00
λ5 11.3895327936 4.81 11.3894873966 2.96 11.3894805098 2.65

1
7

λ1 1.4765749004 1.33 1.4761122586 1.33 1.4758095221 1.33
λ2 3.5340364695 2.67 3.5340326268 2.66 3.5340315418 2.66
λ3 9.8696051955 5.97 9.8696044017 7.98 9.8696044010 —
λ5 11.3894874041 3.40 11.3894811971 2.67 11.3894796485 2.66

1
9

λ1 1.4763035405 1.33 1.4759726161 1.33 1.4757560788 1.33
λ2 3.5340339780 2.67 3.5340320115 2.66 3.5340314563 2.66
λ3 9.8696045774 5.99 9.8696044011 8.02 9.8696044010 —
λ5 11.3894832862 2.87 11.3894803196 2.66 11.3894795262 2.66

A rate of convergence stabilizing at 1.33 is attained for λ1 regardless of N or
h caused by the strong singular behavior of ∇ϕ at the re-entrant corner. For λ2,
the rate stabilizes at 2.66 which already indicates some sort of non-smoothness on
the functions associated to the eigenvalue. For λ5, the computed rates also stabi-
lized towards 2.66 except for the N = 3 case. Had further mesh refinements been
computed, the rate would have reached the specified value based on the fact that it
shows a decreasing tendency. The eigenvalues have different speeds of convergence
according to the different regularities of their associated eigenfunctions [9].
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Even though it is not possible to know a priori if the convergence rate of an
eigenvalue will be affected by the non-smoothness of its eigenfunction, it is known
that the presence of corners leads to singular behavior regardless of the smoothness
of the boundary conditions [75]. Methods such as the classical Finite Element
Method or, in this case, a Mimetic Spectral Method can, obviously, still be utilized
even when the global solution is not smooth. The price to pay is a lower convergence
rate which, as seen in Table 5.10, manifests itself on the convergence of λh.

On the other hand, λ3 and λ4 converge at a rate of 2N since they are not
associated to singularities anywhere in Ω. Their last computed rate of convergence
is highlighted in gray in Table 5.10. For N = 6, the eigenvalue converges so fast
that for h = 1/4, the rate decreases at 2 and then it reaches the reference value up to
10 decimal places. Previous to this, a rate of 12.6 is attained (highlighted in blue).

Finally, contours and surfaces for the functions ϕ(x) and ∇ϕ(x) are shown in
Appendix C for the five eigenvalues considered in this section where it can be ob-
served that the eigenvalues with sub-optimal convergence rates are connected to
functions where rapid changes occur at the re-entrant corner and its vicinity.

5.3.4 Neumann Problem: Cracked Domain
The analysis is now shifted to Ω = [-1, 1]2 \

{
(x1, x2) ∈ R2 : 0 ≤ x < 1, y = 0

}
with

Neumann conditions at ∂Ω. The geometry is pre-divided into 4 subdomains Ωk which
can be further split into additional subdomains. This is shown in Figure 5.16.

Figure 5.16: Cracked domain. Subdomains Ω3 & Ω4 are disconnected except at (x, y) = (0, 0).

A direct method together with a Gathering Matrix is utilized. A first look at
the eigenvalues of the system is shown in Table 5.11. The data was obtained using
one element inside each subdomain Ωk, hence, a total of 4 elements cover the whole



5.3 Laplacian Eigenvalue Problems in R2 103

geometry. The values are truncated to 10 decimals for better visualization and the
digits shared between the approximation and the reference are highlighted in orange.

Table 5.11: First 9 unique eigenvalues λ > 0 of the Laplacian Eigenvalue Problem
on the Cracked domain from Figure 5.16 with Neumann boundary conditions.

h λ, Ref. [29] M N = 3 N = 6 N = 12 Trend
λh λh λh

1

1.0340740085 1 1.0790348792 1.0473612226 1.0377843991 ↙
2.4674011002 1 2.4677381625 2.4674011003 2.4674011002 ↙
4.0469252914 1 4.0483807778 4.0469413826 4.0469256263 ↙
9.8696044010 2 9.8750975039 9.8696070069 9.8696044010 ↙
10.8448542781 1 10.8523145614 10.8448790789 10.8448547485 ↙
12.2648958490 1 12+0.34283566 12+0.31537842 12.2791265269 ↙
12.3370055014 1 12+0.44157406 12.3370081072 12.3370055014 ↙
19.7392088022 1 19.7501950079 19.7392140138 19.7392088022 ↙
21.2441074562 1 20+2.13741675 21+0.33478577 21.2696644450 ↙

Once again, some eigenvalues approach faster to the reference data while others
stagnate. The eigenvalues λ2, λ4 = λ5, λ8 and λ9 are equal to π2/4, π2, 5π2/4 and 2π2,
respectively [29], and, unsurprisingly, for N = 12 they already match the reference
data up to 10 decimals. The latter might be already an indication that they are
not associated to eigenfunctions with singularities. A more quantitative approach,
however, is shown at Table 5.12 where the rates of convergence are computed.

The last computed order of convergence for λ2, λ4 = λ5, λ8 and λ9 is highlighted
in gray. For all the polynomial cases, the rates are basically the optimal value of 2N .
For N = 6, the approximations converge so fast that only after two iterations in h,
this set of eigenvalues has already matched the reference data. The functions ϕ(x)
and ∇ϕ(x) related to these eigenvalues are continuous through the whole domain
even when continuity is not enforced at the line y = 0 for x > 0.

All the other eigenvalues are split into two groups. The first group is associated
to functions ∇ϕ(x) which exhibit a peak at (x, y) = (0, 0) while the second group
consists of functions that are discontinuous at the cracked line. The former group
shows a rate of convergence of unity while the latter stabilizes at a rate of 3 as
seen in Table 5.12. This reinforces the fact that the convergence is attached to the
regularity of the functions which, in this case, includes the gradient since ϕ ∈ H1(Ω).

Surfaces and contours for ϕ(x) and ∇ϕ(x) can be found at Appendix D. In
there, it can be visually proved that the eigenvalues λ1, λ7 and λ10 are associated
to functions with a strong singular behavior at the origin. For λ3 and λ6, it can
be noted that the associated functions are discontinuous at the cracked line and,
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finally, the analytic eigenvalues are entirely continuous through Ω even when the
Gathering Matrix does not impose continuity in that region of the domain.

Table 5.12: Order of Convergence for the first 9 unique eigenvalues λ > 0.

Neumann problem in Ω = [ -1, 1]2 \
{

(x1, x2) ∈ R2 : 0 ≤ x < 1, y = 0
}

.

h λ, Ref. [29] N = 3 N = 4 N = 6

λh OC λh OC λh OC

1

1.0340740085 1.0790348792 — 1.0613797335 — 1.0473612226 —
2.4674011002 2.4677381625 — 2.4674044697 — 2.4674011002 —
4.0469252914 4.0483807777 — 4.0470978345 — 4.0469413825 —
9.8696044010 9.8750975039 — 9.87509750395 — 9.8696070068 —

10.8448542781 10.8523145613 — 10.8504241168 — 10.8448790789 —
12.2648958490 12+0.34283566 — 12+0.34250197 — 12+0.31537842 —
12.3370055014 12+0.44157406 — 12.3760785966 — 12.3370081072 —
19.7392088022 19.7501950079 — 19.7501950079 — 19.7392140137 —
21.2441074562 20+2.13741675 — 21+0.50434331 — 21+0.33478577 —

1
2

λ1 1.0565554926 0.99 1.0477298023 0.99 1.0407158352 1.00
λ2 2.4674067228 5.90 2.4674011141 7.92 2.4674011002 —
λ3 4.0470333920 3.75 4.0469443121 3.18 4.0469273200 2.98
λ4 9.8709526501 2.02 9.8696178789 8.67 9.8696044010 12.8
λ6 10.8463125005 2.35 10.8448936732 7.14 10.8448571133 3.12
λ7 12+0.33835937 0.08 12+0.31676536 0.58 12.2903052571 0.99
λ8 12+0.35156571 2.84 12.3370189930 11.5 12.3370055014 12.9
λ9 19.7419053001 2.02 19.7392357579 8.67 19.7392088022 12.8
λ10 21+0.41565564 2.38 21+0.33741211 1.48 21.2897321268 0.99

1
4

λ1 1.0452577028 1.00 1.0408794896 1.00 1.0373893446 1.00
λ2 2.4674011895 5.97 2.4674011002 7.84 2.4674011002 —
λ3 4.0469372945 3.17 4.0469276742 2.99 4.0469255449 3.00
λ4 9.8696268913 5.90 9.8696044564 7.92 9.8696044010 —
λ6 10.8448929075 5.23 10.8448576808 3.53 10.8448546359 2.98
λ7 12+0.30751256 0.78 12.2909267357 0.99 12.2776153091 0.99
λ8 12.3370280808 9.33 12.3370055567 7.92 12.3370055014 —
λ9 19.7392537826 5.90 19.7392089128 7.92 19.7392088022 —
λ10 21+0.32083659 1.16 21.2908475534 0.99 21.2669504751 0.99

1
6

λ1 1.0415163491 1.00 1.0386058247 1.00 1.0362829644 1.00
λ2 2.4674011081 5.97 2.4674011002 — 2.4674011002 —
λ3 4.0469288132 3.17 4.0469259980 2.99 4.0469253665 3.00
λ4 9.8696063994 5.90 9.8696044032 7.97 9.8696044010 —
λ6 10.8448611829 5.23 10.8448552778 3.02 10.8448543844 2.99
λ7 12.2933465951 0.78 12.2822650492 0.99 12.2733777582 0.99
λ8 12.3370075075 9.33 12.3370055035 8.02 12.3370055014 —
λ9 19.7392127988 5.90 19.7392088065 7.98 19.7392088022 —
λ10 21.2952088630 1.16 21.2752999006 0.99 21.2593399257 0.99

1
7

λ1 1.0404497979 1.00 1.0379571403 1.00 1.0359670848 1.00
λ2 2.4674011033 5.99 2.4674011002 — 2.4674011002 —
λ3 4.0469275067 3.00 4.0469257364 2.99 4.0469253387 2.99
λ4 9.8696051955 5.98 9.8696044017 7.95 9.8696044010 —
λ6 10.8448581779 3.70 10.8448549078 2.99 10.8448543451 2.99
λ7 12.2892927775 0.99 12.2797868062 0.99 12.2721665266 0.99
λ8 12.3370062989 5.98 12.3370055020 8.24 12.3370055014 —
λ9 9.73921103911 5.98 19.7392088034 8.07 19.7392088023 —
λ10 21.2879224554 0.99 21.2708499295 0.99 21.2571645328 0.99



6
Maxwell Eigenvalue Problem

The present chapter is devoted to the solution of the eigenvalue problem for the
Maxwell equations. Specifically, the eigenvalue problem for the electric field will be
tackled in conjunction with n×E = 0 at ∂Ω (PEC boundary conditions). This part
of the thesis is segmented as follows:

• In Section 6.1 the discrete variational formulation for the problem will be dis-
cussed and put together in terms of the mass and incidence matrices discussed
back in Chapter 3. Furthermore, the addition of the linear constraint ∇·D = 0
will be discussed and implemented.

• In Section 6.2, isotropic material properties will be utilized and the eigenvalue
problem will be solved first in a square domain. Such results should resemble,
up to certain extent, those from Section 5.3.2 and will be used as a guideline to
verify that the implementation has been correctly executed. The methodology
will then be utilized on domain with a unconnected boundary. Finally, the
framework will be applied to a domain constituted by two different types of
isotropic materials.

• In Section 6.3, anisotropic permittivity tensors will be used along with µ = I.
A square domain will be analyzed first as to observe the influence of the off-
diagonal entries of ϵ on λ. The analysis will then be shifted to an H-domain
where a permittivity tensor with complex-valued entries will be utilized.

105
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6.1 Mimetic Spectral Formulation
The first step in defining the sought discrete formulation consists on recalling the
variational formulation shown in Equation 2.16 for the electric field E. The equation
is repeated below for convenience and reads,
ˆ

Ω

(
∇ × Ẽ

)
·
(

µ-1 ∇ × E
)

dΩ = ω2
ˆ

Ω
Ẽ ϵ E dΩ, ∀ Ẽ ∈ H0(curl; Ω) (6.1)

where ω2 and E are the sought eigenvalue and eigenfunction, respectively, while Ẽ
is the test function. Secondly, by using the Tonti diagram shown in Figure 2.7, it
is observed that the spatial part of E is associated to inner oriented lines. Such
orientation is inherited from its global variable voltage as explained in Section 2.2.3.

The latter suggests that the correct interpolation for the electric field is given by
E = Ψ1(x) N 1(Eh) with a similar treatment for Ẽ. Constructing the curl operator
is achieved with an incidence matrix as shown in (3.36). In the next section, these
details are used to obtain the discrete system for the curl-curl problem.

6.1.1 Omission of Divergence-Free Condition
As established before, the electric field is associated to lines such that its set of basis
functions is defined to be Ψ1(x) and, as a result, ∇ × E = Ψ2(x)E2,1

curl N (Eh). By
inserting this information into (6.1), the following is obtained:

ˆ
Ω

Ψ2(x) E2,1
curl N 1(Ẽh) µ-1 Ψ2(x)E2,1

curl N 1(Eh) dΩ = · · ·

· · · = ω2
ˆ

Ω
Ψ1(x) N 1(Ẽh) ϵ Ψ1(x) N 1(Eh) dΩ

In a following step, some terms are rearranged as follows:

(
E2,1

curl

)T
( ˆ

Ω
Ψ2(x)Tµ-1 Ψ2(x) dΩ

)
E2,1

curl N 1(Eh) = · · ·

· · · = ω2

( ˆ
Ω

Ψ1(x)Tϵ Ψ1(x) dΩ
)

N 1(Eh)

where the first and second integral are renamed as M(2)
µ-1 and M(1)

ϵ , respectively. In
fact, both matrices reduce to the ones used in the 2D problems from Chapter 4 and
Chapter 5 whenever the material parameters are equal to the identity tensor.
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6.1.2 Linear Constraint ∇ · D = 0
As specified in Section 2.5.3, failing to couple the curl-curl problems with their
respective divergence-free conditions has the potential to generate non-physical so-
lutions. A possible remedy relies on utilizing penalty methods which employ formula-
tions as the ones presented in (2.19) and (2.20). However, this approach will not be
explored in this thesis. Alternatively, the Kikuchi formulation [56] shown in (2.18)
can be utilized. Even though the latter was deduced for ϵ = µ = I, introducing
general material properties is trivial as shown below,(

curl Ẽ, µ-1curl E
)

+
(

ϵ Ẽ, grad p
)

= λ
(

Ẽ, ϵ E
)

, ∀ Ẽ ∈ H0(curl; Ω) (6.2a)(
grad q, ϵ E

)
= 0, ∀ q ∈ H1

0 (Ω) (6.2b)

where the objective is to find (λ, E, p) ∈ R1 × H0(curl; Ω) × H1
0 (Ω) with p acting as

a dummy variable (Lagrange Multiplier) that has no physical meaning.

At this point, the main focus is to discretize the variables paired with the gradient
operators. Based on the Neumann Poisson problems solved in previous chapters, it
is clear that such variables are associated to nodes. However, the degrees of freedom
could belong to either the primal or, possibly, the dual mesh.

Such dilemma can be solved by recalling that the number of spurious zero eigen-
values is equal to the number of internal nodes in the mesh when ∂Ω is simply
connected [80, p. 127]. Thus, the system (6.2) is solved in the mesh from Figure 6.1
with p = q = 0 such that the curl-curl problem is retrieved without the divergence
constraint. Such domain discretization can be achieved by either 9 elements with
N = 1 or one element with N = 3. In order to avoid dealing with multi-element
formulations for the initial testing, the latter option is chosen.

Figure 6.1: Primal Mesh for the Maxwell Eigenvalue Problem with 4 internal nodes.

Since this test is only used to determine the number of zero eigenvalues the
formulation would generate, the size of the domain is irrelevant. For the selected
mesh, the multiplicity of the zero eigenvalue was found to be 4 which equals the
number of internal nodes of the mesh. Hence, the variables associated to the gradient
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in the system (6.2) belong to the same mesh as the field E. The nodes at the
boundary are not taken into account since p ∈ H1

0 (Ω).

The Kikuchi formulation with general material parameters can now be dis-
cretized by using p = Ψ0(x) N 0(ph) which means that ∇p = Ψ1(x)E1,0

grad N 0(ph)
with the test function q undergoing the same treatment. Thence, the discretized
mixed formulation becomes: (E2,1

curl

)T
M(2)

µ-1 E2,1
curl M(1)

ϵ E1,0
grad(

E1,0
grad

)T
M(1)

ϵ 0


︸ ︷︷ ︸

LHS

(
N 1(Eh)

N 0(ph)

)
= λ

 M(1)
ϵ 0

0 0


︸ ︷︷ ︸

RHS

(
N 1(Eh)

N 0(ph)

)

(6.3)

With this formulation, the large null space of the curl-curl operator is removed
and for the mesh from Figure 6.1 it means that the zero eigenvalue with multiplicity
4 disappears as a solution. This does not signify that the sole purpose of (6.3) is
to eliminate zero eigenvalues. In some cases, λ = 0 could be an acceptable solution
and the formulation should allow for such. This will be tested in Section 6.2.2.

6.2 Isotropic Permitivity Tensor
In this section, a permittivity tensor of the form ϵ = I will be utilized. A bit
more general tensor such as ε I with ε ∈ R>0 could be utilized but it does not lead
to a more general situation. This claim is easily verified by considering the vector
differential equation for the Maxwell Eigenvalue Problem for the field E with ϵ = ε I:

∇ ×
(

µ-1 ∇ × E
)

= ω2 ε I E Λ = ω2 ε−−−−−−−−−→ ∇ ×
(

µ-1 ∇ × E
)

= Λ E

which immediately suggests that multiplying the permittivity tensor by a scalar
is the same as solving the eigenvalue problem for a modified eigenvalue with the
permittivity being equal to the identity tensor.

6.2.1 Square Domain
The domain Ω = [0, π]2 is considered. Non-trivial solutions for the field E satisfying
the Maxwell Eigenvalue Problem are sought when ϵ and µ are equal to the identity
tensor. Under such conditions, the analytical eigenfunctions are computed from
Em,n(x) = curl(ϕm,n) with ϕm,n(x) = cos(mx) cos(ny) while the eigenvalues are
given by λ2

m,n = m2+n2 with (m, n) ∈ Z∗. However, the combination (m, n) = (0, 0)
is not allowed since it leads to E(x) = 0 due to the constraint ∇ · D = 0 and the
boundary condition n × E = 0.



6.2 Isotropic Permitivity Tensor 109

The main difference from the problems discussed in Chapter 5, despite the un-
known being a vector-valued function, relies on the fact that E ∈ H0(curl; Ω) which
implies that the norm ||ϵEm,n ||H(curl;Ω) has to be used. Thus, a complete error
analysis per pair (m, n) requires the components of E in addition to ∇ × E.

Additionally, each computed function has to be matched to its analytical coun-
terpart such that the error norm can be correctly determined. This process follows
exactly the course of action described thoroughly in Section 5.3.2 and, hence, not
repeated here. The only comments worth mentioning are the ones related to the
matching constants cm,n since those differ from the ones of previous examples.

• The matching constant c x
m,n = n

max
(∣∣(Eh

x)
m,n

∣∣) was defined for Ex.

• The matching constant c y
m,n = m

max
(∣∣(Eh

y)
m,n

∣∣) was defined for Ey.

• For ∇ × Eh, the already normalized components Eh
x and Eh

y are utilized.

• The term |Eh| was also computed but it was matched to an amplitude of unity.

• The numerical functions used for the error computation would then be the
matching constant multiplied by their corresponding function.

In Figure 6.2, the components of the field E are plotted for λ1,1. In order to assess
how well they represent the actual solution, |Eh

1,1| was compared to |Eex
1,1| as shown

in Figure 6.3. Similarly, in Figure 6.4, ∇ × Eh
1,1 and its analytical counterpart

are contrasted. The numerical approximations were computed with N = 8 and
4 spectral elements. The same type of comparisons can be found in Figure 6.5,
Figure 6.6 and Figure 6.7 for λ4,4.

(a) Eh
x

(b) Eh
y

Figure 6.2: Components of Eh
1,1(x) = Ψ1(x)N 1(Eh). Computed using N = 8, Kx = 2, Ky = 2.
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(a) |Eh| =
√

(Eh
x)2 + (Eh

y )2 (b) Comparison between |Eh| and |Eex|

Figure 6.3: Norm
∣∣Eh

1,1
∣∣ (left) and its comparison to the analytical solution (right). Discrete
system solved with N = 8, Kx = 2, Ky = 2.

(a) ∇ × Eh = Ψ2(x) E2,1 N 1(Eh) (b) Comparison between ∇ × Eh and ∇ × Eex

Figure 6.4: Function ∇×Eh
1,1 (left) and its comparison to the analytical solution (right).

Discrete system solved with N = 8, Kx = 2, Ky = 2.

(a) Eh
x

(b) Eh
y

Figure 6.5: Components of Eh
4,4(x) = Ψ1(x)N 1(Eh). Computed using N = 10, Kx = 2, Ky = 2.
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(a) |Eh| =
√

(Eh
x)2 + (Eh

y )2 (b) Comparison between |Eh| and |Eex|

Figure 6.6: Norm
∣∣Eh

4,4
∣∣ (left) and its comparison to the analytical solution (right). Discrete
system solved with N = 10, Kx = 2, Ky = 2.

(a) ∇ × Eh = Ψ2(x) E2,1 N 1(Eh) (b) Comparison between ∇ × Eh and ∇ × Eex

Figure 6.7: Function ∇×Eh
4,4 (left) and its comparison to the analytical solution (right).

Discrete system solved with N = 10, Kx = 2, Ky = 2.

(a) p-convergence (b) h-convergence

Figure 6.8: Convergence trends for Eh
2,2
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In Figure 6.8, the convergence for h- and p-refinements is shown for the eigen-
function Eh

2,2. For the h-refinement it is observed that the convergence rates match
the degree of polynomial approximation N while the p-convergence plot exhibits the
exponential convergence. Since all the eigenfunctions on this geometry are smooth,
similar behavior is observed for any other eigenfunction.

Information about λh
m,n with varying polynomial degree can be found in Table 6.1

where it is observed that the approximations approach the actual solution from
above. Similar to Section 5.3.2, the multiplicity of the eigenvalues was taken into
account when distributing them on the table as depicted by the ones shaded in gray.
For N = 4, λ = 16 and λ = 17 are not approximated at all while for N = 6 its
discrete counterparts are not as accurately predicted as λ = 18 is. Since λ3,3 has
already been approximated by the lower polynomial degrees, it makes sense that it
is much closer to its analytical value for N = 8 when compared to λ4,0 = λ0,4 or
λ4,1 = λ1,4 as shown by the blue shaded cells.

In Table 6.2 the multiplicity also played a role in the gray shaded eigenvalues
when ordering them from lowest to highest. Additionally, the actual rates of con-
vergence are shown for the first 11 unique Maxwell eigenvalues where it is observed
that such rates are equal (or very close to being equal) to 2N . The latter comes as
no surprise since this was also the result obtained in the square domains from Chap-
ter 5 regardless of the boundary conditions utilized. With these results it can be
established that the eigenvalues for this geometry and material properties converge
twice as fast as their corresponding eigenfunctions when varying the polynomial
degree N .

Table 6.1: First 11 Maxwell eigenvalues in Ω = [0, π]2 with isotropic material properties.

h λex Mex N = 4 N = 6 N = 8 Trend
λh Mh λh Mh λh Mh

π

1 2 1.0000147138 2 1.0000000034 2 1 2 ↙
2 1 2.0000294277 1 2.0000000068 1 2 1 ↙
4 2 4.2554897129 2 4.0023440864 2 4.0000056527 2 ↙
5 2 5.2555044268 2 5.0023440898 2 5.0000056527 2 ↙
8 1 8.5109794259 1 8.0046881728 1 8.0000113054 1 ↙
9 2 10.3479578540 — 9.0351770978 2 9.0003068577 2 ↙
10 2 11.3479725679 — 10.0351771012 2 10.0003068577 2 ↙
13 2 14.6034475670 — 13.0375211842 2 13.0003125105 2 ↙
16 2 — — 20.3147399877 2 16.2105702559 2 ↙
17 2 — — 21.3147399911 2 17.2105702559 2 ↙
18 1 20.6959157081 1 18.0703541956 1 18.0006137155 1 ↙
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Table 6.2: Order of Convergence for the first 11 unique Maxwell eigenvalues
in Ω = [0, π]2 with ϵ = µ = I.

h λex N = 1 N = 2 N = 3

λh OC λh OC λh OC

π/2

1 1.2158542037 — 1.0075223273 — 1.0001366061 —
2 2.4317084074 — 2.0150446547 — 2.0002732123 —
4 — — 4.0528473456 — 4.0528473456 —
5 — — 5.0603696730 — 5.0529839518 —
8 — — 8.1056946913 — 8.1056946913 —
9 — — 13.0423484710 — 9.4801183744 —
10 — — 14.0498707984 — 10.4802549806 —
13 — — 17.0951958167 — 13.5329657201 —
16 — — — — 17.0219588519 —
17 — — — — 18.0220954580 —
18 — — 26.0846969420 — 18.9602367489 —

π/4

1 1.0523868620 2.04 1.0005121405 3.88 1.0000022787 5.91
2 2.1047737240 2.04 2.0010242810 3.88 2.0000045574 5.91
4 4.8634168148 — 4.0300893095 0.81 4.0005464247 6.60
5 5.9158036768 — 5.0306014500 0.98 5.0005487034 6.59
8 9.7268336296 — 8.0601786190 0.81 8.0010928494 6.60
9 12.8430897517 — 9.2997308006 3.75 9.0125456057 5.26
10 13.8954766138 — 10.3002429412 3.75 10.0125478845 5.26
13 17.7065065666 — 13.3298201101 3.63 13.0130920305 5.35
16 — — 16.2113893827 — 16.2113893827 2.27
17 — — 17.2119015233 — 17.2113916615 2.27
18 25.6861795035 — 18.5994616013 3.75 18.0250912115 5.26

π/8

1 1.0129160450 2.02 1.0000327660 3.97 1.0000000361 5.98
2 2.0258320901 2.02 2.0000655321 3.97 2.0000000723 5.98
4 4.2095474481 2.04 4.0020485621 3.88 4.0000091149 5.91
5 5.2224634932 2.04 5.0020813282 3.88 5.0000091511 5.91
8 8.4190948963 2.04 8.0040971243 3.88 8.0000182298 5.91
9 10.0802909335 1.83 9.0224868867 3.74 9.0002273446 5.79
10 11.0932069786 1.83 10.0225196528 3.74 10.0002273808 5.79
13 14.2898383817 1.87 13.0245354489 3.75 13.0002364596 5.79
16 19.4536672593 — 16.1203572380 0.81 16.0021856989 6.60
17 20.4665833043 — 17.1203900041 0.82 17.0021857351 6.60
18 20.1605818671 1.83 18.0449737734 3.74 18.0004546893 5.79

π/16

1 1.0032168743 2.01 1.0000020602 3.99 1.0000000005 5.99
2 2.0064337487 2.01 2.0000041204 3.99 2.0000000011 5.98
4 4.0516641802 2.02 4.0001310643 3.97 4.0000001447 5.91
5 5.0548810545 2.02 5.0001331245 3.97 5.0000001453 5.91
8 8.1033283604 2.02 8.0002621286 3.97 8.0000002895 5.91
9 9.2631305555 2.04 9.0014782540 3.93 9.0000036848 5.79
10 10.2663474299 2.04 10.0014803142 3.93 10.0000036853 5.79
13 13.3147947357 2.03 13.0016093183 3.93 13.0000038295 5.79
16 16.8381897926 2.04 16.0081942486 3.88 16.0000364597 6.60
17 17.8414066669 2.04 17.0081963088 3.88 17.0000364603 6.60
18 18.5262611110 2.03 18.0029565080 3.93 18.0000073696 5.79
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6.2.2 Doubly Connected Domain
This section aims to determine if the previously discussed formulation can detect an
actual physical zero eigenvalue which can be verified by testing any geometry with
a hole. The presented problem, from [21], has a domain Ω = [0, 4]2 \ (1, 3)2 and is
depicted in Figure 6.9 where the geometry has been split into 8 segments which can
be further divided into more elements.

Figure 6.9: Double connected domain

In [21], 3 different Maxwell eigensolvers are explored. Two of them are classical
non-conforming approximations while the other is an interior penalty discontinuous
Galerkin method. All solvers are designed around the space H0(curl; Ω) ∩ H(div; Ω)
such that the divergence-free conditions of the Maxwell eigenproblem can be tackled.

For the doubly connected domain, the benchmark uses a solver that enforces
the divergence-free constraint through penalizing the divergence term and does so
with meshes that are graded around the re-entrant corners of the geometry. For
geometries where λ = 0 is a solution, standard interior penalty methods will gener-
ate several zero eigenvalues among which the true Maxwell eigenvalue zero will be
surrounded by plenty of non-physical zero eigenvalues [21, p. 70]. The method from
the benchmark attempts to correct such behavior.

In Table 6.3, the first five eigenvalues of the Maxwell eigenproblem on the doubly
connected domain are presented. It is noted, however, that λh

1 is not incredibly close
to being zero in the most refined mesh. In fact, it could easily be confused for a
very small non-zero eigenvalue and, to avoid such situation, further mesh refinement
should be applied. Unfortunately, h = 1/64 was the most refined mesh utilized. On
the bright side, it did eliminate all the spurious zero eigenvalues.



6.2 Isotropic Permitivity Tensor 115

Table 6.3: First 5 Maxwell eigenvalues in Ω = [0, 4]2 \ (1, 3)2 with ϵ = µ = I from [21, Table 5].

h
Benchmark Eigenvalue Approximations

λh
1 λh

2 λh
3 λh

4 λh
5

1/2 0.716 0.925 0.925 1.301 2.896
1/4 0.396 0.661 0.661 1.146 2.200
1/8 0.175 0.471 0.471 1.080 1.784

1/16 0.063 0.373 0.373 1.054 1.586
1/32 0.020 0.335 0.335 1.045 1.511
1/64 0.006 0.322 0.322 1.042 1.486

Trend Decreasing Decreasing Decreasing Decreasing Decreasing

In Table 6.4, the first 5 eigenvalues for the Maxwell problem computed with
the formulation (6.3) are shown. Since not all elements have the same length, the
measure h was computed as an average of the lengths of all the elements. The value
h = 1.25 is indicative of using one spectral element in each subdomain Ωk.

Perhaps the most noticeable feature of the aforementioned table is the fact that
the zero eigenvalue is approximated up to machine precision even for N = 2. Even
using 2 spectral elements for each subdomain Ωk paired with the lowest degree
approximation produces λh

1 = 1×10 -15 as an eigenvalue which is completely superior
to the result from the interior penalty method from the benchmark.

Comparing the other eigenvalues leads to a good agreement between both meth-
ods. Since the results from [21] are overestimated, it could be stated that the true
values should be smaller. This is based on the fact that λ1

h is slightly positive instead
of zero and assuming such behavior spreads to the other data. Thus, the results ob-
tained with (6.3) are better than the ones of the benchmark since all λh are slightly
smaller. The fact that the results are more accurate can be attributted to the fact
that the utilized dimensional function spaces satisfy a De Rham sequence.

Table 6.4: First 5 Maxwell eigenvalues in Ω = [0, 4]2 \ (1, 3)2 with ϵ = µ = I computed using (6.3).

h λh −→
{

N=14

K=8

}
N = 2 N = 4 N = 8 Trend

λh λh λh

1.25

3× 10 -15 3× 10 -15 -2× 10 -15 4× 10 -15 —
0.316216510716555 0.312116881028890 0.315349870315529 0.316091573033414 ↗
0.316216510716575 0.312116881028896 0.315349870315529 0.316091573033531 ↗
1.041521635153060 1.041475510300464 1.041493602902615 1.041519673068677 ↗
1.475228532358697 1+0.5104014151426 1.486727459719769 1.473996828071681 ↙



116 6 Maxwell Eigenvalue Problem

Even though the approximation for some of the eigenvalues shows an increasing
tendency, the values are still below the ones from the benchmark. Consider, for
example, λh

4 from Table 6.4 which settles at 1.0415 while the benchmark provides
1.0420. Similar reasoning can be applied to the other non-zero eigenvalues.

In Table 6.5, the rates of convergence for the eigenvalues can be found where
λ = 0 is omitted since it is always approximated up to an order of ±10 -15 and only
λh

2 is shown since it is equal to λh
3 . The number of spectral elements used were 1,

2, 3 and 4 for each Ωk such that the first column in the latter table was obtained.

Similarly to the cases explored in Section 5.3.3 and Section 5.3.4, there is a
sub-optimal convergence rate for the eigenvalues which signals to the fact the eigen-
functions exhibit some sort of singularity. Estimating the behavior of Eλ=0 is, at
this moment, impossible since its eigenvalue converges for any given N .

For λh
2 and λh

5 , the rates of convergence are below 2 for all the evaluated N while
rates oscillate around 2.5 for λh

4 . Irregular data was obtained for N = 2 where the
convergence rate for the latter eigenvalue varied tremendously from 1.5 −→ 4.3 −→ 0.6
for which no good explanation was found. However, the rest of the data is consistent
and it is clear that the eigenfunctions linked to Eλh

4
are smoother than Eλh

2
and Eλh

5
.

In Appendix E, the eigenfunctions for this problem are plotted where it is shown
that λh

0 , λh
2 = λh

3 and λh
5 are associated to eigenfunctions with highly singular be-

havior. On the other side, the eigenfunction related to λh
4 , exhibits non-smoothness

at the re-entrant corners which is not as dramatic as the one from the other eigen-
functions, hence, its higher rate of convergence.

Table 6.5: Order of Convergence for λh
2 , λh

4 and λh
5 in Ω = [0, 4]2 \ (1, 3)2 using ϵ = µ = I.

h λh −→
{

N=14

K=8

}
N = 2 N = 3 N = 4

λh OC λh OC λh OC

1.250
0.3162165107 0.3121168810 — 0.3146037409 — 0.3153498703 —
1.0415216351 1.0414755103 — 1.0418452015 — 1.0414736029 —
1.4752285323 1+0.51040141 — 1.4621842886 — 1.4667274597 —

0.6250
λh

2 0.3145369392 1.29 0.3155732529 1.33 0.3159093612 1.50
λh

4 1.0416548699 1.53 1.0414798102 2.95 1.0415088575 1.91
λh

5 1.4637827891 1.62 1.4693334465 1.15 1.4723941499 1.58

0.4166
λh

2 0.3152495820 1.36 0.3158597608 1.45 0.3160548967 1.58
λh

4 1.0414986015 4.33 1.0415046246 2.22 1.0415173205 2.68
λh

5 1.4671787527 0.87 1.4719510114 1.45 1.4737449099 1.60

0.3125
λh

2 0.3155698637 1.40 0.3159865588 1.53 0.3161194308 1.77
λh

4 1.0414942612 0.60 1.0415135147 2.57 1.0415197026 2.79
λh

5 1.4695532952 1.21 1.4731149266 1.52 1.4743422789 1.79



6.2 Isotropic Permitivity Tensor 117

6.2.3 Piecewise Constant Permittivity
In this section, a problem described in [29] is discussed. The domain is given by
Ω = [ -1, 1]2 where two different materials are utilized in a check pattern as shown
in Figure 6.10. For Ω1 and Ω4, the permittivity is given by ϵ1 = I while for Ω2 and
Ω3 the value ϵ2 = 0.01 I is utilized.

Figure 6.10: Domain Ω = [ -1, 1]2 split into 4 subdomains and two different materials.

For this problem, the system to solve is constructed as LHSx = RHS where
LHS = diag(lhsΩ1 , · · · , lhsΩ4) and RHS = diag(rhsΩ1 , · · · , rhsΩ4). In the latter
constructions, both lhsΩk

and rhsΩk
follow the definitions established in (6.3).

Finally, the vector x =
[

N 1
Ω1

(Eh) N 0
Ω1

(ph) · · · N 1
Ω4

(Eh) N 0
Ω4

(ph)
]T contains the

degrees of freedom. Since some unknowns in x are shared between elements, a
Gathering Matrix is utilized to glue all the components together and, after applying
the boundary conditions, the system L̂HS x̂ = R̂HS is obtained.

From the benchmark [29], for the first 10 eigenvalues it is indicated the number of
digits which are expected to be correct. The latter was done by successively refining
the approximation and verifying the number of digits that remained unchanged after
each refinement. The best approximations given by the benchmark were obtained
with polynomials of degree 10 and a mesh refined near the center consisting of 10
layers with ratio four. However, even with such discretization the number of correct
digits for λh

3 and λh
7 was estimated to be 3 while for all the other λh this value

was above ten. The latter might be already an indication that the eigenfunctions
for those eigenvalues are highly singular. In fact, in Appendix F such plots are
presented where it can be clearly observed that both E3 and E7 exhibit a strong
singularity at the origin.
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In Table 6.6, the order of convergence for selected eigenvalues is shown. The
number of spectral elements used per subdomain can be calculated as 1/h2 meaning
that the lowest approximation used one element in Ωk while the best one utilized
64. Perhaps, the most significant result is just how slow the convergence is for λh

3
when compared to the other well-behaved eigenvalues λh

1 , λh
5 and λh

9 which achieve
their optimal rates of convergence.

As a additional comment, the eigenvalues associated to highly singular eigen-
functions (i.e., λh

3 and λh
7 ) are being approached from below while the rest of them

are being approached from above.

Table 6.6: Maxwell eigenvalues in Ω = [ -1, 1]2 with piecewise constant permittivity.

h λ, Ref.[29] N = 2 N = 3

λh OC λh OC

1

4.8931933248 4+0.92927625 — 4.8938081893 —
15.5369816531 7.2715751619 — 7.3926138597 —
24.4874560134 33.8811148480 — 25.6535605710 —
44.4352169342 65.5359892288 — 46.7909978279 —

1/2

λh
1 4.8956176593 3.90 4.8932010168 6.32

λh
3 7.4495434032 0.03 8.4211962203 5.31

λh
5 20+5.2174105 3.69 20+7.8155503 1.80

λh
9 40+5.8969861 3.85 44+0.50142623 5.15

1/4

λh
1 4.8933460602 3.99 4.8931932722 7.19

λh
3 8.4632698809 0.20 9.3538944194 0.21

λh
5 24+0.5416728 3.75 24.4879904721 5.78

λh
9 44+0.5474212 3.70 44.4363812680 5.83

1/8

λh
1 4.8932027638 4.02 4.8931933118 2.01

λh
3 9.3917671869 0.21 10.1894832623 0.22

λh
5 24.4910132882 3.93 24.4874644786 5.98

λh
9 44.4426041814 3.92 44.4352357857 5.95

Back in Section 6.2.2, for the doubly connected domain, the lower rates of con-
vergence of the eigenvalues were attributed to the geometry not being nice enough
even when the whole domain was constituted by a single material. For the present
case, however, the geometry is beyond simple as well as the permittivity tensors but
the distribution of materials within the domain causes the singularities for some of
the eigenfunctions. This is a clear example that even isotropic material properties
on a simple geometry can lead to singular solutions depending on the distribution
of the materials.
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6.3 Anisotropic Permittivity Tensor
The final benchmarks are done for anisotropic permittivity tensors ϵ. For the 2D
problems considered in this section, the notation of [53] is followed in which the
relative permittivity and permeability tensors are defined as,

ϵ =
[

ϵrt 0
0 ϵrz

]
, µ =

[
µrt 0
0 µrz

]

where both ϵrt and µrt are 2×2 tensors describing the in-plane relative permittivity
and permeability, respectively, with the scalars representing the zz components of
each material property. Thus, the 2D Maxwell eigenproblem for E would read,

∇ ×
(

µ-1
rz ∇ × E

)
= ω2ϵrt E in Ω

∇ ·
(

ϵrt E
)

= 0 in Ω

n × E = 0 in ∂Ω

The upcoming sections will utilize second order positive tensors ϵrt paired with
the scalar µrz = 1. For the formulation expressed in (6.3), the latter means that
M(2)

µ-1 reduces to the regular M(2) used in previous chapters while M(1)
ϵ remains as

general as it was. Evaluating such matrix for a full 2 × 2 tensor is shown below:

M(1)
ϵ =

ˆ
Ω

Ψ1(x)Tϵ Ψ1(x) dΩ =
ˆ

Ω

[
Ψ1

x 0
0 Ψ1

y

]T [
ϵ1 ϵ2
ϵ3 ϵ4

] [
Ψ1

x 0
0 Ψ1

y

]
dΩ =

=
ˆ

Ω

[(
Ψ1

x

)T
0

0
(

Ψ1
y

)T

] [
ϵ1Ψ1

x ϵ2Ψ1
y

ϵ3Ψ1
x ϵ4Ψ1

y

]
dΩ =

ˆ
Ω

[
ϵ1
(

Ψ1
x

)T
Ψ1

x ϵ2
(

Ψ1
x

)T
Ψ1

y

ϵ3
(

Ψ1
y

)T
Ψ1

x ϵ4
(

Ψ1
y

)T
Ψ1

y

]
dΩ

where the index in the basis functions indicates the spatial component in which
nodal expansions are used as shown in (3.14). Additionally, it can be observed that
whenever the off-diagonal terms of the tensor are equal to zero, the mass matrix
reduces to the regular one used throughout Chapter 4 and Chapter 5.

6.3.1 Square Domain
The present problem is taken from [53, Section 4.1] where a domain Ω = [0, π]2 is
analyzed along with a permittivity tensor ϵrt = [ 2 1

1 2 ] and µrz = 1 using first order
edge-based vector elements on a mesh created by triangles. The approximations
of the benchmark are shown in Table 6.7 where h is indicative of the longest edge
within the tessellation. The best approximations are highlighted in blue.
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Table 6.7: First 5 Maxwell eigenvalues in Ω = [0, π]2 with ϵrt =
[

2 1
1 2
]
, µrz = 1 from [53, Table 3].

h
Benchmark Eigenvalue Approximations

λh
1 λh

2 λh
3 λh

4 λh
5

√
2π/8 0.360110 0.851986 0.901434 1.935574 2.205845

√
2π/16 0.361843 0.879173 0.892018 1.907659 2.354616

√
2π/32 0.362324 0.886427 0.889671 1.901324 2.397779

√
2π/64 0.362450 0.888271 0.889084 1.899822 2.409096

√
2π/128 0.362483 0.888734 0.888938 1.899455 2.411969

Trend Increasing Increasing Decreasing Decreasing Increasing

The results obtained with the mimetic spectral formulation (6.3) are shown in
Table 6.8 and Table 6.9. The rates of convergence for the first 5 eigenvalues show
optimal speeds equal to 2N which is already expresses that the associated eigen-
functions are smooth within Ω. Such eigenfunctions are shown in Appendix G.

Table 6.8: Order of Convergence for the first 5 Maxwell eigenvalues in Ω = [0, π]2

using ϵrt =
[

2 1
1 2
]

and µrz = 1.

h λh −→
{

N=20

K=4

}
N = 1 N = 2 N = 4

λh OC λh OC λh OC

π
2

0.3624937135 0.4421288013 — 0.3627564111 — 0.3624796541 —
0.8888888888 0.9726833629 — 0.9016309905 — 0.8888953998 —
0.8888888888 1.2158542037 — 0.9021334277 — 0.8888977872 —
1.8993341127 - — 1+0.97045007 — 1.8994657582 —
2.4129318259 - — 2.4164548547 — 2.4130413740 —

π
4

λh
1 0.3801768523 2.17 0.3624712013 3.54 0.3624919355 2.98

λh
2 0.9194178460 1.46 0.8897468741 3.89 0.8888953998 7.72

λh
3 0.9662498371 2.08 0.8899096774 3.70 0.8888977872 8.00

λh
4 2.3296911976 — 1+0.90905864 2.87 1.8994657582 3.55

λh
5 2+0.82846091 — 2.4287541101 2.17 2.4130413740 1.90

π
8

λh
1 0.3667591504 2.05 0.3624863555 1.61 0.3624934922 3.01

λh
2 0.8970492724 1.90 0.8889441901 3.96 0.8888889197 7.95

λh
3 0.9077920246 2.03 0.8889556770 3.93 0.8888889236 8.00

λh
4 1+0.99783202 2.13 1.8999615077 3.95 1.8993346562 7.92

λh
5 2+0.52264730 1.92 2.4139349932 3.98 2.4129322508 8.01

π
12

λh
1 0.3643734716 2.02 0.3624910639 2.52 0.3624937144 7.86

λh
2 0.8925578348 1.97 0.8888998789 3.99 0.8888888888 8.55

λh
3 0.8972519612 2.01 0.8889021934 3.98 0.8888888888 9.07

λh
4 1+0.94233508 2.04 1.8994517896 4.13 1.8993341339 7.99

λh
5 2.4618023772 1.99 2.4131120250 4.23 2.4129318426 7.98
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Table 6.9: First 5 Maxwell eigenvalues in Ω = [0, π]2: ϵrt =
[

2 1
1 2
]
, µrz = 1.

h λh −→
{

N=20

K=4

}
N = 2 N = 4 N = 8 Trend

λh λh λh

π/2

0.362493713534222 0.362756411108870 0.362479654178890 0.362493406420269 ↙
0.888888888888976 0.901630990523142 0.888895399835800 0.888888888888904 ↙
0.888888888890293 0.902133427739300 0.888897787263535 0.888888888888908 ↙
1.899334112725240 1+0.9704500737540 1.899465758293698 1.899331885960170 ↙
2.412931825959713 2.416454854719386 2.413041374054393 2.412925952684026 ↙

The most accurate results from the benchmark and the mimetic spectral method
are highlighted in blue in Table 6.8 and Table 6.9, respectively. In fact, the results
from both methods are in very good agreement as detailed below:

• For λh
1 , the benchmark estimates 0.362483 with an increasing trend, thus, it

is a lower bound. The MSEM gives 0.362493 which is above the latter value.

• For λh
2 , the benchmark acts as a lower bound since the eigenvalue 0.888734

tends to increase. The MSEM gives 0.888888 which is above such bound.

• For λh
3 a decreasing tendency is detailed by the benchmark from a value of

0.888938. The MSEM stays below this upper bound at 0.888888.

• For λh
4 , the value 1.899455 has a decreasing tendency which is consistent with

the MSEM approximation of 1.899334.

• For λh
5 , the benchmark expects 2.411969 to increase which is congruent with

the MSEM approximation of 2.412931.

Had the formulation (6.3) not been utilized and only the curl-curl equation been
considered, plenty of unwanted zero eigenvalues would have polluted the spectra.
Whenever a solution wants to be deemed as physical or non-physical, the term ∇·D
has to be computed. Accepting a solution as physical, requires such term to vanish
in Ω, otherwise, it has to be catalogued as spurious.

Within the MSEM framework, verifying ∇ · D would be done as follows. In
Figure 2.7 is shown that both fields D and E belong to edges but on different
grids. By recalling the concepts from Section 3.3.3, the degrees of freedom for D
are written as N 1(Dh) = M(1)

ϵ N 1(Eh). The divergence requires surface degrees of
freedom for which the transpose of E1,0

grad is used along with the appropriate basis
for 2D volumes Ψ̃2(x). All pieces put together allow to interpolate ∇ · D in Ω.

Due to the formulation being utilized in this section, there is no need to check the
veracity of the eigenvalues. However, it will be shown how non-physical solutions
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fail to satisfy ∇ · D = 0. In Figure 6.12a, the function Eλ=0(x) clearly violates
the constraint. On the other hand, true solutions satisfy it pointwise as shown in
Figure 6.12b through Figure 6.12f. The plots were obtained with Kx = Ky = 1
and N = 8 but identical behavior is achieved with lower degree polynomials. This
procedure allows to manually find solutions E ∈ H0(curl; Ω) and D ∈ H(div; Ω)
when formulations neglecting the divergence constraint are opted for.

A byproduct of the formulation (6.3) is the so-called Lagrange Multiplier p which
has no physical significance but is shown for completeness in Figure 6.11.

(a) Lagrange Multiplier p for λh
1 (b) Lagrange Multiplier p for λh

5

Figure 6.11: Lagrange Multiplier computed as ph = Ψ0(x)N 0(ph) using N = 8, Kx = 1, Ky = 1.

The effect of the off-diagonal terms of ϵrt on λ is shown in Table 6.10 where
the eigenvalues with M > 1 in the isotropic case have now split. For the current
problem, λh

2 and λh
3 seem to merge, however, in Table 6.8 the MSEM shows that

they are different even when sharing several decimals. Additionally, the benchmark
approximates both values from different directions. Had the eigenvalues been equal,
the latter would not be the case. There might be anisotropic tensors that merge
some eigenvalues back together but for the presented example this does not occur.

Table 6.10: Effect of the off-diagonal terms of ϵrt on eigenvalues in Ω = [0, π]2.

ϵrt λ1 λ2 λ3 λ4 λ5[ 2 0
0 2

]
0.5 0.5 1 2 2[ 2 0.5

0.5 2

]
0.41 0.63 0.96 1.98 2.16[ 2 1

1 2

]
0.36 0.88 0.88 1.89 2.41

Trend Decreasing Increasing — Decreasing Increasing



6.3 Anisotropic Permittivity Tensor 123

(a) ∇ ·
(

ϵrt E
)

for λ = 0 (b) ∇ ·
(

ϵrt E
)

for λh
1 = 0.362493

(c) ∇ ·
(

ϵrt E
)

for λh
2 = 0.888888 (d) ∇ ·

(
ϵrt E

)
for λh

3 = 0.888888

(e) ∇ ·
(

ϵrt E
)

for λh
4 = 1.899334 (f) ∇ ·

(
ϵrt E

)
for λh

5 = 2.412931

Figure 6.12: Divergence constraints computed as ∇ ·Dh = Ψ̃2(x)
(
E1,0

grad

)T
M (1)

ϵ N 1(Eh).
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6.3.2 H-Domain
This section focuses on the problem described in [53, Section 4.2] in which the
Maxwell eigenproblem is analyzed with ϵrt = [ 1 -j

j 4 ] inside a so-called H-domain. For
the purposes of the discretization using the MSEM finite elements, the geometry
was divided in 7 subdomains Ωk as to facilitate the meshing of the domain. The
partitions as well as the exact dimensions of the domain are depicted in Figure 6.13.

Figure 6.13: H-domain

As opposed to the previous cases, in this problem the right-hand side block
matrix from (6.3) will be complex valued due to the choice of the permittivity tensor.
This, however, does not change the methodology used to obtain the eigenvalues but
does modify the way in which the eigenfunctions are obtained and presented.

The eigenvalues are still the result of the generalized eigenvalue problem for which
MATLAB is used once the discrete system has been properly assembled. Defining
the eigenfunctions requires first to compute the eigenvectors. This is done by feeding
each λh back into the discrete formulation and then calculating the null space of the
system. In doing so, all the degrees of freedom N 1(Eh) and N 0(ph) are obtained.

The eigenfunctions cannot be immediately reconstructed because the degrees of
freedom are complex-valued. Hence, N 1(Eh) is split into N 1

Re(Eh) = Re
(
N 1(Eh)

)
and N 1

Im(Eh) = Im
(
N 1(Eh)

)
which denote the real and imaginary parts, respec-

tively. Finally, the eigenfunctions are interpolated as Re(Eh) = Ψ1(x) N 1
Re(Eh) and

Im(Eh) = Ψ1(x) N 1
Im(Eh). In Appendix H, the eigenfunctions for the first 5 eigen-

values of the problem are shown in which Re(|Eh|) and Im(|Eh|) were also included.

The results from the benchmark were obtained with first order edge-based vector
elements and are shown in Table 6.11. Those values are only used as a reference to
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verify if the data obtained with the formulation (6.3) is leading towards the right
values. Nevertheless, they are not utilized for computing the order of convergence.
This is because the most accurate data was obtained with the MSEM formulation
utilizing polynomials of degree 8 and 9 spectral elements per subdomain Ωk.

Table 6.11: First 5 Maxwell eigenvalues in H-domain: ϵrt =
[ 1 -j

j 4
]
, µrz = 1. From [53, Table 4].

h
Benchmark Eigenvalue Approximations

λh
1 λh

2 λh
3 λh

4 λh
5

0.293524 0.040378 0.388638 0.781945 0.982714 1.606289
0.146762 0.040884 0.395901 0.784755 0.992164 1.626574
0.073381 0.041091 0.398877 0.785987 0.996140 1.634283
0.036690 0.041173 0.400074 0.786498 0.997754 1.637230
0.018345 0.041206 0.400552 0.786704 0.998401 1.638369

Trend Increasing Increasing Increasing Increasing Increasing

Table 6.12: Order of Convergence for the first 5 Maxwell eigenvalues in the H-domain

from Figure 6.13 using ϵrt =
[ 1 -j

j 4
]

and µrz = 1.

h λh −→
{

N=8

K=63

}
N = 2 N = 3 N = 4

λh OC λh OC λh OC

1.28

0.041216865 0.0396707306 — 0.0406801227 — 0.0409696465 —
0.400706061 0.3953658283 — 0.3932724910 — 0.3970738192 —
0.786771968 0.7785410562 — 0.7884045525 — 0.7850417013 —
0.998611654 1.0281485790 — 0.9919999493 — 0.9947379885 —
1.638737663 1.6820897703 — 1.6934295918 — 1.6326385780 —

0.64

λh
1 0.0407193554 1.64 0.0410345792 1.56 0.0411279062 1.47

λh
2 0.3946063576 0.19 0.3980808021 1.50 0.3994133095 1.49

λh
3 0.7860229303 3.46 0.7856795488 0.58 0.7862316756 1.68

λh
4 0.9926180776 2.30 0.9953204192 1.01 0.9969007788 1.18

λh
5 1.6655332060 0.69 1.6334015517 3.36 1.6359072877 1.11

0.42

λh
1 0.0409485973 1.52 0.0411166029 1.47 0.0411702656 1.59

λh
2 0.3970690808 1.28 0.3992561123 1.46 0.4000290051 1.60

λh
3 0.7855912681 1.12 0.7861634217 1.44 0.7864867489 1.58

λh
4 0.9943203671 0.82 0.9967007607 1.34 0.9977094534 1.58

λh
5 1.6552530219 1.19 1.6355926076 1.30 1.6372151559 1.53

In Table 6.11, the values h = {1.285, 0.642, 0.428} are indicative of using 1,
4 and 9 spectral elements per subdomain Ωk. By looking at the eigenfunctions
from Appendix H, it would be difficult to suggest that optimal convergence rates
could be achieved since the plots depict rapid changes at the internal corners of
the geometry. It is observed, however, that for the cases N = {2, 3} the order of
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convergence stabilizes between 1.30 and 1.60. The same behavior should be expected
even if the polynomial degree is increased.

Similarly to the benchmark, the MSEM formulation approximates the first 3
eigenvalues from below. Nonetheless, λ4

h and λ5
h are approached from above. Ac-

cording to Boffi [9], determining if eigenvalue approximations are approached from
either above or below has not been given a conclusive response but the general con-
sensus seems to be that conforming approximations are above the exact solutions
while non-conforming ones are below. Even the same eigenvalue approximation can
become a lower or upper bound depending on the chosen mesh.

For the collection of problems in this chapter, eigenvalues associated to smooth
eigenfunctions were always approached from above while highly singular solutions,
such as the ones obtained from the domain with two materials, were approached
from below. For eigenvalues/eigenfunctions in between these two extremes, the
approximations have the possibility to be approached from either direction.

6.4 Additional Remarks
In [39], the framework utilized along this thesis is applied to a series of problems
related to the Darcy flow equations. Particularly relevant is the so-called Sand-Shale
System solved on Ω = [ -1, 1]2 with both a direct and a mixed formulation where,
in a post-processing step, the net flux through the left boundary of the domain is
computed. In doing so, it is observed that the direct formulation approaches the
net flux value from above while the mixed formulation does it from below.

For the problems presented in this chapter, the quantity to analyze will be the
electrostatic field energy UE = 1

2
´

Ω E · D dΩ. Specifically, this will be tested for
the eigenproblem presented in Section 6.2.1 and Section 6.3.1.

6.4.1 The De Rham Complex in R2

Before defining the weak form, it should be recalled that in R2, there are two sets
of function spaces that obey the De Rham cohomology [51] such that a double De
Rham sequence can be built as follows:

H1(Ω) grad−−−−→ H(curl; Ω) curl−−−−→ L2(Ω)

⋆

xy ⋆

xy ⋆

xy
L̃2(Ω) div←−−−− H̃(div; Ω) curl←−−−− H̃(curl; Ω)
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where the curl operator on the first row acts on vector fields whereas the one on the
second row does it on scalar fields. The symbol ⋆ represents the Hodge operator.

Since Tonti diagrams are quite closely related to the De Rham sequences, the
eigenvalue problem can be accommodated in this type of structure. There are 3
main terms to consider: (1) D = ϵ E, (2) ∇ ×

(
µ-1 × E

)
and (3) ω2 ϵ E for which

the following constructions are helpful,

- ϕ
grad−−−−→ Ey ⋆ϵ

0 div←−−−− D

and
E curl−−−−→ γy ⋆µ-1

F curl←−−−− γ̃

(6.4)

where the vertical arrow for the electric potential is excluded since there is no
constitutive equation relating ϕ and the electric charge density ρ (set to zero for the
eigenproblem). By the same argument, E and F are not connected. The remaining
vertical links are kept since they rely on the material parameters ϵ and µ.

The electric potential, even when not used in the formulation, is shown since it
shares the same function space as the Lagrange Multiplier p used to impose ∇·D = 0.

6.4.2 Mixed Formulation for the Maxwell Eigenproblem
The formulation presented in (6.3) is certainly not unique. An alternative system for
the Maxwell eigenproblem could be obtained if, for example, the curl-curl operator
is split by introducing additional variables. This is the same principle used in the
mixed formulations of the scalar Poisson problem from Chapter 4 and Chapter 5.

Since the main focus is to split the curl-curl operator, the attention is centered on
the right diagram from (6.4). The equations to be used are constructed by following
the arrows in such diagram which leads to the following system:

γ = ∇ × E (6.5a)

γ̃ = ⋆µ-1 γ (6.5b)

F = ∇ × γ̃ = ω2 ϵ E (6.5c)

where γ belongs to primal surfaces, γ̃ belongs to dual nodes and E belongs to primal
edges. The term F was just a dummy variable to avoid introducing ω2 ϵ E into the
diagrams above. Discretizing the equations is now straightforward. In (6.5a), the
equation is topological and requires only incidence matrices. On the contrary, in
(6.5b) primal surface degrees of freedom are transformed into unknowns on dual
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nodes for which a mass matrix is required. The equation (6.5c) requires a bit of
work which starts by multiplying by a test function v defined on primal edges:

ˆ
Ω

v (∇ × γ̃) dΩ =
ˆ

Ω
(∇ × v) γ̃ dΩ = ω2

ˆ
Ω

v ϵ E dΩ

where the boundary term disappears because v ∈ H0(curl; Ω). The terms in the
equation above are expanded as ∇ × v = Ψ2(x)E2,1

curl N 1(vh), γ̃ = Ψ̃0(x) Ñ 0 (γ̃h
)

and E = Ψ1(x) N 1(Eh). The test function is expanded in the same way as the
electric field. By putting all together, the following is obtained:(

E2,1
curl

)T
[ ˆ

Ω
Ψ2(x)Ψ̃0(x) dΩ

]
︸ ︷︷ ︸

I

Ñ 0 (γ̃h
)

= ω2 M(1)
ϵ N 1(Eh)

where the fact that the bases Ψ̃(n−d)(x) and Ψ(d)(x) are bi-orthogonal with respect
to each other has been used [51, Lemma 2] such that the identity matrix remains.
The parameter n describes the dimension of the embedding space.

Thus, the discretized equations correspondent to the system (6.5a)-(6.5c) are:

N 2(γh) = E2,1
curl N 1(Eh) (6.6a)

Ñ 0 (γ̃h
)

= M(2)
µ-1 N 2(γh) (6.6b)

(
E2,1

curl

)T
Ñ 0 (γ̃h

)
= ω2 M(1)

ϵ N 1(Eh) (6.6c)

A more compact system is obtained by substituting (6.6b) into (6.6c):

N 2(γh) = E2,1
curl N 1(Eh) (6.7a)(

E2,1
curl

)T
M(2)

µ-1 N 2(γh) = ω2 M(1)
ϵ N 1(Eh) (6.7b)

By including the divergence constraint, the complete system is written as:
I -E2,1

curl 0(
E2,1

curl

)T
M(2)

µ-1 0 M(1)
ϵ E1,0

grad

0
(
E1,0

grad

)T
M(1)

ϵ 0

X = λ


0 0 0

0 M(1)
ϵ 0

0 0 0

X (6.8)

where λ replaced ω2 as the eigenvalue and X =
[

N 2(γh) N 1(Eh) N 0(ph)
]T.
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6.4.3 Electrostatic Field Energy
The motivation of writing a mixed formulation for the Maxwell Eigenproblem was to
investigate if λh would be approximated from a different direction when compared
to (6.3). Since this did not occur, the analysis was shifted to the convergence of
integral quantities as to verify if the behavior from [39] could be replicated.

The term to be analyzed is the electrostatic field energy UE = 1
2
´

Ω E · D dΩ. In
both (6.3) and (6.8), E belongs to primal edges while D belongs to dual edges. By
using this information, the approximation for the energy becomes:

UE = 1
2

(
N 1(Eh)

)T
[ ˆ

Ω
Ψ1(x)T Ψ̃1(x) dΩ

]
︸ ︷︷ ︸

I

N 1(Dh) = 1
2

(
N 1(Eh)

)T
N 1(Dh)

where the bi-orthogonality of the primal and dual functions was used. The degrees of
freedom for the electric displacement N 1(Dh) are computed by using the constitutive
equation D = ⋆ϵ E from (6.4) which leads to N 1 (Dh

)
= M(1)

ϵ N 1 (Eh
)
. In fact, such

definition had already been used in Section 6.3.1 to compute the ∇·Dh = 0 to verify
if the resulting eigenfunctions were spurious solutions or not. With this last piece
of information, the energy is computed as:

UE = 1
2

(
N 1(Eh)

)T
M(1)

ϵ N 1(Eh) (6.9)
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Figure 6.14: Convergence of UE on K = [ 0, π]2 when using a direct and a mixed formulation.

The convergence for UE is shown in Figure 6.14a for the eigenfunction related to
λ = 2 from the problem described in Section 6.2.1. Additionally, in Figure 6.14b the
same plot is presented for the eigenfunction related to λ = 2.41 of the anisotropic
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square case from Section 6.3.1. In both instances, the mixed method approximates
the energy from below while the direct method does it from above such that the
some conclusion found in [39] is obtained.

The most important reflection from this section is that if the energy UE were
to be a quantity of extreme interest, then using both types of formulations would
effectively create a lower and upper bound for such variable. In Figure 6.14, the
approximation was only performed with one spectral element but increasing this
value should allow for more precise bounds of UE.



7
Conclusions

In this thesis, a mimetic spectral element framework has been successfully applied
to a collection of problems in R1 and R2 using the Whitney Map described in [51].

Most of the present work deals with simple problems such as the classic Poisson
equation and eigenvalue problems for the Laplacian operator in diverse geometries
and subject to different boundary conditions. Each of these cases, despite being
basic, had as a purpose to slowly build up knowledge and experience in applying
the MSEM framework. Ultimately, this was beneficial since it allowed to more
confidently explore the main dish of this thesis, the Maxwell Eigenvalue Problem.

The only case that, perhaps, is a complete outlier in the present work is the
problem related to the Hartmann Flow system. Its inclusion in this thesis was
motivated mainly by curiosity in how to apply this framework to ordinary differential
equations that included the first derivative. In doing so, a matrix C0,1 was obtained
which was found to be effective in changing degrees of freedom attached to lines
into degrees of freedom defined on nodes.

In fact, a minor research question in this thesis was related to the possibility of
modifying the mimetic framework to accommodate to what was described above.
After the results obtained in Section 4.2.2, it can be stated that the methodology
was properly modified and the application of C0,1 lead to optimal convergence rates.
A next step, maybe, would be to extend the idea to PDEs.

The major research questions were related to the Maxwell Eigenproblem. The
first one was focused on the possibility of developing a formulation that could avoid

131



132 7 Conclusions

spurious solutions and provide faster rates of convergence than traditional FEM.

Creating a formulation that gets rid of spurious solutions is entirely possible
when the correct equations are involved. In Chapter 6, the attention was focused
on the eigenvalue problem for the electric field and it was mentioned that failing to
couple the curl-curl equation with the appropriate divergence-free condition would
inevitably lead to spurious solutions. This could be somehow circumvented if spe-
cial elements based on H0(curl; Ω) ∩ H(div; Ω) were utilized as was the case of the
benchmark in Section 6.2.2.

For the finite elements used in this thesis, a spurious free formulation was devel-
oped by following the work done by Kikuchi [56] and consisted in adding a Lagrange
Multiplier that would force the field E to be orthogonal to gradients. Additionally,
optimal rates of convergence of N and 2N were obtained for eigenfunctions and
eigenvalues, respectively, when smooth solutions were expected. When the latter
condition was met, the presented methodology was indeed faster than traditional
FEM since in this framework the polynomial degree can be changed at will.

Another research question was related to the analysis of geometries with an
arbitrary Betti number b1. This was particularly aimed at the fact that geometries
with holes do allow for λ = 0 as a solution. This was tested for a Doubly Connected
Domain in which b1 = 1 and it was found that the formulation based on [56] did allow
to capture the zero eigenvalue as a solution. Even though this does not classify as a
geometry with an arbitrary number b1, it should be expected that the formulation
behaves adequately for any other domain with holes.

The final research question focused on the effect of anisotropy and geometry on
the convergence rates of eigenvalues. It was observed that for nice, simple geome-
tries such as the square, the anisotropy did not modify the order of convergence of
the eigenvalues. For the H-domain explored in Section 6.3.2, sub-optimal rates of
convergence were obtained but the case could be made that the shape of the domain
had more weight on that issue. In that sense, the answer is not conclusive. However,
it was noticed that even isotropic material properties on simple geometries led to
sub-optimal convergence rates when materials with different properties are found
sharing the same domain.

Besides what has already been mentioned, it is worth indicating that with the
current MSEM methodology, it was extremely easy to identify solutions that did
not satisfy ∇ · D = 0. Additionally, for those eigenfunctions that did fulfill such
constraint, it was found that the solutions satisfy it pointwise. This characteristic
would be quite relevant for problems with non-zero sources J with the field H since
the equation ∇ · B is always mapped to zero.
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As an extra feature, it was found how to compute upper and lower bounds for
integral quantities by using a direct method and a mixed formulation which, in this
case, was used for the term 1

2
´

Ω E · D dΩ.

Had the work on this thesis needed to continue, the next step would have cer-
tainly been to work with the complete time-harmonic system by including non-zero
electric current density J and non-homogeneous boundary conditions. Perhaps,
working with the formulation for the field H shown in (2.11) would have been ap-
propriate as to deal with the constitutive equation B = µ H and the divergence-free
condition ∇ · B = 0 and take advantage of the fact that such topological relation
can be satisfied pointwise.
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A
Hybrid Systems

Consider to following problem: A BT CT

B 0 0
C 0 0


 x

y

Λ

 =

 F

G

0


in which the first row is used to solve for the unknown vector x as:

x = A-1
(

F − BTy − CTΛ
)

such that a new reduced system is obtained:[
−BA-1BT −BA-1CT

−CA-1BT −CA-1CT

](
y

Λ

)
=
(

G − BA-1F

−CA-1F

)

which can be rewritten as:[
Â B̂T

B̂ D̂

](
y

Λ

)
=
(

Ĝ

F̂

)

where the terms Â = −BA-1BT, B̂ = −CA-1BT, D̂ = −CA-1CT, Ĝ = G − BA-1F

and F̂ = −CA-1F are introduced to simplify the writing of the system.
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The new system is solved for y which leads to:

y = Â-1
(

Ĝ − B̂TΛ
)

which is used to solve for the variable Λ as:

B̂Â-1
(

Ĝ − B̂TΛ
)

+ D̂Λ = F̂(
D̂ − B̂Â-1B̂T

)
︸ ︷︷ ︸

K

Λ = F̂ − B̂Â-1Ĝ︸ ︷︷ ︸
f

If the formulation presented at the beginning were to be the primal-primal Pois-
son problem in Rn with Homogeneous Dirichlet boundary conditions, then F = 0,
A = M(n−1), B = M(n) En,n−1, G = F and C = N −→ Connectivity matrix (Sec-
tion 3.6.2). The unknown vectors for such problem would be x = N (n−1)(uh),
y = N n(ϕh) while Λ would be the multipliers at the element intersections. The
same association can be done for the variables of the primal-dual problem.

Thus, by solving for the multipliers Λ from the system KΛ = f , the solution
for the main variable N n(ϕh) can be obtained as N n(ϕh) = Â-1

(
Ĝ − B̂TΛ

)
. The

advantage of this procedure is that the system for the main variable is way smaller
than the one of the original formulation. Additionally, the solution for N n(ϕh) can
be computed all at the same time since the problem is now effectively decoupled.

Additional information about this procedure can be found in [26].



B
Schur Complement Method

The main idea is to use block Gaussian elimination to solve a system of linear
equations that can be written out in the following form:[

A1 A2

A3 A4

](
x1

x2

)
=
(

F1

F2

)
(B.1)

The first step consists on using the equation from the first row and solve for x1:

x1 = A-1
1 (F1 − A2x2) (B.2)

and this result is used on the second row to obtain an equation for x2 only:

A3 A-1
1

(
F1 −A2x2

)
+A4 x2 = F2 −→

(
A4 −A3 A-1

1 A2

)
x2 = F2 −A3 A-1

1 F1 (B.3)

which immediately imposes a condition on the existence of the inverse of both A1

and A4 − A3 A-1
1 A2 for a solution to exist. To be more compact on the notation,

the variables S and F are introduced such that,

S x2 = F

{
S = A4 − A3 A-1

1 A2

B = F2 − A3 A-1
1 F1

(B.4)

Thus, it is only a matter of defining the terms S and B for different formulations.
Consider now, for example, the discrete system arising from the primal-primal mixed
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formulation of the Poisson equation in Ω ∈ Rn:[
M(n−1) (

E (n,n−1))T M(n)

M(n) E (n,n−1) 0

](
N (n−1)(uh)
N (n)(ϕh)

)
=
(

B
F

)
(B.5)

For n = 1, the system is equivalent to the one in Section 4.1.2 while for n = 2
it resembles the one found in Section 4.3.2. By applying the Schur Complement
Method (SCM), it is possible to solve for N (n)(ϕh) with S and B defined as:

S = −
(
M(n) E (n,n−1)

)(
Mn−1

)-1
((

E (n,n−1)
)T

M(n)
)

(B.6)

B = F −
(
M(n) E (n,n−1)

)(
Mn−1

)-1
B (B.7)

For the primal-dual formulation of the Poisson equation in Ω ∈ Rn:[
M(n−1) (

E (n,n−1))T

E (n,n−1) 0

](
N (n−1)(uh)

Ñ 0(ϕh)

)
=
(

B
- N (n)(fh)

)
(B.8)

hence, it can be solved directly for Ñ 0(ϕh) by using,

S = −E (n,n−1)
(
Mn−1

)-1 (
E (n,n−1)

)T
(B.9)

B = −N (n)(fh) − E (n,n−1)
(
Mn−1

)-1
B (B.10)

For eigenvalue problems, the application is also straightforward:[
M(n−1) (

E (n,n−1))T M(n)

M(n) E (n,n−1) 0

](
N (n−1)(uh)
N (n)(ϕh)

)
= · · ·

· · · = −λ

[
0 0
0 M(n)

](
N (n−1)(uh)
N (n)(ϕh)

)
(B.11)

The variable S remains unchanged compared to the primal-primal formulation
and the term B becomes much simpler but includes the degrees of freedom N (n)(ϕh):

S = −
(
M(n) E (n,n−1)

)(
Mn−1

)-1
((

E (n,n−1)
)T

M(n)
)

(B.12)

B = −λM(n)N (n)(ϕh) (B.13)
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Thus, the discrete eigenvalue system is given by:

M(n) E (n,n−1)
(
Mn−1

)-1 (
E (n,n−1)

)T
M(n)N (n)(ϕh) = λM(n)N (n)(ϕh) (B.14)

The system can be compacted by introducing Ñ 0(ϕh) = M(n)N (n)(ϕh). Fur-
thermore, by using the fact that M̃(n−d) =

(
M(n−1)

)-1
and M̃(0) =

(
M(n)

)-1
, the

dual matrices can be utilized. The parameter d depends on the dimension of the
embedding space: n = 1 −→ d = 0, n = 2 −→ d = 1 and n = 3 −→ d = 2. Thus, the
formulation becomes:

E (n,n−1)M̃(n−d)
(
E (n,n−1)

)T
Ñ 0(ϕh) = λ M̃(0) Ñ 0(ϕh) (B.15)





C
Eigenfunctions: L-Shape

Domain

Since a direct method is utilized for this problem, the function space onto which the
eigenfunction is sought is ϕ ∈ H1(Ω). As a result, the gradient of the eigenfunctions,
∇ϕ(x), must be considered.

For an L-shape domain, if an eigenvalue exhibits poor convergence, it is likely
that either ϕ(x) or ∇ϕ(x) exhibit a poor behavior within the domain which can be
linked to singularities or regions where the gradient changes rapidly depending on
the direction of approximation. The most problematic area is, by far, the so-called
re-entrant corner that, in this case, is located at (x, y) = (0, 0).

The plots below show the eigenfunctions and their gradients. It will become
clear that, had the term ∇ϕ not been considered, the eigenvalues would have no
apparent reason to exhibit sub-optimal convergence rates.

All the approximations shown within this section were computed with a poly-
nomial degree N = 12 and 9 elements per subdomain Ωk, hence, 27 elements cover
the domain. The first row of each set of plots corresponds to the surfaces of either
ϕ(x) or its gradient while the second row shows their correspondent contours. All
functions were calculated such that max (f(x)) = 1.

Five sets of plots are shown. Each set corresponds to one of the first five non-zero
eigenvalues from Section 5.3.3. Contours for ∇ϕ(x) can be found also in [27] where
the data for λ5 is flipped by -1 when compared to the contours shown here.
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(a) ϕh
1 (b) ∂

∂x ϕh
1 (c) ∂

∂y ϕh
1

(d) ϕh
1 (e) ∂

∂x ϕh
1 (f) ∂

∂y ϕh
1

Figure C.1: Functions ϕh(x) and ∇ϕh(x) associated to λ1 = 1.47562182408.

(a) ϕh
2 (b) ∂

∂x ϕh
2 (c) ∂

∂y ϕh
2

(d) ϕh
2 (e) ∂

∂x ϕh
2 (f) ∂

∂y ϕh
2

Figure C.2: Functions ϕh(x) and ∇ϕh(x) associated to λ2 = 3.53403136678.
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(a) ϕh
3 (b) ∂

∂x ϕh
3 (c) ∂

∂y ϕh
3

(d) ϕh
3 (e) ∂

∂x ϕh
3 (f) ∂

∂y ϕh
3

Figure C.3: Functions ϕh(x) and ∇ϕh(x) associated to λ3 = 9.86960440109.

(a) ϕh
3 (b) ∂

∂x ϕh
3 (c) ∂

∂y ϕh
3

(d) ϕh
3 (e) ∂

∂x ϕh
3 (f) ∂

∂y ϕh
3

Figure C.4: Functions ϕh(x) and ∇ϕh(x) associated to λ4 = 9.86960440109.
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(a) ϕh
3 (b) ∂

∂x ϕh
3 (c) ∂

∂y ϕh
3

(d) ϕh
3 (e) ∂

∂x ϕh
3 (f) ∂

∂y ϕh
3

Figure C.5: Functions ϕh(x) and ∇ϕh(x) associated to λ5 = 11.3894793979.



D
Eigenfunctions: Cracked

Domain

Functions ϕh(x) and ∇ϕh(x) for the eigenvalues of Section 5.3.4.

(a) ϕh
1 (b) ∂

∂x ϕh
1 (c) ∂

∂y ϕh
1

(d) ϕh
1 (e) ∂

∂x ϕh
1 (f) ∂

∂y ϕh
1

Figure D.1: Functions ϕh(x) and ∇ϕh(x) associated to λ1 = 1.03407400850.
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(a) ϕh
2 (b) ∂

∂x ϕh
2 (c) ∂

∂y ϕh
2

(d) ϕh
2 (e) ∂

∂x ϕh
2 (f) ∂

∂y ϕh
2

Figure D.2: Functions ϕh(x) and ∇ϕh(x) associated to λ2 = 2.46740110027.14

(a) ϕh
3 (b) ∂

∂x ϕh
3 (c) ∂

∂y ϕh
3

(d) ϕh
3 (e) ∂

∂x ϕh
3 (f) ∂

∂y ϕh
3

Figure D.3: Functions ϕh(x) and ∇ϕh(x) associated to λ3 = 4.04692529140.

14 Both Figure D.2c and Figure D.2f are, essentially, zero since its oscillations are of order 10 -13.
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(a) ϕh
4 (b) ∂

∂x ϕh
4 (c) ∂

∂y ϕh
4

(d) ϕh
4 (e) ∂

∂x ϕh
4 (f) ∂

∂y ϕh
4

Figure D.4: Functions ϕh(x) and ∇ϕh(x) associated to λ4 = 9.86960440109.
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∂y ϕh
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Figure D.5: Functions ϕh(x) and ∇ϕh(x) associated to λ5 = 9.86960440109.
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(a) ϕh
6 (b) ∂

∂x ϕh
6 (c) ∂

∂y ϕh
6

(d) ϕh
6 (e) ∂

∂x ϕh
6 (f) ∂

∂y ϕh
6

Figure D.6: Functions ϕh(x) and ∇ϕh(x) associated to λ6 = 10.8448542781.
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∂x ϕh
7 (f) ∂

∂y ϕh
7

Figure D.7: Functions ϕh(x) and ∇ϕh(x) associated to λ7 = 12.2648958490.
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(a) ϕh
8 (b) ∂
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8 (c) ∂

∂y ϕh
8

(d) ϕh
8 (e) ∂

∂x ϕh
8 (f) ∂

∂y ϕh
8

Figure D.8: Functions ϕh(x) and ∇ϕh(x) associated to λ8 = 12.3370055014.
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(d) ϕh
9 (e) ∂
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9 (f) ∂

∂y ϕh
9

Figure D.9: Functions ϕh(x) and ∇ϕh(x) associated to λ9 = 19.7392088022.
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(a) ϕh
10 (b) ∂
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10 (c) ∂

∂y ϕh
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(d) ϕh
10 (e) ∂

∂x ϕh
10 (f) ∂

∂y ϕh
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Figure D.10: Functions ϕh(x) and ∇ϕh(x) associated to λ10 = 21.2441074562.



E
Eigenfunctions: Doubly

Connected Domain

Contours for the eigenfunctions Eh(x) associated to the the eigenvalues computed
in Section 6.2.2 are presented here. The eigenfunction associated to λh

3 is omitted
since it resembles the one from λh

2 but the components Ex and Ey switch their
positions while |Eh

3 | is exactly the same as |Eh
2 |.

The plots from Figure E.1, Figure E.3 and Figure E.4 where obtained using
N = 10 and 1 spectral element per subdomain Ωk as shown in Figure 6.9. Those
parameters were good enough as to capture the behavior of the function at the
interior corners of the domain.

For the eigenfunction associated to λh
2 , 10 spectral elements per subdomain were

utilized along with N = 1. In this case, the components of the eigenfunction present
rapid changes at certain locations of the outer boundaries while |E| ends up having
rapid change at the outer corners of the domain. Such behavior, for some reason,
was difficult to capture with the settings used for the other plots.

From the plots it can be seen that the one with the most regular behavior at the
boundaries is the eigenfunction associated to λh

4 which coincides with the fact that
its eigenvalue converges the fastest among the ones presented in Table 6.5.
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160 E Eigenfunctions: Doubly Connected Domain

(a) Eh
x

(b) Eh
y (c) |Eh|

Figure E.1: Eigenfunction Eh(x) associated to λh
1 = 0.

(a) Eh
x

(b) Eh
y (c) |Eh|

Figure E.2: Eigenfunction Eh(x) associated to λh
2 = 0.316216510716555.

(a) Eh
x

(b) Eh
y (c) |Eh|

Figure E.3: Eigenfunction Eh(x) associated to λh
4 = 1.041521635153060.

(a) Eh
x

(b) Eh
y (c) |Eh|

Figure E.4: Eigenfunction Eh(x) associated to λh
5 = 1.475228532358697.



F
Eigenfunctions: Piecewise

Constant Permittivity

Eigenfunctions Eh(x) in Ω = [ -1, 1]2 associated to the eigenvalues of Section 6.2.3
with parameters ϵ1 = [ 1 0

0 1 ], ϵ2 = [ 0.01 0
0 0.01 ] and µ = I.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.1: Components of Eh(x) and |Eh| associated to λh
1 = 4.8932.
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162 F Eigenfunctions: Piecewise Constant Permittivity

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.2: Components of Eh(x) and |Eh| associated to λh
2 = 7.2067.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.3: Components of Eh(x) and |Eh| associated to λh
3 = 10.5616.
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(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.4: Components of Eh(x) and |Eh| associated to λh
4 = 24.4623.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.5: Components of Eh(x) and |Eh| associated to λh
5 = 24.4875.
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(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.6: Components of Eh(x) and |Eh| associated to λh
6 = 27.7572.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.7: Components of Eh(x) and |Eh| associated to λh
7 = 27.8720.
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(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.8: Components of Eh(x) and |Eh| associated to λh
8 = 44.2489.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.9: Components of Eh(x) and |Eh| associated to λh
9 = 44.4352.
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(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure F.10: Components of Eh(x) and |Eh| associated to λh
10 = 63.5957.



G
Eigenfunctions: Anisotropic

Square Domain

Eigenfunctions Eh(x) and ∇×Eh for the eigenvalues of Section 6.3.1 on Ω = [0, π]2
and ϵrt = [ 2 1

1 2 ] and µrz = 1. Computed using N = 6 and 4 spectral elements.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure G.1: Components of Eh(x) and |Eh| associated to λh
1 = 0.362493713534222.
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168 G Eigenfunctions: Anisotropic Square Domain

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure G.2: Components of Eh(x) and |Eh| associated to λh
2 = 0.888888888888976.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure G.3: Components of Eh(x) and |Eh| associated to λh
3 = 0.888888888890293.
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(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure G.4: Components of Eh(x) and |Eh| associated to λh
4 = 1.899334112725240.

(a) Eh
x

(b) Eh
y (c) |Eh|

(d) Eh
x

(e) Eh
y (f) |Eh|

Figure G.5: Components of Eh(x) and |Eh| associated to λh
5 = 2.412931825959713.



170 G Eigenfunctions: Anisotropic Square Domain

(a) (b) (c)

Figure G.6: Functions ∇×Eh for (a) λh
1 , (b) λh

2 and (c) λh
3 .

(a) (b)

Figure G.7: Functions ∇×Eh for (a) λh
4 and (b) λh

5 .



H
Eigenfunctions: H-Domain

Eigenfunctions Eh(x) associated to the eigenvalues of Section 6.3.2 with parameters
ϵ = [ 1 -j

j 4 ] & µrz = 1 are presented. Since there is no indication in [53] about the
amplitude used to match the eigenfunctions, the value 0.35 was utilized since it
seems to be the maximum value reached by Re(|Eh|) for λh

1 .

(a) Re(Eh
x) (b) Re(Eh

y ) (c) |Re(Eh)|

(d) Re(Eh
x) (e) Re(Eh

y ) (f) |Re(Eh)|

Figure H.1: Components of Re(Eh) and norm |Re(Eh)| associated to λh
1 = 0.041170265695516.
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172 H Eigenfunctions: H-Domain

(a) Im(Eh
x) (b) Im(Eh

y ) (c) |Im(Eh)|

(d) Im(Eh
x) (e) Im(Eh

y ) (f) |Im(Eh)|

Figure H.2: Components of Im(Eh) and norm |Im(Eh)| associated to λh
1 = 0.041170265695516.

(a) Re(Eh
x) (b) Re(Eh

y ) (c) |Re(Eh)|

(d) Re(Eh
x) (e) Re(Eh

y ) (f) |Re(Eh)|

Figure H.3: Components of Re(Eh) and norm |Re(Eh)| associated to λh
2 = 0.400029005155471.
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(a) Im(Eh
x) (b) Im(Eh

y ) (c) |Im(Eh)|

(d) Im(Eh
x) (e) Im(Eh

y ) (f) |Im(Eh)|

Figure H.4: Components of Im(Eh) and norm |Im(Eh)| associated to λh
2 = 0.400029005155471.

(a) Re(Eh
x) (b) Re(Eh

y ) (c) |Re(Eh)|

(d) Re(Eh
x) (e) Re(Eh

y ) (f) |Re(Eh)|

Figure H.5: Components of Re(Eh) and norm |Re(Eh)| associated to λh
3 = 0.786486748946923.



174 H Eigenfunctions: H-Domain

(a) Im(Eh
x) (b) Im(Eh

y ) (c) |Im(Eh)|

(d) Im(Eh
x) (e) Im(Eh

y ) (f) |Im(Eh)|

Figure H.6: Components of Im(Eh) and norm |Im(Eh)| associated to λh
3 = 0.786486748946923.

(a) Re(Eh
x) (b) Re(Eh

y ) (c) |Re(Eh)|

(d) Re(Eh
x) (e) Re(Eh

y ) (f) |Re(Eh)|

Figure H.7: Components of Re(Eh) and norm |Re(Eh)| associated to λh
4 = 0.997709453437649.
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(a) Im(Eh
x) (b) Im(Eh

y ) (c) |Im(Eh)|

(d) Im(Eh
x) (e) Im(Eh

y ) (f) |Im(Eh)|

Figure H.8: Components of Im(Eh) and norm |Im(Eh)| associated to λh
4 = 0.997709453437649.

(a) Re(Eh
x) (b) Re(Eh

y ) (c) |Re(Eh)|

(d) Re(Eh
x) (e) Re(Eh

y ) (f) |Re(Eh)|

Figure H.9: Components of Re(Eh) and norm |Re(Eh)| associated to λh
5 = 1.637215155912761.



176 H Eigenfunctions: H-Domain

(a) Im(Eh
x) (b) Im(Eh

y ) (c) |Im(Eh)|

(d) Im(Eh
x) (e) Im(Eh

y ) (f) |Im(Eh)|

Figure H.10: Components of Im(Eh) and norm |Im(Eh)| associated to λh
5 = 1.637215155912761.
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