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Notation and terminology

Notations

In this thesis use is made of continuous and discrete wavefield descriptions.

In case of continous wavefield formulations, the Einstein summation convention is
adopted. According to this convention, the lower case latin subscripts
{k, l,m, n, p, q, r, s} are assigned to the values 1, 2 and 3 unless stated otherwise and
the lower case Greek subscripts are assigned to the values 1 and 2. The summation
convention applies to repeated subscripts,

akbkl =
3∑

k=1

akbkl.

For discrete formulations, the following conventions are used: Scalar quantities are
denoted by normal simbols, vector quantities are denoted by lower case bold symbols,
matrix quantities are denoted by upper case bold symbols. Elements of vectors and
matrices take subscript indices according to their entry locations, taking into account
the convention according to their dimension. Let for instance,

A =

[
1 2
4 5

]
, b =

[
1
4

]
, c =

[
2
5

]
.

Then

a1 =

[
1
4

]
= b, a2 =

[
2
5

]
= c,

and
A21 = 1 = b1, A12 = 2 = c1.

Complex conjugation is denoted by ·∗, transposition is denoted by ·T and complex
conjugate transposition by ·H . For example,

P =

[
a11 + ja12 b11 + jb12
a21 + ja22 b21 + jb22

]
, P∗ =

[
a11 − ja12 b11 − jb12
a21 − ja22 b21 − jb22

]
,
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and,

PT =

[
a11 + ja12 a21 + ja22
b11 + jb12 b21 + jb22

]
, PH =

[
a11 − ja12 a21 − ja22
b11 − jb12 b21 − jb22

]
.

Transformations

Throughout the thesis extensive use is made of domain transformations.
The temporal Fourier Transform pair is defined as,

f(x, ω) = F+
t {f̂(x, t)} =

∫ ∞

−∞
f̂(x, t) exp (−jωt)dt,

f̂(x, t) = F−
t {f(x, ω)} =

1
2π

∫ ∞

−∞
f(x, ω) exp (−jωt)dt,

in which t resembles time and ω the temporal frequency. The two-dimensional spatial
Fourier Transform pair is defined as,

f̄(k, x3, ω) = F+
x {f(x, ω)} =

∫
(x1,x2)∈∂IR2

f(x, ω) exp (+jkαxα)d2xα,

f̂(x, ω) = F−
x {f̄(k, x3, ω)} =

1
4π2

∫
(k1,k2)∈∂IR2

f̄(k, x3, ω) exp (−jkαxα)d2kα,

in which x resembles the vector describing the spatial coordinates and k the 2-
dimensional vector describing the spatial wavenumbers. In Chapters 4 and 6 use is
made of Radon transformed data. The forward Radon Transform is defined as,

f̃(p, x3, τ) = R{f̂(x, t)} =
∫
(x1,x2)∈∂IR2

f̂(x, t = τ + pαxα)d2xα

and

F+
t {f̃(pω, x3, τ)} = f̄(k, x3, ω),

in which τ is the zero-offset intercept time and p contains the lateral slownesses.

Thus, the following notational conventions are adopted,
domain time frequency wave-number wave-number

frequency
Radon

function f̂(x, t) f(x1, ω) ˆ̄f(k1, t) f̄(k1, ω) f̃(p1, τ)

The same conventions hold for transformed matrix and vector quantities.
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Terminology

The following terminology is used:

• AVP, Amplitude Versus Rayparameter

• CDP, Common Depth Point

• CFP, Common Focus Point

• CMP, Common Mid Point

• CSP, Common Surface Point

• DTS, Differential Time Shift

• Focusing in detection

• Focusing in emission

• NMO, Normal Move Out

• ·+, denotes a downgoing wavefield.

• ·−, denotes an upgoing wavefield.

• ·fr, denotes a free surface response.

• D, denotes source or detector response operator.

• F, denotes a spatially discrete inverse wavefield propagator.

• ω, denotes the angular frequency.

• P, denotes the spatially discrete measured seismic data for one frequency.

• S, denotes a source function.

• W, denotes a spatially discrete forward wavefield propagator.

• xsrc, denotes the source location.
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• xrcv, denotes the receiver location.

• xcfp, denotes the common focus point location.

• X, denotes the spatially discrete response of the earth.
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Introduction

1.1 Seismic processing and near surface effects

The seismic method aims at constructing an image of the subsurface in a non-
destructive way; Yilmaz (1987) gives an excellent overview on the traditional seis-
mic processing techniques. The most conventional way of obtaining the data for
construction of such an image is placing a sound source just beneath the surface,
such as a vibroseis or dynamite at land or an airgun array at sea, and record the
signal back into receivers placed at or near the surface as well. The signals that
are recorded consist of the direct arrival of the emitted signal as well as reflected
and refracted energy which is generated in the subsurface by contrasts in density
and wave-propagation velocities. By conducting many of these single source exper-
iments, the source being positioned at different locations, a subsurface coverage is
obtained which aims at illuminating the subsurface contrasts from many angles. The
constructed image represents the reflection properties of the earth.

The seismic method is often used under the assumption of smoothly varying material
properties in the lateral directions. A traditional seismic processing flow consists of
the following steps (Yilmaz, 1987):

• Removal of waves that travel along the surface.

• zero-phasing the reflection wavelets.

• removal of multiple energy.

• resorting the data into Common Mid Point gathers.

• Analysis of the propagation velocities.

• Normal Move-Out correction.
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Figure 1.1: Stack of Middle East land data, courtesy Petroleum Development Oman, con-
taminated by near surface effects. On top of the stack the applied mean static corrections
are displayed. Large static corrections indicate the presence of dunes.

• Stacking of the data.

• Migrating the data.

In land-data, the near surface part of the earth can severely degrade the quality
of the seismic measurements and influence all the subsequent processing steps in a
negative sense. Due to lateral variations within the near-surface, the data is dis-
torted close to the source and receivers. If these variations are strong, amplitude
changes, time shifts and scattered noise are observed. Especially processes involv-
ing velocity analysis, normal move-out correction and migration of the data are
degraded. Therefore, a strong need exists to remove the effects of the near surface.
Cox (1999) gives an elaborate evaluation on current solutions for complex near sur-
face problems. Commonly used strategies aim at removal of these effects by applying
surface-consistent time shifts and amplitude corrections, irrespective of offset and
recording time. Hence, the term ’statics’ is used. Figure 1.1 shows a typical stack of
seismic data acquired in a Middle East desert environment after application of static
corrections of which the mean values are displayed on top of the stack. In most ar-
eas, the static procedures have indeed enhanced the data, as can be concluded from
the continuity of deeper reflections. However, it is clear that the surface-consistent
assumptions can break down. Figure 1.1 shows, especially where the static correc-
tions are relatively large due to the presence of sanddunes, dim spots occur and the
continuity of reflection events has suffered.

Instead of applying so called surface-consistent static corrections, the most com-
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plete corrections will be derived by considering the full propagation characteristics
of the near surface; the data can then be corrected through a wave equation based
redatuming (Tegtmeier-Last, 2007). This was already recognized by Reshef (1991).
His problem did not specifically deal with sub-surface inhomogeneities close to the
sources and receivers but with a rugged topography only; Although no true velocity
problems were present, the rugged terrain posed similar problems to the subsequent
processing steps if it was not dealt with properly. Reshef (1991) redatumed the
data to a flat surface through wave-equation redatuming using a simple background
velocity. Rajasekaran and McMechan (1995) went one step further and migrated
the data directly from a rugged topography after estimating a near surface model
first, by using first-break tomography.

Quite often, however, the estimated near surface models are not adequately de-
scribing the near surface heterogeneities. In practice, one would like to avoid a
model description as long as possible. An opening to conceptually new methodolo-
gies was provided by Taner and Berkhout (1997; 1998), who considered the wavefield
to heal from near surface inhomogeneities away from source and receiver. Using the
CFP technology introduced by Berkhout (1997a), one would in principle be able
to obtain the near surface propagation characteristics without explicitly estimating
and defining a near surface model. Bakulin and Calvert (2004) use a comparable
way of reasoning by directly measuring the near surface propagation characteristics
by recording the signals emitted by surface sources at downhole receiver stations.
These physically measured propagation characteristics are then used to redatum the
data to a sparse redatumed data-set.

In this thesis the CFP method, as introduced by Berkhout (1997a), is used to es-
timate the propagation characteristics from the surface data and redatum the data
to a full data-set underneath the subsurface. By using the CFP methodology, a so
called focusing operator can be estimated that contains the propagation characteris-
tics from a single point underneath the weathered layer toward all surface locations.
Such an operator can be obtained for multiple subsurface locations.

1.2 Problem statement

Sherriff (1991) states the aim of the statics procedures as follows,

“... corrections applied to seismic data to compensate for the effects
of variations in elevation, weathering thickness, weathering velocity or
reference to a datum.”

“Determine the reflection arrival times which would have been observed
if all measurements had been made on a (usually) flat datum with no
weathering or low velocity material present.”
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Figure 1.2: To be able to compute data at a datum underneath the near surface, three steps
need to be taken: Operators need to be determined from the measured data by a differential
time-shift analysis (see Chapter 4), from the determined operators a velocity model needs
to be estimated (see Chapter 6) and redatuming weights need to be determined from the
amplitudes of the measured data (see Chapter 7). All steps involve an inversion scheme.

In this thesis we will take the second quotation in a even broader sense, since near
surface effects not only manifest themselves in single time shifts, but in multidimen-
sional operators that include amplitude effects, focusing/defocusing effects, triplica-
tion, diffraction patterns, etc. Therefore the aim is redefined as,

“Determine the recorded reflection energy which would have been ob-
served if all measurements had been made on a datum without the in-
fluence of the weathering material present.”

This statement implicates an optimization/inversion procedure in which the input is
defined to be the recorded data and the output the corrected data and the correction
operators.

What is needed for a good inversion result are a forward seismic model, an er-
ror criterion, an update algorithm and a quality assessment of the results.
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To handle near-surface problems by the CFP method, three stages can be defined
as depicted in Figure 1.2:

• Determination of focusing operators (one-way Green’s functions).

• Estimation of an effective velocity model.

• Computation of redatuming results.

At each stage we are looking for a set of parameters that describe smooth traveltime
operators, a velocity model that is consistent with these operators and redatuming
weights respectively. Determination of the involved parameters requires solving an
inverse problem.

For the parameterization of the traveltimes of the focusing operators and the reda-
tuming weights, use will be made of the concept of wavefield healing as described by
Taner and Berkhout (1998). This concept is depicted in Figure 1.3, which shows the
wavefield recorded at multiple surface locations and excited by a pointsource located
underneath the near surface in Figure 1.3A and the wavefield recorded at multiple
receiver locations underneath the near surface and excited by a pointsource at the
surface in Figure 1.3B.

Clearly, the wavefield suffers from the near surface inhomogeneities close at the
surface but recovers from those inhomogeneities in the deeper subsurface. This con-
cept is not violating reciprocity as reciprocity relates a single detector with a single
source only. For instance the centre traces are exactly the same for the two records,
as displayed in Figure 1.3C. In a sense, the concept of wavefront healing allows a
parametrization of smooth operators describing the propagation characteristics from
a single surface location through the near surface into the deeper subsurface. This
property will be exploited in this thesis.

1.3 Outline

In Chapter 2 an extensive overview is given of existing and commonly used methods
to compute static corrections in the situation of near surface problems. The chapter
ends with the proposal of a new method to determine surface consistent time shifts.

In Chapter 3 the shortcomings of using statics is demonstrated. The chapter also
describes how redatuming can improve the full processing cycle.

In Chapter 4 the acoustic wave-equations are revisited, leading to the so called
WRW-model. The WRW-model elegantly describes the reflection measurements,
leading to a formulation of, among others, surface-related multiple prediction. More
important for this thesis, it is the basis of a redatuming scheme. The WRW-model
provides a number of criteria which can be used to estimate operators that describe
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Figure 1.3: The shotgather of (C) is obtained by recording the wavefield excited by a single
source, placed underneath a complex near surface, at multiple receiver locations placed at the
surface, as shown in (A). The shotgather of (D) is obtained by recording the wavefield excited
by a single source, placed at the surface, at multiple receiver locations placed underneath
the same complex near surface as shown in (B). The two middle traces overly each other
exactly, as shown in (E).

the near surface characteristics without the explicit need of a near surface model.
These will be described in Chapter 4 as well.

In Chapter 5 use is made of the healing concept as illustrated by Taner and Berkhout
(1998) to parametrize the operators that describe the near surface propagation. The
chapter shows how, by using a nonlinear optimization scheme, initial operators are
found which already adequately contain the effects of near surface anomalies.

Once the final operators have been determined, these operators can be used to esti-
mate a near surface model as described in Chapter 6. It should be emphasized that
the model is consistent with the traveltimes of the operators. Besides an effective
velocity profile of the near surface, the model estimation also provides the depth of
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the new datum.

In Chapter 7 it is shown how the amplitudes of the one-way wave propagation opera-
tors can be derived from the traveltime operators in combination with the measured
data. These amplitudes will then be used as weights within a weighted least-squares
redatuming scheme to determine the data at a level underneath the complex near
surface (the new datum).

Chapter 8 illustrates the workflow on two examples. One example demonstrates the
applicability on low frequency complexities, such as sand-dunes and wadis, which
are typical features within desert operations. The other example contains higher
frequency complexities. This example is part of a large model which is used to test
the performance of static algorithms available on the market (courtesy BP).

Finally in Chapter 9 conclusions are drawn and recommendations for further re-
search are given.





2

Near surface corrections, an
overview

2.1 Introduction

The seismic method, aimed at the exploration and production of Hydrocarbons, is
designed to image contrast in elastic properties within the earth under the assump-
tion that these contrasts are embedded within a generally smoothly changing earth.
As the seismic method comes down to the determination of the acoustic impulse
response of the earth, the design is generally based on a proper discretization of the
signal measurements. This is needed both from a practical point of view as well as
an economic point of view. Practical in the sense that it is not possible for instance
to have a continuous spatial measurement of the reflected wavefield. Economic in
the sense that a very dense set of recorders would lead to an enormous amount of
data and a tremendous effort in placing (land) or towing (sea) the equipment.

As the earth is a dispersive medium with a general frequency recovery of about
100 Hz for the aimed targets and with acoustic compressional velocities in the range
of 1500 to 5000 m/s, in the light of measurement properties for signal processing,
we can suffice with a spatial distribution of sources and receivers with an approxi-
mate interval of 20 to 50 m. and a time sampling rate of 1 to 4 ms. However, on
land the near surface can be very rugose due to the presence of mountains, sand
dunes, carsts, man-made obstacles, etc. such that the assumption of a smoothly
varying medium and the assumed range of compressional velocities brakes down,
which has a detrimental effect on the recovery of the seismic impulse response of
the earth. In other words, the setup of the seismic experiment is just not equipped
for a proper measurement of the near surface effects. Moreover, these so-called near
surface effects can occur on all scales. Within high frequency laboratory experiments



10 Near surface corrections, an overview

on rock-samples for instance, the effects can be caused by small scale impurities.

As these near surface effects mainly appear close to source and receiver, in prac-
tice they are accounted for by estimating correction factors (mainly in phase, but
also in amplitude) for each surface location such that the coherency between subse-
quent spatial measurements is optimized. As these correction factors are applied on
a complete trace, independent of the measuring time, they are also known as static
correction or shortly statics.

In this chapter an overview is given on currently used methods to estimate these
corrections, followed by an analysis on when these methods will break down. A large
part of the following sections summarizes the work of Cox (1999), who gives a very
extensive and elaborate discussion on the many aspects of statics.

2.2 Historical background

As the historical overviews found in Marsden (1993a; 1993b; 1993c) show, the prob-
lems and difficulties of complex near surface heterogeneities were already recognized
in the early days of seismic exploration. In his paper on the invention of the re-
flection seismograph, Karcher (1987) describes his involvement in the first reflection
seismic experiments of which the log-book notifies on December 1-23, 1921 the ”Ex-
periments to determine methods to make time corrections for weathered sections of
soil”. Weatherby (1971) points out that already in the early work ”additional shots
were always taken in shallow shot holes near the recording spread. These gave in
effect a short refraction profile which was solved as a simple two-layer case.” From
here on it became common practice to compute weathered layer effects by refrac-
tion methods. Due to the small amount of data (24-trace, 6-fold) it was possible
to perform manual refraction analysis on refraction surveys. Also the so-called up-
hole surveys (see section 2.4.1) became a popular technique to define near surface
anomalies.

By 1970, seismic processing has become more and more computer intensive, which
has its effect on statics computations as well. Due to the evolution of the CDP
technique (Mayne, 1956) since the 1950’s, the redundancy of CDP data is used to
compute residual statics (Taner et al., 1974; Booker et al., 1976). As the number of
channels and fold increased, and surface sources where introduced such as vibroseis,
manual refraction analysis and uphole surveys became impractical and economically
unfeasible. Thus the statistical approach of most residual static procedures became
common practice to solve all near surface problems. As mentioned by Schneider
(1971) statistical methods however need to be employed carefully when S/N ratios
are low, spatial frequencies are low and if the deviations are larger than half the
period of the dominant reflection event. In those cases for instance cycle skipping
can easily occur. Moreover low spatial frequencies in the near surface can introduce
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artificial structures. Also mentioned by Schneider (1971) in his review on the devel-
opment of the seismic method is his opinion that the general near surface problem
is understood, the problem is to solve it economically.

With the further growth of the number of recording channels, the decrease of the
group intervals and the increase of the array lengths in the 1980’s, refractions on
reflection records show less attenuation and full analysis of refraction energy became
possible, giving rise to the revival of the original datum/field statics with a higher
accuracy.

2.3 Datum statics

Datum statics are surface consistent statics computed from an estimated near sur-
face model. The aim of the datum statics is to synthesize the sources and receivers
along a datum, which does not suffer from near surface effects, as if the data was
originally recorded along this datum. Sometimes datum statics are referred to as
field statics, as for instance topology effects can readily be accounted for during
acquisition under certain assumptions of the near surface velocities.

The main assumption made is that due to large velocity contrasts, raypaths travel
vertically through the near surface. The principle of the datum statics is illustrated
by Figure 2.1. Traveltime corrections are in principle computed for each station
(source and receiver) from acquisition surface to a chosen datum. The most logical
choice for the datum, would be a flat datum underneath the near surface. However,
any other convenient datum could be possible as well, such as depicted in Figure
2.2. In case of Figure 2.2 the total static corrections, TA, TB, TC for the three points
A,B,C would be,

TA = −tAw − tAd, (2.3.1)
TB = −tBw + tBd, (2.3.2)
TC = −tCw + tCd, (2.3.3)

in which tAw is the weathering correction for location A and tAd is the elevation
correction for location A. The weathering correction corrects for the thickness and
velocity through the overburden to the base of the overburden layer, Ab. The eleva-
tion correction corrects for the distance between the base of the overburden and the
chosen datum, ‖Ad −Ab‖, and a known subsurface velocity.

In general, the datum can be arbitrarily chosen such that it minimizes the effects of
near surface heterogeneities and anomalies when a simple time shift is used for each
trace to virtually place shot and receiver downward to the datum.

It can be observed in Figure 2.1 that, although the datum corrections aim to correct
the source and receiver time such that the source and receivers are synthetically
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Figure 2.1: Datum statics correct traveltimes such that the source location S and receiver
location R are virtually placed along a user defined datum at respectively location S′ and
R′. These corrections are generally done in a surface-consistent way, which means that
the corrections are independent of the offset and depth. The figure clearly shows that the
correction also implies a change of raypath, which is often neglected in practice.
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Figure 2.2: Computation of static correction TA, TB and TC for an arbitrary datum; A)
Datum statics tend to replace the velocity of the weathered layer with the velocity of the layer
underneath the datum. B) For that purpose, first times from the specific source and receiver
locations are corrected to the base of the weathered layer with the weathered layer velocity.
C) These corrections are followed by a time correction from the base of the weathered layer
to the datum, using the base-layer velocity.
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Figure 2.3: The floating time-datum depends on the fold of the CMP gathers. As for each
CMP, the floating datum is chosen to be the mean static within the CMP gather, the floating
datum is basically a filtered version of the static corrections. The dotted line equals to the
computed single fold static at each CMP. The dashed line depicts the floating datum for
24-fold data, the solid line depicts the floating datum for 48-fold data.

positioned at the new datum, the true raypaths and the assumed raypaths differ.
For that purpose the floating datum was introduced. Applying datum corrections as
computed by Equation 2.3.3 does not take into account hyperbolic move-out, and re-
lies on almost vertical raypaths between surface and datum. If significant move-out
is expected or the replacement velocity is wrongly estimated, false structure can be
introduced for deeper reflections. The floating datum concept (Rogers (1981)) tends
to minimize such type of artefacts. In Profeta et al. (1995) an elaborate discussion
can be found on the importance of static corrections to be minimal.

The floating datum can be thought of as an intermediate datum within the CMP
process. It serves as a time datum, minimizing the necessary static shifts for each
CMP gather by eliminating the mean static shift for each CMP gather. In this
way the applied statics are minimal and circumvent stacking velocity corrections
beforehand. The resulting time shift from the floating datum to the actual datum
is determined by the mean static shift for each CMP gather.

The floating datum correction is applied prior to CMP processing. After appli-
cation of the floating datum correction, velocity analysis can be performed, followed
by stacking. Stacking velocities can then be used to refine the mean datum correc-
tion. The stacked section is finally repositioned to the desired datum by applying
the mean datum correction or a time migration.

The floating datum computation is equivalent to CMP averaging of the computed
datum correction. Figure 2.3 shows the computed datum static corrections for CMP
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sorted traces and the resulting mean datum corrections which are equivalent to the
time-difference between the floating datum and the desired datum. The static cor-
rection are shown for increasing fold (1, 24 and 48) with a constant spatial sampling
distance. For higher folds, the floating datum becomes more and more a low fre-
quency result of the computed datum correction which is displayed in Figure 2.3 as
well.

As the floating datum correction applies minimum static correction to the traces,
followed by a mean correction after stacking, it is only applicable in case the seismic
data is subject to poststack migration. These days processing is more and more fo-
cused on prestack migration, for which the floating datum principle no longer gives
an advantage.

2.4 Near surface model estimation

As described in the previous section, field statics and datum statics (including the
elevation statics), fully depend on the estimation of a near surface model in terms
of thickness and velocity, as well as a subsurface velocity, just below the base of
the overburden layers. Any errors made in the estimation are suppressed by the
introduction of the floating datum concept, which allows for instance a replacement
velocity update by using stacking velocities. Further improvements over the datum
correction and the vertical raypath assumption is covered by residual dynamic and
static correction, subject to the next section. The process flow of conventional
static computation and application is displayed in Figure 2.4. In this section the
conventional near surface model determination is covered, which is mainly done by
conducting uphole surveys and refraction analysis.

2.4.1 Uphole surveys

Already in 1930’s, use is made of measurements of the first arrival time from a
buried dynamite source to the surface, to obtain an estimate of average near sur-
face velocity. These measurements are referred to as production upholes. Nowadays,
uphole surveys are conducted either with a source placed in a deep shot-hole and
receivers placed at the surface in a walk-away configuration (see Figure 2.5A) or
with a source placed at the surface and a hydrophone string hung from the borehole
(see Figure 2.5B), as described by, for instance, Parry and Lawton (1994). Both con-
figurations carry similarities with Vertical Seismic Profiling recordings as conducted
within production seismics. Depending on the complexity of the problem, uphole
times are used to compute a near surface model by the following methods.

Zero offset corrected traveltime interpretation

In Figure 2.6 the uphole traveltime interpretation is illustrated. First we consider the
simple horizontally layered velocity model as depicted in Figure 2.6A. The recorded
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Figure 2.4: Processing scheme used for static corrections. Refraction analysis and uphole
surveys are used to compute an initial near surface model from which datum statics are
computed. The floating datum will be constructed, such that the datum statics to be applied
are minimal within each CMP gather. An iterative process is then used to determine residual
statics and stacking velocities. The resulting velocities can be used to update the floating
datum corrections. After convergence of both datum statics and residual statics, the data
can be stacked and corrected for the user defined datum, by applying the floating datum
times.
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A B

Figure 2.5: Uphole surveys are conducted within the field, by either placing a series of sources
(A) or a series of receivers (B) in a constructed downhole. Their purpose is to measure the
first arrivals between the downhole stations and the respectively receivers (A) and sources
(B) placed in a walk-away configuration at the surface.

uphole times of Figure 2.6C, as measured in the horizontally layered model of Figure
2.6A, are corrected for move-out by a simple parabolic correction,

T (x3) = t(xS ,xR)
xS3 − xR3√
|xS − xR|2

, (2.4.1)

in which T (x3) is the move-out corrected traveltime as function of depth x3 for the
measured traveltime t(xS ,xR) between source xS and receiver xR as displayed by
Figure 2.6D. Then the corrected traveltimes are interpreted as the response of a
layered model, for which each layer velocity is described by the interpreted slope
and depth as depicted by Figure 2.6E.

If the model becomes more complex (Figure 2.6B) then especially for the veloci-
ties the results deteriorate from the correct results as displayed by Figure 2.6F, G
and H. The process of move-out correction and velocity computation can be sub-
ject to an iterative system, in which the applied move-out corrections are enhanced
by using the found velocities of the previous iteration in Dix’ equation for stacking
velocities (Dix, 1955).

Wavefront diagrams

The wavefront diagram was introduced by Meissner (1961)(see also Sherriff, 1991),
for which a horizontally layeredmodel is assumed for each uphole. For each source/receiver
pair, the measured uphole time is displayed at downhole depth and the offset. Under
the assumption of a horizontally layered model, each raypath is mirrored over its
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Figure 2.6: Panel (A) displays a horizontally layered model, including an uphole-survey
design. Panel (B) displays the same survey design, placed in a laterally varying earth.
First arrivals (horizontally) are measured at 22 downhole receivers with a spacing of 5m,
for 10 different shot locations, for which panel (C) displays the measurements for model (A)
and panel (F) the results for model (B). After applying spherical divergence corrections (D
and G), the 4 intervals are recognized. By taking the derivative of the corrected arrival-time
curves (E and H), the interval velocities are retrieved. The correct interval-velocities are
indicated by the dotted lines in (E) and (H).
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midpoint, as if it is originating from a source at depth=0 in the borehole. In this
way wavefronts are formed by drawing isochrones, virtually excited by a source at
depth=0 and offset=0. A near surface model is constructed by determining interval
velocities from the gradients of the isochrones as depicted in Figure 2.7.

Again, when the near surface becomes more complex, the raypaths from source
to receiver are no longer symmetric with respect to the wave path between virtual
source and virtual receiver and the method slowly breaks down for the larger off-sets
as can be observed in Figure 2.7F. The concept has proved its usability to determine
for instance near surface anisotropy as well.

Tomography

If near surface variations are considerable, the assumption of a horizontally layered
earth does not longer hold and results obtained from for instance the wavefront
diagram method diverge from the correct model. Tomographic inversion can give
adequate but cumbersome results as shown by for instance Nolet (1987) and Stewart
(1991).

The tomographic inversion approach can be applied to a broader ranch of mea-
surements such as hole-to-hole analysis as described by for instance Macrides et al.
(1988) and Harlan (1990). Since tomographic inversion will also be addressed in
the remainder of this thesis, the reader is referred to Chapter 6 for a more detailed
description on tomographic inversion.

2.4.2 Refraction analysis

Besides the uphole survey, which is expensive in terms of manpower and acquisition,
use is made of first arrival times or refraction analysis within the production seismics
as well to determine either a near surface model or equivalent weathering layer delay-
times. In general, data is required from so called reversed profiles to compute these
corrections. Reversed profiles assure the availability of reciprocal times as depicted
in the general set-up of a refraction survey in Figure 2.8. When refracted energy
from different sources is measured along a profile in a split spread at several receiver
positions, as depicted by Figure 2.8A and 2.8B, the underlying subsurface has a so-
called multi-fold coverage. Due to the multi-fold character of the seismic reflection
survey, these reciprocal raypaths are implicitly available within the gathered data
and can be recovered by combinations of experiments as depicted by Figure 2.8E.

Graphical methods

Graphical methods find their base in the ABC-method (Edge and Laby, 1931; Ba-
horich et al., 1982). The ABC method determines for a surface location B, in between
two locations A and C (see Figure 2.8E), the weathered layer delay-time as follows.
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Figure 2.7: From first arrival times of uphole surveys, wavefront diagrams can be con-
structed. Under the assumption of a horizontally layered earth, a virtual shot and virtual
receivers can be interpreted from the uphole design (panel (A) and (B) ). By reordering the
recorded times in analogy with the constructed virtual acquisition of the top figures, wave-
front diagrams are constructed for the lateral invariant model if panel (C) and the lateral
varying model in panel (D). The black lines depict isochrones. The norm of the divergence
of the wavefront diagram traveltimes reflect the interval velocities (panel (E) and (F)). The
velocities are correctly estimated in comparison with the true model if velocities are not
laterally varying, see panel (E). If the velocities are laterally varying as shown in the panel
(B) then the resulting velocities will deteriorate as depicted by panel (F).
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For the measured traveltimes t.. between subsequent stations we can write,

tAB =
lAD
c1

+
lDE
c2

+
lBE
c1
, (2.4.2)

tBC =
lCG
c1

+
lGF
c2

+
lBF
c1
, (2.4.3)

tCA =
lAD
c1

+
lDG
c2

+
lCG
c1
, (2.4.4)

in which l··· refers to a certain path length, c1 to the weathered layer velocity and
c2 to the sub-weathering velocity. The subscripts refer to segments between the
locations as depicted in Figure 2.8E. Then a combination of the relationships from
Equation 2.4.4 leads to,

tAB + tBC − tCA =
lBE + lBF

c1
− lEF
c2
. (2.4.5)

Under the assumption of a high velocity contrast, lEF will almost vanish and lBE
will almost equal lBF . Thus the weathered layer delay-time for station B can be
described as,

tw,B =
1
2
(tAB + tBC − tCA), (2.4.6)

≈ lBE
c1
. (2.4.7)

Hagedoorn (1959) extended the ABC-method to the so-called Plus-Minus method.
In this method the delay time computed through Equation 2.4.7 is called the Plus-
time and an extra time, the Minus-time is computed according to,

t−w,B =
1
2
(tAB − tBC + tCA), (2.4.8)

≈ lAD
c1

+
lDE
c2
. (2.4.9)

By moving station B in between stations A and C, the first term on the right-hand
side is constant, while the second term described a line with a slope equal to the
slowness of the refractor.

Wavefront and Raypath methods

From a reciprocal refraction analysis survey (measurements along the line between
two source locations), time-distance curves can be constructed. These time-distance
curves describe the intercept time of a refracted wave-front with the receivers at the
sources. From these time-distance curves at fixed ∆t the distance along the line can
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Figure 2.8: First break times are used for near surface profiling. A) First break times
interpreted as refracted ray-times. B) Equivalent reverse profile of A). C) First breaks in-
terpreted as turning rays. D) Equivalent reverse profile of C). E) Schematic of the principle
of reverse profile first break times analysis.

be deducted. These emergence locations are plotted in the graph, for both sources.
The wavefront emerging from the location at N∆t is constructed by taking the en-
velope of the arcs with radius nc1∆t centering around the emergence location n∆t
for n < N . This principle is shown in Figure 2.9. By constructing the wavefronts
for both sources, the depth of the refractor is found at the points where the sum of
the wavefront times of two crossing wavefronts equal to the reciprocal time between
the two sources.

For multi-layer problems, this procedure can be repeated along the constructed
first refractor, with the time-distance curve for the refraction times of the second re-
fractor and so on. Hagedoorn (1959) showed that the Plus-Minus method resembles
the wavefront method. The Plus-times and Minus-times are resembled within the
wavefront methods as so called Plus-lines and Minus-lines, as indicated in Figure
2.9. The distance between minus-lines equals both the geometrical distance along
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Figure 2.9: Within the wavefront technique, wavefronts are constructed for two reciprocal
refraction surveys. From the measured time-distance curves (B), emergence-locations are
defined at fixed ∆t (A) for both profiles. From the emergence locations, circular wavefronts
are constructed by the aid of an assumed near surface velocity. The envelope of the con-
structed wavefronts determine the total refracted wavefronts emerging from the two sources.
At the point where the two wavefronts are crossing, the boundary of the near surface layer
is found. The traveltimes of the two refracted wavefront is chosen, such that the sum is
equal to the reciprocal traveltime.

the recording line, as well as c2 ∗ ∆t from which the refractor velocity can be re-
trieved. Two Plus-lines lie ∆t times apart, thus, taking the difference between the
time of the Plus-time line at the refractor and the Plus-line at the surface, gives the
Plus-time for the particular surface location. From a more general point of view, the
wavefront method can be looked upon as a special case of migration of refraction
energy.

Numerical methods

The concepts of the graphical methods also have found their ways in the 1990’s
into numerical and computational methods. Hill (1987) and Taner et al. (1988) im-
plemented the wavefront technology into a downward continuation method applied
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in the linear Radon domain, which was eventually implemented in 3D by Taner et
al. (1988). As explained in the previous section, the refractor is imaged at loca-
tions where constructed wavefronts add to the reciprocal arrival time. Hill (1987)
formulated the following imaging condition in 2D,

I(x, z) =
∫
∂IR
P̂ (xAsrc, x, z, t)

∫
∂IR

P̂ (xBsrc, x, z, tR − t)dt, (2.4.10)

in which tR is the reciprocal time between source (receiver) location A and source
(receiver) location B. The image will be constructed since the integral will only
have a non-zero contribution when depth continued wavefronts

∫
P̂ (xAsrc, x, z, t) and∫

P̂ (xBsrc, x, z, tR − t) coincide. Use is made of the linear Radon transform, to de-
compose the recorded refraction wavefields P̂ (xAsrc,xrcv, t) and P̂ (x

B
src,xrcv, t) into

plane waves and extrapolate them into depth using an assumed velocity function,
c(z),

P (xAsrc, x, z, ω) =
1
2π

∫
P̄ (xAsrc, kx, z, ω) exp (−j(kz − kxx))dkx, (2.4.11)

with

k2z =
ω2

c2(z)
− k2x. (2.4.12)

Instead of implementing wavefront construction algorithms, also full tomography
algorithms have been applied to refraction times. Hampson and Russell (1984) in-
troduced a general linearized inversion method applied to refraction data. Their
forward model consists of modeling refractors along with refraction traveltimes as
calculated according to Figure 2.9 . The method is linearized through perturbation
theory. For further details on tomography and perturbation theory the reader is
referred to Chapter 5 and references cited there.

Instead of basing the tomography on a layered model, the method can also be
extended to a model under the assumption of a gradually increasing velocity as
function of depth for each lateral position and use ray-tracing algorithms to model
first break times. Since the velocity will increase with depth, modeled first-break
times originate from turning rays as demonstrated by figure 2.8C and D. Therefore,
these methods are generally referred to as turning ray tomography (Zhu et al., 1992;
Epili et al., 2001). A further extension to turning ray tomography and wavefront
methods was introduced by Gonzalez et al. (1999), who recognized that at the turn-
ing point, the ray-parameter is actually equal to the underlying velocity. In Gonzalez
et al. (1999), Osypov (2000) and Osypov (2001) this method is explained in more
detail. A remaining problem of most refraction analysis models, as pointed out by
Docherty (1992), is the fact that long wavelength ambiguities remain due to small
aperture ranges. They claim that through an Eigenvalue analysis of the measured
refraction times it can be shown that velocity-depth trade-offs have little effect on
the observations. Sensitivity studies of static solutions related to the offset range or
aperture can be found in Saleh (1994).
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2.5 Residual statics

Datum statics computed from refraction analysis is based on the assumption of verti-
cal raypaths through the near surface. Besides errors introduced by this assumption
the resulting corrections are dictated by the resolution of the interpretation. Resid-
ual static computations are estimated to remove these residual short wavelength
errors and are by no means meant to compute a full statics solution. Accurate
datum statics are demanded within conventional processing to remove the longer
wavelength static anomalies. Residual statics time-shifts are in most methods based
on the basic traveltime equation,

Tijk = Gk + Si +Rj +MkX
2
ij +N, (2.5.1)

in which Tijk is the total synthesized zero-offset time for the trace produced by source
i and receiver j, within CMP gather k after NMO-correction. Gk is the structural
or geological term representing the two-way reflection time from the reflector to the
datum, Si is the residual source static, Rj is the residual receiver static, MkX

2
ij is

a residual move-out term depending on the move-out coefficient Mk and the trace
offset Xij . N is a noise component. The main assumptions within Equation 2.5.1
are that the arrival times within an NMO-corrected CMP gather are constant for
all offsets. Note that this does not allow for dip within the subsurface and that
source and receiver statics are offset and time independent from which the expression
surface consistent relates. A modified version was presented by Larner et al. (1979),
including an extra crossline dip term and making the expression time dependent,

Tijkh = Gkh + Si +Rj +MkhX
2
ij +DkhYij +N, (2.5.2)

in which Dkh is the crossline coefficient and Yij the perpendicular distance from
the CMP to the effective profile line for trace ij. The modified traveltime func-
tion of Equation 2.5.2 is time dependent through the subscript h allowing to analyze
residual move-out crossline dip and reflection times for each separate observed reflec-
tion. Thus Equation 2.5.2 is equipped to handle crooked line recordings adequately
through the crossline coefficient. Note that the source and receiver statics are not
time-dependent (through definition). The modified traveltime-equation of Equation
2.5.2 can be rewritten in matrix notation as,

t = Am+N, (2.5.3)

in which t is a vector with observed time-shifts, A is a model matrix containing
the known coefficients of Equation 2.5.2 andm containing the unknown parameters:
source and receiver statics, move-out coefficient and crossline coefficient. The noise
is contained within N. By minimizing the error/noise term,

N = t−Am, (2.5.4)

through using Bayes’ theorem and probability theory, a least-squares solution for
the unknown parameters is obtained. For detailed discussion on inversion the reader
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is referred to Appendix B.

The major effort and time-consuming part for residual statics computations lies
within the determination of the individual input times for the traces. Picking all
input times from the prestack shot gathers by hand would be a cumbersome task.
Time-picking is generally automated by cross-correlating individual traces P̂i and
P̂j over time within a window (t1, t2) around the expected reflection energy,

φ̂ij(τ) =

∫ t2
t1
P̂i(t)P̂j(t+ τ)dt√∫ t2

t1 P̂i(t)P̂i(t+ τ)dt
∫ t2
t1 P̂j(t)P̂j(t+ τ)dt

. (2.5.5)

The maximum from the cross-correlation determines the differential time-shift be-
tween the two traces.

The result strongly depends on the quality of the input traces. To enhance sig-
nal to noise ratio’s a pilot or model trace can be constructed. Within a CMP gather
the initial pilot trace is the trace resulting from stacking the gather, which is cor-
related with the individual traces within the CMP gather to obtain the individual
time-shifts. A drawback is that when static shifts are considerably, the quality of
the pilot trace is degraded significantly (which is explained in more detail in Section
2.6) and hence the detection of time-shifts will become difficult. To overcome these
problems, the pilot trace can be updated iteratively by constructing the pilot trace
from the traces corrected by the found time-shifts to date.

Alternatively, Ronen and Claerbout (1985) introduced the concept of stack power
optimization. The stack power of two traces P̂i and P̂j with differential time shift
∆t reads,

E(∆t) =
∫
(P̂i(t−∆t) + P̂j(t))2dt, (2.5.6)

=
∫
(P̂i(t−∆t)2 + P̂j(t)2)dt+ 2

∫
P̂i(t−∆t)P̂j(t)dt. (2.5.7)

The first term in equation(2.5.7) is simply the stacked power of both traces indi-
vidually, independent of the time shift, while the second term represents the cross-
correlation between the two traces. By making two supertraces, one trace with con-
catenated traces from an individual source location and one trace from concatenated
stacked CMP traces, excluding the source traces, the maximum power indicates the
source-static. This procedure is repeated for all source and receiver locations.

A drawback of the correlation methods is that the resulting picks can be trapped
within a local maximum of the computed correlation, when for example a large time
window needs to be defined if large time-shifts are expected. This feature is known
as cycle skipping. For that purpose several authors have introduced global optimiza-
tion techniques such as Monte Carlo (Rothman, 1986), genetic algorithms (Dubose,
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1993; Vasudeva et al., 1991) and simulated annealing (Sen and Stoffa, 1991).

In Chapter 4 an algorithm is discussed to find imaging operators that bares a close
resemblance to the detection of residual statics by using a genetic algorithm; the
reader can find an example on using genetic algorithms for residual static detection
in Appendix B.

A generalization of the outlined residual statics method has also been used by
Hatherly et al. (1994) to determine refraction statics from the refracted energy of
linear move-out corrected data.

2.6 Error effect of statics

Residual statics cause errors with a statistical nature opposite to errors introduced
by erroneous datuming assumptions. Within any stacking procedure, whether part
of CMP processing or implicitly within imaging procedures, residual statics degrade
the resulting image severely. For that matter consider the result of stacking N move-
out corrected traces within a CMP-gather with fold N,

P̂S(xcmp, t) =
1
N

N∑
i=1

P̂ (xcmp,xoffi , t), (2.6.1)

in which xCMP is the CMP-position under consideration and xoff are the offset
values for the collected traces having similar a CMP location. When the traces con-
tributing to the stacked trace are corrected for are perfectly corrected for move-out,
spherical divergence and other amplitude effects, then, in the noise free situation,
the result equals an average over N similar traces. If each trace would have an
individual static shift, the stacking result can be written as,

P̂S(xcmp, t) =
1
N

N∑
i=1

P̂ (xcmp,0, t+ δti), (2.6.2)

with δti representing the individual static time shifts. If the traces within the CMP-
gather contain uniform distributed residual statics with zero mean and maximum
∆t, then the result reads after sorting the traces to their static shifts,

P̂S(xcmp, t) =
1
N

N
2 −1∑

i=−N
2

P̂ (xcmp,0, t+ i
2∆t
N

). (2.6.3)

which is a convolution in time with the boxcarr function g(t), defined by

ĝ(t) = û(t+∆t)− û(t−∆t), (2.6.4)
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in which u(t) resembles the Heaviside function. In the temporal frequency domain,
Equation 2.6.3 can be written as the product in time of the spectrum of the zero-
offset trace with a sinc-function G(ω), determined by the static distribution,

G(ω) =
sin(ω∆t)
Nω

, (2.6.5)

which includes notches at every 1
2∆tHz interval. Thus for statics uniform distributed

between −8ms and 8ms the first notch occurs at 62.5 Hz, which is already within
the dynamic range of the current seismic experiments. Figure 2.10a displays the
stacked results for a 64-fold CMP-stack over a set of Ricker wavelets, with maxi-
mum static time-shift varying between 4 ms and 64 ms in steps of 4 ms (equal to the
time sampling interval). Figure 2.10b shows the frequency attenuation in dB with
respect to the static free result.

In general the static distribution will be normally distributed, for which the deriva-
tion will be far more cumbersome, but Figure 2.10c illustrates the effect for a 64-fold
CMP gather with statics normally distributed with a mean of zero and a standard
deviation between 4 ms and 64 ms in steps of 4ms. Clearly, the resulting spectrum
of Figure 2.10d is severely degraded toward the noise level of -30 dB, which is quite
common within land seismics at 20-30 Hz for a statics distribution with standard
deviation of 8 ms.

2.7 Static corrections by focusing

In this section two alternatives are described to compute surface consistent static
shifts from the data by combining and correlating shotrecords. Such a correlation is
closely related to the so-calledWRW -model, which is described in detail in Chapter
4. In this chapter we will use the focusing methodology derived from the WRW -
model without detailed explanation and will refer to Chapter 4 when necessary.

The described methods are not based on a model and can therefor be considered
data-driven approaches to static time-shift determination. In addition the methods
could also provide initial focusing velocities.

The outcome of the proposed alternatives can later on be used to initialize pa-
rameters for the so called focusing operators as will be suggested in Chapter 5.

Focusing shot records

By using each shot-gather as a ”focusing” operator on the full set of shot-gathers,
an image is constructed, which images the shot-gather in itself. By taking the i-th
shot-gather the image for this particular shot-gather is constructed by,

si = pHi (z0, z0)P(z0, z0). (2.7.6)
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Figure 2.10: Unresolved residual statics can severely degrade the stacked result in for instance
CMP processing. In figure A) the stacked result is shown for a 64-fold CMP gather, for
different amount of residual statics ranging from a uniform distributed statics between -
4ms and +4 ms to -60ms and 60 ms. The stack degrades severely. The figure B) shows
the attenuation curves of the stacked result with respect to a static free result. The statics
introduce clearly recognizable notches. Figure C) shows the stacked result for the same 64-
fold data, but here a more realistic normally distributed static was applied with a standard
deviation ranging from 4ms to 64ms. Again a clear degradation is observed in both the
stacked result as well as in the attenuation curves D).

Here pi resembles one specific shot-gather,

pi(z0, z0) = P(z0, z0).Ii, (2.7.7a)

=W−(z0, zd)R(zd)w+
i (zd, z0)S(ω), (2.7.7b)
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with .Ii as defined in Equation 4.6.53. Then the focusing definition of Equation 2.7.6
can be written as,

si =
[
w+
i (z0, zd)

]H
RH(zd)

[
W−(z0, zd)

]H
W−(z0, zd)R(zd)W+(xd, z0)SH(ω)S(ω),

(2.7.8a)

si =
[
w−
i (z0, zd)

]∗
RH(zd)R(zd)W+(zd, z0)SH(ω)S(ω), (2.7.8b)

in which it was assumed that sources and receivers are placed at the same surface
locations such that,

W+(zd, z0) =
[
W−(z0, zd)

]T
, (2.7.9)

and the matched filter inverse propagators read according to equation 4.5.27 and
4.5.28,

F+(z0, zd) =
[
W−(zd, z0)

]∗
, (2.7.10a)

F−(zd, z0) =
[
W+(z0, zd)

]∗
. (2.7.10b)

Apart from the reflection operators, Equation 2.7.8b can be recognized as the ex-
pression for a second focusing step which will render a focused image. Although
an image is created, this procedure is not directly applicable for image analysis. In
principle the correlations should perfectly image all energy at (t = 0,xi). for all re-
flections, when cross-terms are handled properly within the correlation. All other x
locations will render zero energy through deconstructive interference. On the other
hand, as all energy collapses in the same point and no use is made of model param-
eters, either physically or intrinsically, no extra information is obtained.

The procedure will become more interesting, when opposite to the focusing prin-
ciple analysis, the move-out times of the shot records are perturbed, as to defocus
energy. In the extreme case of a perfect move-out correction with respect to the
background medium excluding the static near surface effects, semi-plane waves are
created with their source and receiver static timeshifts still included. Then corre-
lating the corrected shot-gathers, by using Equation 2.7.6, is interpreted as stacking
flat events, for which the receiver statics have canceled out, with a time-delay equal
to the relative difference in the source statics. Note indeed that no static perturba-
tions are observed at all within the correlation prior to stacking the traces.

If an optimal move-out would have been applied, maximum energy is rendered
within the resulting correlation-gathers for all pseudo offsets (offset between source
i and source j). In Figure 2.11 results are shown in the time domain of two shot-
gathers correlated in time for different applied move-outs. One trace in the image-
gather of Equation 2.7.6 is obtained by stacking the results. Figure 2.11A shows
the result without applying move-out. Residual hyperbolic move-out is recognized,
which will render maximum energy within the Fresnel-zone, which is absent here.
The other figures show results after applying move-out with a move-out velocity of
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1000,1500,1800,2500 and 3000 m/s. Move-out with 1800 m/s (Figure 2.11C) renders
almost flat events, which will result in a maximum energy when stacked. In Figure
2.12 the results are shown when the complete focusing procedure is carried out with
one shot-record on the whole set of shot-records with the same set of move-out ve-
locities applied. When no move-out is applied, Figure 2.12A, the result shows the
imaged energy at time equal to zero and the location of the shot-gather used for fo-
cusing. Maximum energy throughout the-gather is obtained for a move-out velocity
of 1800 m/s, Figure 2.12C. The times where maximum energy occurs is equal to the
relative difference in source statics.

Shot-gather cross correlation

Alternatively initial time-shifts could be derived through a spatial correlation be-
tween the shotgathers in the frequency domain,

sij = pi(x)∗ ∗ pj(−x) (2.7.11)

of which the result gives the relative spatial shift and time shift between shot i
and shot j. Since the shot-gathers have common receiver statics, which cancel in
the correlation, the result depends along the time-axis on the difference in source
statics and along the spatial axis on structural effects. These structural effects are
dominated mainly by the difference in source location for small pseudo offsets. By
stacking the result along the spatial axis, these effects are averaged, resulting in a
single trace with maximum energy at the relative time-difference of the source statics.

Both methods can be applied by considering common receiver-gathers to analyze
the receiver statics as well. The cross-correlation method is sensitive to lateral
changes in the subsurface. Therefore in this thesis the focusing method is preferred.
Although no further research was done on this procedure, the method can be sub-
jected to an optimization procedure in order to determine stacking velocities by
power optimization.

By applying the proposed methods on all source-gathers a time-shift surface is found
with relative static shifts for all sources. Consequently, a time-shift surface can be
determined for all relative receiver statics as well, see Figure 2.13.

The obtained time-shift surface, A, contains combinations of source-statics through,

Aij = si − sj , (2.7.12)

in which si resembles the source static shift for source i. Then the static shifts are
computed through,

N∑
i=1

Aij
N

= sj − s̄, (2.7.13)
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Figure 2.11: The NMO velocity determines the alignment of correlated shot-gathers before
stacking. Horizontal alignment determines the optimal NMO velocity. In (A), no NMO
correction was applied, in (B) a too small correction was applied, meaning the use of a too
high NMO velocity. In (C) a perfect correction was applied, resulting in perfect alignment
of the correlated events. (D) to (F) are the results of applying NMO overcorrection, using
too low velocities.
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Figure 2.12: Stack resulting by stacking individually correlated shot-gathers with one partic-
ular reference shot-gather. In figure A, no NMO correction was applied prior to correlation.
Note that only the at the shot-location of the reference shot-gather a perfect correlation is
recognized. In figure B a too small correction was applied, in figure C a perfect correction
was applied. The final stacks clearly shows the near-surface behavior. Figure D to F are
resulting after application of a too large NMO correction.
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Figure 2.13: The time-shift surface for cross-correlated shot-records (A), and for focused
shot-gathers after applying a correct move-out correction (B).

in which the average static, s̄, is still unknown. However, assuming a priori s̄ = 0
renders the a priori statics to be ŝj =

∑N
i=1

Aij

N . Then the average static distribution
would read,

N∑
j=1

N∑
i=1

Aij
N2

= 0, (2.7.14)

which confirms the a priori estimate on the average static distribution. By applying
the found statics distribution and the optimized NMO-velocity, the a priori zero-
offset times can easily be windowed after which the NMO-velocity in combination
with the zero-offset times will supply the a priori parameters for a global inversion
algorithm.

Figure 2.14 displays the estimated statics for both methods. The initial static time-
shifts were determined for a full range of shotgathers, modeled over the model of
Figure 5.8C. Clearly both methods almost produce the same results. The focused
shot-gather method is preferred since it provides a means to estimate an optimal
stacking velocity and renders a cleaner and easier to determine traveltime surface.
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3

From static corrections to a
wavefield solution

3.1 Introduction

Even with perfectly applied static corrections, errors will still be introduced within
the image result. This is due to the assumptions made. In this chapter, the statics
solution is assessed with respect to imaging results and compared with results ob-
tained through a correct wavefield handling. First, the impact of static corrections
is analyzed on a simple near surface model, then more complex near surface models
are discussed.

3.2 Simple near surface background model

The first example, Figure 3.1A, displays a low velocity layer (750 m/s) on top of
a high velocity layer (2000 m/s). Within the high velocity layer a diffractor was
modeled, for which Figure 3.1B displays one shot-record. For the near surface layer
static corrections are computed that replace the near surface with the velocity of
the subsurface. Then the resulting data was imaged with a phase-shift migration
algorithm, leading to the image of Figure 3.1C. As an alternative, shots and receivers
are redatumed to the boundary between subsurface and near surface and migrated
from the datum as depicted by Figure 3.1D. For a more detailed description of the
redatuming procedure the reader is referred to Chapter 7 of this thesis. Clearly the
statics solution of Figure 3.1C tends to smear the point refractor. The underlying
reason is that the current statics methods do not account for the change in raypaths
when the near-surface velocity is replaced and for the fact that for larger offsets
the rays through the near-surface are no longer vertical (see also Section 2.2). In
Figure 3.2 the same experiment has been conducted on a dipping reflector of finite
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length, for which the model is displayed in Figure 3.2A and one of the shot-records
is shown in Figure 3.2B. Again, the recorded data was statically corrected followed
by a phase-shift migration (Figure 3.2C) and compared with the migration result
after redatuming, Figure 3.2D. The correct reflector position is indicated by the line
in both figures. For this example, imaging after applying static corrections results
in mispositioning of the reflector. Although these artefacts have a close resemblance
to the use of erroneous migration velocities, it should be noted here that the errors
introduced by statics are irrecoverable by adjusting the migration velocity.

How these effects, as demonstrated on the simple near surface cases, manifest them-
selves within more realistic processing is depicted by the following examples. Data
was gathered over a model containing a stack of horizontal layers and forward ex-
trapolated for both sources and receivers through two types of near surface models,
a near surface model which is abruptly changing in the lateral direction and a near
surface model which is more smoothly changing in the lateral direction. In this way
the direct reflection response of the near surface layer is absent, but all propagation
effects are included. The stack of horizontal layers was modeled by using a randomly
changing density log and a velocity profile for which the stacking velocity from the
datum level downward is linearly changing from 1500 m/s to 2000 m/s.
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Figure 3.1: The shot-record of (B) is recorded for a model containing a simple near surface
layer, with a diffractor in the deeper subsurface, as displayed in (A). Static corrections to
replace the near surface layer results into a smeared final image (C), while imaging after
redatuming results in a perfectly imaged diffractor (D).
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Figure 3.2: The shot-record of (B) is recorded for a model containing a simple near surface
layer, with a finite dipping reflector in the deeper subsurface, as displayed in (A). Static
corrections to replace the near surface layer results into an incorrectly placed image with
an erroneous dip(C), while imaging after redatuming results in a correctly imaged reflector
(D).
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Figure 3.3: The shot-records of (C) are the response of a stack of twelve horizontal layers,
forward propagated through the near surface model of Figure (A). Dark color reflects a high
velocity, light color a low velocity. The corresponding datum statics are depicted in Figure
(B). The shots are placed at x =1000m, 1500m, 2000m, 2500m and 3000m respectively.

3.3 Near surface model with abruptly changing anomalies

The first example to consider is a stacked layer configuration underneath a near
surface which is abruptly changing laterally. Figure 3.3 depicts the modeled near
surface layer; the near surface model is symmetrically built with on the left hand side
a low velocity layer over a high velocity layer and on the right hand side a high veloc-
ity layer over a low velocity layer. Figure 3.3B displays the computed datum statics
according to the near surface model. As a consequence of the generated model, the
datum corrections are symmetric around the central location of the model. Thus we
also expect the shot-records to behave more or less symmetrically. The shot records
of Figure 3.3C, taken at shot locations 1000m, 1500m, 2000m, 2500m and 3000m
respectively, show indeed similar effects in a mirrored sense. Next, the computed
statics will be applied to the generated shot-records. The resulting shot-records of
Figure 3.4A are input to a stacking velocity analysis and a subsequent NMO cor-
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Figure 3.4: (A) shows 5 CMP-gathers after application of datum corrections to the shot-
gathers of Figure 3.3. (B) shows the resulting stack after applying NMO corrections. (C)
shows the average semblance after static corrections.

rection procedure. Figure 3.4B shows the stacked result after applying both the
datum statics as well as the NMO-corrections. The results show artefacts which are
due to imperfect datum statics. Residual statics might improve a little. However,
note that the semblance for velocity analysis of Figure 3.4C, after applying datum
statics shows very high velocities in the top of the model, which contradicts the
true velocity profile. Even for the deepest events the velocity was estimated too
high. The stack obtained after applying conventional statics will be compared with
the stacked resulted when inverse wavefield extrapolation is applied to the modeled
shot-records for both receivers as well as sources, taking into account the near sur-
face anomalies. In fact, a full redatuming has taken place of sources and receivers to
a level underneath the near surface. The operators used for wavefield extrapolation
were modeled as single arrival time operators, not taking into account triplications
and amplitude effects. They are related to a datum just below the near surface.
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Figure 3.5: (A) shows 5 CMP-gathers after inverse extrapolation of the shot-gathers of
Figure 3.3. (B) shows the resulting stack after applying NMO corrections. (C) shows the
average semblance after inverse extrapolation.

Figure 3.5A shows the same set of CMP gathers as the gathers of Figure 3.4B, but
this time collected after inverse extrapolation with the single arrival-time operators.
The resulting stack of Figure 3.5B hardly shows any artefacts and the semblance
plot of Figure 3.5C correctly reflects the true stacking velocity profile.

3.4 Near surface model with smoothly changing anomalies

The second example is again an analysis of the same stacked layer configuration.
In this case the near surface layer has a more smooth character as depicted in Fig-
ure 3.6A. This sinusoidal behavior will give rise to triplications, i.e. multi-valued
arrivals, in the data. Again Figure 3.6B shows the computed datum statics and
Figure 3.6C 5 shot-records taken at identical lateral positions as the records of Fig-
ure 3.3C. Note that the shot-records no longer show symmetrical features. Due to
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Figure 3.6: The shot-records of (C) are the response of a stack of horizontal layers, forward
propagated through the near surface model of (A). Dark color reflects a high velocity, light
color a low velocity. The corresponding datum statics are depicted in (B). The shot-gathers
are placed symmetrically around x =1000m, 1500m, 2000m, 2500m and 3000m respectively.

the high velocity layer over a low velocity layer, triplications occur which are far
more persistent than for the area of the model where a low velocity layer overlies a
high velocity layer. As for the CMP gathers after datum correction in Figure 3.7A,
especially the corrections for the CMP-gathers at the left part of the model are far
from correct. Events are hardly recognized, which will not be improved by residual
corrections due to the introduction of among others, cycle skipping. One of the
assumptions of conventional static methods is that rays through the near surface
refracted toward the normal of the interface between near surface and deeper layers
and therefore the rays through the near surface are assumed to be independent of
offset and reflection depth. This holds to some extend for a low velocity surface,
but breaks down completely for a high velocity near surface layer (for instance a
permafrost layer). The resulting stack of Figure 3.7B is severely degraded and the
velocity semblance of Figure 3.7C again shows high stacking velocities in the top
of the model. The redatumed shot-gathers of Figure 3.8A show good hyperbolic
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Figure 3.7: (A) shows 5 CMP-gathers after application of datum corrections to the shot-
gathers of Figure 3.6. (B) shows the resulting stack after applying NMO corrections. (C)
shows the average semblance after static corrections.

move-out and correlated energy is still fairly well recognized within the part of the
model where a high velocity layer is overlaying a low velocity layer (at the right side
of the model). Also, the stack of Figure 3.8B shows far less artefacts and again the
semblance plot of Figure 3.8C resembles well the correct velocity semblance.

The redatuming operators where modeled with a first arrival traveltime algorithm,
while, due to triplications, the high energy arrivals are in general not the first arrivals
at the right-hand side part of the model. This explains the degraded results at the
right hand side of the stack. In the 5th CMP-gather this effect is well visible. The
reconstructed reflection events are not nicely aligned along a hyperbola as would be
expected. This is not a fundamental issue, but is caused by the limited capabilities
of the eikonal solver. The eikonal solver, used to model the operators, did not cor-
rectly compute the arrival times of the most energetic event when a rapidly varying
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Figure 3.8: (A) shows 5 CMP-gathers after inverse extrapolation of the shot-gathers of
Figure 3.6. (B) shows the resulting stack after applying NMO corrections. (C) shows the
average semblance after inverse extrapolation.

high velocity layer is overlaying a low velocity layer.

3.5 Conclusions

From the experiments it is concluded that for simple cases, especially in areas with
low velocity material overlying high velocity material, statics tend to improve data
quality. However, in complex situations results deteriorate and reduce the quality
of the final image. Moreover, results from velocity analysis can be far from correct,
which will severely affect migration and time to depth conversion at later stages of
the processing.



3.5 Conclusions 45

From the experiments it is also concluded that operators need to be estimated that
represent the propagation characteristics of the near surface. These operators are
used to remove the near surface effects from the data by redatuming. In the next
chapters we will see how such operators are obtained from the data without explicit
knowledge of the underlying velocity model.





4

Focusing of seismic data

4.1 Introduction

In this chapter the general theory for acoustic wavefield extrapolation and scattering
is derived. This will provide the base for redatuming the wavefield through the near
surface. Using a two-way wavefield propagation approach leads to complex wavefield
extrapolators. It will be convenient to describe the wavefield in terms of one-way
propagation, which simplifies the expressions for extrapolation and scattering sig-
nificantly. Moreover, assumptions on underlying velocity models are less stringent
for one-way wavefield extrapolation.

After derivation of the integral representations for one-way wavefield extrapolation
and scattering, the continuous expressions are rewritten in a matrix notation which
elegantly describes the processes to be investigated. This so called WRW model
provides a clear insight in the redatuming process. Furthermore, the properties of
the WRW formulation will provide us with tools that circumvent the need for an
explicit formulation of a depth model to determine the propagators needed for the
near-surface redatuming.

4.2 Two-way integral representations

To find integral expressions for forward and inverse extrapolation of wavefields, use
will be made of the reciprocity theorem (Fokkema and van den Berg, 1993), as de-
scribed in Appendix A. The reciprocity theorem is used to relate two field states. The
first of the two states is the actual field state, {p(x,xs, ω), vk(x,xs, ω)} with material
state {ρ, κ}(x) and source state {q(x, ω),0}(x, ω), denoted by state A. The second
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νk

ID

∂ID

Figure 4.1: Definition of the volume used for evaluating the wave-equation and reciprocity
relations, in which ∂ID denotes the boundary of volume ID for which νk is the outward
pointing normal vector with unitary length.

state that will be used within the reciprocity theorem is the Green’s state for volume
injection, {Gq and Γqk} with field state {pq, vqk}(x, ω), material state {ρq, κq}(x) and
source state {δ(x − xR), 0}, denoted as state B. From the reciprocity theorem the
Kirchhoff integral can be derived which describes extrapolation of wavefields. Under
certain conditions the Kirchhoff integral simplifies to the Rayleigh integrals, which
form a convenient base for seismic imaging.

4.2.1 The wave equation and reciprocity

As described in Appendix A, the volume injection source Green’s states Gq and
Γqk are solutions for the pressure and particle velocity of the wave equation within
a domain ID. The definition of ID is depicted in Figure 4.1. The acoustic wave
equation can be expressed in terms of two coupled equations,

∂kp(x,xs, ω) + jωρ(x)vk(x,xs, ω) = fk(x,xs, ω), (4.2.1a)
∂kvk(x,xs, ω) + jωκ(x)p(x,xs, ω) = q(x,xs, ω). (4.2.1b)

Then the Green’s states Gq and Γqk are solutions for these coupled equations for the
scalar impulse response of the source state given by,

fk(x,xs, ω) = 0, (4.2.2)
q(x,xs, ω) = qδ(x− xs), (4.2.3)

and the material state defined as {ρ, κ}(x) = {ρq, κq}(x). The Green’s fields are
then defined as,

{pq, vqk}(x,xs, ω) = q{Gq,−Γqk}(x,xs, ω). (4.2.4)
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State A State B

Field State {p, vk}(x, ω) {Gq,Γqk}(x, ω)
Material State {ρ, κ}(x) {ρq, κq}(x)
Source State {q(xS),0}(ω) {δ(x− xR),0}

Table 4.1: The two states for defining the reciprocity relations.

The two states are depicted in Table 4.1. If the source functions of Equation 4.2.2
and 4.2.3 are substituted in the wave equations of Equations 4.2.1a and 4.2.1b it can
be found that the following holds for the volume injection pressure Green’s function
Gq,

ρq(x)∂k(
1

ρq(x)
∂kG

q(x,xR, ω)) +
ω2

c2(x)
Gq(x,xR, ω) = −jωρ(x)δ(x− xR), (4.2.5)

with the velocity defined by, c(x)2 = 1
ρq(x)κq(x) . Substituting Equation 4.2.4 and

the source functions into Equation 4.2.1a leads to,

Γqk(x, ω) =
1

jωρq(x)
∂kG

q(x, ω). (4.2.6)

From here on we will leave out the reference to the frequency dependency in the
argument of the field quantities, for reasons of brevity.

4.2.2 The Kirchhoff integral

Substituting the two states as described in the previous section and depicted in Table
4.1 into the two-way reciprocity theorem, as derived in Appendix A, results into,

∫
x∈∂ID

[
Gq(x,xR)vk(x)− p(x)Γqk(x,xR)

]
νkdS =∫

x∈ID
jω
[
(ρ− ρq) Γqk(x,xR)vk(x)− (κ− κq)Gq(x,xR)p(x)

]
dV

+
∫
x∈ID

qS(x)Gq(x,xR) + p(x)δ(x − xR)dV.

(4.2.7)

With the aid of the equation of motion, Equation 4.2.4, for the two different states
and using ∆ρ = (ρ − ρq) and ∆κ = (κ − κq) we arrive at the Kirchhoff-Helmholtz
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integral,

p(xR,xS) = −
∫
x∈∂ID

[
Gq(x,xR)∂kp(x)

jωρ
− p(x)∂kGq(x,xR)

jωρq

]
νkdS

+
1
jω

∫
x∈ID

[
∆ρ
ρρq

∂kG
q(x,xR)∂kp(x)−∆κGq(x,xR)p(x)

]
dV

+
∫
x∈ID

qS(x)Gq(x,xR)dV,

(4.2.8)

in which ID denotes the domain under consideration with boundary ∂ID and its out-
ward pointing normal vector νk, as depicted by Figure 4.1. This equation states that
the wavefield measured at p(xR) consist of contributions of sources outside the do-
main, covered by the surface integral, contributions of scattering objects within the
domain, covered by the first volume integral, and contributions of primary sources,
covered by the second volume integral which resembles the direct wavefield.

More interesting in this thesis are the results, when the Green’s medium is cho-
sen to be the actual medium and sources of the actual wavefield are chosen to lay
outside the domain under consideration. Under these choices, the volume integrals
vanish, resulting into,

p(xR,xS) = −
∫
x∈∂ID

[
Gq(x,xR)∂kp(x)

jωρ
− p(x)∂kGq(x,xR)

jωρ

]
νkdS, (4.2.9)

which describes forward propagation of the wavefield measured along the surface of
the domain under consideration, as depicted in Figure 4.2A. This result will be used
for forward extrapolation. Instead of considering the forward propagating causal
Green’s state, we can consider the anti-causal backward propagating Green’s state
{Gq,∗,Γq,∗k } as well, since this is also a solution of the wave-equation of Equation
4.2.5. This backward propagating state results into,

p(xR,xS) = −
∫
x∈∂ID

[
Gq,∗(x,xR)∂kp(x)

jωρ
− p(x)∂kGq,∗(x,xR)

jωρ

]
νkdS, (4.2.10)

which will be used for inverse extrapolation and is depicted by Figure 4.2B.

If the circular boundaries of Figure 4.2A and Figure 4.2B are extended to infinity
then, under Sommerfeld’s radiation condition, the contribution to the closed surface
integral of the extended part vanishes for the forward propagation of Equation 4.2.9,
resulting in analogy with Figure 4.2B into,

p(xR,xs) = −
∫
z=z0

[
Gq(x,xR)∂kp(x)

jωρ
− p(x)∂kGq(x,xR)

jωρ

]
νkdS. (4.2.11)

However, in case of backward propagation of Equation 4.2.10, Sommerfeld’s radiation
condition is not satisfied. As shown by Wapenaar and Berkhout (1989), however,
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A B

Figure 4.2: The reciprocity theory leads to the notion that forward extrapolation is carried
out through convolution with the causal Green’s state (A) along the boundary of the do-
main under consideration, whereas for inverse extrapolation the anti-causal Green’s state
should be used (B). Sommerfeld’s radiation condition shows that the contribution of the
circular area will vanish if this part is extended to infinity for forward extrapolation. This
is, however, not the case for inverse extrapolation but the evanescent part can be neglected.

under the evanescent wave assumptions and a certain cylindrical choice of the domain
under consideration, the integral can still be approximated by,

p(xR,xs) ≈ −
∫
z=z0

[
Gq,∗(x,xR)∂kp(x)

jωρ
− p(x)∂kGq,∗(x,xR)

jωρ

]
νkdS. (4.2.12)

4.2.3 The Rayleigh integrals

The equations for forward and inverse propagation require the knowledge of the
pressure and the normal component of the particle velocity along the boundary.
When the measurements are known along a flat boundary it is possible to eliminate
either the pressure contribution or the normal component of the particle velocity
by choosing the appropriate boundary conditions for the Green’s states in Equation
4.2.11 and Equation 4.2.12:

• By using the Dirichlet boundary condition for the Green’s state,

lim
ε↓0
Gq(x+ εν, t) = 0, x ∈ ∂ID, (4.2.13)
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on ∂ID, Gq(x ∈ ∂ID) = 0, and vanishes. Then the boundary acts as a perfect
reflector with a negative reflection coefficient. This situation can be accom-
plished by constructing the Green’s function through taking the free space
Green’s function and a mirrored free-space Green’s function opposite in sign,

Gq(x,xR) = Gq,f (x,xR)−Gq,f (x,xR
′
), (4.2.14)

νk∂kG
q(x,xR) = νk∂kGq,f (x,xR)− νk∂kGq,f (x,xR

′
). (4.2.15)

By choosing νk to be the outward pointing normal vector of the flat boundary
under consideration this leads to,

νk∂kG
q(x,xR) = 2νk∂kGq,f (x,xR). (4.2.16)

If this expression is inserted into the reduced Kirchhoff integral of Equation
4.2.9 we arrive at,

p(xR) = 2
∫
x∈∂ID

−Γq,fk (x,xR)p(x)νkdA, (4.2.17)

in which we used the definition of Γq,fk (x,xR) as given by Equation 4.2.6. This
equation is also known as the Rayleigh integral of the second kind.

• The Neumann boundary condition,

lim
ε↓0
νk

1
jωρ

∂kG
q(x+ εν, t) = 0, x ∈ ∂ID, (4.2.18)

with ν the unit vector along the normal of ∂ID pointing away from ID, dictates
the normal component of Γk(x ∈ ∂ID,xR) to be zero. This can be accomplished
by interpreting the boundary as a perfect reflector with a positive reflection
coefficient. This can be achieved by mirroring again the Green’s function but
this time with positive sign,

Gq(x,xR) = Gq,f (x,xR) +Gq,f (x,xR
′
). (4.2.19)

Due to the choice of the normal vector, the Neumann condition is satisfied,
leading to,

p(xR) = 2
∫
x∈∂ID

Gq,f (x,xR)∂kp(x)
jωρ

νkdA. (4.2.20)

With vk(x) = −1
jωρ∂kp(x), this leads to

p(xR) = 2
∫
x∈∂ID

Gq,f (x,xR)vk(x)νkdA. (4.2.21)

This equation is also known as the Rayleigh integral of the first kind.
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State A State B

Field State {G+,+, G−,−}(x,xR) {P+, P−}(x,xS)
Material State −jωΛ(x) B(x)
Source State δ(x− xR) {S+, S−}δ(x− xS)

Table 4.2: The two states used for defining the reciprocity relations for one-way wavefields.

Two more Rayleigh integrals can be derived, expressing the particle velocity in terms
of a surface integral over a known wavefield distribution, when we would have started
with volume force injection sources for the Green’s state (Appendix A).

Thus, the Kirchhoff integral can be simplified, leading to an extrapolation formu-
lation depending on the velocity component or the pressure component of the field
state along the boundary only. Note, however, that due to the choice of perfectly
mirrored free-space Green’s functions, these simplifications are only valid along a
perfectly flat interface. If this is not the case, the full Kirchhoff integral as formu-
lated in Appendix A should in principle be evaluated. Furthermore, if the Rayleigh
integrals are used to forward and inverse extrapolate wavefields, the full two-way free
surface response of the Green’s state should be computed. Especially for complex
models this can be a cumbersome and difficult task.

4.3 One-way integral representations

As imaging strategies, including redatuming, are based on back-propagation of pri-
mary one-way wavefields to their originating scattering contrast, it can be useful
to use one-way reciprocity theorems. Moreover, by using two-way representations,
the full Green’s functions including, for instance, multiple energy have to be com-
puted. Slight errors in the background model can introduce severe errors as shown
by Wapenaar and Grimbergen (1996). As explained in Appendix A, one-way formu-
lations can be derived by considering one particular direction of propagation only.
As our measurements and processing algorithms are aimed at imaging in depth, our
preferred axes is chosen to be the z-axis. Evaluations at the boundary of a volume
under consideration will therefore only be made along ν3, the z-component of the
outward pointing unit normal vector.

4.3.1 One-way reciprocity

Similar to the two-way integral representation, one-way wavefield representations
can be derived through the one-way reciprocity theorem of the convolution type
(Appendix A). Again the interaction of two states will be considered. For state A,
the one-way Green’s state is chosen to have propagation characteristics equal to the
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actual medium but to be scatter free (no coupling). By virtue of this choice the
Green’s wavefield G, as derived in Appendix A, reduces to a diagonal operator,

G(x,xR) =

(
G+,+(x,xs) G+,−(x,xR)
G−,+(x,xR) G−,−(x,xR)

)
, (4.3.1a)

=

(
h(x3 − xR3 )W+(x,xR) 0

0 −h(x3 − xR3 )W−(x,xR)

)
. (4.3.1b)

For state B we choose the one-way wave-vector of the actual medium,

P(x,xS) = (P+(x,xS)P−(x,xS))T , (4.3.2)

with source state (S+(xS), S−(xS))T and medium state B. For the derivation of the
different states, the reader is referred to appendix A. If the states, as summarized in
Table 4.2, are inserted into the reciprocity relation of Equation A.3.36 we arrive at,∫

x∈∂ID
GT (x,xR )̄IP(x,xS)µ3dA =∫

x∈ID
GT (x,xR )̄IS(x,xS) + STG(x,x

R )̄IP(x,xS)dV

+
∫
x∈ID
GT (x,xR)Φ(x)P(x,xS )dV,

(4.3.3)

in which Ī is defined as

Ī =

(
0 1
−1 0

)
. (4.3.4)

The operator Φ denotes the contrast operator between the two medium states.
Since the propagating parts of the states were chosen equal and the Green’s state
was chosen to be coupling free, this contrast operator reduces to the scattering part
of the actual medium as derived in appendix A,

Φ(x) =

(
T +(x) R−(x)
−R+(x) −T −(x)

)
, (4.3.5)

in which T + and T − are operators which account for transmission of up- and down-
going waves respectively and R+ and R− are operators which account for reflection
of up-going waves (into down-going waves) and down-going waves (into up-going
waves) respectively.

4.3.2 Forward extrapolation

Since G originates from a point source at xR and by considering P to originate from
a point source at xS , the first volume integral of the one-way reciprocity relation of
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Equation 4.3.3 reduces to,∫
x∈ID
GT (x,xR )̄IS(x)δ(x − xs) + STG(x,xR)δ(x − xR )̄ITP(x,xS)dV =

G(xS ,xR )̄IS(xS) + ĪP(xR,xS).
(4.3.6)

The second volume integral of Equation 4.3.3 denotes the scattered wavefield. From
this expression useful integral representations are derived. Multiplying Equation
4.3.6 with Ī−1 and using the reciprocity relation for the Green’s matrix, and inter-
changing xs and xr results in the following expression,

P(xR,xS) =G(xR,xS)S(xS) +
∫
x∈∂ID

G(xR,x)P(x,xS)dx

+
∫
x∈ID
G(xR,x)Φ(x)P(x,xS )dV.

(4.3.7)

If we choose the boundary to extend to infinity, the surface integral vanishes. If
we furthermore assume the volume to be source free (equivalent to subtracting the
direct wavefield), we end up with

P(xR,xS) =
∫
x∈ID
G(xR,x)Φ(x)P(x,xS )dV. (4.3.8)

By splitting the up and down-going parts of this equation, we retrieve for the up-
going wavefield,

P−(xR,xS) =∫
x∈ID

−G−,− [(xR,x)R+(x)P+(x,xS) + T −(x)P−(x,xS)
]
dV,

(4.3.9)

in which the operator R+(x) is defined as,

R+(x) =
∫
x′∈ID‖x′

3=x3

R(x,x′)P (x′)dA, (4.3.10)

and operator R−(x) is defined likewise.

Another useful representation is derived when domain ID is taken free of sources
and contrast. Then by virtue of these choices, the volume integrals vanish and the
resulting integral reads,

P(xR,xS) =
∫
x∈∂ID

G(xR,x)P(x,xS)ν3dA. (4.3.11)

If we take the upper and lower half space source and scatter free for the Green’s
state, then the Green’s state has purely outgoing waves at the boundaries. Meaning
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G+,+ at the lower boundary and G−,− at the upper boundary. Then we can write
for the down-going wavefield,

P+(xR,xS) =
∫
x∈∂ID

[
G+,+(xR,x)P+(x,xS) +G−,−(xR,x)P−(x,xS)

]
ν3dA.

(4.3.12)
Note that the only contribution to the integral arises from wavefields that are trav-
eling in the same direction. Therefore, if the upper half space is contrast free, the
integral over the upper boundary vanishes. In the same line of reasoning, the inte-
gral over the lower boundary will vanish when the wavefield is excited by a source
in the upper halfspace. Figure 4.3A depicts forward extrapolation.

4.3.3 Inverse extrapolation

The backward propagating version of Equation 4.3.7 is obtained by using the reci-
procity relation of the correlation type, Equation A.3.36, and following the same line
of argumentation as before. By using,

K =

(
1 0
0 −1

)
Ī = J̄

(
0 1
1 0

)
=

(
1 0
0 −1

)
, (4.3.13)

we arrive at,

P(xR,xS) = KG∗(xR,xS)KS(xS) +
∫
x∈∂ID

KG∗(xR,x)KP(x,xS)dx

+
∫
x∈ID
KG∗(xR,x)KΦ(x)P(x,xS)dV.

(4.3.14)

Again, with the proper choice of the halfspaces for the Green’s state and actual state,
the same choice of boundary conditions and the boundaries extended to infinity we
can write for the scattered wavefield,

P(xR,xS) =
∫
x∈ID
KG∗(xR,x)KΦ(x)P(x,xS )dV. (4.3.15)

Furthermore, for the inverse extrapolation, when the domain under consideration is
source and contrast free, we can write,

P(xR,xS) =
∫
x∈∂ID

KG∗(xR,x)KP(x,xS)dA. (4.3.16)

If we now investigate the up-going wavefield,

P−(xR,xS) =
∫
x∈∂ID

[
P+(x,xS)G−,−∗(xR,x) + P−(x,xS)G+,+∗(xR,x)

]
dA,

(4.3.17)
we conclude that for inverse propagation only opposite traveling wavefields con-
tribute, as depicted in Figure 4.3B.
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Figure 4.3: Forward and inverse one-way wavefield extrapolation. When the wavefield is ex-
trapolated from z to z0, only wavefields traveling in the same direction give contribution (A),
whereas for inverse extrapolation from z to z1, only opposite traveling wavefields contribute
(B).

4.4 Physical field measurements, the WRW-matrix representa-
tion

In the previous section all the tools were derived to describe forward and inverse
wavefield propagation as well as forward and inverse wavefield scattering. In this
section the WRW model is derived, which is merely a discrete description of the
foregoing results. Since measurements are generally taken in a discrete sense, the
WRW model describes wavefield propagation and scattering in a convenient way.

From this model scattering series are easily derived, in which multiple reflections can
be included and in which layer stripping methods as well as a redatuming schemes
can be derived. Moreover, it provides an opening to model-independent operator
determination, which will be used later on to describe the near surface in a kinematic
sense. These operators can than be used to redatum the data to a level underneath
the near surface, as if sources and receivers were initially placed at that level and
hence do not suffer from near surface effects.

4.4.1 Derivation of theWRW-model

To derive the WRW model a cylindrical volume ID is considered bounded in the
x3-direction by two planes z0 and z1 with its radius extended to infinity. Sources
and receivers are placed in the plane z0. The scattered wavefield is described by
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Equation 4.3.9 as,

P−(xR,xS) =
∫
x∈ID

G−,−(xR,x)R+(x)P+(x,xs)dV

+
∫
x∈ID

G−,−(xR,x)T −(x)P−(x,xS)dV,
(4.4.1)

in which the reflection operator R(x) is defined by,

R+(x)P+(x,xS) =
∫
x′∈∂ID

[
R+(x,x′)P+(x′,xS)

]
x′
3=x3

dA. (4.4.2)

The transmission operator T −(x) is defined likewise and it is assumed that the
medium outside z0 and z1 is free of sources and scatterers. Then for the primary
scattered wavefield at z1 we take P−(x,xS) = 0 and for the incident wavefield we
take,

P+(x′) =
∫
x∈∂ID,x3=z0

S+(x)G+,+(x′,x)dA. (4.4.3)

If we take for the source distribution,

S+(x) = S(ω)δ(x− xS), (4.4.4)

Equation 4.4.1 reduces to,

P−(xR,xS) =
∫
x3>z0

W−(xR,x)
∫
x′∈ID,x′

3=x3

R+(x,x′)W+(x′,xS)S(ω)dAdx,

(4.4.5)
in which we used the definition of the scattered free Green’s operator of Equation
4.3.1b. This can be interpreted as the first order term of a Bremmer series, which
forms the basis of the WRW formulation as introduced by Berkhout (1982).

4.4.2 Surface free datum response

Since in seismics measurements are discrete, the WRW model of Equation 4.4.5 is
discretized, resulting in a matrix formulation,

P−(zr, zs) =
M∑
m=1

W−(zr, zm)R+(zm, zm)W+(zm, zs)S+(zs). (4.4.6)

Each column of P− represent the measurements at the discrete detector positions
for one seismic experiment for one frequency. The matrix S+ represents the source
distributions for all seismic experiments, for one temporal frequency. Each column
ofW+ describes downward propagation from one source location towards all loca-
tions along R+ and one row ofW− describes upward propagation from all locations
along R+ toward one receiver location. Furthermore, the matrix R+ represents the
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discretized version of the reflection operator for each depth level m, between z0 and
z1.

If the sources are distributed as point-sources, as defined by Equation 4.4.4, the
source matrix would read,

S+ = IS(ω). (4.4.7)

Physical source directivity can be accomplished by including off-diagonal terms. It
should also be noted that all operators depend on the angular frequency, ω, of which
the notation is only left out for reasons of brevity.

For the expression of the scattered up-going wavefield with a reflection free surface,
we can write,

P−(z0) = X(z0, z0)P+(z0), (4.4.8)

X(z0, z0) =
M∑
m=1

W−(z0, zm)R+(zm, zm)W+(zm, z0), (4.4.9)

in which internal multiples are neglected. In Wapenaar and Berkhout (1989) it is
stated that to be exact, R is of more complex nature. However, it is also recom-
mended not to use the exact, more complex definition of R for matters of stability
in the presence of noise. Note that the downgoing wavefield, P+ is written here as
a generalized form of the downgoing source wavefield S+.

The emphasis in this thesis is laid on redatuming through the overburden. Thus
we will distinct between the overburden and the target response. With,

W+(z, z0) =W+(z, zd)W+(zd, z0), (4.4.10)

W−(z0, z) =W−(z0, zd)W−(zd, z), (4.4.11)

in which zd is the datum level to which we would to like redatum our data, Equation
4.4.9 can be written as

X(z0, z0) =
d∑

m=0

W−(z0, zm)R+(zm, zm)W+(zm, z0) +W−(z0, zd)X(zd, zd)W+(zd, z0).

(4.4.12)

The first term of Equation 4.4.12 represents the scattered wavefield of the over-
burden, resulting from a scatter distribution within the overburden, which will be
denoted from here onward as,

Xob(z0, z0) =
d∑

m=0

W−(z0, zm)R+(zm, zm)W+(zm, z0). (4.4.13)
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The removal of this term is not direct subject to this thesis and for state of the
art techniques the reader is referred to Ernst (1999), where Green’s functions are
estimated explicitly for near surface guided waves, which are used to invert for the
scatter distribution. If this part is neglected or removed, then the second part of
Equation 4.4.12 resembles the target response as measured at the surface (see also
Figure 4.5).

4.4.3 Free surface datum response

To this point the surface was assumed to be reflection free. In practice, surface z0
resembles the free surface, which is a perfect reflector. Thus, the total down-going
wavefield should be written as,

P+(z0, z0) = P+s (z0, z0) +P
+
r (z0, z0), (4.4.14)

in which the P+s (z0, z0) is the direct down-going wavefield and P+r (z0, z0) the re-
flected up-going wavefield. The down-going wavefield can then be written as,

P+(z0, z0) = R−
fr(z0)P

−(z0, z0) +P+s (z0, z0), (4.4.15)

in which R−
fr(z0) resembles the reflectivity of the free surface which is equal to −1 in

case of an acoustic free surface. Thus we can write for the total up-going wavefield,

P−(z0, z0) = X(z0, z0)
[
R−
fr(z0)P

−(z0, z0) +P+s (z0, z0)
]
, (4.4.16)

which is explicitly written as,

P−(z0, z0) = Xfr(z0, z0)P+s (z0, z0). (4.4.17)

The free surface response matrix is then defined as,

Xfr(z0, z0) =
[
I−X(z0, z0)R−

fr(z0)
]−1

X(z0, z0). (4.4.18)

This can be written as a series expansion,

Xfr(z0, z0) =

[
I+

∞∑
m=1

(
X(z0, z0)R−

fr(z0)
)m]
X(z0, z0), (4.4.19)

which clearly shows the infinite number of multiple reflections which are generated
by the free surface as schematically displayed in Figure 4.4.

4.4.4 Two-way target response

Until here, the forward model was derived in terms of one-way propagation of one-
way wavefields. In practice, use is made of two-way seismic data. In Section 3.3 the
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decoupling for two-way wavefields into one-way wavefields was discussed. Here the
relationship between the two-way seismic source or detector and the one way up-and
down-going wavefields as influenced by the free surface is discussed.

For a pressure source at point locations along the free surface we only emit a down-
going pressure wavefield,

S+(z0) = IS(ω). (4.4.20)

For a buried volume injection source, at point locations along a depth zs, the down-
going wavefield contains a ghost, resulting from reflection of the up-going wavefield
at the free surface, which can be derived as,

S+(z0) =
1
2
(
W−,∗(zs, z0)−W−(zs, z0)

)
S(ω). (4.4.21)

Similarly, the measured two-way wavefield at the detector is constructed from the
up-going one-way wavefield. For a velocity detector, a geophone, at the free surface
the measured wavefield is simply,

Vz(z0) =
−1
jωρ

∂P−(z0)
∂z

(4.4.22)

For buried receivers, hydrophones in marine seismics, the measured wavefield can
be expressed by,

P(z0) =
(
W+,∗(zr, z0)−W+(zr, z0)

)
P−(zr), (4.4.23)

n which zr resembles the depth of the actual receiver. Equation 4.4.23 again contains
a ghost.

The source and receiver responses can be included within respectively operators
D+ and D−, such that the total data equation reads,

P = D−(z0)Xfr(z0, z0)D+(z0)S(ω), (4.4.24)

as depicted in Figure 4.4B, in which Xfr(z0, z0) resembles the multiple series of
Equation 4.4.19.

To derive the wavefield as if it was measured underneath the near surface, or over-
burden, the following processing steps should be accounted for:

• Decomposition of sources and receivers. This will effectively remove the op-
erators D+ and D−. In Schoolmeesters (2001) a detailed study is described
to remove the ghost effects present in the operators. Volker (2002), describes
the effects of directivity and how, by means of the WRW model, acquisition
designs can be assessed to control the directivity patterns in order to optimize
target illumination.
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P−(z0, z0) S+(z0)

X(z0, z0)

P(z0, z0)

D−(z0) R−
fr(z0, z0)

X(z0, z0)

+ D+(z0)

S(z0)

Xfr(z0, z0)

BA

Figure 4.4: a. The forward model of the primary wavefield. b. The model of the measured
wavefield, including multiple contributions and directivity patterns.

• Multiple attenuation. After correcting for source and receiver characteristics,
multiple energy should be removed or attenuated. The reader is referred to van
Dedem and Verschuur (2005) for extensive discussions on multiple attenuation,
based on the formulation of Equation 4.4.19.

• Removal of near surface scattering. After the previous two processing steps,
the data is described by,

P−(z0) = X(z0, z0)S(ω) +Xob(z0, z0)S(ω). (4.4.25)

The overburden response can be removed by techniques described by Ernst
(1999) and Campman (2005).

• Near surface redatuming. In the last stage, the propagation through the over-
burden is removed. According to Equation 4.4.12, the target response after
removal of the overburden response would read,

X(z0, z0) =W−(z0, zd)X(zd, zd)W+(zd, z0). (4.4.26)

The operators W−(z0, zd) and W+(zd, z0) describe the one-way, scattering
free propagation characteristics of the overburden. The aim in this thesis is
to define inverse propagators that effectively remove the forward propagation
characteristics through,

F−(zd, z0)X(z0, z0)F+(z0, zd) =

F−(zd, z0)W−(z0, zd)X(zd, zd)W+(zd, z0)F+(z0, zd),
(4.4.27)

in which ideally the operators F−(zd, z0) and F+(z0, zd), that need to be
defined, should be the inverse of the forward propagators W−(z0, zd) and
W+(zd, z0). Through this procedure synthetically data will be generated that
resembles signal excited and recorded at datum-level zd.
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+

W−(z1, z2)

T−(z1)

+

W−(z0, zd)

+P−(z0, z0)

P−(zd, zd)

R+(zn, zn)

R+(z2, z2)

R+(z1, z1)

overburden

response

W+(z2, z1)

T+(z1)

W+(zd, z0)

S+(z0)

S+(zd)

X(zd, zd)
X(z0, z0)

≡ ≡

Figure 4.5: The primary wavefield is expressed in terms of reflecting events. The earth
response can be decoupled in a target response and an overburden response.

In theory multiples should be removed right after source and receiver decomposition,
since multiple energy is produced by all sources, including near surface scattering.
However, in practice multiple energy will be removed after correcting for near sur-
face scattering, since this would be more robust in terms of processing under the
assumption that near surface scatter energy reflected multiple times at the free sur-
face will be weak. The method described in Campman (2005) estimates and images
near surface scatterers after which scatter energy is estimated and removed for each
subsequent arrival. As such it will become more practical to remove near surface
scatter energy before multiple removal within a processing scheme.

The last processing step is subject to the remainder of this thesis. The propa-
gatorsW describe the kinematics through the overburden and were derived under
the assumption of a scatter-free halfspace. However, in general the near surface
overburden is not scatter free at all. It actually are the contrasts and scatterers



64 Focusing of seismic data

that cause the specific nature of the near surface overburden. On top of these unac-
counted transmission losses quite often coupling effects at the sources and receivers
result into additional unaccounted amplitude effects. Furthermore, their amplitude
behavior depend on the losses in the overburden, which were not accounted for in
the previous steps. For instance coupling effects at the sources and receivers can be
present. Furthermore, the amplitude behavior of the propagators, due to transmis-
sion losses, is not easy to account for.

In the next sections we will further focus on the kinematic part of the inverse op-
erators. In Chapter 7 we will further discuss how to account for amplitude effects
when the inverse operators found are used for redatuming purposes.

4.5 Near surface redatuming

In the previous section is was shown that according to Equation 4.4.12 the total
wavefield can be divided into an overburden response and a target response. The first
term of the response operator of Equation 4.4.12 defines the overburden response,
while the second term defines the target response.
It is our aim to inverse extrapolate the data to the target zone on which we will
focus in this section.

4.5.1 Derivation of the inverse propagation operators

The goal is to define the forward operatorsW−(z0, zd) andW+(zd, z0), which can
be used for inverse extrapolation to remove the forward propagation through,

P−(zd, zd) = F−(zd, z0)P−(z0, z0)F+(z0, zd) = X(zd, zd)S(ω), (4.5.28)

when the inverse propagators are defined as,

F−(zd, z0) =
[
W−(z0, zd)

]−1
, (4.5.29)

F+(z0, zd) =
[
W+(zd, z0)

]−1
. (4.5.30)

Due to its filtering nature, physically understood through the inclusion of evanescent
waves, a direct inversion of the forward operators can not be established; the forward
operators are rank deficient. To define the inverse propagators various possible
methods are available, such as,

• Inversion by Singular Value Decomposition of the forward propagators. Sin-
gular Value Decomposition provides a matrix factorization through which it is
possible to determine a pseudo inverse, which describes the invertible part of
the forward operator. Following Strang (1988) any operatorW of size m× n
can be factored into,

W = U1ΣUH2 (4.5.31)
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in which matrices U1 and U2 are unitary (complex orthogonal) and Σ is a
diagonal matrix of size r× r. The size of Σ is give by r, which is smaller than
m and n and denotes the rank of the operator. The elements on the main
diagonal of Σ, (σ21 , · · · , σ2r ), resemble the so-called singular values ofW. Once
the Singular Value Decomposition is established, the pseudo-inverse of W is
found to be,

F = U2Σ−1UH1 . (4.5.32)

For further details and algorithms to define the Singular Value Decomposition,
the reader is referred to Strang (1988) and Golub and van Loan (1996).

• Weighted least-squares inversion of the forward propagators. The inverse prop-
agator is described by,

F =
[
WHC1W + λ2C2

]−1
WHC1, (4.5.33)

which holds for the bot the combination {F−(zd, z0),W−(z0, zd)} as well as the
combination {F+(z0, zd),W+(zd, z0)}. The operators C1 and C2 depend on
the properties of signal and noise. A more detailed discussion on least-squares
inversion can be found in Appendix B. In Chapter 7, least-squares redatuming
will be used to account for amplitude effects, in case of severe energy loss due
to near surface scattering and transmission effects.

• The matched filter, which is exact in homogeneous media if the contribution
of evanescent waves is neglected,

F+(z0, zd) =
[
W−(zd, z0)

]∗
, (4.5.34)

F−(zd, z0) =
[
W+(z0, zd)

]∗
. (4.5.35)

In the case of the medium being homogeneous with sources and receivers at
the same positions the following holds,

W+(zd, z0) =
[
W−(z0, zd)

]T
. (4.5.36)

Note here, that the matched filter is actually a first step in least-squares inversion
for homogeneous media when sources and receivers are located at the same positions.

Especially for the derivation of the kinematic part of the operators, the matched
filter approach will prove its attractiveness due to its simplicity, which is demon-
strated in the remainder of this chapter. The properties as derived for the matched
filter approach will advantageously be used to determine the correct propagators
in terms of phase. In Chapter 7 we will use the least-squares approach for oper-
ators with correct phase, to determine the proper amplitudes for true amplitude
redatuming when necessary.
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4.5.2 Focusing operators

The process of removing the forward propagators by applying inverse operators
can be considered as a two-step procedure, which subsequently focuses the source
emitted energy and the receiver detected energy in a synthetic sense. As described in
Berkhout (1997a) and Thorbecke (199j) this two-step procedure can be considered
as focusing in emission and focusing in detection.

Focusing in emission

Focusing in emission describes the removal of the propagation part, W+(zd, z0),
emanating from the source side, which by definition equals

P−(z0, z0)F+(z0, zd) =W−(z0, zd)X(zd, zd)S(ω). (4.5.37)

Focusing in emission, describes the process of backward propagating the sources
through the near-surface, toward the defined boundary between near-surface and
deeper subsurface and resembles the discrete analogy of Equation 4.2.12 with a
Dirichlet boundary condition (Rayleigh equation of the second kind), for two-way
wavefields and Equation 3.3.12 for one-way wavefields. The principle is graphically
illustrated in Figure 4.6.

Focusing in detection

Focusing in detection describes the removal of the propagation part, W−(z0, zd),
detected at the receiver side, which equals,

F−(zd, z0)P−(z0, z0) = X(zd, zd)W+(zd, z0)S(ω). (4.5.38)

Focusing in detection, describes the process of backward propagating the receivers
through the near-surface, toward the defined boundary between near-surface and
deeper subsurface and resembles the discrete analogy of Equation 4.2.12 with a
Dirichlet boundary condition (Rayleigh equation of the second kind), for two-way
wavefields and Equation 3.3.12 for one-way wavefields. The principle is graphically
displayed by Figure 4.6

If we are only interested in the phase characteristics and ignore the amplitudes,
then by virtue of the definitions of the matched filter inverse propagator, focusing
in detection and emission respectively can be written as,

W+,∗(zd, z0)P−(z0, z0) = X(zd, zd)W+(zd, z0)S(ω), (4.5.39)

P−(z0, z0)W−,∗(z0, zd) =W−(z0, zd)X(zd, zd)S(ω). (4.5.40)

In our analysis we will focus on one particular event within the recorded data. This
event is defined to mark the transition of the assigned near surface and the deeper
subsurface. This particular event is resembled by its reflection response R+(zd) and
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is deduced from the subsurface response X(z0, z0). When we are only interested
in phase characteristics and ignore angle dependent reflection, we can write for the
earth response,

X(z0, z0) = W−(z0, zd)R+(zd, zd)W+(zd, z0), (4.5.41)
= rtW−(z0, zd)W+(zd, z0). (4.5.42)

If the sources and receivers are assumed to be placed at the same surface locations,
such that Equation 4.5.36 holds, Equations 4.5.39 and 4.5.40 can be written as,[

W−(z0, zd)
]H
P−(z0, z0) = r(zd)

[
W−(z0, zd)

]T
S(ω), (4.5.43)

P−(z0, z0)
[
W+(zd, z0)

]H = r(zd)
[
W+(zd, z0)

]T
S(ω). (4.5.44)

From Equation 4.5.43 and Equation 4.5.44, it can be concluded that when the correct
(in terms of phase) inverse propagator is applied to the measured data, apart from
amplitude terms, the result equals to the complex conjugate of the applied operator
for a specific event, which is referred to as the principle of equal traveltime(Berkhout,
1997a; Thorbecke, 199j).

Amplitude effects

Here we consider one focusing operator fi(zd, z0), a row-vector of the inverse prop-
agator F(zd, z0) at the detector side. By selecting only one row from the inverse
propagator, the inverse propagation will focus the detected energy to only one par-
ticular subsurface point i of interest. Here, a specific point just above the target
level zd is considered. Then for correct focusing the operator has to obey,

fi(zd, z0)W−(z0, zd) = ii, (4.5.45)

iij =

{
0, for i �= j
1, for i = j

. (4.5.46)

If we assume the scatter distributions to behave non-dispersively, i.e. the reflection
effect is not depending on frequency, the inverse operators differ only in amplitude
and are correct under the evanescent wave assumption.

To show the effect of amplitude behavior, we consider here a stack of N homo-
geneous laterally invariant layers. In this case the matched filter approach for a set
of operators describing one particular reflector reads,

F−(zN , z0)W−(z0, zN) =
N∏
n=1

[
W+(zn−1, zn)

]∗
T+(zn−1)

×
N∏
n=1

W−(zn−1, zn)T−(zn−1).

(4.5.47)
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A

B

C

Figure 4.6: Physical principle of focusing in emission and focusing in detection. A) shows the
specular rays for one specific common offset selection, with in gray the raypaths associated
with one focusing operator. B) shows the resulting rays after focusing in emission of all
measured data. C) shows the resulting rays after focusing in detection of all measured data.
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For homogeneous layers, each row of the propagation operator is a shifted version
of the other rows. Such a structure is known as a Toeplitz structure and resem-
bles a convolution. For this reason all operators become diagonal operators when
transformed to the wavenumber domain. Each diagonal element represents a specific
wavenumber kx, for which we can write,

F̄ (kx)W̄−(kx) =
N∏
n=1

[
W̄+

n (kx)
]∗
T̄+
n (kx)

N∏
n=1

W̄−
n (kx)T̄−

n (kx). (4.5.48)

From Berkhout (1982), we can write for the transmission and reflection in the
wavenumber domain,

1 + R̄+(kx) = T̄+(kx), (4.5.49)

1 + R̄−(kx) = T̄−(kx), (4.5.50)

1− R̄+(kx) = T̄−(kx). (4.5.51)

Thus in the wavenumber domain the focusing response can be written as

F̄−(kx)W̄−(kx) =
N∏
n=1

(1− [R̄+
n (kx)]

2). (4.5.52)

Similarly, for focusing in detection we can write,

W̄+(kx)F̄+(kx) =
N∏
n=1

(1− [R̄+
n (kx)]

2). (4.5.53)

Then, after both focusing in emission as well as focusing in detection, the data can
be written in the wavenumber domain as,

F̄−(kx)W̄−(kx)R̄+
d W̄

+(kx)F̄+(kx) = R̄+
d

N∏
n=1

(
1−

[
R̄+
n (kx)

]2)2
, (4.5.54)

which can result in significant reduction of energy if the matched filter approach is
used for near surface redatuming.

Using the matched filter approach for focusing, resolves the phase behavior of the
measured wavefield for a particular subsurface point of interest. However, especially
if we try to describe complex near surface behavior by means of a single focusing
step, the risk exists that amplitudes will be degraded significantly. Therefore we will
use the matched filter approach to retrieve the phase behavior of the near surface,
whereas a least-squares approach will be used in Chapter 7 to actually redatum the
measured data to a chosen datum underneath the complex near surface.
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4.6 Focusing operator updating

In the previous sections the measured, primary reflection data is described in terms
of downward propagation from the source to the scattering domain, scattering and
propagation from the scatterer to the receiver. Furthermore, the inverse propagators
were defined in terms of focusing in detection and focusing in emission operations.
However, in general the medium properties are not known on forehand and therefore
no direct knowledge is available on the correctness of forward propagators and hence
the inverse propagators. With respect to the phase behavior of the propagators two
properties can be determined in order to define a data-driven methodology to derive
the correct inverse propagators, as was recognized by Bolte (1997) as well. These
properties are the so called principal of equal traveltime and Fermat modeling. A
third property can be derived but is not directly a data determined property.

4.6.1 Principle of equal traveltime

An operator .Γi(z0), defining a synthesized source .Γi(z0)S(ω), can be applied to the
recorded data, which will synthesize the recorded wavefield into a Common Focus
Point (CFP) gather,

P−(z0).Γi(z0) =W−(z0, zd)R+(zd, zd)W+(zd, z0).Γi(z0)S(ω). (4.6.55)

By demanding the operator to focus on a point xi at depth zd,

W+(zd, z0).Γi(z0, zd) = [0, · · · , 0, 1, 0, · · · , 0]T = .Ii, (4.6.56)

and using [W+(zd, z0)]
−1 ≈ [W−(z0, zd)]

∗, the focusing operator .Γi(z0, zd) can be
defined through,

.Γi(z0, zd) =
[
W−(z0, zd)

]∗ .Ii. (4.6.57)

When we are only interested in structural imaging, and not in e.g. amplitude prop-
erties, the reflection operator R+ is assumed to be a diagonal matrix. Synthesizing
the recorded wavefield with the defined synthesis operator yields the CFP gather,

P−(z0, z0).Γi(z0, zd) = W−(z0, zd).IiR+
i S(ω), (4.6.58)

∝
[
.Γi(z0, zd)

]∗
. (4.6.59)

Apart from an amplitude factor, the CFP gather should coincide with its time
reversed focusing operator. This is also known as the ’principal of equal travel-
time’(Berkhout, 1997b) which is shown in Figure 4.6.1 The operator illuminating
a subsurface point should coincide with the wavefield induced by a point source at
the same subsurface location. By convolving the phase response of the operator and
CFP gather along the time-coordinate, we should obtain a flat event around t = 0s
in the so called Differential Time Shift (DTS) panel,

∆P−(z0, zd) = Re
{
W−(z0, zd)

}
.IiR

+
i S(ω), (4.6.60)
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in which the phase of the CFP gather is corrected for, whereas the amplitude re-
mains.

The DTS panel provides a control whether a correct focusing operator has been
applied or not, without having knowledge about the velocity model. If an erroneous
operator is chosen, the event the focusing operator was estimated for will no longer
align around t = 0s. within the DTS panel.

Suppose a forward propagator < W−(z0, zd) > was modeled within an incorrect
velocity model,

<W−(z0, zd) >=W−(z0, zd)∆W, (4.6.61)

in which ∆W is equivalent with the made error. Then one of the focusing operators
would read,

.Γi(z0, zd) =
[
W−(z0, zd)

]∗ ∆W∗.Ii, (4.6.62)

≈
[
W+(zd, z0)

]−1∆W∗.Ii. (4.6.63)

Synthesizing the recorded wavefield, consistent with the correct model, with this
incorrect operator would then yield,

P−(z0, z0).Γi(z0, zd) =W−(z0, zd)R+(zd, zd)∆W∗.IiS(ω). (4.6.64)

If this result is compared with the complex conjugate of the focusing operator used,[
.Γi(z0, zd)

]∗
=W−(z0, zd)∆W.Ii, (4.6.65)

it is observed that a phase error ∆W in the operator would lead to an opposite
phase error ∆W∗ in the synthesized result. This knowledge can be used to improve
on the erroneous focusing operator: by choosing to update the erroneous operator
by adding half of the times picked in the DTS panel, convergence to an operator
which describes the propagation characteristics better will be obtained without hav-
ing knowledge of the underlying velocity model.

To demonstrate the principle of equal traveltime, fixed-spread shot-records were
modeled over a simple model consisting of 3 horizontal reflectors at a depth of 400m,
600m and 800m respectively. The shot and receiver spacing was chosen to be 25m.
The contrast consists of density contrasts only. Figure 4.8A shows 3 CFP gathers,
after one focusing step, using the correct operators which are plotted within the fig-
ure. By correlating the operators in time with their corresponding CFP gathers, the
DTS gathers are obtained, depicted in Figure 4.8B. Clearly, for the focused event
the DTS gathers align around t = 0.

When the operators are modeled with an erroneous estimate of the earth’s prop-
agation characteristics, the DTS gathers are no longer aligned around t = 0. Figure
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Figure 4.7: Schematic representation of WRW model and associated focusing.
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Figure 4.8: Principle of equal traveltime in the space time domain. The left column shows
CFP gathers for three CFP’s, overlain with their focusing operators. The right column
shows the DTS gathers, overlain with 2 times the difference between the operators and the
error free operators. (A,B) Correct focusing operators. (C,D) too high velocity used in
operator modeling. (E,F) too low velocity used in operator modeling. (G,H) too deep depth
used in operator modeling. (I,J) too shallow depth used in operator modeling.
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Figure 4.9: Principle of equal traveltime in the linear Radon domain. The left column shows
CFP gathers for three CFP’s, overlain with their focusing operators. The right column
shows the DTS gathers, overlain with 2 times the difference between the operators and the
error free operators. (A,B) Correct focusing operators. (C,D) too high velocity used in
operator modeling. (E,F) too low velocity used in operator modeling. (G,H) too deep depth
used in operator modeling. (I,J) too shallow depth used in operator modeling.
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4.8C and Figure 4.8D show respectively the CFP-gathers and DTS-gathers when op-
erators are used with a too high velocity. The operator used to construct the CFP
gather and the correct focusing operator are displayed within the CFP gathers. It
is remarkable to see that the correct operator seems to lie in between the erroneous
operator and its CFP response. Thus, if the difference between the correct operator
and the used operator is multiplied by two, we should obtain approximately the
differential traveltimes that would be observed in the DTS gather for the specific
event for which we estimated the focusing operator. This time curve, the difference
between the correct operator and used operator times two, is displayed within the
DTS gathers.

By picking the time difference and apply half the result to the used, erroneous
operator, the new operator will be closer to the correct operator, without updating
the model. From the DTS gather we can can conclude that the proposed update
does not fully match the true update, therefore the updating has to be done in an
iterated fashion. Figure 4.8E and 4.8F show comparable results with respect to the
choice of a too low initial velocity, from which the same conclusion can be derived.
If the initial depth is taken wrongly , which is depicted in figures 4.8G, 4.8H (too
shallow) and figures 4.8I, 4.8I (too deep), we see that for a 1D medium, only one up-
date step is needed if the error in depth is not too large or the aperture is relatively
small. This was mathematically shown by Hegge (2001) under the assumption that
the events show a parabolic move out. For arbitrary 2D and 3D media, the updating
will behave iteratively as well.

Figure 4.9 shows the same results after transforming the data to the linear Radon
domain, from which we draw the conclusion that in the Radon domain, updating
in the situation of laterally invariant velocity medium can be carried out with one
step (Thorbecke, 199j). In practice, however, the updating is carried out within the
spatial domain. As the proposed algorithm depends on defining single time picks
for each trace within the DTS gathers, transforming back and forth between the
Radon and spatial domain introduces multiple pick definitions for each trace when
the seismic responses become more complex, due to more complex earth models: The
Radon transform of a traveltime functional is not straightforward and analytically
defined.

4.6.2 Fermat modeling

The second property derived from the WRW model that will be used advantageously
is called to Fermat modeling, which is based on the principle of minimum or maxi-
mum traveltime. From a set of focusing operators describing the full lateral extent
of a specific event, the measured surface response in terms of phase can be simulated
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as well. Since

F−(zd, z0) =
[
W+(zd, z0)

]∗
, (4.6.66)

F+(z0, zd) =
[
W−(z0, zd)

]∗
, (4.6.67)

a measured wavefield < P(z0, z0) > can be synthesized by,

< P(z0, z0) > =
[
F+(z0, zd)

]∗ [
F−(zd, z0)

]∗
S(ω), (4.6.68)

= W−(z0, zd)W+(zd, z0)S(ω). (4.6.69)

When only locally reacting media are considered, thus no emphasis will be laid on the
amplitudes, then the phase behavior of the data reconstruction of Equation 4.6.69
should coincide with the phase of the particular event described by the operators as
recorded within the data,

�
[
F+(zd, z0)F−(z0, zd)S∗(ω)

]∗ = �
[
W−(z0, zd)R+(zd, zd)W+(zd, z0)S(ω)

]
,

(4.6.70)
= �

[
P−(z0, z0)

]
, (4.6.71)

in which only one non-dispersive reflection event is considered only, assuring that
the reflection functionR+ is frequency independent. For convenience we will assume
sources and receivers to be placed exactly on the same surface locations,

W(zd, z0) =W+(zd, z0) =
[
W−(z0, zd)

]T
. (4.6.72)

Under the high frequency approximation, the phase of the focusing operator relates
to the traveltime through the medium between a certain focal point and surface
location. We can then approximate the operators by an amplitude term and a phase
term

W (x1,x2) = A(x1,x2) exp(−jωτ(x1,x2)). (4.6.73)

The synthesized data of Equation 4.6.69 can then be written in a continuous formu-
lation1 as,

P−(xsrc,xrcv) =
∫
x∈∂IDd

A(xsrc,x) exp(−jωτ(xsrc,x))

A(x,xrcv) exp(−jωτ(x,xrcv))S(ω),
(4.6.74)

=
∫
x∈IDd

A(xsrc,x)A(x,xrcv)

exp(−jω(τ(xsrc,x) + τ(x,xrcv)))S(ω),
(4.6.75)

1Here we revert from the discrete formulation of the WRW-model back to a continuous formu-
lation as the following determination of two-way traveltimes is based on stationary phase solution
of an integral expression.
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in which ∂IDd is the datum plane containing the CFP locations.

By using stationary phase analysis (Erdelyi, 1956; Bleistein and Handelsman, 1986),
the most significant contribution to the integral of Equation 4.6.75 can be deter-
mined, defined by the stationary point xs, with respect to the CFP locations,

∂τ ′(xsrc,xrcv,xs = x)
∂x

= 0, x ∈ ∂IDd, (4.6.76)

in which,
τ ′(xsrc,xrcv,x) = τ(xsrc,x) + τ(x,xrcv). (4.6.77)

Then the integral may be approximated by

P (xsrc,xrcv) =

√
2π
ω ∂2τ
∂x2

A1(xsrc,xs)A2(xrcv,xs)S(ω)

exp(−jω(τ(xsrc,xs) + τ(xrcv,xs)− jµ
π

4
),

(4.6.78)

with

µ = sign
[
ω
∂2τ

∂x2

]
. (4.6.79)

According to the stationary phase of Equation 4.6.76,

∇(τ(xxsrc,x) + τ(xrcv,x))|x=xs = 0, (4.6.80)
∇τ(xxsrc,x)|x=xs = −∇τ(xrcv,x)|x=xs , (4.6.81)

which selects the specular ray as schematically displayed by Figure 4.10. Then the
approximate solution to the integral of Equation 4.6.75 becomes,

P (xsrc,xrcv) = A(xsrc,xs)A(xrcv,xs)exp (−jω(τ(xsrc,xs) + τ(xrcv ,xs)))S(ω).
(4.6.82)

Note, that Equation 4.6.80 resembles Fermat’s principle, stating that the traveltime
between source and receiver should be the traveltime along the shortest path in
time. Furthermore, Equation 4.6.81 resembles Snell’s law, stating that the angle of
incidence should equal the angle of reflection. Thus, the two-way traveltimes can be
constructed from the traveltime table of the forward propagator, by combining the
two columns representing the considered source and receiver location and picking
the minimum traveltime (Fermat’s principle) or by summing the traveltimes found
at the locations within the two selected columns for which the derivatives are equal
in amplitude but opposite in sign (Snell’s law). The particular focuspoint, for which
the stationary phase analysis renders the two-way traveltime, is also the reflection
point of the specular ray between source and receiver. For the case we have an set
of erroneous focusing operators,

<W−(z0, zd) >=W−(z0, zd)∆W, (4.6.83)
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Figure 4.10: The two-way traveltime can be determined by finding the stationary point xs

with respect to the traveltime of the combined operators originating from a specific source
and receiver pair (xsrc,xrcv).

the synthesized data reads,

P−(z0, z0) =W(z0, zd)∆W∆WT [W(z0, zd)]
T
S(ω), (4.6.84)

under the assumptionW+(zd, z0) = [W−(z0, zd)]
T = [W(z0, zd)]

T . Clearly an error
in traveltime (the phase characteristics of the complex valued W) would render a
doubled error within reconstructed data, compared to the real data. However, as
long as the error is real and unitary with orthogonal rows and columns,

∆W∆WT = I, (4.6.85)

the error will not be detected if the synthesized data is compared to the real data.
Besides the two criteria on the system errors derived through the principle of

equal traveltime and Fermat modeling, the operators should also be orthogonal,

I = F−W−, (4.6.86)

Any error in the forward operator,

<W− >=W∆W, (4.6.87)

results in
∆WHWHW∆W = I. (4.6.88)

With the true operator,W, being orthogonal it is easily concluded that an error in
the focusing operators should also satisfy,

∆WH∆W = I. (4.6.89)
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Combining all the criteria on the system errors leads to the conclusion that if an
error ∆W in the focusing operators satisfies,

∆WT = ∆WH = ∆W−1, (4.6.90)

it will not directly be detected.
The Fermat modeling method is illustrated in Figure 4.11. Figure 4.11A dis-

plays a full lateral set of focusing operators, containing time-undulations due to
near surface anomalies. The operators were sorted to their common surface point
(CSP) location and used within a minimum phase analysis to construct the two-way
traveltimes for all offsets related to the reflector from which the focusing operators
originated. In Figure 4.11B the two-way traveltimes are displayed. Along the line
ncfp = ncsp the zero-offset times are recognized, which clearly show the impact of
the near surface.

In practice, the propagators are stored as discrete matrices and will contain a noise
term. Then the derivatives are determined through finite differencing the columns.
As derivatives are extremely sensitive to noise, picking the minimum traveltime is
preferred. However, in the next chapter initial operators will be constructed through
closed form expressions, in which it is more convenient to use the derivatives.

4.7 Synthetic Example

To illustrate the outlined methodologies, data was modeled using finite difference
modeling on the model shown in Figure 4.12A. A laterally varying low velocity
overburden has a gradually changing boundary. The shot record in Figure 4.12
Bclearly visualizes the statics problem. In total 301 shots with 301 receivers each
were modeled. By using conventional statics methods as the PLUS-MINUS method
and residual statics based on maximum stack power energy (see Chapter 2), a cor-
rected stack was derived as displayed in Figure 4.12C. The overburden was replaced
by a layer with an acoustic velocity of 1900 m/s, estimated by the static procedures.

Clearly the conventional methods show some short comings for this example. The
replacement velocity was estimated a little bit too low: 1900 m/s versus 2000 m/s.
The replacement velocity in combination with the estimated and static free two-way
traveltime results in an estimated reflector-depth of about 420 m, which is 20 meters
too deep. Around x = 200m the stack shows a dim spot and the stack seems to
show structure (the reflector shows ”smiling”). Within the next section we will see
how common focuspoint processing is performing on this example.

4.7.1 Operator updating

A simplified model (Figure 4.13A) is used in this example to determine initial oper-
ators in a first attempt to describe the propagation effects to focus points defined on
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Figure 4.11: By reordering the focusing operators of A) to CSP operators, which is possible
when a full lateral set of operators is available, the two-way traveltimes for all shot-receiver
experiments can be reconstructed through a stationary phase analysis as displayed in B).
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Figure 4.12: Complex near surface example. B) displays a shot-record modeled within the
model of A), which contains an undulating and non reflecting near surface transition and a
reflector at 400 m depth. After application of refraction and residual statics, the time-image
of the reflector at 400 m depth shows apparent structure and dim spots as displayed in C).

the reflector at 400 m depth (Figure 4.13B). Here we used a laterally homogeneous
model. In practice one could determine initial operators from the stack and stacking
velocities, even in combination with conventional static solutions. An initial Com-
mon Focus Point gather is constructed (Figure 4.13C) with the aid of the modeled
initial operators. When the CFP gather and the operator are correlated, clearly they
do not align around t = 0 in the initial DTS panel (Figure 4.13D). After updating
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Figure 4.13: An initial operator (B) is modeled in a simple initial model (A). The corre-
sponding erroneous CFP gather (C) clearly does not coincide with the operator as can be
seen in the DTS gather (D).

the operator using the principle of equal traveltime, through picking times in the
DTS panel, a final operator is derived after a few iterations, displayed in Figure
4.14A. When correlating the final operator with its constructed CFP gather, the
DTS panel does align around t = 0. The principal of equal traveltime is satisfied by
this condition, as can be seen in Figure 4.14B. This procedure was repeated for all
focal points along the boundary. The final operators found can be used for further
analysis and processing.

4.7.2 Analysis and processing of final operators

The final operators as found in the previous section were determined by using the
principle of equal traveltime only. In this section it is demonstrated how these op-
erators can be used to construct time images and to redatum the recorded data. As
only the principle of equal traveltime is used an analysis relating to the other two
principles will be made as well. First the final operators will be used to construct



82 Focusing of seismic data

0.0

0.5

1.0

-0.5

0.0

0.5

-1500 0 1500 -1500 0 1500

lateral position [m] lateral position [m]

o
n
e
-w
a
y
ti
m
e
[s
]

o
n
e
-w
a
y
ti
m
e
[s
]

A B

Figure 4.14: After updating an operator (A) is found with gives good alignment in the DTS
gather around t=0 (B), when correlated with its corresponding CFP gather.

a CFP time-image. A CFP time-image is constructed by stacking the DTS panels,
rendering the imaged energy, and placing the results at the apex-times of the used
operators. The image of Figure 4.15A shows a time-image constructed with the true
operators, while the image of Figure 4.15B shows a time-image constructed with the
estimated operators. The result looks quite promising, at the right hand side the
estimated image looks a little bit different. This is partly due to the error in the
operators as well as drift along the lateral coordinate, which will be explained fur-
ther on. However, when compared to the stack obtained using conventional statics
as displayed by Figure 4.12C, a large improvement is observed. No significant false
structure is introduced by the estimated operators, compared to the image obtained
by using the true operators. Furthermore, dim spots are not observed. It should
be noted here that the near surface is not replaced by a constant velocity layer as
is done within the conventional procedures, therefore the image directly shows the
structure of the near surface anomalies when compared to the image of Figure 4.12C.

In the next step, the estimated operators were used to redatum the data, by ap-
plying the operators twice, according to Equation 3.4.22. To examine the results
after redatuming an anticline was modeled underneath the reflector at 400m depth.
The image of Figure 4.16A shows a redatumed shot gather after redatuming with
the estimated operators. The image of Figure 4.16B shows the same result, after
redatuming with the true operators. In comparison we see that both apices of the
two events have drifted. Furthermore, the first arrival shows a drift as well. The
drift is introduced due to the fact that during updating the control over the assumed
lateral locations of the CFP operators is lost. Within the analysis made by Hegge
(2001), an analytical result is derived for the lateral drift of a focus point during
updating along a dipping reflector. For other, more complex models, no analytical
solutions can be derived. In Volker (2002) an assessment is made of the spatial res-
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Figure 4.15: The final operators are used to construct a CFP time image. A) The image
when constructed with the correct operators. B) The image constructed with the estimated
operators. Note the small differences.

olution that can be obtained through migration as function of the spatial sampling
of sources and receivers. If the redatumed result using updated operators is taken
as input for migration, without a proper control of the lateral drift of the focusing
operators, this will degrade the resolution. Therefore, this aspect in operator updat-
ing needs to be addressed. One has to put the operators subject to a tomographic
inversion to estimate the exact locations. This would result in redatumed data which
is unequally sampled in space for which one could correct by using regularization
tools such as described in Hindriks and Duijndam (2000).

4.7.3 Focusing analysis

In Figure 4.16 not only drift of CFP locations is observed but some spurious energy as
well. Although the principle of equal traveltime provides an elegant way in describing
a data-driven updating of focusing operators, it is not intrinsically assured whether
the correct operator will actually be found as shown in Section 3.5. Already from
the principle of equal traveltime, it can be shown that a null space exists during
operator construction for the space of operators that will focus the data. When one
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Figure 4.16: The focusing operators can be used to perform a redatuming to the focused
reflector. Figure A) shows a correctly redatumed shot record. Figure B) shows a redatumed
shot gather when estimated operators are used. The differences are caused mainly by drifting
of CFP locations. This can be solved by using a regularization procedure.

focusing operator is constructed from two rows of the inverse propagator,

.Γ(z0, zd) =
[
W−(z0, zd)

]∗
Ii +

[
W−(z0, zd)

]∗
Ij , (4.7.91)

.Γ(z0, zd) =
[
W−(z0, zd)

]∗ [Ii + Ij ] , (4.7.92)

and is applied on the data, the result can be written in two ways,

P(z0, z0).Γ(z0, zd) =W−(z0, zd)R(zd, zd)W+(zd, z0)
[
W−(z0, zd)

]∗ [Ii + Ij ] ,
(4.7.93)

=W−(z0, zd)R(zd, zd)Ii +W−(z0, zd)R(zd, zd)Ij , (4.7.94)

which both obey the principle of equal traveltime. As the focusing result of Equation
4.7.94 coincides in time with the reversed time of the applied operator of Equation
4.7.91, any linear combination of rows of the inverse propagator obeys to the princi-
ple of equal traveltime, which leads to an infinite large null-space(Tarantola, 1987).
However, such a combined operator does not satisfy orthogonality with the remain-
ing set of operators, which can be verified through the focusing principle. But, since
no data dependency is available within the focusing principle, a route to a proper
operator in terms of focusing into a single focus point can not directly be provided.
In Bolte an additional non-uniqueness property is described, showing that next to
linear combinations of full operators, also new operators can be constructed from
subsets of full operators, which still obey the principle of equal traveltime.

To check to which extent the operators were correctly determined, the operators
were subject to a pre-stack Kirchoff depth migration using the exact model. This
procedure is intrinsically equivalent to the focusing principle, in the sense that if an
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operator is not a focusing operator it will render energy at other locations within
the model than the aimed focuspoint. Figure 4.17A shows the image after migrat-
ing correctly modeled operators. Figure 4.17B shows the image after migration of
estimated operators. The correct operators clearly collapse to the correct location.
Overall, the estimated operators are imaged quit well. However, the locations to
which the operators image are a little bit smeared, show spurious events and drifted
laterally, which was observed by Bolte et al. (1999) as well. Furthermore, on the
right hand side of the model, the CFP locations show a large structure. Close exam-
ination of the operators learned that the corresponding events in the DTS gathers
still had a constant misfit from t = 0 for which we should have include some ad-
ditional updating iterations. From this little example it can be concluded that the
locations of the focal points drifted away from the aimed locations and the migrated
result shows that the operators are not perfectly focusing.
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Figure 4.17: To check the operators found after single-point updating, the subset of the
operators was depth-migrated using the correct model. Figure A) shows the migrated result
of the correct operators clearly collapsing into the focus points. Figure B) shows the migrated
estimated operators. Through the updating process smearing and drifting of CFP locations
was introduced.

For a more detailed analysis of the estimated operators, a full set of operators,
Figure 4.18A, was modeled in the true near surface model with an interval of 2.5m
in between the target focuspoints. Thus a very dense set of operators was obtained.
The updated operators, Figure 4.18B were correlated, one by one, with the full set
of densely sampled operators. By picking for each updated operator, the operator
from the dense correct set, which gave the minimum rms-error, both the fitness
of each operator is obtained, indicating how well the operator focuses to a single
point, as well as the drift from the assumed CFP location. In Figure 4.18C, the blue
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line connecting the dots denotes the rms error for each operator. The closed points
within the graph of Figure 4.18C denote the aimed lateral locations (locations that
were aimed at), the open points denote the actual locations after updating. Thus,
we see that the operators are not perfectly focusing and their locations are drifting.
Note that the rms-error for the focusing operator around x = 0 has the lowest value,
which is confirmed by the clear image at the same location in Figure 4.15A and also
in Figure 4.17B. Also, most of the drift is found at the right-hand side of the model,
which confirms the observations in Figure 4.16 and Figure 4.17.

4.8 Conclusions

The CFP method provides an elegant way of determining one-way propagation op-
erators from the data. A full set of operators provides a full inverse propagator that
can be used for redatuming the recorded data through the complex near surface.
In practice, the updating procedure for a single point may not result in a unique
solution.

In the next chapter we show that this problem can be solved by updating a full
range of focus points simultaneously.
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dots denote the estimated locations, while the closed dots denote the actual CFP locations.





5

Intialization of focusing operators

5.1 Introduction

In the previous chapters the general methodology has been outlined to correct for
propagation through the subsurface by means of focusing operators. In practice,
however, it is quite often a cumbersome and non-trivial task to directly implement
the outlined procedures in case of a complex near surface. As shown in Chapter 2, the
effect of a complex near-surface, traditionally called statics, reveals itself in distortion
of the continuity of the seismic signal and associated coherent stacking of energy
during imaging. Within this chapter the principle behind coherent energy stacking
within the CFP methodology is demonstrated as well as the effects a complex near
surface will have on this procedure. Furthermore, a method is outlined that will
capture these near surface effects as good as possible within the construction of
an initial set of focusing operators. As a result a convergent updating is assured to
further improve on the focusing operators through the principle of operator updating.

5.2 Fresnel zone reconstruction in case of a complex near sur-
face

The construction of a Common Focus Point-gather consists of an integral evalua-
tion, or stacking procedure; focusing in detection describes an integral evaluation
over the receiver locations, while focusing in emission describes an integral evalua-
tion over the source locations. Such integrals evaluate the energy resulting from the
interference pattern of two convolved wave-fields, the source-gather and the focusing
operator, which resembles an anti-causal Green’s wavefield excited by a secondary
source (see Chapter 4, Section 3). The main contribution in these integrals arise
from the first Fresnel zone, where the data and the operator are tangent.
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Figure 5.1: Construction of a CFP-gather. Each shot-gather (A,E) is corrected in time by
the CFP operator (B,F, operators are denoted by the curve in A and E) and stacked (C,G)
resulting in one trace of the CFP-gather (D,H). The displayed shot-gathers are contami-
nated with near surface effects. If near surface effects are not implemented in the operator,
stacking of the corrected shot-gather introduces artifacts (G), hampering the analysis of the
DTS-gather (J). By using initial static corrections in the operator (A), the corrected shot-
gathers (B) produce a cleaner stack (C), resulting in better defined DTS-gathers (I). Even
if the erroneous CFP gather of (H) is corrected with the operator containing initial statics
of (A), the DTS-gather of (K) has not significantly improved.
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Figure 5.1 displays in detail the principles behind the construction of a CFP-gather,
in a graphical sense. In Figure 5.1A, a shot-gather is shown with the recorded re-
flection of one event within a model with a serious near surface problem, clearly
expressed by the undulating nature of the recorded event. The focusing operator,
for which the CFP-gather will be constructed, is denoted within the shot-gather
by its traveltime curve. The initial focusing operator is modeled from an incorrect
reflection depth but it does capture the propagation effects of the complex near
surface. The next step in computing the CFP-gather, is shifting the traces of the
shot-gather in time corresponding to the traveltimes of the focusing operator. This
procedure resembles the correlation of the shot-gather with the operator. Figure
5.1B shows the correlated result. It is clearly observed that the statics within the
initial operator remove the fast undulations arising from the near surface within the
shot-record, leaving a smooth synthesized shot-record. The stacked result will be
dominated by the contribution of the single stationary point within the corrected
shot-record, resulting, apart from some noise, in a clear single peak as observed in
Figure 5.1C. By repeating the procedure for all shot-records, the CFP-gather of Fig-
ure 5.1D is obtained, containing as expected a clear single event. The used reversed
time operator overlies the CFP-gather. Due to the use of an erroneous depth for
the initial operator, the CFP-gather and operator do not coincide, but the effects of
the near surface clearly do coincide as the CFP-gather now contains the same near
surface effects at the source side.

If, however, the initial operator is modeled using an average (erroneous) velocity
without any attempt of incorporating fast variations arising from the near surface
(Figure 5.1E), the corrected shot-gather still contains the undulations caused by the
near surface as can be observed in Figure 5.1F. Due to the remaining undulations,
which form multiple local stationary points, the resulting stack does not contain a
clear single event as shown in Figure 5.1G. The final CFP-gather is therefore contam-
inated with artifacts and the single reflecting event is hardly recognized as displayed
in Figure 5.1H.

To assure correct updating, the DTS-gathers need to be examined to define trav-
eltime updates for the CFP operators. Using the operator containing initial static
corrections clearly leads to an easy interpretable DTS-gather as depicted in Figure
5.1I. However, the usage of a smooth operator does not lead to a clearly inter-
pretable event, as can be seen in Figure 5.1J. Figure 5.1K displays the DTS-gather
constructed by correlating the operator containing the near surface effects with the
CFP-gather that was constructed by using the smooth operator that didn’t contain
any near surface effects. Although near surface effects seem to be described reason-
ably well in the CFP-gathers for the far offset (the event is fairly well detectable),
within the near offset section hardly any improvement is recognized when compared
to the result of Figure 5.1J. Apparently, trying to detect the near surface effect
within the DTS-gathers is a non-trivial task and since the near offsets eventually
will have the largest contribution in focusing and imaging, such a workflow will even-
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Figure 5.2: The evolution (from left to right panels) of a vertically traveling plane-wave
(A,B,C) and a dipping plan-wave (D,E,F), traveling through a low velocity sinusoidal shaped
near surface (wavelength=100m). The first arrival wavefront is slow healing from the near
surface effects.

tually lead to a strongly distorted and contaminated image.

In the remainder of this chapter first an evaluation of the nature of near surface
anomalies an their impact on wave-propagation is given, followed by two means of
identifying zero-offset times and initial stacking velocities. These zero-offset times
have a close relation to conventional surface consistent static solutions. Next, the
found zero-offset times and stacking velocities are perturbed within a non-linear op-
timization scheme such that optimized initial operators are obtained through Fermat
modeling, as explained in Chapter 5, and capture the near surface effects within the
initial operators as good as possible.

5.3 Near surface impact on wave propagation

Near surface anomalies mainly affect the seismic wavefield close to the sources and
receivers. However, its impact is visible on reflections from the complete subsur-
face. As within the WRW-formulation two-way seismic wave-fields are formulated
in terms of convolving one-way propagators, it makes sense to investigate the near
surface effects on the one-way propagators under consideration.

The wavefield W+, emitted by a source at the surface will propagate down, gets
reflected at the deeper interfaces and propagates back through the propagatorW−

to the receivers. Thus, the measured wavefield travels through the near surface
two times. However, the near surface has a different effect on the separate one-way
propagators. The downward propagator from the source to the reflector recovers
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Figure 5.3: Plane waves recorded at a level 500 m below a sinusoidal shaped low velocity near
surface through which the plane waves have traveled. The wavelengths of the near surface
are 200 m (A,D), 100 m (B,E) and 50 m (C,F).

in the far field (near the reflector) from the near surface impact, whereas the up-
ward propagator recorded at the receivers is affected by the near surface close to
the receivers and has, therefore, not yet recovered from the near surface impact. In
Aki and Richards (1980) a theoretical derivation is given to describe the far field re-
sulting from inhomogeneous and periodic near field scattering. Here, we will suffice
describing the healing phenomena by visual inspection.

Figure 5.2 displays for two plane-waves the propagation effects through a sinusoidal
near surface (close to depth zero) interface between a medium with a relative slow
wave-velocity and a medium with a relative high wave-velocity. Clearly a difference
in traveltime is developing along the wavefield. Further downward in the far field
still different modes are recognized, however, away from the near surface a plane-
wave envelope is clearly recognized as a first arrival. Figure 5.3 shows the recording
of the same two plane waves as a function of time and different wave-lengths of
the near surface inhomogeneities, measured at a fixed distance away from the near
surface. For a smaller wavelength of the sinusoidal near-surface inhomogeneity, the
plane wave nicely heals from the near surface effects.
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From these experiments it can be concluded that the different plane wave modes
have a tendency to heal from the near surface inhomogeneities depending on the
distance from and the wavelength of the near surface inhomogeneities: The larger
the wavelength, the further away sufficient healing will take place with the notion
that for wavelengths much larger compared to the wavelength of the seismic signal,
the near surface will no longer cause a problem within the traveltime updating pro-
cedure.

Figure 5.4 illustrates how on the one hand the near surface impacts the up-going
wavefield, whereas on the other hand the down-going wavefield will heal from the
near surface, through a combination of snap shots of the wavefield originating from
a point source respectively placed away from the near surface (Figure 5.4A) and
placed within the near surface (Figure 5.4B). The measured wavefield within the
near surface clearly shows the imprint of the near surface in terms of traveltime.
The wavefield recorded within the far field with respect to the near surface inhomo-
geneities has healed from the near surface effects in terms of traveltime undulations
although still different modes are recognized by the secondary arrivals. However,
these modes will not hamper the tracking of the first arrival. The result of Figure
5.4C can be regarded as the physical measurement of a focusing operator, whereas
the result of Figure 5.4D can be regarded as the physical measurement of a so called
common surface point (CSP) operator: an operator describing the propagation char-
acteristics from a single surface location toward all the considered common focus
point locations. Note that for a full consistent set of focusing operators, F =W+,∗,
the focusing operators are defined by the rows of the propagation matrix W+, see
also Section 3.6.1. The CSP operators are defined by the columns of the same prop-
agation matrix. Therefore we are able to construct smooth CSP operators from a
consistent set of non-smooth focusing operators sufficing from a complex near sur-
face and vice versa.

The aim of the remainder of this chapter is to define a proper definition of the
smoothness of the CSP operators. Note, however, that this description does not
need to be complete in the sense of describing the near surface characteristics ex-
actly. It merely serves as a method to capture the trend of near surface irregularities
such that we are able to constructively update the CFP operators.

5.3.1 Domain of smallest operator complexity

The concept of wavefield healing and wavefield destruction can be a confusing phe-
nomena, easily interpreted as violating reciprocity. This conclusion was drawn on a
similar observation in salt modeling by Muerdter, Kelly and Ratcliff (The Leading
Edge, july 2001). However, as indicated by the reply of Wapenaar and Fokkema, it
should be noted that reciprocity relates a point receiver and a point source in 3D
(line receivers in 2D), which is still obeyed. Also in the experiment in Figure 5.4
reciprocity holds, as the middle trace in Figure 5.4C and Figure 5.4D are identical,



5.3 Near surface impact on wave propagation 95

1000 1500 2000
0

d
e
p
th

[m
]

lateral position [m]
1000 1500 2000

0

d
e
p
th

[m
]

lateral position [m]

1000 1500 2000
0

ti
m
e
[s
]

1000 1500 2000
0

ti
m
e
[s
]

A B

C D

Figure 5.4: A) displays the evolution in time of a pressure wavefield excited by a point-source
at (x = 1500, z = 600). C) displays the signal recorded in time by a line of receivers place
at z = 0. B) displays a pressure wavefield excited by a point-source at (x = 1500, z = 0).
D) displays the signal recorded in time by a line of receivers placed at z = 600.

whereas source and receiver are interchanged. Actually, reciprocity will be used ad-
vantageously, to determine initial operators describing the near surface phase effects
approximately, through a sparse set of parameters.

For that matter consider the following experiment. Within a homogeneous back-
ground model a low velocity anomaly is placed respectively near the surface and
near the target reflector. A third experiment contains a high velocity anomaly near
the surface. For the three sketched situations traveltime operators are modeled from
all surface locations to a laterally dense set of predefined focus point locations at the
target reflector. Next, the computed traveltimes are corrected by the traveltimes
through the homogeneous background without the presence of the inhomogeneities.
In Figure 5.5 the corrected residual traveltimes are displayed as function of surface
location and reflector location. Clearly, an inhomogeneity close to the surface has
only an impact on the common surface location for the whole suite of operators,
while an inhomogeneity close to the reflector has impact only on the common reflec-
tor location of the whole suite of operators. Since we assume that both sources and
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Figure 5.5: Imprint of subsurface anomalies on operator traveltimes. A) displays a back-
ground velocity model in which rays are traced from all lateral locations at a depth of 500m
to all lateral locations at a depth of 0m. Traveltimes are displayed in B). C),E) and G) dis-
play anomalies placed within the background model. The traveltime differences with respect
to the anomaly free model are displayed in D),F) and H). The anomalies become visible in
a row and a column of the focusing operator, depending on their location in depth.

receivers are placed at the same lateral locations,

W+(z0, zd) =W−,T (zd, z0), (5.3.1)
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the near surface effects affecting the upward propagator can approximately be cov-
ered by smoothly modeled downward propagators when a complete dense set of
downward propagators is considered.

5.4 Construction of initial focusing operators

As outlined in the previous section, the goal of the remainder is to determine initial
focusing operators with the notion that,

• Variations at the surface side should be included, to prevent that the focusing of
either receivers or sources produce artifacts that obscure the focusing analysis;

• Lateral variations in velocity and reflector position close to the focus-point
locations do not affect the focusing when they are not accounted for and can be
corrected for during the final focusing analysis. Hence, the initial assumption
of smooth move-out for the downward propagators will hold.

A smoothness within the CSP operators will be enforced. This smoothness allows
for a parameterization that can be solved with an inversion process using the fact
that we have a redundancy in the data if we opt for a sparse set of parameters. The
final set of parameters will be determined through a genetic algorithm. Within this
algorithm the parameters will be used to construct CSP operators. These CSP op-
erators will then be combined according to the principle of data matching. Through
this principle, the two-way traveltimes are constructed from the one-way CSP oper-
ators. The objective of the inversion algorithm is to maximize the energy when the
data is stacked over the modeled two-way traveltimes.

To make sure that the procedure will lead to a set of focusing operators describ-
ing the same event in a lateral extent a proper search window for the parameters
needs to be defined, to prevent mixing of recorded events.

The parameter windows are chosen around an initial set of parameters. The ini-
tial set of parameters should be defined such that we can choose the search windows
as small as possible.

5.4.1 Forward model and objective

To enforce smooth CSP operators throughout the updating procedure, a parameter-
ization is introduced to describe the near surface CFP operators. The healing effect
of the operators can be captured by several models.

In principle at this stage we are not interested in the correct near surface model,
but merely in a model that will describe the smoothness for CSP operators while
capturing the near surface effects manifested in the transposed CSP operators, the
CFP operators.
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To describe the smoothness of the CSP operators, many methods could be used,
of which spline interpolation and Chebyshev interpolators would be among the most
general descriptions. To remain somewhat close to a physical meaning, instead of
using a general interpolation scheme such as a spline, the interpolation will be re-
stricted to a generalized formulation of Normal Move-Out (NMO).

The traveltime between a surface location xsrc and a CFP location xcfp is a func-
tion of the arc length R of the ray connecting these two positions, and the spatially
varying slowness field, p(x), which is the reciprocal of the wave-propagation velocity.
the offset, which will be used later on, is defined as,

R2 =
√
(x1;cfp − x1;src)2 + (x2;cfp − x2;src)2. (5.4.2)

For reasons of brevity, a 2D situation is considered only,

x = (x = x1, z = x3). (5.4.3)

Traveltime, as described by the Eikonal equation, can be thought of as a summation
of segments multiplied by slowness,

T (xcfp,xsrc) =
∫ xcfp

xsrc

p(x)ds, (5.4.4)

in which s is the arc in space defining the shortest traveltime path, the ray. In
Chapter 6 more details can be found about seismic rays and the computation of
seismic rays. A discretized version of the traveltime equation, Equation 5.4.4, would
read,

T (xcfp,xsrc) =
N∑
i=1

pi∆si, (5.4.5)

in which it is assumed that N distinctive layers with differing slowness exist between
the acquisition level and the datum level.

By defining an average slowness, p̃(xsrc,xcfp) along the ray under consideration1,

p̃(xsrc,xcfp) =
∑N

i=1 pi∆si∑N
i=1∆si

, (5.4.6)

the traveltime of Equation 5.4.5 can then be written as a sum over segments multi-
plied by the average slowness,

T (xcfp,xsrc) = p̃(xsrc,xcfp)
N∑
i=1

∆si, (5.4.7)

1The use of ·̃ refers in this case to average and not to a field quantity transformed to the Radon
domain
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and through Pythagoras,

∑
i

∆si > ‖xcfp − xsrc‖, (5.4.8a)

∑
i

∆si = c(xsrc,xcfp)‖xcfp − xsrc‖, (5.4.8b)

T (xcfp,xsrc) = c(xsrc,xcfp)p̃(xsrc,xcfp)‖xcfp − xsrc‖, (5.4.8c)

in which c corrects for the curvature of the path between xcfp and xsrc. The di-
mensionless correction factor c will depend on the lateral distance between xcfp and
xsrc, xsrc − xcfp. Thus, traveltime Equation 5.4.8c can then be written as,

T (xcfp,xsrc) =√
c2(xsrc, xcfp)‖zsrc − zcfp‖2p̃2(xsrc,xcfp) + c2(xsrc, xcfp)R2

2p̃
2(xsrc,xcfp).

(5.4.9)

In order to implement a smoothness constraint to the operator describing the travel-
time between a single surface location and all cfp-locations, c(xsrc, xcfp)p̃ should be
parameterized by a smooth function. The parameterization will be constrained such
that for zero-offset, R2 = 0, the correction factor equals to one, c(xsrc, xsrc) = 1.
As such p̃ is no longer the average velocity along the ray, but merely the apparent
velocity between the surface and datum depth at the zero-offset. We are free to do
so, as long as the combination of c and p̃ holds in Equation 5.4.8c. Then the first
term within the square-root of Equation 5.4.9 should equal the squared zero-offset
time,

T0(xcfp) = T0(xsrc) (5.4.10a)
= c(xsrc, xsrc)p̃(xsrc,xcfp|xsrc = xcfp)‖(zcfp − zsrc)‖. (5.4.10b)

For the parameterization of c we will choose a polynomial expansion as function of
offset,

c2(xcfp, xsrc)p̃2(xsrc,xcfp) =p̃2(xsrc,xcfp|xsrc = xcfp)

+
(xcfp − xsrc)

MAX(xcfp − xsrc)
∆p21(xsrc)

+
(xcfp − xsrc)2

MAX2(xcfp − xsrc)
∆p22(xsrc) +O(N3),

(5.4.11)

in which MAX(xcfp−xsrc) renders the maximum offset in the system. This factor is
introduced such that the higher order velocity terms (∆p21,∆p22, . . . ,∆p2N ) will not be
too small and hence will stabilize the inversion procedure in which we invert for the
parameters (p̃,∆p1,∆p2, . . . ,∆pN ). The number of orders to invert for influences
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the stability of the system. For a first order description of the correction factor c we
can define,

p21(xsrc) = p̃
2(xsrc,xcfp|xsrc = xcfp) + ∆p21(xsrc) (5.4.12a)

p22(xsrc) = p̃
2(xsrc,xcfp|xsrc = xcfp)−∆p21(xsrc) (5.4.12b)

α(xsrc, xcfp) =
MAX(xcfp − xsrc)− (xcfp − xsrc)

MAX(xcfp − xsrc)
(5.4.12c)

which will lead, when combining Equation 5.4.10b, Equation 5.4.9 and Equation
5.4.12c, to,

T (xcfp,xsrc) =√
T 2
0 (xsrc) + [(1− α(xsrc, xcfp))p21(xsrc) + α(xsrc, xcfp)p22(xsrc)] (xsrc − xcfp)2.

(5.4.13)

The optimization procedure should then search for each surface location the set of
three parameters, {T0, p1, p2}(xsrc). Note that the two slowness parameters are lin-
early weighted to determine an effective slowness for each offset. In Figure 5.6 the
parameterization is explained in a graphical form.

In Verschuur and Mahrfoul (2005), an additional parameter γ was introduced to de-
fine a nonlinear weighting as well as an additional offset perturbation. The γ value
was set to a fixed number within a trial and error exercise whereas the additional
offset perturbation was taken as an additional parameter to invert for, resulting in
a parameter-set of four unknowns for each surface location. By introducing an ad-
ditional order within the smoothness description of Equation 5.4.11 a comparable
effect would be obtained.

The outlined forward model will be used in combination with the principle of data
construction to determine the set of 3xNsrc parameters that best describe the mea-
sured two-way traveltimes. Compared to the number of parameters to estimate, the
number of data-points, NsrcxNrcv, assures an overdetermined system. Through the
stationary phase analysis which was used to derive the Fermat modeling method,
Equation 4.6.80 in Chapter 4, for a known set of parameters the cfp-location xcfp
hit by the specular ray of the reflected wavefield between source location xsrc and
receiver location xrcv is automatically determined by solving,

0 = ∇
[√

T 2
0 (xsrc) + [α(xsrc, x)p21(xsrc) + (1− α(xsrc, x)p22(xsrc)] (xsrc − x)2

+
√
T 2
0 (xrcv) + [α(xrcv, x)p21(xrcv) + (1 − α(xrcv, x))p22(xrcv)] (xrcv − x)2

]∣∣∣∣
x=xcfp

,

(5.4.14)

which resembles Fermat’s principle. It describes all possible two-way traveltimes
from one source, via all possible CFP locations toward the receiver. The stationary
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timate of the stacking velocities and zero offset times (top Figures). By reordering the
initial operators, better first estimates are obtained for the operators in presence of complex
near surface problems (bottom Figure). Within the updating procedure, the operators are
corrected and fine tuned for the localized near surface effects.

point yields the actual two-way traveltime. For each forward model realization, this
expression will be evaluated for each source and receiver combination. The proce-
dure is schematically sketched in Figure 5.7.

To verify whether the proposed parameterization is adequate to determine the initial
operators through data-matching, the operators found through standard updating
on a synthetic dataset are subject to an inversion procedure. To this aim, a linearized
inversion procedure is used to determine the described parameters from the correctly
modeled operators derived by computing the over the model of Figure 5.8C, using
an Eikonal solver.

Opposite to the data-matching criterion that will be used to find the CFP operators,
in this example the operators are already given. Their traveltimes are a function
of the exact CFP locations as well. These CFP locations are no longer a given as
explained in Chapter 4, because of drift during the updating. Therefor, to test our
parameterization on a given set of operators we need to extend the standard set of
parameter with the lateral CFP-positions; The final inversion result of this example
will thus not only contain the set (T0, p1, p2){xsrc} for all surface locations but also
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specular ray.

the set (x1;1 . . . x1;Ncfp
) of lateral coordinates of the CFP-locations. The total num-

ber of parameters to invert for will therefore be 3xNsrc +Ncfp. The data-set with
NsrcxNsrc data-points is still redundant to allow for an overdetermined system.

The linearized inversion scheme used is described in Appendix B. Figure 5.8A dis-
plays 3 operators in the common surface point domain, overlain by the operators
described by the best fitting parameters found through inversion. Note that the
residuals are small, such that the two sets of curves almost completely overlap. Fig-
ure 5.8B shows 3 operators within the Common Focus Point domain. The effects
caused by the near surface layer are clearly covered by the described parameters.
Since the parameters also include the approximate locations in space of the CFP’s, it
is worthwhile to compare them to the location of the reflector on which the operators
are focused. Although the locations are not exactly derived, as could be expected
from an approximate description of the near surface, they do resemble remarkably
well the true locations of the reflector as can be seen in Figure 5.8C. Especially when
taken into account the initial location, resembled by the crosses, which were used to
initialize the inversion procedure.

5.4.2 Inversion for CSP operators by Simulated Evolution

Genetic algorithms or simulated evolution methods are a subset of so called Monte
Carlo methods (Gallagher et al., 1991; Robert and Casella, 2005). Monte Carlo
methods are based on random search techniques through parameter space. Within
these random search techniques it is possible to optimize the search strategy and
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Figure 5.8: Validation of the Common Shot Point operator parameterization. Figure A
shows the original CFP operators overlain by the estimated parameterized operators. Figure
B shows the same results after reordering to CSP operators. Figure C displays the velocity
model for which the original operators were modeled. Within the model, the initial CFP
locations are displayed by crosses. The open circles display the final estimated locations; the
true locations are indicated by the bars. Clearly the parameterization resolves the operator
times very well and the locations are estimated reasonably accurate as well.
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thus obtaining more efficient algorithms. Simulated evolution is one of these more
sophisticated search methods and is based on evolutionary processes as observed in
nature and was used by (Wilson et al., 1994) to determine residual statics. Another
more sophisticated method is the Heat Bath Algorithm, which is based on cooling
down processes and recrystallization of certain elements contained within the heated
fluid, also referred to as simulated annealing (Cerny, 1985).

In this thesis the simulated evolution is adopted to invert for the parameterized
traveltimes as described by Equation 4.4.13. The objective is to minimize the dif-
ference between the measured traveltimes of a certain event Td(xrcv,xsrc) and the
forward modeled traveltimes,

T (xrcv,xcfp) + T (xsrc,xcfp). (5.4.15)

The focuspoint location, xcfp is determined within the inversion scheme by Equation
4.4.14.

The method is based on the evolution of populations, where repeatedly two members
of a current generation are selected to produce two children of the next generation.
Within each iteration (in terms of evolution of populations, a generation of the pop-
ulation), population members are selected according to a certain fitness, to form a
pair of parents. Such a pair of parents will produce a pair of children during the
crossover phase. In terms of evolution, genes of both parents are mixed. Finally, at
random some children or parents have a chance to mutate in the mutation phase.
This last phase keeps some randomness in the population pool and prevents the
algorithm to converge prematurely. In Appendix B an extensive description is given
on the simulated evolution method.

The fitness of a population member is determined by the stack power obtained
by stacking the data along the two-way traveltimes computed by Equation 5.4.15.
The genes of a particular member equals the parameter vector. To initialize a pop-
ulation for such a genetic algorithm it is recommended to use the static methods
as described in Chapter 2, Section 2.7. These alternative methods provide initial
stack velocities in combination with an initial T0 that is constructed from the picked
zero-offset times of a certain event in combination with the computed static shifts.
A full population is created by selecting random values within a band around the
initial parameter values.

The genetic algorithm is demonstrated for obtaining adequate initial focusing oper-
ators for data related to the subsurface model of Figure 4.12A. The operators are
parameterized within the Common Surface Point domain, to describe the measured
data in terms of phase through the use of the principle of data construction. The re-
sult of the genetic algorithm is displayed in Figure 5.10. The top row, Figure 5.10A,
displays five of the 301 shot-records that are used within the genetic data matching
procedure. The next five rows display the shot records corrected with the found
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Figure 5.9: Performance of the genetic algorithm to estimate initial operators through the
principle of data construction. A) B) and C) show the estimated values for p1, p2 and
(p1 + p2)/2 respectively. D) shows the estimated T0. E) shows the stack power as function
of the iteration-number.

two-way traveltimes after respectively 100, 500, 1000, 1500 and 2000 iterations of
the genetic algorithm. The obtained operators are displayed in Figure 5.11. As can
be concluded from Figure 5.11 the parameters tend to roughly describe the mea-
sured data in terms of phase, capturing the longer wavelengths of the near surface
anomalies. Some jitter is still observed, however the operators found can still be
subject to a final update procedure to capture the full kinematic description of the
operators, as the proposed procedure was only meant to define initial operators.

The performance of the algorithm is displayed in Figure 5.9A and Figure 5.9B
show the estimated p1 and p2 respectively. A lot of jitter is observed, such that
when p1 is large p2 is small and vice versa. The average however, behaves quite
smooth. This is probably because of the fact that the normal to the near surface
interface is changing rapidly laterally, causing a rapid changing skew in the CSP op-
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Figure 5.10: Results of a genetic algorithm for updating the parameters describing CSP oper-
ators in order to optimize the alignment of energy for a particular event within the prestack
shot-gathers. A) 5 of the original shot-gathers. B)-F) shot-gathers corrected with the mod-
eled two-way traveltime after B) 100 iterations, C) 500 iterations, D) 1000 iterations, E)
1500 iterations, F) 2000 iterations.
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erators. Note that the estimated T0 profile of Figure 5.9D quite well follows the near
surface behavior. Note that the stackpower, which is the objective function to be
maximized, is continuously increasing during the iterations, as visible in Figure 5.9E.

Once the final operators are determined through procedures described in this chapter
and the previous chapter, the operators can be subjected to an inversion procedure
to determine a near surface model as described in Chapter 6, or be used to derive
amplitudes and to redatum the measured data, described in Chapter 7.



6

Traveltime operator inversion, a
tomographic solution

6.1 Introduction

Within the previous chapters it has been outlined and demonstrated how to obtain
one-way operators from the measured seismic data, contaminated by near surface
heterogeneities. Since the described procedures make use of the CFP methodology,
the results fully describe the near surface behavior in terms of propagation charac-
teristics, directly obtained from the data itself. A big advantage is that the results
are not constrained by any simplified underlying static model. Therefore, when the
found operators are used to redatum the measured data, as will be described in
Chapter 7, any time and offset dependency of the near surface anomalies is taken
properly into account. However, as the near-surface anomalies are only described
in terms of propagation characteristics, any information on the shape, depth, spa-
tial sampling of the event on which the operator estimation procedure has been
focused, is not available. As this event also serves as the new datum level, it will
be worthwhile to gain knowledge on its geometry in space. For this purpose one
could use tomographic inversion, as the found operators are basically describing
the traveltimes between a point source at the datum, of which the location is still
unknown, and a series of receivers at surface. The tomographic problem therefore
closely resembles an earthquake localization problem. In Cox (2004) such type of
tomographic inversion is extensively discussed and described for the general CFP
methodology. Here, we only briefly describe the tomographic method and describe
a specific parameterization and forward modeling step which was used for the near
surface problems described in this thesis.

Finally, it should be noted that the tomographic procedure will not be able to
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fully capture the near surface anomalies, but only its lower frequency parts. As
long as the datum-reflector, used to determine the CFP-operators, is behaving rela-
tively smooth, we should be able to obtain information on its geometry. Opposite to
conventional static models, the method outlined in this thesis results in maximum
resolution given by the data as the determination of the final focusing operators is
fully data-driven, whereas the conventional methods are mainly model driven. The
estimation of the near-surface model as described in this thesis merely serves to aid
in capturing the final CFP locations rather than determining the final focusing and
redatuming result. Model-driven solutions will hardly ever be able to capture all the
propagation effects of the near surface adequately.

6.2 Traveltime inversion of CFP operators

In the previous two chapters, the focusing operators were defined through updating,
for which initial operators with a surface consistent imprint were employed. Though
the updating was based on parameterized models, these models were only used to
initially constrain the updating process, and the final parameters are not considered
to be reliable values for depth conversion. To appreciate the redatuming results, we
need to know the lateral positions and depth of the focus points. Therefore, the
found operators will be used as input for a tomographic inversion problem. The
model parameters that will be defined through inversion are the CFP-locations and
parameters that describe a velocity field of the near surface to explain the propa-
gation characteristics of the defined operators. The actual parameterization will be
addressed in Section 5.4. Here we will suffice describing the general inversion process.

The tomography problem tries to minimize the following objective function,

F = eTe, (6.2.1)

with,
eT =

[
C

1
2
n (d− t(m)) ,C

1
2
m (mp −m)

]
, (6.2.2)

in which d resembles the data, being the estimated one-way traveltimes, t(m) the
modeled operator times from parameters m with mp being the a priori values of

the parameters with a priori variances C
1
2
m. The parameters m describe both the

velocity depth model as well as the focal point locations at the datum (see Section
5.4). In general the parametric inversion of traveltimes is a non-linear problem and
could be solved iteratively through local linearization. As outlined in Appendix B,
starting with an initial set of parameters, m0, we can update the parameters such
that after k iterations we would arrive at,

mk+1 = mk − αpk, (6.2.3)

αpk =
(
JT (mk)J(mk)

)−1
J(mk)T ek, (6.2.4)

eTk =
[
C

1
2
n (d− t(mk))

]
, (6.2.5)
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in which we neglected the Hessian and assumed a null state of information on the a
priori values of the parameters. The term (d− t(mk)) resembles an error in trav-
eltime between the measured data and forward modeled data. In that respect the
iterative solution to determine the parameters that describe the near surface model
can be found in two ways.

The first strategy takes the operator times as determined through the steps described
in Chapters 4 and 5 as the true operators, describing the near surface propagation
characteristics as good as possible, and assumes the DTS-gathers have already flat-
tened perfectly around t = 0s. Next the operators are compared directly with syn-
thetically modeled operators given the current set of model operators. The iterative
sequence of Equation 6.2.3 through Equation 6.2.5 will then update the parame-
ters until the forward modeled operator times satisfy the operator times which were
found through the principle of equal traveltime.

The second strategy takes the modeling misfit as the picked times within the DTS
gathers. Following the principle of equal traveltime as explained in Chapter 4,

1
2
tDTS ≈ d− t(mk), (6.2.6)

in which tDTS are the traveltimes picked in the DTS gathers and d is considered to
be the set of traveltimes of the correct and true operators. The estimated operators,
t(mk), are forward modeled within a model given by the parameter-set mk. After
which the DTS gathers are constructed. Then the picked misfits are divided by 2
and used to update the model parameters. This strategy takes into account that the
operator times, modeled with the current set of parameters, are offset to the correct
operators by approximately half the times picked within the DTS-gathers; the prob-
lems of model estimation and operator time estimation are solved simultaneously.

Both strategies are schematically displayed in Figure 6.1. The first strategy hardly
puts any model constraints to the process of operator time estimation and can there-
fore be considered as a step in a model independend migration algorithm. The con-
straining parameterization is postponed. Within the second strategy, the operator
updating process has become a model constrained process and it is therefore not
assured that the operator times are found within a reasonable error margin. The
first strategy was is adopted in this thesis, whereas the second strategy was adopted
by e.g. Kabir and Verschuur (2000). The forward modeling step will be explained
within the next section.

Note that the linearized formulation of Equation 6.2.3 through Equation 6.2.5 does
not restrict ourselves to a single data set. In principle we could combine both strate-
gies and add for instance additional Tikhonov regularizations and even alternative
data, such as first-break measurements.
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Figure 6.1: Estimating the near surface model can be accomplished in two ways. Either the
operators will be updated until the principle of equal traveltime is satisfied, after which the
model will be estimated such that the it explains the final operators, as demonstrated through
the left-hand route. Alternatively, estimating the model will be coupled to the operator
updating directly, by updating the model-parameters such that the newly computed operators
will be closer to satisfying the principle of equal traveltime, as demonstrated by the right-
hand route.
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The Jacobian, J(mk) in Equation 6.2.4, is the operator containing the operator trav-
eltime derivatives with respect to the current parameter set mk. In most instances
these parameters have a localized effect. For instance the CFP-locations impact
only the traveltimes between the surface and the specific CFP-locations. Hence,
traveltime derivatives with respect to the coordinates of a specific CFP-location will
render zero for all traveltimes which are not related to that particular CFP location.
Velocity parameters also will have localized effects. Velocity nodes that are not in
the neighborhood of a particular CFP-location or surface location will not affect the
traveltimes measured between those two locations. Thus, in general the Jacobian
operator J that is needed for non-linear optimization can be approached as being a
sparse operator. For the 2D situation with N surface locations, M unknown CFP
locations and L unknown velocity model parameters, the Jacobian matrix can be
written as,

J =



[
J11

]
· · ·

[
J1N

] [
X1

] [
Z1
]

...
...[

JM1

]
· · ·

[
JMN

] [
XM

] [
ZM

]

 , (6.2.7)

in which Jmn, containing the traveltime derivatives with respect to the model ve-
locities pl, is defined by,

Jm1 =

[
∂t(xrcv

1 ,xcfp
m )

∂p11
· · · ∂t(xrcv

1 ,xcfp
m )

∂p1l
· · · ∂t(xrcv

1 ,xcfp
m )

∂p1L

0

]
,

Jmn =




0
∂t(xrcv

n ,xcfp
m )

∂pn
1

· · · ∂t(xrcv
n ,xcfp

m )
∂pn

l
· · · ∂t(xrcv

n ,xcfp
m )

∂pn
L

0


 ,

JmN =

[
0

∂t(xrcv
N ,xcfp

m )

∂pN
1

· · · ∂t(xrcv
N ,xcfp

m )

∂pN
l

· · · ∂t(xrcv
N ,xcfp

m )

∂pN
L

]
,

(6.2.8)

and Xm, containing the derivatives with respect to the lateral component of the
CFP locations, is defined by,

X1=




∂t(xrcv
1 ,xcfp

1 )

∂xcfp
1
...

∂t(xrcv
n ,xcfp

1 )

∂xcfp
1

0
...

∂t(xrcv
N ,xcfp

1 )

∂xcfp
1



, Xm=




∂t(xrcv
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m )

∂xcfp
m

...

0 ∂t(xrcv
n ,xcfp

m )

∂xcfp
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0
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∂t(xrcv
N ,xcfp

m )

∂xcfp
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, XM=




∂t(xrcv
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...
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∂xcfp
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M )

∂xcfp
M



, (6.2.9)

and Zm is defined alike for the depth of the CFP locations. Each submatrix Jmn, of
size N ×L, contains only one row with non-zero entries. If velocity parameters only
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have a local effect, in other words, only influence a limited number of rays, a large
number of entries within the non-zero row will become zero as well. The submatrices
Xm and Zm, of size N ×M , contain only one column with non-zero entries. As a
result, the Jacobian matrix is extremely sparse. Especially algorithms like Conju-
gate Gradient are well suited to implicitly invert sparse systems in a least-squares
manner, as given by Equation 6.2.4. In this thesis we adopt the LSQR algorithm
(Appendix A). Besides all the described advantages of sparse system solutions it
furthermore tends to solve parameter directions with high eigenvalues first. As most
of the problems tend to be ill-conditioned the method shows numeric regularization
when only a limited number of iterations is computed. Hence stable updates are
determined in a fast way.

6.3 Forward modeling of seismic traveltimes

Full wave-equation inversion to find the underlying earth model which produced
the output of the seismic experiments is not only a cumbersome task but under
determined as well. Generally, in seismic exploration a background velocity model
is determined in which the Green’s functions are computed using the wave-equation
to image contrasts through migration. The global shape of the move-out of arrival
traveltimes mainly depend on the propagation velocities of the background model as
function of spatial coordinates, whereas the amplitudes of reflection events depend on
contrast differences and geometrical spreading. Since, within the dynamic approach
to near-surface problems in this thesis, we need to know the position of the datum
to correctly redatum and perform a layer replacement, the reflector depth will be
determined from the traveltimes. For this purpose, the ray-method is adopted, which
looks for a solution of the coupled wave-equation, Equation 4.2.1a and Equation
4.2.1b, valid for high frequencies. The solution is accomplished by the ray-series
solution, see Cerveny (1985),

p(x, ω) = exp [−jω(t− τ(x)]
∑
n

An(x)
(−jω)n , (6.3.10)

in which τ(x) represents the Eikonal or phase function and An(x) the amplitude of
the nth order. In the high frequency approximation we can suffice with the zeroth or-
der approximation of the ray-series. By substituting the zeroth order approximation
in the homogeneous wave-equation, we arrive at,

[
|∇τ |2 − 1

c2(x)

]
ω2A0(x) +∇2A0(x)

+ jω
[
2∇τ(x)∇A0(x) +A0(x)∇2τ(x)

]
= 0, (6.3.11)
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in which the velocity is defined by c2(x) = ρ(x)κ(x). Under the assumption that
ω2 >> ∇2A0(x)

A0(x)
, the real part of Equation 6.3.11 leads to the Eikonal equation,

|∇τ(x)|2 =
1

c2(x)
, (6.3.12)

and the imaginary part to the transport equation,

2∇τ(x)∇ log (A0(x)) +∇2τ(x) = 0. (6.3.13)

The Eikonal equation is closely linked to Fermat’s principle, since the traveltime,
τAB along an arbitrary path between A and B,

τAB =
∫ B

A

∂τ

∂s
ds, (6.3.14)

is minimum along a ray path, which can be verified by inserting the Eikonal of Equa-
tion 6.3.12 into the traveltime expression of Equation 6.3.14. The Eikonal equation
and Fermat’s principle can advantageously be used to determine the traveltime be-
tween two locations within a known velocity field.

Two major families of algorithms are recognized: raytracing and grid-based meth-
ods. Raytracing computes the traveltimes within a potential field by integrating
the system of so called ray equations, which will be explained in the next section.
Grid-based methods are an attempt to directly evaluate the Eikonal equation on a
gridded velocity field. The algorithms are based on shortest path calculations using
graph methods, direct finite differencing on the velocity grid or a combination of the
two, which will be explained in Sections 5.3.2 and 5.3.3.

6.3.1 Raytracing

From the Eikonal equation, the system of ray equations can be deduced by intro-
ducing the ray-parameter σ which is related to the arclength and traveltime along
the ray by dσ = cdl = c2dτ ,

dx
dσ

= p,
dp
dσ

=
1
2
∇ 1
c2
, (6.3.15)

in which p(x) is the slowness vector, having a length equal to the reciprocal of the
velocity, c(x) Instead of choosing the independent ray-parameter σ other choices are
possible as well, as pointed out by Cerveny (1985). The ray-trajectory is found by
numerical integration of the ray-system using for instance the Runge-Kutta method
(Abramowitz and Stegun, 1970) and the proper initial conditions,

σ =σ0,
x(σ0) =xsrc,

p(σ0) =
1

c(x0)
[cos (φ) cos (ψ), sin (φ) cos (ψ), sin (ψ)],

(6.3.16)
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Figure 6.2: Two possible stencils that can be used in finding the shortest path. The dotted
lines denote the cell boundaries. The solid lines denote the connections between one partic-
ular node and its neighbors. Along the connections the penalties are computed, being equal
to the traveltime along the connecting path.

in which φ and ψ are respectively the azimuth and dip of the shooting direction.
The traveltime is found by additional integration along the ray,

τ(σ) =
∫ σ

σ0

1
c2(σ)

dσ. (6.3.17)

Ray-tracing algorithms have some drawbacks and advantages.

• Ray-tracing represents a boundary value problem. A drawback with bound-
ary value problems is that one does not know on beforehand what the initial
values should be to let the ray end in the desired end-point. This can be over-
come by raybending, by iteratively changing the initial parameters through
an optimization scheme and through dynamic raytracing which extrapolates
traveltimes between rays toward the desired end point by keeping track of
the wavefront curvature along the ray. When the medium becomes complexer
these methods tend to become expensive and unstable due to, for instance,
caustics.

• By solving the ray-tracing system through numerical integration, besides the
traveltime, also the exact raypath is known between the two locations. If a
raytracing method is used as forward modeler within an inversion problem,
the known raypaths can advantageously be used to define the partial deriva-
tives of the traveltimes with respect to the model parameters. This will save
the inversion algorithm from additional forward modeling to determine the
derivatives.

6.3.2 Shortest path methods

Since the Eikonal equation, Equation 5.3.14., resembles Fermat’s principle, which
states that the traveltime along the ray connecting two points should be stationary
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and minimal, a suite of traveltime algorithms exist which are based on Dijkstra’s
shortest path algorithm (Dijkstra, 1959). The shortest path algorithm is based on
graph methods in network theory, finding the minimal traveltime without evaluating
the differential equations directly. In Moser (1991) the shortest path algorithm is
outlined for computing the first arrival traveltimes in seismology. Within the short-
est path method, the earths velocity field is defined in cells. Nodes, in which the
first arrival times will be computed, are place along the boundaries of a cell.

A weight matrix dij is defined, containing penalty values for the connection between
ni and node nj . Penalties are only defined for nodes that are directly adjacent to
each other in the sense that the connection is not crossing any cell-borders. All
other penalties are set to infinity. These penalty values define the cost of traveling
from node ni to node nj , in our case the traveltime, given the velocity of the cell
in between the two nodes and the length of the connection. The connections and
penalties follow so called stencils, of which two are shown in Figure 6.2, depending
on the model set-up.

Once the weight matrix dij is defined, the shortest path between source node ns
and all other nodes can be computed through Bellman’s equations (Moser, 1991),

τ(ni) = minj �=i[τ(nj) + dij ]. (6.3.18)
τ(ns) = 0. (6.3.19)

These equations can be iteratively and simultaneously solved. For each iteration the
traveltimes at each node will be updated, if needed, until in the last iteration no
more updates are required. It can be shown that final minimum traveltimes will be
certainly acquired after a finite number of iterations, depending on the algorithm
used. For instance the original algorithm of Dijkstra (1959) requires at most N
iterations, with N being the total number of nodes.

More advanced methods divide the set of nodes into two subsets, subset P contains
the nodes for which the minimum traveltime has already been computed, subset
Q contains the nodes for which a minimum traveltime has not been computed yet.
Initially, only the source node ns resides in P . In a first step all nodes around ns
(which are all in Q) will be updated by using the connections with ns and the weight
matrix dij as defined by the used stencil. In a next step the node with minimum
traveltime in Q will be moved from Q into P and all the nodes in Q around the
node that just has been moved will be updated according to the used stencil and
the process will be repeated until all nodes have been moved from Q to P .

The most expensive part of the algorithm is sorting the nodes in Q according to
their traveltimes to be able to select the node with minimum traveltime. This can
be done through a so called heap-stack algorithm (Moser, 1991).
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Figure 6.3: A) Shows the principle of a finite difference scheme, using expanding rings.
Starting from source location nS at some point the rings have expanded such that the times
at the solid black nodes have already been determined and the next ring to be evaluated
consists of the rings with the gray nodes. If nA is the node with the smallest traveltime
from the previously evaluated ring, then nB will be the first node to be updated, and so on.
B) Shows the three regions as defined within the fast marching method (courtesy Sethian
and Popovici, 1999)

The order of operations to compute the first arrival times throughout the grid using
these more advanced algorithms is O(nlogn).

6.3.3 Finite difference methods

Opposite to shortest path methods, finite difference methods, like the algorithm de-
veloped by Vidale (1988), evaluate directly the differential Eikonal equation on a
regularly spaced grid. The subsurface velocity model is defined on the grid nodes,
on which also the first arrival traveltimes will be computed.

The finite difference computations will be evaluated on expanding rings, starting
at the source position. Assume a number of rings have been expanded, as displayed
in Figure 6.3A; the black dots have already been evaluated, the open dots will be
evaluated during later advancement and the gray dots will currently be evaluated.
In the current evaluation, the traveltimes of the gray dots are determined through
forward differencing using the traveltimes of the previously evaluated nodes.

The nodes to be updated in the current cycle are ordered according to the trav-
eltimes of the nodes that are behind the current nodes in the previous cycle. The
node that is connected to the node with the smallest traveltime in the previous cycle
is updated first. In Figure 6.3A for instance, node nA has the smallest traveltime of
the nodes in the previous cycle, therefore node nB will be evaluated first within the
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current cycle.

According to the pattern of surrounding nodes for which already first arrival times
have been computed, different types of finite differencing templates are being used
(see for instance Abramowitz and Stegun, 1970).

Again, the ordering of nodes can be done extremely efficient through a heap stack
algorithm. As the grid is evaluated through advancing and expanding rings, these
type of methods are also referred to as upwind finite differencing schemes.

Opposite to shortest path algorithms, finite differencing schemes suffer from in-
stabilities when cusps and caustics are being developed within the traveltime field.
On the other hand, shortest path methods are restricted in their raypath definition
due to the fixed structure of the stencils through the straight line connections ac-
companied with weight values between nodes.

The method proposed by Sethian and Popovici (1999), the fast marching method,
combines the advantages of the shortest path methods with the finite differencing
methods.

Like the shortest path methods, the nodes in the finite differencing grid are as-
signed to three sets, as indicated in Figure 6.3B; one set contains the nodes that
have already been evaluated, the upwind accepted values, one set contains the nodes
that still need to be evaluated, the downwind far away values, a third set contains
the nodes within the so called narrow band of trial values. Then the heart of the
algorithm reads,

[1] From the narrow band of trial values, the node with the smallest value is
selected.

[2] The selected node is removed from the narrow band of trial values and added
to the upwind accepted values.

[3] All neighbors of the selected node that are not yet part of the upwind accepted
values or the narrow band of trial values are added to the narrow band of trial
values.

[4] The values of the neighbors that have just been added to the narrow band of
trial values are updated by an upwind finite differencing scheme.

[5] The scheme will continue at step one.

Crucial is the upwind finite differencing scheme. The scheme proposed by Sethian
and Popovici (1999) assures that information propagates from small values to larger
values and thus satisfies entropy and expanding waveforms. The selection of the
smallest value within the narrow band to be evaluated first is consistent with the
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upwind finite difference scheme, is equivalent to the shortest path method and can
can be interpreted to be consistent with Huygen’s principle. Again, the speed of the
algorithm is given by the heap-stack method to select the nodes to be updated.

Most of further improvements to finite differencing schemes are related to a re-
vised differencing template and to the allowance of a system re-entering. Finite
differencing templates can be revised such that locally a curved wavefront or a plane
wavefront is modeled. Also, higher order finite difference schemes can be used. Re-
entering of the system could allow better for head waves or turning waves.

In Hegge (2001) an extensive overview and comparison of available methods is made.
Based on his conclusions and the fact that near-surface problems are of a complex
nature, in this thesis the Eikonal solver based on the algorithm of Vidale (1988) is
preferred for the full traveltime inversion. The available implementation has a fast
performance and exhibits a second order accuracy.

6.4 Parameterization of the velocity model

In the previous section the available forward modeling schemes were discussed.
Maybe more important than the modeling scheme, is the parameterization of the
velocity model, which is searched for by traveltime inversion. Within conventional
refraction statics procedures two types of model parameterization are distinguished.

Cell-type models

Cell-type models split up the velocity model into cells. These cells can be rectangular
or triangular for 2D models and cubic or tetrahedral for 3D models. When the model
is build by using rectangular cells, each cell will have a constant velocity, which will
be updated within each iteration. When the model is build by using triangular cells,
each triangle has either a constant velocity, in which case the cell velocity is updated,
or within each cell the velocity is determined by interpolation of the velocities as
defined at the nodes. In the latter case the velocities at the nodes are updated.
The model parameterized by nodal velocities has the advantage that the velocities
are continuous across cell interfaces, whereas a velocity model built with constant
velocity cells has a discontinuous velocity field across the cell interfaces.

Layered models

Instead of using cells as building blocks, the model can be build up by constructing
layers. Often the earth, and especially the near surface can be approximated by
layers. These layers can be very irregular, have pinch-outs and velocity gradients.
Thus, layer i can be described by a set of geometrical nodes in combination with an
interpolation function and a set of velocity nodes combined with an interpolation
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Figure 6.4: Cell type models can be described by nodal velocities (A) in which case the
velocities are continuous across boundaries and rays are describe by a curved trajectory
within the cell, or the models are described by constant cell velocities (B) in which case the
velocities are discontinuous across boundaries and the rays are described by straight lines
within the cell.
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Figure 6.5: Whether the velocities are described by cell-type (A) models or layered models
(B), in case traveltimes are computed by an Eikonal solver, the models are first transformed
into a gridded model.
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function,

zi(x) =
∑
n

znψn(x), (6.4.20)

ci(x) =
∑
n

cnχn(x). (6.4.21)

Traveltime modeling and parameterization

Especially when a ray-tracing method is used, cell-based model building has the big
advantage that the ray within a cell can be analytically traced, and the position of
the ray at the cell edge is thus easily obtained. When the velocity within the cell
is described by an interpolation of the velocities at the nodes, at the edge of the
cell the ray parameters are continuous such that the rayparameters can be directly
determined in the next cell (see Figure 6.4A). The computational effort has to be
made in determining the exit point as the ray describes a curved path through the
cell. In case the velocity within a cell is described by a single value, the velocity will
be discontinuous at the edges of the cell. Therefore, the rayparameters within the
new cell need to be computed by Snell’s law at the exit point (see Figure 6.4B). As
the velocity is constant within the cell, computing the ray within the cell will be less
complex. For large models, the number of cells will be larger than the number of
nodes. Thus, describing a cell model with nodal velocities will lead to less parame-
ters compared to a cell model described by cell velocities. Cox (2004) has developed
a general tomographic inversion method for operator traveltimes based on cell-type
methods which uses a criterion based on ray-densities to determine how much detail
the velocity model needs locally.

In case of a layered model the determination of the location where a ray crosses
the layer boundary is not straight forward. The location needs to be searched for
iteratively. A fixed geometrical step is taken along the ray. When the step length
takes the ray into the next layer, the step length is halved and taken again until the
ray is within an acceptable distance from the interface at which point the boundary
conditions are applied to take the ray into the next layer. During the ray tracing, the
algorithm continuously needs to keep track in which layer the ray is traveling to be
able to apply the correct velocity description. For two-way raytracing, however, the
layered model has the advantage that reflection points can be easily incorporated.
To include reflection points within cell-based models, additional bookkeeping needs
to be taken into account.

Since in this thesis, a grid-based method is used to compute the traveltimes, we
do not need to consider the effects the parametrization has on tracing rays. The
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velocity model is continuously defined by either two methods, cell based or layer
based, and discretized into a gridded velocity model to be used for computing the
traveltimes.

By parameterizing the velocity model through a layered system, a less smooth model
can be build with the same amount of parameters, such that we are better able to
cover the higher frequencies within the traveltime operators. The disadvantage is
that a larger a priori imprint is introduced by the choice of the number of layers
and velocity nodes within the layers. Dispite this disadvantage the layered parame-
terization will be adopted for our inversion algorithm. As interpolation function the
cubic spline is used.

6.5 Comparison of raytracing and grid-based methods

As explained, forward modeling of traveltimes using grid-based methods is fast and
very efficient. Compared to ray tracing, the traveltimes computed by the grid-based
methods are directly available at the desired receiver locations, whereas for raytrac-
ing the starting or shooting parameters have to be optimized to assure the endpoint
of the rays to reach the desired locations. As becomes clear from Figure 6.6, find-
ing the proper endpoints can become a highly nonlinear and unstable task. This
is especially the case for complex model problems in which anomalous features can
rapidly change; a slight change in the shooting direction could lead to a big change
in the endpoint location, which in system theory could be described as a poorly
conditioned system.

On the other hand, as the traveltime-inversion problem is non-linear in itself, multi-
ple linearized iterations have to be made in order to find the proper parameters de-
scribing the near-surface velocity model and the proper values of the CFP-locations.
For each iteration the Jacobian, J has to be evaluated. The Jacobian comprises the
traveltime derivatives with respect to the model parameters. In case the traveltimes
are modeled by using a raytracing algorithm, the ray connecting CFP location i
and surface location j is known throughout the model and, therefore, in case of a
cell-velocity model, the time-derivative with respect to the velocity of the kth cell of
in total K cells the ray is traveling through can be easily accomplished,

tij =
K∑
k=1

lkpk, (6.5.22)

∂tij
∂pk

= lk, (6.5.23)

in which pk is the slowness, reciprocal of velocity, of the kth cell and lk the length
of the ray within the kth cell. For more advanced nodal-velocity model descriptions,
similar type of expressions can be found.
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Figure 6.6: Due to the fast variations in the near surface ray-tracing suffers from caustics,
resulting in unstable two-point ray-tracing solution. Figure (A) shows rays modeled through
a complex near surface from a common focus point to surface locations. Figure (B) shows
rays through the same model from one surface location to a set of common focus points.

In case of using grid-based methods to solve the Eikonal equation, the raypath
is not known on forehand and, therefore, the time-derivatives have to be computed
by finite differencing, for which additional forward runs are necessary,

∂tij
∂ck

≈ tij(ck +∆ck)− tij(ck)
∆ck

,
∂tij
∂zk

≈ tij(zk +∆zk)− tij(zk)
∆zk

, (6.5.24)

in which ∆ck are small perturbations to the velocity value and depth values at node
k, respectively (as defined by Equation 6.4.20 and Equation 6.4.21). These pertur-
bations are usually taken to be about 5% of the current value.

Alternatively, the raypaths can be determined through one additional forward mod-
eling; by combining the traveltimes throughout the gridded model of a forward
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modeling step with a source at CFP location i and of a forward modeling step with
a source at surface-location j, the raypath between location i and location j is found
to be the path following the minimum traveltime through the model of combined
traveltimes. This follows through combining Fermat’s principle and reciprocity, as
the raypath connecting the two points should be minimum and since reciprocity
dictates that it should not matter whether the ray-path is computed from location
i to location j or vice versa. In practice, the traveltimes are computed by placing a
source at each surface-location and extracting the traveltimes from the model at the
current CFP locations. To be able to deduce the raypaths additional forward models
have to be computed using each CFP location as source, which have to be stored
in memory. In case we have to evaluate traveltimes between 500 surface locations
and 500 CFP locations, within a model that is roughly 12.5 km wide and 500 m
deep, we need an order of at least 125Mb of memory storage for each iteration apart
from cumbersome computations to extract correctly the raypaths and model depen-
dencies, if a grid spacing of 5m is used within the forward modeling (500 sources
×(12500/5)× (500/5)). This can become impractical with current single node com-
puter specifications. In case of 3D evaluations, the amount of needed memory can
become an order of 106 larger.

xsrc

t00

t01

t10

t11

xcfp

∆x

∆z

Figure 6.7: Within a gridded velocity model, the time-derivatives with respect to the CFP-
coordinates, xcfp can be determined with the aid of the traveltimes t00, t00, t00 and t00, as
computed on the surrounding nodes by using a source at location xsrc.

Computing the traveltime derivatives with respect to the CFP locations, using grid-
ded methods, is less cumbersome and time consuming. As the traveltimes are known
throughout the gridded model, the time-derivatives can be easily obtained through
finite differencing in the current traveltime-grid, when traveltimes are modeled at
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the CFP locations by putting sources at the surface locations. According to Figure
6.7 the traveltime derivatives with respect to the CFP locations can be determined
through,

∂t(xsrc,xcfp)
∂xcfp

≈ t11 − t01 + t10 − t00
2∆x

, (6.5.25)

∂t(xsrc,xcfp)
∂zcfp

≈ t11 − t10 + t01 − t00
2∆z

, (6.5.26)

in which ∆x and ∆z are the grid spacings along the x-direction and z-direction
respectively, within the gridded velocity model.

Given the instabilities and poor conditioning of the raytracing methods within com-
plex near surface models, in this thesis the gridded methods are adopted, taking the
additional forward modeling steps for granted.
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Figure 6.8: (A) shows first arrival times computed by finite differencing. (B) displays first
arrival times at the receiver locations computed by finite differencing and by using a ray-
tracer. Ray-tracers can handle triplications but are unstable, where Eikonal solvers are
stable but only are able to compute first arrival times. It is noted that the Eikonal solver is
not exact, due to large discontinuous velocity contrasts.

6.6 Travel-time inversion for a complex near surface, an exam-
ple

The traveltime inversion for CFP-operators determined in a complex near surface
is demonstrated with the aid of small example. Figure 6.10 displays a near sur-
face model, consisting of two laterally undulating layers, having a laterally changing
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Figure 6.9: By computing first arrival times from surface location to common focus point
locations (C), using a finite difference Eikonal solver within a gridded velocity model (A),
first break times are obtained as a byproduct (B).

velocity as well. Around x = −550, a velocity inversion is noticed, the velocity
in the top layer is higher than the velocity in the layer below. Within the model
CFP-responses were modeled, arising from 101 CFP locations placed at a depth of
500 m. and equally spaced along the width of the model. The times were recorded
at 101 surface locations, equally spread along the width of the model as well. The
traveltimes were modeled using the Eikonal solver within a gridded model.

After applying the inversion algorithm, the model of Figure 6.11A was obtained
within 6 iterations, using a cut-off error of 5%. It should be noted here that both
the creation of the measured traveltimes as well as the forward computations within
the inversion algorithm were established by using the same Eikonal solver. As can
be clearly noticed, the CFP locations are resolved reasonably well although some
structure is observed where it should be absent. However, the velocity profile is far
off and no velocity inversion is observed at all.

In a second experiment, the first-break times were also included in the inversion,
to further constrain the inversion process. The resulting model after again 6 itera-
tions is displayed in Figure 6.11B. Again, the CFP-locations are resolved reasonably
well at their correct locations. Compared to the inversion result which was obtained
without the additional constraint by using the first-break times, the CFP locations
do not display any structure at first sight.

Figure 6.11C compares the CFP locations obtained by both experiments in detail.
The CFP locations obtained by inverting only the CFP operator times are denoted
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by dots, whereas the CFP locations obtained by the combined inversion of CFP op-
erator times and first-break times are denoted by stars. The exact lateral locations
are indicated by the vertical dotted lines and the correct depth should be 500m.
The combined inversion performs better in terms of resolving both the vertical loca-
tions as well as the lateral locations. Furthermore, the combined inversion resolves
both near-surface layers better, although it still doesn’t resolve the velocity inversion.

Figure 6.12 displays the resolution matrices, for both exercises. The formulation
of the resolution matrix is given in Appendix B, and displays how well and indepen-
dently the parameters are resolved. The model was described within the inversion
algorithm by splines defining the two boundaries of the layers and the 2 lateral veloc-
ity profiles of the layer. Each of the in total 4 splines was determined by 10 vertices.
Within the symmetric resolution matrices, the 40 parameters describing the two
layers are found first along the 2 axes, next the single velocity defining the deeper
layer is found, followed by the 101 lateral CFP locations and the 101 depth-values
of the CFP locations. As can be concluded from Figure 6.12A, in case of inverting
only for CFP operator-times a large number of crossterms is found, indicating that
the parameters are not completely independently solved, a depth-velocity ambigu-
ity might well be present. Figure 6.12B shows a better parameter resolution, when
CFP operator times and first-break times are inverted in a combined fashion. Still
crossterm energy is found, especially for the parameters describing the two layers.
However, the cross-terms between the depth location and the near surface layers
have strongly reduced, putting more confidence in the estimated depths.

It should be noted here that our main interest lies in properly determining the
CFP-locations rather than estimating a correct velocity model as the idea is to
describe the near surface in terms of propagation characteristics rather than by a
velocity-depth model. In that sense we have established our task.

In literature, see e.g. Hampson and Russell (1984), it seems to be a matter of
choice on how many layers and whether we should change velocity laterally or the
layer outline. In most static procedures a layered model is adopted, which seems
to describe near surface velocity variations quite well in most cases. The majority
of conventional statics procedures however is based on refraction data, whereas our
method is based on reflection data. Still questions arises as how many layers should
be parameterized, should velocities vary lateral, should boundaries vary in the lat-
eral direction or should both vary.

Tests with this type of flexible parameterization have already shown that the so-
lutions tend to be unstable, among others due to the well known depth-velocity
ambiguity (Lines, 1993; Al-Chalabi, 1997). As shown in the second experiment, by
combining the CFP approach and inversion of first break times or other a priori
information on the model, the solution can be stabilized. Through Bayes theorem
different experiments are easily combined within an inversion procedure.
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Figure 6.10: Complex near surface model consisting of two layers with lateral varying veloc-
ity. CFP operators were modeled at equally spaced lateral positions at 500 m. depth. Note
the velocity inversion around x = −500m.

6.7 Conclusions

As shown in the previous chapters, the Common Focus Point method is well capa-
ble of determining the propagation characteristics of the near surface. However, no
information is gained on the actual depth and lateral locations of the focal point.
For that matter the focusing operators should be input to an inversion procedure
which determines the focal point locations in space.

The inversion scheme requires a forward modeling step to compute traveltimes. This
is achieved by solving the Eikonal equation. To solve the Eikonal equation one can
either use a raytracing algorithm or a gridded Eikonal solver. Ray tracing has the
advantage that rays through the model are directly available to use for comput-
ing the traveltime derivatives needed to populate the Jacobian within the inversion
scheme. When use is made of a gridded Eikonal solver, additional forward traveltime
evaluations need to be made to compute the traveltime derivatives. This makes the
algorithm more expensive.

On the other hand, a ray tracer can become unstable in the presence of complex
anomalies whereas an Eikonal solver will behave more stable. For that reason an
Eikonal solver has been used. Through further research one could improve in deriv-
ing derivatives by using a gridded Eikonal solver.

Parameterizing the subsurface model, is not a straight forward tasks. It remains
a classic question on how many layers should be used, on how the velocity should
behave within a layer, etc. This has been tackled in the work of Cox (2004). In
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Figure 6.11: (A) Model estimated by tomographic inversion of CFP operators. The dots
denote the estimated CFP locations. (B) Model estimated by combined tomographic in-
version of CFP operators and first break traveltimes. The dots denote the estimated CFP
locations. (C) Estimated CFP locations. The dots denote locations retrieved by inversion
of CFP operators only. The stars denote the locations retrieved by combined inversion of
CFP-operators and first break travel-times. The vertical lines denote the correct lateral
positions of the CFP’s, and the correct depth should be 500m. Note the exaggerated depth
axis in (C).
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Figure 6.12: (A) shows the resolution matrix of the inversion of CFP operators only. (B)
shows the resolution matrix of the combined inversion of CFP operator times and first
break times. The first 40 parameters correspond to the velocity and boundary nodes, the
next 101 parameters correspond to the x-coordinates of the CFP locations and the last 101
parameters correspond to the z-coordinates of the CFP-locations.

addition, especially when one needs to deal with low velocity subsurface models,
the depth velocity ambiguity will play a role. Through Bayes’ theorem multiple
independent experiments can be combined such as both reflection data as well as
refraction data that might be able to partially constrain the problem further.
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True amplitude redatuming

7.1 Introduction

In this chapter the estimated traveltime operators are used to redatum the surface
data to a level underneath the complex near surface. For this two strategies can be
considered.

The first strategy uses the operators to redatum the data to the focused reflector.
Since the focus-point locations can be unequally distributed on the reflector and
since the reflector in general might not be a flat horizon at all, a second datuming
step would be necessary from the reflector toward a flat datum with a user-defined
background velocity. An estimated near surface model, as outlined in Chapter 6,
would be needed to determine the CFP-locations, which are input to the second
datuming step.

The second strategy uses the estimated velocity-model to precompute operators to a
known, user-defined flat datum. Although the redatuming result would be directly
interpretable, the redatumed data and associated resolution will be stronger model-
driven as the original data-driven operators are no longer used. Any feature found
within the data and data-driven updating procedure that could not be recovered
during the model estimation will not be accounted for during redatuming.

We will mainly focus on the first strategy, under the assumption that the CFP-
locations are known through, for instance, the inversion procedure outlined in Chap-
ter 6.

For correct redatuming not only the propagation characteristics as given by the
traveltimes are necessary, but also the energy characteristics, governed by the oper-
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ator amplitudes. In this chapter a redatuming strategy will be outlined that correctly
takes into account all amplitude characteristics.

From the operator time-tables we are able to determine the so-called background
amplitudes. These are the amplitudes which are related to the geometrical spread-
ing, or spherical divergence of the related wavefield. However, the operators only
describe the first arrival primary energy related to reflector under consideration
to which the data will be redatumed. As such, any amount of reflection energy
arising from reflectors and scatterers in between the datum level and the surface is
neglected. Thus we will not have a complete wavefield description of the near surface.

Reflection energy arising from reflectors will be mapped to the anti-causal part of
the resulting data after redatuming and can therefore be easily removed.

Scattered energy arising from near surface scatterers, which is superposed on the
recorded reflection energy, needs to be removed prior to redatuming by means of
techniques as described by Blonk and Herman (1994), Ernst (1999), Campman et
al. (2001).

By using the principle of data construction we are finally able to estimate trans-
mission effects of the near-surface characteristics from the data by a linear inversion
of a parameterized amplitude function.

Once the data has been corrected we can redatum the recorded data in a least-
squares sense, by using the estimated background amplitudes and the transmission
effects as operator amplitudes.

In this chapter, first the need of true amplitude redatuming is demonstrated, fol-
lowed by the general outline of least-squares redatuming. In the following sections
a step-by-step analysis is made of the different amplitude aspects, after which the
full redatuming sequence is demonstrated with the aid of a synthetic example.

7.2 Least-squares redatuming

After subsequent iterations in the operator updating procedure, we end up with the
traveltime tables, describing the kinematics of the near-surface. The aim of this
thesis is to determine the wavefield as if it was excited by sources and recorded by
receivers at a datum underneath the complex near surface. For that matter the goal
is to redatum the data in a true amplitude sense to the datum for which the focusing
operators were estimated kinematically. In this section we will discuss least-squares
true amplitude redatuming. In the next three sections the several steps needed to
fill the redatuming scheme are described.
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Figure 7.1: If the redatuming operators are well known in terms of phase and amplitude we
are able to perfectly redatum the recorded 3 reflection events of Figure A) toward the first
reflector as displayed in Figure B)

7.2.1 Redatuming as two focusing steps

The principle of operator updating was based on the fact, that the operator used
to construct a CFP-gather should align with the event under consideration in the
CFP-gather. It was argued that the operator can be considered as the incident
wavefield of the anti-causal impulse response resulting from a point source at the
focusing location, measured at either the receiver locations or the source locations,
depending on whether focusing in emission or focusing in detection was used. The
constructed CFP-gather then comprises of traces which resemble the focusing of a
receiver gather or source gather (again depending on the focusing type) and can
be considered as the earth’s response of the total wavefield recorded at the surface
locations as result of a point source at the focus point. Thus, the CFP-gather can
be considered as a first step in the redatuming procedure, where a virtual source is
constructed at one particular focus point from a complete measurement at the sur-
face. By defining a lateral set of focus points along the event of interest, a complete
source distribution at the datum is constructed.

The second redatuming step propagates the receivers to the same common focus
points, thus constructing a complete receiver distribution at the datum level for
each virtual source. Note, that at time t = 0, for the redatumed shot-gathers, at
zero-offset, the image of the particular focus-point is found. Furthermore, as a con-
sequence of the redatuming procedure, the direct arrival found in the redatumed
shot-gathers resembles the bi-focal image of the focus points (Berkhout, 1997b; van
Wijngaarden, 1998), which contains the reflection properties of that focal point.

Therefore, the Green’s functions, or focusing operators, should account for all prop-
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Figure 7.2: The effect of amplitude- and time-perturbations act as wavefield-deficiencies.
A) Shows the three events of Figure 7.1a, but now with an amplitude deficiency at traces
70-80. B) shows the result after redatuming of A). C) Shows the difference between Figure
7.1a and A). D) Shows the redatuming of C). E) Displays the data of Figure 7.1a with a
time-deficiency at traces 70-80. F) Displays the data of E) redatumed to the first reflector.
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agation effects in the near surface. However, in practice the focusing process only
accounts for the primary wavefield and any reflecting event in between the sur-
face and datum level, as well as any scattering effect, is neglected, although they
have their effect on the primary wavefield as well, e.g. energy losses, interference etc.

The focusing process was analyzed by inverse extrapolation, using the adjoint of
the forward operator. For traveltime analysis this yielded correct results, based on
the principle of equal traveltime. However, generally this approach will not hold for
the amplitudes when inhomogeneous media are considered:

• For homogeneous media, the high frequency approach is exact. Amplitudes
are correctly recovered.

• For slowly varying media, the high frequency approach will be exact when the
medium parameters are correctly incorporated at the source and the receiver
side.

• For inhomogeneous media, the focusing analysis within the redatuming proce-
dure, as described in this thesis, only accounts for the most energetic arrivals.
Thus, when for instance caustics or triplications are present, not all energy is
properly redatumed.

Besides errors introduced due to the high frequency approximation of the focus-
ing operators and the negligence of multipathing, redatuming will lead to incorrect
results due to:

• Usage of the Rayleigh operators, when acquisition was done along a rugged
terrain. Correct redatuming will only occur when the complete wavefield is
available, thus including the normal derivative field, such that the full Kirchhoff
integral is evaluated (see e.g. Wapenaar and Berkhout, 1989).

• By avoiding the construction of a subsurface model, any scattering of the fo-
cusing operator between datum and acquisition surface is neglected. Thus, the
complete Green’s function is unknown resulting in energy loss due to transmis-
sion, which is not taking into account due to the negligence of the scattered
part.

7.2.2 Effect of wavefield deficiencies on redatuming

Amplitude and time-perturbations, which are not accounted for within the operators
used for redatuming, act as wavefield deficiencies.

In Chapter 3 it has already been shown how residual statics can severely degrade
the resolution of the final stack and image. It has also been shown that if opera-
tors are available that correctly describe the near surface in principle we are able
to reconstruct, at least kinematically, the wavefield at the user defined datum. If,
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however, the operators do not fully describe the measured wavefield in terms of time
and amplitude wavefield distortions will arise during redatuming. This is clearly
demonstrated by the example as displayed in Figure 7.1 and Figure 7.2.

In Figure 7.1A a data-set is displayed consisting of 3 reflecting events embedded
within an homogeneous background medium. As long as the operators are correctly
defined in terms of time and amplitude we are able to obtain a perfectly redatumed
data-set at the first reflector as shown in Figure 7.1B.

In Figure 7.2A the same dataset is displayed with an amplitude-disturbance be-
tween trace 70-80 (amplitudes are simply zeroed out). Using operators that do not
account for these wavefield disturbances will return a redatumed data-set as dis-
played in Figure 7.2B, clearly displaying a degraded result, both in time as well as
in amplitude. Taking the difference between the original clean data and the dis-
turbed data, as shown in Figure 7.2C as input to a redatuming scheme results in
the redatumed result of Figure 7.2D.

The disturbances in the redatuming result of Figure 7.2B compared to the desired
result are exactly equal to the redatuming result of Figure 7.2D; the focusing oper-
ators used for redatuming have in fact been defocussing the wavefield disturbances
which were not accounted for by the operator.

The same effects occur if deficiencies occur in terms of small time-disturbances as
shown by Figure 7.2E and Figure 7.2F. Such effects have been noted before by
Kabir and Verschuur (1995), which used this analogy as a base for their radon-
domain based algorithm to fill-in missing near offset. Here it is emphasized that any
deficiency not accounted for within redatuming will act as a secondary source which
will defocus during imaging, migration or redatuming.

7.2.3 Least-squares implementation of redatuming

For the moment it is assumed that the operators are fully described by the traveltime
information and the derived amplitudes. In Chapter 4 the total surface free wavefield
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before redatuming was described by Equation 4.4.9,

P−(z0, z0) = X(z0, z0)S+(z0), (7.2.1)

X(z0, z0) =
M∑
m=1

W−(z0, zm)R(zm, zm)W+(zm, z0), (7.2.2)

X(z0, z0) =
d∑

m=1

W−(z0, zm)R+(zm, zm)W+(zm, z0)

+W(z0, zd)X(zd, zd)W(zd, z0).

(7.2.3)

The overburden response contains all energy arising from reflections between the
surface and the reflector (R+(zd, zd)) we have assigned to redatum to. Note that
after redatuming these events will arise within the anti-causal part of the data and
can therefore be easily separated and removed from the part of the data we are
interested in.

Then the causal part of the redatumed data can be written as,

P(zd, zd) =
[
R+(zd, zd) +X(zd, zd)

]
S+(z0), (7.2.4)

under the assumption that S+(z0) is a diagonal matrix. The redatumed data of
Equation 7.2.4, contains a reflection event R+(zd, zd). This event is the event we
were targeting our focusing operators on, as within the original data this target
event would manifest itself as,

Ṕ(z0, z0) =W(z0, zd)R+(zd, zd)W(zd, z0)S+(z0). (7.2.5)

After redatuming, this particular event can be interpreted as energy traveling along
the boundary with both a causal as well as an anti-causal part of which the zero-
offset term (after redatuming) resembles the imaged energy for this particular sub-
surface location. The remaining lateral cross-terms resemble the so called bifocal
images (Berkhout, 1997a). From this pseudo first-arrival event the Amplitude Ver-
sus Ray-parameter can be derived (Berkhout et al., 2001; van Wijngaarden, 1998;
Winthaegen and Verschuur, 2003).

As demonstrated in Chapter 4, Section 4.5.2, the operator used for redatuming,
W(z0, zd), will contain amplitude anomalies caused by any change in transmission
(giving rise to reflections as contained within the overburden response) between
surface and datum-level. If the matched filter version ofW(z0, zd) is used for reda-
tuming, the amplitude distortions within the final results can be significant.

Therefore, instead of the matched filter approach which is sufficient for the pur-
pose of deriving the traveltimes, we apply a least-squares approach with the aid of
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the previously defined forward operators,

X(zd, z0)S(z0) = [WH(zd, z0)W(zd, z0) + εI]−1WH(zd, z0)P(z0, z0), (7.2.6a)

X(zd, zd)S(z0) = [WH(zd, z0)W(zd, z0) + εI]−1WH(zd, z0) [X(zd, z0)]
T S(z0).

(7.2.6b)

In the first redatuming step, Equation 6.2.6a, the receivers are redatumed to the
focused reflector, resulting in measurements of a wavefield excited at the surface
and measured at the datum. In the second redatuming step, Equation 6.2.6b, the
sources are redatumed to the focused reflector, resulting in measurements of the
wavefield excited by sources at the datum and recorded at the datum as well.

Often, computing the inverse is unstable due to the filtering effect of the opera-
tor and thus loss off high angle information (resulting in a large null space). Similar
to least-squares migration, a fair and stable estimate is

X(zd, z0)S(z0) =
[
DIAG(WH(zd, z0)W(zd, z0) + εI)

]−1
WH(zd, z0)P(z0, z0),

(7.2.7a)

X(zd, zd) =
[
DIAG(WH(zd, z0)W(zd, z0) + εI)

]−1
WH(zd, z0)XT (zd, z0),

(7.2.7b)

with the notion that WH(zd, z0) is close to the inverse of W(zd, z0) in terms of
phase. In case of a homogeneous medium, for which WH(zd, z0) = W−1(zd, z0),
indeed Equation 6.2.7a and Equation 6.2.7b reduce to the matched filter solution.

7.2.4 Example of least-squares redatuming

The importance of including amplitudes during redatuming through a strongly vary-
ing near surface is demonstrated in the following example. In Figure 7.3A a shot-
gather is displayed which shows the response of three horizontal reflectors. The
horizontal reflectors have been modeled as unit valued, angle independent reflection
coefficients. Through a laterally varying inhomogeneous near-surface layer the for-
ward propagator,W(z0, zd), was modeled by first arrival ray-tracing. To obtain the
data, first at z = zd the response was modeled of two deeper horizontal reflectors
and the dipole response of zd itself. As such we have,

X(zd, zd) = R+(zd, zd) +W(zd, z1)IW(z1, zd) +W(zd, z2)IW(z2, zd), (7.2.8)

which is displayed in Figure 7.3B. Using the forward modeled operators, the forward
modeled surface data is obtained through

P(z0, z0) =W(z0, zd)X(zd, zd)W(zd, z0)S(z0), (7.2.9)

and it is assumed that the first arrival as well as any other scattering has been
perfectly removed. Through this forward modeling procedure it is assured that the
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Figure 7.3: Redatuming of noise free data. The amplitudes of the measured data in A)
only rely on spherical divergence and are consistent with the inverse operators. Artifacts
occurring after matched-filter redatuming in C) are resulting from non-hyperbolic move-out
only whereas least-squares redatuming in D) renders the desired data of B).

measured data and available operators are consistent. The desired data after reda-
tuming equals the forward modeled reflections of Figure 7.3B. Through a matched fil-
ter inverse extrapolation the data as displayed in Figure 7.3C is obtained. Although
the redatuming result is kinematically accurate, the near surface inhomogeneities
result in amplitude and phase artefacts. If, however, the least-squares approach as
described in Equation 7.2.7a is used to redatum the data, clearly the data is well
recovered at zd, as can be observed in Figure 7.3D.

If additional amplitude deficiencies are added to the measured data, in this case
surface consistent random variations, as displayed in Figure 7.4A, the matched fil-
ter approach for redatuming becomes a little bit worse, if these deficiencies are not
accounted for during redatuming within the used operators as displayed in Figure
7.4C. If a least-squares solution is used for redatuming without accounting for these
deficiencies, the result will become even worse as displayed in Figure 7.4D1. The

1It should be noted here that significant dip-filtering and fk-filtering had to be applied to obtain
the displayed result, which has not been the case for the other results.
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Figure 7.4: Redatuming of data with amplitude noise included (A). C) shows the result after
matched filter redatuming without attempting to include the amplitude anomalies within the
operators. D) shows the result after least-squares redatuming without including the ampli-
tude anomalies. E) shows the result after matched-filter redatuming taking into account
the amplitude anomalies. F) displays the result after least-squares redatuming including
amplitudes. F) clearly renders the desired data of B).
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matched filter solution incorporating the amplitude deficiencies within operators
does also not give a better result as displayed in Figure 7.4E; the artifacts are more
pronounced compared to Figure 7.4C. However, through least-squares redatuming
using operators that do account for the deficiencies will render a clean result as dis-
played in Figure 7.4F.

The example clearly shows the importance of including the correct amplitudes when
redatuming through a complex near surface. However, if amplitudes are treated
incorrectly the redatumed result will be worse compared to a redatuming without
taking amplitudes into account.

7.3 True amplitude redatuming strategy

Within this section, a step by step procedure is outlined to treat the amplitudes in
a correct way, in which we start with a number of preprocessing steps,

• retrieve from the data the amplitudes of the reflector for which the traveltime
operators were defined. This can be accomplished by using Fermat modeling
as outlined in Chapter 4, Section 4.6.2

• Remove constructive near surface scatter energy from the primary data as
outlined within Campman et al. (2001).

• Remove any residual surface consistent time anomalies through time decom-
position routines as proposed by for instance Cambois and Stoffa (1993).

• Remove any residual surface consistent amplitude anomalies through ampli-
tude decomposition routines as proposed by for instance Cambois and Stoffa
(1992).

The preprocessed data will be decomposed into 2 sources of amplitude contributions,

• Determination of the background amplitudes, arising from spherical diver-
gence.

• Estimation of operator amplitudes, which can not be explained by spherical
divergence. Any remaining energy in the data has to be attributed to losses
due to for instance transmission effects and should be included in the focusing
operators. These contribution will be derived through parameterized inversion
from the primary data.

• Applying a least-squares redatuming process to the amplitude corrected data,
using the focusing operators including their estimated amplitudes. For this
purpose the procedures as described in Section 6.2.3. will be used.

As the residual surface consistent amplitude decomposition has a close resemblance
to the operator amplitude estimation procedure, they will be discussed together in
Section 6.3.2.
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7.3.1 Preprocessing for least-squares redatuming

before we are able to estimate the amplitudes of the redatuming operators, we first
need to preprocess the data. This includes extracting the measured amplitudes
from the recorded data, which is used in a cost function to be minimized in order
to retrieve the transmission effects to be used in the operators. Also, before we can
successfully carry out a redatuming scattered multiplicative noise which obscures
the primary energy of the events of interest, as well as any surface consistent time
and amplitude residual should be removed from the data.

Detection of measured amplitudes

To correct the amplitudes within the measured data and to estimate the operator
amplitudes we need to define the input amplitudes which are subject to the pro-
posed algorithms. As already outlined within section 6.2 it is of importance that
any processing applied to define the operator amplitudes should be consistent with
the measured data. Through Fermat modeling we are able to produce the traveltimes
of exactly those amplitudes within the data that are influenced by the redatuming
operators.

Since the phase characteristics of the focusing operators are already defined through
the outlined updating procedures, we are able to construct the two-way traveltimes
of the reflector under examination through a stationary phase analysis, see Chapter
4, Section 4.6.2.

From the one-way operator times which were derived through updating as displayed
in Figure 7.5A the two-way traveltimes can be derived which are shown in Figure
7.5B. If these two-way traveltimes are plotted within two of the 301 shot-gathers
that were used for the focusing analysis, clearly the two-way traveltimes overlay the
event for which the focusing operators have been estimated, as can be observed in
Figure 7.5C and D. By subsequent muting around the event and correcting the data
with the computed two way traveltime we are able to easily subtract and filter the
amplitude data of interest as displayed in Figure 7.5E and F.

Removal of backscattered noise

One of the contributions to near surface amplitude anomalies arises from near sur-
face scatterers. During downward propagation from source to target level, energy
arising from these scatterers will map within the anti-causal part of the data after
redatuming. However a significant scatter energy distribution is introduced during
upward propagation toward the receivers; scattered energy will be induced by the
reflected wavefield just before arriving at the recorders. In Campman (2005), near
surface effects are fully subscribed to the scattering effects of small near surface inho-
mogeneities in terms of both phase as well as amplitudes. Thus, the total wavefield,
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Figure 7.5: From the one-way traveltimes as displayed in A), obtained through operator up-
dating, the two-way traveltimes can be obtained through the principle of data reconstruction
as displayed in B). These two-way times perfectly overlay the event of interest within the
shot-gathers as displayed in C) and D). By correcting with the computed two-way traveltime
and subsequent muting the amplitudes for this particular event can easily be retrieved for
subsequent filtering and processing as displayed in E) and F).
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Pt(xrcv,xsrc), can be described by Equation 4.3.72 as,

Pt(xrcv,xsrc) = G(xrcv,xsrc)S+
∫
∂ID
G(xrcv,x′)Pt(x′,xsrc)dx′

+
∫
ID
G(xrcv,x′)B(x′)Pt(x′,xsrc)dx′,

(7.3.10)

in which G is the Green’s function and B is the contrast operator as described
in Chapter 4, related to the near surface inhomogeneities. The first term on the
right-hand side resembles the direct wave-field, the second term describes the near
surface scatter free reflection data and the last term resembles the energy that arises
from near surface scattering of the reflected data. In his method it is assumed that
the inhomogeneities are lying within the vicinity of sources and receivers, such that
the wavefield impinging on the near surface scatterers can be approximated by the
measured wavefield. The measured scattered wavefield is derived by filtering one
strong event in the wavenumber domain. If only the wavefield scattered from the
near surface inhomogeneities is considered, the direct wavefield, GS and the part of
the wavefield not affected by the inhomogeneities traveling through the background,
denoted by the surface integral, vanish under a first order approximation. Under
these considerations, the scattered wavefield, measured at the surface is described
by

Ps(xrcv,xsrc, z = z0) =
∫
ID
G(xrcv,x′)B(x′)Pt(x′,xsrc, z = z0)dx′. (7.3.11)

By choosing the coupling part of the medium operator for the Greens state equal to
zero and the propagating part equal to the true medium operator, Equation 7.3.11
can be written as,

Ps(xrcv,xsrc, z = z0) =
∫
ID
G(xrcv,x′)Φ(x′)Pt(x′,xsrc, z = z0)dx′. (7.3.12)

Within this formulation the only unknown is the contrast operator, if the background
medium is assumed to be known. After discretization, the integral can be rewritten
as,

D = Kσ, (7.3.13)

in whichD is a column vector in which all the seismic experiments are contained and
σ is contains the unknown contrasts. Campman (2005) then estimates the scattering
distribution through a least-squares inversion. The used Green’s operators are mod-
eled in a laterally homogeneous medium, which allows for a fast computation of the
forward model in the wavenumber number for a limited number of depth levels on
which the scatter distributions are projected. In this way, for each surface location
a scatter image can be constructed, which is frequency dependent and can be em-
ployed for a limited number of depth locations. After imaging the scatterers for the
selected event, the images are used to predict the scattered energy for the remainder
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of the recorded data, by using the forward model of Equation 7.3.12 on the total
recorded wavefield. Due to the assumption that the scatterers are residing in the
close vicinity of the recording stations, the method is surface consistent and thus has
a close resemblance with residual statics and surface consistent deconvolution. The
difference lies in the fact that opposite to standard residual statics and surface con-
sistent deconvolution, the method described is a multi-trace procedure. It should be
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Figure 7.6: The original shot-gather in A) is contaminated by near surface diffraction energy.
Its wavenumber spectrum in C) clearly is clearly distorted by the near surface diffraction
energy. By correcting the first event with the precomputed two-way traveltimes, as displayed
in B) we are able to separate the reflection energy, aligned around wavenumber zero, from
the near surface diffraction energy as observed in D).

noted here, that the assumption of a 1D medium does not hold for longer wavelength
near surface effects as is dealt with in this thesis. But, since the scatter distribution
is projected at or close to the surface, the assumption can still hold if near surface ir-
regularities can mainly be described by an undulating base of the near surface layer.

Furthermore, the estimation of the scattered field used in the scatter distribution
prediction step is retrieved by filtering a selected event in the wavenumber domain,
under the assumption that the selected event has a linear move-out, for instance the
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Figure 7.7: The separated near-surface diffraction energy in A) is used to estimate a near
surface scatter distribution which can be used to estimate the diffraction energy for all other
arrivals (B).

Rayleigh wave or spatially dense sampled experiments with a small maximum aper-
ture. Within the problems described in this thesis, the move-out is far from close to
linear. However, using the found operators, the total move-out of the selected event
can be synthesized to fully flatten the event under investigation. In this sense the
methodology of this thesis and the methodology of Campman (2005) can be fully
complementary to tackle both the long wavelength as well as the short wavelength
near surface effects.

A drawback is that the spatial sampling has to be designed such that the data
is not aliased to properly separate the scattered data from the total data; within the
proposed method, the scattered noise is band-limited through the use of the Green’s
operators in the background medium. Near surface problems, observed in the field
are generally not band-limited, due to, among others, randomly behaving coupling
effects of sources and receivers, extreme low velocity anomalies, mode conversions,
etc.

The following example demonstrates the near-surface backscattering method. In
Figure 7.6A, the input data is displayed, consisting of two events measured at 256
receivers for one seismic experiment, contaminated with near surface scattering ef-
fects, mainly influencing the amplitude characteristics. The wavenumber spectrum
of the input data is clearly degraded, due to the near surface scatterers. It is also
clear from the spectrum that both signal as well as noise are band-limited due to
the fact that the noise and the clean data are both modeled according to the wave-
equation with a background velocity of 1500 m/s. By computing the move-out of the
first event, which could be done by using common focus-point operators, the data
can be horizontally aligned as displayed in Figure 7.6B. Since the event is horizon-
tally aligned, the noise free event can be removed by suppressing the energy around
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kx = 0, which was done by applying a hanning-window on the spectrum of Figure
7.6D. Next, the two-way traveltime corrections can be removed again.

The noise contaminating the first event, as displayed in Figure 7.7A, can then be
used together with the full measured data to estimate a scatter distribution which
was used to derive the full noise distribution, displayed in Figure 7.7B. By sub-
tracting the estimated noise field in a least-squares sense, noise contaminating both
events is suppressed, resulting in clean data with a proper wavenumber spectrum
(Figure 7.8).
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Figure 7.8: The estimated near surface diffraction energy from Figure 6.7B can be adaptively
subtracted from the data (A), which leads to a clean wavenumber frequency spectrum (B).

Removal of residual time shifts

The operator updating procedure tends to stack out fast varying traveltime pertur-
bations, conventionally known as residual statics. In practice these perturbations
can originate from a varying range of sources, which are not necessarily consistent
for each source and receiver pair. Therefore, besides loss of resolution, they can
never be corrected for within the updating procedure. If not handled correctly,
these residuals can leak through the spatial frequency band and hence degrade the
quality of the data after focusing and redatuming.

Through the stationary phase approach of the previous section, the stationary two-
way traveltimes can be extracted for each source and receiver pair. This stationary
time can than be used to apply a move-out correction to each source and receiver
pair. Besides, the two-way traveltime can be used as a time-window, to determine
stack optimizing time shifts through procedures as described by Ronen and Claer-
bout (1985).
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7.3.2 Operator amplitude determination for least-squares redatuming

As was demonstrated in the previous section, for proper least-squares redatuming,
good knowledge on the operator amplitudes is important. To account for these
amplitudes we consider two types of amplitude contributions:

• Background amplitudes; these are equivalent to spherical divergence and will
be incorporated directly within the operators.

• Residual amplitudes; these are caused by unaccounted transmission losses and
coupling effects among others. Part of these effects will be removed prior to
redatuming (surface consistent parts such as coupling effects), part will be
incorporated within the operators (offset dependent transmission effect).

Background amplitudes

For slowly changing scattering-free media, the high frequency approximation of
the propagatorsW+ and W− and their inverses, F+ and F− under the modified
matched filter approach would be valid to use, reading

W+
ij =

[
ρici
ρjcj

] 1
2

Aij exp (−jωτij) , F+
ij =

[
ρjcj
ρici

] 1
2

Aij exp (+jωτij) , (7.3.14)

W−
ij =

[
ρjcj
ρici

] 1
2

Aij exp (−jωτij) , F−
ij =

[
ρici
ρjcj

] 1
2

Aij exp (+jωτij) . (7.3.15)

The operators are depending on the medium parameters at the source and receiver
locations, the traveltime τ and an amplitude factor Aij . Within the redatuming
procedure, which is established by applying the inverse propagators at both sides
of the data-equation of Equation 6.2.5, the effects of the medium at the source and
receiver side are canceled and the amplitude factors assure orthogonality between
the forward propagators and their inverses. The amplitude factors are also known
as the geometrical spreading, which follows from solving the transport equation of
Equation 5.3.13 and depend on the curvature in time of the wavefronts. Within
ray-tracing schemes the geometrical spreading can be computed through paraxial
ray-tracing (Cerveny, 1985) around the centrally traced rays.

Since, within the updating procedure a full set of traveltimes was determined be-
tween all surface locations and all focus-point locations, the spherical divergence can
also be determined directly from the traveltimes, without any paraxial ray-tracing.
An expression for the geometrical spreading can be found in Tygel et al. (1992),

A(xs,xcfp) =
1

c(xs)

√
cos(αs) cos(αcfp)

‖N‖ , (7.3.16)

in which cos (αs) and cos (αcfp) are the emergence and receiving angle respectively
and ‖N‖ is the determinant of the second order mixed derivatives of the traveltime
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with respect to the source coordinates and the CFP-coordinates, projected at the
acquisition plane and the reflector respectively, which reads in 2D space,

Nij =
∂2tij

∂xcfp;i∂xsrc;j
. (7.3.17)

In Vanelle and Gajewski (2000) the determinant is related to a hyperbolic approxi-
mation around the arrival time around the central ray, called the hyperbolic paraxial
time,

t2(s,g) = [t0(xsrc,xcfp)− ps+ qg]2 + t0(xsrc,xcfp)
[
sT Ñs+ gT N̄g− 2sTNg

]
,

(7.3.18)
in which Ñ and N̄ are the second order derivatives of the traveltime with respect
to xsrc and xcfp respectively, projected on the source and CFP sheet. s and g are
the projected locations of the source and CFP-locations xsrc and xcfp respectively,
which are used to define the paraxial approximation. p and q are the apparent
slownesses around xsrc and xcfp respectively.

Through the updating sequence, traveltimes are derived between a full lateral set of
CFP-locations and a full lateral set of surface locations. Thus, the matrices Ñ and
N̄ can be determined by comparing t0(xsrc,xcfp) with paraxial times for source and
receiver locations centered around xsrc and xcfp. With s = (0, 0)T and g = (g1, 0)T

for instance, Equation 7.3.18 reads,

Ñ =
t2(s,g)− (t0(xsrc,xcfp) + q1g1)2

t0(xsrc,xcfp)g21
. (7.3.19)

An equivalent relation can be found for N̄. The slownesses p and q are found by
central differencing of the found traveltimes around the central rays. The obtained
values for Ñ and N̄ are then substituted into Equation 7.3.18 to arrive at an expres-
sion for N, for which element N11 would read for instance,

N11 =
[t0(xsrc,xcfp)− p1s1 + g1q1]2 + t0(xsrc,xcfp)

[
s21Ñ11 + g21N̄11

]
− t2(s,g)

2t0(xsrc,xcfp)s1g1
.

(7.3.20)

In Kästner and Buske (1999) it is stated that the resulting determinant, occurring
in Equation 7.3.18, is less accurate when compared to calculations of the geometri-
cal spreading by direct finite differencing schemes as described in Abramowitz and
Stegun (1970). It should be noted here, however, that the traveltimes should then
be known on the full subsurface grid, which can be accomplished by using Vidale’s
Eikonal solver over the known velocity field. The method of Vanelle and Gajewski
(2000), however, relates the spherical divergence to properties projected on the re-
ceiver and source sheets, which is actually what we derive directly from the operator
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updating procedure, without estimating a background velocity model.

In case the operators have been used to estimate a near surface model, the method of
Kästner and Buske (1999) is preferred, otherwise the method of Vanelle and Gajew-
ski (2000) could be used. It should be noted though, that if no near surface model
has been estimated, some assumptions should be made on the CFP-locations. The
fluctuations in depth are still unknown and as demonstrated in Chapter 4, the lateral
locations could have drifted during the updating procedure. If it is assumed that
the reflector we are redatuming to only varies marginally in depth and drift is small,
then the errors in s and g will be small.

Since the second order derivatives are related to the projected slownesses, derived
through central differencing of traveltimes, the obtained slownesses are sensitive to
fast fluctuations of the measured traveltimes. Since these fluctuations will in general
be present within the operators due to the near surface problems, it is suggested to
laterally filter the measured traveltimes, e.g. by means of a alpha-trimmed mean
filter, before applying the outlined procedure.

The amplitudes obtained through subsequent application of Equation 7.3.20 and
Equation 7.3.16 are referred to as the background amplitudes to be applied in the
redatuming procedure.

Residual amplitudes

In the past several authors, such as Lavielle (1991), Spagnolini (1993), Berlioux
and Harlan (1997), Kirchheimer and Ferber (2001), Guo and Zhou (2001), Denisov
et al. (2001) and Chemingui et al. (2001), have investigated methods to decompose
measured amplitudes in order to correct for near surface effects. The work conducted
by the cited authors is all based on the principle papers of Cambois and Stoffa (1992)
and Cambois and Stoffa (1993), in which the amplitudes are linearly decomposed by
taking the logarithm of the measured amplitudes in the temporal Fourier domain.
These methods are based on the surface consistency of the measured near surface
amplitude anomalies and are, therefore, assumed to be applicable to the full time-
length traces. Here we would like to take the methodologies one step further; instead
of analyzing the full trace, the amplitude decomposition will be operated only on the
event of interest, which can be described by the full lateral set of traveltime operators
as derived in the previous chapters. Using Fermat modeling we can construct the
datum reflection event through a proper combination of focusing operators. Through
a stationary phase analysis we are able to determine the stationary location xs along
the reflector we have estimated the focusing operators for, such that we can suffice
by evaluating the following expression,

P (xrcv, xsrc, ω) = W (xrcv, xs)R(xs, xs)W (xs, xsrc, ω), (7.3.21)
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under the assumption of a locally reacting medium. Following Cambois and Stoffa
(1993), in the high frequency approach (stationary phase), each trace is written in
the time domain as a temporal convolution of three terms,

pij(t) = si(t) ∗ rj(t) ∗ γij(t), (7.3.22)

in which si(t) and rj(t) describe surface consistent source and receiver characteristics
respectively and γij(t) propagation characteristics through the overburden. In the
temporal frequency domain Equation 6.3.22 can be written as,

Pij(ω) = Si(ω)Rj(ω)Γij(ω). (7.3.23)

Cambois and Stoffa (1993) assume validity of CMP-processing such that Equation
7.3.23 can be written in the common midpoint offset domain as,

Pij(ω) = Si(ω)Rj(ω)Γkl(ω), (7.3.24)

in which k is the CMP-number, k = i + j, and l is the offset index, l = i − j.
Under the assumption of valid CMP processing an operator Q is considered which
transforms the CMP-responses of each offset index to a normal incidence response,

Q(Pij(ω)) = Si(ω)Rj(ω)Yk(ω), (7.3.25)

in which Yk is the normal incidence response of CMP k. Operator Q contains pro-
cesses such as field statics, normal move-out correction and correction for geometrical
spreading. Furthermore, operator Q is considered to be linear in time and frequency,
which is often not the case. For instance normal move-out introduces stretching and
muting for the far offsets. For that purpose an additional offset term is introduced,
which corrects for non-linear offset dependent artifacts.

Instead of CMP-oriented decomposition, here we consider CFP-oriented decomposi-
tion. From Chapter 4, Section 4.6.2, we derived by stationary phase analysis a CFP
oriented response for each source-receiver pair,

Pij = AikAkjRk exp (−jωτik) exp (−jωτkj)
√
2π

√
µ

exp
[
−j π

4
signµ

]
, (7.3.26)

µ =

√
ω
[∂2(τik + τkj)

∂x2
]
x=xk

, (7.3.27)

in which the amplitude factorsAik and Akj describe the amplitude effects of propaga-
tion from respectively receiver i and source j to CFP-location k and are determined
by transmission effects, Ti and Tj , and spherical divergence, Aik and Akj as defined
by Equation 7.3.16. The factor R contains the angle dependent reflection coefficient.
The stationary location at the reflector is denoted by xk. Spherical divergence can
be estimated from the derived traveltime curves as explained in the previous section
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and serves as the background amplitude. Down-going transmission effects manifests
itself by a surface consistent source component and up-going transmission by surface
consistent receiver components. Thus the amplitude can be described by,

‖Pij‖ = T−
i T

+
j RkAikAkjYi−j , (7.3.28)

in which Yi−j is a factor which corrects for nonlinear factors such as angle-dependent
reflectivity. Here we have a similar expression as derived by Cambois and Stoffa
(1993). If we correct the data with the obtained two-way traveltime then the residual
data is described by,

Pij = [AikAkjYi−j ]T−
i T

+
j Rk exp (jω∆tij), (7.3.29)

in which ∆tij are the residual traveltimes and the term between square brackets
accounts for propagation effects approximately equal to propagation through a ho-
mogeneous near surface and the rest terms account for near surface scattering effects
in terms of transmission losses. The phase part can be accounted for by means of a
near surface decomposition as well, equivalent to Taner et al. (1974),

∆tij = ∆ti +∆tj +∆tk +∆ti−j . (7.3.30)

Taking the logarithm of Equation 7.3.29 results in,

logPij = log T+
i + logT−

j + logRk + logYi−j
+ logAik + logAkj

− j [ω∆ti + ω∆tj + ω∆tk + ω∆ti−j ] .
(7.3.31)

Thus, we can solve the set of equations for both the real part and the imaginary part,
from which the real part describes the amplitude decomposition and the imaginary
part the phase decomposition. To solve the amplitude decomposition we have to
solve the system of equations described by,

log ‖Pij‖ − logAik − logAkj = logT+
i + log T−

j + logRk + logYi−j , (7.3.32)

or in matrix notation
p =Gm (7.3.33)

For which, according to Appendix B, a least-squares solution reads,

m =
[
GTWG+ FTF

]−1
GTWp, (7.3.34)

in which the weighting matrix depends on the properties of the signal and F is
determined by a priori information on the parameters and noise. As pointed out
by Cambois and Stoffa (1993), although the system seems overdetermined, it still
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contains a null space. Thus Cambois and Stoffa (1993) suggest to equip the system
with an additional set of a priori equations,

∑
logTi −

∑
logTi
N

= 0,
∑

cos(2π
i− 1
N

)
(
logTi −

∑
logTi
N

)
= 0,

(7.3.35)∑
logTj −

∑
logTj
N

= 0,
∑

cos(2π
j − 1
N

)
(
logTj −

∑
logTj
N

)
= 0,

(7.3.36)∑
logRk −

∑
logRk
N

= 0,
∑

sin(2π
i− 1
N

)
(
logTi −

∑
logTi
N

)
= 0,

(7.3.37)∑
log Yi−j −

∑
log Yi−j
2N

= 0,
∑

sin(2π
j − 1
N

)
(
logTj −

∑
log Tj
N

)
= 0,

(7.3.38)∑
(−1)k

(
logRk −

∑
logRk
N

)
= 0, (7.3.39)

in which N equals to the number of surface locations. The a priori equations assure
that the average residual corrections should equal zero to remove biases and can be
described as,

Fm = 0, (7.3.40)

which provides the a priori part of Equation 7.3.34. What we are left with is used to
compensate the data for. Thus the surface consistent parts are subtracted from the
data, while the spherical divergence and offset dependent parts are used to construct
the amplitudes of the focusing operators with. Note that we have to deconvolve for
the whole data set and not only the reflector we have selected.

Estimation of offset dependent transmission losses

Intuitively, we would like to introduce an offset dependent transmission term for both
source and receiver. This term should correct for angle dependent transmission.
Naturally we would like to estimate the full transmission function, but then the
number of parameters would become too large and the data is no longer redundant,
to obtain an overdetermined system. Therefore a three-parameter model of the offset
dependent transmission effect is proposed, describing a translated Gaussian shape,

T (xsrc, xcfp) = T (xsrc) exp (−
((xsrc − xcfp)− x0,src)2

σ2src
), (7.3.41)

in which T (xsrc), x0,src and σ2src are the three parameters (see Figure 6.9), which
vary as function of xsrc. When the data is transformed to the log/Fourier do-
main, the parameterized transmission function of Equation 7.3.41 would read in the
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x0,src

xsrc − xcfp

Figure 7.9: Schematic representation of the parameterized transmission function.

log/Fourier domain,

log T (xsrc, xcfp) = logT (xsrc)−
((xsrc − xcfp)− x0,src)2

σ2src
, (7.3.42)

=
1
σ2src

(xsrc − xcfp)2 − 2
x0,src
σ2src

(xsrc − xcfp)

+

[
x20,src
σ2src

+ log T (xsrc)

]
.

(7.3.43)

As such we can extend the parameterization of the amplitudes as described by
Equation 6.3.32 through,

log ‖Pij‖ − logAik − logAkj = logRk + logYi−j + T0;i + T0;j
+ T1;i(xi − xk) + T1;j(xj − xk)
+ T2;i(xi − xk)2 + T2;j(xj − xk)2,

(7.3.44)

with,

σ2i =
1
T2;i

, (7.3.45)

x0,i = −1
2
T1;i
T2;i

, (7.3.46)

logTi =
1
4
T 2
1;i

T2;i
− T0;i. (7.3.47)

Thus, by introducing higher order surface consistent terms in the log/Fourier do-
main, we can account for directional dependent transmission effects.
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Figure 7.10: A) The synthetic model used to demonstrate true amplitude redatuming. At
400 m. depth a reflecting event is placed to which the data will be redatumed. B) Five of the
shot gathers, modeled over the model in A), using an acoustic finite difference algorithm.

7.4 Example

The following example illustrates the results of amplitude estimation using surface
consistent decomposition and using the adjusted decomposition. Once the ampli-
tudes have been estimated using the adjusted decomposition, the least-squares re-
datuming results are analyzed in comparison to redatuming through matched-filter
extrapolation.

Figure 7.10A shows the used model and Figure 7.10B shows five shot-gathers, mod-
eled with the aid of an acoustic finite differencing algorithm. The model contains
only one reflecting event, located at 400m depth. The reflections of this event are
caused by a contrast difference only, therefore the recorded reflections contain no
dependency on illumination angle. The recorded data will be redatumed to this
particular event. It is assumed that the operator times, to be used for redatuming,
are perfectly estimated. After operator updating we are able to retrieve the ampli-
tudes of the focused event. Figure 7.11A shows the amplitude map (average over all
frequencies) for all sources and receivers. From the operator times, the amplitudes
related to spherical divergence can be estimated. Figure 7.11C shows the recorded
amplitude map in the log/Fourier domain, corrected for spherical divergence. The
correct amplitudes of the redatuming operators were computed by finite differencing
within the same model, Figure 7.10A, by placing sources at the reflector and record-
ing their energy at the surface. The operator amplitudes are displayed in Figure
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Figure 7.11: A) Amplitudes extracted from the measured data, along the two-way traveltimes.
B) Amplitudes of the forward modeled CFP operators. C) The logarithm of the measured
amplitudes, corrected for geometrical spreading.

7.11B.

In Figure 7.12 the results are displayed of the inversion process to obtain the near
surface amplitude effects. Results of both the surface consistent decomposition as
well as the adjusted decomposition are displayed. As the data could be distorted
by the direct arrival, remnants of near surface reflection and other correlated noise
events, the amplitudes were estimated by using a hybrid norm solution within the
estimator (see Appendix B). This makes the inversion scheme non-linear and, there-
fore, the solutions were found iteratively. It should be noted that the first iteration
within the inversion scheme resembles a Gaussian norm solution.

Through surface consistent deconvolution, surface consistent source and receiver
amplitude terms are found. These were used within the forward model to forward
compute the spherical divergence corrected amplitudes of the recordings. Figure
7.12A displays these forward modeled amplitudes after one iteration of the hybrid
norm solution and Figure 7.12B displays the forward modeled amplitudes after 9
iterations, which shows some improvement. The assumption of surface consistency
nicely shows up as vertical (source term) and horizontal (receiver term) striping
within the forward modeled data. However, the residuals, computed by subtracting
the measured amplitudes of Figure 7.11C from the forward modeled amplitudes of
Figure 7.12B, shown in Figure 7.12C, are quite large.

In Figure 7.12D the forward modeled amplitudes resulting from the Gaussian norm
solution of the adjusted amplitude decomposition are displayed and in Figure 7.12E
the forward modeled amplitudes resulting from the hybrid norm solution are dis-
played. Again some improvements are observed between the Gaussian norm and the
hybrid norm. More remarkable is the observation of skewed diagonal striping within
the forward modeled amplitudes. Apparently the adjusted decomposition was capa-
ble of determining the near surface amplitude effects better. The good performance
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Figure 7.12: Logarithmic results of the amplitude estimation procedure. A) displays the first
iteration of the hybrid-norm estimation based on pure CMP processing. B) shows the same
results after reaching the cut-off error norm. C) displays the difference with the measured
amplitudes. D) to F) show the same results as A) to B), but here an efficient dependent
factor was included for CFP processing. G) shows the forward modeled operator amplitudes,
H) shows the estimated operator amplitudes after CMP processing, I) shows the operator
amplitudes after CFP processing.
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is confirmed by Figure 7.12F, displaying the residual amplitudes obtained through
subtracting the measured amplitudes from the forward modeled amplitudes. Clearly,
by introducing an offset dependent transmission effect, the inversion procedure to
retrieve the operator amplitudes is able to recover the near surface amplitude effects
quit well.

In Figure 7.12G the correct, forward modeled amplitudes of the focusing opera-
tors are displayed. Figure 7.12H displays the amplitudes retrieved from the surface
consistent amplitude decomposition whereas Figure 7.12I displays the result of the
adjusted amplitude decomposition. The amplitudes estimated by including an off-
set dependent transmission show the same features as the original amplitudes in a
filtered sense. The surface decomposition, however, renders erroneous results, espe-
cially for the CFP numbers between 30 and 70.

As by now both the amplitudes as well as the times have been estimated for the re-
datuming operators, a redatuming can be applied. It is preferred to correct the data
for all amplitude components which are surface consistent (independent of offset)
to improve stability of the least-squares redatuming. The data within the example
contains only reflection event, the event we are redatuming the surface recorded data
to. As such the result after redatuming contains the imaged energy of this particular
event. The reflection energy arose from a density contrast only, therefore the imaged
energy should not vary as function of incident angle. Thus, if the redatuming result
is analyzed in the time and spatially transformed domain,

P̂(zd, zd) = F+
x {P(zd, zd)}, (7.4.48)

then the resulting amplitude spectrum, ‖P̂(zd, zd)‖, should be uniform in value
within the bandwidth determined by the maximum frequency and the minimum
apparent velocity.

Figure 7.13A displays the spectrum of a redatumed shot-gather, after least-squares
redatuming without using amplitudes. The operators have amplitudes equal to one,
regardless the offset and traveltime. As such operators are completely inconsistent
with the forward model, the spectrum of the resulting redatumed data is far off
from the result we would have expected. Figure 7.13B displays the spectrum of a re-
datumed shot-gather, after redatuming through matched filter extrapolation, using
amplitudes based on spherical divergence only. As was stated in Chapter 4, Section
4.5.1, indeed the matched filter approach performs reasonably well although effects
arising from the near surface can clearly be observed.

Figure 7.13C displays the spectrum of a redatumed shot-gather, after redatuming
through the matched filter approach, using the estimated amplitudes. Also stated
in Chapter 4, Section 4.5.2, when the focusing operators are equipped with the esti-
mated amplitudes attributed to the near surface, the matched filter redatuming will
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Figure 7.13: Spectra after redatuming. A) shows the result after least-squares redatuming
without any attempt of including amplitudes. B) shows the result after matched-filter re-
datuming, using amplitudes based on spherical divergence only. C) Shows the results after
a matched filter redatuming, using the estimated amplitudes. D) Shows the results after
least-squares redatuming using the estimated amplitudes.
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amplify these effects. Comparing Figure 7.13C to Figure 7.13B clearly shows that
the near surface effects have a stronger imprint within the spectrum. Figure 7.13D
displays the spectrum of a redatumed shot-gather, after least-squares redatuming
using the estimated amplitudes. Clearly the least-squares redatuming renders the
cleanest spectrum.

An alternative domain to analyze the data in, is the Radon-domain, obtained through,

P̃(zd, zd) = R{P̂(zd, zd)}. (7.4.49)

The resulting gathers after redatuming only contain the imaged energy of the recorded
reflector. By transforming the redatumed data to the Radon domain, along t = 0s
the angle-dependent reflectivity can be found as function of ray-parameter for all
CFP locations along the reflector. Again, if the data would have been perfectly reda-
tumed, these so-called AVP-functions would render unitary amplitudes everywhere.

Figure 7.14A displays the AVP function of a redatumed shot-gather, after least-
squares redatuming without using amplitudes. Figure 7.14B displays the AVP func-
tion of a redatumed shot-gather, after redatuming through matched filter extrapola-
tion, using amplitudes based on spherical divergence only. Figure 7.14C displays the
AVP function of a redatumed shot-gather, after redatuming through the matched
filter approach, using the estimated amplitudes. Figure 7.14D displays the AVP
function of a redatumed shot-gather, after least-squares redatuming using the es-
timated amplitudes. Similar effects can be observed as in Figure 7.13. The AVP
curves are printed over their values in gray scale. Clearly the least-squares reda-
tuming renders an almost perfect unitary response. Note that the grayscale values
of Figure 7.14, the result retrieved after redatuming through matched-filter extrap-
olation with near surface amplitude effects included, show peaks and troughs (light
vs. dark) which have a similar pattern as the interface between the near surface and
the deeper subsurface present in the model of Figure 7.10A. This confirms again the
statement made in Chapter 4, Section 4.5.2, that the matched-filter extrapolation
with the correct operator would amplify near surface transmission effects.

7.5 Conclusions

Especially when we are dealing with a complex near surface problem, amplitude
distortions can become quite severe. Synthetic examples show that correct handling
of amplitudes can improve the redatuming results.

In this chapter we have outlined a sequence of steps to determine the amplitudes
of the focusing operators, such that an optimal least-squares redatuming result is
obtained.

First, we correct the data with the two-way traveltimes, found by using Fermat
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Figure 7.14: Results of redatuming for data with one reflector of unit reflection amplitude,
displayed as amplitudes in the ray-parameter domain. A) Shows the result after least-
squares redatuming without any attempt of including amplitudes. B) Shows the result after
matched filter redatuming, using amplitudes based on spherical divergence only. C) Shows
the results after a matched filter redatuming, using the estimated amplitudes. D) Shows the
results after least-squares redatuming using the estimated amplitudes.

modeling. From the corrected data we can easily retrieve the measured amplitudes.

In a pre-processing phase we are able to remove scattering noise from the data. By
using Fermat modeling we can extend the method developed by Campman (2005)
to all reflections that are present in field data, without the restriction of local plane
wave events.

Determining the operator amplitudes through modeling has no future. In this thesis
this problem is solved by proposing a constraint data driven method.

A synthetic example shows that the proposed sequence of procedures is very well
capable of rendering an improved least-squares redatuming result, using the focusing
operators, obtained through the data-driven analysis as explained in the previous
chapters.





8

Examples

8.1 Introduction

In this chapter the methodologies as outlined within this thesis are demonstrated
on two realistic synthetic models. As the performance of near surface technology
is most probably extremely sensitive to 3D effects, we refrained from applying the
methodologies on real data. For that matter further research to the effects of and
applicability to 3D near surface effects need to be done.

The first example is made using a synthetic model and data generated by Saudi-
Aramco. It resembles a typical desert situation, suffering from intermediate wave-
length statics.

The second example uses synthetic data that has been modeled by BP. The consid-
ered model is a subset of a larger model, containing all types of near surface effects
that could occur in a real world. The data was generated in order to test all available
static methodologies and algorithms that are currently available in the market. The
subset we have chosen to analyze resembles a shorter wavelength static problem and
is regarded to be one the most difficult parts of the model, according to BP.

8.2 The Middle East model

Figure 8.1A displays a typical model of a Middle East desert situation (courtesy
Saudi-Aramco). Common near-surface features and anomalies encountered in desert
situations are low velocity sand dunes, wadi’s with and without infill material and
cliffs at the edges of the wadi’s, which are all present within this model. The Rus-
formation, as depicted in the model, is a common strong high velocity reference
marker which is present almost throughout the complete Arabian peninsula. The
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Figure 8.1: (A) The synthetic model of a desert environment (courtesy Saudi-Aramco). (B)
Five selected of the forward modeled shots, using paraxial raytracing .
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Figure 8.2: Operating window of the Delphi CFP-workbench. In the window the time-
migrated zero offset section with the tracked datum event is visible. The arrows indicate at
the CFP locations for which the updating will be illustrated.

depicted model was especially designed to test the performance of near surface al-
gorithms over longer wavelength anomalies. Data was generated over the model by
using paraxial raytracing for reflection energy only. Paraxial raytracing was used
to define reasonable amplitudes as well. Although not typical for land-surveys, the
data was generated as end-on data with a spread-length of 1100 m (end-on refers to
a survey with positive offsets only, typical for a seismic vessel towing a source just
behind the boat followed by receiver streamers). Figure 8.1B shows a set of modeled
shot-records. The number of modeled shots is 360, having 60 recording groups each.
The shot spacing was taken to be equal to the group-spacing of 20m.

8.2.1 CFP processing

The first step in defining focus point operators is determining the initial operators
from a near offset combined with a first pass estimate of the stacking velocities. Fig-
ure 8.2 displays the near offset stack on which the automatically tracked zero-offset
times of the reflector of interest are indicated. Also note the dim spots due to the
presence of the sand dunes and the structure caused by the wadi. In these spots we
were not able to track coherent energy and the zero-offset times will be interpolated.
Figure 8.3 displays the final set of zero-offset times.

Two sets of initial operators were constructed. The first set describes the travel-
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Figure 8.3: Interpolated times obtained from tracking the two-way traveltimes in the time
section of Figure 8.2.

times from each focus point toward all surface locations by means of a zero-offset
time and a single move-out velocity, as depicted in Figure 8.4A. The second set de-
scribes the traveltimes from each surface location to all anticipated CFP-locations
by a zero-offset time and a single move-out velocity. By reordering the times of the
second-set we obtain the initial operators as depicted in Figure 8.4B. Note that the
second set of operators already contains a first estimate of the near surface imprint,
which was also discussed in Chapter 5.

Both sets were subsequently used to construct CFP gathers and update the op-
erators iteratively. The updating was done by using an automatic tracker on the full
volume of constructed DTS-gathers in each update iteration.

Figure 8.5 displays six of the initial DTS-gathers constructed with the smooth ini-
tial operators of the first set. Note the near surface effects existing within the initial
DTS gathers. Going through the update sequence, we arrive after 3 iterations at the
DTS-gathers as depicted in Figure 8.6. Note that some gathers are nicely flattened,
however, others still show some near-surface imprint, dim spots and energy missing
for a range of offsets. Clearly not all near surface effects were detected well during
the updating sequence. This is confirmed by the tracked surfaces in Figure 8.7A and
Figure 8.7C. These figures display the tracked differential times for the initial DTS-
gathers and the final DTS-gathers respectively. Where the figures did not render
any data, it means that the autotracker was unable to track coherent energy. This
is especially the case in the areas where the dunes were encountered and refer to a
non-optimal fresnel zone-construction as explained in Chapter 5. Although the final
operators of Figure 8.4C have changed with respect to the initial operators, they are
still behaving relatively smooth which indicates that the near surface effects were
hardly detected. The final operators were also used to redatum the data through
a matched filter extrapolation of the sources and the receivers. Figure 8.8 displays
10 shot-gathers after redatuming. The shot-gathers, especially gather 210 and 270,
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Figure 8.4: Result of CFP operator updating. A) Displays initial operators with a hyperbolic
move-out. B) displays the initial operators transposed, thus including a first estimate of the
near surface effects. C) Displays the updating results after three updates of the hyperbolic
operators. D) Displays the updating results after three updates of the transposed operators.
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Figure 8.5: DTS panels with the original initial hyperbolic operators (Figure 8.4A) at shot
locations A) 60, B) 110, C) 170, D) 200, E) 280 and F) 330.
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Figure 8.6: DTS panels after three updates, starting the updating from the initial hyperbolic
operators (Figure 8.4C) at shot locations A) 60, B) 110, C) 170, D) 200, E) 280 and F)
330

clearly show features which can by no means be attributed to the deeper subsurface.
The final operators are not sufficiently well defined to remove the near surface effects
within the redatumed shot-gathers.

Using the second set of operators, which contains a first estimate on the near surface
effects as displayed in Figure 8.4B, results in the initial DTS-gathers as displayed in
Figure 8.9. Here we notice, that the initial DTS-gathers behave by far smoother and
render more energy for the larger offsets. After three iterations we arrive at the final
DTS-gathers of Figure 8.10. Clearly we have been able to flatten the DTS-gathers
for all locations. The differential time surfaces as tracked by the autotracker confirm
the better performance. As depicted by Figure 8.7 the autotracker was able to track
coherent data within DTS-volumes for both the initial gathers of Figure 8.7B as well
as the final gathers of Figure 8.7D, even at the locations in the neighborhood of the
sanddunes. Figure 8.4D shows the final CFP-operators.

In a third exercise, the initial operators as displayed in Figure 8.4B were subject to
the automatic updating algorithm based on the non-linear genetic evolution algo-
rithm as discussed in Chapter 5. This algorithm tends to flatten the event in the
shot-gathers, based on the principle of data-construction. Figure 8.12 shows the
flattened shot-gathers after applying the genetic algorithm. Note that after the final
step, the event is fairly well flattened. This result does not yet assure flattening
of the DTS-gathers according to the principle of equal traveltimes. The algorithm
performed reasonably well in terms of defining operators that assure the principle of
equal traveltimes. In a last pass, the operators could be further updated by picking
differential times within the DTS-gathers. If we compare the final operators from
the automatic updating algorithm, 8.11C, they are almost equal to the operators



8.2 The Middle East model 171

-800

-600

-400

-200

0

200

400

600

800

o
ff
s
e
t 
(m

)

50 100 150 200 250 300 350
shot number

-800

-600

-400

-200

0

200

400

600

800

o
ff
s
e
t 
(m

)

50 100 150 200 250 300 350
shot number

-800

-600

-400

-200

0

200

400

600

800
o
ff
s
e
t 
(m

)

50 100 150 200 250 300 350
shot number

-800

-600

-400

-200

0

200

400

600

800

o
ff
s
e
t 
(m

)

50 100 150 200 250 300 350
shot number

A B

C D

Figure 8.7: A) Traveltime error surface obtained by automatic tracking of the datum re-
flection response in the initial DTS volume constructed when hyperbolic CFP operators are
used. The gray-value indicates the differential traveltime value, with gray being zero. B)
The tracked traveltime error surface within the initial DTS volume constructed by using
transposed operators. C) The final tracked traveltime error after three updates using ini-
tially hyperbolic operators. D) The final tracked traveltime error after three updates using
initially transposed operators. The white areas indicate that the tracker could not find a
correlated event there. Note that around shot 240 and 290 no updating could be achieved
when initally hyperbolic operators are used; including some a priori knowledge on the near
surface is crucial.
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Figure 8.8: A selection of shot records after redatuming using the estimated CFP operators
of Figure 7.4B. For the CFP updating the original hyperbolic operators were used.
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Figure 8.9: DTS panels for the transposed initial operators (Figure 8.4B) at shot locations
A) 60, B) 110, C) 170, D) 200, E) 280 and F) 330.
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Figure 8.10: DTS panels after three updates of the transposed initial operators (Figure 8.4D)
at shot locations A) 60, B) 110, C) 170, D) 200, E) 280 and F) 330.
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Figure 8.11: Operators automatically determined through the principle of data reconstruc-
tion by using a genetic algorithm. A) displays the initial operators. C) Displays the final
operators after sufficient convergence. For comparison, B) displays operators determined
by manual updating after 3 iterations, D) displays operators modeled within the true model
by using an Eikonal solver.

0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
x105

Figure 8.12: Shot records at the surface corrected for the estimated two-way traveltimes
obtained with an automatic updating procedure.
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computed by using an Eikonal solver in the original model, 8.11D, resembling the
true operators. It also seems that the automatic updating algorithm outperforms
manual updating for the far offsets, which can be concluded by comparing the au-
tomatically updated operators of Figure 8.11C with the manual updated operators
of Figure 8.11B. This puts confidence in the deployed automatic updating procedure.

8.2.2 CFP redatuming

The resulting operators, from the updating procedure are used for redatuming. The
redatuming consists of two steps. First, all shots and receivers are redatumed to
the Rus, the reflector used to focus the operators on. Within the next the data is
forward extrapolated to a flat reference datum at zero meters depth. For this step
we need both a substitute homogeneous velocity for the near surface as well as the
correct depth and lateral locations of the Common Focus Points. The substitute
velocity can have an arbitrary value, or a value can be used which was estimated as
the refractor velocity during a previously conducted refraction exercise. The actual
depth of the reflector to which we would like to redatum our data, using the CFP
operators needs to be estimated through a tomographic inversion of the focusing
operators.

In Figure 8.13 the initial model is displayed together with 3 iterations, the first,
the third and the fifth and final iteratio, of the tomographic inversion. The known
surface topology is quite well recognized. The model was initialized using two layers.
The layer boundary is described by a spline with 30 vertices. The velocity of the
top layer is allowed to vary laterally. The variety of the velocity is constrained by a
spline with 10 vertices.

The tracked traveltime surface of Figure 8.7D is used as a weight on all the in-
dividual traveltime measurements of the focusing operators. These weights indicate
which traveltime picks are reliable or not for use within the inversion scheme. The
final inversion result is displayed in Figure 8.13D. Some of the original structure
of the near surface is resolved, such as the wadi fill in and the reliefs below the
sanddunes, although not perfectly. Due to the velocity contrast and the truncated
apertures of the focusing operators, according to the applied weights, velocity and
depth of the toplayer can interchange during the inversion iteration. However, the
structure of the Rus formation is well resolved, the relief is clearly recognized.

Figure 8.14 displays a set of redatumed shot-gathers. Some remnants of near surface
effects are still visible but in general the redatuming clearly removed the near sur-
face effects in a kinematic sense. The redatumed shot gathers were put subject to a
stacking velocity analysis, followed by a NMO correction and subsequently stacked
after sorting to the CMP-Offset domain. The remaining stack is displayed in Figure
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Figure 8.13: Inversion result for inverting CFP operators. The top Figure shows the initial
model, the second Figure displays the model after 1 iteration, the third Figure displays the
model after 3 iterations and the bottom Figure displays the final model after 5 iterations.
The CFP locations are denoted by white dots. The velocities do not fully resemble the true
model, however the CFP locations are estimated quite well.

8.15. The stack looks in general clear and smooth. The observed anticlinal structure
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Figure 8.14: Shot records after redatuming to the RUS formation. The reflection energy of
the RUS formation has collapsed to a direct arrival.
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Figure 8.15: Brute stack at RUS, after applying CFP redatuming with verified focusing
operators.



8.2 The Middle East model 177

0

0.5

1.0

1.5

1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80
x104

Figure 8.16: Brute stack at floating datum, after forward extrapolation of data from RUS
reflector.
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Figure 8.17: Brute stack at floating datum after application of refraction and datum statics.
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is caused by the relief of the Rus and the fact that all sources and receivers have
been redatumed to the Rus. In fact this is a false structure and can be interpreted
as a pseudo topology imprint.

Using the estimated depth from the tomographic inversion an a homogeneous re-
placement velocity of 2500 m/s between the RUS and z = 0, we were able to forward
extrapolate the data, as computed through redatuming to the RUS, from the RUS
back to a depth of z = 0m. After forward extrapolated, the structure disappears
within the stack and clearly the relief of the Rus is recognized. If the stacked result
of Figure 8.16 is compared to the stack of Figure 8.17, for which conventional pro-
cessing was used to obtain source and receiver statics to be used for a floating datum
correction, we can conclude that the CFP technology has a superior performance.
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Figure 8.18: The 2D model developed by BP to use for testing near-surface algorithms. The
model contains a variety of geological features which can be encountered within real life
seismic acquisition programs, including topology effects.

8.3 The small wavelength near surface model

Within BP-Amoco a multi-purpose model has been developed of which its first pur-
pose was to test currently available methods to solve for statics problems. For testing
to be truly effective, it was necessary that the components of the model include prob-
lems which are difficult to resolve, even by the most sophisticated tools.

The full model is depicted in Figure 8.18. It includes mountainous thrust belts,
a complex submarine fan system complicated by syn-depositional faulting, thrusted
duplexes, blind thrusts and traps formed by unconformities and facies changes. Rock
types that vary between carbonates and both hard and soft clastics were inserted in
the model. As most refraction statics programs make many dubious assumptions,
some of which are more appropriate for certain near-surface conditions than others,
several types of anomalies were embedded in the near-surface of the model, such as
buried channel systems, laterally discontinuous beds, buried volcanoes, near surface
faulting and very rugged weathering profiles.

An attempt has been made to make the modeled data very similar in appearance
to real data. This was done so that the processing steps would be applied under
conditions similar to those encountered with real data. The model data does adhere
to two key assumptions: it is strictly a 2-D model and only acoustic waves were
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Figure 8.19: The rms stacking velocities derived from the data modeled within the model of
Figure 8.18.

allowed to propagate through it.

The seismic data has been acquired on a 5x5m grid, with a frequency content of
0-65 Hz. The measured data has been summed into 25m receiver-arrays on an 8km
cable without roll-in and roll-out. The shots were taken at the midpoint of the cable.
A first passed analysis of stacking velocities is displayed in Figure 8.19. These veloc-
ities were used as input to a near offset time-migration of the full data set modeled
within the full model as displayed in Figure 8.20. Note all the effects associated
with the near surface anomalies, such as close to surface consistent dimming and
brightening, lack of coherent stacking and hardly recognized deep reflection events.

The model and computed data is clearly sufficiently complex that the problems
must be addressed in much the same way they would need to be addressed with real
data.

Within this thesis we have restricted ourselves to only investigate part of the full
model, running from 0-4000m. This part of the model has no change in topography,
although this can be handled by CFP analysis equally well as demonstrated by the
previous example. The near surface anomalies consist of a very rugged refractor
profile. Figure 8.21A displays in detail the part of the full model that has been used
for the CFP analysis. In Figure 8.21B a selection of shot records, modeled within
this part of the model, has been displayed. Clearly, typical energy associated with
land-seismics is present within the model, except for ground-roll, as shear energy
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Figure 8.20: The time-migrated near-offset section computed from the full dataset modeled
over the model of Figure 8.18.

does not travel through the model. Due to the rugged behavior of the near surface
refractor, hardly any deeper reflections are clearly recognized.

8.3.1 CFP processing

The first step in constructing operators to be input to the CFP-operator updating
sequence is determining the stacking velocities and picking zero-offset times from
the time-migrated near-offset section. Figure 8.22 displays the stacking velocities.
As a consequence of presence of near-surface anomalies, these stacking velocities
are not necessarily optimal, however, they only serve as an initial estimate on the
move-out of the initial focusing operators. As outlined in Chapter 2, these velocities
could be optimized by analyzing the crosscorrelations of the shot-records. This has
not been applied within this example and would be recommended for future analysis.

Figure 8.23 displays the time-migrated near-offset section from which the zero-offset
times were picked for the chosen datum reflector, as indicated in Figure 8.21A. Some
muting and dip-filtering has been applied to the data to be able to better determine
the zero-offset times. Remnants of the refraction energy result in the strong event
as observed in the top of the section. Selecting a deeper reflector could have resulted
in a better determination of zero-offset times as they would have been less obscured
by refraction energy but would have resulted in a more complicated updating pro-
cedure.

Initial operators were constructed by using the zero-offset times and the stacking
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Figure 8.21: A) The subset of the model of Figure 8.18, used for the near-surface analysis.
B) Five shot-records computed by acoustic finite differencing within the model of (A).
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Figure 8.22: The rms stacking velocity as determined for the subset-model of Figure 8.21.
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Figure 8.23: The zero offset section for the submodel of Figure 8.21. The indicated zero offset
times will be used in combination with the stacking velocities of Figure 8.22 to construct
the initial operators.
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Figure 8.24: DTS gather for lateral location x=500 constructed by using A) smooth initial
operators, B) using transposed initial operators, C) using operators after 3 update iterations
with transposed operators as initial operators.

velocities. Both the focusing operators with smooth move-out as well as the trans-
posed operators were applied to the data. Figure 8.24 displays the resulting DTS
gathers for a location at x=500m. The DTS-gather resulting from the smooth op-
erator, Figure 8.24A, hardly renders any energy that could be picked, whereas the
transposed operators result in a smooth and easy to be picked DTS-gather, as de-
picted by Figure 8.24B. After only 3 updates this particular DTS-gather aligns
almost perfectly around t=0s, as shown in Figure 8.24C. Clearly the very rugose na-
ture of the near-surface refractor results in incoherent stacking during the CFP and
DTS construction process when smooth operators are used, whereas the transposed
operators already contain the major near-surface effects.

The final operators after three updating steps are displayed in Figure 8.25. These
operators clearly contain fast variations caused by the small wavelengths of the near
surface inhomogeneities. Within the next section, these operators will be used to
redatum the data and to estimate a near surface model.

8.3.2 CFP redatuming

The operators of Figure 8.25, retrieved after 3 updating steps have flattened the
DTS gathers of Figure 8.26A sufficiently and are therefore considered to be the final
operators that describe near surface propagation sufficiently well. In the next steps,
the operators will be used to redatum both the sources as well as the receivers toward
the near surface reflector just below the fast varying near surface inhomogeneities.
Redatuming only the sources, is equivalent to constructing the CFP gathers. The
CFP-gathers are displayed in Figure 8.26B. These gathers resemble measurements
of the seismic energy at surface, excited by sources synthetically placed along the
datum reflector. In a second step the receivers are redatumed as well, resulting in
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Figure 8.25: Final operators after three updating steps.

fully redatumed shot-gathers, of which a selection is displayed in Figure 8.26C. Note
that the near surface effects have almost fully disappeared.

Next, the final operators have been subject to a tomographic inversion. In Fig-
ure 8.27 4 iterations have been displayed, the initial model, the model after two,
after four and after six iterations of in total six iterations, of the non-linear model
updating. The model as displayed within the final iteration closely resembles a low
frequency representation of the true model. Also the position of the reflector has
been resolved quite well.

After velocity analysis, application of move-out and stacking the redatumed data
of Figure 8.26C, the stack of Figure 8.29 is obtained. When this result is compared
to the stack of Figure 8.28, obtained by analyzing and stacking the surface data, it
is clear that by using CFP technology to describe the propagation characteristics
of the near-surface and using the obtained operators to redatum the data to a level
below the near-surface, will render an enhanced resolution of the deeper reflectors.
The smooth and sharp behavior of the reflected data within the stack of Figure 8.29
clearly resembles the geology of the model of Figure 8.21A quite well.
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Figure 8.27: Estimated near-surface model by inverting the final operators for four iteration
within the nonlinear tomographic inversion algorithm, the initial model at the top followed
by the model after two, four and six iterations at the bottom.
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Figure 8.28: Final stack of the data as measured at the surface.
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Figure 8.29: Final stack of the data after redatuming to the shallow reflector just beneath
the rugged near-surface refractor.
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Conclusions and recommendations

9.1 Conclusions

Conventional statics do not sufficiently solve the problem of near surface inhomo-
geneities. Applying such corrections may render an erroneous velocity profile and
will misplace the final image during migration. Statics solutions are based on the
assumption that all raypaths, regardless of originating depth or offset, will be close
to the normal of the interface once entered into the low velocity near surface. This
assumption will become more eroneous if the velocity contrasts between near surface
anomalies and the underlying layer will become smaller. In case of velocity reversal
(for instance within permafrost regions) results will be very wrong.

The near surface problem is a wave propagation problem and, therefore, redatuming
should be used to solve for near surface effects. The Common Focus Point technol-
ogy allows the estimation of operators that describe propagation through the near
surface directly from the data, without estimating a near surface model first. As
such, it is an ideal technology to remove the propagation effects of a complex near
surface.

By using the concept of reciprocity, it is shown that wavefront healing can be used
to our advantage when describing propagation between the surface and a datum
reflector below the near surface. In this way we are able to parameterize a full set
of laterally shifted operators with a sparse set of parameters. Applying a non-linear
optimization algorithm, the near surface effects are recovered adequately by using a
cost function based on stack power. Not only are we able able to include the near
surface effects automatically, the hypothesis suggests that this method also avoids
nonuniqueness.
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If a conventional statics solution is available this can be incorporated in the ini-
tial operator. For this purpose, a new statics solution is proposed. The method
correlates neighboring shot-gathers in time and sums the result along the receiver
coordinates. The correlation removes the receiver statics. After summing along the
receiver coordinates, the posistion of maximum energy shows the relative difference
in shot-static when optimal normal move-out is applied to the data.

The focusing operators contain the propagation effects through the near surface
but no information is obtained about the location of the new datum. Therefor, the
estimated operators need to be input to a velocity model inversion. The inversion
will solve for both the near surface velocities as well as the focuspoint locations.
By separating the estimation of the common focuspoint operators from the near
surface model determination, it is assured that the data itself will dictate the final
redatuming result without being constraint by a near user provided surface model.
The estimated near surface model merely explains the seismic propagation effects in
the near surface.

The redatuming process is an inverse propagation problem. Therefore, not only
phase information is needed in terms of traveltimes but also amplitude informa-
tion. Excluding amplitude information has a similar effect as missing traces or
measurements during redatuming or imaging. For near surface problems, the pop-
ular matched-filter approach appears to be insufficient. A least-squares redatuming
procedure should be used, using operators that are weighted with spherical diver-
gence, transmission losses and other near surface related amplitude effects.

The proper operator amplitudes can be derived through an optimization proce-
dure which minimizes the difference between the forward modeled amplitudes and
the measured data. This can be achieved by using Fermat modeling in combina-
tion with amplitude decomposition techniques. To properly cover offset dependent
effects, the amplitude decomposition scheme has been expanded with higher order
terms. If one does not adequately include the proper amplitudes one should refrain
from a least-squares redatuming procedure and refer to the matched filter solution.

The method of Campman (2005), aiming at removing multiplicative noise due to
near surface inhomogeneities, and the method outlined within this thesis turn out
to be complementary. The method of Campman (2005) covers near surface short
wavelength scattering effects whereas the method in this thesis covers the longer
wavelength propagation effects.
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9.2 Recommendations

Processing workflow

The method described in this thesis ties together several processing steps developed
within the concept of the WRW-model. To process data acquired over a complex
near surface it is recommended to use the following processing sequence:

• Optimize the acquisition as described by Al-Ali (2007).

• Removal of surface waves as described by Al-Ali (2007).

• Apply a temporal static correction as described in this thesis, Chapter 2.

• Construct initial operators as described in this thesis, Chapter 5.

• Improve operator updating as described by van der Rijzen et al. (2004).

• Estimate amplitudes as described in this thesis, Chapter 7.

• Apply a full 3D redatuming as described by Tegtmeier-Last (2007).

• Estimate a subsurface model as described by Cox (2004).

3D effects

In the real world, near surface inhomogeneities manifest themselves as three dimen-
sional anomalies. This thesis has described the methodology for a two-dimensional
situation. The next step is the extension to three dimensions. Especially for proper
redatuming weights, the amplitudes should correct for three dimensional effects.
With 2D assumptions severe artefacts can be introduced, as demonstrated in Chap-
ter 7.

Field data calibration

It has been shown in Chapter 4 that the single focus point updating procedure
does not necessarily result in a unique operator. Families of operators exist that
satisfy the used criteria: the principle of equal traveltime, the match with the two-
way traveltimes estimated from the one-way operators by Fermat modeling and
the property that the inverse focusing operators applied to the forward operators
should give a bandlimited pulse in the origin. The hypothesis is that not all of these
operators are physically possible. By parameterizing the operators, as has been done
in Chapter 5, a constraint is introduced. However, the problem of non-uniqueness
can be solved by estimating a range of operators along a horizon simultaneously.
Validation can be applied by sparsely measuring the physical operators in the field
by using downhole receivers.
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Computational efficiency in model estimation

When strong and relatively fast varying anomalies are expected in the near surface,
it has been shown that grid-based methods are favorable over raytracing methods to
compute the forward traveltimes. Derivatives of the traveltimes with respect to the
model parameters have been derived through perturbation theory. This makes the
inverse scheme more expensive in comparison to the use of raytracing algorithms. Es-
pecially, when the methodology is extended to three dimensions, the computational
time will become a crucial factor to the applicability. It is therefore recommended
to investigate alternative ways of computing the derivatives. This can be done for
instance by carefully tracking the stencils used to derive connections and traveltimes
when a shortest path algorithm is used.

Improving amplitude corrections

The redatuming procedure outlined in Chapter 7 was based on the determination
of a single set of redatuming weights to be used for all frequencies. Moreover, the
procedure was based on tracking a single event only. When the data becomes more
complex and noisy, it might be worthwhile to include as much data as possible, to
stabilize the procedure. This could lead to an amplitude matching algorithm applied
to certain time-gates, including frequency dependency. This should be done in close
relationship with the method developed by Campman (2005).
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Two-way and one-way wavefields

A.1 Introduction

In this appendix the general theory for acoustic wavefield extrapolation and scat-
tering is derived, which provides the base for redatuming the wavefield through the
near surface. Both a two-way wavefield propagation formulation can be used as well
as a one-way wavefield propagation formulation. A one-way formulation simplifies
the expressions for extrapolation and scattering significantly in comparison to a two-
way formulation.

First we will start with the constitutive equations, linearized under a low frequency
approximation, describing acoustic wave-motion. The first equation is the equation
of motion,

∂kp̂(x, t) + ρ(x)∂tv̂k(x, t) = f̂k(x, t), (A.1.1)

in which p̂(x, t) represents the scalar pressure field as function of space, x, and time,
t, and v̂k(x, t) the vectorial velocity field excited by directional force given a spatially
varying density ρ(x).
The second equation is the equation of deformation,

∂kv̂k(x, t) + κ(x)∂tp̂(x, t) = q̂(x, t), (A.1.2)

excited by a volume injection source q̂(x, t) given a spatially varying adiabatic com-
pressibility modulus κ(x). Equation A.1.1 and Equation A.1.2 are called the basic
acoustic wave equations, which can be written in the space-frequency domain as,

∂kp(x, ω) + jωρ(x)vk(x, ω) = fk(x, ω), (A.1.3)
∂kvk(x, ω) + jωκ(x)p(x, ω) = q(x, ω). (A.1.4)
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νk

ID

∂ID

Figure A.1: Definition of the volume used for evaluating the wave-equation and reciprocity
relations, in which ∂ID denotes the boundary of volume ID for which νk is the outward
pointing normal vector with unitary length.

From the basic coupled acoustic equations, we can derive integral representations
to describe wave-propagation within a known volume ID. Volume ID is depicted in
Figure A.1, with ν the unit vector along the normal of ∂ID pointing away from the
boundary of the discontinuity ID. At the boundary of volume ID two pertaining
boundary conditions can be defined. The first one reads,

lim
ε↓0
p̂(x + εν, t) = 0, x ∈ ∂ID, (A.1.5)

which is the condition of a perfectly reflecting impenetrable void (pressure free sur-
face), known as the Dirichlet condition. The second one reads,

lim
ε↓0
νkv̂k(x+ εν, t) = 0, x ∈ ∂ID, (A.1.6)

which is the condition of a perfectly reflecting impenetrable rigid object, known
as the Neumann condition. With the above description of two-way wavefields, ex-
pressions can become complicated with the given boundary conditions. Further on
expressions for simpler one-way wavefields will be derived by defining the medium
parameters to be continuous and reflecting free, outside the volume V as a boundary
condition.

A.2 Two-way acoustic wave equations

A.2.1 Two-way impulse response

Following Fokkema and van den Berg (1993), instead of considering the basic acoustic
equations, Equation A.1.1 and Equation A.1.2, the homogeneous and source free
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acoustic equations can be considered. Then, the volume injection source Green’s
states Gq and Γqk are defined as the scalar impulse responses for the pressure and
particle velocity,

∂kp
q(x,xs, ω) + jωρ(x)vqk(x,x

s, ω) = 0, (A.2.1a)
∂kv

q
k(x,x

s, ω) + jωκ(x)pq(x,xs, ω) = qδ(x− xs). (A.2.1b)

The volume force source Green’s states Gf
l and Γfk,l are defined as the vector impulse

responses for the pressure and particle velocity,

∂kp
f(x,xs, ω) + jωρ(x)vfk (x,x

s, ω) = fkδ(x − xs), (A.2.2a)

∂kv
f
k (x,x

s, ω) + jωκ(x)pf (x,xs, ω) = 0, (A.2.2b)

with the Green’s fields defined as,

{pq, vqk} = q{Gq,−Γqk}, (A.2.3a)

{pf , vfk} = fl{−Gf
l ,Γ

f
k,l}. (A.2.3b)

Substituting Equation A.2.3a into Equation A.2.1a, leads to

Γqk =
1
jωρ

∂kG
q. (A.2.4)

Substituting Equation A.2.3b into Equation A.2.1a, leads to

Γfk,l =
1
jωρ

[
− 1
jωρ

∂l∂kG
q + δl,k

]
. (A.2.5)

Substituting Equation A.2.3a into Equation A.2.1a, leads to

Gf
l = − 1

jωρ
∂lG

q. (A.2.6)

The Green’s functions are expressed in terms of the volume injection pressure Green’s
function Gq, for which the following holds,

ρ∂k(
1
ρ
∂kG

q) +
ω2

c2
Gq = −jωρδ(x− xR), (A.2.7)

with the velocity defined by, c2(x) = 1
ρ(x)κ(x) .

The expressions for the two-way Green’s states of Equation A.2.4 through Equa-
tion A.2.7 can conveniently be written in terms of a matrix vector representation,

∂kG−AG = S, (A.2.8)
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State A State B

Field State {pA, vAk }(x, ω) {pB, vBk }(x, ω)
Material State {ρA, κAk }(x) {ρB, κBk }(x)
Source State {qA, fAk }(x, ω) {qB, fBk }(x, ω)

Table A.1: The two states, used to define the two-way reciprocity relations.

with,

G =

(
Gq −Gf

l

−Γqk Γfk,l

)
,A =

(
0 −jωρ

−jωκ 0

)
,S =

(
0 q

fk 0

)
δ(x− xs).

(A.2.9)
with the elements of the Green’s matrix G defined by Equation A.2.4 through Equa-
tion A.2.7.

A.2.2 Reciprocity relations for two-way wavefields

The reciprocity relations constitute the fundamentals of seismic wave-theory and
can be used to describe the fundamental theory for near surface redatuming of
wavefields. These relations describe the interaction between two states within a
bounded medium D. The two states are described by their source characteristics,
medium parameters and their wavefield distributions governed by the constitutional
relations of Equation A.1.1 an Equation A.1.2, as shown by Table A.1. For an
elaborate discussion on the Reciprocity theorems, the reader is referred to Fokkema
and van den Berg (1993) and Rayleigh, J.W. Strutt, Baron (1877). Here, I briefly
review the properties of the reciprocity theorems. To start with the derivation, first
Gauss’ integral theorem is considered, which relates a boundary integral to a volume
integral, ∫

x∈ID
∂kUk(x)dV =

∫
x∈∂ID

Uk(x)νkdS. (A.2.10)

From the constitutional equations of Equation A.1.1 and Equation A.1.2, we can
define for the two interacting states,

∂kp
A(x, ω) + jωρA(x)vAk (x, ω) = f

A
k (x, ω), (A.2.11a)

∂kv
A
k (x, ω) + jωκ

A(x)pA(x, ω) = qA(x, ω), (A.2.11b)

for state A, and

∂kp
B(x, ω) + jωρB(x)vBk (x, ω) = f

B
k (x, ω), (A.2.12a)

∂kv
B
k (x, ω) + jωκ

B(x)pB(x, ω) = qB(x, ω), (A.2.12b)
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for state B. For any surface discontinuity in the acoustic properties, Equation A.2.11a
through Equation A.2.12a are supplemented by the boundary conditions as given in
Section A.1. The field interaction analyzed by the reciprocity relations is chosen to
be,

∂k
(
pA(x)vBk (x)− pB(x)vAk (x)

)
=

vBk (x)∂kp
A(x) + pA(x)∂kvBk (x)

−vAk (x)∂kpB(x) − pB(x)∂kvAk (x).
(A.2.13)

If this relation is substituted into Gauss’ theorem of Equation A.2.10, we arrive at

∫
∂D

(
pA(x)vBk (x)− pB(x)vAk (x)

)
νkdA =∫

D

[
vBk (x)∂kp

A(x) + pA(x)∂kvBk (x)

−vAk (x)∂kpB(x)− pB(x)∂kvAk (x)
]
dV.

(A.2.14)

The right hand side of Equation A.2.14 can be rewritten by using the pertaining
wave-equations of Equation A.2.11a through Equation A.2.12a, leading to,

∫
∂ID

[
pA(x)vB(x)− pB(x)vA(x)

]
νkdS =∫

ID
jω
[(
ρB − ρA

)
vAk (x)v

B
k (x)−

(
κB − κA

)
pA(x)pB(x)

]
dV

+
∫
ID

[
fAk v

B
k + qBpA− fBk vAk − qApB

]
dV,

(A.2.15)

which is Rayleigh’s reciprocity theorem in its global form. In case of equal material
properties, the first term on the right-hand side vanishes. When the anti-causal
wavefield of state A is taken, {p∗A, v∗k,A} and the interaction quantity,

∂k

(
p∗,A(x)vBk (x) + p

B(x)v∗,Ak (x)
)
=

vBk (x)∂kp
∗,A(x) + p∗,A(x)∂kvBk (x)

− v∗,Ak (x)∂kpB(x) − pB(x)∂kv∗,Ak (x),

(A.2.16)
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we arrive at the power reciprocity theorem,

∫
∂ID

[
pA,∗(x)vBk (x) + p

B(x)v∗,Ak (x)
]
νkdS =∫

ID
−jω

[(
ρB − ρA

)
v∗,Ak (x)vBk (x) +

(
κB − κA

)
p∗,A(x)pB(x)

]
dV

+
∫
ID

[
f∗,Ak (x)vBk (x) + q

B(x)p∗,A(x)+

fBk (x)v∗,Ak (x) + q∗,A(x)pB(x)
]
dV.

(A.2.17)

Again, the first term on the right-hand side vanishes, when the material states are
taken equal. These scalar-wave reciprocity theorems are used to derive wavefield
representations of seismic data and the related forward model. They also prove a
number of symmetry relations.

• By taking for state A field state {pq,A, vq,Ak } = qA{Gq,Γqk}(x,xA, ω), material
state ρ(x), κ(x) and as source state {qAδ(x−xA), 0} and for state B field state
qB{Gq,Γqk}(x,xB, ω), material state ρ(x), κ(x) and as source state {qBδ(x −
xB), 0}, the reciprocity theorem leads to,

qBpq,A(xB ,xA) = qApq,B(xA,xB), (A.2.18)

Gq(xB ,xA) = Gq(xA,xB). (A.2.19)

• By taking for state A field state {pf,A, vf,Ak } = fAl {Gf
l ,Γ

f
k,l}(x,xA, ω), ma-

terial state ρ(x), κ(x) and as source state {0, fAk δ(x − xA)} and for state B
field state fBl {Gf

l ,Γ
f
k,l}(x,xB , ω), material state ρ(x), κ(x) and as source state

{0, fBk δ(x− xB)}, the reciprocity theorem leads to,

fBl v
f,A
l (xB ,xA) = fAl v

f,B
l (xA,xB), (A.2.20)

Γfk,l(x
B ,xA) = Γfk,l(x

A,xB). (A.2.21)

• By taking for state A field state {pq,A, vq,Ak } = qA{Gq,Γqk}(x,xA, ω), ma-
terial state ρ(x), κ(x) and as source state {qAδ(x − xA), 0} and for state B
field state fBl {Gf

l ,Γ
f
k,l}(x,xB , ω), material state ρ(x), κ(x) and as source state

{0, fBl δ(x− xB)}, the reciprocity theorem leads to,

fBl v
q,A
l (xB ,xA) = qApf,B(xA,xB), (A.2.22)

Γql (x
B ,xA) = Gf

l (x
A,xB). (A.2.23)
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A.3 One-way acoustic wave equation

As for instance imaging strategies, including redatuming, are based on back-propagation
of primary one-way wavefields to their originating scattering contrast, it can be useful
to use one-way reciprocity theorems. Moreover, by using two-way representations,
the full Green’s functions including, for instance, multiple energy have to computed.
Slight errors in the background model can introduce severe errors as shown by Wape-
naar and Berkhout (1989).

A.3.1 From two-way to one-way wavefields

For that purpose in this section, the one-way reciprocity theorem is derived, closely
following Wapenaar and Grimbergen (1996). To derive the one-way reciprocity the-
orem, first a direction of interest has to be discriminated. Since in this thesis we are
interested in redatuming of surface data, toward the target level, in the z-direction,
it will be convenient to eliminate the two horizontal directions from the constitutive
equations. The scalar wave-equations form a system of four equations,

∂1p(x) + jωρv1(x) = f1(x), (A.3.1a)

∂2p(x) + jωρv2(x) = f2(x), (A.3.1b)

∂3p(x) + jωρv3(x) = f3(x), (A.3.1c)

∂1v1(x) + ∂2v2(x) + ∂3v3(x) + jωκp(x) = q(x), (A.3.1d)

which can be rewritten as,

∂3v3(x) = q − ∂1v1(x)− ∂2v2(x)− jωκp(x). (A.3.2)

By substituting expressions for v1(x) and v2(x) taken from Equation A.3.1a and
Equation A.3.1b, we arrive at,

∂3v3(x) =
1
jωρ

H2p(x) + q(x)−
1
jωρ

(∂1f1(x) + ∂2f2(x)) , (A.3.3)

in which we tacitly assumed the density ρ to be homogeneous, and the Helmholtz
operator H2 being defined as,

H2· = ∂1∂1 ·+∂2∂2 ·+k2 · . (A.3.4)

The wavenumber k is defined by k = ω
c , which is obtained by substituting κρc2 = 1.

Thus, we can write the coupled wavefields p(x) and v3(x) in matrix vector notation
as,

∂3Q = AQ+D, (A.3.5)

in which Q contains the wavefield quantities,

Q =

(
p(x)
v3(x)

)
, (A.3.6)
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matrix A the coupling operator,

A =

(
0 −jωρ

−j
ωρH2 0

)
, (A.3.7)

and D the source vector,

D =

(
f3(x)

q(x) + j
ωρ(∂1f1(x) + ∂2f2(x))

)
. (A.3.8)

To decompose the wave-vector into up and down-going waves, the composition op-
erator L is introduced. The decomposition is then carried out by the inverse, L−1.
The coupling operator can be diagonalized through an Eigenvalue-decomposition,

A = −jωLΛL−1. (A.3.9)

The factor −jω is removed from the Eigen-value decomposition to assure equivalence
with the differential equations for the two-way wave-equations. The diagonal matrix
Λ contains the two Eigen-values,

Λ =

(
1
ωH1 0
0 −1

ω H1

)
, (A.3.10)

in which H1 is the pseudo-differential square-root operator, defined as,

H1H1 = H2. (A.3.11)

Thus, the coupling operator consists of the Eigen-vectors and the decoupling opera-
tor is defined by the inverse, which through definition exists. Since an Eigen-vector
is only one vector of a whole subspace of Eigen-vectors, the 2 by 2 coupling operator
containing the Eigen-vectors is chosen consistently with the flux normalization in
horizontally layered media as described in de Hoop (1992),

L =

(
L1 L1
L2 −L2

)
, L−1 =

1
2

(
L−1
1 L−1

2

L−1
1 −L−1

2

)
, (A.3.12)

in which

L1 =
(
ωρ

2H1

) 1
2

, L−1
1 =

(
2H1

ωρ

) 1
2

, (A.3.13)

L2 =
(

H1

2ωρ

) 1
2

, L−1
2 =

(
2ωρ
H1

) 1
2

. (A.3.14)

Substituting the Diagonal decomposition into Equation A.3.5, reads,

∂3Q = −jωLΛL−1Q+D. (A.3.15)
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The two-way wave vector Q can be expressed in terms of a one-way vector P by the
aid of the composition matrix L through,

Q = LP, (A.3.16)

in which the one-way wave vector P consists of the up- and down-going waves,
P = (p+(x), p−(x))T . In a similar way the source vector is composed from up and
down-going sources, according to,

D = LS, (A.3.17)

If Equation A.3.16 and Equation A.3.17 are substituted in Equation A.3.15 the
one-way system of wave equations is derived with a polarized direction along the
z-axis,

∂3LP = −jωLΛL−1LP+ LS, (A.3.18)
P∂3L+ L∂3P = −jωLΛP+ LS, (A.3.19)

∂3P = BP+ S, (A.3.20)
B = Φ− jωΛ, (A.3.21)

Φ = −L−1∂3L. (A.3.22)

The operator B contains two terms, first the pure diagonal part −jωΛ which ac-
counts for propagation of up- and down-going waves, and the coupling operator Φ
which accounts for scattering due to vertical variation of medium parameters. Note
that both terms account for scattering due to lateral variations. For a homogeneous
earth Φ vanishes and the one-way operator matrix B becomes a diagonal operator
matrix and no longer couples the up and down-going waves, as expected. In case of
inhomogeneous media, the up- and down-going wavefields are coupled through the
coupling term Φ which is formally written as,

Φ =

(
T + R−

−R+ −T −

)
, (A.3.23)

in which T+ and T− account for transmission of up- and down-going waves respec-
tively and R+ and R− account for reflection of up-going waves (into down-going
waves) and down-going waves (into up-going waves) respectively .

Outside the volume V , the volume in which the one-way wave equations are an-
alyzed, we choose as boundary condition for G a continuous, reflection free, fully
absorbing media,

κ(x, y, z < z0) = κ(x, y, z0). (A.3.24)

Thus, no down-going waves return from the upper half-space,

G = G− at z = z0. (A.3.25)
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State A State B

Field State {p+,A, p−,A}(x, ω) {p+,B, p−,B}(x, ω)
Material State BA(x) BB(x)
Source State {s+,A, s+,A}(x, ω) {s−,B, s+,B}(x, ω)

Table A.2: The two states, used to define the one-way reciprocity relations.

A.3.2 One-way reciprocity theorem

Equivalent to the derivation of the two-way reciprocity theorem, again we would
like to describe the interaction quantity of two field states as given in Table A.2. In
contradiction to the two-way wavefield, the one-way wave-filed is described in terms
of up and down-going wave, therefore, the interaction quantity to be investigated
reads,

∂3
(
pA,+(x)pB,−(x) − pA,−(x)pB,+(x)

)
= ∂3PTAĪPB , (A.3.26)

in which Ī is defined as,

Ī =

(
0 1
−1 0

)
. (A.3.27)

Then the interaction quantity of Equation A.3.26 leads to,

∂3PTAĪPB = PTB Ī
T ∂3PA +PTAĪ∂3PB. (A.3.28)

If this relation is substituted into Gauss’ theorem, we arrive at,∫
∂ID
PTAĪPBµ3dA =

∫
ID
PTB Ī

T ∂3PA +PTAĪ∂3PBdV. (A.3.29)

The right hand side of Equation A.3.29 can be written by using the pertaining
one-way wave-equation of Equation A.3.20, leading to,∫

∂ID
PTAĪPBµ3dA =

∫
ID
PTAĪSB +PTB Ī

TSAdV +
∫
ID
PTA

[̄
IBB +BTAĪ

]
PBdV,

(A.3.30)
which is called the reciprocity relation of the convolution type for one-way wavefields.
The term ĪBB +BTAĪ can be interpreted as a contrast operator. When considering
the properties,

ĪT Ī = ĪĪT = I, Ī−1 = ĪT , (A.3.31)

the contrast operator can be rewritten as,

ψ =
[̄
IBB +BTAĪ

]
= Ī

[
BB + ĪTBAĪ

]
. (A.3.32)
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If also the symmetry-property of the medium operator B as derived by Wapenaar
and Grimbergen (1996) is considered,

BH = −ĪB∗Ī−1, (A.3.33)

the contrast operator ψ can be written as,

ψ = BB −BA. (A.3.34)

Hence, when the two states are identical, the contrast term vanishes in the reci-
procity relation of the convolution type for one-way wavefields. Furthermore, since
the contrast function for one-way wavefields is composed of a propagation part and
a scattering part, an independent choice of propagation and scattering is allowed to
be analyzed.

To derive the reciprocity relation of the correlation type for one-way wavefields,
the following interaction relation is considered,

∂3PHA ĪPB. (A.3.35)

Note that instead of the transpose of PA, as in Equation A.3.26 here the Hermitian
transpose of PA is taken. Then applying again Gauss’ theorem leads in a similar
way as in the previous section to,∫

∂ID
PHA ĪPBµ3dA ≈

∫
ID
PHA (BB −BA)PBdV +

∫
ID
PHA ĪSB +PHB Ī

TSAdV.

(A.3.36)
The approximation sign in Equation A.3.36 refers to the use of an approximation
in the derivation of a modified symmetry property of the medium operator B; the
evanescent waves are ignored (Wapenaar and Grimbergen, 1996). For further de-
tailed comparison of the one-way reciprocity theorem and the two-way reciprocity
theorem, the reader is referred to Wapenaar and Grimbergen (1996) and Hegge
(2001).

Both the convolution type as well as the correlation type reciprocity relations for
one-way wavefields are determined by the difference in medium operator B for the
different states. In Equation A.3.21 the medium operator is explicitly defined in
terms of a propagation part −jωΛ and a scattering part Φ. Through the reciprocity
relations we can chose to analyze those parts independently. This is major advan-
tage over the two-way reciprocity theorems and will be used advantageously to set
up the forward model, which is referred to as the WRW-model by Berkhout (1982).

A.3.3 One-way impulse responses

In analogy with the two-way Green’s functions ( Equation A.2.4 through Equation
A.2.7), the one-way Green’s functions G+,+ and G−,+ are defined as the up-going
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Figure A.2: The elements of the one-way Greens function. The elements G−,+ and G+,−

are due to coupling effects, when scattering contrast are present.

impulse responses of the one-way wave-equation and the Green’s functions for the
up-going wavefield and the coupled down-going wavefield. Similarly, the Green’s
functions G−,− and G+,− are defined as the down-going impulse response of the one-
way wave equation for the down-going wavefield and the coupled up-going wavefield.
The Green’s state, satisfying the one-way wave equation can then be written in a
matrix form as,

∂3G−BG = Iδ(x− xs), (A.3.37)

in which the Green’s matrix is defined as,

G(x,xs) =

(
G+,+(x,xs) G+,−(x,xs)
G−,+(x,xs) G−,−(x,xs)

)
. (A.3.38)

The elements of the Green’s matrix are visualized in Figure A.2.

The choice of the medium operator B determines which elements of the Green’s
matrix are put under investigation. By taking Λ equal to the actual medium and
Φ = 0, within the domain under investigation, coupling of wavefields is not taken
into account. Thus only propagation of the different Green’s components is taken
into account,

∂3G+ j

(
H1 0
0 −H1)

)
G = Iδ(x− xs). (A.3.39)
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When only outgoing waves are considered in the domain under investigation, the
diagonal elements of G vanish and we are left with the primary Green’s function,

Gp(x,xs) =

(
h(x3 − xs3)W+(x,xs) 0

0 −h(x3 − xs3)W−(x,xs)

)
, (A.3.40)

in which h is the Heaviside function and W+ and W− are the primary propagators
which describe downward and upward propagation. Note that due to the specific
choices of the medium operator and the Green’s function, the Green’s state of Equa-
tion A.3.37 purely describes up and downward propagation of only up and downward
going primary Green’s functions. As coupling does not occur it allows for simple
expressions for forward and inverse propagation of up and down-going wavefields.
If use is made of a two-way formulation of forward and inverse propagation, the
coupling effects as present in the Green’s states need to included explicitly, which
requires the computation of the full Green’s function within the medium under con-
sideration.
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Bayes based parameter estimation

B.1 Introduction

In this thesis extensive use is made of inversion theory to obtain focusing operators,
a near surface velocity model, operator amplitudes and optimally redatumed data.
These steps comprise both linear as well as non-linear inverse theory. Within this
appendix a thorough description is given of the different methods. The base of
the inversion algorithms is given by Bayes’ theorem, which will be discussed first.
From this the so-called MAP estimator can be derived, which leads to a linear
inverse formulation, which can be optimized by a proper choice of probability density
functions. The derived system of normal equations can then be solved efficiently
through Krylov subspace methods of which LSQR is one of the most efficient ones.
For non-linear inversion, one can either linearize locally within the model space,
such that a full non-linear inversion comprises of small linear inversion steps, for
which the previously described methods hold. This works particularly well if we are
not too far from the optimal solutions (not too non-linear, no multiple local optimal
solutions). For very non-linear systems, of which we are not sure how far we are from
the optimum solution, we need to restrict ourselves to global optimization methods
like simulated genetic evolution. The appendix ends with an example of a genetic
algorithm applied to a conventional static problem.

B.2 Bayes’ rule

The Bayesian formalism Duijndam (1988a,b) tends to combine and describe the
various sources of information available, such as various dependent and independent
experiments as well as estimates of both measurement and model errors, in an ele-
gant way.
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Here, the various aspects of Bayesian estimation are reviewed. It gives clear in-
sight how various experiments such as reflection and refraction experiments can be
incorporated. Furthermore it will give a nice recipe for incorporation of various
probability density functions in a clear sense.

The probability that a certain event λ̃ lies within the interval [a, b] can be defined
as,

P (a ≤ λ̃ ≤ b) =
∫ b

a

p(λ)dλ, (B.2.1)

in which p(λ) is the probability density function (pdf) of the n-dimensional random
variable λ ∈ Lnλ with the property,∫

Ln
λ

p(λ)dλ = 1. (B.2.2)

In case of more than one random variable, let’s say two variables λ and γ, we can
define a joint pdf p(λ, γ) from which the marginal pdf’s can be derived through,

p(γ) =
∫
Ln

λ

p(λ, γ)dλ. (B.2.3)

In case of independent variables λ and γ, the joint pdf equals the product of the
marginal pdf’s. The conditional pdf of λ, given the observed value γ is defined as,

p(γ|λ) = p(γ, λ)
p(λ)

. (B.2.4)

With the conditional pdf p(λ|γ) defined alike, Bayes’ theorem can be derived, yield-
ing

p(λ|γ) = p(γ|λ)p(λ)
p(γ)

. (B.2.5)

If we take γ to be our measured data (or one-way traveltimes from the subsequent
subsurface Common Focal Points) and λ the model-parameters we would like to
estimate, then Bayes’ theorem states the probability density of the parameter space
given our measured data and its accuracy and some sort of a priori information we
have on the model parameters. In practical situations it appears almost impossible
to compute p(γ) but since we are interested in evaluating the model space, p(γ) can
be regarded as a constant in our inversion process.

p(λ) resembles the a priori information we have on our model-parameters and de-
scribes possible first guesses and uncertainties or even hard constraints, like velocities
can not be negative. The conditional pdf p(γ|λ) is called the likelihood function.
This function depends on the model which describes the relation between the ran-
dom data variable γ and the unknown parameter vector λ. In our case, the measured
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traveltimes γ = d depend on the subsurface model λ through the non-linear (theo-
retic) relation,

γ =m(λ) + n, (B.2.6)

in which the noise term n resembles both theoretical errors as well as observational
errors.
For a given measured data set γ the likelihood function is determined by the uncer-
tainties and properties of the noise,

p(γ|λ) = pn(n) = pn(d−m(λ)), (B.2.7)

with pn the pdf of the random noise distribution.

Bayes’ theorem is merely a descriptive theorem, providing the basic blocks and
insights of an inversion problem. A nice aspect is that Bayes’ theorem is not re-
stricted to describe probabilities of one set of measurements to one set of variables.
Consider a new experiment with measurements φ, independent from the previous
measurements γ then the joint probability reads,

p(γ, φ) = p(γ)p(φ), (B.2.8)

and the conditional pdf’s for the two experiments,

p(γ|φ) = p(γ), (B.2.9)
p(φ|γ) = p(φ), (B.2.10)

then using the chain rule,

p(φ, γ, λ) = p(φ|γ, λ)p(γ, λ), (B.2.11)
= p(φ|λ)p(γ, λ), (B.2.12)
= p(φ|λ)p(γ|λ)p(λ). (B.2.13)

Thus,

p(λ|γ, φ)p(γ, φ) = p(λ, γ, φ), (B.2.14)

p(λ|γ, φ) =
p(λ, γ, φ)
p(γ)p(φ)

, (B.2.15)

p(λ|γ, φ) =
p(φ|λ)p(γ|λ)p(γ)

p(γ)p(φ)
. (B.2.16)

From Equation B.2.16 it is concluded that independent measurements are easily
incorporated by a chain rule. For m independent experiments, the a posteriori pdf
can be written as

p(λ|γ1, · · · , γm) = p(λ)
∏m

i=1 p(γi|λ)∏m
i=1 p(γi)

. (B.2.17)
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B.3 Characterization of Probability Density functions

The character of randomness of parameters can be described by certain properties
of the probability density functions, such as the expectation, the median and the
covariance of the distribution of events.

Expectation

The expectation or mean of the random variable λ with respect to its pdf p(λ) is
given by (Tarantola, 1987),

λ̄ = E(λ) =
∫
Ln

λ

λp(λ)dλ, (B.3.18)

→ MIN

[∫
Ln

λ

‖λ− λ̄‖22, p(λ)dλ
]
, (B.3.19)

and resembles a minimum L2−norm.

Median

The median of the random variable λ with respect to its pdf p(λ) is given by (Taran-
tola, 1987),

λ̂ = E(λ) =
∫
Ln

λ

λp(λ)dλ, (B.3.20)

→ MIN

[∫
Ln

λ

‖λ− λ̄‖1p(λ)dλ
]
, (B.3.21)

and resembles a minimum L1−norm.

Covariance

The covariance matrix C is defined by its elements (Tarantola, 1987),

Cij = E(λi − λ̄j)(λi − λ̄j) =
∫
Ln

λ

(λi − λ̄j)2p(λ)dλ. (B.3.22)

The diagonal of C contains the variance σ2, of which the square roots are defined
as the standard deviations. It can easily be shown that median, mean, variance and
standard deviations of one element λi are equal to those of the marginal pdf. The
correlation coefficient ρij of variables λi and λj are defined by,

ρij =
Cij
σiσj

, (B.3.23)
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and define a measure to what extent certain variables are correlated or independent.

To formulate an inverse solution using Bayes’ theorem, the user should define a
probability density function, describing the probability a certain stochastic variable
will have a specific value.

B.4 MAP estimator

When the data measured data can be described by,

d = g(m) + n, (B.4.24)

in which d denotes the measurements, g(m) the forward modeling system acting
on the model parameters m and n represents both measurement errors as well as
theoretical errors, then using Bayes’ theorem leads to the following a posteriori
probability density function,

p(m|d) = pn(d− g(m))p(m), (B.4.25)

defining the a posteriori probability density function (pdf) p(m|d) of the model
space m given the measurements d. Properties of the noise are contained in the
likelihood pdf pn. A priori knowledge about the model parameters is contained in the
marginal pdf, p(m). Since we would like to find the most probable model, a practical
solution to the inverse problem would be choosing the maximum of the a posteriori
density function, or Maximum A Posteriori (MAP) estimator. When no a priori
information on the model parameters is taken into account, setting p(m) = 1, the
MAP estimation is equivalent to Maximum Likelihood (ML) estimation; a uniform
a priori distribution is chosen, taken as the state of null information. Properties
on ML and MAP estimation are extensively discussed by Bard (1974). To define
a quantitative solution to the MAP estimator, the probability density function on
both noise, pn(d− g(m)) as well as model parameters, p(m), has to be formulated.

B.4.1 Probability density function

Since Bayesian theorem is only provides a descriptive framework, an explicit choice
of a proper pdf has to made in order to obtain useful expressions applicable for the
inverse problems tackled in this thesis. In nature, random processes are often very
well described by Gaussian distributions,

p(m) =
1

(2π)n/2‖C‖1/2 exp
[
−1
2
(m− m̄)TC−1(m− m̄)

]
, (B.4.26)

which is completely described by the covariance matrix C and the mean value m̄
only, leading to simple mathematical expressions and containing the least informa-
tion as determined by Shannon (1948).
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As a consequence of the Gaussian description by variance and mean only, no knowl-
edge of a scatter measure is used. This makes the Gaussian distribution non-robust.
The need for a robust estimator comes to question when outliers are expected. In ev-
ery day practice normal distributions are expected and a statistician would analyze
the data and remove significant outliers on forehand. Robust estimators estimate
models that are not sensitive to small changes in measurements. Non-robust estima-
tors tend to leave residuals with glanally and locally low amplitudes, thus outliers
have an unwanted effect on the outcome model. Outliers can be expected within
the process of the determination of focusing operators, e.g. local pick errors due to
absence of energy or frustration due to interference of several events are commonly
present. Furthermore, in the process of amplitude determination boundary effects
play a large role. Therefore, we will use when applicable, estimators derived from
the class of type M -estimators.

In general, an estimator m̂ should maximize the likelihood,

m̂ = {m|
∏
p(m) ≥

∏
p(γ), γ ∈ ∂IR}, (B.4.27)

which states that the product of the probability of the components of the estimator
is larger than the product of the probabilities of any other set of elements within
the parameter space. Equivalently one can write, when for instance the Gaussian
distribution of Equation B.4.26 is used,

m̂ = {m|
∑

− ln p(m) ≤
∑

− ln p(γ), γ ∈ ∂IR}, (B.4.28)

transforming the problem into a minimization problem, called the Gaussian esti-
mator. The Gaussian estimator is a member of the family of so called type M
Estimators, which have the more general form,

m̂ = {m|
∑

f(m̂) ≤
∑

f(γ), γ ∈ ∂IR}. (B.4.29)

Note that Equation B.4.27 through Equation B.4.29 assume no interdependency
between parameters. For the more general cases, including correlation between pa-
rameters, the reader is referred to Rey (1983) and Huber (1964). In this thesis we
will consider exponential pdf’s belonging to the group of M -estimators. Although
the Gaussian estimator belongs to the group of M -estimators as well, the Gaussian
is non robust whereas the exponential distribution has more robust properties.

With the statement of Equation B.2.27 that the estimator m̂ fulfills the require-
ment that the product of the probability of the components of the estimator is
larger than the product of the probabilities of any other set of elements within the
parameter space, we can define the objective function as,

F (m) =
∑

fi(mi), (B.4.30)
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Figure B.1: Different types of probability density functions for duo-variate (2 parameter)
distributions. The horizontal axes denote the parameter distribution, the vertical axis the
probability of a certain combination to occur. For all distributions the mean value is (0,0).
Although for correct interpretation the integral of a pdf should be equal to one, the pdf ’s
are scaled to their maximum for comparison reasons. A) Gaussian distribution. B) normal
distribution compared to the Gaussian distribution. C) Cauchy distribution compared to the
Gaussian distribution. D) Hybrid distribution compared to the Gaussian distribution.



214 Bayes based parameter estimation

as defined by equation B.2.29, for which we have to find the minimum in order to
define the most probable set of parameters. Following Huber (2003), Rey (1983)
and Bube and Langan (1997), mathematical feasible objective functions of the form
F (m) =

∑
fi(xi) should obey the following restrictions,

• The objective should be minimum and equal to zero when the estimator equals
zero,

F (0) = 0. (B.4.31)

• The minimum should be absolute,

F (m) > 0, for m �= 0. (B.4.32)

• The objective function should be even,

F (−m) = F (m). (B.4.33)

• F (m) → ∞ as m→ ∞.

• F and ∂F
∂m should exist and be continuous.

• ∂2F
∂m2 should exist, be finite and positive definite, or in other words be strictly
convex.

In literature various robust estimators are described, but do not obey to all require-
ments. A good estimator, which does obey the requirements, which has the conve-
nient properties of the least squares estimator derived from a Gaussian distribution
and which has the robustness of the exponential distribution, is the hybrid norm
estimator as described in Bube and Langan (1997) and derived from the following
distribution,

p(m) =
∏

exp(−fi(mi)), (B.4.34)

= exp(−
∑

fi(mi)), (B.4.35)

fi(mi) =
√
1 + (

mi

σi
)2 − 1. (B.4.36)

Then the estimator becomes,

F (m) =
∑

(
√
1 + (

mi

σi
)2 − 1), (B.4.37)

which behaves like a Gaussian distribution for small m and as an exponential dis-
tribution for large m,

fi(mi − m̂i) ≈
{

1
2
(mi−m̂i)

2

σ2
i

for ‖(mi − m̂i)‖ is small
‖(mi−m̂i)‖

σi
for ‖(mi − m̂i)‖ is large

. (B.4.38)
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This type of objective functions effectively filter the data from bad, unexplained
measurements. When applicable the hybrid norm probability density function will
be used, denoted as

ph = constant× exp(−
∑

fi(mi − m̂i)), (B.4.39)

or the Gaussian distribution, denoted as

pg = constant× exp(−
∑

σ−1
i (mi − m̂i)2), (B.4.40)

in which σi are the autocorrelation coefficients. Note that for both distributions,
no correlation between measurements is assumed. One could choose to use the def-
inition for the Gaussian of Equation B.4.26 which does include crosscorrelations.
However, in practice very expensive noise tests need to be carried out to fill the
covariance matrices completely and one would suffice only predicting the autocorre-
lation coefficients.

In Figure B.1 four possible possible probability density functions for duo-variate
distributions are depicted for which the described objective functions can be de-
fined. Figure B.1A displays the non-robust Gaussian pdf, which is displayed for
comparison in the other three figures as well. Figure B.1B displays the normal dis-
tribution, which clearly shows a discontinuous behavior of the derivative around the
expected value, which makes it a non-feasible objective function. In Figure B.1C the
hybrid-norm distribution is displayed and in Figure B.1D the Cauchy distribution,
which is another robust distribution found extensively in literature.

B.5 Linear inverse formulation

Now that the probability density functions are defined we can set up the inversion
problem as given by Equation B.4.25. For now we assume a linear forward model,
thus,

d = Gm+ n, (B.5.41)

in which the linear forward problem, g(m) is written as a linear operator G acting
on the unknown set of parametersm. Non-linear optimization is subject to the next
section. If for both noise as well model parameters, the Gaussian pdf is taken, then
the a posteriori pdf would be,

p(m|d) = pg(d−Gm)pg(m − m̂), (B.5.42)

with m̂ the a priori model values. Maximizing the a posteriori pdf is equivalent to
minimizing the negative logarithm, taking into account Equation B.4.40,

F = − ln pg(d−Gm)pg(m− m̂) (B.5.43)
= (d−Gm)TC−1

n (d−Gm) + (m̂ −m)TC−1
m (m̂−m), (B.5.44)
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with the definition of Equation B.4.40,Cn andCm are diagonal matrices, containing
the inverse of the autocorrelation of the noise and a priori parameters respectively.
Since the objective function F has a quadratic form it will contain one root only.
Minimizing the objective function F can be done by finding its root,

∂F

∂m
= 0 (B.5.45)

= −2GTC−1
n d+ 2GTC−1

n Gm− 2C−1
m m̂+ 2C−1

m m, (B.5.46)

and the parameter estimate under Gaussian assumptions is found to be,

m = (GTC−1
n G+C−1

m )−1(GTC−1
n d+C

−1
m m̂). (B.5.47)

Instead of taking Gaussian distributions, the probability density function of Equation
B.4.39 for theM -estimator of Equation B.4.37 is taken for the noise distribution and
a Gaussian distribution for the parameter distribution,

p(m|d) = ph(d−Gm)pg(m − m̂). (B.5.48)

Maximizing the a posteriori pdf is again equivalent to minimizing the negative log-
arithm, taking into account Equation B.4.39,

F = − ln ph(d−Gm)pg(m− m̂), (B.5.49)
= f(d−Gm) + (m̂−m)TC−1

m (m̂−m). (B.5.50)

Computing the gradient is not as straightforward as could be done when a Gaussian
distribution is used. For this purpose the influence function is introduced,

g(r) =
∂f(r)
∂r

1
r
. (B.5.51)

Then with r = d−Gm,

∂f(ri)
∂mj

=
∂f(ri)
∂ri

∂ri
∂mj

, (B.5.52)

= Gijg(ri)ri. (B.5.53)

Thus obtaining

∂F

∂m
= 0, (B.5.54)

= GTW(d−Gm)− 2C−1
m m̂+ 2C−1

m m, (B.5.55)

in whichW is a diagonal matrix with Wii = g(ri). When the estimator of Equation
B.4.37 is adopted then the weights read,

Wii =
1√

1 + r2i
σ2

i

, (B.5.56)

r = d−Gm, (B.5.57)
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and the estimated parameters are defined by,

m = −(GTWG+C−1
m )−1(GTWd+C−1

m m̂), (B.5.58)

withW as defined by Equation B.5.56. When comparing the latter with the Gaus-
sian model estimate with the result of theM -estimator their results are comparable:
the model dependent weighting matrix W of the M -estimator replaces the constant
covariance matrix C of the Gaussian estimator. For the remainder we will define
the objective function as,

F = eTe, (B.5.59)

e =



W

1
2
1 (dn −G1m)

...

W
1
2
n (dn −Gnm)


 , (B.5.60)

in which several experiments are combined through the Bayes derived chain rule
(see Section B.1). If Gaussian distributions are used, this expression leads directly
through Equation B.5.44. If the hybrid distribution distribution is used, the formu-
lation is derived by recognizing the similarity between Equation B.5.47 and Equation
B.5.58, with the notion that the weights,W, are depending on the parameters, m.
The objective function derived from the a posteriori pdf of Equation B.5.47 would
lead for instance to,

F = eTe, (B.5.61)

e =

[
W

1
2 (dn −G1m)

C− 1
2

m (m̂ − Inm)

]
. (B.5.62)

It should be noted that the objective function of Equation B.5.50 is non-linear since
the weighting matrix W depends on the parameters. To solve this problem, itera-
tively reweighted least-squares are used: we start of with an initial weighting matrix,
defined by Cn and compute the solution for the obtained least squares problem.
Next, the weights are recomputed for the current parameter set and the parameters
are recomputed with the newly defined least squares problem. This procedure is fur-
ther iterated until a sufficiently small data residual is obtained. The actual solution
to the least-squares step is discussed in the next section.

B.5.1 Comparison of performance between hybrid norm and Gaussian
norm

To demonstrate the effect of reweighting the next simple experiment is considered.
A random, linear forward operator A was created, mapping a parameter vector m,

m = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T , (B.5.63)
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Figure B.2: A random, linear forward operator A, maps A) parameter vector m to B) a
data-set. The 4 datasets in B) are realizations of respectively (from top to bottom) the exact
parameters, the exact parameters with noise, parameters estimated by using a Gaussian
norm and parameters estimated using a hybrid norm. C) The evolution of the weighting
matrix as occurring in the hybrid norm formulation.

into 100 data-realizations, contained in vector d, of which the amplitudes are dis-
played in the top row of Figure B.2B. Next, 5 percent noise was added and an
extra, extreme error on measurements 11 to 20, displayed in the second row of Fig-
ure B.2B. The least-squares solution to this problem, in finding the parameters, is
depicted by circles in Figure B.2A. The parameters are severely deteriorated from
the true solution. By remodeling the data from the least-squares solution, shown
by the third row of Figure B.2B., the weights can be constructed for the first it-
eration of the reweighted scheme. Since least-squares assumes the data to have a
normal distribution, the excessive errors of samples 11 through 20 are smeared over
all data-realizations. Thus, the weights of the first iteration, denoted by the dots
in Figure B.2C. already significantly suppress the mentioned data-points. Further
iterating leads to the solution denoted by the stars in Figure B.2C. The remodeled
data is shown by the fourth row of Figure B.2B. The data is almost fully recon-
structed. Moreover, the estimated parameters denoted by the stars in Figure B.2A
are close to the correct values, whereas the Gaussian solution renders large errors
in the estimated parameters. This example clearly demonstrates the fact that the
Gaussian estimator is sensitive to outliers whereas the hybrid estimator tends to
take the outliers reasonably well into account. When the noise is assumed to be
uncorrelated, the covariance matrix of the noise C can be replaced by the following
diagonal matrix,

Cij =

{
0, for i �= j
σ2i for i = j

. (B.5.64)
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B.5.2 Krylov subspace methods for linear system inversion

To invert the system of, for instance, Equation B.2.57,

m = −(GTWG+Cm)−1(GTWd+Cmm̂), (B.5.65)

directly could be a costly procedure when we have to deal with large systems. In-
stead of computing the normal equations directly and invert the system of equations
by means of for instant Gauss-Seidel iterations or LU-decomposition (Golub and
van Loan, 1996), methods exist that try to compute the parameter vector in a
least-squares manner implicitly. Such methods are called Krylov-subspace methods
(Golub and van Loan, 1996; Strang, 1988). These iterative methods exploit the
solution space efficiently such that each iteration updates the parameter vector in
a direction perpendicular to the error vector of the current iteration. The majority
of these methods are the so called Conjugate Gradient methods. LSQR, developed
by Paige and Saunders (1982), is one of such methods as well. Within tomography
problems, LSQR is widely accepted as the best appropriate method.

Krylov subspace methods do not compute the full normal equations, they only
compute once or twice a vector product with the supplied system matrix. This
is extremely efficient when one has to deal with sparse matrices. Furthermore, the
number of iterations never exceeds the number of parameters (after N iterations in
search of N parameters, N different orthogonal directions have been exploited, thus
spanning the complete parameter space), and the first iterations tend to solve for
the largest Eigenvalues first.

To solve the system b = Ax the complete algorithm is defined by,

• Initialization of the system,

β1u1 = b, (B.5.66)
α1v1 = ATu1, (B.5.67)
w1 = v1, (B.5.68)
x0 = 0, (B.5.69)
φ̄1 = β1, (B.5.70)
ρ̄1 = α1. (B.5.71)

• Continuation of a bidiagonalization procedure,

βi+ 1ui+1 = Avi − αiui, (B.5.72)
αi+1vi+1 = ATui+1 − βi+1vi. (B.5.73)
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• Construction and application of the next orthogonal transformation,

ρi =
√
ρ̂2i + β

2
i+1, (B.5.74)

ci =
ρ̂i
ρi
, (B.5.75)

si =
βi+1
ρi
, (B.5.76)

χi+1 = siαi+1, (B.5.77)
ρ̂i+1 = −ciαi+1, (B.5.78)

φi = ciφ̂i, (B.5.79)

φ̂i+1 = siφ̂i, (B.5.80)

• updating of the parameter vectors,

xi = xi−1 +
φi
ρi
wi, (B.5.81)

wi+1 = vi+1 −
χi+1
ρi
wi. (B.5.82)

• Returning to the next bidiagonalization step (Equation B.2.70) and following
steps, increasing the iteration number i.

After k iterations the algorithm has produced a bidiagonal matrix S,

S =




α1 0 · · ·

β1 α2
. . .

0 β2 α3
. . .

...
. . . . . . . . .

αk−1

βk−1 αk



, (B.5.83)

which is close to the diagonal matrix containing the Ritz values of A. Furthermore,
two orthogonal matrices, U and V are obtained, for which the following holds,

A = USV, (B.5.84)
= UÚΛV́V, (B.5.85)

in which Λ is a diagonal matrix containing the Ritz values and UÚ containing the
Ritz vectors, when A is square. Since the Ritz pairs are close to the k largest Eigen-
values, one could suffice to only compute a few iterations, thus enforcing numerical
stabilization. Moreover, for the largest Ritz values, one could then compute the
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resolution and covariance of the parameters. In this research we are not directly
interested in those values apart from determining a posteriori properties of our sys-
tem. However, Cox (2004) uses the intermediate properties during the iterative
non-linear optimization to reparameterize the velocity model in a data driven man-
ner. For a more elaborate discussion on the covariances and residuals of the data
and parameters the reader is referred to Cox (2004).

B.6 Non-linear optimization

Within inversion procedures, the objective is to minimize1 the objective function;
a set of parameters, describing the modeling of our experiment, needs to be found
which minimizes the weighted norm of the difference between the measured data and
the modeled data, a priori information on the parameters and estimated parameters.
Through the Bayesian approach statistical properties of measuring and modeling are
incorporated.

Non-linear inversion is used in situations where a priori no information on the min-
ima, curvature and gradient of the objective function is available. Various procedures
exist in finding minima of non-linear objective functions. The most straight forward
method would be evaluating the objective function at every point within the feasi-
ble region. In practice this method is not favorable. In Chapter 4 use was made
of a genetic algorithm to find a set of focusing operators through the principle of
data matching. The genetic algorithm is based on the simulation of the evolution of
populations of possible models. Genetic algorithms require a large amount of model
evaluations. If the forward modeling is expensive, genetic algorithms are in general
not feasible. Instead of using genetic algorithms, one can also use local optimization
algorithms. These type of algorithms iterate through the model space by linearizing
the non-linear objective function around the current location in model space for each
iteration. Linearized optimization methods find a minimum far more efficient but a
risk remains to get trapped in a local minimum. Opposite to the problem of oper-
ator determination, traveltime inversion and amplitude determination, as described
in Chapter 5 and Chapter 6, are computationally far more expensive, which makes
the genetic algorithm unfeasible. Therefor we are forced to adopt locally linearized
non-linear inversion, based on Bayes’ theorem.

1In this description of non-linear optimization it is assumed that a minimum objective function
value is sought. But the whole process works for a maximization problem as well.
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B.6.1 Local linearization

In this section local optimization algorithms (Sorensen, 1980; Scales, 1985) will be
discussed. In the previous section the objective function was defined as,

F (m) =
1
2
eTe, (B.6.86)

=
N∑
l=1

el(m)el(m), (B.6.87)

in which, for the non-linear case, we take,

e = L (d− g(m)) , (B.6.88)

with L some sort of weighting function. If the objective function would be minimized
in an iterative fashion, then at some iteration k, the update of the parameter vector
will be defined as,

mk+1 =mk − αpk, (B.6.89)

in which pk is the update direction and αk the step length2. Then, a Taylor expan-
sion of the objective function reads,

Fk+1 = F (mk − αkpk), (B.6.90)
≈ F (mk)− αkgTk (mk)pk + α2kpkGk(mk)pk. (B.6.91)

At a stationary point, the gradient of the objective function with respect to the
model parameters should be zero. Hence, the following should hold,

∂F (mk − αkpk)
∂αkpi,k

= 0, (B.6.92)

gk(mk)−Gk(mk)αkpk = 0. (B.6.93)
(B.6.94)

and leads to the parameter update,

αkpk = G−1
k gk, (B.6.95)

in which gk is the gradient, or vector with first derivatives of F with respect to mk

and Gk, the Hessian, or matrix with second derivatives of F with respect to m. In
the special situation of the weighted least squares objective function, the following

2In this and following section ·k refers to an iteration number and not to a subvector or subele-
ment
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holds,

gi,k =
∂F

∂mi,k
, (B.6.96)

=
∑

el
∂el
∂mi,k

, (B.6.97)

gk = JTk e. (B.6.98)

Gij,k =
∂2F

∂mi,k∂mj,k
, (B.6.99)

=
∑ ∂el

∂mi,k

∂el
∂mj,k

+ el
∂2el

∂mi,k∂mj,k
, (B.6.100)

Gk = JTk Jk +He, (B.6.101)

in which J is the Jacobian and the term JTJ will be called pseudo-Hessian. Hence
the iterative procedure reduces to,

mk+1 = mk + αkpk, (B.6.102)

pk =
(
JTk Jk +He

)−1
JTk ek. (B.6.103)

When derivative information is not directly available, the Jacobian and Hessian
should be computed by finite differencing. Since this can become computationally
expensive, often He is neglected when the initial model is not too far from the min-
imum of the objective function. Otherwise the full Hessian should be approximated
in a smart way, which is subject to extensive research going beyond the scope of this
thesis.

Note that in case of a linear set of equations,

d = Gm+ n, (B.6.104)

we could write for the gradient in case of a Gaussian estimator (Equation B.5.47),

gk = −2GTC−1
n (d−Gm)− 2C−1

m m̂+ 2C−1
m m, (B.6.105)

in which the error for the current iteration is defined as,

F = eTe, (B.6.106)

e =

[
C− 1

2
n (d−Gm)

C− 1
2

m (m̂− Im)

]
. (B.6.107)

For the Hessian we can write

Gk = 2GTC−1
n G+ 2C−1

m . (B.6.108)
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This would then lead to the parameter set according to Equation B.6.103,

αkpk =mk −
(
GTC−1

n G+C−1
m

)−1 (
GTC−1

n d+C
−1
m m̂

)
. (B.6.109)

If this expression for the update is inserted in Equation B.2.46, it is concluded that a
linear system would lead to a single iteration solution regardless of the chosen initial
parameter vector. In case of an M-estimator, the gradient would read (Equation
B.4.37)

gk = −2GTWk(d−Gmk)− 2C−1
m m̂+ 2C−1

m mk. (B.6.110)

As the weighting matrixW depends on the current parameter distribution, the full
Hessian is not straightforwardly computed and we would suffice by neglecting H,
which would lead to a similar parameter update,

αkpk =mk −
(
GTWkG+C−1

m

)−1 (
GTWkd+C−1

m m̂
)
. (B.6.111)

However, since Wk depends on the parameter set of the current iteration, this solu-
tion would indeed lead to just a parameter update. Recomputing the error would
lead to an update of the weighting matrix W and we would again need to com-
pute the updated gradient and Hessian, leading to a new parameter update. Note,
though that only W needs to computed and the gradient and Hessian are computed
by matrix products of W with a stationary system. What was called iteratively
reweigthing within the previous section thus fully obeys to local linearization.

B.6.2 Error and resolution

The weight functions describe the uncertainties on the data/noise and the a priori
uncertainties on the parameters. The objective of the inversion procedure is to esti-
mate the parameters with a higher certainty than the a priori parameters. Thus an
inversion procedure should be complemented with a posterior analysis of the uncer-
tainties of the result.

When the forward equation can be linearized around the true parameter set, af-
ter sufficient iterations of the non-linear inversion scheme, we end up with,

g(m) = g(m∞) +H∞(m −m∞), (B.6.112)

in whichm is the true (unknown) parameter vector, m∞ the parameter vector after
the final update and H∞ the derivative operator after the final update,

Hij,∞ =
∂gi(m∞)
∂mj,∞

. (B.6.113)

Then the a posteriori pdf of the parameter vector reads

F = constant× exp (−1
2
(m −m∞)C−1

P (m−m∞)), (B.6.114)
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in which the a posteriori weight operator CP can be shown to read,

CP =
[
HT

∞C
−1
n H∞ +C−1

m

]−1
. (B.6.115)

The square roots of the diagonal elements of the posterior covariance operator define
the posterior variances and can be read as error bars on the estimated parameters.
The off-diagonal elements describe to what extent parameters are correlated. By
rewriting the off-diagonal elements to

ρij =
Cij√

(Cii)
√
(Cjj)

, (B.6.116)

parameters mi and mj are said to be correlated when |ρij | is close to one. This
means that the parameters are not independently solved, only combinations are. If
so, the posterior covariance operator is singular and the inverse depends on on the a
priori information given on the parameters (making the inverse non-singular). The
full operator over the model-space defines the ”ellipsoid of error” of which iso-density
lines correspond to certain probabilities.

The inverse of the covariance operator to exist, is closely related to the resolution of
the system. The resolution describes a linear relation between the true parameters
and the estimated parameters, for which we can write by linearizing around m̂

m̂−mp = R(m−mp), (B.6.117)

in which
R =

[
HT

∞C
−1
n H∞ +C−1

m

]−1
HT

∞C
−1
n H∞, (B.6.118)

which can be rewritten to
R = I−CPC−1

m . (B.6.119)

When the resolution operator equals to the identity operator, the model is perfectly
resolved. Gilbert (1968) state that the resolution operator acts as a filter to the true
model resulting in the a posteriori model; we only see a filtered version of the real
world. By taking the trace of the equation we can analyze to which extent the result
is defined by the data and the a priori information, since,

• TRACE(I) = total number of parameters

• TRACE(R) = parameters determined by the data

• TRACE(CpC−1
m ) = parameters determined by a priori information

B.6.3 Scaling

To solve the normal equations of equations, the inverse of JTJ, whether directly or
through iterative schemes such as LSQR or Conjugate Gradients. For the inverse of
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JTJ to exist, JTJ should be non-singular, or the ratio of the largest eigenvalue and
the smallest eigenvalue should be close to one. For the system to be non-singular it
has to be well defined and well conditioned.

To start, it is important to realize the meaning of an Eigenvalue decomposition
of the system-matrix. As already mentioned by the Tarantola (1987), for covariance
operators an Eigenvalue analysis is in principle meaningless. The decomposition is
in mathematical sense only valid for automorphisms, operators mapping a space in
itself. Covariance operators map dual spaces. If for instance the following simple
Eigen value problem is considered[

σ21 0
0 σ22

]
φ = mφ, (B.6.120)

then the Eigenvalue has either the physical dimension of σ21 or the physical dimen-
sion of σ22 which is a discrepancy.

If we do not consider the physical dimensions, the results numerically obtained will
not be intrinsic, they depend on the units chosen. According to Equation B.6.103
the parameter update within non-linear optimization is given by

H∆x = JT∆t, (B.6.121)

in which ∆x resembles the parameter update, H the full Hessian, J the Jacobian
and ∆t the measurement error (including the a priori vector). The conditioning of
the normal equations depends on the Eigenvalue decomposition of the Hessian H,

H = UΛUT , (B.6.122)

for which UTU = I. Thus, the Eigenvalue decomposition decomposes the operator
in its principle axis, of which the Eigenvalues define the length of the principle
axes. The posterior probability density function is given by Equation B.6.114, of
which the curvature is defined by the inverse of the Hessian, H−1 = UΛ−1UT . For
relative small Eigenvalues, the principle axis of the a posteriori pdf has an inverse
proportional length. Practically speaking, this means that along these directions,
the parameters are poorly resolved. When a parameter scaling (for instance meters
to kilometers) is considered,

∆x̃ = D∆x, (B.6.123)

the a posteriori pdf can be rewritten as

exp∆xDUΛ−1UTD∆x, (B.6.124)

exp∆x
[
USVTDTDVSUT

]−1
∆x, (B.6.125)

in which USVT is the singular value decomposition of the Jacobian. A parameter
scaling alters the direction of the principle axes and their lengths. In general numer-
ical ill-conditioning can occur when large order differences exist in the used units for



B.6 Non-linear optimization 227

the different parameters.

To overcome numerical instabilities scaling is necessary. This can be achieved by ex-
pressing the parameters in units that correspond to the range of interest, by taking
a priori standard deviations as units or by statistically normalizing the parameters
by D = C

1
2
x . In this thesis a very practical scaling is introduced, which effectively

transforms the main diagonal of the Hessian to unity.

Since the eigenvalues are determined by the units of the parameters, one could
define a scaling operator that assures the diagonal of JTJ to become close to unity,

S =




1∑
N
i

∂ti
∂m1

. . .
1∑

N
i

∂ti
∂mj

. . .
1∑N

i
∂ti

∂mM



. (B.6.126)

The scaling matrix S is then used to scale the columns of J as follows,

Ĵ = JS. (B.6.127)

then elements of ĴT Ĵ can be written as follows,

[
ĴT Ĵ

]
kl

=

∑N
i

∂ti
∂mk

∂ti
∂ml√∑N

i

(
∂ti
∂mk

)2√∑N
i

(
∂ti
∂mk

)2 , (B.6.128)

=
jTk jl
|jk||jl|

, (B.6.129)

= cosφ, 0 ≤ φ ≤ 1
2
π, (B.6.130)

resulting in diagonal terms equal to one. The scaled system to be solved becomes,(
ĴT Ĵ

)
∆m̂ = ĴTy, (B.6.131)(

[JS]T [JS]
)
∆m̂ = [JS]Ty, (B.6.132)(

STJTJS
)
∆m̂ = STJTy, (B.6.133)(

JTJS
)
∆m̂ = JTy, (B.6.134)
S∆m̂ = ∆m. (B.6.135)

Secondly, it is important that under determined parameters are damped by stabi-
lization of the operator. The damping of the system is defined by including a priori
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information, such as defining parameter variances, or Tikhonov regularization. The
damping should be consistent with the units of the parameters. To properly account
for the parameter scaling, a damping factor is defined for each set of parameters with
identical units. We state that a certain amount of parameters is under determined.
When a parameter is well determined, it means that its equivalent column in the
Jacobian has relatively large values compared to an under determined parameter,
i.e. it has a significant contribution to the objective function. Therefore, for each
set of parameters, the mean and standard deviation of the inverse scaling vector
S are computed. Then the parameter sets will be stabilized by the value found at
mean− α× standarddeviation.

B.6.4 Simulated evolution

Genetic algorithms or simulated evolution methods are a subset of so called Monte
Carlo methods (Gallagher et al., 1991; Robert and Casella, 2005). Monte Carlo
methods are based on random search techniques through parameter space. Within
these random search techniques it is possible to optimize the search strategy and
thus obtaining more efficient algorithms. Simulated evolution is one of these more
sophisticated search methods and is based on evolutionary processes as observed in
nature and was used by (Wilson et al., 1994) to determine residual statics. Another
more sophisticated method is the Heat Bath Algorithm, which is based on cooling
down processes and recrystallization of certain elements contained within the heated
fluid, also referred to as simulated annealing (Cerny, 1985).

In this thesis the simulated evolution is adopted. The method is based on the evo-
lution of populations. Within each iteration (in terms of evolution of populations,
a generation of the population), during the population selection phase, population
members are selected according to a certain fitness, to form a pair of parents. Such
a pair of parents will produce a pair of children during the crossover phase (in terms
of evolution, genes of both parents are mixed). Finally, at random some children or
parents have a change to mutate in the mutation phase. This last phase keeps some
randomness in the population pool and prevents the algorithm to converge prema-
turely. Next the different steps will be discussed individually an in more detail.

Start off

At the start of the algorithm a population will be created containing a fixed number
N of members. Members of the population are characterized by a chromosome. This
chromosome contains a set of genes. Each gene is a representation of the parameters
we are looking for. For instance, in residual statics a chromosome contains a number
of genes equal to the number of independent static components; number of source
statics, receiver statics, residual move-out components, etc. Thus one specific gene
equals a specific residual static component. Initially all the chromosomes are created
randomly within the expected parameter range.
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Population generation

In the next step a new population is generated from the initial population. For each
member the fitness is calculated. The fitness is based on the function we would like
to optimize (the objective function). For instance, we could choose to optimize the
stack power, then the fitness of each member is equal to the stack power its genes
will create. Several methods exist to create the new population set,

• Fitness proportionate selection
From the fitnesses, Fn(xn), a probability distribution is created,

Pn =
Fn(xn)∑N
i=1 Fi(xi)

, (B.6.136)

in which Fn is the fitness of member n characterized by the chromosome xn.
Next, N random numbers are drawn from a uniform distribution. These num-
bers are used to select N members for the new population by using the created
probability distribution. In this way members with a higher fitness are in more
favor to be selected and duplicated than members with a low fit. As this is a
random process, members with a low fitness still make a change to pass. Note
that in this process some members will be selected more than once and some
members will, thus, not be selected at all.

• Rank selection
Instead of creating a distribution from the fitnesses, the fitnesses are used to
rank the members of the population. The member with the highest fitness
is ranked number one, the lowest is ranked number N . From these rankings
again a probability distribution can be created,

Pn =
f(Rn)∑N
i=1 f(Ri)

, (B.6.137)

in which f(Rn) is a function depending on the ranking Rn of member n.
Creating a new population is again performed by drawing random numbers
and using the distribution of Equation B.6.136. Rank selection depends on
the functional f(·) and has the effect that the difference between high ranked
members is exaggerated and the difference between the highest ranked and
lowest ranked member is made less stronger. This means that relatively low
ranked members all make an almost equal and larger chance of being selected.

• Tournament selection
From the current population N pairs will be selected. The two members
forming one pair are randomly drawn from the population. Each of the two
members x1 and x2 is assigned a probability,

Pi =
Fi(xi)

F1(x1) + F2(x2)
, i ∈ {1, 2}. (B.6.138)
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By drawing a random number between 1 and 0, one of the two members is
selected for the new population, according to its probability. This procedure
has the effect that low ranked members have a smaller chance of being selected
for the next generation.

Crossover

From the newly generated population, randomly N/2 pairs of parents are selected.
Each pair will create two children through crossover. Again a random number is
drawn to decide at which point the two parent chromosomes will be cut in two, thus
creating two heads and to tails. Child 1 will be created from tail of parent 1 and
head of parent 2 and child 2 will be created from the tail of parent 2 and the head of
parent 1. Instead of single crossover, also multiple crossovers can be made. Then for
each gene position randomly a 0 or 1 will be drawn. At 1, the genes of both parents
will be interchanged, at 0 genes will stay intact. Both methods are graphically
explained in Figure B.3. After crossover, the fitnesses of both children are computed.
Some algorithms (Wilson et al., 1994) select the two members with the highest
fitness, within the set of the two parents and the two children, to remain within the
population, other algorithms replace the parents by their children (McCormack et
al., 1999).

Mutation

Within the last step, all members are subject to mutation with a certain probability.
If a member is selected for mutation (generally a chance between 1 and 5 percent), a
few random genes are mutated with a value randomly taken from the set of feasible
values within the defined parameter space. Again, algorithms do differ to some ex-
tend within literature. In Wilson et al. (1994) for instance, offspring is either created
by crossover or by mutation. After crossover the two strongest members are passed
through to the next generation out of the set of 4 (2 parents and 2 children), while
when its decided to mutate the two parents, crossover will not take place and the
mutated parents are passed through to the next generation.

After the mutation phase, the next generation is passed through to the population
generation phase. For genetic algorithms, still no sound mathematic fundamentals
exists which proves its convergence. Therefore, a lot of slightly differing algorithms
exist based on intuitive improvements. One could for instance skip the phase of
population generation and select parents in the crossover phase directly by using
one of the selection criteria of the original population generation phase.

A more rigorous alternative was proposed by Coyne and Paton (1994). Instead of
considering one population, several subpopulations are considered. Each population
exploits part of model-space through the iteration scheme as described above. Every
now and then randomly members of subpopulations are exchanged. Each group has
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Figure B.3: Children can be generated in two ways. 1) By choosing randomly a single
crossover location. 2) Through multi crossover for each chromosome it is decided randomly
whether it should crossover or not.

a tendency toward a different (local) optimum and the algorithm is prevented from
stalling due to the random interaction.

B.6.5 Residual statics example

To determine residual statics, Ronen and Claerbout (1985) proposed to optimize the
stack power. Instead of finding optimized traveltime picks within consecutive CMP
gathers, residual traveltime shifts are defined as those shifts that give the highest
power within the stack, which they proved by considering the Cauchy Schwarz in-
equality. Although residual surface consistent statics are posed as a linear problem,
the actual implementation by defining the optimal shift through picking of maxima
within crosscorrelation panels turns the problem into a non-linear one; especially
when one has to deal with large statics, cycle skips are easily introduced within the
crosscorrelations, leading to local optima. To overcome the influence of cycle skips,
Rothman (1986) used a simulating annealing algorithm to determine the optimal
static shifts. Wilson et al. (1994) and Stork and Clayton (1991) further enhanced
the use of non-linear global search algorithms to determine optimal residual statics.
The described genetic algorithm of the previous section is used to demonstrate the
search of residual statics, as implemented by Wilson et al. (1994). For this purpose
the following objective function is optimized,

F (s, r,g) =
∑
h

∑
t

[∑
i

P̂ (xSi , x
R
h−i, t+ si + rh−i + gh)

]
[∑

i

P̂ (xSi , x
R
h+1−i, t+ si + rh+1−i)

]
,

(B.6.139)

in which s is a vector containing the individual source statics si for surface location
i, r is a vector containing the individual receiver statics rj for surface location j
and g is a vector containing the structural time shifts gh for CMP location h =
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Figure B.4: Flow chart of the genetic algorithm.
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i + j. The structural parameters g define time lags that optimize the coherence
between two CMP gathers. To demonstrate the genetic algorithm, data was modeled
with 20% noise, over a set a horizontal reflectors for which the optimal normal
move-out was applied according to the known synthetic model. Surface consistent
random source and receiver statics were added to the data. Since the reflectors are
horizontally layered, the structural parameters can be set to zero and the objective
can be rewritten in terms of taking the autocorrelation power of the CMP gathers
instead of the crosscorrelation power,

F (s, r) =
∑
h

∑
t

[∑
i

P̂ (xSi , x
R
h−i, t+ si + rh−i)

]2
, (B.6.140)

which reduces the problem into optimizing the stack power. In the example, 50
shot-experiments were used, for which the signal was recorded in the same set of 50
receivers. For each shot and receiver an individual static shift is present. There-
fore, the total number of static parameters equals to 100. Within the optimization
scheme a total of 200 members was used to evolve into a set of best fitting static
time-shifts. Figure B.5 shows the stack results after different amounts of iterations
during the optimization scheme. Although hardly any signal can be recognized, after
termination the resulting stack images the reflectors perfectly. The performance of
the scheme is displayed in Figure B.6, together with the original source and receiver
statics and the final inversion result. Note, that a bulk shift within the source or re-
ceiver static does not have any influence on the resulting stack power. As was stated
in Chapter 2, static corrections must be kept to a minimum and therefore, within
the optimization scheme, after each iteration, the resulting parameter families are
reduced by their average.

B.7 Sparse operators

When inverting measurements for a desired set of parameters, a linear forward sys-
tem evaluation needs to be performed a large number of times. When using the
LSQR algorithm, a forward system evaluation is carried out during the bidiagonal-
ization phase, for each iteration as given by Equation B.2.70 and Equation B.2.70.
In case of non-linear optimization, the linear operator is replaced by the Jacobian,
as given by Equation B.3.101 when the non-linear problem is linearized. Otherwise,
the computation of fitness requires a forward evaluation as outlined for instance by
the statics example of Section B.4. Quite often the forward operator can become
very large. For instance, a linear forward operation, involving 500 shot-locations
with each each 500 receiver-locations, which are related to 1000 independent vari-
ables results in a system having 500× 500× 1000 = 250000000 entries and at least
the same number of floating point operations for each forward evaluations. When
the number of iterations becomes large and when for instance multiple frequencies
should be involved, the number of operations can even become at least an order of
magnitude higher.
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However, quite often for subsets of the measurements only a subset of the parameters
is involved and the system becomes sparse, meaning a large number of the entries of
the forward operator equals to zero and associated floating point operators do not
need to be evaluated.

By storing the non-zero elements of the forward operator efficiently, a large ad-
vantage is created when evaluating the forward operations. Figure B.7. displays
schematically the storage scheme of a sparse operator, of which the numerical im-
plementation can be found in Press et al. (1992). The sparse operator is represented
by two column-vectors, the first one containing all diagonal elements and nonzero
elements and the second one containing all indices to the diagonal and nonzero ele-
ments. The first N elements of the data vector contain the diagonal elements of the
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M ×N , operator. The next M −N elements equal zero. The equivalent elements
within the index-vector point to the first location of the first non-zero element for
each row in the data-vector. As such it is easy to keep track of all elements and to
evaluate each operation that resembles,

f = Ab, (B.7.141)

in which A resembles the M ×N operator, b the N × 1 parameter-vector and f the
M × 1 data-vector.
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Summary

Estimation and removal of complex near surface effects
in seismic measurements

Especially on land, near surface inhomogeneities tend to obscure the final quality
of a seismic image. Almost all processes that are needed to obtain this image are
affected by these near surface inhomogeneities. The commonly used procedures to
account for these effects are known under the name ’static corrections’, or in short
’statics’. Their aim is to ”Determine the reflection arrival times which would have
been observed if all measurements had been made on a (usually) flat datum with
no weathering or low velocity material present.” However, near surface anomalies
do not only manifest themselves in time shifts but also in other effects, such as fo-
cusing and defocussing, amplitude anomalies etc. Therefore, in this thesis a method
is developed to determine the recorded reflection energy which would have been ob-
served if all measurements had been made on a datum without the influence of the
weathering material present.

The commonly used family of ’statics’ methods correct the data by applying cor-
rections which solely depend on the surface locations of the sources and receivers,
irrespective of offset and recording time. A detailed comparison shows that applying
static corrections comprises further imaging by affecting migration velocities and in-
troducing false structure, whereas full wavefield redatuming does not influence the
migration velocities. However, to be able to use multi-trace wavefield redatuming,
knowledge is required on the propagation characteristics of the near surface.

The determination of the propagation characteristics through the near surface can
be accomplished through the Common Focus Point technology, which can be di-
rectly derived from the coupled wave equations. The two methodologies that arise
from the Common Focus Point concept, operator updating based on the principle
of equal traveltime and Fermat modeling, together form a recipe to derive operators
containing these near surface characteristics. Using this recipe, operators are found
which can be used to redatum the data. As the process is fully data-driven, resolu-
tion is not restricted by a constraining velocity-depth model. The recipe, however,
does not guarantee uniqueness if each single focuspoint operator is updated inde-
pendently from the other operators. Furthermore, no exact information is available
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on the locations of the redatumed sources and receivers.

Moreover, strong near surface effects tend to degrade the operator determination
procedure in such a way that the operators can not properly be recovered if the near
surface effects are not been accounted for in some way. The source of this problem
lies in the destructive interference caused by the fast variations in traveltime during
the construction of the common focus point gathers. By using the so-called concept
of wave-field healing in combination with Fermat modeling, we are able to constrain
the operators with a sparse set of parameters that tend to include the near surface
effects adequately. These parameters can be obtained through a global non-linear
optimization process. Static time shifts can be used to initialize the parameters, for
which two alternative procedures are given. Additional constraints can be included
by measuring at downhole receivers physical near surface propagators in the field.

By using the determined operators as subject to a velocity inversion process, ad-
ditional information is obtained about the redatuming locations. Using a raytracing
algorithm as forward model within the optimization procedure turns out to be un-
stable. Therefore, grid-based methods are preferred. A drawback of using grid-based
methods is the need of a large amount of additional computations to derive derivative
information. Due to the large amount of computations involved, a locally linearized
non-linear optimization scheme is employed. To diminish the influence of picking
errors during the operator determination, use is made of a robust M-class estimator
instead of a Gaussian estimator.

Besides traveltime information also amplitude information is needed to be able to
properly redatum the data. This information can be obtained by parameterizing the
amplitudes and optimizing the parameters by minimizing the difference between the
measured amplitudes and the forward modeled amplitudes, using Fermat modeling.
Again, use is made of a locally linearized non-linear optimization scheme, based on
a robust M-class estimator. The amplitudes, found in a data-driven method, are
then used in a least-squares redatuming process. If, however, the amplitudes are not
optimally determined, one should refrain from a least-squares redatuming as it can
severely degrade the final result.

The proposed method shows very good results for two synthetic datasets, generated
in realistic subsurface models, containing both complex near surface inhomogeneities
as well as topography. Optimal resolution is obtained as the data-driven operator
estimation and near surface model estimation are implemented as decoupled pro-
cesses. The proposed methodology turns out to be complimentary to methods that
estimate and subtract multiplicative near surface scattering energy. A combination
of the method outlined in this thesis and the methods that estimate near surface
scattering energy is well capable of solving both the short wavelength as well as the
longer wavelength near surface inhomogeneities.
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As near-surface inhomogeneities pose a 3D problem, the proposed methodologies
should be extended from a 2D implementation to a 3D implementation. Sparsely
measured physical redatuming operators in the field, by placing downhole receivers
below the near surface, could be used to guide the operator updating procedure,
constrain the near surface model estimation process and constrain the amplitude
determination and thus further enhance the proposed methodology. Although the
presented methodology renders good results on specially designed synthetic data,
they should be applied to real data in future research in combination with a proper
statistical assessment of the results.

Kees Hindriks





Samenvatting

Afschatten en verwijderen van effecten in seismische metingen,
geintroduceerd door

complexe, ondiepe inhomogeniteiten

Voornamelijk op land, neigen inhomogeniteiten vlak onder het aardoppervlak het
uiteindelijke seismische beeld te vertroebelen. Bijna alle processen die nodig zijn om
dit uiteindelijke beeld te verkrijgen worden door deze inhomogeniteiten beinvloed.
De gebruikelijke methoden om deze effecten te behandelen zijn bekend onder de
naam ’static corrections’, in het kort ’statics’ genoemd, waarvan het doel is ged-
ifinieerd als ”Bepalen van de aankomsttijd van reflecties die geobserveerd zouden
zijn als alle metingen gedaan zouden zijn aan een (gewoonlijk) vlak datum zonder
de aanwezigheid van verweerd materiaal of materiaal met lage snelheid.” Echter,
ondiepe anomaliën manifesteren zich niet alleen in aankomsttijd maar ook in bi-
jvoorbeeld focusering en defocusering, amplitude anomaliën, etcetera. Om die reden
is in deze thesis een methode ontwikkeld welke de reflectie energie bepaalt die geme-
ten zou zijn als er geen invloed was geweest van verweerd materiaal.

De gebruikelijke toepassing van de familie van ’statics’ methoden corrigeren de data
door correcties toe te passen die slechts afhankelijk zijn van de locaties waar de
bronnen en ontvangers zich bevinden, ongeacht de afstand tussen de bronnen en
ontvangers alswel de gemeten aankomsttijden. Een gedetailleerde vergelijking laat
zien dat het gebruik van statische correcties nadelig is voor verdere beeldvorming
doordat het de beeldvormings snelheden beinvloedt en het nietbestaande structuren
introduceert, terwijl het gebruik van volledige golfveld herdatering de beeldvorm-
ings snelheden niet beinvloed. Echter, om multi-trace golfveld herdatering toe te
kunnen passen voor het corrigeren van effecten veroorzaakt door inhomogeniteiten
in de ondiepe ondergrond is kennis vereist van de propagatie karakteristieken van de
ondiepe ondergrond.

Het bepalen van de propagatie karakteristieken door de ondiepe ondergrond kan
in principe bereikt worden met behulp van de gemeenschappelijke brandpuntanal-
yse die direct uit de gekoppelde golfvergelijkingen kan worden herleid. De twee
methodologien die volgen uit het concept van de gemeenschappelijke brandpunt-
analyse,operator verbetering gebaseerd op het principe van gelijke reistijd en Fer-
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mat modelering, vormen gezamelijk een recept om operatoren te bepalen die de
karakteristieken van propagatie door de ondiepe ondergrond in zich dragen. Deze
operatoren kunnen dan gebruikt worden om de gemeten data te herdateren naar
een locatie onder de ondiepe ondergrond, zodaning dat de inhomogeniteiten van de
ondiepe ondergrond geen invloed meer hebben op de data. Aangezien dit proces
volledig gebaseerd is op de gemeten data, wordt het oplossend vermogen niet aan
banden gelegd door een beperkend snelheid-diepte model. Het recept garandeert
echter niet een unieke oplossing wanneer elke operator horend bij één brandpunt
onafhankelijk van alle andere opertoren wordt afgeschat. Ook is er geen informatie
voorhanden over de exacte locatie van de geherdateerde bronnen en ontvangers.

Verder is het zo dat de effecten van de ondiepe ondergrond de procedure voor het
bepalen van de operatoren neigen te degraderen op zo een wijze, dat de operatoren
niet op een juiste manier herleid kunnen worden als deze effecten niet op enige
manier worden meegenomen in de procedure. De kern van dit probleem bevindt
zich in de destructieve interferentie die veroorzaakt wordt door snelle variaties in de
reistijden tijdens het construeren van de gemeenschappelijk brandpunt verzamelin-
gen. Door gebruik te maken van het concept van golffront-heling in combinatie
met het principe van data constructie kunnen we de operatoren beschrijven met een
schaarse verzameling aan parameters die de ondiepe ondergrond verschijnselen ad-
equaat genoeg beschrijven. Deze parameters kunnen vervolgens verkregen worden
met behulp van een globaal niet-lineair optimaliseringsproces. Extra beperkingen
kunnen meegenomen worden door werkelijke propagatie verschijnselen in het veld te
meten met behulp van ontvangers die onderin een boorgat geplaatst worden.

Door de uiteindelijk bepaalde opertoren te gebruiken in een inversie procedure om
de golfsnelheden te bepalen, kan extra informatie verkregen worden over de daad-
werkelijke herdatering locaties. Het blijkt dat het gebruiken van een algoritme dat
golfstralen volgt als voorwaarts model binnen het optimaliserings proces leidt tot
instabiliteiten. Om deze reden krijgen grid gebaseerde algoritmen de voorkeur. Een
nadeel van het gebruiken van grid gebaseerde algoritmen is de noodzaak van een zeer
groot aantal extra berekeningen om informatie over afgeleiden te verkrijgen. Omdat
een groot aantal berekingen nodig is, is er gebruik gemaakt van een lokaal gelin-
eariseerd niet-lineair optimalisatie schema. Om de invloed van pick-fouten tijdens
het bepalen van de operatoren te verminderen is gebruik gemaakt van de robuuste
klasse van M-schatters in plaats van een Gaussische schatter.

Naast reistijd informatie is ook informatie over de ampplitudes noodzakelijk om
het mogelijk te maken de data op een juiste manier te herdateren. Deze infor-
matie kan bepaald worden door de amplitudes te parameterizeren en vervolgens
deze parameters te optimalizeren door het verschil tussen de gemeten amplitudes
en de voorwaarts gemodelleerde amplitudes te minimalizeren met gebruikmaking
van Fermat modelering. Wederom is gebruik gemaakt van een lokaal gelineariseerd
niet-lineair optimalisatie schema gebaseerd op een robuuste klasse M-schatter. De
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op een data-gedreven manier gevonden amplitudes worden vervolgens gebruikt in
een kleinste kwadraten herdaterings proces. Echter, als de amplitudes niet optimaal
gedefinieerd zijn dan dient men zich te weerhouden van het gebruiken van een klein-
ste kwadraten herdatering, gezien dit ernstig het uiteindelijke resultaat kan schaden.

De voorgestelde methode laat goede resultaten zien voor twee synthetische data-
verzamelingen, die gemodelleerd zijn in realistische ondergrondse modellen welke bei-
den zowel complexe inhomogeniteiten als topologie bevatten. Een optimaal oplossend
vermogen is bereikt doordat de datagedreven operatorbepaling en de modelschatting
zijn gëımplementeerd als twee losgekoppelde processen. De voorgestelde methode
blijkt complementair te zijn aan methoden die multiplicatieve energie, verstrooid
door de ondiepe ondergrond, afschatten en aftrekken van de data. Een combinatie
van de methode zoals uiteengezet in deze these en de methoden die door de ondiepe
ondergrond verstrooide energy afschatten is zeer goed in staat om zowel te corrigeren
voor ondiepe ondergrondse inhomogeniteiten met een korte golflengte als voor inho-
mogeniteiten met een langere golflengte.

Omdat inhomogeniteiten in de ondiepe ondergrond problemen veroorzaken in drie
dimensies, zullen de voorgestelde methoden uitgebreid moeten worden van een twee-
dimensionale implementatie naar een drie-dimensionale implementatie. Hier en daar
in het veld gemeten herdaterings-operatoren, door ontvangers te plaatsen in een
boorgat onder de ondiepe ondergrond, kunnen gebruikt worden om het verbeter-
ingsproces, dat gebruikt wordt om de operatoren te bepalen, te leiden, het schat-
ten van het ondergrondse model te beperken en het schatten van de amplitudes
te beperken. Op deze manier kunnen de veldgemeten operatoren de voorgestelde
methodologie verder verbeteren. Hoewel de voorgestelde methodologie goede resul-
taten produceert op speciaal ontworpen synthetische data dient ze, binnen toekom-
stig onderzoek, toegepast te worden op werkelijk gemeten velddata, vergezeld van
de juiste statische analyse van de resultaten.

Kees Hindriks
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