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Abstract
Activities related to energy production have been linked with felt (and in some cases dam-
aging) earthquakes. Notable examples include hydraulic fracturing, wastewater disposal, 
geothermal systems, coal mining, carbon storage and hydropower dams. As the demand 
for energy continues to grow, new frontiers in energy exploration will emerge - some with 
the potential for induced seismicity. Thus, there is a clear need for a source-agnostic seis-
mic risk protocol that can be applied to any activity or region. This study outlines one such 
implementation that uses scenario earthquakes to produce a priori risk thresholds that can 
be referenced against current seismicity levels on an ongoing basis. Our framework is de-
signed to inform regulatory decisions by considering the consequences of earthquake sce-
narios on the population and the built environment, together with simplified forecasts of 
the next largest magnitude. The proposed framework can tackle both the screening process 
needed for permitting purposes and serve as a risk management plan during operations.

Bulletin of Earthquake Engineering.

1 Introduction

Energy is essential for human civilization and development, but it also comes with envi-
ronmental costs. One of these costs is induced seismicity, which refers to the earthquakes 
and tremors that are caused or triggered by human activities linked to energy exploration or 
production. Induced seismicity can pose risks to public safety and infrastructure, as well as 
generate public opposition and serious legal challenges to energy projects (Giardini 2009).

 et al. [full author details at the end of the article]
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Many activities related to energy production have been linked with felt, and in very 
rare occasions damaging, earthquakes. Some notable examples include oil and gas extrac-
tion (Kühn et al. 2022), hydraulic fracturing (Mahani et al. 2017; Grigoratos et al. 2022), 
wastewater disposal (Taylor et al. 2017; Grigoratos et al. 2020), geothermal systems (Majer 
et al. 2007; Ellsworth et al. 2019), coal mining (Klose 2007; Li et al. 2007), natural gas stor-
age (Vilarrasa et al. 2021), carbon storage (Goertz-Allmann et al. 2024), and hydropower 
dams (Foulger et al. 2018). As the world’s energy needs and challenges continue to evolve, 
there will always be new frontiers in energy exploration and production that require new or 
unconventional solutions. These solutions may involve exploring new regions, tapping new 
resources, developing new technologies, or scaling up existing ones. However, these solu-
tions may also come with increased induced seismic hazard levels, as they may introduce 
new sources of stress or imbalance to the Earth’s crust. Therefore, the risks from induced 
seismicity will remain a persistent and complex issue that needs to be managed, to avoid 
constraining our potential when it comes to harnessing the Earth’s resources.

An important first step is to quantify the undesirable consequences of the potential seis-
micity, which include human losses, physical damage to buildings and infrastructure, inter-
ruption of business and social activities, and the direct and indirect costs associated with 
such outcomes (Bommer 2022). Seismic risk analysis (SRA) is very often divided into 
deterministic (DSRA) and probabilistic analysis (PSRA). The primary difference is related 
to the treatment of the uncertainty behind the seismic sources. A so-called deterministic 
model assumes a limited set of known “active” faults that can host so-called “maximum 
credible earthquakes” of specific (conservative) size. Conversely, a probabilistic analysis 
takes into account all possible (known or unknown) faults and the entire range of plausible 
rupture sizes they can host. The probabilistic framework has been used at varying degrees 
of complexity for the Groningen gas field (Crowley et al. 2019; van Elk et al. 2019), for an 
Enhanced Geothermal System in Basel (Mignan et al. 2015), and for large-scale wastewa-
ter-disposal activities in Oklahoma (Gupta and Baker 2019; Grigoratos et al. 2021). Sce-
nario-based risk calculations have been conducted for a HF sequence in the UK (Edwards et 
al. 2021) and for a CO2 injection site in Switzerland (Schultz et al. 2024).

One of the key factors preventing a fully quantitative and uniform risk approach to 
induced seismicity management is the source model. Forecasts of earthquake-rates can vary 
significantly depending on the modeling assumptions, data availability, subsurface geology, 
human activities, and the effective triggering mechanisms (e.g., pressure, poroelastic, ther-
mal, viscoplastic). In some special cases, it may be possible to adapt a previously calibrated 
model to a nearby operation; for example, under the conditions that the reservoir setting and 
anthropogenic source are similar. However, as new technologies emerge (e.g., enhanced 
geothermal systems, carbon capture and storage), there will always be cases where no appli-
cable analogues have been tested or verified yet. Because of this limitation, risk manage-
ment plans that avoid a detailed description of the source could be preferable - filling an 
interim niche, until sufficient source information can be gathered to suitably calibrate the 
forecast models.

In some sense, traffic light protocols (TLPs) are a risk management system that is agnos-
tic of seismic source modeling. Classic TLPs outline a series of magnitude thresholds that 
dictate how an operation can proceed: with green-light allowing for unrestricted opera-
tions, yellow-lights requiring mitigation strategies to be enacted, and red-lights indicating 
the operational endpoint. These magnitude thresholds are usually selected by the regulator 
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as a proxy for certain levels of risk that are deemed unacceptable. The first TLP was imple-
mented at a geothermal project at Berlín in El Salvador (Bommer et al. 2006) and similar 
ones have since been used in a wide variety of regions and operational settings (Bachmann 
et al. 2011; Kao et al. 2018; Ader et al. 2020). While TLPs have critiques (Baisch et al. 
2019; Roy et al. 2021), they remain an important regulatory tool to pre-emptively define 
operational endpoints. Recent research has focused on better defining red-light thresholds 
by using quantifiable risk-based methods (Schultz et al. 2021a, b, 2022b, 2023), account-
ing for trailing seismicity (i.e., earthquakes that continue to occur after the operation ends) 
(Verdon and Bommer 2020; Schultz et al. 2022a), and incorporating real-time information 
(Mignan et al. 2017). These concepts have recently been expanded to fit within seismic risk 
guidelines (Muntendam-Bos et al. 2015; van Thienen-Visser et al. 2018; Zhou et al. 2024) 
for permitting gas production wells in the Netherlands (Grigoratos et al. 2023).

In the present study, we present a seismic risk protocol that is sufficiently generic to be 
applicable to any energy production site that has the potential to induce seismicity. Our 
approach fills an interim niche, until suitable source models can be developed. We also cite 
suitable relevant models from the literature that can be used to facilitate the necessary com-
putations. Our recommendations are tailored to the needs of regulators and can be used both 
for permitting purposes and during the operational phase of a project. In other words, it can 
be used as a screening tool to check whether a more detailed SRA study is required and as 
a risk mitigation tool during operations. That said, operators can also utilize this framework 
either for the a priori risk assessment of a candidate site or to inform mitigation measures 
during operations. Our methodology follows the principles and components of PSRA, with 
simplifications made only regarding the seismic source. The main novelty introduced here 
is the dynamic estimation of the next largest earthquake based on the largest observed event 
and the estimated maximum magnitude. This enables us to distil the complicated probabi-
listic outputs of the SRA down to a basic TLP structure.

2 Methodology

In this section, we describe the components of the PSRA that our framework dictates, rel-
evant computational methods, potential decision variables and the inversion of the static 
magnitude thresholds based on the PSRA outputs.

2.1 Earthquake recurrence model

The accuracy of earthquake recurrence forecasts depends heavily on modelling assump-
tions, data-availability, local geological conditions, and the types of triggering mechanisms 
involved. History has shown that scientific consensus is difficult to achieve and the disper-
sion in the numerical estimates can vary greatly. For example, there are several seismologi-
cal models that investigated the interplay between fluid extraction, subsurface deformation, 
and induced seismicity in the Groningen gas field (Kühn et al. 2022). Dempsey and Suckale 
(2017) considered various physical processes such as poroelasticity, Coulomb failure cri-
teria and frictional slip to probabilistically forecast felt seismicity on the 325 largest reser-
voir faults. However, their forecast underestimated the observed felt seismicity rate and a 
few years later they had to update it replacing, among other things, the fracture-mechanics 
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earthquake simulator with empirical magnitude-frequency distributions (Dempsey and 
Suckale 2023). Bourne et al. (2014) based their seismological model on the changes in 
reservoir volume (compaction) and assumed proportionality between the seismic moment 
and the total strain. The compaction model had to be calibrated using various geodetic data. 
This approach was later modified by Bourne and Oates (2017) to include Coulomb stresses 
induced by reservoir depletion. Candela et al. (2019) combined the Coulomb stressing rate 
with the rate-and‐state friction theory (Dieterich 1994) taking into account the poroelas-
tic effect of the differential compaction due to fault offsets. They demonstrated that this 
approach outperformed the traditional Coulomb failure model. This was validated also by 
Richter et al. (2020) who followed a similar approach and emphasized the ability of rate‐
and‐state friction to reproduce delays in the onset of seismicity. Evidently, both the model-
ling approaches and the forecasts evolved greatly over time, showcasing the complexity of 
the problem at hand. In other words, even if consensus on source modeling methods was 
to be established, uncertainties in site-specific parameters can propagate into detrimentally 
large uncertainties in risk estimates. Thus, there is a clear need for a source-agnostic pro-
tocol that does not rely on specific seismological models and can be applied to any human 
activity and region.

Given that an operator may submit a permit-request with little to no in situ seismicity 
data available, a detailed seismic source model cannot be derived. To be pragmatic, we aim 
to capture in a probabilistic way the next largest earthquake that might be triggered due to 
the human activity in question. To that end, we first define a range of possible magnitudes; 
M1 is the lower bound, M2 is the upper bound.

We propose the following approach to start circumventing the need for a complete source 
model. For the lower bound, M1 is defined as the largest observed magnitude credibly linked 
to the operation (regardless if the earthquake is tectonic or induced). To be on the conserva-
tive side, if no magnitudes above the magnitude of completeness (Mc) have been observed, 
then M1 is set equal to Mc. Mc is the magnitude above which the overwhelming majority of 
earthquakes are reported in the available catalog. We should note that if the seismic network 
has undergone significant changes over time, then this uncertainty should be reflected in the 
starting choice of the time-dependent Mc. When associating nearby events to the site, one 
should take into account the epicentral uncertainties (across time) plus a buffer distance that 
implies that the stress-state within that zone is similar.

For the upper bound, M2 is defined as the largest possible magnitude that can occur given 
the local geology, past historical seismicity, and the scale of human intervention. One con-
straint on M2 is the size and interconnectivity of the local favourably oriented fault network 
and the expected stress drop. Empirical fault-scaling relations (e.g. Leonard 2014) infer the 
magnitude of an earthquake given the geometry and focal mechanism of a given rupture. 
Notably, these empirical relations have been derived from moderate to large magnitude 
earthquakes, with deeper hypocenters than the ones expected at energy production sites. It is 
likely that the relations overestimate the magnitude of small and/or shallow faults. Another 
constraint on M2 is the severity of the human input. For fluid injection activities, M2 may be 
limited by the size of the rock volume perturbed by pore pressure (Shapiro et al. 2013) or 
the total injected fluid volume (McGarr 2014; Galis et al. 2017). The method by Shapiro et 
al. (2013) requires data from at least one local stimulation, while Galis et al. (2017) require 
as input four geomechanical properties of the reservoir. The method of McGarr is the easiest 
to apply, but is also the least site-specific (Kwiatek et al. 2024). For fluid extraction activi-
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ties, M2 could be limited by the fraction of energy accumulated by compaction that can be 
seismically released (SodM, 2016; Bourne et al. 2014). In any case, given the large uncer-
tainty behind such estimations, expert judgement will be required to assess the final value or 
distribution of M2. We should note that in theory this value can also be infinite (unbounded 
magnitude distribution); our approach is applicable for any value of M2.

By defining M1 and M2, we bound the magnitude of the next critical earthquake some-
where between the largest recorded event and the largest possible event. Obviously, under 
this framework, underestimating the true Mc across time can lead to underestimation of the 
modeled scenario magnitude. Notably, if the measurement uncertainty behind the computed 
magnitude solutions is non-negligible (e.g. above 0.1 magnitude units), then it must be 
taken into account by conservatively adjusting Mc and M1 (towards larger values).

Next, assuming a binning of 0.1 for the range of magnitudes, one can calculate for any 
site the risk metrics of choice for every binned magnitude value. The focal depth and focal 
mechanism can be informed by local site conditions.

We should clarify that these discrete magnitudes within the range do not exhibit the same 
likelihood of occurrence. The likelihood that the scenario earthquake will have a given size 
decreases with magnitude. This is captured by a normalized Gutenberg-Richter magnitude-
frequency distribution (GR-MFD), doubly truncated between a magnitude interval defined 
by M1 and M2 (Fig. 4). The probabilistic treatment is applied to the risk outputs after the fact 
and not at the seismic source level. This post-processing probabilistic scheme is described 
in Sect. 2.8.

2.2 Ground shaking intensities

Once a potential earthquake source is identified, the next step is to estimate the level of 
ground motion at a given location, based on that source. The primary predictor variables 
are usually: magnitude, distance to the rupture, and site characterization (Boore et al. 1997). 
Usually, the output of a Ground Motion Prediction Model (GMPM) is a certain Intensity 
Measures (IMs) such as the spectral acceleration at different periods (e.g., 0.01 to 10s), peak 
ground velocity (PGV), peak ground acceleration (PGA) or Arias intensity.

Applicable GMPM should have been calibrated with earthquake data compatible with 
the selected Mmin and Mmax values for the SHRA. They should also be compatible with the 
tectonic regime and focal depth of the site. Calibration of the stress drop values adopted by 
the GMPM would be ideal, if possible. Induced earthquakes do not appear to have signifi-
cantly different stress drop than tectonic ones (Huang et al. 2017), therefore GMPM from 
tectonic earthquakes are valid candidates overall. Site-specific GMPM should be derived 
when rich seismic datasets are available. Hybrid GMPM (e.g. Edwards et al. 2018) that 
combine recorded ground motion data with 3D representations of Earth’s structure in con-
junction with dynamic kinematic representations of the earthquake source are also a viable 
alternative.

GMPMs are inherently limited by the scarcity of data related to large shaking ampli-
tudes, and/or near-source recordings. This is particularly challenging for stable continental 
regions, where low seismicity rates and typically sparse seismic networks exacerbate the 
lack of data (Gerstenberger et al. 2020). As far as induced events are concerned, due to their 
triggering process, they are likely to be of smaller magnitude and at shallower focal depth 
than typical tectonic earthquakes (Grigoratos et al. 2021). The focal depths of potentially 
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induced events generally lie within the upper 6 km of the crust, making the seismic wave 
propagation more dependent on the heterogeneous properties of the uppermost crustal lay-
ers (Bommer et al. 2016).

To address these issues, several studies have developed region- or even sequence-specific 
GMPM for energy production related activities. Novakovic et al. (2018; 2020) and Zalacho-
ris and Rathje (2019) developed GMPMs from data linked to wastewater disposal in Central 
US; Douglas et al. (2013) for low-magnitude earthquakes from geothermal areas in Europe; 
Sharma et al. (2013) for the Geysers Geothermal Area (USA), Edwards et al. (2018) for the 
Basel sequence (Switzerland), Sharma et al. (2022) for the St. Gallen sequence (Switzer-
land), and Cremen et al. (2020) for the Preston New Road HF sequence (UK). Finally, there 
are several GMPMs related to fluid-extraction based on the Groningen data (Bommer et al. 
2016, 2017, 2022a, b; Paolucci et al. 2020).

Notably, when Cremen et al. (2020) tested the model by Douglas et al. (2013) against the 
Preston New Road data, the fit was not satisfactory despite the broad similarities in mag-
nitude range and focal depth. Furthermore, Grigoratos et al. (2021) demonstrated that even 
relations developed from similar datasets can exhibit very different attenuation functions, 
leading to great variability in the seismic risk results (Fig. 1). Therefore, it is very difficult to 
confidently select a GMPM unless it can be re-calibrated or at least tested against local data.

To deal with uncertainty, it is common practice to combine multiple GMPMs via logic 
trees (Bommer and Scherbaum 2008; Bommer 2012; Mak et al., 2017). Beyond the use 

Fig. 1 Sensitivity of loss estimates from induced seismicity in the state of Oklahoma to the GMPM. 
The risk model is taken from Grigoratos et al. (2021) and the results are for the year 2015 and for VS30 
760 m/s. The losses include structural and non-structural elements and contents for all buildings in the 
state
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of multiple GMPMs, the scaled backbone approach (Bommer 2012; Atkinson and Adams 
2013; Atkinson et al. 2014a; Douglas 2018) provides an alternative for handling the wide 
range of uncertainties. In this approach, one GMPM is typically used to generalize the 
attenuation and magnitude-scaling behavior required for a specific tectonic region type for 
a range of magnitudes and distances.

Furthermore, Intensity Prediction Models (IPMs) can be used to estimate Intensity Scales 
(e.g. modified Mercalli intensity; MMI; ) for a given set of earthquake magnitudes and site 
distances. Unlike other intensity measures such as SAs (spectral accelerations) or PGA, 
MMI depends solely on observations, such as felt intensities and structural damage (Wood 
and Neumann 1931). Therefore, the dataset used in their regression is a key factor for their 
applicability. Due to their empirical and generic nature, it is challenging to pair IPMs with 
specific exposure and fragility models, nor do they usually explicitly account for soil effects 
or focal mechanism.

Popular IPMs have been developed by Atkinson and Wald (2007), later revised by Atkin-
son et al. (2014b), focusing on North American data above M 3. Allen et al. (2012) devel-
oped a globally applicable IPM based on earthquakes with Mw > 5 for active crustal regions. 
Ahmadzadeh et al. (2020) developed an IPM for Iran, Le Goff et al. (2014) one for Portu-
gal, Baumont et al. (2018) one for France, and Dowrick and Rhoades (2005) one for New 
Zealand. With the possible exception of Baumont et al. (2018), none of the aforementioned 
IPMs is easily applicable to very shallow small-magnitude earthquakes. A better fit for typi-
cal cases linked to energy production would be the IPM by Teng et al. (2022), which is based 
on likely-induced earthquakes related to wastewater disposal in Texas, Oklahoma and Kan-
sas, with magnitudes between M 1.5 and 3.5 and hypocentral distances within 30 km. Alter-
natively, one could compute PGV or PGA estimates using an applicable GMPM, and then 
convert those to MMI using the conversion-relations of Schultz et al. (2021c), originally 
derived for Central and Eastern US. That said, doubling the number of conversion-steps 
increases considerably the uncertainty of the final output, making this solution relatively 
suboptimal.

2.3 Site-response

The influence of near-surface geology on seismic ground motion amplification is well-
established. This phenomenon, known as seismic site response or site effects, significantly 
impacts amplitude and frequency content, thereby playing a crucial role in seismic hazard 
assessments. Site response determination relies on shear-wave velocities and lithological 
conditions in the shallow subsurface. Notably, many studies incorporate site response only 
via the VS30 proxy that is used as an input variable in many GMPMs. However, a num-
ber of studies have highlighted the limitations of using only VS30 (Derras et al. 2014; Lee 
and Trifunac 2010; Stewart et al. 2014). Recent efforts, like the SERA (Seismology and 
Earthquake Engineering Research Infrastructure Alliance for Europe) project, advocate 
for a more comprehensive approach. SERA recommends indicators such as fundamental 
resonance frequency (f0), S-wave velocity profile (Vs(z), VS30, depth of seismological and 
engineering bedrock, surface geology, and soil class. The SERA approach surpasses tra-
ditional VS30 use, addressing shortcomings and providing a repository for site character-
ization analysis, enhancing the European Seismic Risk Model (ESRM20; Weatherill et al. 
2020; 2023). In regions without direct ground motion records, the Horizontal-to-Vertical 
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Spectral Ratio (HVSR) of ambient vibration recordings emerges as a valuable tool for site 
response assessment (Bonnefoy-Claudet et al. 2006; Nakamura 1989). The HVSR identifies 
the fundamental resonance frequency of a soft layer over harder bedrock and thus indicates 
subsurface features and local variations, offering insights into seismic wave amplification.

Detailed studies are also available in some regions. In the Netherlands, for example, the 
unconsolidated top sedimentary layer poses a significant risk of earthquake amplification. 
Van Ginkel et al. (2022) developed a seismic site-response zonation map for the Netherlands 
(Fig. 2), using high-resolution 3D lithological sequences as proxies. Amplification Factors 
(AF) for each soil class are established based on empirical relationships between earthquake 
and HVSR records measured in the Groningen borehole network. The map categorises the 
country into five soil classes, each assigned an AF, which can be added to input seismic 
responses that conform to the reference seismic bedrock conditions. The zonation map is 
applicable to regions with shallow (< 3 km) induced earthquakes without a strong low-
frequency (< 1.0 Hz) component. Van Ginkel et al. (2022) assessed site-response as a linear 
process, since the earthquake magnitudes are too low to generate non-linear site effects.

Fig. 2 Seismic site-response zonation map for the Netherlands designed for low-magnitude induced 
earthquakes. Each color represents a soil class with an amplification factor assigned. ©KNMI, from van 
Ginkel et al. (2022). This work is distributed under the Creative Commons Attribution 4.0 License
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2.4 Exposure

Next, it is important to understand which assets are exposed to the seismic hazard. These 
assets can be, for example, residential or industrial buildings, special buildings (e.g. schools, 
hospitals), roads, or critical infrastructure (e.g. bridges, pipelines, energy plants, dams, 
ports). Each asset has its own fragility against seismic loads and its own replacement cost. 
Individuals are also exposed entities, although their vulnerability is dependent on the struc-
ture they reside at the time of the earthquake. These assets are aggregated at different spatial 
resolutions depending on data availability. Notably, the spatial resolution itself can have an 
impact on the loss estimates (Dabbeek et al. 2021).

The buildings in the exposure model are classified according to their seismic perfor-
mance using a building taxonomy that is based on international standards (e.g. the GEM 
Building Taxonomy, Brzev et al. 2013; as updated by Silva et al. 2018) that allows buildings 
to be classified according to a number of structural attributes. The main attributes that have 
been selected for the consistent definition of building classes are as follows:

 ● Main construction material (e.g. reinforced concrete, unreinforced masonry, reinforced/
confined masonry, adobe, steel, timber).

 ● Lateral load resisting system (e.g. infilled frame, moment frame, wall, dual frame-wall 
system, flat slab/plate or waffle slab, post and beam).

 ● Number of stories.
 ● Seismic design code level (pre-code, low, moderate, high).
 ● Lateral force coefficient used in the seismic design.

Each building typology is paired with a corresponding value for non-structural elements 
(e.g. mechanical equipment, windows, cladding) and contents (e.g. furniture). The occu-
pants of each (residential) building are also part of an exposure dataset. Furthermore, special 
assets like bridges, dams, pipelines may also have their own, less standardized, taxonomy 
classes (FEMA, 2013).

The SRA should take into account the entire structural portfolio and population that 
is expected to undergo substantial shaking levels. For moderate to large earthquakes, this 
usually implies a radius of at least 100 km and 200 km for the structures and the popula-
tion, respectively. Special considerations regarding dams and nuclear plants should also be 
warranted. We recommend adopting the lowest grid resolution possible (taking into account 
also the site-response model), with indicative values ranging from 1 to 5 km (Papadopoulos 
et al. 2024).

Depending on the region, the exposure database could be compiled in an ad hoc fashion 
(e.g. from census or government data). That said, a recent global compilation from GEM 
could also be utilized (Yepes-Estrada et al. 2017, 2023; Crowley et al. 2020), at least for the 
building data, if the lowest available spatial resolution meets the needs of the project. It con-
tains information regarding structural and non-structural elements, contents and occupancy.

2.5 Fragility and vulnerability

Under ground shaking, an exposed structure will potentially sustain a certain level of 
damage (fragility) which will require a certain replacement cost (vulnerability). Notably, 
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depending on the risk metric targeted by the analysis, there is a minimum magnitude (Mmin), 
below which there is no engineering interest (Bommer and Crowley 2017). In other words, 
the shaking is too short (in duration) or limited in frequency-content to cause any damage 
to the relevant structures, even at close distances. This Mmin value represents the lower 
truncation of the magnitude-frequency distribution in the classical Probabilistic Seismic 
Hazard Analysis (PSHA) formulation. Furthermore, if the scenario earthquake adopted by 
the Deterministic Seismic Hazard Analysis (DSHA) or the Mmax in PSHA is lower than 
Mmin, then no calculations are needed for the specific risk-metric in question.

Naturally, structural damages require a slightly larger Mmin than non-structural dam-
ages, with the latter requiring a significantly larger Mmin than nuisance calculations. When 
it comes to damages, the representative seismic design code level of the built environment 
plays a crucial role in determining a suitable Mmin value. For example, the Mmin value for 
structural damages in Groningen in the Netherlands (no seismic code penetration) should be 
much lower than the one in Japan (very high seismic code and adoption levels). Although 
exceptions may apply, typical indicative values for Mmin are: 4 to 5 for structural damages 
(and fatalities), 3.5 to 4.5 for non-structural damages and 2 to 3 for nuisance estimates 
(Nievas et al. 2019; Schultz et al. 2021c). That said, in practice, a uniform Mmin value is 
usually selected for both structural and non-structural damages, with a different one only 
for nuisance.

Any SRA assigns to each class of structure in its inventory a specific fragility (or vulner-
ability) curve that estimates the probabilistic distribution of damages (or losses) that this 
structure is expected to experience when subject to ground motions of different intensity. 
For the damages, modelers use standardized damage-states as labels, with typical cases 
being “light damage”, “significant damage”, “heavy damage”, and “collapse”. The direct 
economic losses are measured in terms of loss ratio, which is defined as the ratio of cost of 
repair to cost of replacement. Other types of losses might include population displacement, 
fatalities or injuries. Indirect economic losses (such as business interruption or economic 
disruptions) are more difficult to model and are often neglected, even though they can be 
very important (Sousa et al. 2022; Markhvida and Baker 2023). The IMs are usually related 
to the fundamental period of the structure (Silva et al. 2019), for example 5% damped 
pseudospectral accelerations (SA) at 0.3s. That said, in recent years, more advanced IMs are 
gaining traction (Kohrangi et al. 2016).

Established sources of fragility and vulnerability models are GEM (Martins and Silva 
2020; Martins et al. 2021; Fig. 3) and FEMA (2013), but there are also numerous indi-
vidual studies that have produced curves for specific structural typologies (e.g. Kallioras et 
al. 2019). Importantly, the adopted fragility curves should be compatible with the selected 
Mmin.

Notably, most fragility and vulnerability functions were developed for large (tectonic) 
events, at least larger than magnitude 5, and hence they might be biased towards higher loss 
estimates, compared to the short duration and high-frequency content of induced motions. 
In general, these functions also ignore damage accumulation effects that might occur when 
buildings are subjected to a series of earthquakes (Papadopoulos et al. 2020). If more than 
one reliable fragility model is available for the exposed assets in question, a logic-tree 
approach can be applied there as well to cover the epistemic uncertainty.
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2.6 Risk metrics

We propose the following risk-metrics as decision variables for whether activities at an 
energy production site should be deemed too risky or not by a regulator or an operator:

 ● aggregate nuisance level: mean total number of people feeling an earthquake (equiva-
lent MMI scales above III).

 ● aggregate structural damages: mean total number of structures with at least “moderate” 
structural damages.

 ● aggregate non-structural damages: mean total number of structures with at least “se-
vere” non-structural damages.

 ● local personal risk: mean probability of fatality for a person, who is continuously pre-
sent without protection inside a building.

The damage-states (“light”, “moderate”, “severe”) adopted by the global risk map of GEM 
(Silva et al. 2020) or those from HAZUS (FEMA 2013) could be used as reference points. 
Furthermore, these risk metrics refer to the entire duration of the human activity in question. 
Obviously, if a human activity is to be repeated multiple times (e.g. several stimulations 
over a number of months) then this should be taken into account with further aggregation 
of the results.

Ideally, inclusion of some of these metrics as well as specific tolerance thresholds would 
be outlined by regulatory authorities or legislation. In cases where tolerances are not previ-
ously identified, we propose that prior contextually relevant operation-ending earthquakes 
could be used as a benchmark. Such events (e.g. Huizinge in the Netherlands, Basel in 
Switzerland) often cause extensive unrest in the public, potentially damages and eventual 
project termination, so escalation criteria should ensure the avoidance of similar levels of 
risk. Often stopping well before such levels of risk have materialised might be advanta-
geous. Thus, safety factors could be applied to further scale down the tolerance thresholds. 
Values between 30% and 60% for such safety factors could be reasonable; however, further 
site-specific sensitivity analysis should inform this choice. Notably, actual damages or dam-
age claims associated with these events might differ from modelled risk estimates (Giardini 
2009). To ensure a fair comparison, we recommend using the latter to constrain tolerance. 
These modelled risk estimates should be computed using equivalent model components 
(e.g. GMPMs, exposure data, site-amplification factors, fragility/vulnerability functions) 
and workflow.

2.7 Computational methods for the SHRA

The computational framework of a SHRA (Crowley and Bommer 2006) is summarized 
here, with more details available in Grigoratos et al. (2021). For each simulated rupture 
one generates many random fields of ground motion intensity measures (IMs). The random 
fields are then used as input to the fragility model to estimate the damage severity at any 
given structure for the given rupture. Next, the loss for the entire portfolio of structures is 
estimated by simple summation. This procedure is repeated for all random fields of each 
simulated rupture. Finally, the rate of exceeding any portfolio loss is empirically found by 
keeping track of the number of exceedances occurring over all the simulated realizations. 
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This approach also allows for implementation of spatial correlation between ground shak-
ing at multiple sites from the same earthquake (Jayaram and Baker 2009), due to common 
source and wave traveling paths and to similar distance to fault asperities. Incorporating 
spatial correlations improves the reliability of the risk estimates when dealing with spatially 
distributed structural portfolios (Park et al. 2007).

Mandating that every operator performs the proposed seismic risk calculations, which 
admittedly have significant computational complexity and require familiarity with special-
ised software engines, seems undesirable. To address this issue, we propose that the regu-
lator hires experienced practitioners to precompute tables of risk outputs covering every 
scenario rupture envisioned by the proposed protocol (Fig. 6). This task is simpler than it 
looks at first glance. The location of the site in question will be known, while the magnitude 
range of the scenario earthquakes is finite. The exposure and fragility/vulnerability models 
remain static. Thus, automating the whole process is straightforward. The only task the 
operator has to execute is to extract the right values from the risk tables (based on M1, M2), 
and then post-process the risk metrics according to Sect. 2.8. The risk tables could be avail-
able on spread-sheets, and both the data-mining and the weighting scheme could be done 
with simple predetermined input functions.

2.8 Probabilistic expression of the next largest magnitude

The prior sections describe a workflow to estimate risk metrics for possible earthquake sce-
narios at a given location. From this point, we define a post-processing workflow that allows 
for an estimation of risk from the hypothetical next largest earthquake scenario and the sub-
sequent decision-making criteria. We begin by considering a (normalized) Gutenberg-Rich-
ter magnitude-frequency distribution (GR-MFD), doubly truncated between a magnitude 
interval of M1 and M2 (Fig. 4; Schultz 2024). Here, M1 is the lower magnitude bound, M2 
is the upper magnitude bound, and b is the GR-MFD b-value providing the proportionality 
between bigger and smaller events. Note that M1 is a dynamic variable that might change 
during an operation, if larger events are sequentially observed. In theory, M2 might also 
change if, for example, the planned operations are altered (e.g. different cumulative injected 
volume), or if larger faults or higher stress drops are identified. The normalized GR-MFD 
can be used to define the probability density function (PDF) and the cumulative distribu-
tion function (CDF). In this sense, we can bound the likelihood of the next largest event’s 
magnitude– somewhere between the current largest observed event (M1) and the estimate of 
the largest possible event (M2). The b-value can be informed by prior suitable cases of the 
same human activity (via a logic-tree approach), or from nearby tectonic events (ideally of 
similar depth). This PDF is used as an alternative to the seismic source: each (precomputed) 
risk output can be weighted according to the (normalized) PDF of its source-magnitude (for 
more details see Sect. 2.9). In the end, by simple bookkeeping, a probabilistic distribution is 
obtained for each considered risk metric (Sect. 2.6).

For illustration purposes, we provide a simplified example to demonstrate this post-pro-
cessing workflow (Fig. 5) partially using data from a prior study that considered induced 
seismicity risks in the Netherlands (Schultz et al. 2022b). From this study, scenario risk 
tables for nuisance, non-structural residential damages and LPR are estimated. For the dot-
ted line, each risk estimate (y axis) corresponds to a different scenario earthquake (x axis). 
The severity of the risk scenarios increases monotonically as the magnitude increases. For 
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the solid line, the GR-MFD PDF provides weights to compute an average expected risk 
for the next largest event (y axis), given some observed event M1 (x axis). We arbitrarily 
consider here an M2 of Mc+3.5 and a b-value of 1.2. The expected risk from the next largest 
magnitude increases monotonically and is always greater than the scenario risk (until reach-
ing the upper truncation bound).

In order to use this workflow to inform decision-making, tolerances to each risk are 
required. For demonstration, we compare against the impacts estimated from the 2012 ML 
3.6 Huizinge event in Groningen (Fig. 5; Schultz et al. 2022b). We would want to stop 
operations before anticipating this level of risk, since this earthquake ended gas production 
operations (van der Voort and Vanclay 2015; Muntendam-Bos et al. 2022). All the con-
sidered risk metrics (nuisance, non-structural damages, and LPR) suggest that operations 
would need to change or stop well before an Mc +1.3 to + 1.7 event has been observed. We 
reiterate that this is a simple example with certain arbitrary considerations constructed just 
to demonstrate our conceptual workflow.

2.9 Linkages to risk management plans and TLPs

We propose that our prior workflow and decision variables can be used to inform risk man-
agement plans, like the TLP. TLPs typically are stratified into three tiers as defined below.

 ● Green light: the maximum observed magnitude is below the yellow-light threshold 
(MY). Operations within the field continue as planned.

 ● Yellow light: the maximum observed magnitude is above MY, but below the red-light 
threshold (MR). Operations continue, but the operator must enact mitigation measures 

Fig. 4 Indicative example of a doubly truncated GR-MFD. The analytical PDF (thinner dashed black line) 
and Survival Function (1-CDF; thicker dashed black line) are shown for a doubly truncated GR-MFD 
with a b-value of 1.0, bounded between M1 and M2. As well, a randomly drawn catalogue with 104 events 
is drawn to visually compare the empirical PDF (blue bars) and survival functions (blue line). Note that 
the survival function has been artificially offset by a factor of 102 to make it visually distinct from the 
PDF. The expected value of the next largest magnitude is the mean of the PDF

 

1 3



Bulletin of Earthquake Engineering

to limit the probability of a larger event.
 ● Red light: the maximum observed magnitude is above the red-light threshold (MR). 

Subsurface operations must stop, at the discretion of the regulator.

We define MR based on our framework presented in Sect. 2.1–2.8 (Fig. 6). Specifically, we 
first derive for each of the selected risk metrics, which magnitude value Mcr leads to exceed-
ance of the agreed upon tolerances. We treat Mcr as the mean of the GR-MFD PDF shown 
in Fig. 4. With this information, for each metric, we can solve for M1, because M2 and the 
b-value are known. From this, MR is defined as the smallest from these M1 values.

Fig. 5 Post-processing workflow example. Three metrics of risk are considered: (a) nuisance, (b) non-
structural damages, and (c) LPR. In each panel, the scenario risk (thinner dotted line) is compared along-
side the anticipated risk from the next largest magnitude (thicker solid line) and an estimate of the risk 
tolerance (dashed horizontal line). The x-axis represents either the scenario magnitude (thinner dotted 
line) or M1 (thicker solid line). The two risk curves meet at Mc + 3.5 since this value was chosen as the 
upper magnitude bound M2. Computed risk values above M2 are only shown for illustration purposes
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Then, MY can be determined by stepping back from MR by an amount (ΔΜjump) we antic-
ipate that magnitudes could jump during an operator’s mitigation. Obviously, for this plan to 
be operational, the Mc must be smaller than MY. The value of ΔΜjump in cases driven by fluid 
injection can be up to 2 magnitude units (Verdon and Bommer 2020; Schultz et al. 2022a). 
For other human activities this value might be smaller or larger. Further research to better 
constrain this variable is needed. Finally, if the measurement uncertainty behind the com-
puted magnitude solutions is non-negligible (e.g. above 0.1 magnitude units), then it must 
be taken into account by conservatively adjusting Mc, MY and MR (towards lower values).

Fig. 6 Flowchart of the risk management plan. The steps are color-coded to reflect the presence of five 
different modules that can be computed independently. The arrows reflect the ideal order of computations
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3 Discussion and conclusions

As the world is gradually phasing out fossil fuels as a key energy source, new frontiers in 
energy exploration and production will emerge. These endeavours may require solutions 
that affect the balance of Earth’s crust in unfavourable ways, leading to elevated levels of 
seismic hazard. Thus, a broader discussion is needed on the trade-offs between energy secu-
rity, net-zero emission goals, and induced seismic hazard. Notably, this discussion might 
lead to tolerance levels (in terms of seismic risk) that depend on the importance of the 
energy project in question. In any case, once the tolerance levels are agreed upon, the pro-
tocol we present in this study can be used to assess the probability of exceeding them and to 
define a magnitude-based TLP for monitoring purposes.

Our source agnostic framework for management of induced seismicity risk is both 
advantageous and practical. Advantageous in the sense that risk-reducing decisions can still 
be made, even in the absence of a complete description of the source. This is significant, 
because our changing world will always be considering new subsurface resources/technolo-
gies - potentially ones without any suitable analogues for earthquake source modeling. It is 
also practical in the sense that this approach can be readily adapted in any jurisdiction that 
has pre-existing risk modeling capabilities. Our approach has been tailored to utilise the 
conventional outputs of scenario risk modeling (Sect. 2.1–2.7) and then translate them into 
decision variables based on risk tolerances and GR-MFD statistics (Sect. 2.8). Thus, these 
previously existing workflows can readily adapt their outputs to consider induced seismic-
ity risk. While we have discussed the implications for informing the red- and yellow-light 
thresholds within a TLP (Sect. 2.9), this analysis could also be used to inform the issuing of 
permits or interim pre-screening.

From the start, we made the deliberate choice to render our approach source-agnostic, in 
order to make it widely applicable to any type of induced seismicity, in any region. One defi-
ciency of our source agnostic approach to note is that we have not explicitly used a trailing 
seismicity model. This is because the existing trailing seismicity models are only calibrated 
on short-term cases of induced seismicity triggered by fluid-injection (Schultz et al. 2022a). 
If some estimates of trailing seismicity are known (Watkins et al. 2023), this information 
can easily be incorporated in the decision variable estimation (Sect. 2.8). On the other hand, 
this deficiency could also be addressed by conservatively applying a scaling factor to the 
risk tolerances; in this case, the approach would remain truly source agnostic. Furthermore, 
our framework could also be augmented with uncertainty ranges around the b-value and the 
M2. A probabilistic treatment of these parameters could mimic the logic tree structure we 
outline for the ground shaking models. The user can determine whether this added complex-
ity is warranted, on a case-by-case basis.

Despite its current generic form, our framework was originally designed to tackle 
induced seismicity related to gas production. It is based on a report commissioned by the 
Dutch State Supervision of Mines (SodM) (Grigoratos et al. 2023), and later reviewed by 
an external panel of experts with either industry or regulatory experience. It includes vari-
ous implementation details regarding fluid extraction projects, especially when it comes to 
a priori analyses for permitting purposes. It was a preparatory study for the development 
of a new protocol for Seismic Hazard and Risk Assessments (SHRA) of induced seismicity 
related to the production of small gas fields in the Netherlands.
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Finally, we should highlight the importance of seismic monitoring both before and during 
the operations of the energy project (Zhou et al. 2024). In the planning phase of the project, 
a low Mc is essential to understand the background seismic activity levels at the site, before 
human activities come into play. During operations, it enables the stakeholders to monitor 
the potential rise in observed magnitudes with a long enough lead time, enabling potential 
mitigation measures before the yellow or red light is reached. Crucially, the protocol-design 
incentivizes the operator to lower the Mc, since M1 is set as always larger or equal to Mc.
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