
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Differential Dynamic
Programming for the

Optimization of
Many-Revolution

Solar-Sail Transfers
Riccardo Minnozzi

Differential Dynamic
Programming for the

Optimization of
Many-Revolution

Solar-Sail Transfers
by

Riccardo Minnozzi

Student Name Student Number

Minnozzi Riccardo 5856418

Supervisor: Dr. Ir. J. Heiligers
Co-Supervisor: Ir. F. Gamez Losada
Project Duration: April, 2024 - March, 2025
Faculty: Faculty of Aerospace Engineering, Delft

Cover: Thrust direction for Vesta proximity operations [1]

Preface

Well ...
it feels a bit unreal to be at the end of this long journey. First of all a heartfelt thank you to my super-
visors, Jeannette and Fernando, for the support, kindness, and interest shown throughout the whole
thesis. I sincerely believe in the potential of this work and I hope it will be useful in future studies.

I would really like to have the words to describe how grateful I am for all the friends I have made
throughout these years: being able to go almost anywhere and have the opportunity to feel at home is
a huge privilege, and you all are the reason why I have this.

Thank you to my friends here in Delft, for the support and the shared memories in the past years.
Thank you to my friends from Turin for being there like we were never separated, I am looking forward
to hugging you all again (yes, I have discovered your ”sneaky” trip to Delft). Thank you to my friends
from Camerino, who have inexplicably managed to be here despite the ample availability of sleeping
accommodations (my floor). As you can see I am not good with words, and I would much rather tell
you all in person how much your presence means to me and celebrate this moment together.

Finally, I guess it’s time to thank my parents, who have made all of this possible, who have supported
me throughout these years away from home, and who have always been a beacon of safety and a
point of trust. I don’t think I’ll ever be able to thank you enough, but I hope to have made you proud,

Thank you

Riccardo Minnozzi
Delft, March 2025

i

Summary

Planet-centered applications of solar sails, though less studied in literature than interplanetary applica-
tions, offer promising perspectives for active debris removal, in-orbit servicing, and scientific exploration
missions. The dynamics and operations of solar sails around a planet differ considerably from those
in an interplanetary environment. Namely, the small magnitude of attainable solar-sail thrust with re-
spect to central body gravity implies reduced orbit control authority, which is further affected by frequent
eclipsing phenomena. These features result in the need for many orbital revolutions to accomplish a
single transfer.

Optimization problems resulting from such orbital transfers imply many decision variables. Direct op-
timization methods poorly scale with the size of the decision variables vector. Indirect optimization
methods, while not showing similar numerical limitations, are highly sensitive to initial guesses, which
are difficult to produce due to the generic lack of knowledge on optimal planet-centered solar sail trans-
fers. Recently a Q-law approach, consisting of an objective-informed Lyapunov controller, has been
successfully used to investigate many-revolution transfers using solar sails: this technique does not
enforce optimality conditions, thus only generating near-optimal solutions.

An alternative approach is therefore identified in Differential Dynamic Programming (DDP). The DDP
algorithm offers promising numerical properties, showing a wide convergence basin, numerical sta-
bility, and only linear scaling in computational requirements with problem size. While current DDP
approaches have been demonstrated to effectively address computational limitations caused by high-
dimensional problems, expansions are required to properly address optimal sail-powered transfers:
these expansions include reductions in the algorithm’s number of hyper-parameters, the capability to
handle problems where travel time is a decision variable (i.e., rendezvous scenarios), and the ability to
reliably and efficiently enforce path constraints (i.e., dynamical limitations of). The objective of this the-
sis is to address the main limitations of the DDP algorithm by introducing novel methodologies for the
flexible-final-time formulation of the DDP algorithm, the enforcement of path constraints up to second
order, and the automatic tuning of key hyper-parameters. The devised algorithm is implemented follow-
ing Object-Oriented Programming (OOP) paradigms to guarantee a modular, readable, and re-usable
implementation: by providing a reliable optimization algorithm, with insights into its tuning process, this
work aims at enabling future efforts into the application of DDP to high-dimensional optimal control
problems. The developed algorithm is used to identify and analyze optimal many-revolutions solar sail
transfers around Earth.

The capability to optimize flexible-final-time problems is introduced through time-dilation: the problem
duration is parameterized and handled as a static decision variable. The technique is implemented by
modifying the variational equations approach to embed information on variable final time directly within
the state transition maps used in the DDP algorithm. Path constraints are enforced by analytically
solving for optimality conditions on a second-order approximation of each DDP stage sub-problem.
The DDP back-propagation of a quadratic cost model is extended to the constraint violation partial
derivatives, enabling an automatic tuning of the penalty parameter. A relaxation technique for the
DDP trust-region procedure is also introduced, reducing sensitivity to hyper-parameters related to the
accuracy of the DDP quadratic cost model. The devised algorithm is implemented in MATLAB® and
integrated with an automatic differentiation package.

The resulting DDP solver is applied to a simplified dynamical model for the identification of optimal
co-planar circular-to-circular solar sail transfers. The dynamical model considers the effects of central-
body gravity, solar radiation pressure, and eclipses. Numerical stability is improved through scaling and
a variable transformation. The algorithm is successfully verified and validated against a state-of-the-art
direct optimization solver. The algorithm behavior according to its hyper-parameters is characterized
through several factorial analyses: key findings are summarized to provide a ’rule-set’ for future DDP
tuning. The algorithm convergence properties over increasing problem dimensionality are also investi-

ii

iii

gated.

The validated algorithm is applied to time-optimal many-revolution solar-sail transfers under different
conditions. Two approaches to time-optimal solutions are defined: a fixed-time formulation, where
the increase in orbital radius over a specified transfer duration is maximized, and a flexible-final-time
formulation, where the transfer time to achieve a specified gain in orbital radius is minimized. The
fixed-time formulation is used to analyze solutions at two different altitudes: the diverse illumination
conditions, influenced by the orbital altitudes and transfer duration, result in distinct control regimes and
optimal orbital geometries, resulting in considerably different orbit-raising performances. The optimized
transfers are used to derive power regression models for the solar sail in both the analyzed cases.
The performance prediction from the regression model is exploited to initialize the flexible-final-time
formulation, successfully identifying a time-optimal circular-to-circular transfer at low orbital altitudes.

The developed algorithm was observed to reliably achieve convergence to optimal solutions even in
complex and high-dimensional optimal control problems. The validated implementation and OOP archi-
tecture provide a solid starting point for further development of the DDP algorithm. While the obtained
results shed light on optimal solar-sail many-revolutions transfers, higher-fidelity dynamical models
shall be considered in further analyses. The software designed as part of this thesis is made available
to encourage future works on high-dimensional optimal control problems.

Contents

Preface i

Summary ii

List of figures vi

List of tables vii

Nomenclature viii

1 Introduction 1

2 Literature Review 2
2.1 Solar sailing . 2

2.1.1 Solar-sail technology . 3
2.1.2 Solar sailing in the Earth environment . 6

2.2 Optimal control . 7
2.2.1 Indirect methods . 8
2.2.2 Direct methods . 9
2.2.3 Heuristic methods . 9
2.2.4 Dynamic programming . 10
2.2.5 Summary and considerations . 10

2.3 Constrained optimization . 11
2.3.1 Lagrange multipliers . 11
2.3.2 Penalty methods . 12
2.3.3 Augmented Lagrangian . 13
2.3.4 Approaches comparison . 13

2.4 Differential Dynamic Programming . 14
2.4.1 Algorithm formulation . 14
2.4.2 Theory . 16
2.4.3 Applications . 18

2.5 Research objective and research questions . 20
2.5.1 Research objective . 22
2.5.2 Research questions . 22

3 Methodology 23
3.1 Problem formulation . 23
3.2 Hybrid Differential Dynamic Programming . 24

3.2.1 State Transition Maps . 24
3.2.2 Backwards induction . 30
3.2.3 Trust region quadratic sub-problem . 34
3.2.4 Forward Pass . 44
3.2.5 Trust region update . 44
3.2.6 Convergence test . 45
3.2.7 Penalty update . 46
3.2.8 Quadratic model tolerance relaxation . 49
3.2.9 Mesh refinement . 50

3.3 Software design . 50
3.3.1 Object-Oriented Programming . 50
3.3.2 Automatic differentiation . 53

4 Journal Article 59

iv

Contents v

5 Conclusions and Recommendations 109
5.1 Conclusions . 109
5.2 Recommendations . 111

5.2.1 Differential Dynamic Programming algorithm . 111
5.2.2 Research outlook . 113

References 114

A Software Verification 120
A.1 Dynamical models . 120
A.2 Numerical integration . 121

B Project Management 125
B.1 Work breakdown structure . 125
B.2 Time allocation . 128

List of Figures

2.1 Schematic illustrations of the solar-sail-normal vector n̂ orientation defined using the
cone angle α and clock angle δ (left side) and of the Solar Sail Acceleration (SSA) bubble
(right side). Both illustrations use the Sun-light frame S(x̂, ŷ, ẑ) 4

2.2 Illustration of the backwards induction in the Differential Dynamic Programming (DDP)
algorithm. 15

2.3 Illustration of the forward pass in the DDP algorithm. 15

3.1 Block-diagram representation of the Hybrid Differential Dynamic Programming (HDDP)
algorithm presented in [42]. 25

3.2 Illustration of the augmented state variations mapping between stages k and k + 1. . . . 27
3.3 Illustration of the (augmented) state variations mapping between consecutive stages

when accounting for variable stage collocation . 29
3.4 Schematic representation of the Hessian shift technique in a 1D control case, with shift λ 35
3.5 Backward propagation of the second-order model of the constraints violation Ψi for mul-

tiple phases . 46
3.6 Overview of the Object-Oriented Programming (OOP) hierarchy 51
3.7 High-level overview of the HDDP algorithm implementation 55
3.8 Overview of the ForwardPass class implementation . 56
3.9 Overview of the StmsPropagation class implementation 56
3.10 Overview of the BackwardsInduction implementation 57
3.11 Overview of the Stage.solve method implementation 57
3.12 Overview of the InterPhase.solve method implementation 58
3.13 Overview of the PhaseManager class . 58

A.1 Verification of the point-mass gravity model . 121
A.2 Solar-sail acceleration bubble representation . 121
A.3 Verification of the eclipse model . 122
A.4 Benchmark integrator analysis . 122
A.5 Full integrator analysis . 123
A.6 180 revolutions integrator verification . 124

vi

List of Tables

2.1 Summary of mission characteristics . 6
2.2 Main features of the different numerical optimization methods. 11
2.3 Trade-off table of the considered classes of constrained optimization methods 14
2.4 Main features of relevant expansions to the DDP algorithmic framework 18
2.5 Main features of relevant applications of DDP algorithms 21

A.1 Swept step sizes and tolerances . 123

vii

Nomenclature

List of acronyms
ACS Attitude Control System
ACS3 Advanced Composite Solar Sail

System
ADR Active Debris Removal
AMT Active Mass Translator
C2C Circular To Circular
COV Calculus of Variations
CRTBP Circular Restricted Three Body

Problem
DDP Differential Dynamic Programming
EOM Equations of Motion
EP Electric Propulsion
GEO Geostationary Equatorial Orbit
GTO Geostationary Transfer Orbit
GTOC Global Trajectory Optimisation

Competition
HDDP Hybrid Differential Dynamic

Programming
IEP Ion Electric Propulsion
IKAROS Interplanetary Kite-craft Accelerated

by Radiation Of the Sun
JAXA Japanese Aerospace Exploration

Agency
KKT Karush-Kuhn-Tucker
LEO Low Earth Orbit
MBH Monotonic Basin Hopping

MPBVP Multi-Point Boundary Value Problem
NASA National Aeronautics and Space

Administration
NEA Near Earth Asteroid
NLP Non-Linear Programming
OCP Optimal Control Problem
OOP Object-Oriented Programming
PDE Partial Differential Equations
QP Quadratic Programming
RCD Reflective Control Device
RCS Reaction Control System
SBS Sail-Boom System
SDC Static Dynamic Control
SRP Solar Radiation Pressure
SSA Solar Sail Acceleration
SST Solar Sail Thrust
SSO Sun-Synchronous Orbit
STM State Transition Map
SWEEP Space-Waste Elimination around

Earth by Photon propulsion
TLE Two-Line Element
TOP Trajectory Optimization Problem
TRAC Triangular Rollable and Collapsible
TRQP Trust-Region Quadratic Programming
UAV Unmanned Aerial Vehicle
WBS Work-Breakdown Structure

Greek symbols
α Small update to the Hessian-shifted

trust-region sub-problem model
β Sail lightness number
∆ Trust-region radius
∆σ Penalty update restriction parameter
∆best Trust-region radius best estimate
ρ Quadratic model validity metric
ϵ1 Quadratic model validity threshold
ϵopt Optimality threshold
ϵfeas Feasibility threshold
Γ Initial conditions parametrization
λ Hessian shift parameter
γ Hessian correction term
µ Gravitational parameter

φ Terminal cost function
φ̃

Ψ Terminal constraints function
σ Penalty parameter
λ Lagrange multipliers (terminal con-

straints)
µ Lagrange multipliers (path constraints)
Φ1 State Transition Matrix
Φ2 State Transition Tensor
σ̃ Sail loading
κϵ Quadratic model validity threshold up-

date parameter
κeasy, κhard Convergence tolerances in different

cases for the robust trust-region solver

viii

List of Tables ix

κd Trust-region radius update parameter
∆min, ∆max Limits to the trust-region radius up-

date
κσ Parameter to perform penalty updates
∆t Step-size for the stage collocation

function
δu∗ Trust-region sub-problem model mini-

mizer

λL, λU Hessian shift upper and lower bounds
λ1 lowest Hessian eigenvalue
θ Parameter to update Hessian shift λ
ρbest, ∆best Best accuracy estimates used in the

quadratic model validity adaptive en-
largement

α Sail cone angle
δ Sail clock angle

Latin symbols
au Astronomical unit
a0 Solar sail characteristic acceleration
A Surface area
m Mass
U Control feedback matrix (for path-

constrained problems)
c Speed of light
L Running cost function
W Energy flux per unit of time
Ls Solar luminosity
Ls Sun’s luminosity
RLs Distance between Earth and Sun
rss Distance between generic point and

Sun
∆E Energy carried by energy flux
∆t Time interval
P Pressure
∆p Momentum transported by particles
PL Solar radiation pressure at 1 au from

the Sun
WL Solar energy flux at 1 au from the Sun
J Cost functional
t Independent variable
x State vector
u Control inputs
U Set of admissible controls
W Set of admissible parameters
f Dynamics function
ẋ Time derivative of the state vector
g Path constraints function
R Real numbers set
nu Dimension of the control inputs vector
nx Dimension of the state vector

nw Dimension of the static parameters
vector

nλ Dimension of the Lagrange multipliers
vector

ng Dimension of the path constraints func-
tion

nq Dimension of the active path con-
straints set

Ni + 1 Number of optimization stages
δx State vector variation
δu Control update
x̄ Reference trajectory state vector
ū Reference trajectory control input
r̂ss Unit vector in the direction from Sun to

satellite (the Sun-line)
n̂ Sail normal unit vector
f Feasibility metric
h Optimality metric
X Augmented state vector
ER Expected cost-to-go reduction
AR Actual cost reduction
P Generic penalty function
M Number of phases
H Problem Hessian matrix
HR Reduced Hessian matrix
Z Null space of the constraints Jacobian
M Matrix in the affine-term equations

for the path-constrained stage sub-
problem

H Hessian in the affine-term equations
for the path-constrained stage sub-
problem

Ak, Bk, Ck, Dk Controls feedback law terms
Aλ+

, Cλ+
Lagrange multipliers feedback law
terms

List of Tables x

Aw+ , Bw+ , Cw+ , Dw+ Parameters feedback
law terms

D Trust-region scaling matrix
w̃ Measure of gradient of the secular

equation
Lc Cholesky factorization matrix
G↕, Ll, Fl, Nl Different sub-sets of the Hessian

shift available range
dc, vc Results of the partial Cholesky factor-

ization

q Active set of constraints in a stage sub-
problem

Y Set of non-controls decision variables

Iopt Optimality improvement gained from
mesh refinement

b̂ Improvement direction for trust-region
sub-problem model computed using
LINPACK

Subscripts
f Final quantity

0 Initial quantity

k Quantity at generic stage k

N Quantity at final optimization stage N

i Quantity at generic phase i

+ Quantity at inter-phase on the first
stage of the upstream phase

− Quantity at inter-phase on the last
stage of the previous phase

s Sun
L Earth

1
Introduction

Solar sailing is a novel spacecraft propulsion method that makes use of a thin mirror-like structure (the
sail) to harness the momentum carried by Sun-emitted photons, applying a continuous acceleration on
the spacecraft. The concept was first theorized by Johannes Kepler in the 17th century, who noticed
that comet tails are always pointed away from the Sun, and proposed that the future of space travel
could be based on the ability to make use of this ”breeze” to propel ships. The first real application of the
concept can be traced back to 1975 when the National Aeronautics and Space Administration (NASA)
used it to address the reduced propellant margin of the Mariner 10 spacecraft [2].

Thanks to its propellant-less nature, solar sailing has been the focus of multiple studies for applications
in interplanetary environments. Growing interest in planet-centered applications of the solar sail con-
cept has been noticed in recent years, ranging from scientific observation [3], to on-orbit servicing and
active debris removal [4]. Operating solar sails around a planet, however, presents significant chal-
lenges. Namely, the small magnitude of the attainable solar sail thrust results in reduced orbit control
authority, which is further affected by the frequent eclipsing phenomena: performing orbital transfer ma-
neuvers thus requires long transfer times, resulting in many revolutions being necessary to accomplish
the maneuver.

This thesis work focuses on developing and testing an optimization framework to efficiently tackle the
optimal control problem resulting from many-revolution solar-sail transfers. The document is structured
as follows. First, a literature review is presented in Chapter 2, diving into works on solar sailing, optimal
control, and the Differential Dynamic Programming algorithm (chosen as the thesis focus), ultimately
defining a research objective and related questions. Then, the developed methodology is illustrated in
Chapter 3, with technical information regarding the full optimization solver and its implementation. The
novel methodologies and obtained results are presented in the form of a journal article in Chapter 4.
Finally, the outcome of the work is summarized in Chapter 5, with insight into key findings, limitations,
and further research opportunities.

1

2
Literature Review

This chapter provides an overview of the relevant literature on the topics of solar sailing and optimal con-
trol, ultimately leading to the research objective formulation. First, the current state of solar sailing tech-
nology is presented in Section 2.1, focusing on flown missions and applications within planet-centered
environments. Then, works on optimal control applied to low-thrust trajectory optimization transfers are
displayed in Section 2.2, providing a brief overview of constrained optimization techniques, illustrating
the features and limitations of state-of-the-art direct, indirect, and heuristics-based solution methods.
Subsequently, constrained optimization approaches are summarized in Section 2.3, presenting their
features and applicability to the desired optimal control problem. Finally, the algorithm chosen to carry
out this study is presented in further detail in Section 2.4. The derived research objective and questions
are stated in Section 2.5.

2.1. Solar sailing
Solar sails exploit the momentum carried by Sun-emitted photons to generate an acceleration on the
spacecraft [2]. The energy flux per unit of time carried by solar radiation is described as:

W =
LS

4πR2
Ls

(
RLs
rss

)2 (2.1)

where LS is the solar luminosity, RLs is the Sun-Earth distance (RLs = 1 au = 149597870700 m), and
rss is the distance between the Sun and a generic object s in space. Evaluating Eq. 2.1 at the Sun-
Earth distance (rss = RLs) yields the solar flux constant WL = 1368 J

m2s [5]. The solar luminosity,
and consequently also the solar flux constant WL, can vary depending on solar weather conditions
(such as the solar cycle and coronal mass ejections) [5].

When interacting with finite objects, the energy flux induces a net force F = PAeff which depends
on the effective area Aeff exposed to the flux and a pressure term P , referred to as Solar Radiation
Pressure (SRP). If the black-body assumption is introduced (all radiation is absorbed), and incident
radiation is approximated as parallel light beams, the SRP acting on a generic object s is:

P =
W

c
=

LS

4πcR2
Ls

(
RLs
rss

)2 (2.2)

where c is the speed of light (c = 299792000m/s).

An ideal model for the SRP acting on a solar sail is obtained by assuming parallel incoming sunlight,
infinitely rigid, and perfectly reflecting sail membrane [6], and will be now referred to as the ideal sail
model. For a fully reflective object, the pressure computed in Eq. 2.2 doubles, since photon-flux
momentum is transferred from both absorbed and reflected radiation. Under these assumptions, the
solar-sail performance can be characterized using different parameters: the sail loading, which is a
representation of the sailcraft design parameters, the characteristic acceleration, which provides an

2

2.1. Solar sailing 3

intuitive metric for the sail thrusting capabilities at a specified distance from the Sun, and the lightness
number, which quantifies the sail performance regardless of its distance from the Sun. The definitions
of each parameter are now provided:

σ̃ : the sail loading σ̃ corresponds to the total spacecraft mass to area ratio:

σ̃ =
m

A
(2.3)

wherem is the total spacecraft mass and A is the sail surface. Higher-performing sailcraft exhibit
low sail loading σ̃ values, as it implies lowmass and/or large sail area, resulting in higher attainable
acceleration.

a0 : the characteristic sail acceleration a0 is defined as the acceleration produced by an ideal solar
sail, oriented perpendicularly to the incoming Sunlight, at 1 au distance from the Sun, thus:

a0 = 2
PLA

m
= 2

PL
σ̃

(2.4)

where PL is the SRP value at 1 au (PL = WL
c = 4.56 · 10−6 N

m2). The value for a0 provides an
intuitive metric for the performance of a sail at the Earth’s distance from the Sun.

β : the lightness number β is defined as the dimensionless ratio between maximum SRP and Sun
gravitational acceleration: since both quantities are assumed to scale with the inverse square of
spacecraft distance from the Sun rss, the lightness number is a design constant (i.e.: independent
from mission scenario). Its mathematical formulation is:

β =
a0R

2
Ls

µs
=

a0
5.93 · 10−6 m/s2

(2.5)

where µs is the Sun’s gravitational parameter (µs = 1.327 · 1020 m3

s2). These three parameters
provide interchangeable ways to quantify the sailcraft performance.

Under the assumption of an ideal sail model, the generated Solar Sail Thrust (SST) is directed along
the sail-normal vector (small directional variations can occur if these assumptions are dropped [7]) and
cannot have a component in the direction of the Sun [6]. The sailcraft orientation with respect to the
Sun-line (i.e., the direction connecting the Sun to the satellite) can be described through the cone-clock
angle pair α, δ. The cone angle α is the angle between the sail-normal vector and the Sun-line and
represents the sail illumination condition, while the clock angle δ is the angle, defined in a plane normal
to the Sun-line, between a reference direction and the in-plane projection of the sail-normal vector. An
illustration of these angles is provided in Figure 2.1a: the sail-normal vector n̂ is defined in the Sun-light
frame S(x̂, ŷ, ẑ), with origin on the sailcraft center of mass, the x̂ axis directed along the Sun-line, the
ẑ axis normal to the ecliptic plane (in the direction of Earth’s North pole), and the ŷ axis completing the
right-handed reference frame.

Sailcraft orbit control is exerted by modifying its attitude: altering the sail-normal vector n̂ leads to
variations in effective area Aeff exposed to SRP, as well as the resulting SSA direction. Coupling of
these effects determines the so-called SSA bubble: Figure A.2 depicts the contours of all attainable
SSA vectors a (the SSA bubble) in the Sun-light frame S(x̂, ŷ, ẑ). The bubble shape of the SSA
contour translates to significant losses in thrusting capability when the sailcraft is oriented in a direction
significantly different from the Sun-line (i.e., large cone angle α values). While higher-fidelity dynamical
models imply variations to these considerations [7], it holds that solar sail control authority is inherently
limited, with constrained magnitude and direction.

2.1.1. Solar-sail technology
At the Sun-Earth distance, the SRP has small magnitude (i.e., from Eq. 2.2 a value PL = 4.56∗10−6 N

m2

is obtained). To produce significant SSA, a small sail loading σ̃ is required: large sail areaA ensures the
generation of significant SST, while a small mass enables high acceleration. Current design practices
consist of fabricating the solar sail itself (in the form of a membrane) from highly reflecting, lightweight
materials, which require specific mechanisms/configurations to maintain the sail shape and transfer
the generated SST to the satellite [6]. The full structure is tightly stored within the spacecraft bus to

2.1. Solar sailing 4

(a) (b)

Figure 2.1: Schematic illustrations of the solar-sail-normal vector n̂ orientation defined using the cone angle α and clock angle
δ (left side) and of the SSA bubble (right side). Both illustrations use the Sun-light frame S(x̂, ŷ, ẑ)

comply with the tight volume capacity of current launch vehicles, only deploying the solar sail after orbit
injection. Different solar-sail designs have been theorized (i.e., square sails, heliogyros [8], disc sails,
and solar photon thrusters [9]), but few actual technological demonstrations have been achieved. An
overview of flown solar-sailing missions is now provided and summarized in Table 2.1, with the goal of
outlining technological trends, state-of-the-art, and future perspectives in solar sail missions.

IKAROS
The Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS) mission was the first mile-
stone in the field of solar sailing. It was developed by the Japanese Aerospace Exploration Agency
(JAXA) and successfully launched in 2010 on a Venus transfer trajectory, with the ultimate goal of
performing a Venus fly-by [10]. The objectives accomplished by this mission are:

• Demonstrate the deployment mechanism for the solar sail;
• Generate electric power using the thin flexible solar arrays attached to the sail;
• Demonstrate the possibility of navigating using SRP in the interplanetary environment;
• Estimate direction and magnitude of the SST.

The square sail used in the IKAROSmission had an area of 200m2 and a mass of 15 kg, yielding a total
spacecraft mass of approximately 300 kg [11]. Attitude control was achieved through spin-stabilization,
aided by an Attitude Control System (ACS) which included a cold-gas thrust Reaction Control Sys-
tem (RCS) and a Reflective Control Device (RCD) (i.e., liquid crystals with variable optical properties
to shift the sail center of (radiation) pressure [12]). After the two-step deployment process, the sail-
craft proceeded on its trajectory to Venus: the registered velocity increase (100 m/s within the first 6
months [13]) verified the viability of SRP as a propulsion method in the interplanetary environment [11].
Analyses performed on the IKAROS mission data were the first bases for the development of accurate
solar-sail dynamical models [12, 14].

NanoSail-D
On a smaller scale, NASA’s NanoSail-D aimed at demonstrating sail deployment and the concept of
a drag-sail as a passive de-orbiting method. After a launch vehicle failure during the first attempt, the
replica NanoSail-D2 was successfully launched and deployed in 2011 [15]. The NanoSail-D2 sailcraft
consisted of a 3U cubesat platform (meaning a volume of 10 cm× 10 cm× 30 cm), mounting a square
sail with a surface of 10 m2 and total mass of 4 kg [16]. The sailcraft remained in orbit for 243 days
without active control of the sail and managed to maintain ground communications for only 3 days
before running out of power. Two-Line Element (TLE) data showed that the sail, even if uncontrolled,
was successfully serving its de-orbiting purpose [15], making it the first technology demonstration for
space debris mitigation enabled by a drag-sail and also the first sailcraft mission in Earth-orbit.

2.1. Solar sailing 5

LightSail-1
The LightSail-1 mission was launched in 2015 on a ride-share mission to Low Earth Orbit (LEO), tar-
geting a perigee altitude of 356 km [17]). The sailcraft consisted of a 3U cubesat bus, hosting a square
sail with a surface of 32 m2, for a total mass of 4.93 kg. Given the low perigee altitude (i.e., domi-
nance of aerodynamics over SRP), the mission objectives were limited to demonstrating the cubesat
functionality and sail deployment [18]. Its ACS therefore only included magnetic torque rods (while a
momentum-wheel was deemed unnecessary given the mission objectives [18]). LightSail-1 success-
fully achieved its goals and re-entered Earth’s atmosphere only a week later due to its low perigee
altitude and the large area-to-mass ratio [18].

LightSail-2
After the successful demonstration of LightSail-1, the follow-up mission LightSail-2 aimed at demon-
strating controlled sailing in LEO and was launched into a 720 km altitude near-circular orbit [17]. The
spacecraft-bus design was shared with its predecessor, augmented by introducing a momentum wheel
to enable active attitude control for sail steering [17]. After successful deployment, LightSail-2 began
implementing its ”On-Off” control logic (with ”On” corresponding to the sail-normal vector being pointed
away from the Sun, maximizing energy gain, and ”Off” corresponding to the sail being oriented edge-
wise to minimize drag-induced losses) [19]. The observed increase in apogee altitude and the reduced
decay rate in semi-major axis (19.9m/day on average, against the decay rate of 34.5m/day for uncon-
trolled operations) demonstrated the feasibility of Earth-bound solar sailing in LEO [20].

NEA Scout
Launched in 2022, the NEAScout mission aimed at demonstrating sail controllability in an interplanetary
environment, by performing a close fly-by of a Near Earth Asteroid (NEA) [21]. The solar-sail propulsion
was chosen as it proved to be the only concept capable of ensuring mission accomplishment in a
reasonable time (2 years) even under high uncertainties in both launch date and NEA target positions
[21]. Despite the failure to establish communications after orbit injection, the mission is still considered
a relevant endeavor for its ambitious objective. The sailcraft was designed by scaling the NanoSail-D
concept, leading to a 6U bus, storing a sail with a surface of 86 m2 and a total mass of 15.9 kg. The
sailcraft ACS consisted of a cold-gas RCS for de-tumbling and an Active Mass Translator (AMT) system
to steer and trim the sailcraft by shifting its center of mass [21].

ACS3
Launched in 2024, NASA’s Advanced Composite Solar Sail System (ACS3) mission aims at demon-
strating new composite materials for the sail-boom system, characterizing SST and flexible dynamics
for future low-cost cubesat missions (as opposed to other poorly scalable propulsion methods, such as
Ion Electric Propulsion (IEP)) [22]. The sailcraft uses a 12U cubesat platform, hosting a sail with a sur-
face of≃ 80m2 andmass of 12 kg, steered through reaction wheels and magnetic torque rods [22]. The
sailcraft is injected into a midnight-noon Sun-Synchronous Orbit (SSO) at an altitude of 1000 km [22],
where energy gain can be maximized by slewing the sail by 90◦ per orbit [6], with additional steering
laws used to estimate the sail optical properties [23].

A summary of the presented missions, together with their objectives, design choices, and performance
metrics is provided in Table 2.1.

2.1. Solar sailing 6

Table 2.1: Summary of mission characteristics

Mission β [−]
Launch
date ACS SBS Objective

IKAROS 0.001 2010 Spin-stabilization,
cold-gas RCS,
RCD

Square sail,
centrifugal de-
ployment and
tensioning

Demonstate de-
ployment, power
production and
navigation capa-
bility of the sail,
characterize SRP,
perform Venus
fly-by

NanoSail-D 0.003 2011 No ACS Square sail, TRAC
booms deployed
by electric motors

Demonstrate
sail de-orbiting
capabilities and
deployment

LightSail 1/2 0.099 2015/2019 Magnetic torque
rods, momentum
wheel

Square sail, TRAC
booms deployed
by electric motors

Demonstrate sail
deployment and
controlled solar
sailing

NEA-Scout 0.01 2022 Cold-gas RCS,
AMT

Square sail, TRAC
booms with redun-
dant spooling and
electric motor de-
ployment

Perform close
fly-by of a NEA,
demonstrate con-
trolled solar sailing
in interplanetary
environment

ACS3 0.008 2024 Magnetic torque
rods, reaction
wheels

Square sail, com-
posite material
booms

Demonstrate new
deployment mech-
anism and orbit
raising capabilities

Trends observed from Table 2.1 indicate a clear preference towards Earth-bound missions, as they im-
ply lower costs and a well-established operational framework. Sailcraft designs (limited to the square
sail concept) are observed to move towards low-cost cubesat-scale platforms [22], implying that near-
future applications for Earth-bound solar sailing will maintain similar performance metrics to those in-
cluded in Table 2.1.

2.1.2. Solar sailing in the Earth environment
Due to the small values of attainable SSA and reduced steering authority, solar sails are best suited
for missions in interplanetary environments, where slow attitude adjustments, constant exposure to
SRP, and relatively minor gravitational effects (with respect to planet-centered missions) are implied.
For these reasons early studies on solar sailing mainly focused on interplanetary missions, avoiding
the challenges/drawbacks of solar sailing around a planet [24]. However, interest in planet-centered
solar sailing missions has recently increased, thanks to the growing mission heritage (as observed in
Table 2.1), the benefits of propellant-free continuous thrust, and concerning evolutions of the Earth orbit
environment (namely, the acknowledgment of space debris as an environmental threat [25]). Studies
on potential solar-sail planet-centered applications are now introduced, followed by considerations on
the dynamics and operations of solar sails in such environments.

Science missions
In Reference [26], spacecraft with high area-to-mass ratios (e.g., solar sails) are identified for applica-
tion to Earth’s imaging studies. Thanks to dynamical perturbations induced by Earth’s oblateness and
SRP, the study identifies a set of ’quasi-frozen’ orbits (i.e., orbits where long-term perturbations are min-
imized) with Sun-pointing apogee, achievable by low-cost spacecraft with small reflective devices. The

2.2. Optimal control 7

Sun-pointing apogee implies long exposure to the sunlight, thus enabling constant telecommunication
support or imaging of Earth’s illuminated side.

In Reference [27] (and later in Reference [28]) the SST is identified as a solution to define SSOs around
Mercury. While spacecraft around Earth can benefit from its oblateness to induce nodal precession,
thus enabling SSOs, the spherical shape of Mercury does not allow such practices: solar sails in highly
elliptical polar orbits are shown to provide a suitable effect to enable SSOs. Under such conditions, the
sailcraft orbit can be slightly shifted away from the solar terminator line (i.e., the line corresponding to
sunset/sunrise conditions) such that fully illuminated orbital arcs can be exploited for effective planetary
imaging.

In Reference [3], a small low-cost solar sail is identified as a candidate solution for the exploration of
Earth’s magnetic tail: leveraging the sail’s continuous thrust, themission can benefit from long exposure
to the plasma within the magnetic tail, enabling the characterization of long-term behaviors.

Active Debris Removal
Solar sail technology is being investigated as a potential propulsion method for Active Debris Re-
moval (ADR) missions. Due to the increasing number of objects being launched into orbit, combined
with the lack of measures to dispose of non-responsive or fragmented satellites (referred to as space-
debris), the Earth orbit environment is reaching capacity [25]. As debris continues to collide and frag-
ment, the cascading effect may cause the debris population to grow uncontrollably (i.e., the Kessler
syndrome), making some orbital regions unusable for future missions. The adoption of ADR measures
is seen as a promising solution to the space debris problem [29]. Thanks to the propellant-less na-
ture and typically long mission lifetimes, solar sails provide advantageous platforms for this endeavor,
enabling the targeting and de-orbiting of multiple debris objects without the need for replacement or
refurbishment. Studies such as the TugSat concept [4] and the Space-Waste Elimination around Earth
by Photon propulsion (SWEEP) project [30] focus on this application.

Operational considerations
Despite the many potential applications, solar sailing around Earth also presents significant challenges.
The Earth orbit environment is characterized by considerable perturbing forces, meaning that sailcraft
dynamics are governed not only by Earth’s gravity and SRP, but also aerodynamic effects, third-body
perturbations caused by the Sun and Moon, and frequent eclipsing phenomena. Most noticeably, the
shape and size of solar sails make them particularly sensitive to aerodynamic drag, defining a so-called
operational altitude, below which the sail loses its orbit-increase capabilities (450− 600 km, depending
on current solar activity) [31]. Additionally, large sail areas imply increased collision risk with the dense
debris objects population. Given such dynamical considerations, the sail dynamics are highly non-
linear.

The SST nature implies that it is constrained (and coupled) in magnitude and direction. The resulting
orbit control authority is considerably reduced (with respect to other spacecraft propulsion methods)
and implies long orbit-transfer durations, leading to many revolutions being necessary to accomplish a
transfer. In the planetary environment, solar sailing requires frequent attitude adjustments [24]. These
features significantly impact the definition and solution of solar-sail transfer optimization problems.

2.2. Optimal control
Given the high operation and development costs, space missions are designed to optimize certain
performance metrics while fulfilling their objectives. As a result, the mission design problem is often
formulated as a Trajectory Optimization Problem (TOP), consisting of determining the trajectory (i.e., the
time history of vehicle states) that minimizes certain quantity/quantities, while satisfying some initial and
final conditions (if required) [32]. While in most studies ”trajectory optimization” and ”optimal control”
are used interchangeably, it is to be noted that the TOP is usually restricted to optimizing a set of
parameters, allowing a simplified representation of candidate trajectories, and a later reconstruction
of the corresponding controls, if any exist [33]. Conversely, the Optimal Control Problem (OCP) aims
at identifying dynamic control inputs that minimize certain metrics: by implicitly accounting for vehicle
dynamics, the optimal control approach provides more reliable and representative solutions [34].

2.2. Optimal control 8

Solutions to both TOPs and OCPs have been the focus of multiple studies in the aerospace field, rang-
ing from orbital transfers, to planetary entries, to rendezvous/docking maneuvers [35]. More relevant
towards the scope of this work are studies on low-thrust propulsion transfers [33] (i.e., orbital transfers
enabled by limited thrust magnitudes for prolonged duration and with high fuel efficiency). While chem-
ically propelled trajectories can be approximated to a finite number of impulsive shot maneuvers, the
low-thrust OCP requires finding a continuous steering/thrusting law, significantly increasing problem
dimensionality (number of decision variables) [36]. The low control authority of low-thrust propelled
spacecraft around a planet causes many local minima and stationary points in the resulting OCP [33].
The mentioned numerical challenges, combined with highly non-linear spacecraft dynamics, make for
considerably difficult OCPs [37]. The solution of low-thrust Electric Propulsion (EP)-based transfer
OCPs has drawn considerable interest and led to numerous studies [33], while only in later years simi-
lar concepts and approaches started being applied to solar sailing problems [38, 39, 40].

Given the complexity and dimensionality of OCPs resulting from planet-centered low-thrust orbital trans-
fers, it is often difficult to derive analytical solutions, therefore numerical optimization methods are em-
ployed. Depending on the technique adopted to tackle the OCP, these methods can be classified as
indirect, direct, and dynamic programming approaches [33]. An additional class of algorithms, based
on heuristics, is also presented: despite not enforcing optimality conditions, these methods adopt spe-
cific rules/policies to steer solutions to near-optimal conditions [41]. The following sub-sections provide
an overview of the mentioned optimization methods, highlighting their advantages and disadvantages
for applications in solar sail many-revolutions transfer OCPs and presenting relevant related literature.
Numerical optimization techniques shall be able to properly address the main challenges of solar-sail
many-revolution transfer OCPs: a wide convergence basin is required to identify optimal solutions start-
ing from poor initial guesses under highly non-linear dynamics [33], enforcing optimality conditions is
known to improve solution accuracy and robustness against local minima and stationary points [42],
while favorable scaling of the algorithm’s computational requirements with problem dimensionality is
required, given the high-dimensional nature of the considered OCPs [43]. A summary of the main fea-
tures of the presented numerical optimization methods is provided in Table 2.2, with colors indicating
their ability to properly address the challenges of solar-sail many-revolution transfer OCPs.

2.2.1. Indirect methods
Indirect optimization is based on Calculus of Variations (COV) theory: by enforcing optimality conditions
(such as Pontryagin’s minimum principle), the OCP is formulated as a set of Hamiltonian equations sat-
isfying Euler-Lagrange theorem [44]. The Hamiltonian is a function of the problem states, co-states
(representing the cost function sensitivity with respect to the states) and controls [44]. The set of
Hamiltonian equations is transcribed into a Multi-Point Boundary Value Problem (MPBVP) to be solved
numerically [44]. This approach ensures high-quality solutions and the satisfaction of first-order opti-
mality conditions. The numerical solution of the resulting MPBVP is highly sensitive to initial guesses.
The difficult interpretability of the co-states furthermore implies several challenges in the generation
of accurate initial guesses for this approach, affecting its robustness and convergence properties [33].
Additionally, indirect methods require the analytical derivation of optimality conditions for every spe-
cific problem formulation (i.e., different dynamical models, constraints, or objectives), restricting their
adaptability to various OCP definitions [44].

The applicability of indirect methods to the many-revolutions transfer OCP is mainly limited by their
robustness and convergence issues [45]. Several studies to address such issues have been carried out:
homotopy methods, consisting of mapping between the ’complete’ OCP and a similar, well behaved,
formulation, represent the state-of-the-art in such context [46].

A variety of studies have explored the application of indirect optimization methods to low-thrust tra-
jectory design. Initial approaches to the many-revolutions OCP leveraged Edelbaum’s approach [47],
later extended to the many-revolution problem [48], to obtain initial guesses for EP-powered spacecraft
transfers. A homotopy method was used in Reference [46] to identify fuel-optimal EP-powered trans-
fers up to 754 revolutions, while in Reference [45] a Q-law approach was adopted to generate initial
guesses, yielding up to 228-revolution transfers.

Indirect optimization methods have also been investigated for applications to solar-sail transfers. Adopt-
ing orbit-averaging techniques, [49] attempted to identify optimal many-revolutions Earth-centered solar

2.2. Optimal control 9

sail transfers, with limited results due to convergence issues. More recent studies analytically derived
locally optimal control laws that maximize rates of change of specified orbital elements, using indirect
optimization to blend them and apply them to planet-centered mission scenarios [28, 50]. Similar ap-
proaches are applied to scenarios including atmospheric drag [51] and planetary radiation pressure
[52]. Overall, literature on indirect optimization offers a promising outlook for future studies but high-
lights the need for approximations (such as orbit averaging) or very accurate initial guesses. Given the
limited knowledge and literature on optimal solar-sail many-revolution transfers, indirect optimization
methods are considered unfit for the scope of this work.

2.2.2. Direct methods
Direct optimization approaches adopt transcription techniques to reformulate the OCP as a unique
Non-Linear Programming (NLP) problem, which is then solved numerically [53]. The transcription pro-
cess (also referred to as direct collocation) consists of interpolating the system dynamics and controls
through polynomial functions at different collocation points: coefficients for the defined polynomials
become decision variables for the resulting NLP [54]. Thanks to the established NLP solution method-
ologies, direct optimization methods are widely employed in commercially available software [33], mak-
ing them a popular choice in studies across different scientific domains. NLP solvers display generally
wider convergence basins with respect to MPBVP solvers used in indirect methods, however, solutions
typically show sensitivity to the chosen collocation scheme [33]. Most noticeably, the transcription pro-
cess implies a quadratic growth of NLP problem dimensionality with transfer duration (i.e., the ’curse
of dimensionality’), quickly leading the resulting OCP to numerically untractable size [54, 55].

In the context of many-revolutions orbital transfers, the ’curse of dimensionality’ typically limits the
applicability of direct methods. Different techniques are adopted to mitigate these limitations. Sparsity
patterns in the problemHessianmatrix are exploited to reduce the computational intensity of the solution
process [56]. Adaptive meshing techniques are also defined, with the goal of minimizing the number
of collocation points required to accurately discretize the problem [57].

Thanks to their flexibility and the availability of related state-of-the-art software, direct methods have
successfully been applied to several studies on many-revolution low-thrust transfers. Most relevant
towards the scope of this work are the studies in Reference [56], where a direct solver using mesh
refinement and sparsity exploitation was used for fuel-optimal transfers up to 578 revolutions, and in
Reference [58], where the GPOPS-II [57] direct optimization software is used to identify time-optimal
Earth-bound transfers (using an IEP engine) up to 1023 revolutions. Many-revolution solar-sail trans-
fers are investigated in Reference [59] using the GPOPS-II software, combined with orbit averaging and
control parametrization to reduce problem dimensionality, successfully solving for time-optimal Geosta-
tionary Transfer Orbit (GTO) to Geostationary Equatorial Orbit (GEO) transfers up to ≃ 300 revolutions.
Direct optimization methods have proven effective for many-revolution transfer OCPs but remain limited
for longer transfers, as existing techniques only partially mitigate the ”curse of dimensionality”.

2.2.3. Heuristic methods
Heuristic methods apply specific policies and strategies to assess and improve the optimality of a candi-
date solution, without mathematically enforcing optimality conditions [33]. Examples of heuristic meth-
ods can be identified in genetic-inspired optimization algorithms, which apply evolution policies inspired
by natural laws to ’evolve’ candidate solutions towards optimality. A more relevant example is that of
the Q-Law [60], a Lyapunov orbit-control approach that captures the proximity to the desired objective,
and uses locally optimal control laws to steer the solution towards optimality. Despite their ’blindness’
to optimality conditions, heuristic methods see frequent application in low-thrust transfer optimization
studies due to their flexibility and/or low computational requirements [35].

While requiring minimal effort in terms of implementation and problem formulation, genetic-inspired
algorithms typically imply significant computational effort, as numerous candidate solutions need to be
evaluated simultaneously: the large search space spanned by these algorithms makes them promising
candidates for use in early design studies (in combination with trajectory parametrization techniques)
[35]. In the context of many-revolution transfers optimization, [61] uses a Differential Evolution algorithm
to blend locally optimal control laws [6], producing a preliminarymission design for a sail-powered debris
removal mission.

2.2. Optimal control 10

The Q-law approach is widely applied in studies regarding the optimization of many-revolution transfers
using low-thrust electric engines: in [60, 62] multiple Earth- and Vesta-centered transfers are analyzed,
showcasing promising results both in terms of computational and optimality performance. The Mystic
software presented in [1] also includes a Q-law approach for the generation of initial guesses or ap-
proximate solutions. More relevant to the scope of this thesis is the modified Q-law approach derived
in [38], specifically tailored for applications to the many-revolutions Earth-centered solar sail transfer
problem, displaying promising results with reduced computational efforts in both Earth orbit and Earth-
moon transfers. A combination also including genetic-inspired optimization is observed in [63], where
the Lyapunov control gains are optimized for robustness through the particle-swarm optimizer, and the
resulting control law is applied to the GEO space debris removal problem using solar sail propulsion.
Heuristic methods offer promising perspectives for preliminary studies into the complex nature of many-
revolution transfer optimization: the lack of information and guarantees of solution optimality determine
the need for more accurate approaches.

2.2.4. Dynamic programming
While direct and indirect optimization methods enforce first-order optimality conditions, the dynamic
programming approach is based on Bellman’s principle of optimality: ”An optimal policy has the prop-
erty that whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision” [64]. While the stated principle
refers to discrete sets of decisions, analogous continuous time theory is provided by the Hamilton-
Jacobi-Bellman equations, a system of first-order Partial Differential Equations (PDE) equivalent to
Pontryagin’s minimum principle.

Thanks to this optimality principle, dynamic programming techniques focus on converting complex prob-
lems into a series of simpler sub-problems, which are then solved recursively [64]. The recursive ap-
proach allows dynamic programming to explore the full design space (i.e., all possible combinations of
control inputs): despite guaranteeing global optimality, the approach leads to the problem dimensional-
ity increasing exponentially with the number of decision variables, incurring in the ”curse of dimension-
ality” [35]. For this reason, the application of dynamic programming to OCPs is extremely limited.

A different approach, with favorable numerical properties, is identified in the DDP algorithm. The DDP
algorithm [43] avoids the ’curse of dimensionality’ by only exploring the search space around a certain
reference solution: the OCP is discretized in a series of smaller sub-problems (referred to as stages),
which are sequentially solved thanks to Bellman’s optimality principle [64], iteratively improving the
reference solution towards optimality. Since each stage sub-problem is solved individually, the com-
putational requirements of DDP only scale linearly with the number of discretization points [65]. DDP
algorithms share similar convergence basin and speed to direct solvers [66], without the related dimen-
sionality issues. Given the sequential approach to the solution of stage sub-problems, DDP algorithms
are expected to incur in longer runtimes than other solver classes. DDP algorithms have been success-
fully applied to several studies on optimal many-revolution transfers (both using IEP and solar sailing
as propulsion methods): a thorough overview of relevant literature is provided in Subsection 2.4.3.

2.2.5. Summary and considerations
The summary in Table 2.2 provides valuable insight into the applicability of each numerical optimiza-
tion method to the solar-sail many-revolution transfer OCP. It is noticed that the computational re-
quirements implied by high-dimensional OCPs are the main limiting factor for various solver classes:
orbit-averaging techniques have been introduced to address numerical issues caused by problem di-
mensionality [49, 59], but they introduce approximations to the dynamical model and are therefore
inherently inaccurate. Recent studies in solar-sail trajectory optimization tend to exploit locally optimal
laws to maximize the rate of change in specific orbital elements at every instant [28, 50, 51, 52]. While
consisting of analytical solutions (thus free from computational limitations), these control laws only sat-
isfy optimality conditions at isolated time instants: application to extended duration problems such as
orbital transfers requires numerical optimization techniques to blend these control laws over the full
problem duration [28]. In general, applying an optimal control solver to the defined OCP yields more
optimal solutions with respect to those provided by locally optimal control laws [39], which are therefore
not considered for the scope of this work.

2.3. Constrained optimization 11

Table 2.2: Main features of the different numerical optimization methods.

Solver
class

Computational
requirements

Convergence
properties

Optimality
conditions

Indirect Linear increase with the
number of decision variables

Narrow convergence basin,
highly sensitive to
co-states guess

First-order
optimality

Direct Quadratic increase with the
number of decision variables

Wide convergence basin,
quadratic convergence order

First- and
second-order
optimality

Heuristics
(Q-law)

Being implemented through a
control law, only numerical
propagation is performed

Not applicable No guarantees
on optimality

Heuristics
(genetic

algorithms)

Depends on the chosen
population size, very

computationally demanding [33]
Global search space No guarantees

on optimality

Dynamic
programming

Exponential increase with the
number of decision variables Global search space Global

optimality
Differential
Dynamic

Programming

Linear increase with the
number of decision variables

Wide convergence basin,
quadratic convergence order

First- and
second-order
optimality

Numerical optimization methods based on an indirect, Q-law, or DDP approach do not suffer from the
”curse of dimensionality”. Indirect methods, however, are highly sensitive to initial guesses in terms
of both states and co-states, which are difficult to produce for the rather unexplored many-revolution
solar-sail transfer problem. The Q-law approach provides a promising method for the quick generation
of near-optimal trajectories but does not enforce optimality conditions, thus not providing the desired
guarantees of accuracy and reliability inherent with optimization solvers [33]. The DDP algorithms
class is observed to provide the required features for applications to high-dimensional OCPs, and it is
therefore illustrated in further detail in Section 2.4.

2.3. Constrained optimization
The optimization of low-thrust transfers implies enforcing constraints of different kinds. The orbital
transfer OCP can include both terminal constraints (i.e., applied to the spacecraft’s final conditions),
and path constraints (i.e., enforced throughout the full OCP duration). Numerical optimization methods
are typically defined on unconstrained problem formulations and require integration with constrained
optimization techniques for effective applications.

Different methodologies are available to enforce constraints on an OCP. ”Trivial” methodologies such
as control projection [67] are not taken into account, as they ”artificially” impose feasibility conditions
without integrating them into the optimization process. The methods considered for the scope of this
work are limited to the broader class of Image Space Analysis methods [68], which benefit from a
noticeable amount of related literature and applications. These methods can be classified into three
categories: Lagrange multipliers methods, penalty methods, and augmented Lagrangian methods. For
notational clarity. The following subsections provide an overview of each of the mentioned classes.
For notational clarity, the following methods are illustrated on a generic problem with cost function
L(t,x,u,w), where t is the independent variable, u are control inputs, and w are static parameters,
subject to the equality constraint function g(t,x,u,w).

2.3.1. Lagrange multipliers
The Lagrange multipliers approach to constraint optimization consists in the introduction of a new cost
functional through an additional set of variables, named Lagrange multipliers λ). The OCP is then
reformulated as the minimization of the new cost functional (referred to as Lagrangian L):

L = L(t,x,u,w) + λTg(t,x,u,w). (2.6)

2.3. Constrained optimization 12

Inequality constraints are typically integrated within this framework through the slack-variables ap-
proach [44], which allows to convert inequality constraints of the form g(t,x,u,w) ≤ 0 into equality
constraints by adding a slack variable s resulting in:

g(t,x,u,w) + s = 0,

s ≥ 0.
(2.7)

The necessary optimality conditions for such problems require the gradients of constraints and La-
grangian to be parallel at the solution [44]. In a more general way, the optimality conditions for the
constrained problem in Eq. 2.6 are expressed through the Karush-Kuhn-Tucker (KKT) conditions [69],
consisting in:

1. Stationarity: the gradient of the problem Lagrangian L with respect to the decision variables is
null;

2. Primal feasibility: the solution satisfies all the constraints (both equality and inequality)
3. Dual feasibility: Lagrange multipliers associated to inequality constraints are non-negative
4. Complementary slackness: for active inequality constraints, the corresponding multipliers are

positive, while they are null for inactive constraints

Constrained optimization methods belonging to this class can be solved through different approaches.

Elimination methods
Elimination methods consist of estimating the set of active constraints (i.e., the components of the
constraints function g that violate the feasibility condition g = 0) to define a set of dependent decision
variables: the problem is therefore reduced to only optimizing the independent decision variables, while
the dependent ones are computed from the active constraints.

An example of an elimination method is the clamping approach [42, 70, 71]: after estimating the active
set of constraints, the decision variables that violate those constraints are fixed (hence the name ”clamp-
ing”), while an unconstrained optimization is performed on the independent variables. The clamping
technique is inherently iterative, as the estimation of the active set of constraints can only be trusted if
consecutive iterations do not introduce additional active constraints [70].

Range-space methods
Range-space methods also require the estimation of an active set of constraints: the Jacobian of those
constraints is used to construct the ”range space”, corresponding to the set of decision variables that
affect the constraint violation. The complementary approach is the null-space method, which operates
along the null-space of the Jacobian of the active constraints, corresponding to the set of decision
variables that have no effect on constraint violations.

These methodologies combine the two sets to identify the decision variables affecting the solution
feasibility (i.e., the range space) and those affecting only optimality (i.e., the null space) [42]. Since
these methods perform purely algebraic steps, they can benefit from efficient numerical methods and/or
approximations to obtain fast convergence [72].

Min-max techniques
An iterative approach to the solution of such systems is the ”min-max” method, consisting of an in-
ner loop where optimal decision variables are computed, and an outer loop where maximal Lagrange
multipliers λ are defined (i.e., Lagrange multipliers that maximize the Lagrangian L). These methods
guarantee robust convergence to an optimal solution [73], but are typically slow, especially in highly
nonlinear problems [42], and computationally expensive as they require two nested loops.

2.3.2. Penalty methods
The penalty methods approach constitutes a simple way to integrate constraints into an OCP without
major re-formulation effort. The cost functional is augmented with a (scalar and non-negative) penalty
function P, resulting in:

J = L(t,x,u,w) + σP(g(t,x,u,w)) (2.8)

2.3. Constrained optimization 13

where σ is the penalty parameter. This formulation allows to tackle the constrained problem as an
unconstrained OCP, as the constraint violation is automatically minimized together with the cost func-
tional. The shape of the penalty term P determines how the constraints interact with the OCP solution:
a common choice is a quadratic penalty function, which tends to steer the solution towards feasibility
thanks to the smooth gradients. The penalty parameter σ affects the feasibility of the final solution: an
infinitely large value for the penalty parameter σ results in an optimal solution that is inherently feasible
(P(g(t,x,u,w)) = 0). The penalty parameter also impacts convergence speed: higher σ values lead
the optimization algorithm to prioritize feasibility over costs, but also introduce the risk of ill-conditioning
[44].

Interior-point methods
A particular set of penalty methods is the class of interior-point methods. Interior-point methods aug-
ment the cost functional to enforce inequality constraints through a barrier function, a specific type of
penalty term P which assumes high values only when the solution is close to the constraint boundary.
The typical choice is the logarithmic function P = − log(−g(t,x,u,w)), which also gives the name
to this class of methods (since the logarithm of constraint violations is undefined for unfeasible solu-
tions, where −g(t,x,u,w) < 0, the iterates are restricted to only points inside the feasible region). In
interior-point methods, the penalty parameter σ is typically decreased iteratively to allow the solution
to get closer to the constraint boundary. While these methods allow to easily and efficiently tackle
highly-constrained problems without the need to estimate the active set of constraints, the delicate in-
teraction between σ and the high values of barrier functions makes these methods likely to encounter
ill-conditioning and/or slow convergence [44].

2.3.3. Augmented Lagrangian
The augmented Lagrangian approach combines the two classes of methods explained previously. The
method augments the cost functional (referred to as augmented Lagrangian) by adding both the La-
grange multipliers and a penalty term, resulting in:

J = L(t,x,u,w) + λTg(t,x,u,w) + σP(g(t,x,u,w)) (2.9)

The techniques to tackle this formulation correspond to those introduced for the Lagrange multipliers
approach introduced in subsection 2.3.1. The augmented Lagrangian approach benefits from the favor-
able convergence properties of penalty functions but addresses the ill-conditioning risks by combining
it with Lagrange multipliers, ensuring convergence even under reduced σ values. A relevant feature
of the augmented Lagrangian technique is the ability to solve the ”min-max” technique only approxi-
mately, by updating decision variables and Lagrange multipliers in a single loop, without the loss of
convergence properties [74].

2.3.4. Approaches comparison
Having presented the available classes of constrained optimization approaches, their applicability to
the enforcement of both path and terminal constraints is investigated. Recent works have introduced
the practice of separately handling path and terminal constraints in low-thrust-related OCPs [42, 71],
as the two classes of constraints present different characteristics and requirements:

• Path constraints: these constraints are applied to each discretization point of the trajectory. When
introduced in a sequential solver such as DDP, techniques used to handle these constraints
shall prioritize computational efficiency. Additionally, it is noticed that path constraints typically
represent physical limitations of the dynamical system that cannot be violated, thus requiring a
reliable solution method (i.e., a method that is unlikely to yield violations of such constraints due
to instabilities).

• Terminal constraints: terminal constraints are only applied to the final point of a trajectory and
typically represent the target of the specified OCP. Since an error margin is allowed, the enforce-
ment of terminal constraints can be achieved through approximate techniques. It is to be noticed
that terminal constraints are affected by all the OCP decision variables, thus implying significant
limitations to the applicability of algebraic methods (e.g., elimination and range-space methods).

The mentioned classes of constrained optimization methods are analyzed in Table 2.3 for applications
to both path and terminal constraints. The Lagrange multipliers methods included in Table 2.3 mainly

2.4. Differential Dynamic Programming 14

refer to non-iterative techniques (such as range-space methods) as they provide the desired accuracy
without major computational overhead. Terminal constraints can be robustly enforced through the aug-
mented Lagrangian method, exploiting the approximate ”min-max” technique [74] to efficiently obtain
accurate results.

Table 2.3: Trade-off table of the considered classes of constrained optimization methods

Lagrange multipliers Penalty methods Augmented Lagrangian

Path
constraints

Immediate convergence
through KKT conditions,
need first/second-order

information and
active-set estimation,
no ill-conditioning

Fast convergence but
require iterations,

prone to ill-conditioning

Fast convergence but
require iterations,
numerically stable

Terminal
constraints

Slow convergence on
high-dimensional OCPs
(min-max approach),
no ill-conditioning

Fast convergence
regardless of

dimensionality, prone
to ill-conditioning

Fast convergence
regardless of

dimensionality, robust
to ill-conditioning

2.4. Differential Dynamic Programming
The DDP approach is identified as a promisingmethodology to tackle the high-dimensional OCPs result-
ing from many-revolution solar-sail transfers, thanks to its linear scaling in computational requirements
over problem dimensionality, the wide convergence basin, and optimality guarantees. This section pro-
vides a more detailed illustration of the DDP approach to optimal control, followed by an overview of
relevant theoretical studies that expand on the DDP framework, and finally a list of relevant applications
of DDP algorithms to many-revolutions low-thrust OCPs.

2.4.1. Algorithm formulation
The main DDP steps are now introduced. First, the algorithm is initialized by providing an initial guess,
consisting of a (discrete) time history of control inputs and static parameters to forward-propagate the
trajectory, obtaining an initial reference solution. The algorithm initialization requires the definition of
parameter values for the different solvers used to tackle the optimization sub-problems.

The core step of DDP is the backward induction, illustrated in Figure 2.2: the □̄ symbol indicates
quantities belonging to the reference trajectory, the subscript k represents a generic discrete-time stage
(with N being the number of stages), while the δ□ symbol refers to small variations used to evaluate
feedback laws. Following the classic OCP notation, the state vector is represented as x, while control
inputs are indicated using u. According to Bellman’s optimality principle, optimal control decisions
taken at a certain stage shall be optimal regardless of decisions taken at previous steps. During the
backward induction, this property is exploited by computing an optimal feedback control law at each
stage: since each stage sub-problem is independent of previous stages, the backward induction starts
from the final stage by computing the optimal control policy in the form of a feedback law.

The methods used to compute the optimal feedback law rely on a quadratic model of the cost function
around the current reference trajectory: each stage results in a quadratic optimization problem, solved
using a trust-region procedure to enforce problem convexity [75]. Partial derivatives computed on the
optimized stage sub-problem are mapped backward to the previous stage, constituting the induction
step: the ”regular” DDP algorithm performs this step by numerically propagating (backward) the cost
partial derivatives following an Euler scheme [43]. Each optimization stage coincides with the colloca-
tion points used for numerical propagation, ensuring a smooth approximation of the optimal control law.
Since all optimized upstream stages are solved through a control feedback law which is stored as part
of the current solution, each stage sub-problem only requires the identification of the related optimal
control policy: upstream control policies are stored and included in the quadratic cost model through
the induction step, while Bellman’s optimality guarantees that previous stages do not affect the current
solution. Once all the stage sub-problems are solved, an expected reduction in the objective function

2.4. Differential Dynamic Programming 15

is also retrieved.

Figure 2.2: Illustration of the backwards induction in the DDP algorithm.

The second-order cost model used to solve each stage sub-problem allows the algorithm to enforce
both first- and second-order optimality conditions [42]. First-order optimality is tested through the ex-
pected cost reduction computed from the last successful backward induction (i.e., the expected reduc-
tion is below a certain threshold). Second-order optimality is checked on the positive definiteness of the
Hessian matrices computed for each stage sub-problem. Since the backward induction produces opti-
mal feedback laws for each stage sub-problem, DDP-based frameworks offer a promising foundation
for the implementation of robust optimization strategies.

If convergence is not detected, the following step is the forward pass, illustrated in Figure 2.3. The
forward pass procedure consists of propagating the trajectory forward in time, progressively updating
the control inputs according to the feedback laws computed during the backward induction. The forward
pass procedure outputs a so-called ”trial iterate”: acceptance of this trial iterate is determined by the
proximity of the expected and actual cost reductions. Since the validity of the backward induction
quadratic model cannot be guaranteed a-priori, DDP algorithms follow a trust-region-like procedure:
the solution of each stage sub-problem is restricted to a certain region around the reference control
profile (i.e., the trust-region), which is restricted or enlarged according to the accuracy of the ”trial-
iterate” [75].

Figure 2.3: Illustration of the forward pass in the DDP algorithm.

There are, however, limitations implicit with DDP. Revolving around a quadratic cost model, DDP
requires first- and second-order partial derivatives of the full problem formulation (i.e., dynamical mod-
els and objectives). Defining a problem using two-times differentiable functions can be a limiting fac-
tor, especially when considering dynamical models implemented through tabulated data (hence non-

2.4. Differential Dynamic Programming 16

differentiable), such as atmospheric density [51]. The definition of new partial derivatives for every
change to problem formulation greatly reduces the flexibility of the approach [33]. The multiple sub-
tasks solved as part of the DDP algorithm (backward induction, forward pass, convergence test, etc.)
require the definition of many algorithm parameters. Tuning and sensitivity to these hyper-parameters
has been identified as a critical limitation in several works [36, 39, 42]. Finally, in their most basic
formulation, DDP methods are limited to unconstrained and fixed-duration problems.

2.4.2. Theory
Having presented the working principles of DDP algorithms, the focus is now shifted towards relevant
studies that expand on the DDP framework for the solution of OCPs. The rationale behind each of
the presented studies is first introduced, followed by an overview of the relevant expansions to the
general DDP framework presented in Subsection 2.4.1. A summary of the main characteristics of each
relevant source introduced in this subsection is presented in Table 2.4, with a color scheme indicating
the applicability of each of the mentioned features to the many-revolution solar-sail transfer OCP class.
The rationale behind the color schemes is explained in deeper detail in Section 2.5.

Augmented Lagrangian Differential Dynamic Programming
TheDDP approach, in its most basic form, is limited to unconstrainedOCPs. The limitation is addressed
in Reference [76] by introducing an augmented Lagrangian technique to enforce terminal constraints
(i.e., constraints applied on the final discretization stage). The devised DDP algorithm implements
the approximate ”min-max” procedure mentioned in subsection 2.3.3, ensuring robust convergence
[74] with minor computational overhead thanks to the single loop used by the approximate ”min-max”
technique.

High-fidelity discretization in Differential Dynamic Programming
The discrete problem formulation used in DDP typically requires a fixed problem discretization, which
can introduce significant approximation errors or unnecessary computational overhead: Reference
[77] introduces a variable-step discretization into the DDP logic, enabling higher fidelity during the
backward induction and forward pass procedures. The devised approach performs an estimation of
the integration error implied by the current discretization and consequently re-arranges the optimization
stages to meet a defined tolerance. Terminal constraints are enforced through the ”min-max” (pure)
Lagrangian approach presented in subsection 2.3.1, thus requiring two nested loops [77].

Control-limited Differential Dynamic Programming
The DDP methodology is expanded to also consider path constraints (i.e., constraints applied through-
out the full problem duration) in Reference [70]. This expansion extends the applicability of DDP to a
considerably broader and realistic class of OCPs, despite being limited to path constraints in the form of
linear control bounds [70]. The devised technique to enforce path constraints is a clamped line-search
approach: the clamping logic presented in subsection 2.3.1 is combined with a line-search to optimize
the independent control variables at every iteration.

Tube Stochastic Differential Dynamic Programming
The DDP algorithm solves each stage sub-problem in the form of a control feedback law, inherently pro-
viding robustness against uncertainties [43]. Reference [78] introduces the Tube Stochastic DDP algo-
rithm, where the robust optimization capabilities of DDP are fully exploited by introducing an unscented
transform [79] to deterministically propagate uncertainties. The study adopts a chance-constraints
approach (i.e., only satisfying constraints from a probabilistic standpoint) to solve uncertain and con-
strained OCPs using DDP [78].

Quadratic Differential Dynamic Programming
In Reference [72], a constrained optimization methodology based on the KKT conditions is introduced.
The approach relies on a second-order approximation of the constraints (both terminal and path con-
straints), which is combined with the second-order cost model used by the DDP algorithm to efficiently
enforce KKT optimality. The technique first estimates the set of active constraints by solving the uncon-
strained problem, then performs a second-order expansion of the KKT conditions around the current
reference solution: the resulting system is a set of linear equations that yield a second-order feedback
law, with improved numerical stability over the linear feedback terms in ”regular” DDP implementations
[72].

2.4. Differential Dynamic Programming 17

Static/Dynamic Control algorithm
The state-of-the-art in DDP algorithms is represented by the Static Dynamic Control (SDC) algorithm
[1]. While SDC itself implies several key differences, it adopts the same core concepts of Bellman opti-
mality explained in Subsection 2.4.1. The SDC expands on the DDP framework by allowing the solution
a generic OCP, including both dynamic controls and static parameters (i.e., constant values throughout
a trajectory arc), under arbitrary Equations of Motion (EOM) and constraints, enforced through an aug-
mented Lagrangian approach. Additionally, the SDC formulation accommodates multi-phase OCPs,
that is OCPs where the trajectory is split into multiple legs characterized by different dynamics and/or
objectives, enhancing its applicability to mission-design scenarios [1]. A Hessian-shift technique is
used to enforce positive definiteness at every stage sub-problem [75], ensuring solution optimality [42].
The SDC algorithm performs the induction step through a high-fidelity propagation of the quadratic cost
model: while the technique implies considerable computational overhead, its high-fidelity capabilities
prove advantageous in realistic applications. The technique also enables time-dilation techniques to
handle OCPs with variable problem durations [1].

Hybrid Differential Dynamic Programming
A major expansion on the DDP framework is introduced in Reference [42] through the HDDP algorithm.
The HDDP algorithm combines the DDP approach with the logic of direct transcription methods: the
fine problem discretization required by DDP is substituted by a coarser mesh of discretization stages,
reducing the computational requirements to solve an OCP. The HDDP induction step is performed
through an State Transition Map (STM) approach, which enables the accurate mapping of partial deriva-
tives between consecutive stages: the stage-wise STMs are precomputed on the reference solution
and applied during the backward induction, further improving the HDDP computational efficiency. The
HDDP framework enables the optimization of both dynamic controls and static parameters applied to
multi-phase and constrained OCPs. An augmented Lagrangian approach is used to enforce terminal
constraints, while generic path constraints are implemented through a range-space method applied to
a first-order expansion of each stage sub-problem [42]. The study also recognizes the algorithm’s sen-
sitivity to its hyper-parameter and addresses the limitation by introducing a simple adaptive procedure
to update the penalty parameter [42].

Following up on the HDDP framework, Reference [80] presents minor improvements and revisions
for a more robust framework. The study introduces safeguards to the backward induction process
to increase its robustness. The range-space method introduced in Reference [42] is shown to be
inefficient (i.e., does not fully exploit the available trust region) and to cause chattering (i.e., the first-
order approximation can cause the updated controls to violate the constraints when applying the optimal
feedback laws during the forward pass), therefore different methodologies are presented. An alternative
is identified in the combination of a clamping logic (limited to one iteration) with the proposed range-
space method, registering an increase in accuracy at the cost of computational overhead. An interior-
point method to scale the trust region [81] is also presented, consisting of the use of barrier functions
to enforce path constraints in the forms of linear control bounds [80].

Multiple-shooting Differential Dynamic Programming
Reference [71] integrates the HDDP algorithm within a multiple-shooting framework. The multiple-
shooting technique consists of splitting the full OCP duration into shorter sub-intervals and solving the
resulting multi-phase problem, enforcing continuity constraints between the sub-intervals. The multiple-
shooting DDP adopts an NLP solver to optimize the initial conditions of each shooting phase, while the
dynamic controls over each leg are obtained through HDDP [71]. The HDDP algorithm adopted in
Reference [71] follows the original HDDP formulation provided in Reference [42, 80]. with a modified
approach to path constraints: the clamped range-space method from Reference [80] is extended to a
fully iterative procedure, fully exploiting the clamping technique introduced in Reference [70].

Higher-order Hybrid Differential Dynamic Programming
The second-order cost approximation used in DDP is expanded to higher orders in Reference [82]. A
differential algebra framework is introduced within the HDDP framework, allowing the efficient compu-
tation of the STMs to higher orders for a more accurate propagation of the cost function model across
successive states.

2.4. Differential Dynamic Programming 18

Flexible Final Time Differential Dynamic Programming
The expansions on the DDP framework presented until this point are inherently limited to fixed problem
durations. Reference [67] addresses this limitation by incorporating the OCP duration as a decision
variable, treating it as a dynamic control input applied to the last stage. Optimal adjustments to the time
of flight are implemented by appending or removing discretization stages to the end of the trajectory:
being based on a linear truncation of the dynamics, the technique is not expected to perform accurately
in the context of long-duration orbital transfers. The Flexible Final Time DDP adopts an augmented
Lagrangian approach to enforce constraints, while control projection is used to address control bounds
[67].

Table 2.4: Main features of relevant expansions to the DDP algorithmic framework

Ref. Runtime
effort

Terminal
constraints

Path
constraints

Multi-
phase

Flexible
final
time

[76] High
Augmented
Lagrangian
(single loop)

No No No

[77] High Lagrangian
(nested loops) No No No

[70] High
Augmented
Lagrangian
(single loop)

Clamped
line-search

(fully iterative, only
control bounds)

No No

[78] High Penalty
Chance

constraints
(probabilistic)

No No

[72] High
Quadratic

KKT
model

Quadratic
KKT
model

No No

[1] High Penalty Penalty Yes Time
dilation

[42] Low
Augmented
Lagrangian
(single loop)

Range space Yes No

[80] Low
Augmented
Lagrangian
(single loop)

Clamped
range space
(two iterations)

Yes No

[71] Medium
Augmented
Lagrangian
(single loop)

Clamped
range space
(fully iterative)

Yes No

[82] Medium
Augmented
Lagrangian
(single loop)

Clamped
range space
(two iterations)

Yes No

[67] High
Augmented
Lagrangian
(single loop)

Control
projection Yes Append

stages

2.4.3. Applications
Having presented relevant expansions to the DDP framework, the focus is now shifted towards appli-
cations to relevant OCPs. The following studies are grouped by the related dynamical system used to
define the corresponding OCP (i.e., EP-powered spacecraft, solar-sail-powered spacecraft, and differ-
ent systems). An overview of the objectives, adopted methodologies, and main findings is provided for
each study. The main features are grouped in Table 2.5, with a color scheme indicating the applicability
of each of the mentioned features to the many-revolution solar-sail transfer OCP class. The rationale
behind the color schemes follows the one in Table 2.3 regarding constrained optimization methodolo-

2.4. Differential Dynamic Programming 19

gies, while other features (the multi-phase and flexible-final-time capabilities) are evaluated based on
the flexibility that they provide for the formulation of an OCP.

Electric-propulsion powered spacecraft
The high-fidelity discretization in DDP is used to identify fuel-optimal low-thrust transfers from Earth to
rendezvous with a NEA in a fixed transfer time: the variable-step discretization is exploited to accurately
handle both the Earth-orbit and NEA arrival phases in a single optimization procedure [77].

The Tube Stochastic DDP is applied to a fuel-optimal IEP-powered Earth-Mars transfer: Monte Carlo
analyses show its robustness against uncertainties as well as the improved performance with respect to
traditional duty-cycle methods [78]. The robust control policy is shown to outperform the ”deterministic”
DDP approach on a long-duration transfer: under reduced engine performance, the robust policy is
shown to successfully satisfy the OCP objectives and constraints, while a deterministic DDP approach
to the solution fails to converge [78].

The SDC algorithm from Reference [1] is implemented in the Mystic software for the optimization of
EP-powered spacecraft [83], enhanced by a Q-law approach for the generation of initial guesses [62].
Given the computational costs of the SDC procedure, the Q-law approach is also used to generate a
near-optimal solution in case runtime limits are exceeded [83]. The Mystic software was successfully
applied to the DAWN mission design, successfully identifying fuel-optimal transfers around asteroid
Vesta using a high-fidelity dynamical model and complex non-linear constraints [84].

The HDDP algorithm is initially applied to a series of test cases in Reference [80]. The algorithm is
applied to an Earth-Mars transfer mission using a low-thrust IEP engine, and results are successfully
validated against commercially available direct and indirect optimization tools [80]. More relevant to
the scope of this work, a test case on an Earth-centered multi-revolutions transfer (using the same
low-thrust engine) is illustrated: the HDDP algorithm shows convergence when starting from trivial ini-
tial guesses, identifying a fuel-optimal 17-revolution transfer while showing better runtime performance
than off-the-shelf sparse direct optimization solvers [80]. Finally, the multi-phase capabilities of the algo-
rithm are tested on the Global Trajectory Optimisation Competition (GTOC) 4 problem (multi-asteroid
rendezvous mission), showcasing comparable performance (in terms of both accuracy and runtime)
with other solution approaches adopted during GTOC [80].

The HDDP algorithm is applied to both time- and fuel-optimal GTO to GEO transfers in Reference [36],
successfully identifying up to 1500-revolution solutions. Comparison of HDDP performance against
direct, indirect, and Q-law approaches highlights the algorithm’s improved computational performance
[36].

The HDDP framework is also applied to simplified/approximated dynamical models. Fuel-optimal ren-
dezvous maneuvers within the Circular Restricted Three Body Problem (CRTBP) dynamical setting
are investigated in Reference [85]: thanks to the simplified dynamical model (available thanks to the
CRTBP assumption), the HDDP approach is applied to problems with variable duration by parame-
terizing the targeted state as well as the problem duration, improving the effectiveness in optimizing
rendezvous maneuvers [85]. Similar features are implemented in Reference [86] and [87], respectively
using a Sims-Flanagan approximation (i.e., trajectory discretization where perturbing accelerations are
modeled as impulsive shots and sailcraft dynamics are propagated according to the Kepler model [88])
and the Stark model (i.e., trajectory discretization where perturbing forces are embedded in a uniform
force field and the dynamics are propagated through a semi-analytical model [89]). The two simplified
models are applied to both interplanetary rendezvous and multi-revolution Earth-centered applications,
greatly improving the runtime performance of HDDP at the cost of minor accuracy decrease [87].

The multiple-shooting DDP algorithm is applied to multi-revolution fuel-optimal EP transfers around
Earth in Reference [90]. The devised algorithm is used on a fuel-optimal 40-revolution transfer: while
retractable using a single-shooting approach (i.e., solving the full transfer as a single trajectory), divid-
ing into up to 20 shooting phases reduces the OCP sensitivity, significantly improving the algorithm
convergence properties [90].

The higher-order HDDP from Reference [82] is successfully applied to a fuel-optimal Earth-Mars inter-
planetary transfer. Despite the improved accuracy granted by the higher-order STMs, the approach is
shown to introduce no considerable improvements over the regular HDDP methodology: the increased

2.5. Research objective and research questions 20

runtime required to obtain higher-order STM does not outweigh the convergence benefits gained from
more accurate dynamical approximations, while the higher-order control feedback laws are prone to
instabilities [82].

Solar-sail powered spacecraft
The state-of-the-art Mystic software [83] is also applied to the NEA Scout mission design [91]. The
software is modified to accommodate high-fidelity modeling and optimization of solar-sail transfers: the
resulting Mystic version is integrated within an automated procedure to quickly generate cis-lunar trans-
fer trajectories to NEAs with minimal cone-angles (as the feature yields robust trajectories), streamlining
the mission design process and accommodating the considerable variability in mission launch date [91].

Reference [39] applies a simplified version of the HDDP approach to the solar-sail orbit raising problem.
The chosen implementation uses a penalty method to enforce terminal constraints, a logistic function
is used to enforce control bounds, and a fixed Hessian-shift approach is used to solve stage sub-
problems [39]. The devised algorithm is combined with Monotonic Basin Hopping (MBH) to identify
globally optimal control laws for orbit raising around Earth, successfully optimizing up to 500-revolution
raising maneuvers and highlighting the algorithm’s sensitivity to its hyper-parameters [39]. The same
HDDP algorithm is also applied to interplanetary Earth-Mars transfers in Reference [40].

Additional applications
Many of the presented works on DDP [70, 72, 80, 90] include a verification case based on linear-
quadratic OCPs (i.e., problems with linear dynamics and quadratic cost function). The verification
is performed by checking for convergence in a single iteration, as augmented Lagrangian methods
(which are used in the considered studies) are known to possess such property when applied to linear-
quadratic problems [92].

The control-limited DDP from Reference [70] is applied to different applications in robotics, ranging from
the car-parking problem to the full control of a humanoid robot. The clamping technique introduces
considerable overhead due to its iterative nature, but it is shown to outperform simple constrained
optimization techniques, namely control projection (i.e., setting control variables on their boundary when
they exceed the constraints) or logistic functions (i.e., artificial restrictions of the achievable control
values), which are known to be inefficient and can cause ill-conditioning [70].

The Flexible-Final-Time DDP introduced in Reference [67] is successfully applied to a fuel-optimal
Unmanned Aerial Vehicle (UAV) guidance problem. The algorithm displays improved convergence
properties over a direct optimization approach [57] based on time-dilation.

2.5. Research objective and research questions
Previous sections provided an overview of relevant studies, concepts, and approaches in the context
of planetocentric solar sailing, focusing on the numerical solution of many-revolutions transfers OCPs.
This section summarizes relevant information leading to the identified research gap, presenting the
formulation of the research objective and the consequent research questions.

Solar sailing provides a very appealing propulsionmethod for various applications thanks to its propellant-
free nature. As shown in subsections 2.1.1 and 2.1.2, solar sailing in the Earth-orbit environment pro-
vides promising opportunities for planetary imaging, telecommunications, targeted measurements, and
debris removal. The constrained nature of solar-sail thrust implies reduced orbit control authority: in
the planet-centered environment, this results in many revolutions being needed to accomplish a single
orbital transfer [24].

Optimization of orbital transfers consists of identifying the control inputs applied to the spacecraft for the
trajectory duration while minimizing a certain performance metric and satisfying specified constraints.
The problem is therefore formulated as an OCP. Solar-sail transfers around a planet result in high-
dimensional and constrained OCPs [38]. Direct optimization methods scale poorly with problem di-
mensionality, limiting their applicability to the many-revolutions transfer problem [43]. Indirect solvers
require accurate initial guesses (on both states and co-states) to achieve reliable convergence: limited
knowledge on the nature of many-revolution solar-sail transfers implies the need for a more robust

2.5. Research objective and research questions 21

Table 2.5: Main features of relevant applications of DDP algorithms

Ref. Propulsion
method Problem Objective Additional

notes

[77] EP Interplanetary
transfers Fuel-optimal

[78] EP Interplanetary
transfer Fuel-optimal

[84] EP Vesta-centered
transfers Fuel-optimal

[80] EP Interplanetary
transfer Fuel-optimal

[80] EP Earth-centered
transfer Fuel-optimal 17-revolution

transfer

[36] EP Earth-centered
transfers

Fuel- and
time-optimal

Up to 1500-revolution
transfers

[85] EP Interplanetary
transfers Fuel-optimal CRTBP

[87] EP Earth-centered
transfers Fuel-optimal Stark model

[90] EP Planet-centered
transfers Fuel-optimal 40-revolution

transfer

[82] EP Interplanetary
transfer Fuel-optimal

[91] Solar
sail

Interplanetary
transfer

Minimum
cone angle

[39] Solar
sail

Earth-centered
orbit-raising Time-optimal Up to 500-revolution

orbit raising

approach [44]. Heuristics-based approaches, while feasible, do not enforce optimality conditions [60],
therefore DDP is identified as the final candidate.

Constrained optimization methods are required to enforce constrained on the defined OCP. The fea-
tures of the three main approaches (Lagrange multiplier methods, penalty methods, and augmented
Lagrangian methods) are summarized in Table 2.3, considering the different features and requirements
implied by path and terminal constraints.

Having identified DDP as a promising algorithm for the solution of many-revolutions transfers OCPs, the
algorithm formulation itself is introduced in Section 2.4.1. Its main limitations in terms of flexibility (i.e.,
fixed-time and unconstrained formulations) and parameter tuning are presented. Relevant literature on
DDP is presented in Section 2.4: expansions to the algorithmic framework and their main features are
presented in Table 2.4, while relevant applications are illustrated in Table 2.4.3.

The optimization of solar-sail many-revolution transfers requires an efficient optimization algorithm, ca-
pable of handling problem formulations which include:

• Path constraints: these can represent the physical limitation implicit with the solar-sail thrust (e.g.,
the sail cannot produce sunward thrust), artificial constraints dictated by the chosen dynamical
model (e.g., unit-norm constraints if the control inputs are represented using a unit vector), or
operational constraints (e.g., a minimum operational altitude [51] and attitude-control limitations
[93]).

• Terminal constraints: these can represent any target in a specified OCP, ranging from achieving
a certain orbital regime to rendezvous constraints [85].

• Multi-phase capabilities: these can enable the use of the devised algorithm for missions with
multiple phases, such as debris removal (i.e., a first phase to rendezvous with the debris ob-
ject, followed by a disposal phase). The multi-phase capabilities of the algorithm also enable its
integration within a multiple-shooting framework [71].

2.5. Research objective and research questions 22

• Flexible-final-time capabilities: given the propellant-less nature of solar sails, investigatingminimum-
time solutions to specified problems is typically the primary aim of the optimization process, thus
requiring a methodology to tackle variable-duration OCPs.

The DDP-related works presented in Table 2.4 and Table 2.5 fail to successfully address the previously
mentioned points. Additionally, the analyzed literature depicts the following trends:

• Most studies refer to EP, with little interest towards solar sailing applications;
• Given the interest on EP-powered applications, most works focus on fuel-optimal transfers;
• While methodologies regarding the implementation of terminal constraints is well established, few
studies focus on enforcing generic path constraints;

• Minor efforts are present to expand DDP and/or HDDP to variable-duration problems.

Noticeably, while some of the presented works investigate the effects of specific algorithm hyper-
parameters on optimized solutions [36, 39], no effort is dedicated to the implementation of adaptive
procedures to speed up the tuning process.

Given the restricted knowledge on optimal planet-centered many-revolution transfers using solar sails
[37], a flexible, robust, and efficient optimization framework is desired: the HDDP algorithm is identified
as the most promising baseline implementation. To achieve such a framework, the defined solver shall
robustly tackle a wide range of OCPs: multi-phase, path- and terminal-constrained, variable-duration
formulations shall be accommodated. Expansions to existing methodologies related to the handling
of path constraints and variable-duration problems are therefore required. Given the propellant-less
nature of solar sails, time-optimal solutions to the orbital transfer problem are of great interest. To
properly investigate the nature of optimal solar-sail many-revolution transfers, such an optimization
framework should also enable quick iterations on problem formulation.

2.5.1. Research objective

Realize an optimization framework based on HDDP that is capable of handling high-dimensional,
path-constrained, and variable-duration optimal control problems, and apply the optimization
algorithm to investigate time-optimal many-revolution solar-sail transfers around Earth.

2.5.2. Research questions
The presented research objective leads to the following research questions and sub-questions:

RQ1 - How can a robust and flexible optimization framework, aimed at optimizing many-revolutions
solar sail transfers, be defined using HDDP?

RQ1.1 - How can time of flight be included as a decision variable within the HDDP optimization
algorithm?

RQ1.2 - How can path constraints be enforced reliably and efficiently within the HDDP optimiza-
tion framework?

RQ1.3 - How can HDDP sensitivity to its hyper-parameters be reduced?
RQ2 - How does the defined optimization algorithm perform, when applied to the identification of time-

optimal many-revolution solar-sail transfers?

RQ2.1 - What are the effects of different orbital regimes on optimal many-revolution circular-to-
circular transfers?

RQ2.2 - How do variable-time solutions compare to fixed-time circular-to-circular transfers?

3
Methodology

This chapter presents the methodology chosen and developed to achieve the defined research objec-
tive. First, the mathematical notation and general formulation of an OCP are introduced in Section
3.1. Then, the chosen HDDP formulation is thoroughly explained in Section 3.2, individually illustrat-
ing the different building blocks of the algorithm, including the original methods developed to handle
path-constrained, variable-duration problems, and to perform adaptive parameter tuning. The resulting
software implementation is illustrated in Section 3.3.

3.1. Problem formulation
As inmost numerical optimization approaches, a discrete-time problem formulation is introduced, where
each finite point is referred to as a stage. Additionally, in its most generic form, an OCP also encom-
passes cases including different definitions of the system dynamics: each of these periods is referred
to as a phase. Throughout this work, M and i represent, respectively, the total number and a generic
phase. Analogously, the total number of stages in phase i is indicated as Ni + 1, while k stands for
a generic stage. For the remainder of this section, quantities referred to a generic phase and stage
are indicated through subscripts i, k. For notational clarity, when considering quantities at the interface
between two phases i and i + 1, the subscripts − and + are used to represent, respectively, the final
quantities of phase i and the initial quantities of phase i+1. For the extremal phases i = 1,M , the same
inter-phase formulation using subscripts − and + is adopted without loss of generality, only assuming
”artificial” quantities (i.e., related to fictitious phases i = 0,M +1) to be dummy variables, with no effect
on the problem formulation itself. Relations and quantities referred to all the stages in a phase (e.g.,
the dynamics equation or the static parameters vector) directly omit the k subscript.

The definition of an OCP requires the identification of a dynamical system: x represents the state vector,
u the control inputs, and w the vector of static parameters. The quantities nx, nu, and nw are used to
indicate the sizes of, respectively, the state, controls, and static parameters vectors. Newton derivative
notation is adopted, such that derivatives with respect to the independent variable t are represented by
the overhead dot operator (□̇ = d□

dt). The dynamics function ẋ = f i(t,x,u,w) expresses the systems
evolution according to an independent variable t, typically representing time. The initial conditions are
defined through the parametrization xi,1 = Γi(wi). While the state vector is implicitly limited to physi-
cally feasible values thanks to the dynamics function, controls and parameters are limited, respectively,
to subsets U (i.e., admissible controls) and W (i.e., admissible static parameters).

Typical OCPs also include constraints, both on the final state of the system as well as throughout its
trajectory. The former are referred to as terminal constraints, and can be imposed at the end of every
phase: to allow the definition of continuity conditions between consecutive phases, terminal constraints
are represented by the vector function Ψi(xi,Ni+1,wi,xi+1,1,wi+1) = Ψi(x−,w−,x+,w+). The latter
are called path constraints and indicated by the vector function gi(ti,k,xi,k,ui,k,wi): being enforced on
all points in a certain phase, path constraints typically represent physical limitations of the system which
are not implicit within the dynamical formulation, or artificial bounds posed to the specific problem (e.g.,

23

3.2. Hybrid Differential Dynamic Programming 24

operational altitude constraints in the case of solar sails [51]). Both classes can be defined as equality
or inequality constraints. In this Section, only equality constraints are explicitly introduced: Section 2.3
presents methods to also handle inequality constraints, therefore the notation used in this Section does
not result in a loss of generality. The dimensions of the constraints functions are, respectively, nΨi

and
ngi .

Finally, the definition of an OCP requires a (scalar) cost functional J to be minimized. The cost func-
tional can include different terms: the running costs Li(ti,k,xi,k,ui,k,wi) applied to every point in the
trajectory, and the terminal cost φi(x−,w−,x+,w+) defined for inter-phase conditions. The cost func-
tional can always be represented using any combination of the two terms [44]: for the scope of this
study, the general ’Bolza’ form is adopted, where both terms are added together.

The full mathematical formulation of the OCP then becomes:

find ui,k,wi = argmin J, ∀i = 1, ...,M, ∀k = 1, ..., Ni + 1

J =

M∑
i=1

[
φi(x−,w−,x+,w+) +

Ni+1∑
k=1

Li(ti,k,xi,k,ui,k,wi)

]
(3.1)

subject to the conditions:

ẋ = f(t,x,u,w)

u ∈ U
w ∈ W

gi(t,x,u,w) = 0, ∀i = 1, ...,M

Ψi(x−,w−,x+,w+) = 0, ∀i = 1, ...,M

(3.2)

Multiple terms appear in the generic formulation presented in Eq. 3.1 and 3.2. The following sections
provide more detailed overviews of the methodologies used to define and solve each part of the OCP.
Section 2.3 focuses on the implementation and solution of the last four conditions in Eq. 3.2. Then,
Section 3.2 illustrates the numerical method defined to solve Eq. 3.1, while the dynamical model (the
first sub-equation in Eq. 3.2) is introduced directly in Chapter 4.

3.2. Hybrid Differential Dynamic Programming
The research objective stated in Section 2.5 includes the development of a robust and generic HDDP
algorithm, expanding on the framework defined in Reference [42]. A high-level block diagram for the
full algorithm procedure is provided in Figure 3.1 for clarity.

The following subsections provide detailed insight into each step of the modified HDDP algorithm de-
veloped as part of this thesis work. The devised algorithm aims at solving the general OCP formulation
presented in Section 3.1. Since an augmented Lagrangian approach is adopted for terminal constraints,
the terminal cost function φ is reformulated as:

φ̃i(x−,w−,x+,w+,λi, σ) = φi(x−,w−,x+,w+)+λT
i Ψi(x−,w−,x+,w+)+σ∥Ψi(x−,w−,x+,w+)∥2

(3.3)
where the φ̃ represents the augmented terminal cost, λi ∈ Rnλ×1 is the Lagrange multipliers vector
(referred to the terminal constraints Ψi) of size nλ, and σ is the penalty parameter. The cost functional
J defined in Eq. 3.1 is adjusted by replacing the terminal cost φ with its augmented counterpart φ̃: the
HDDP solver aims at minimizing the resulting augmented cost functional J .

3.2.1. State Transition Maps
As with other HDDP implementations, the one adopted for this work is initialized by providing a control
guess (the initial reference solution) as well as parameters defining the different solvers used throughout
the procedure.

3.2. Hybrid Differential Dynamic Programming 25

Figure 3.1: Block-diagram representation of the HDDP algorithm presented in [42].

3.2. Hybrid Differential Dynamic Programming 26

An algorithm iteration starts by obtaining the STMs between stages of the reference trajectory. The
conventional approach to STMs variation mapping is illustrated in Figure 3.2. Throughout this docu-
ment, STMs refers to the first- and second-order variation mappings from one stage to the next one.
The STMs notation used throughout this study adopts an augmented state convention: the augmented
state X is introduced by concatenating the state, controls, and static parameters vectors, resulting in:

X =

xu
w

 (3.4)

A column vector convention is used, meaning thatX ∈ RnX×1, with nX = nx+nu+nw. The stage and
phase subscripts introduced in Section 3.1 are extended also to the augmented state. The functions
used for the problem formulation also benefit from the augmented state notation, hence the dynam-
ics, path constraints, and running cost functions are interchangeably defined using either the extended
(t,x,u,w) or the augmented state (t,X) notations. While the dynamics function for state and aug-
mented state are both represented by the same symbol f , the augmented state convention requires
the introduction of additional terms:

f(t,X) =

f(t,x,u,w)
0nu×1

0nw×1

 (3.5)

where the 0 symbol is used to represent the null matrix in the real space R of the corresponding
dimension (in this case, Rnu×1 and Rnw×1). As expected, the dynamics function is augmented using
null derivatives for the static parameters (by definition, ẇ = 0nw×1), while the stage-wise constant
controls are an assumption introduced by the HDDP algorithm, allowing the algorithm to exploit the
STMs approach for extended trajectory arcs [42]. Note that, without loss of generality, the stage-wise
constant controls can also represent the coefficients for a parametrized representation of the control
inputs to the dynamical system.

Using the augmented state notation, the first order STM (also named state transition matrix) is defined
as:

Φ1
k =

∂Xk+1

∂Xk
(3.6)

where Φ1
k ∈ RnX×nX indicates the first-order STM from stage k to k + 1. Similarly, the second order

map (also referred to as state transition tensor) is indicated as:

Φ2
k =

∂2Xk+1

∂X2
k

(3.7)

where Φ2
k ∈ RnX×nX×nX is the second-order STM from stage k to k + 1. Using this notation, the

augmented state variation mapping, also illustrated in Figure 3.2, is implemented through:

δXk+1 = Φ1
kδXk +

1

2
δXT

k · Φ2
k · δXk (3.8)

where the δ symbol indicates a variation from the reference value of the corresponding quantity (in this
case the augmented states at stages k and k + 1).

Partial derivatives and tensor notations
The computation of STMs is numerically carried out by propagating variational equations [94]. Before
focusing on the formulation of variational equations, some additional notation is introduced for clarity
and conciseness. The partial derivatives of a scalar quantity with respect to vector variables are indi-
cated using subscripts. Considering the example of the partial derivatives of the cost functional J with
respect to a dummy variable q = [q1 q2 · · · qn]

T , the notation is:

∇qJ = Jq =
[

∂J
∂q1

∂J
∂q2

· · · ∂J
∂qn

]

∇qqJ = Jqq =


∂2J

∂q1∂q1
∂2J

∂q1∂q2
· · · ∂2J

∂q1∂qN
∂2J

∂q2∂q1
∂2J

∂q2∂q2
· · · ∂2J

∂q2∂qN
...

...
. . .

...
∂2J

∂qN∂q1
∂2J

∂qN∂q2
· · · ∂2J

∂qN∂qN


(3.9)

3.2. Hybrid Differential Dynamic Programming 27

Figure 3.2: Illustration of the augmented state variations mapping between stages k and k + 1.

where the∇q operator indicates gradient with respect to variable q, and∇qq indicates the Hessianmatrix
with respect to the same variable q. It is noticed that first-order partials are defined by concatenating
partial derivatives with respect to each component along the second dimension, meaning that ∂J

∂qv
=

Jq(1, v), ∀v = 1, ..., n. Similarly, the second-order partials are obtained by concatenating the partial
derivatives of the gradient along the second dimension, resulting in ∂2J

∂qv∂qw
= Jqq(v, w), ∀v, w = 1, ..., n.

The convention is that the indexing logic used to access the matrix with the partial derivatives reflects
the order of differentiation. According to this reasoning, second-order derivatives for vector quantities
(in this example the initial conditions function Γ = [Γ1, ..., Γp, ..., Γnx

, ∀p = 2, ..., nx−1] is considered)
are defined as ∂2Γp

∂qv∂qw
= Γqq(p, v, w), ∀p = 1, ..., nx, ∀v, w = 1, ..., n.

While methodologies and notations for matrix-products are well established, the HDDP incorporates
higher-dimensional quantities (e.g., second-order STMs or second derivatives of vector functions). The
tensor products convention adopted throughout this work defines matrix-tensor products as:

(A ·B)(:, :, p) = A(:, :) ·B(:, :, p), ∀p = 1, ..., dim(B, 3) (3.10)

whereA is a generic matrix,B is a generic tensor and dim(B, 3) indicates the size of the third dimension
of B. Similarly, vector-tensor products are defined as:

(A ·B)(:, :, p) = A(:) ·B(:, :, p), ∀p = 1, ..., dim(B, 3) (3.11)

where A in this case is a generic vector.

Variational equations
The STMs define the sensitivity of the dynamical system at a certain moment with respect to variations
at earlier times. Several approaches can be adopted to compute their values (e.g., finite differences
or complex-step differences [95]): the variational equations provide a generic and widely accepted
methodology to compute STMs [94, 95, 96]. By definition, the variational equations describe the evolu-
tion of small perturbations in a dynamical system: to derive their mathematical expression, the explicit
form of the (augmented) state at a specific stage is expressed as:

Xk+1 = Xk +

∫ tk+1

tk

f(t,X(t))dt, (3.12)

which is referred to as the dynamics transition function. Given the STMs definition (Eq. 3.6 and Eq.
3.7), the following step is to compute the derivative of Eq. 3.12 with respect to Xk up to two times
to obtain the first- and second-order STMs. While the first term in Eq. 3.12 is trivial, the second term

3.2. Hybrid Differential Dynamic Programming 28

requires Leibniz’s rule to differentiate the integral term, resulting in the equations:

Φ1
k = 1 +

∫ tk+1

tk

fX(t,X(t))Φ1(t)dt

Φ2
k =

∫ tk+1

tk

[
fX(t,X(t)) · Φ2(t) + Φ1(t) · fXX(t,X(t)) · Φ1(t)

]
dt.

(3.13)

The integrals in Eq. 3.13 are solved numerically, by propagating together the augmented dynamics
function and the two integrands starting from the initial conditions:

X(tk) = Xk

Φ1(tk) = 1nX×nX

Φ2(tk) = 0nX×nX×nX

(3.14)

where the 1 symbol indicates the identity matrix in the real space of the corresponding dimension (in
this case RnX×nX).

The presented approach allows to retrieve STMs between fixed time instants by numerically integrating
Eq. 3.13. In order to accommodate formulations with a free time of flight, the OCP problem discretiza-
tion needs to become variable to be included in the decision process. Literature on DDP algorithms
accommodating variable-duration problems is limited (as noticed from Table 2.4 and Table 2.5) and two
main approaches can be identified:

• Vary the number of discretization points: introduced in Reference [67], this technique consists
in computing an optimal variation in time of flight at the start of the backward induction process.
The computed time of flight update is applied as part of the forward pass procedure by appending
(or removing) stages from the end of the trajectory. This technique offers a relatively simple
and understandable implementation, with minimal impact on the algorithm’s runtime performance.
The sensitivities of the cost functional with respect to the time of flight (required to initialize the
backward induction) are computed through a truncated expansion of the dynamics:

XN+1+e = f(tN+1,XN+1)(tN+1+e − tN+1) (3.15)

where e indicates the index of the appended stages (i.e., e = 1 indicates the first extra stage,
e = −1 indicates the second-to-last stage). The XN+1+e value is used to initialize the quadratic
cost model.

The approach is appealing thanks to its straightforward derivation and implementation, but also
implies several limitations. Appending extra stages at the end of the trajectory requires the use
of a guess control input: given the assumption in Eq. 3.15, it is reasonable to extend the con-
trol inputs from the final stage to also the appended ones [67]. The technique is envisioned for
applications within the ”regular” DDP framework, where each optimization stage corresponds to
a collocation point for numerical integration [43]. Additionally, the technique does not accommo-
date the multi-phase problem formulation tackled in this thesis. Applying the update in time of
flight in a single ”chunk” at the end of the trajectory implies that the algorithm heavily relies on
the linear approximation of Eq. 3.15. The first-order approximation is expected to perform poorly
in the context of long-duration orbital transfers, where the highly non-linear spacecraft dynamics
imply that such an approximation is only reliable for short durations: given the long time scale of
many-revolution transfers, the feature translates to undesirably slow convergence.

• Vary the collocation of discretization points: adopted in References [85, 86], this time-dilation
approach integrates time of flight as part of the static parameters vectorw. The computed correc-
tion in problem duration is distributed evenly among the available stages, causing ”accordion-like”
changes to the discretization [85]. The procedure is achieved by augmenting the STMs with sen-
sitivity terms with respect to the time of flight parameter. Previous works exploit semi-analytical
propagation schemes (tailored to the problem-specific dynamical models [85, 86]) to compute
these sensitivities without the need to numerically propagate the variational equations. The com-
puted corrections in time of flight are distributed among the stages as:

∂tk
∂tflight

=
k

N + 1
(3.16)

3.2. Hybrid Differential Dynamic Programming 29

Figure 3.3: Illustration of the (augmented) state variations mapping between consecutive stages when accounting for variable
stage collocation

where tflight is the time of flight. For a generic dynamical model, however, numerical integra-
tion is required to propagate the system dynamics, thus requiring a different approach to embed
sensitivities to the time of flight within the STMs.

The presented approaches show promising features but do not satisfy the general purposes of the
algorithm developed as part of this work. This thesis proposes a novel approach to the definition of
the variational equations, with the goal of providing a general methodology to incorporate variable-
time formulations within the STMs framework. This approach leverages Leibniz’s rule of differentiation
for integral terms and applies it to a generalized version of Eq. 3.12, where the integration bounds are
allowed to vary according to an arbitrary function, referred to as stage-collocation function tk = t(k,Xk).
The variable stage collocation approach is illustrated in Figure 3.3. The stage collocation function
uniquely defines the OCP discretization. Notice that the stage index k can be exploited to ”reformulate”
the stage collocation approach into an adaptive step-size approach, since:

∂t(k,X)

∂k
= ∆t(k,X) (3.17)

where ∆t is the duration of a stage. The technique can be exploited to define a dynamically evolving
mesh, aimed at accurately capturing control switch events and/or for the definition of a computationally
efficient adaptive mesh procedure.

Adopting this approach, the augmented state propagation is defined as:

Xk+1 = Xk +

∫ t(k+1,X(t))

t(k,X(t))

f(t,X(t))dt. (3.18)

The application of Leibniz’s rule to Eq. 3.18 one time yields the variational equation for the first-order
STM:

Φ1
k = 1 +

∫ t(k+1,Xk+1)

t(k,Xk)

fX(t,X(t))Φ1(t)dt

+ f(t(k + 1,Xk+1),Xk+1) [tX(k + 1,Xk+1)− tX(k,Xk)] .

(3.19)

The last term in Eq. 3.19 is the contribution caused by the variation in integration step size. Applying
Leibniz’s rule once more to differentiate Eq. 3.19 yields the variational equation for the second-order

3.2. Hybrid Differential Dynamic Programming 30

STM:

∂2Xk+1

∂X2
k

= Φ2
k =

∫ t(k+1,Xk+1)

t(k,Xk)

[
fX(t,X(t)) · Φ2(t) + Φ1(t)T · fXX(t,X(t)) · Φ1(t)

]
dt

+
[
fX(t(k + 1,Xk+1),Xk+1) · Φ1(t(k + 1,Xk+1))

]
· [tX(k + 1,Xk+1)− tX(k,Xk)]

+ ḟ(t(k + 1,Xk+1),Xk+1) [tX(k + 1,Xk+1)− tX(k,Xk)]
2

+ f(t(k + 1,Xk+1),Xk+1) [tXX(k + 1,Xk+1)− tXX(k,Xk)] .
(3.20)

The extra terms in Eq. 3.20 also represent the contributions of variable integration step size. Similarly
to the more ”conventional” (i.e., fixed time duration) approach to variational equations, the integrals in
Eq. 3.19 and Eq. 3.20 are solved numerically.

The devised technique allows the incorporation of variable-time information directly within the STMs
and the variable stage collocation is then integrated into the forward pass procedure, as explained in
Subsection 3.2.4. No additional adjustments are required to the rest of the HDDP formulation. The
devised approach follows considerations introduced in Reference [95], where the implications of vari-
able step integration on the propagation of variational equations are investigated: the study highlights
the accuracy improvement obtained using a similar variational equations approach directly within STM
numerical integration. While it doesn’t translate directly to the context of this thesis, the work provides
a mathematical foundation for the introduction of Eq. 3.19 and Eq. 3.20 within HDDP with variable
discretization.

Performance considerations
Conversely from more common applications of STMs approach [94, 96], where the mapping is im-
plemented between the initial condition and an arbitrary point in the trajectory, the HDDP formulation
defines STMs between two consecutive stages. The STMs are computed on a pre-defined reference
trajectory (provided either as the initial guess or resulting from the forward pass), meaning that all
stages are fully known before propagating the variational equations. This feature allows for the a-
synchronous parallel computation of the STMs, greatly leveraging the parallel computing capabilities
of modern computer architectures to speed up the algorithm. Computing the STMs is, in fact, the most
computationally intensive step of HDDP, as it involves the numerical propagation of n3

X + n2
X + nX

dimensional quantities (nX entries for the second-order STMs, n2
X for the first-order STMs, and nX for

the augmented state vector).

Methods to leverage symmetries in the STMs can also be introduced to reduce the numerical prop-
agation size from n3

X + n2
X + nX to n3

X/8 + n2
X/2 + nX : this results, however, in the loss of matrix

notation and therefore requires tedious implementation of the full expressions for the variational equa-
tions [95]. Additionally, it is to be noted that relevant DDP use cases imply N >> nX , meaning that
runtime performance is typically limited by the number of numerical integration steps to be taken, rather
than their size, therefore no major performance improvement is expected from symmetry exploitation.
Conversely, semi-analytical propagation schemes (for both state and STMs) are expected to provide
substantial performance improvements but are restricted to specific simplifying assumptions and thus
not considered.

3.2.2. Backwards induction
Having defined values for all stage-wise STMs, the backward induction takes place. This procedure
is the main step of DDP algorithms and consists of reducing the full-scale OCP to a series of smaller
and simpler sub-problems, which are solved sequentially. The backward induction procedure takes
its name from the direction used to define and solve these sub-problems, which is indeed backward
(i.e., from the last stage until the first one). The mathematical foundation for this practice is Bellman’s
optimality principle, stating:

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision [64]

3.2. Hybrid Differential Dynamic Programming 31

Leveraging this concept, the backward induction consists of the solution of each stage sub-problem by
minimizing its corresponding cost-to-go. The cost-to-go at a specified stage Jk is defined as the cost
incurred from the specified stage until the end of the trajectory: assuming a single-stage formulation,
the cost-to-go is defined as

Jk(xk,uk, . . . ,uN ,w,λ) =

N∑
j=k

L(tj ,xj ,uj ,w) + φ̃(xN+1,w,λ). (3.21)

According to Bellman’s optimality principle, all upstream control policies shall be optimal with respect
to the current state vector xk: since the devised HDDP algorithm also includes Lagrange multipliers λ
and static parameters w, the optimal control policy shall be in the form uk(xk,w,λ) [42]. According to
this logic, the optimized cost-to-go J∗

k can be expressed as:

J∗
k (xk,w,λ) := min

uk,...,uN

Jk(xk,uk, . . . ,uN ,w,λ) = Jk(xk,uk(xk,w,λ), . . . ,uN (xN ,w,λ)) (3.22)

where it is noticed that only controls until the stage N appear, as the stage discretization implies that
controls for a generic stage uk are applied to the interval [tk, tk+1), meaning that controls applied to
the final stage N + 1 do not affect the state of the dynamical system. Leveraging Bellman’s optimality
principle, Eq. 3.22 can be transformed into the recursive relation:

J∗
k (xk,w,λ) = min

uk

[
L(tk,xk,uk,w,λ) + min

uk+1,...,uN

Jk+1(xk+1,uk+1, . . . ,uN ,w,λ)

]
= min

uk

[
L(tk,xk,uk,w,λ) + J∗

k+1(xk+1,w,λ)
]
.

(3.23)

The recursive Eq. 3.23 is the basis of all dynamic programming techniques: by storing solutions to
previously solved sub-problems (i.e., the optimized cost-to-go from upstream stages J∗

k+1), the compu-
tational effort is considerably reduced [43]. Traditional dynamic programming techniques solve Eq. 3.23
by discretizing all decision variables (i.e., states, controls, static parameters, and Lagrange multipliers),
thus guaranteeing global optimality: the ”curse of dimensionality” results in unfeasible storage require-
ments, as the number of stored solutions to the upstream subproblems quickly reaches retractable size
[33]. The DDP methodology sacrifices global optimality by restricting the state space to a quadratic va-
lidity region around the current reference solution, drastically reducing the dimensionality of the search
space and only yielding local optimality guarantees [89].

The backward induction consists in the recursive solution of Eq. 3.23: starting from the last stage,
each stage cost-to-go Jk is minimized through a feedback control policy uk(xk,w,λ), resulting in an
optimized cost-to-go J∗

k which is then carried to the previous stage to repeat the process. The back-
ward induction procedure, enabled by Bellman’s optimality principle, allows the efficient optimization of
control inputs over long transfer times: the multi-phase capability of the algorithm is implemented by
propagating the cost-to-go information across phases. This subsection provides further details on the
quadratic expansion and update processes performed on each stage and inter-phase problem (while
the solution of each sub-problem is presented in detail in subsection 3.2.3).

Inter-phase quadratic expansion
As previously mentioned, DDP algorithms sequentially solve a quadratic cost model to optimize a full
OCP. The process requires the definition of a quadratic cost model: this step is initialized in the back-
ward induction by computing first- and second-order partial derivatives of the (augmented) terminal cost
φ̃. Given the chosen algorithm architecture, this step corresponds exactly to an inter-phase quadratic
expansion, where no upstream costs J∗ are present and where ”dummy” variables are used for the
upstream phase. The inter-phase quadratic expansion (i.e., between phases i and i + 1) is carried
out by combining the second-order derivatives of the upstream costs J∗

i+1,1 (referred to as J∗
1 in Eq.

3.24 for notational simplicity) with the partial derivatives of the terminal costs for the current phase φ̃i

(indicated as φ̃ for notational simplicity), resulting in:

3.2. Hybrid Differential Dynamic Programming 32

Jx+ = J∗
x,1 + φ̃x+ , Jx+x+ = J∗

xx,1 + φ̃x+x+ ,

Jx+w+
= J∗

xw,1 + φ̃x+w+
, Jx+λ+

= J∗
xλ,1, Jx+x− = φ̃x+x− ,

Jx+w− = φ̃x+w− , Jx+λ− = φ̃x+λ− ,

Jw+ = J∗
w,1 + φ̃w+ , Jw+w+ = J∗

ww,1 + φ̃w+w+ , Jw+λ+ = J∗
wλ,1,

Jw+x− = φ̃w+x− , Jw+w− = φ̃w+w− , Jw+λ− = φ̃w+λ− ,

Jλ+
= J∗

λ,1, Jλ+λ+
= J∗

λλ,1,
Jx− = φ̃x− , Jx−x− = φ̃x−x− , Jx−w− = φ̃x−w− , Jx−λ− = φ̃x−λ− ,

Jw− = φ̃w− , Jw−w− = φ̃w−w− , Jw−λ− = φ̃w−λ− ,

Jλ− = φ̃λ− , Jλ−λ− = 0

(3.24)

where the upstream optimized cost-to-go J∗
1 and its related partials assumed null values when initializ-

ing the backward induction. Introducing the initial condition parametrization Γi(wi) (indicated as Γ(w)
for notational simplicity), the inter-phase quadratic expansion is updated as:

J̃w+
= Jw+

+ Jx+
Γw

J̃w+w+
= Jw+w+

+ Jx+
Γww + ΓT

wJx+x+
Γw + ΓT

wJx+w+
+ JT

x+w+
Γw

J̃w+λ+
= Jw+λ+

+ ΓT
wJx+λ+

J̃w+x− = Jw+x− + ΓT
wJx+x−

J̃w+w− = Jw+w− + ΓT
wJx+w−

J̃w+λ− = Jw+λ− + ΓT
wJx+λ−

(3.25)

where the J̃ indicates the cost functional after accounting for parametrization in initial conditions.

Stage quadratic expansion
Each stage quadratic expansion combines quadratic model information coming from upstream stages
Jk+1 with dynamics and running costs defined on the specified stage Lk, as specified in Eq. 3.23.
A second-order Taylor expansion of the running cost Lk and upstream cost-to-go J∗

k+1 is performed,
using the STMs mapping in Eq. 3.8 to relate differentials at stage k with stage k + 1: the resulting
expansion equations are:

Jx,kJu,k

Jw,k

T

=

Lx,k

Lu,k

Lw,k

T

+

J∗
x,k+1

0nu

J∗
w,k+1

T

Φ1
k,Jxx,k Jxu,k Jxw,k

Jux,k Juu,k Juw,k

Jwx,k Jwu,k Jww,k

 =

Lxx,k Lxu,k Lxw,k

Lux,k Luu,k Luw,k

Lwx,k Lwu,k Lww,k


+Φ1T

k

 J∗
x,k+1 0nx×nu J∗

x,k+1

0nu×nx 0nu×nu 0nu×nx

J∗T
w,k+1 0nx×nu J∗

w,k+1

Φ1
k +

J∗
x,k+1

0nu

J∗
w,k+1

T

· Φ2
k,

Jλ,k = J∗
λ,k+1,

Jλλ,k = J∗
λλ,k+1,Jxλ,k

Juλ,k

Jwλ,k

 =

J∗
xλ,k+1

0nu

J∗
wλ,k+1

T

Φ1
k.

(3.26)

where the 0 terms indicate partial derivatives of the upstream costs with respect to the control inputs
at the corresponding stage: from Bellman’s optimality principle, optimized stage sub-problems are
solved through an optimal policy depending on states, static parameters, and Lagrange multipliers,
thus leaving no degree of freedom to the control inputs themselves.

3.2. Hybrid Differential Dynamic Programming 33

Stage quadratic update
The stage Quadratic Programming (QP) sub-problem defined in Eq. 3.26 is solved using a trust-region
method (hence the name Trust-Region Quadratic Programming (TRQP) sub-problem). Solution ap-
proaches to the TRQP sub-problem are illustrated in detail in subsection 3.2.3. Following Bellman’s
optimality, the solution to the TRQP sub-problem is a control feedback law in the form:

δuk = Ak +Bkδxk + Ckδwk +Dkδλk (3.27)

where the δ operator indicates small variations in the respective variables with respect to the reference
solution: these variations are evaluated during the forward pass. The defined feedback law is used
to update the cost-to-go Jk expansion accounting for the optimal control policy, yielding the quadratic
model of optimized cost-to-go J∗

k as:

ERk = ERk+1 + JT
u,kAk +

1

2
AT

k Juu,kAk,

J∗
x,k = Jx,k + JT

u,kBk +AT
k Juu,kBk +AT

k Jux,k,

J∗
xx,k = Jxx,k +BT

k Juu,kBk +BT
k Jux,k + JT

ux,kBk,

J∗
xw,k = Jxw,k +BT

k Juu,kCk +BT
k Juw,k + JT

ux,kCk,

J∗
xλ,k = Jxλ,k +BT

k Juu,kDk +BT
k Juλ,k + JT

ux,kDk,

J∗
w,k = Jw,k + JT

u,kCk +AT
k Juu,kCk +AT

k Juw,k,

J∗
ww,k = Jww,k + CT

k Juu,kCk + CT
k Juw,k + JT

uw,kCk,

J∗
wλ,k = Jwλ,k + CT

k Juu,kDk + CT
k Juλ,k + JT

uw,kDk,

J∗
λ,k = Jλ,k + JT

u,kDk +AT
k Juu,kDk +AT

k Juλ,k,

J∗
λλ,k = Jλλ,k +DT

k Juu,kDk +DT
k Juλ,k + JT

uλ,kDk

(3.28)

where the ERk terms indicate the expected reduction in cost-to-go (defined on stage k) between the
reference solution and current algorithm iteration. Notice that in Eq. 3.28 no partial derivatives with
respect to control inputs u are present, since the controls for stage k are entirely defined by variations
in state x, parameters w, and multipliers λ through the feedback law in Eq. 3.27, consistently with
Bellman’s optimality principle and with Eq. 3.26. The expected reduction ER is set to 0 when initializing
the backward induction on the final stage.

Inter-phase quadratic update
The inter-phase TRQP sub-problems are solved using the same trust-region method. The chosen
augmented Lagrangian technique implies a ”min-max” approach to update Lagrange multipliers (i.e.,
computing optimal controls and parameters, while solving for multipliers that maximize the cost func-
tional) [74]. The Lagrange multipliers λ are therefore computed by applying the trust-region method to
the ”opposite” problem, by feeding the opposite Hessian matrix −Jλ+λ+

and opposite gradient −Jλ+

to the trust-region solver. Similarly to the process followed to update the controls, the update law to
the Lagrange multipliers is defined as:

δλ+ = Aλ+ + Cλ+δw+ (3.29)

where the δ values are computed during the forward pass as variations with respect to the reference
solution. The feedback law in Eq. 3.29 is applied to the quadratic expansion of the inter-phase cost-
to-go (indicated as J1 for notational clarity). The procedure yields the pre-optimized cost-to-go Ĵ , with
the second-order expansion:

3.2. Hybrid Differential Dynamic Programming 34

ERi,0 = ERi,1 + JT
λ+Aλ+ +

1

2
AT

λ+Jλ+λ+Aλ+,

Ĵw+ = J̃w+ + JT
λ+Cλ+ +AT

λ+Jλ+λ+Cλ+ +AT
λ+Jλ+w+,

Ĵw+w+ = J̃w+w+ + CT
λ+Jλ+λ+Cλ+ + CT

λ+Jλ+w+ + JT
λ+w+Cλ+,

Ĵw+x− = J̃w+x− ,

Ĵw+w− = J̃w+w− ,

Ĵw+λ− = J̃w+λ−

(3.30)

where the J̃ partials are those resulting from Eq. 3.25, while ERi,1 is the expected reduction in cost-to-
go obtained from the first stage of phase i. Since the ”min-max” approach computes maximal Lagrange
multipliers, the update law in Eq. 3.29 is expected to yield a increase in cost-to-go, meaning that
ERi,0 ≥ ERi,1. The pre-optimized cost-to-go Ĵ quadratic model is used to define the new TRQP
sub-problem to update the static parameters of the upstream phase w+, through the update law:

δw+ = Aw+ +Bw+δx− + Cw+δw− +Dw+δλ− (3.31)

where it is noticed that updates in static parameters are computed from variations registered in the
previous phase: for the particular case of the initial phase i = 1, this implies that only the feed-forward
term Aw+ is relevant. The feedback law in Eq. 3.31 is applied to the pre-optimized cost-to-go Ĵ
expansion, yielding the quadratic expansion of the optimized cost-to-go (indicated as J∗ for notational
clarity):

ERi,0 = ERi,0 + ĴT
w+

Aw+
+

1

2
AT

w+
Ĵw+w+

Aw+
,

J∗
x−

= Jx− + ĴT
w+

Bw+
+AT

w+
Ĵw+w+

Bw+
+AT

w+
Ĵw+x− ,

J∗
x−x−

= Jx−x− +BT
w+

Ĵw+w+
Bw+

+BT
w+

Ĵw+x− + ĴT
w+x−

Bw+
,

J∗
x−w−

= Jx−w− +BT
w+

Ĵw+w+
Cw+

+BT
w+

Ĵw+w− + ĴT
w+x−

Cw+
,

J∗
x−λ−

= Jx−λ− +BT
w+

Ĵw+w+
Dw+

+BT
w+

Ĵw+λ− + ĴT
w+x−

Dw+
,

J∗
w−

= Jw− + ĴT
w+

Cw+
+AT

w+
Ĵw+w+

Cw+
+AT

w+
Ĵw+w− ,

J∗
w−w−

= Jw−w− + CT
w+

Ĵw+w+
Cw+

+ CT
w+

Ĵw+w− + ĴT
w+w−

Cw+
,

J∗
w−λ−

= Jw−λ− + CT
w+

Ĵw+w+
Dw+

+ CT
w+

Ĵw+λ− + ĴT
w+w−

Dw+
,

J∗
λ−

= Jλ− + ĴT
w+

Dw+
+AT

w+
Ĵw+w+

Dw+
+AT

w+
Ĵw+λ− ,

J∗
λ−λ−

= Jλ−λ− +DT
w+

Ĵw+w+
Dw+

+DT
w+

Ĵw+λ− + ĴT
w+λ−

Dw+
.

(3.32)

The full process is interrupted once the first inter-phase problem (that is, the TRQP sub-problems
between phase i = 1 and the dummy phase i = 0, defined with null costs) is solved, yielding a final
expected reduction value ER1,0.

3.2.3. Trust region quadratic sub-problem
It was mentioned in subsection 3.2.2 that the stage and inter-phase quadratic expansions result in
QP sub-problems. These problems are solved backward sequentially until the very first stage (and
therefore the full trajectory) has been optimized, following Bellman’s optimality principle. The validity
of the quadratic models and the method used to solve them remain open matter: both points are
addressed through a trust-region method, consisting of restricting updates to the reference solution
until the quadratic model shows acceptable accuracy.

The trust-region approach used by DDP algorithms consists in restricting the solution of each TRQP
sub-problem to a bounded set of values (i.e., the trust region). For the remainder of this subsection, the
notation only refers to stage QP sub-problems resulting from Eq. 3.26, noting that the same formulation
and methods are also used for inter-phase TRQP sub-problems (i.e., the multipliers expansion in Eq.

3.2. Hybrid Differential Dynamic Programming 35

3.24 and the parameters problem in Eq. 3.30), without loss of generality. The trust region restriction
transforms the TRQP sub-problem in:

min
δuk

1

2
δuT

k Juu,kδuk + Ju,kδuk, such that ∥Dδuk∥ ≤ ∆ (3.33)

where ∆ is the trust region radius and D is the scaling matrix: the former represents the width of the
trust region, while the latter defines its shape. The norm operator ∥□∥ refers by default to the 2-norm.
The Taylor expansion used to define the second-order cost model only holds for solutions that are
”close enough” to the reference trajectory: by reducing the trust-region radius ∆, the accuracy of the
quadratic model is increased. The scaling matrix D is essential in poorly scaled problems, where the
cost function is much more sensitive to a restricted set of decision variables: in such cases, the matrix
D shall restrict the trust region to an ellipse, with minor axis along the direction of the corresponding
decision variables. The TRQP problem defined in Eq. 3.33 is the focus of the methodologies introduced
in this subsection.

The control updates (and equivalently also the multipliers and parameter updates) computed from the
feedback law in Eq. 3.27 are guaranteed to provide a global descent direction only if the sub-problem
Hessian matrix Juu,k is positive-definite [42]. The positive definiteness of the Hessian matrix is also
required to solve the corresponding TRQP sub-problems, which would otherwise have undefined so-
lutions. Since general OCPs do not guarantee the positive-definiteness of all Hessian matrices (a
feature that is in practice very rare [42]), a regularization is introduced by performing a Hessian shift.
The Hessian-shift technique consists of adding a positive term to the diagonal of the Hessian matrix (or
its scaled version), effectively increasing the curvature of the TRQP sub-problem model ensuring both
positive-definiteness of the Hessian matrix as well as restricting control updates to be within the trust
region. A geometric representation of Hessian shifting (in a 1D control setting) is provided in Figure 3.4.
The red color indicates non-accepted TRQP models (i.e., the non-shifted problem implies a negative-
definite Hessian as well as a model minimizer outside the trust region), while the gradient towards green
indicates progressively more satisfying solutions: as the Hessian-shift parameter is adjusted, the Hes-
sian matrix moves towards positive definiteness, and the TRQP model minimizer δu∗ approaches the
trust-region boundary. The TRQP model gradient Ju,k is highlighted as a dashed black line, as it is
never modified by the trust-region solver and it is therefore a common feature of all the shifted TRQP
models generated when adjusting the shift parameter.

Figure 3.4: Schematic representation of the Hessian shift technique in a 1D control case, with shift λ

This work presents two algorithms to perform the Hessian shift procedure: by iteratively adjusting the
Hessian shift parameter, these techniques are known to be more robust and efficient than arbitrary
Hessian shifting [73]. For notational clarity, the stage subscripts k are dropped when illustrating these
algorithms.

Basic trust region algorithm
First, a basic trust region algorithm is presented, which trivially enforces the trust-region constraint. An
outline of the basic algorithm is provided in Alg. 1. Before performing any operation, a check is carried
out to ensure that the Hessian is not identically zero, avoiding TRQP sub-problems without any control

3.2. Hybrid Differential Dynamic Programming 36

authority, which have no influence on the solution. The first step is the computation of a stationary point
to the TRQP model, that is:

δu∗ = −J−1
uuJu (3.34)

where δu∗ is the candidate solution to Eq. 3.33, and the −1 exponent indicates matrix inversion. Equa-
tion 3.34, however, does not guarantee the satisfaction of the trust region constraint, nor enforces the
positive definiteness of the Hessian.

First, the trust region constraint is addressed. This basic algorithm does not account for trust region
scaling, meaning that the scaling matrix is assumed to be the identity matrix of corresponding size
(D = 1nu×nu). Additionally, the 2-norm trust region constraint ∥Dδu∗∥ ≤ ∆ is distributed equally
among the δu∗ components, leading to:

δu∗(p) ≤ ∆

nu
, ∀p = 1, ..., nu. (3.35)

This assumption removes the need to search for a descent direction within the algorithm, making it
computationally lighter but also ”blind” to optimal descent directions. The reformulated trust-region
constraint is then enforced by computing a correction term γ(p) for each control component as:

γ(p) =

[
∆

nu
− u∗(p)

]
/Ju(p), ∀p = 1, ..., nu. (3.36)

The Hessian correction γ is then applied to the inverted Hessian as:

J̃−1
uu(p, p) = J−1

uu(p, p)− γ(p), ∀p = 1, ..., nu (3.37)

where J̃−1
uu is the inverse of the candidate shifted Hessian matrix.

The positive-definiteness of the shifted Hessian is then to be enforced. Since this check requires more
elaborate steps, the basic algorithm only implements a check to ensure that the new control update
direction coincides with the ”unrestricted” update. The condition is implemented as:

δu∗(p)
[
−J̃−1

uu(p, :)Juu

]
> 0, ∀p = 1, ..., nu. (3.38)

For components where Eq. 3.38 is not satisfied, the sign of the corresponding (shifted) inverted Hessian
row J̃−1

uu(p, :) is flipped. The TRQPmodel minimizer δu∗ is then obtained by re-computing the stationary
point as in Eq. 3.34, that is:

δu∗ = −J̃−1
uuJu (3.39)

where the shifted Hessian now guarantees the satisfaction of the trust-region constraint ∥δu∗∥ ≤ ∆.
The basic trust-region solver is summarized in Alg. 1.

Algorithm 1 Basic trust region algorithm
Ensure: Juu ̸= 0nu×nu

for all p = 1, ..., nu do
compute γ(p), Eq. 3.36
shift inverted Hessian J̃−1

uu, Eq. 3.37
if update direction is opposite, Eq. 3.38 then
flip sign of shifted inverted Hessian row J̃−1

uu(p, :)
end if

end for
recompute TRQP model minimizer δu∗, Eq. 3.39

The computed shifted Hessian matrix J̃uu,k is used to define the feedback laws in Eq. 3.27, Eq. 3.29,
and Eq. 3.31. For stage TRQP sub-problems, the update law terms are computed as:

3.2. Hybrid Differential Dynamic Programming 37

Ak = δu∗
k,

Bk = −J̃−1
uu,kJux,k,

Ck = −J̃−1
uu,kJuw,k,

Dk = −J̃−1
uu,kJuλ,k.

(3.40)

where the J̃uu,k indicates the shifted Hessian computed by the trust-region algorithm. Analogously, the
Lagrange multipliers update is defined as:

Aλ+
= −J̃−1

λ+λ+
Jλ+

Cλ+
= −J̃−1

λ+λ+
Jλ+w+

(3.41)

noticing that, in this case, the Hessian shift guarantees negative definiteness of the J̃λ+λ+
matrix, result-

ing in cost increase (in accordance with the ”min-max” logic of the augmented Lagrangian approach).
Finally, the parameter update law is assembled as:

Aw+
= −˜̂J−1

w+w+
Ĵw+

,

Bw+
= −˜̂J−1

w+w+
Ĵw+x− ,

Cw+ = −˜̂J−1

w+w+
Ĵw+w−

Dw+ = −˜̂J−1

w+w+
Ĵw+λ−

(3.42)

where the ˜̂Jw+w+
is the shifted Hessian resulting from the parameters TRQP sub-problem. Using

the shifted Hessian (instead of the ”natural” problem Hessian matrix) guarantees the restriction of all
the terms in the feedback laws, as well as the global descent direction towards optimality. Despite
this restriction, OCPs with very low control authority, or badly scaled problem formulations, can lead to
numerical instabilities, thus requiring additional safeguards. While not implemented in this work, further
developments shall investigate/implement safeguards such as those introduced in Reference [80].

Robust trust region algorithm
The basic trust-region algorithm offers a simple and easily interpretable implementation. The algorithm
is also limited, as it assumes an even distribution of the trust-region restriction and has no mathematical
guarantees for convergence. For these reasons, a more elaborate and robust trust-region algorithm
is required. The identified candidate is Alg. 7.3.4 from Reference [75], which has successfully been
integrated into other HDDP implementations [36, 42]. A thorough explanation of the algorithm, together
with the underlying theory, is provided in Reference [75]. In the following paragraphs, the main steps of
this algorithm are outlined, together with the modifications introduced as part of this work. The robust
algorithm is outlined in Alg. 2.

As also done in Alg. 1, a check on the Hessian matrix is performed before computing the required
Hessian shifts. If the Hessian matrix is null (Juu = 0nu×nu), an additional check on the gradient is
performed: TRQPs where also the gradient is null are left untouched (as they have no influence on the
solution), while TRQPs with non-zero gradients are solved by imposing a feed-forward control update
of magnitude ∆ along the negative gradient direction, that is:

δu∗ = −D−1 Ju
∆

. (3.43)

The robust trust-region solver also accommodates scaling, that is, a non-identity scaling matrix D in Eq.
3.33. The scaling is applied before initializing the iterative procedure of Alg. 2, effectively modifying
the TRQP sub-problem to be solved, through:

Juu = D−1,TJuu,kD−1 Ju,k = D−1,TJu,k. (3.44)

3.2. Hybrid Differential Dynamic Programming 38

The modified sub-problem model is provided as input to Alg. 2: the corresponding outputs, consisting
of the optimal feed-forward model minimizer δu∗ and the shifted Hessian matrix J̃uu,k are re-scaled
back through:

J̃uu,k = DT J̃uu,kD δu∗ = D−1δu∗ (3.45)
For notational clarity, the following overview of the robust trust region algorithm assumes a non-scaled
problem, noting that Eq. 3.44 and Eq. 3.45 can be used to relate any scaled TRQP sub-problem to an
equivalent non-scaled formulation.

The algorithm proposed in Reference [75] aims at identifying the Hessian shift λ which satisfies both
Hessian positive-definiteness and the trust region requirements. In this context, the shifted Hessian
J̃uu is obtained as:

J̃uu(λ) = Juu + λ1nu×nu (3.46)
The shift λ applied in Eq. 3.46 is uniform over the Hessian Juu diagonal (conversely from the Hessian
correction γ defined in Eq. 3.36): this allows the algorithm to operate along (and preserve) the optimal
descent directions of the QP problem. The TRQP model minimizer is still defined by Eq. 3.39 and
therefore depends on the chosen Hessian shift parameter λ. The key idea adopted in Reference [75]
is to substitute the trust-region restriction ∥δu∗∥ ≤ ∆ with a more numerically well-behaved formulation,
referred to as the secular equation:

1

∥δu∗(λ)∥
− 1

∆
= 0. (3.47)

It is immediately noticed that Eq. 3.47 substitutes the trust region restriction inequality with the equality
sign: the algorithm accounts for cases where the model minimizer δu∗(λ) lies within the trust region
(not on its boundary) by checking for interior convergence, as explained in following paragraphs. The
Newton method used to root-solve the secular equation requires safeguards to guarantee convergence
[73]. These safeguards come in the form of bounds to the search space for the Hessian shift λ, initialized
as:

λU = max

0,−min Juu(p, p),
∥Ju∥
∆

−min

max

Juu(p, p) +
∑
p ̸=q

|Juu(p, q)|

 , ∥Juu∥F , ∥Juu∥∞


λL = max

0,
∥Ju∥
∆

+min

max

−Juu(p, p) +
∑
p ̸=q

|Juu(p, q)|, ∥Juu∥F , ∥Juu∥∞


(3.48)

where p, q are matrix indices (ranging from 1 to nu), |□| is the absolute value operator, and ∥□∥F , ∥□∥∞
are the Frobenius and infinity norm operators. The shift values λ generated by every iterate are limited
by lower (λL) and upper (λU) bounds: for clarity, the Hessian-shift values λ are classified into different
sets. The sets Fl and Nl contain, respectively, the feasible and unfeasible shift parameters λ. The
feasible set Fl is further divided into the sets Ll and Gl, which represent shifts λ which are, respectively,
lower and higher than the solution to Eq. 3.47 (which would put the model minimizer δu∗(λ) exactly on
the trust-region boundary).

Having initialized the bounds to the Hessian shit, Newton-method iterations begin by attempting a
Cholesky factorization of the (shifted) Hessian matrix J̃uu(λ) = LcL

T
c (where Lc is the resulting lower

triangular matrix) using MATLAB® chol function. If the factorization is successful, the Hessian is pos-
itive definite and λ ∈ Fl. Then, a trial TRQP model minimizer δu∗(λ) is computed: if it doesn’t satisfy
the trust region constraint, then λ ∈ Ll. If the trust region constraint is satisfied, λ ∈ Gl and a check
for interior convergence is performed, consisting of an evaluation of the trust region constraint using
λ = 0: since the Hessian shift is positive by definition, if λ ∈ Gl and λ = 0 is feasible the null Hessian
shift λ = 0 is necessarily the solution. This condition is referred to as interior convergence since it
corresponds to a model minimizer lying inside the trust-region, instead of the boundary imposed by the
secular equation. Note that the only case for which δu∗(λ) does not lie on the trust region constraint
boundary corresponds to the λ = 0 case. If the factorization fails, the corresponding shift λ is unfeasible
and λ ∈ Nl.

Having determined the current iteration set, the Hessian-shift bounds are updated accordingly through:

λ ∈ Gl ⇒ λU = λ, λ ∈ Ll ⇒ λL = λ. (3.49)

3.2. Hybrid Differential Dynamic Programming 39

If the current shift λ is feasible, additional measures to restrict its bounds are introduced. First, the
Cholesky factorization is used to compute a trial shift parameter λ+ as:

w̄ = L−1
c δu∗(λ),

λ+ = λ+

(
∥δu∗(λ)−∆∥

∆

)
∥δu∗(λ)∥2

∥w̄∥2
.

(3.50)

where the w̄ vector is a measure of the gradient of Eq. 3.47 around the current Hessian shift λ (refer
to Reference [75] for the complete explanation). If the vector w̄ is null, an additional safeguard is
introduced, bypassing Eq. 3.50 and directly imposing λ+ = λ.

Additional measures can be taken to improve the Hessian shift λ bounds in the case λ ∈ Gl. To shift
the Hessian matrix J̃uu(λ) until positive-definite, the shift parameter λ is required to be opposite to the
lowest eigenvalue of the ”natural” Hessian Juu (such eigenvalue is referred to as λ1). It is shown [75]
that the quantity b̂×

(
J̃uu(λ)b̂

)
(where b̂ is a generic unit vector) is guaranteed to be greater than the

smallest eigenvalue of the shifted Hessian J̃uu(λ) (that is, λ + λ1). The unit vector b̂ that minimizes
b̂ ×

(
J̃uu(λ)b̂

)
can be identified using the LINPACK method (thoroughly illustrated in Reference [75]).

The resulting value b̂ is used to improve the lower bound, moving it closer to the minimum required shift
λ = −λ1, through:

λL = max
[
λL, λ− b̂×

(
J̃uu(λ)b̂

)]
. (3.51)

The unit vector b̂ obtained via the LINPACK method is also adopted as the search direction to improve
the model minimizer δu∗(λ). This is achieved by introducing a constant α̃, whose value is found by
root-solving:

∥δu∗(λ) + α̃b̂∥ = ∆. (3.52)
The root-solving process is carried out by the MATLAB® fsolve function: fsolve is initialized twice,
using search intervals with opposite signs ([0; ∆], [−∆; 0]), and out of the two solutions the chosen
model minimizer δu∗(λ) = δu∗(λ) + α̃b̂ is the one which solves (i.e., minimizes) the TRQP problem
model in Eq. 3.33. Conversely, if the current shift λ is not feasible, a partial Cholesky factorization
(refer to Reference [75] for further details) is used to compute two additional quantities (a scalar dc and
a vector vc) to approximate the −λ1 lower bound as:

λL = max

[
λL, λ+

dc
∥vc∥2

]
. (3.53)

With the Newton-method bounds defined, a new initial guess is generated. If λ ∈ Ll and the model
gradient Ju is non-zero, the λ+ becomes the new trial value, hence λ = λ+. In case λ ∈ Gl, an attempt
at a Cholesky factorization of J̃uu(λ

+) = LcL
T
c is made: in case of success, λ+ ∈ Ll and λ = λ+. If

the factorization does not succeed λ+ ∈ Nl: the lower bound is updated as λL = max
(
λL, λ+

)
, while

the new trial shift λ is obtained as:

λ = max
[√

λLλU , λL + θ(λU − λL)
]

(3.54)

where the parameter θ is a small constant (θ ∈ (0; 1), with suggested values around θ = 0.01 [75]).
Equation 3.54 shows a bias towards values closer to the lower bound λL (thanks to the small θ value and
due to the definition of geometric mean). By prioritizing smaller Hessian shifts, the algorithm introduces
minimal ”artificial effects” into the model, thus ensuring more accurate results [75]. If the current trial
shift is unfeasible (i.e., λ ∈ Nl), the same Eq. 3.54 is used to perform the update. Iterations produced
by this algorithm are mathematically proven to generate a converging sequence of Hessian shifts λ
[75], guaranteeing robustness.

The number of iterations is limited by a set of stopping criteria. First, a hard ceiling on the number of
iterations is imposed. Then, a first convergence check is performed, using a defined constant Keasy,
for feasible shift values λ that produce reasonably acceptable results. This convergence check is
implemented through:

λ ∈ Fl,

|∥δu∗(λ)∥ −∆| ≤ Keasy∆.
(3.55)

3.2. Hybrid Differential Dynamic Programming 40

If the two conditions in Eq. 3.55 are satisfied, the retrieved solution to the TRQP sub-problem consists
of the model minimizer δu∗(λ) and the shifted Hessian J̃uu(λ)

−1. The algorithm parameter Keasy is
typically defined with values aroundKeasy = 0.0001 [75]. The convergence check in Eq. 3.55 is referred
to as the ”easy” case, where the current shift λ is reasonably close to the actual solution. There are
situations, however, where Eq. 3.55 is not satisfied and no significant improvement can be achieved by
acting exclusively on the Hessian shift λ (refer to Reference [75] for the list and explanations of these
situations). A stopping criterion for this class of problems, the so-called ”hard” case, is implemented
as:

λ ∈ Gl,

α̃2
[
b̂×

(
J̃uu(λ)b̂

)]
≤ Khard

[
δu∗(λ)×

(
J̃uu(λ)δu

∗(λ)
)
+ λ∆2

] (3.56)

where the Khard is a solver parameter, defined with values typically around Khard = 0.0002 [75], while
the quantities b̂, α̃ correspond to those in Eq. 3.52. If the current iterate does not pass the convergence
test in Eq. 3.55, the stopping criterion in Eq. 3.56 is used, with the solution being defined as the model
minimizer δu∗(λ) + α̃b̂ and the shifted Hessian J̃uu(λ)

−1. If none of the two tests are passed, and the
number of iterations has hit its limit, a null solution δu∗(λ) = 0nu×1, J̃uu(λ)

−1 = 0nu×nu is generated.
The full algorithm is summarized in Alg. 2.

The robust trust-region solver outputs a shifted Hessian matrix exactly as the basic solver mentioned
above. Consequently, the update laws are assembled in the same manner, with Eq. 3.40 for stage
TRQP sub-problems, Eq. 3.41 for multipliers TRQP sub-problems, and Eq. 3.42 for parameters TRQP
sub-problems.

Constrained trust region algorithm
The two trust region algorithms presented above introduce a Hessian shift to the TRQP sub-problem
model. The Hessian shift has the double effect of enforcing positive definiteness of the Hessian matrix
and restricting the TRQP model minimizer within the trust region. However, most OCPs also include
path constraints, implying that TRQP sub-problems are also to be constrained. The approach chosen
to constrain the TRQP sub-problem expands on the methodology introduced in Reference [72], based
on a second-order approximation of the KKT conditions. The technique is now introduced, noting that
path constraints are, by definition, enforced to all and only trajectory stages: multipliers and parameters
updates are still defined by Eq. 3.29 and Eq. 3.31, obtained through the robust trust-region solver and
assembled using, respectively, Eq. 3.41 and Eq. 3.42.

The chosen approach relies on a quadratic solution to the path-constrained TRQP sub-problem, hence
assuming the control update to be of the corresponding order. The control feedback law, previously
defined through Eq. 3.27, is instead computed as:

δu = δu0 +
[
Ux Uw Uλ

] δxδw
δλ


+

1

2

nx∑
a=1

(Uxaxδx+ Uxawδw + Uxaλδλ) δx
a

+
1

2

nw∑
b=1

(Uwbxδx+ Uwbwδw + Uwbλδλ) δw
b

+
1

2

nλ∑
c=1

(Uλcxδx+ Uλcwδw + Uλcλδλ) δλ
c

(3.57)

where, for notational clarity, the feedback matrices/tensors are defined using the partial derivatives
notation (for instance, Ux is the first-order feedback term with respect to the state x). The indexes
corresponding to specific variables are represented using superscripts, for conciseness (i.e., Uxax =
Uxx(:, a, :)).

The devised approach relies on Alg. 2 for the enforcement of Hessian positive-definiteness and trust-
region constraints. Path constraints are therefore applied to a TRQP model which is already convex,
hence the KKT conditions are both necessary and sufficient for (constrained) optimality. The approach

3.2. Hybrid Differential Dynamic Programming 41

Algorithm 2 Single iteration of the robust trust region algorithm

Attempt to factorize J̃uu(λ) = LcL
T
c

if factorization succeeds then
λ ∈ Fl

Solve LcL
T
c δu

∗ = −Ju
if ∥δu∗∥ < ∆ then
λ ∈ Gl; check for interior convergence.

else
λ ∈ Ll.

end if
else
λ ∈ Ll.

end if
Apply Eq. 3.49
if λ ∈ Fl then
Solve Eq. 3.50

else if λ ∈ G then
Use LINPACK method to find a unit vector b̂ making b̂×

(
J̃uu(λ)b̂

)
small.

Apply Eq. 3.51.
Root-solve Eq. 3.52 and update model minimizer δu∗ + α̃b̂

else
Perform partial Cholesky factorization of J̃uu(λ

+), yielding dc and vc.
Apply Eq. 3.53.

end if
Check for termination through Eq. 3.55, Eq. 3.56, and the limit on iteration count.
if λ ∈ Ll then
Replace λ with λ+.

else
if λ ∈ Gl then
Attempt to factorize J̃uu(λ

+) = LcL
T
c .

if factorization succeeds then
λ+ ∈ Gl

Replace λ with λ+.
else
Otherwise, λ+ ∈ Nl.
Apply Eq. 3.54.

end if
end if

else
λ ∈ Nl

Apply Eq. 3.54.
end if

is initialized with a positive-definite Hessian matrix J̃uu and a control update δu∗ that is already within
the trust region bounds. Solving a constrained stage TRQP sub-problem consists of:

min
δu∗

1

2
δu∗T J̃uuδu

∗ + Juδu
∗, such that:

∥Dδu∗∥ ≤ ∆

g(tk,xk,uk + δu∗,w) = 0ng×1

(3.58)

where ng is the number of path constraints (corresponding to the length of g). Inequality constraints
are transformed into equality form through slack variables (as in Eq. 2.7): without loss of generality
[44]. To avoid ill-conditioned systems resulting from KKT conditions, the model minimizer resulting δu∗

used for initialization is exploited to compute the active set of constraints for the current stage: this

3.2. Hybrid Differential Dynamic Programming 42

is considered a reliable estimate, since δu∗ is already a minimizer of the unconstrained problem [42].
The set of active constraints is condensed in a single constraint violation vector q ∈ Rnq×1, where
nq corresponds to the number of active path constraints. The active set of constraints is adjoined to
the TRQP sub-problem model of Eq. 3.58 through a set of Lagrange multipliers µ ∈ Rnq×1, which
is assumed to be in the same quadratic form as Eq. 3.57 (and is represented using the same partial
derivatives notation to indicate feedback law matrices/tensors). The KKT conditions for the resulting
problem become:

Ju +

nq∑
j=1

µjqj
u = 0

q = 0nq×1

(3.59)

In general, Eq. 3.59 will not be satisfied due to the nonlinearity of path constraints functions, therefore
a truncated expansion around the controls u, multipliers λ and static parameters w is introduced. A
first-order expansion of the first term in Eq. 3.59 is introduced: since this expansion also yields second-
order terms, the second term in Eq. 3.59 needs to be approximated up to second order. The full
procedure yields:

0 = Ju + Juxδx+ Juwδw + Juλδλ+ Juuδu

+

nq∑
j=1

µj
(
qj
u + qj

uxδx+ qj
uwδw + qj

uλδλ+ qj
uuδu

)
0 = qj + qj T

u δu+
1

2
δuTqj

uuδu+
1

2
δxTqj

xuδu

+
1

2
δuTqj

uxδx+
1

2
δxTqj

xxδx+ qj T
w δw

+
1

2
δwTqj

puδu+
1

2
δxTqj

xpδw +
1

2
δwTqj

ppδw

+ qj T
x δx+

1

2
δxTqj

xpδw +
1

2
δwTqj

wδx

(3.60)

Expressing the control update δu through Eq. 3.57, Eq. 3.60 can be solved by grouping together coef-
ficients for the unknown first- and second-order variations in states, multipliers, and static parameters.
The affine terms (i.e., the feed-forward updates in controlsδu0 and multipliers µ) can be obtained from:

0 =


Ju
q1

...
qnq

+ (M+
1

2
H)

[
δu0

µ

]
(3.61)

where the M and H matrices are defined as:

M =


Juu q1u · · · q

nq
u

q1 T
u 0 · · · 0
...

...
. . .

q
nq T
u 0 · · · 0

 H =


∑nq

j=1 µ
jqjuu q1uuδu0 · · · q

nq
uuδu0

δuT
0 q

1
uu 0 · · · 0

...
...

. . .
...

δuT
0 q

nq
uu 0 · · · 0

 (3.62)

It is noticed that Eq. 3.61 is a non-linear equation in the unknowns δu0, µ: its solution is retrieved
using MATLAB® root-finding fsolve function (adopting a trust-region Levenberg-Marquadt algorithm),
adjoining the trust-region constraint in Eq. 3.33 to prevent fsolve from exploring diverging solutions
(i.e., outside the current trust region). Once the affine terms are known, the linear feedback terms are
obtained by solving the linear systems:

3.2. Hybrid Differential Dynamic Programming 43

0 =


Jux

q1T
x
...

q
nqT
x

+


∑nq

j=1 µ
jqj

ux

δu0q
1
ux

...
δu0q

nq
ux

+ (M+H)

[
Ux

µx

]
0 =


Juw

q1T
w
...

q
nqT
w

+


∑nq

j=1 µ
jqj

uw

δu0q
1
uw

...
δu0q

nq
uw

+ (M+H)

[
Uw

µw

]

0 =


Juλ

0
...
0

+ (M+H)

[
Uλ

µλ

]
.

(3.63)

The affine and linear terms are then used to compute the second-order feedback terms, through the
linear systems:

0 =


2
∑nq

k=1 µ
k
xj (qk

ux + qk
uuUx)

UT
xjq1

ux + q1
xjuUx + q1

xjx + UT
xjq1

uuUx

...
UT
xjq

nq
ux + q

nq

xjuUx + q
nq

xjx + UT
xjq

nq
uuUx

+ (M+H)

[
Uxjx

µxjx

]
(3.64)

0 =


2
∑nq

k=1 µ
k
wj (qk

uw + qk
uuUw)

UT
wjq1

uw + q1
wjuUw + q1

wjw + UT
wjq1

uuUw

...
UT
wjq

nq
uw + q

nq

wjuUw + q
nq

wjw + UT
wjq

nq
uuUw

+ (M+H)

[
Uwjw

µwjw

]
(3.65)

0 =


2
∑nq

k=1 µ
k
λj (qk

uuUλ)
0
...
0

+ (M+H)

[
Uλjλ

µλjλ

]
(3.66)

0 =


2
∑nq

k=1 µ
k
wj (qk

ux + qk
uuUx)

UT
wjq1

ux + q1
wjuUx + q1

wjx + UT
wjq1

uuUx

...
UT
wjq

nq
ux + q

nq

wjuUx + q
nq

wjx + UT
wjq

nq
uuUx

+ (M+H)

[
Uwjx

µwjx

]
(3.67)

0 =


2
∑nq

k=1 µ
k
xj (qk

uw + qk
uuUw)

UT
xjq1

uw + q1
xjuUw + q1

xjw + UT
xjq1

uuUw

...
UT
xjq

nq
uw + q

nq

xjuUw + q
nq

xjx + UT
xjq

nq
uuUw

+ (M+H)

[
Uxjw

µxjw

]
(3.68)

(3.69)

The full solution to Eq. 3.60 consists in update laws for both controls δu and path-constraints multipliers
µ. The updated path constraints multipliers µ can also be used in NLP solvers to quickly re-converge
a full-trajectory solution [42].

The quadratic update law defined in Eq. 3.57 is used to obtain the partial derivatives of the optimized
cost-to-go J∗

k after applying the devised control update law. The stage quadratic update, normally

3.2. Hybrid Differential Dynamic Programming 44

implemented by Eq. 3.28, is adjusted to:

J∗
x =Jx + UT

x Ju + Jxuδu0 + UT
x Juuδu0

J∗
w =Jw + UT

wJu + Jwuδu0 + UT
wJuuδu0

J∗
λ =Jλ + UT

λ Ju + Jλλδu0 + UT
λ Juuδu0

J∗
xx =Jxx + 2JxuUx + UT

x JuuUx +

nu∑
j=1

U j
xx (Ju + Juuδu0)

j

J∗
ww =Jww + 2JwuUw + UT

wJuuUw +

nu∑
j=1

U j
ww (Ju + Juuδu0)

j

J∗
λλ =Jλλ + 2JλuUλ + UT

λ JuuUλ +

nu∑
j=1

U j
λλ (Ju + Juuδu0)

j

J∗
xw =Jxw + JxuUw + UT

x JuuUw +

nu∑
j=1

U j
xw (Ju + Juuδu0)

j

J∗
xλ =Jxλ + JxuUλ + UT

x JuuUλ +

nu∑
j=1

U j
xλ (Ju + Juuδu0)

j

J∗
wλ =Jwλ + JwuUλ + UT

wJuuUλ +

nu∑
j=1

U j
wλ (Ju + Juuδu0)

j

(3.70)

3.2.4. Forward Pass
The feedback laws computed during the backward induction are then applied in the forward pass. The
procedure is carried out by forward propagating the trajectory, using the update laws specified in Eq.
3.31, Eq. 3.29, and Eq. 3.27 in the corresponding stages. Notice that update laws are referred to
specific stages, hence the numerical integration bounds are defined by the stage collocation function
t(k,x,u,w). Variations with respect to the reference trajectory (indicated by the overhead □̄ operator)
are defined as:

δxk = xk − x̄k δw = w − w̄ δλ = λ− λ̄ (3.71)

The forward pass is summarized in Alg. 3. The new reference solution obtained from the forward pass
is used to compute cost and feasibility metrics of the current iteration: for later use, it is important to
note the actual cost reduction AR, computed as the cost difference between the trial iterate Jnew and
the reference iterate J̄ , as well as the feasibility metric f , computed as:

f :=

√√√√ 1

M

M∑
i=1

[
∥ Ψi (xi,Ni+1,wi,xi+1,1,wi+1)∥2

]
(3.72)

3.2.5. Trust region update
The trust-region solvers defined in Subsection 3.2.3 constitute the inner-most part of a full trust region
iterative procedure. The trust-region radius ∆ used to restrict a trial iterate is to be updated according
to the quadratic model accuracy. The quadratic model validity metric ρ is defined by the expected cost
reduction ER1,0 and the actual cost reduction AR = J − J̄ , through:

ρ =
AR

ER1,0
(3.73)

For the quadratic model to be accurate, its validity metric ρ shall have values close to 1. A quadratic
model tolerance ϵ1 is therefore introduced, leading to the trust region acceptance criterion:

|ρ− 1| ≤ ϵ1 (3.74)

3.2. Hybrid Differential Dynamic Programming 45

Algorithm 3 Forward pass procedure
for all phases i = 1, ...,M do
compute δx−, δw−, δλ−
update w through Eq. 3.31
update λ through Eq. 3.29
compute X, δx1, δw, δλ
for all stages k = 1, ..., Ni do
compute tk = t(k,X)
update uk through Eq. 3.27
update X, store its value as new reference X̄k

compute tk+1 = t(k + 1,X)
propagate Eq. 3.18
update new xk+1 and compute related δxk+1

end for
set last stage reference X̄Ni+1 using the reference control uNi

and xNi+1 obtained from the last
step of the previous loop

end for

Typical approaches to the definition of an acceptance criterion tend to be relaxed towards ’more opti-
mistic’ iterates, that is cases where AR ≥ ER1,0 ⇒ ρ ≥ 1. The algorithm developed as part of this work
accommodates this relaxed tolerance: to minimize the number of hyper-parameters, only Eq. 3.74 is
used to check for the quadratic model validity.

The trust-region radius is updated according to the trust-region acceptance in Eq. 3.74. Several meth-
ods for this update step have been investigated in recent studies [97], mostly aimed at increasing
convergence speed by favoring larger ∆ values. These methods, however, rely on gradient/Hessian
information regarding the optimized model [98, 99, 100]: since the HDDP algorithm sequentially solves
numerous TRQP sub-problems with different quadratic models, state-of-the-art approaches to increase
the convergence speed in trust-region methods are inapplicable. For the scope of this work, the trust
region radius is updated through a simple non-monotone strategy [101]:

∆p+1 =

{
min ((1 + κd)∆p,∆max) if |ρ− 1| ≤ ϵ1

max ((1− κd)∆p,∆min) otherwise
(3.75)

where p and p + 1 are indices for consecutive HDDP trust-region iterates. The strategy requires an
initial trust-region radius value ∆0 and a trust-region update parameter κd ∈ (0; 1). When an iterate
is accepted, the quadratic model is considered valid and the trust region radius is increased to favor
convergence speed. Conversely, rejected iterates imply inaccurate models, therefore the trust region
radius is decreased to favor smaller andmore accurate updates. Theminimum trust-region radius∆min

controls the identification of ”stalled” iterations (i.e., iterations where accurate quadratic models are only
obtained if controls are excessively restricted), thus interrupting the optimization. The maximum trust-
region radius ∆max is used to limit excessively ”confident” iterates but it is typically considered an
uninfluential parameter in previous works [39, 86]).

3.2.6. Convergence test
The iterative optimization process is interrupted once a set of convergence criteria (or a maximum
runtime limit) is met. The quadratic cost model defined by the HDDP process enables the enforcement
of both first- and second-order optimality conditions. First-order optimality is enforced through the
expected cost decrease between consecutive (accepted) iterates as:

ER1,0 ≤ ϵopt & f ≤ ϵfeas (3.76)

where ϵopt is the optimality threshold, while ϵfeas is the feasibility threshold. Second-order optimality is
checked through the positive-definiteness of all the ”natural” Hessian matrices (i.e., before applying the
corresponding Hessian shift). For stage and static parameters TRQP sub-problems, the corresponding
Hessians Juu,k and Ĵw+w+

are required to be positive definite, while the Lagrange multipliers TRQP
sub-problem requires positive-definite (opposite) Hessian −J̃λ+λ+

, according to the ”min-max” logic.

3.2. Hybrid Differential Dynamic Programming 46

Figure 3.5: Backward propagation of the second-order model of the constraints violation Ψi for multiple phases

When introducing path constraints, the convergence test is adjusted accordingly. Positive definite-
ness is only enforced on the reduced Hessians (i.e., cost Hessians with respect to constraint-satisfying
controls) [42]. The Jacobian of the active constraints is readily available, as the devised technique esti-
mates the active set of constraints and computes its quadratic expansion, therefore reduced Hessians
HR,k can be computed with minimal computational overhead as HR,k = ZT

k Juu,kZk, where Zk is the
null space of each stage k active set of constraints. The null space is efficiently computed through
MATLAB® null routine.

3.2.7. Penalty update
The augmented Lagrangian approach is introduced in Section 2.3, and integrated within HDDP in Sec-
tion 3.2. This approach employs both Lagrange multipliers as well as a penalty term: the solution sen-
sitivity to the penalty parameter σ values is a well-documented issue [39, 42]. This problem is typically
tackled by hand-tuning parameter values until the solution is deemed acceptable. The hand-tuning pro-
cess, however, implies trial-and-error iterations which can become considerably time-consuming when
in the context of long/high-dimensional OCPs (such as many-revolutions transfers). To address such
limitations, this work proposes a novel algorithm for adaptive tuning of the penalty parameter σ, with
the aim of robustly achieving solutions where feasibility closely meets the desired threshold ϵfeas. The
feature is desired as it allows greater control over OCP solutions, specifically on the balance between
optimality and feasibility, which are typically conflicting [80].

The novel adaptive approach
In Subsection 3.2.2, expressions for the quadratic expansions of the optimized cost-to-go J∗ have been
introduced after solving the stage and inter-phase sub-problems (Eq. 3.28 and Eq. 3.32, respectively).
In this work, the same concept is extended to constraint violations, allowing a closed-form expression
for the sensitivity of the feasibility metric f to the constraint violations Ψi. An additional closed-form
relation between the constraint violations Ψi and the penalty parameter σ is also derived. The chain
rule is then leveraged to link the two relations, obtaining a linear model for the feasibility metric f as
a function of the penalty parameter σ: this linear model is finally used to compute updates in penalty
parameter σ to match the required feasibility threshold ϵfeas.

The quadratic model of the constraint violations is propagated backward using the same equations
as the stage and inter-phase sub-problems, by treating each component of the terminal constraints
function Ψi individually. Being single-variable functions, each of the Ψi components can be mapped
to previous stages using Eq. 3.26, while substituting the J terms with individual components of the
constraint violation vectorsΨi and removing running cost terms L. Similarly to the cost-to-go backward
induction, the process is initialized by analytically computing the partial derivatives of the constraint
violations Ψi at the final stage and then propagating backward until the first stage. Since different
terminal constraints are defined for each phase, the backward mapping stops after every inter-phase
update, and it is re-initialized using the new partial derivatives of the constraints from the previous
phase. An illustration of the procedure is provided in Figure 3.5. The backward mapping is carried
out along the backward induction, producing an array of quadratic-expansion objects for each terminal
constraint violation function Ψi.

3.2. Hybrid Differential Dynamic Programming 47

The feasibility metric f is defined as a function of constraint violations Ψi in Eq. 3.72. The multi-phase
problem formulation is accommodated by concatenating the constraint violation vectors Ψi in a single
Ψ, defined as:

Ψ =

Ψ1

...
ΨM

 . (3.77)

Equation 3.72 is therefore differentiated with respect to the full constraint violation vector Ψ, resulting
in:

∂f

∂Ψ
=

∂
∂Ψ

(
1
M ∥Ψ∥2

)
2
√

1
M ∥Ψ∥2

,

∂

∂Ψ

(
1

M
∥Ψ∥2

)
=

2

M
ΨT ,

∂f

∂Ψ
=

ΨT

√
M∥Ψ∥

.

(3.78)

The sensitivity of the constraint violations with respect to the penalty parameter is now derived. The
desired term ∂Ψ

∂σ is split into intermediate terms through the chain rule. To achieve this, the term Y =
[x; w;λ] is introduced: the quantities figuring in Y are the same appearing in the sensitivities of the
optimized cost-to-go (and therefore also in each constraint violation component) after stage and inter-
phase quadratic updates (e.g., in Eq. 3.28 or in Eq. 3.32). The introduction of the chain rule in the term
∂Ψ
∂σ results in:

∂Ψ

∂σ
=

∂Ψ

∂Y

∂Y

∂J

∂J

∂σ
. (3.79)

The three terms appearing in Eq. 3.79 are tackled individually. The first term ∂Ψ
∂Y represents the sen-

sitivity of the constraint violations with respect to the quantities Y , hence corresponding to the final
sensitivities obtained at the end of the backward induction over a single phase: indicating such quanti-
ties with Ψ∗

Y (following the same convention as the optimized cost-to-go), it follows that:

∂Ψ

∂Y
= Ψ∗

Y . (3.80)

The second term in Eq. 3.79 can be obtained similarly from the backward induction results by lever-
aging the inverse function differential rule. Using the same Y notation, the full quadratic model of the
optimized cost-to-go at the beginning of each phase is condensed as J∗

Y ,i. Following the same notation
introduced for the constraint violations, the sensitivities of the optimized cost-to-go are concatenated
in a single vector J∗

Y as:

J∗
Y =

 J∗
Y ,1,0
...

J∗
Y ,M,0

 (3.81)

Under this convention, it follows that:
∂J

∂Y
(Y) = J∗

Y ,

∂Y

∂J
=

1
∂J
∂Y (Y (J))

=
1

J∗
Y

.
(3.82)

Finally, the last term in Eq. 3.79 is obtained by differentiating the augmented Lagrangian definition
introduced within HDDP in Eq. 2.9 with respect to the penalty parameter σ, yielding:

∂J

∂σ
= ∥Ψ∥2 (3.83)

It is noticed that only a first-order model was considered in Eq. 3.79: adding any second-order terms
would yield no effect due to the ∂2J

∂σ2 ≡ 0. Substituting the derived equations in Eq. 3.79 yields:

∂Ψ

∂σ
= Ψ∗

Y

1

J∗
Y

∥Ψ∥2 (3.84)

3.2. Hybrid Differential Dynamic Programming 48

The sensitivities in Eq. 3.78 and Eq. 3.84 can be combined using the chain rule, yielding:

∂f

∂σ
=

ΨT

√
M∥Ψ∥

Ψ∗
Y

1

J∗
Y

∥Ψ∥2 =
ΨTΨ∗

Y ∥Ψ∥√
MJ∗

Y

. (3.85)

At every iteration, the penalty parameter is updated through:

σp+1 = σp +min

(
max

(
ϵfeas − fp

∂f
∂σ

κσ,−∆σ

)
,∆σ

)
(3.86)

where p and p+1 indicate two consecutive HDDP iterations. The κσ and ∆σ are algorithm parameters
that introduce some margin in the target feasibility threshold and limit excessive updates in penalty
parameter, respectively. The algorithm requires the initialization of the penalty parameter σ0.

The update law in Eq. 3.86 requires the definition of a restriction parameter ∆σ. While being consid-
erably less influential than the penalty parameter σ itself, the restriction parameter ∆σ requires tuning
and thus does not entirely satisfy the posed objective. A nested trust-region approach, outlined in Alg.
4, is introduced to adaptively compute the restriction parameter ∆σ. The procedure outlined for the
derivation of Eq. 3.86 yields an expected reduction in feasibility metrics ERf = ∂f

∂σ (σp+1 − σp): the
nested trust-region approach consists in the comparison of the expected and actual feasibility reduc-
tions (respectively ERf and ARf). This comparison is carried out in an outer loop, where the penalty
parameter σ is updated according to Eq. 3.86, while the restriction parameter ∆σ is updated following
the same logic as Eq. 3.75. The approach is robust to poor initial guesses for the penalty parame-
ter σ0 and removes all tuning efforts, at the cost of major computational overhead due to the nested
trust-region loops, greatly affecting the HDDP runtime performance.

Algorithm 4 Nested trust-region approach for the adaptive penalty parameter tuning
Initialize σ, ∆σ

while |ERf

ARf
− 1| ≥ ϵ1 do

while Eq. 3.74 not satisfied do
Perform backward induction (also including the constraint violation expansions)
Perform forward pass
Compute ρ through Eq. 3.73

end while
Compute ERf

ARf
− 1

Update ∆σ according to Eq. 3.75
Compute σ according to Eq. 3.86

end while

Heuristic approach
An additional method to compute penalty parameter updates is also considered. The method is de-
scribed in Reference [42] and implements a heuristic rule to adaptively increase the penalty parameter
σ when consecutive iterates result in increased constraint violations. The update law is:

h =
1

M

M∑
i=1

[
Ni∑
k=1

(Li (tk,xi,k,ui,k,wi)) + φi (x−,w−,x+,w+)

]
,

σp+1 = max

(
min

(
h

2f2
, κσσp

)
, σp

) (3.87)

where h represents a metric for optimality, and the subscripts p and p + 1 indicate consecutive HDDP
iterations. It is noticed that the provided update rule only increases the σ values, as it is aimed at
steering the solution toward feasibility when the algorithm starts prioritizing optimality, and the authors
themselves point out its unfeasibility to adaptively balance optimality and feasibility according to the
user-specified tolerances [42].

3.2. Hybrid Differential Dynamic Programming 49

3.2.8. Quadratic model tolerance relaxation
The algorithm sensitivity to the quadratic model validity threshold ϵ1 is also addressed in this study.
The sensitivity is addressed in two steps, one where an adaptive enlargement of the validity region is
applied to avoid ”stalling” trust-region iterates (outlined in Alg. 5), and another where the ϵ1 threshold
is relaxed after convergence to improve solution convergence with minor runtime effort.

Adaptive enlargement of the validity threshold
The trust region radius update in Eq. 3.75 depends on several parameters, including a minimum value
for the trust region radius ∆min. This parameter prevents the trust region from ”stalling” on ineffective
iterates. There are situations, however, where the defined minimum trust-region radius ∆min does
not ensure the satisfaction of the validity threshold ϵ1. To avoid force-interrupting the optimization, a
safeguard is introduced. Across each trust-region trial iterate, the algorithm keeps track of the trust-
region radius ∆ corresponding to the most accurate quadratic model: if a stalling point is encountered
(i.e., no trial iterates manage to satisfy the validity tolerance ϵ1 with a∆ ≥ ∆min), the stored radius∆ is
used, and the validity tolerance ϵ1 is enlarged accordingly. Failure to converge is only detected if also
the most accurate iterate cannot meet the specified ϵ1,max. The algorithm is summarized in Alg. 5.

Algorithm 5 Adaptive enlargement of the quadratic model validity region
Initialize best ρbest, ∆best pair
while Eq. 3.74 not satisfied do
Perform backward induction
Perform forward pass
Compute validity ρ through Eq. 3.73
if |ρ− 1| ≤ |ρbest − 1| then
Update best ρbest, ∆best pair

end if
Update trust-region radius ∆ through Eq. 3.75
if ∆ = ∆min then
Compute ϵ1 = |ρbest − 1|
if ϵ1 ≤ ϵ1,max then
Set ∆ = ∆best

else
Interrupt HDDP process (due to trust-region stalling)

end if
end if

end while

Quadratic validity relaxation
The relaxation technique is now presented. For the quadratic model to be accurate, a small validity
threshold ϵ1 << 1 is required implying ρ ≃ 1. Large values for the threshold ϵ1 can cause iterates to
diverge [75], while low values determine slow convergence. The following relaxation approach is based
on observations derived throughout the tuning and optimization process. More specifically, early iter-
ations demonstrate satisfying cost reductions even under strict tolerance ϵ1 values, while exhibiting
undesirable oscillations with larger tolerances ϵ1. Conversely, later iterations are observed to signif-
icantly progress towards optimality only under larger tolerances ϵ1. To maintain algorithm accuracy,
while better exploiting the trust region in later iterations, the validity threshold ϵ1 is relaxed according
to:

ϵ1 = min(ϵ1κϵ, ϵ1,max) (3.88)

where ϵ1,max is a user-defined maximum value for the quadratic accuracy threshold, and κϵ is the relax-
ation coefficient. The update is performed once convergence is detected: meeting first- and second-
order optimality conditions, it is mathematically ensured that solution improvements, if any, do not sig-
nificantly diverge from the identified optimum. Accepting less accurate iterates enables more effective
exploitation of ”less-predictable” behavior: since the solution is already in a region of local optimality, it
is guaranteed that newly generated iterates do not diverge.

3.3. Software design 50

3.2.9. Mesh refinement
The HDDP approach is favorable for high-dimensional OCPs, where numerous stages are required for
accurate problem discretization. In general, increasing the number of stages leads to higher resolution
but also longer runtime. Adaptive meshing techniques are used in some direct optimization approaches
[56, 57] to reduce the number of stages, significantly improving runtime performance. This work adopts
a simple mesh refinement procedure, outlined in Alg. 6, to tackle very large OCPs.

The devised approach solves problems with sequentially increasing resolution until the optimality im-
provement Iopt obtained from increasing the resolution matches the defined optimality tolerance ϵopt.
The chosen refinement technique consists of doubling the number of stages after successful conver-
gence. While requiring minimal implementation efforts, the chosen approach causes the number of
stages to quickly rise to untractable size. Further work shall investigate more efficient strategies, such
as introducing additional stages only where control inputs vary substantially (i.e., above a specified
threshold) between consecutive stages. Given the independence of such an approach from the full
HDDP framework, it is omitted from the software architecture illustration in Section 3.3.

Algorithm 6 Mesh refinement technique
Initialize discretization (number of stages), optimality improvement Iopt
while Iopt ≥ ϵopt do
Solve OCP through HDDP
Double the number of stages

end while

3.3. Software design
The resulting HDDP algorithm is fully implemented in MATLAB ® and available in Reference [102]. The
methodology and software are developed with further use as a main objective, therefore software de-
sign aims at accommodating modular changes to each sub-algorithm block, as well as guaranteeing
a generic implementation, fit for a wide range of OCP applications. The defined software architec-
ture is now illustrated, outlining the adopted design principles as well as key components of the full
implementation. The integration of automatic differentiation within the framework is also presented.

3.3.1. Object-Oriented Programming
The HDDP algorithm presented in Section 3.2 incorporates numerous quantities, partial derivatives and
different solvers. To ensure that the resulting implementation is readable, maintainable, and scalable,
OOP principles are used, namely inheritance, abstraction, and encapsulation:

• Inheritance: allows a class to inherit properties and behaviors from another (super)class, en-
abling code reuse and hierarchical relationships. It is used to expand algorithm blocks, allowing
growing mathematical complexity without requiring unnecessary implementation efforts.

• Abstraction: focuses on defining essential features while hiding unnecessary details. It is ex-
ploited to separately define ’rigid’ interfaces between algorithmic blocks while leaving detailed im-
plementation to specialized classes. This procedure allows to seamlessly swap different solvers
for the same task without modifying the underlying code.

• Encapsulation: binds data and methods that manipulate it within the same class (or its related
super-class). This philosophy ensures controlled interaction between an object’s internal state
and the mathematical manipulations performed throughout the HDDP process.

Following such principles, each of the classes introduced below inherits from a corresponding abstract
super-class, which implements the basic interfaces (i.e., properties and methods) required to reliably
instantiate it within the HDDP framework. These super-classes, identified by the ’abstract_’ prefix, are
implemented as MATLAB® Abstract classes, which implicitly require concrete classes to inherit from
them and implement specialized behavior to function properly. A full set of conventions used to define
the following software diagrams is now provided:

• light-blue color: abstract classes;

3.3. Software design 51

• light-green color: concrete classes, implementing the adjacent super-class behaviors;
• light-orange color: classes defining solution quantities, which are updated iteratively throughout
the HDDP loop;

• light-gray color: methods belonging to the adjacent class
• solve: method which operates on its class properties;
• perform: method operating on external classes;
• build: method used to generate the required data to start the HDDP optimization;
• UnifiedModeling Language (UML) required interface block: fixed interface between objects and/or
methods;

• gear icon: object/method implementing one or more of the HDDP core equations presented in
Section 3.2;

• solid triangle: concrete implementation of a property/method defined in the corresponding super-
class;

• dashed list: class properties defined in a higher-level block of the software hierarchy;
• dashed arrows: input/output relations;
• bold arrows: algorithm information flow;
• hollow arrows: inheritance;

The full software is described at a high level, aiming at illustrating the OOP paradigms applied to its
design. The detailed implementation of each class and related interfaces is accessible through the
source code, available in Reference [102].

First, an overview of the class structure is provided in Figure 3.6.

Figure 3.6: Overview of the OOP hierarchy

3.3. Software design 52

Class names follow a camel case convention (i.e.: ClassName), while methods are defined using
snake case (i.e.: method_name). Class names are chosen to be as representative as possible. Less
obvious name choices are the Plant class (storing the full values of the problem states x, controls
u, parameters w, and multipliers λ), Iterate class (which stores the relevant metrics for the current
iterate, such as augmented cost J and constraint violation f), and PhaseManager class (handling calls
to the user-provided problem formulation).

The Phase class represents the algorithm solution and is updated with every algorithm iteration. By
combining most of the HDDP interface quantities (i.e., quadratic expansions, STMs, plant, and up-
date law objects), it is ensured that methods operating on the candidate solution do not accidentally
modify/break interfaces with externally defined solvers (encapsulation).

Most high-level blocks of the HDDP procedure are implemented as individual entities, without signif-
icant dependencies to other super/sub-classes. The choice aims at providing maximum flexibility on
the implementation of specific solvers. The illustrated abstract_ classes pre-define the interfaces re-
quired for a fully operational algorithm, while their detailed implementation is left to specialized (and
replaceable) classes (abstraction). A clear example is provided by the different TrqpSolver implemen-
tations considered throughout the thesis work: starting from the basic trust-region algorithm in Alg.
1, the more complex and robust version in Alg. 2 was later implemented by the TrqpSolver_Conn
class (replacing the basic TrqpSolver). The integration of path constraints was achieved through the
TrqpSolver_quadraticConstrained class: this class inherits the unconstrained TRQP sub-problem
solution (used to estimate the active set of constraints) from the TrqpSolver_Conn class, while special-
ized methods are introduced to implement Eq. 3.57, Eq. 3.61, Eq. 3.62, Eq. 3.63, Eq. 3.64, and Eq.
3.70.

High-level architecture
The illustrated classes implement the high-level logic of the HDDP algorithm as in Figure 3.7.

The high-level implementation matches exactly the algorithm definition provided in Figure 3.1, increas-
ing code interpretability. The PhaseManager class is the only ”additional” object (i.e., does not implement
specific steps of the HDDP procedure). This class handles the interfaces between user-provided func-
tions (i.e.: dynamics, cost function, constraints, and stage collocation) and the general-purpose HDDP
solver. Further detail into the PhaseManager class is provided in Subsection 3.3.2.

ForwardPass class
Going into further detail into the individual classes, the main features of the ForwardPass class are
illustrated in Figure 3.8. The dynamical feasibility of the initial guess is guaranteed by only requiring
static parameters and dynamic controls, while the ForwardPass propagates the system dynamics. The
HDDP forward-pass procedure is performed by re-initializing numerical integration at every stage (ac-
cording to Alg. 3), computing a new control/parameter/multiplier update through the corresponding
UpdateLaw object. It is noticed how the UpdateLaw.apply method is first defined in its corresponding
super-class, allowing different implementations of such UpdateLaw objects. This is the case, for in-
stance, of the QuadraticUpdateLaw class, which implements the update to the optimized cost-to-go
through Eq. 3.70 instead of the corresponding unconstrained linear counterpart in Eq. 3.28.

StmsPropagation class
The StmsPropagation class implementation is provided in Figure 3.9. The ForwardPass provides a
completely defined Plant object: the StmsPropagation can be performed in an asynchronous manner
on each trajectory point, by propagating the variational equations (Eq. 3.19 and Eq. 3.20) using indi-
vidual stages as initial conditions. This step is enabled by MATLAB® Parallel Computing capabilities.

BackwardsInduction class
The BackwardsInduction procedure is implemented as in Figure 3.10. The algorithm flow, indicated
by the thick arrows, outlines the loop procedure, consisting of a backward solution of each Phase object.
It is noticed that there is no apparent point of initialization for the backward induction procedure. To
maintain the implementation as generic as possible, each phase is initialized and concluded exactly as
if it were a generic inter-phase problem. Initialization is carried out on the final phase M by evaluating
the inter-phase expansion in Eq. 3.24 between said phase (on the point x−,w−) and an ”artificial” later

3.3. Software design 53

phase (with dummy x+,w+ values). Similarly, the backward induction is concluded by performing an
inter-phase optimization (solving the TRQP sub-problems defined by the expansion in Eq. 3.25 and by
the updated Eq. 3.30) between the initial phase i = 1 and a ”dummy” Phase object with null costs. This
architecture enables a unified formulation for all problem-defining functions (namely terminal costs and
constraints).

Throughout the backwards induction, Stage and InterPhase objects are solved backwards. These
classes implement their respective solve methods as illustrated in Figure 3.11 and Figure 3.12. The in-
heritance OOP paradigm is mainly observed in the different implementations of Stage and InterPhase
objects. Both classes inherit properties (namely the OptimizedCostToGoExpansion defining the out-
puts of Eq. 3.283.32, UpdateLaw, and Plant objects, as well as the expand and solve methods) from
the abstract_Problem class, ensuring compatibility with the full Phase.solve procedure.

The Stage super-class also introduces the need for STMs objects, required to perform the stage quadratic
expansion in Eq. 3.26. The UpdateLaw objects are only defined as outputs of the TrqpSolver.solve
method: depending on specific implementations, different UpdateLaw objects can be defined (both
during problem setup as well as directly at runtime): compatibility is ensured by the required apply
and expand methods, defined in the corresponding super-class. When solving OCPs with no path
constraints, the UpdateLaw.apply method implements Eq. 3.27, Eq. 3.29, and Eq. 3.31, while
UpdateLaw.expand defines the optimized cost-to-go expansion after the update law object is defined
by the trust-region solver, through Eq. 3.28, Eq. 3.30, and Eq. 3.32.

Finally, while different quadratic expansions/cost-to-go objects are defined, it is specified that there
is no limitation to the size of such objects, allowing the backward propagation of additional quantities
(on top of the default cost-to-go value). This feature is leveraged when implementing the adaptive
penalty parameter update: replacing the default Stage and InterPhase objects, the backward induction
procedure is augmented by concatenating multiple quadratic-expansion objects (one for the cost-to-go
and others for each of the constraint violation components). The previously highlighted abstraction and
encapsulation paradigms imply that no further modifications to the implementation are required.

The ConvergenceTest class directly implements the checks defined in Eq. 3.76 and the positive-
definiteness check for the Hessian matrices.

The PenaltyUpdate class implements all parameter updates performed after the acceptance of a trust-
region trial iterate. The default implementation applies the heuristic method to update the penalty
parameter (i.e., Eq. 3.87). This class can be swapped with the PenaltyUpdatePsi class to implement
the novel update technique defined in Eq. 3.86 (with the required class-replacements to the Stage
and InterPhase classes to perform the backward induction of the constraint violation partials). The
PenaltyUpdate.perform method also implements the quadratic model validity threshold relaxation in
Eq. 3.88, as well as the adaptive enlargement in Alg. 5.

3.3.2. Automatic differentiation
The OCP formulation and solution through HDDP requires the definition of multiple functions and their
partial derivatives up to second-order. The HDDP algorithm, conversely from other DDP frameworks,
decouples partial derivatives of the dynamics function f and cost/constraints functions φ, L, Ψ, g, fa-
voring more flexibility when solving/formulating an optimization problem [42]. For the scope of this work,
the flexibility of the approach is further enhanced by automatic differentiation, implemented through the
ADiGator package [103] in MATLAB®. This practice proved particularly advantageous throughout the
work, as it enabled quick iterations between different representations of the controls and state vector.
The devised software implements all evaluations of the so-called problem-definition functions (i.e., dy-
namics, costs, constraints, stage collocation, and initial conditions) and their partial derivatives through
the PhaseManager class. An overview of the PhaseManager class is provided in Figure 3.13.

The problem-definition functions are defined following the notation presented throughout this paper
(states x, controls u, ...). The PhaseManager.build method re-arranges the user-provided functions
such that they can be easily accessed by the HDDP algorithm and ADiGator routines: terminal costs
φ and constraints Ψ are combined into the augmented Lagrangian cost function φ̃, the dynamics and
stage collocation functions (as well as their partial derivatives) are combined into the variational equa-
tions (Eq. 3.19 and Eq. 3.20), and all functions are re-defined using the augmented stateX convention.

3.3. Software design 54

If not already available, the build method generates all required first- and second-order partial deriva-
tives (the red blocks in Figure 3.13) through the ADiGator routines. When evaluating partial derivatives
or user-provided functions (i.e.: to perform stage/inter-phase quadratic expansions, propagate system
dynamics or variational equations), the PhaseManager class manages function calls and array index-
ing required to access specific function partials. It is specified that the illustrated class is the ”default”
implementation of the PhaseManager class, with automatically differentiated partial derivatives. The
automatic differentiation framework provides easy access to first- and second-order information up to
machine precision. Different approaches can also be adopted and implemented in analogous classes,
with different implementations of the interfaces defined by the abstract_PhaseManager class.

3.3. Software design 55

Figure 3.7: High-level overview of the HDDP algorithm implementation

3.3. Software design 56

Figure 3.8: Overview of the ForwardPass class implementation

Figure 3.9: Overview of the StmsPropagation class implementation

3.3. Software design 57

Figure 3.10: Overview of the BackwardsInduction implementation

Figure 3.11: Overview of the Stage.solve method implementation

3.3. Software design 58

Figure 3.12: Overview of the InterPhase.solve method implementation

Figure 3.13: Overview of the PhaseManager class

4
Journal Article

59

Differential Dynamic Programming for the Optimization of
Many-Revolution Solar-Sail Transfers

Riccardo Minnozzi∗
Delft University of Technology, Delft The Netherlands, 2629 HS

Fernando Gámez Losada † and Jeannette Heiligers‡

Delft University of Technology, Delft The Netherlands, 2629 HS

Solar sailing is a propellant-free propulsion method, leveraging the momentum of Sun-

emitted photons to generate thrust, which it them promising for both interplanetary and

Earth-bound applications. In Earth-orbit, the small magnitude of the solar-sail thrust with

respect to the Earth’s gravity implies the need for many revolutions to accomplish an orbital

transfer. Solving the resulting optimization problem requires algorithms capable of handling

very large sets of optimization variables. This study focuses on the use of Differential Dynamic

Programming (DDP), expanding the algorithm formulation to handle problems with variable

duration and path constraints. The resulting algorithm is validated against a state-of-the-art

direct solver, and its sensitivity to hyper-parameters is investigated. The devised algorithm is

applied to Earth-centered circular-to-circular planar solar-sail transfers, successfully optimizing

up to 1000 revolutions transfers in LEO, and 180 revolutions in GEO. Regression models for the

sail performance are derived and used to solve the circular-to-circular transfer problem through

a flexible-final-time formulation. While the obtained results shed light onto optimal solar-sail

many-revolution transfers, higher-fidelity dynamical models shall be considered in further

analyses. The software developed as part of this work is made available for future studies, with

the aim of enabling the optimization of high-fidelity mission scenarios, with variable time of

flight and arbitrary operational constraints.

I. Introduction
Solar sailing is a form of spacecraft propulsion that uses the radiation pressure exerted by sunlight on large, reflective

sails to generate thrust. Unlike conventional propulsion systems that rely on onboard fuel, solar sails harness the

momentum of photons, offering the potential for long-duration missions with minimal resource consumption [1]. Its

feasibility has been demonstrated in recent missions, in interplanetary environment by JAXA’s IKAROS mission (2010)
∗M.Sc. student, Aerospace engineering
†PhD Candidate, Aerospace Engineering, Astrodynamics & Space Missions
‡Associate Professor, Aerospace Engineering, Astrodynamics & Space Missions

[2], in Earth’s orbit by NASA’s NanoSail-D (2010) [3], the Planetary Society’s LightSail 1 and 2 (2015, 2019) [4, 5],

and NASA’s ACS3 missions [6].

While solar sailing in the interplanetary environment has been widely explored [7–9], its unique features establish it

as a promising propulsion method for planet-centered applications. Ongoing research and development efforts validate

this potential: solar sails have been identified as effective solutions for science missions (e.g., planetary imaging [10, 11]

and exploration of Earth’s magnetic tail [12]) or commercial applications [13]. Due to the urgency of the matter,

solar-sail-powered Active Debris Removal (ADR) missions have also attracted considerable attention [14–16].

The dynamics of solar sails in planetary environments differ considerably from those in interplanetary conditions.

In planetary orbits, the small magnitude of the attainable solar-sail thrust compared to other forces (i.e., gravity and

aerodynamic perturbations) causes low orbit control authority, which is further affected by eclipsing phenomena

[17]. Notably, many orbital revolutions are required to accomplish a transfer, making their design and optimization a

challenging aspect of solar-sailing mission planning [18]. Multiple optimization strategies for such transfers have been

explored in the literature, spanning both electric propulsion and solar sailing missions.

Direct optimization techniques leverage collocation methods to transcribe the Optimal Control Problem (OCP) into a

single Non-Linear Programming (NLP) problem [19–22]. However, their computational complexity scales quadratically

with the number of decision variables [23], limiting their applicability to many-revolution transfers. Indirect methods

enforce Pontryagin’s minimum principle (PMP) to transform the OCP into a Multi-Point Boundary Value Problem

(MPBVP) [24–27]. Solving MPBVPs numerically is challenging due to their high sensitivity to initial guesses for

both states and co-states [23]: The limited literature on optimal solar-sail many-revolution transfers complicates the

generation of accurate initial guesses [28]. The Q-law is a heuristics-based approach that employs a Lyapunov controller

to quickly generate near-optimal trajectories [18, 29, 30]: since it does not enforce nor guarantee the solution optimality,

it is typically used to generate initial guesses [26, 31].

A promising alternative is Differential Dynamic Programming (DDP), which uses Bellman’s optimality principle to

decompose high-dimensional OCPs into smaller sub-problems solved iteratively, incurring linear performance scaling

with increasing problem dimensionality [32]. The cost function is approximated up to second order around a reference

trajectory, providing both first and second-order optimality information, thus ensuring better convergence properties than

gradient-based solvers [33]. The state-of-the-art in DDP-based solvers is the Static Dynamic Control (SDC) algorithm,

which solves multi-phase and constrained OCPs using Riccati-like equations, enabling the high-fidelity mapping of

the quadratic cost model [34]. The SDC algorithm is combined with a Q-law approach for initial guesses and a

time-dilation technique to handle problems with variable duration: the resulting Mystic software was successfully applied

to the trajectory optimization of the DAWN [35], PSYCHE [36], and NEA Scout [9] missions. A key advancement

in the development of DDP methodologies is the Hybrid Differential Dynamic Programming (HDDP) algorithm,

which uses first- and second-order State Transition Maps (STMs) to propagate the quadratic cost model on a reduced

2

number of collocation points (stages), enabling parallel computing for enhanced performance [33]. Thanks to its

computational efficiency, the HDDP algorithm has drawn considerable interest for applications to many-revolution

transfers, including up to 1500 revolutions time- and fuel-optimal transfers around Earth [37], rendezvous within the

Circular Restricted Three Body Problem (CRTBP) [38], and optimal Earth-centered orbit raising for 500 revolutions

[39]. Improvements to the HDDP framework include the expansion of a cost model to higher orders [40], the integration

within a multiple-shooting framework [41], and the incorporation of semi-analytical propagation schemes based on

simplified dynamical models [42, 43]. Numerous works on DDP algorithms aimed at expanding their constrained

optimization capabilities [33, 41, 44, 45].

Despite the promising features, works on the HDDP algorithm still include a range of limitations, which become

particularly noticeable in solar-sailing applications. First, the algorithm’s sensitivity to hyper-parameter tuning is

identified as its main drawback in several works [33, 37, 39, 40]. The delicate tuning process becomes particularly

time-consuming when tackling high-dimensional OCPs, such as those resulting from planet-centered solar-sail transfers

[23]. Second, while the augmented Lagrangian approach [44] is a well-established methodology to handle terminal

constraints, the enforcement of path constraints receives less consideration in literature. Given the inherently constrained

nature of solar sailing (e.g., coupling of the sail thrust direction and magnitude [1] and minimum operational altitude

constraints [46]), a DDP solver shall be able to tackle generic path constraints efficiently and robustly [17]. Studies

on the topic, however, are mainly limited to the enforcement of linear bounds to the control inputs [39, 45, 47], while

works addressing generic constraints (i.e., state-dependent and non-linear functions) employ linearized models, inducing

chattering and reducing computational efficiency [41, 48]. Finally, studies adopting the HDDP framework are limited

to fixed-duration OCPs, with expansions to variable duration problems being limited to simplified dynamical models

[38, 42]. Variable-duration problems are particularly relevant in solar-sailing OCPs, as these often consist of identifying

solutions meeting specified constraints in the minimum amount of time [23].

This study aims at expanding the HDDP framework through original techniques to handle OCPs with path constraints

and variable time of flight. Furthermore, the sensitivity to hyper-parameters is thoroughly characterized and addressed

through adaptive tuning approaches. The devised algorithm is validated against a state-of-the-art direct optimization

solver and applied to time-optimal solar-sail many-revolution transfers.

The paper is structured as follows. First, the modified HDDP algorithm is presented in Section II, introducing the

novel methodologies. The benchmark solar-sail-transfer problem is outlined in Section III. The algorithm behavior is

characterized in Section IV, both in terms of hyper-parameter sensitivity as well as convergence properties. Relevant

results are summarized in Section V, starting from simplified test problems and then moving to computationally

challenging many-revolution transfers. Finally, conclusions and recommendations for future work are presented in

Section VI.

3

II. Differential Dynamic Programming
This section presents the designed DDP implementation. The devised algorithm builds upon the HDDP framework

defined in Ref. [33], as it provides an efficient and flexible solution method. The full algorithm is intended for further

use as a general-purpose solver, designed to tackle a wide range of OCPs (solving for both dynamic controls and static

parameters across multiple phases, accommodating constrained, FFT formulations). The reader is referred to Ref. [33]

for the complete background on HDDP, while only a high-level overview is provided here.

The HDDP algorithm requires a discrete problem formulation, as well as first- and second-order partial derivatives

for all problem definition functions (namely dynamics, costs, and constraints). Each discretization point is referred to as

a stage. The procedure is summarized in Fig. 1, while a high-level overview of each step is presented below.

• Initialization: a guess for the control history and static parameters is used to forward-propagate the system

dynamics, resulting in a first reference solution.

• STMs propagation: first- and second-order STMs between each consecutive stage of the reference solution

are obtained. This work uses variational equations to perform this step, as it is a generic and widely accepted

methodology [49, 50].

• Backward induction: this step is initialized by computing a quadratic cost model around the final stage of

the reference trajectory. The resulting Quadratic Programming (QP) problem is solved, obtaining an optimal

control law (in the form of state-dependent feedback [51]). The feedback law and the pre-computed STMs,

are used to iteratively map the quadratic model of each stage to its predecessor until the first trajectory stage

is encountered. A trust-region algorithm is used to solve each QP problem (hence referred to as Trust-Region

Quadratic Programming (TRQP) problem), by artificially modifying the quadratic model and restricting control

updates within a certain (trust) region. The trust-region restriction is controlled by the trust-region radius Δ. In

this work, the adopted trust-region solver is the Hessian-shift Algorithm 7.3.4 from Ref. [52].

• Forward pass: the optimal feedback laws are applied in a forward-propagation of the reference trajectory. The

resulting cost reduction is compared to the one predicted from the backward induction: if the values match up to a

pre-defined tolerance 𝜖1 (quadratic model tolerance), the iterate is deemed acceptable, otherwise, the trust region

is adjusted accordingly, and the backward induction re-starts. The HDDP algorithm enables the re-use of the

pre-computed STMs around the reference trajectory, considerably speeding up the process with respect to other

DDP frameworks (e.g., the SDC algorithm [34]). The trust-region radius update defines bounds to the trust-region

radius Δmin and Δmax to avoid ”stalling” on ineffective or over-confident iterates.

• Convergence test: a convergence test is performed by evaluating both first- and second-order optimality conditions.

First-order optimality is checked on the expected cost reduction registered by accepted iterates (i.e., those that meet

the 𝜖1 threshold), conversely from Ref. [33] where the convergence test is performed before ensuring the validity

of the current iteration. Second-order optimality is checked through the positive definiteness of the Hessian

4

matrices at every stage. The solution is controlled by the optimality and feasibility thresholds, 𝜖𝑜𝑝𝑡 and 𝜖 𝑓 𝑒𝑎𝑠 .

• Parameter updates: if the solution does not meet optimality conditions, the penalty parameter 𝜎 is updated to

ensure convergence to a feasible solution, and the procedure starts from a new computation of the STMs.

Fig. 1 High-level overview of the HDDP algorithm

The full algorithm is implemented in MATLAB® and made available through Ref. [53], following object-oriented

programming paradigms to ensure that the software is maintainable and flexible. The devised implementation exploits

automatic differentiation (through the ADiGator package [54]) to enable quick iterations between different problem

formulations, by automatically computing exact first- and second-order partial derivatives for the problem-definition

functions. The STMs propagation step is carried out in parallel through MATLAB® Parallel Computing functionalities.

The general OCP formulation considered for this work is now provided, introducing key terms, notation, and

conventions. The provided formulation represents a discrete, multi-phase OCP, with parametrized initial conditions,

subject to both path and terminal constraints. Terminal constraints are adjoined to the terminal costs using an augmented

Lagrangian approach [44], hence the complete formulation:

find 𝒖𝑖,𝑘 , 𝒘𝑖 = argmin 𝐽, 𝝀𝑖 = argmax 𝐽, ∀𝑖 = 1, ..., 𝑀, ∀𝑘 = 1, ..., 𝑁𝑖 + 1

𝐽 =

𝑀∑︁
𝑖=1

[
𝜑̃𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1, 𝝀𝑖 , 𝜎) +

𝑁𝑖+1∑︁
𝑘=1

𝐿𝑖 (𝑡𝑖,𝑘 , 𝒙𝑖,𝑘 , 𝒖𝑖,𝑘 , 𝒘𝑖)
]

(1a)

𝜑̃𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1, 𝝀𝑖 , 𝜎) = 𝜑𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1) + 𝝀𝑇𝑖 𝚿𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1) (1b)

+ 𝜎𝚿𝑇
𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1)𝚿𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1),

such that:

𝚪𝑖 (𝒘𝑖) = 𝒙𝑖,1 (1c)

¤𝒙𝑖 =
𝑑𝒙

𝑑𝑡
= 𝒇 𝑖 (𝑡, 𝒙, 𝒖, 𝒘) (1d)

𝒖 ∈ U (1e)

𝒘 ∈ W (1f)

5

𝒈𝑖 (𝑡, 𝒙, 𝒖, 𝒘) = 0, ∀𝑖 = 1, ..., 𝑀 (1g)

𝚿𝑖 (𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1) = 0, ∀𝑖 = 1, ..., 𝑀 (1h)

The 𝑖 and 𝑘 indexes subscripts indicate a generic phase (out of the 𝑀 total phases) and a generic stage (out of the

total 𝑁𝑖 + 1 stages in a phase 𝑖), respectively. Hereinafter, for conciseness, the generic phase 𝑖 subscript is omitted for

relations that hold for all phases. The problem decision variables are the dynamic controls 𝒖 and static parameters 𝒘,

restricted to the admissible set of controls U and parameters W, respectively. Lagrange multipliers 𝝀 are adjoined

to the terminal constraint violations 𝚿 and solved through a ”min-max” approach, where optimal decision variables

are computed together with maximal multipliers [55]. The initial conditions are parametrized through the function 𝚪.

¤𝒙 = 𝑑𝒙
𝑑𝑡

= 𝒇 defines the dynamical evolution of the system over the independent variable 𝑡 (which typically represents

time, although advantageous formulations can be obtained by adopting a different independent variable [37]). The

objective is the minimization of cost functional 𝐽, defined as a sum of running costs 𝐿 and terminal costs 𝜑: following

the augmented Lagrangian formulation, the augmented terminal cost is indicated as 𝜑̃. Finally, each stage is subject to

the path constraints 𝒈.

For notational simplicity, the augmented state 𝑿 notation is used for the propagation of the STMs, where the

augmented state vector is defined as 𝑿 =
[
𝒙T 𝒖T 𝒘T]T. To propagate stage-wise STMs, the HDDP algorithm

assumes constant controls over a single stage [33], hence the augmented state derivative is introduced as 𝒇 (𝑡, 𝑿) =[
𝒇 (𝑡, 𝒙, 𝒖, 𝒘) 0𝑛𝑢×1 0𝑛𝑤×1]T. The partial derivatives convention follows the one in Ref. [33], with bold subscripts

indicating the differentiation variable (double subscripts indicate two-times differentiation). Sizes of each quantity are

indicated through 𝑛 with related subscript (i.e., the size of 𝒙 is 𝑛𝑥).

A. Flexible-final-time handling

Optimal control solvers typically tackle variable-duration OCPs through time-dilation, consisting in a parametrization

of the problem duration [34, 56]. Introducing time-dilation within the HDDP framework requires a technique to integrate

the problem discretization as part of the decision process: Ref. [47] adopts a first-order truncation of the dynamics to

estimate the number of stages to add or remove from the reference solution, while in Ref. [38, 42] the effects of variable

duration are equally distributed among the discretization stages. The latter approach is enabled by the semi-analytical

propagation schemes adopted to solve the related OCPs, where sensitivities to the time of flight can be easily computed

by analytically differentiating the dynamics transition function and embedded within the STMs information [38].

This work aims at developing a generic HDDP algorithm, independent from the problem-specific dynamical model.

For this reason, the approach from Ref. [38, 42] is extended to any general formulation of the system dynamics.

However, The general STMs definition is inherently limited to mapping variations between fixed time instants [57],

thus not accommodating time-dilation techniques. This work extends the variational equations framework to variable

6

problem discretizations, enabling both time-dilation and adaptive mesh techniques.

The devised method starts from a generic stage collocation function 𝑡𝑘 = 𝑡 (𝑘, 𝑿), which uniquely defines the OCP

discretization. Notice that the stage index 𝑘 can be exploited to ”reformulate” the stage collocation approach into an

adaptive step-size approach, through:
𝜕𝑡 (𝑘, 𝑿)

𝜕𝑘
= Δ𝑡 (𝑘, 𝑿). (2)

The dynamics transition (i.e., the mapping of the state vector between consecutive stages) is therefore also dependent on

the stage collocation function, as:

𝑿𝑘+1 = 𝑿𝑘 +
∫ 𝑡 (𝑘+1,𝑿 (𝑡))

𝑡 (𝑘,𝑿 (𝑡))
𝒇 (𝑡, 𝑿 (𝑡))𝑑𝑡. (3)

Adopting such an approach enables adaptive problem discretization. Depending on the chosen stage collocation function,

one can prioritize denser discretization around control switching points [48], or define a variable-duration OCP by

defining the time of flight as part of the static parameter 𝒘.

According to the re-formulated dynamics transition in Eq. 3, the STMs shall be adjusted to capture the dependency

of the integration bounds with respect to the augmented states 𝑿. Equation 3 is differentiated with respect to 𝑿𝑘 ,

accounting for variable integral bounds through Leibniz’s rule, resulting in:

𝜕𝑿𝑘+1
𝜕𝑿𝑘

= Φ1
𝑘 = 1 +

∫ 𝑡 (𝑘+1,𝑿 𝑘+1)

𝑡 (𝑘,𝑿 𝑘)
𝒇 𝑿 (𝑡, 𝑿 (𝑡))Φ1 (𝑡)𝑑𝑡

+ 𝒇 (𝑡 (𝑘 + 1, 𝑿𝑘+1), 𝑿𝑘+1) [𝑡𝑿 (𝑘 + 1, 𝑿𝑘+1) − 𝑡𝑿 (𝑘, 𝑿𝑘)]
(4)

𝜕2𝑿𝑘+1

𝜕𝑿2
𝑘

= Φ2
𝑘 =

∫ 𝑡 (𝑘+1,𝑿𝒌+1)

𝑡 (𝑘,𝑿 𝑘)

[
𝒇 𝑿 (𝑡, 𝑿 (𝑡)) · Φ2 (𝑡) +Φ1 (𝑡)T · 𝒇 𝑿𝑿 (𝑡, 𝑿 (𝑡)) · Φ1 (𝑡)

]
𝑑𝑡

+
[
𝒇 𝑿 (𝑡 (𝑘 + 1, 𝑿𝑘+1), 𝑿𝑘+1) · Φ1 (𝑡 (𝑘 + 1, 𝑿𝑘+1))

]
· [𝑡𝑿 (𝑘 + 1, 𝑿𝑘+1) − 𝑡𝑿 (𝑘, 𝑿𝑘)]

+ ¤𝒇 (𝑡 (𝑘 + 1, 𝑿𝑘+1), 𝑿𝑘+1) [𝑡𝑿 (𝑘 + 1, 𝑿𝑘+1) − 𝑡𝑿 (𝑘, 𝑿𝑘)]2

+ 𝒇 (𝑡 (𝑘 + 1, 𝑿𝑘+1), 𝑿𝑘+1) [𝑡𝑿𝑿 (𝑘 + 1, 𝑿𝑘+1) − 𝑡𝑿𝑿 (𝑘, 𝑿𝑘)]

(5)

where Φ1
𝑘

and Φ2
𝑘

are the first- and second-order STMs between stages 𝑘 and 𝑘 + 1. The · operator here defines

matrix-tensor products, using the same convention as in Ref. [57]. The integral terms in Eq. 3-5, represent the

”conventional” variational equations [50], solved through numerical propagation with initial conditions:

𝑿 (𝑡 (𝑘, 𝑿𝑘)) = 𝑿𝑘 ,

Φ1 (𝑡 (𝑘, 𝑿𝑘)) = 1𝑛𝑋×𝑛𝑋 ,

Φ2 (𝑡 (𝑘, 𝑿𝑘)) = 0𝑛𝑋×𝑛𝑋×𝑛𝑋 .

(6)

7

The constant terms after the integral in Eq. 4 and Eq. 5 correspond to truncated expansions of the variational equations

around the integration bounds. These terms embed information regarding the variable discretization directly within the

STMs propagation, thus requiring minimal changes to the overall HDDP architecture and maintaining the second-order

convergence properties of the algorithm [42].

B. Path constraints enforcement

Previous works on DDP introduce path constraints only as linear bounds on the control inputs through clamping

[45], control projection [39, 47], or scaling of the trust region [48]. Non-linear path constraints are tackled in Ref. [33]

through linearization, while Ref. [47] adopts a penalty function to enforce state-dependent constraints: the former

approach suffers from chattering and inefficiency (i.e., does not fully exploit the available trust region) [48], while the

latter is known to introduce inaccuracies and/or ill-conditioning [24].

The HDDP algorithm is typically applied to long-duration OCPs, thus solving numerous stage sub-problems, thus an

efficient methodology to enforce path constraints is required. Additionally, solar-sail problems are typically constrained

using quadratic functions (e.g., unit-norm constraints on the control inputs [15]). To address these points, this works

proposes a methodology to enforce the Karush-Khun-Tucker (KKT) conditions on a second-order expansion of the

constrained TRQP sub-problem. The technique introduced in this subsection extends the quadratic approach from Ref.

[58] to the HDDP framework.

The proposed methodology starts by solving the unconstrained TRQP sub-problem, yielding the QP model minimizer

𝛿𝒖∗ (i.e., the feed-forward control input which minimizes the unconstrained QP problem) and the shifted Hessian

𝐽𝒖𝒖 . The QP model minimizer 𝛿𝒖∗ is exploited to estimate the active set of constraints 𝒒, which then yields the KKT

conditions:

𝐽𝒖 +
𝑛𝑞∑︁
𝑗=1

𝝁 𝑗𝒒 𝑗
𝒖 = 0

𝒒 = ⊬𝑛𝑞×1

(7)

where 𝝁 is the Lagrange multipliers vector referred to the active path constraints, 𝑛𝑞 is the size of active path constraints,

and the superscript 𝑗 refers to the 𝑗-th component of the specified quantity. Following Ref. [58], Eq. 7 is expanded up

to second order around the current states 𝒙, controls 𝒖, parameters 𝒘, and multipliers 𝝀 (note that the 𝝀 multipliers refer

to the HDDP terminal constraints). Following Bellman’s optimality principle [51], the constrained TRQP sub-problem

8

is solved through a feedback control policy, assumed to be in the quadratic form:

𝛿𝒖 = 𝛿𝒖0 +
[
𝑈𝒙 𝑈𝒘 𝑈𝝀

] 

𝛿𝒙

𝛿𝒘

𝛿𝝀


+ 1

2

𝑛𝑥∑︁
𝑎=1

(𝑈𝒙𝑎𝒙𝛿𝒙 +𝑈𝒙𝑎𝒘𝛿𝒘 +𝑈𝒙𝑎𝝀𝛿𝝀) 𝛿𝒙𝑎

+ 1
2

𝑛𝑤∑︁
𝑏=1

(𝑈𝒘𝑏𝒙𝛿𝒙 +𝑈𝒘𝑏𝒘𝛿𝒘 +𝑈𝒘𝑏𝝀𝛿𝝀) 𝛿𝒘𝑏

+ 1
2

𝑛𝜆∑︁
𝑐=1

(𝑈𝝀𝑐 𝒙𝛿𝒙 +𝑈𝝀𝑐𝒘𝛿𝒘 +𝑈𝝀𝑐𝝀𝛿𝝀) 𝛿𝝀𝑐,

(8)

where the superscripts 𝑎, 𝑏 and 𝑐 indicate generic indexes of the 𝒙, 𝒘 and 𝝀 vectors respectively, while the 𝛿 symbol

indicates small variations with respect to the reference trajectory. A feedback law in the same form as Eq. 8 is also

assumed for the Lagrange multipliers 𝝁.

The KKT conditions are enforced by substituting the quadratic optimal policy in Eq. 8 into the second-order

expansion of the KKT system in Eq. 7. The second-order expansion of Eq. 7 is omitted for conciseness, thus the reader

is referred to Ref. [58] for its complete expression. Since the small variations (i.e., 𝛿𝒙, 𝛿𝒘, and 𝛿𝝀) are unknown, the

solution is retrieved by grouping together the coefficients of the corresponding variations [58]. These terms can be split

into feed-forward (i.e., do not refer to any variation element), linear feedback (i.e., coefficients for a single variation),

and second-order feedback terms (i.e., coefficients for second-order variations). Grouping each of the components

results in a set of algebraic systems of equations [58]. Notice that this classification corresponds exactly to the terms in

Eq. 8, which includes the feed-forward term 𝛿𝒖0, the linear feedback terms 𝑈𝒙, . . . and the quadratic feedback terms

𝑈𝒙𝑎𝒙, . . . , thus justifying the assumed form of the optimal control policy [58].

For notational clarity, variable indexes in the following equations are defined using superscripts, following the

9

convention 𝝁𝑘
x 𝑗 =

𝜕𝝁𝑘

𝜕x 𝑗 , and 𝑈x 𝑗x = 𝜕2𝑈
𝜕x 𝑗𝜕x [58]. The system resulting from the feed-forward terms is:

0 =



𝐽u

𝑞1

...

𝑞𝑛𝑞


+ (M + 1

2
H)


𝛿u0

𝝁

 , where: (9a)

M =



𝐽uu 𝑞1
u · · · 𝑞

𝑛𝑞
u

𝑞1 T
u 0 · · · 0
...

...
. . .

𝑞
𝑛𝑞 T
u 0 · · · 0


H =



∑𝑛𝑞

𝑗=1 𝝁
𝑗𝑞

𝑗
uu 𝑞1

uu𝛿u0 · · · 𝑞
𝑛𝑞
uu 𝛿u0

𝛿uT
0𝑞

1
uu 0 · · · 0

...
...

. . .
...

𝛿uT
0𝑞

𝑛𝑞
uu 0 · · · 0


. (9b)

The non-linear system is adjoined to the trust-region constraint (i.e., ∥𝛿𝒖0∥ ≤ Δ) and solved through MATLAB®’s

fsolve routine, whit a function value tolerance 𝜖𝑝𝑎𝑡ℎ. The obtained affine terms 𝛿𝒖0 and 𝝁 are then used to solve the

algebraic systems which yield both the linear and quadratic feedback terms for Eq. 8: being linear systems, they can be

efficiently solved through MATLAB®’s \ command. For conciseness, only systems for first-order feedback terms are

shown here, while second-order terms can be found in Appendix A:

0 =



𝐽𝒖𝒙

𝒒1T
𝒙

...

𝒒
𝑛𝑞T
𝒙


+



∑𝑛𝑞

𝑗=1 𝝁
𝑗𝒒 𝑗

𝒖𝒙

𝛿𝒖0𝒒
1
𝒖𝒙

...

𝛿𝒖0𝒒
𝑛𝑞
𝒖𝒙


+ (M +H)


𝑈𝒙

𝝁𝒙

 0 =



𝐽𝒖𝒘

𝒒1T
𝒘

...

𝒒
𝑛𝑞T
𝒘


+



∑𝑛𝑞

𝑗=1 𝝁
𝑗𝒒 𝑗

𝒖𝒘

𝛿𝒖0𝒒
1
𝒖𝒘

...

𝛿𝒖0𝒒
𝑛𝑞
𝒖𝒘


+ (M +H)


𝑈𝒘

𝝁𝒘

 0 =



𝐽𝒖𝝀

0
...

0


+ (M +H)


𝑈𝝀

𝝁𝝀

 .
(10)

The quadratic update law in Eq. 8 is then used to update the partial derivatives of the optimized cost-to-go 𝐽∗ across

the TRQP sub-problems through:

10

𝐽∗x =𝐽x +𝑈T
x 𝐽u + 𝐽xu𝛿u0 +𝑈T

x 𝐽uu𝛿u0

𝐽∗w =𝐽w +𝑈T
w𝐽u + 𝐽wu𝛿u0 +𝑈T

w𝐽uu𝛿u0

𝐽∗𝝀 =𝐽𝝀 +𝑈T
𝝀 𝐽u + 𝐽𝝀𝝀𝛿u0 +𝑈T

𝝀 𝐽uu𝛿u0

𝐽∗xx =𝐽xx + 2𝐽xu𝑈x +𝑈T
x 𝐽uu𝑈x +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗
xx (𝐽u + 𝐽uu𝛿u0) 𝑗

𝐽∗ww =𝐽ww + 2𝐽wu𝑈w +𝑈T
w𝐽uu𝑈w +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗
ww (𝐽u + 𝐽uu𝛿u0) 𝑗

𝐽∗𝝀𝝀 =𝐽𝝀𝝀 + 2𝐽𝝀𝒖𝑈𝝀 +𝑈T
𝝀 𝐽uu𝑈𝝀 +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗

𝝀𝝀
(𝐽u + 𝐽uu𝛿u0) 𝑗

𝐽∗xw =𝐽xw + 𝐽xu𝑈w +𝑈T
x 𝐽uu𝑈w +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗
xw (𝐽u + 𝐽uu𝛿u0) 𝑗

𝐽∗𝒙𝝀 =𝐽𝒙𝝀 + 𝐽𝒙𝒖𝑈𝝀 +𝑈T
𝒙 𝐽𝒖𝒖𝑈𝝀 +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗

𝒙𝝀
(𝐽𝒖 + 𝐽𝒖𝒖𝛿𝒖0) 𝑗

𝐽∗𝒘𝝀 =𝐽𝒘𝝀 + 𝐽𝒘𝒖𝑈𝝀 +𝑈T
𝒘𝐽𝒖𝒖𝑈𝝀 +

𝑛𝑢∑︁
𝑗=1

𝑈
𝑗

𝒘𝝀
(𝐽𝒖 + 𝐽𝒖𝒖𝛿𝒖0) 𝑗

(11)

When introducing path constraints, the convergence test (see Fig. 1) is adjusted accordingly. Positive definiteness is

only enforced on the reduced Hessians 𝐻𝑅 (i.e., Hessian matrices of the cost-to-go with respect to constraint-satisfying

controls) [33]. The Jacobian of the active constraints is readily available, as the technique introduced here estimates

the active set of constraints and computes its quadratic expansion. The reduced Hessians 𝐻𝑅 can be computed with

minimal computational overhead through 𝐻𝑅 = 𝑍T𝐻𝑍 , where 𝑍 is the null space of the active set of constraints on each

stage, while 𝐻 is the (unrestricted) Hessian.

C. Mesh refinement

The DDP approach is favorable for high-dimensional OCPs, where numerous stages are required for accurate

problem discretization. In general, increasing the number of stages leads to higher resolution but also longer runtime.

Adaptive meshing techniques are used in some direct optimization approaches [19, 56] to reduce the number of stages

and improve runtime performance. This work adopts a simple mesh refinement procedure to tackle very large OCPs.

The devised approach solves problems with sequentially increasing resolution until the optimality improvement

obtained from higher resolution matches the defined optimality tolerance 𝜖𝑜𝑝𝑡 . By starting on a coarse mesh, the

algorithm can efficiently identify low-resolution results: the solution is used to re-initialize the algorithm with a

doubled number of stages. Thanks to the guarantees of local optimality of the low-resolution control policy, the

refinement procedure typically consists of few iterations, minimizing the computational overhead introduced by the fine

discretization. While requiring minimal implementation efforts, the chosen approach causes the number of stages to

11

quickly rise to untractable size. Further work shall investigate more efficient strategies, such as introducing additional

stages only the where control inputs vary substantially between consecutive stages.

D. Parameter updates

As previously mentioned, one of the main HDDP limitations is its sensitivity to hyper-parameters [33]. This section

introduces adaptive techniques to tune the penalty parameter 𝜎 and the model validity threshold 𝜖1: the former controls

the weight attributed to constraint violations introduced in the augmented cost functional, while the latter defines the

desired accuracy of the second-order cost model used in the HDDP procedure.

1. Adaptive penalty parameter update

Penalty methods and, to a lesser extent, augmented Lagrangian approaches, introduce sensitivity to the chosen penalty

parameter 𝜎 [44]. While hand-tuning is possible [37, 39], extensive trial and error is required to achieve acceptable

balance between solution optimality and feasibility. Trial and error iterations become very time-consuming in the

context of high-dimensional OCPs (such as many-revolutions transfers). Reference [33] introduces an heuristics-based

approach to perform the penalty parameter update, as:

𝜎𝑝+1 = max
(
min

(
ℎ

2 𝑓 2 , 𝜅𝜎𝜎𝑝

)
, 𝜎𝑝

)
, (12)

where ℎ is a metric for optimality (refer to Ref. [33] for the exact formulation), while 𝑝 and 𝑝 + 1 represent consecutive

HDDP iterations. It is noticed that the provided update rule only increases the 𝜎 values, as it is aimed at steering

the solution toward feasibility when the algorithm excessively prioritizes optimality [33]. This work introduces an

adaptive strategy to adjust the penalty parameter 𝜎, with the goal of guaranteeing solutions that closely meet the desired

feasibility threshold 𝜖 𝑓 𝑒𝑎𝑠 , hence providing accurate control over the balance between optimality and feasibility through

the corresponding tolerance values.

The chosen approach exploits the backward induction procedure to propagate a quadratic model of the constraint

violations. The stage and inter-phase update equations (defined in Ref. [33] and expanded in Eq. 11 for path-constrained

problems) implement the mapping of cost function partials after solving a TRQP sub-problem: the same procedure is

adopted for the backward propagation of the partial derivatives of the constraint violations. For notational clarity, the

quantities 𝒀 =

[
𝒙𝑇 𝒘𝑇 𝝀𝑇

]𝑇
and 𝚿 =

[
𝚿𝑇

1 ... 𝚿𝑇
𝑀

]𝑇
are introduced. Leveraging the chain rule, the relation

between constraint violations and penalty parameter can be expressed as:

𝜕𝚿
𝜕𝜎

=
𝜕𝚿
𝜕𝒀

𝜕𝒀

𝜕𝐽

𝜕𝐽

𝜕𝜎
. (13)

The term 𝜕𝚿
𝜕𝒀 is the sensitivity of the constraint violations with respect to the quantities 𝒀 after the complete backward

12

induction. The sensitivity terms of each constraint violation vector 𝚿𝑖 are retrieved once the backward induction of the

corresponding phase 𝑖 is completed, and are indicated as 𝚿∗
𝑖 . Analogously, sensitivities of the optimized cost-to-go 𝐽∗𝒀

are retrieved after every inter-phase problem and used to compute the 𝜕𝒀
𝜕𝐽

term through the inverse-function-differential

rule. The term 𝜕𝐽
𝜕𝜎

is obtained by differentiating the augmented Lagrangian formulation in Eq. 1b. Combining the

terms we obtain:
𝜕𝚿
𝜕𝒀

= 𝚿∗
𝒀 ,

𝜕𝒀

𝜕𝐽
=

1
𝜕𝐽
𝜕𝒀 (𝒀 (𝐽))

=
1
𝐽∗𝒀

,

𝜕𝐽

𝜕𝜎
= ∥𝚿∥2,

𝜕𝚿
𝜕𝜎

= 𝚿∗
𝒀

1
𝐽∗𝒀

∥𝚿∥2.

(14)

Then, the feasibility metric 𝑓 is defined according to Ref. [33] through:

𝑓 :=

√√√
1
𝑀

𝑀∑︁
𝑖=1

[

 𝚿𝑖

(
𝒙𝑖,𝑁𝑖+1, 𝒘𝑖 , 𝒙𝑖+1,1, 𝒘𝑖+1

)

2
]
. (15)

Its sensitivity with respect to the constraint violations is derived analytically as:

𝜕 𝑓

𝜕𝚿
=

𝚿𝑻

√
𝑀 ∥𝚿∥

(16)

Leveraging the chain rule, Eq. 14 and Eq. 16 are combined, yielding:

𝜕 𝑓

𝜕𝜎
=

𝚿𝑻

√
𝑀 ∥𝚿∥

𝚿∗
𝒀

1
𝐽∗𝒀

∥𝚿∥2 =
𝚿𝑇𝚿∗

𝒀 ∥𝚿∥
√
𝑀𝐽∗𝒀

(17)

The sensitivity resulting from Eq. 17 is used to update the penalty parameter 𝜎 according to:

𝜎𝑝+1 = 𝜎𝑝 + min

(
max

(
𝜖 𝑓 𝑒𝑎𝑠 − 𝑓𝑝

𝜕 𝑓

𝜕𝜎

𝜅𝜎 ,−Δ𝜎

)
,Δ𝜎

)
(18)

where 𝑝 is an algorithm iteration and 𝜖 𝑓 𝑒𝑎𝑠 is the desired value of the feasibility metric. Δ𝜎 and 𝜅𝜎 are user-defined

parameters: the Δ𝜎 limits the update to maintain the validity of the model in Eq. 16, while 𝜅𝜎 introduces a margin to

the ”target” feasibility value to prevent iterations from chattering around the specified threshold 𝜖 𝑓 𝑒𝑎𝑠. Matching the

HDDP logic, the devised penalty update is only performed if the expected reduction in constraint violation matches the

actual reduction registered during the forward pass. Since the penalty update is only performed on trust-region iterates

where the quadratic cost model is deemed accurate, this check is often successful.

The adaptive update rule in Eq. 18 requires the definition of a restriction parameter Δ𝜎: while it is ensured that

small values yield accurate updates of the penalty parameter, larger values favor convergence speed: to avoid the

13

time-consuming tuning process, a nested trust-region approach is introduced and outline in Alg. 1.

The procedure outlined for the derivation of Eq. 18 yields an expected reduction in feasibility metrics 𝐸𝑅 𝑓 =

𝜕 𝑓

𝜕𝜎
(𝜎𝑝+1 − 𝜎𝑝): the nested trust-region approach consists in the comparison of the expected and actual reductions in

the feasibility metric (respectively 𝐸𝑅 𝑓 and 𝐴𝑅 𝑓). This comparison is carried out in an outer loop, where the penalty

parameter 𝜎 is updated according to Eq. 18, while the restriction parameter Δ𝜎 is updated according to the trust-region

logic (summarized in Eq. 20) of increasing the value after successful iterates and reducing it after unsuccessful ones.

The approach is robust to poor initial guesses for the penalty parameter 𝜎 and removes all tuning efforts, at the cost of

major computational overhead due to the nested trust-region loops, greatly affecting the HDDP runtime performance.

Algorithm 1 Nested trust-region approach for the adaptive penalty parameter tuning
Initialize 𝜎, Δ𝜎

while | 𝐸𝑅 𝑓

𝐴𝑅 𝑓
− 1| ≥ 𝜖1 do

while |𝜌 − 1| ≥ 𝜖1 do
Perform backward induction (also including the constraint violation expansions)
Perform forward pass
Compute 𝜌 as the ratio between expected and actual cost reductions

end while
Compute 𝐸𝑅 𝑓

𝐴𝑅 𝑓
− 1

Update Δ𝜎 according to the logic in Eq. 20
Compute 𝜎 according to Eq. 18

end while

2. Relaxation of the quadratic model validity threshold

The accuracy of the quadratic model is defined by the validity threshold 𝜖1, with small values 𝜖1 << 1 being required

to guarantee robust convergence and avoiding diverging iterates (i.e., iterates that ”escape” the local search space) and

large values favoring faster convergence [52]. This work introduces a relaxation technique for the accuracy threshold

𝜖1, aimed at improving the robustness of the solution to the user-defined parameter value. The approach is based on

observations derived during the parameter tuning process. More specifically, early iterations showed satisfying cost

reductions even under strict 𝜖1 values, while exhibiting partially diverging iterates (i.e., the control updates escaping the

local search space on some trajectory stages, resulting in undesirably oscillating/jittery optimal control profiles) with

larger 𝜖1 tolerances. Conversely, later iterations progressed optimality only under larger 𝜖1 values. To maintain the

accuracy of the algorithm, while better exploiting the trust region in later iterations, the validity threshold 𝜖1 is relaxed

according to:

𝜖1 = min(𝜖1𝜅𝜖 , 𝜖1,max) (19)

where 𝜖1,max is a user-defined maximum value for the quadratic accuracy threshold and 𝜅𝜖 is the user-provided relaxation

coefficient (with 𝜅𝜖 ≥ 1). The update is performed once convergence is detected: meeting first- and second-order

optimality conditions, it is mathematically ensured that the improvements to the solution, if any, do not significantly

14

diverge from the identified optimum, while accepting less accurate iterates enables a more effective exploitation of

”less-predictable” behavior.

3. Additional safeguards

The HDDP algorithm relies on a trust region procedure to sequentially optimize quadratic models of the cost

function. The quadratic model validity threshold 𝜖1 is used to update the trust region radius Δ according to:

Δ𝑝+1 =


min

(
(1 + 𝜅𝑑)Δ𝑝 ,Δmax

)
if |𝜌 − 1| ≤ 𝜖1

max
(
(1 − 𝜅𝑑)Δ𝑝 ,Δmin

)
otherwise

(20)

where 𝑝 indicates an algorithm iteration, 𝜌 is the ratio between expected and actual cost reductions, 𝜅𝑑 is a user-defined

parameter for the trust region radius update, and Δmin is the minimum trust region radius value [33]. Equation 20

restricts the trust region for rejected iterates and expands it after an iterate is accepted (the non-monotone behavior of

the trust-region radius is known to improve convergence speed [59]).

The trust-region radius update in Eq. 20 depends on several parameters, including the minimum value Δmin, which

prevents the trust-region loop from ”stalling” on ineffective iterates. A premature interruption of the optimization

is triggered in cases where the quadratic cost model can meet the desired accuracy threshold 𝜖1 only by applying

insignificant changes (limited by the trust-region radius Δmin) to its control law, typically yielding no effect on the

optimality (i.e., resulting in ”ineffective iterates”). The interruption indicates that the chosen validity threshold 𝜖1 is too

strict, thus requiring additional tuning efforts.

To avoid the unnecessary interruption of the optimization, a safeguard is introduced, as outlined in Alg. 2. Around

a specified reference solution, the trust-region loop keeps track of the most accurate quadratic cost model (i.e., the

trust-region radius Δ which results in the accuracy metric 𝜌 being closest to 1). The corresponding parameter values

are stored as Δ𝑏𝑒𝑠𝑡 and 𝜌𝑏𝑒𝑠𝑡 . If a premature optimization is encountered (i.e., too strict validity tolerance 𝜖1) the

validity tolerance 𝜖1 is enlarged to accommodate the recorded ”most accurate cost model”. The enlargement of the

validity region is limited by the user-provided maximum value 𝜖1,max. Following this approach, the algorithm is ensured

to maintain the user-provided value for the validity tolerance 𝜖1, ensuring the robust convergence of the trust-region

method [52], while only increasing the tolerance value if required. Definitive failure to converge is detected only once

the quadratic model cannot satisfy even the largest allowed validity region 𝜖1,max.

III. Solar-sail transfer problem
The devised algorithm is applied to solar-sail orbital transfers. Due to the lack of literature on optimal solar-sail

many-revolution transfers, this work investigates a simple co-planar circular-to-circular (C2C) transfer [60]. The

15

Algorithm 2 Safeguard to avoid ”stalling” during trust-region iterations
Initialize best 𝜌𝑏𝑒𝑠𝑡 , Δ𝑏𝑒𝑠𝑡

while |𝜌 − 1| ≥ 𝜖1 do
Perform backward induction
Perform forward pass
Compute validity 𝜌 as ratio between expected and actual cost reductions
if |𝜌 − 1| ≤ |𝜌𝑏𝑒𝑠𝑡 − 1| then

Update 𝜌𝑏𝑒𝑠𝑡 , Δ𝑏𝑒𝑠𝑡 pair
end if
Update trust-region radius Δ through Eq. 20
if Δ = Δ𝑚𝑖𝑛 then

Compute 𝜖1 = |𝜌𝑏𝑒𝑠𝑡 − 1|
if 𝜖1 ≤ 𝜖1,max then

Set Δ = Δ𝑏𝑒𝑠𝑡

else
Interrupt HDDP process (due to trust-region stalling)

end if
end if

end while

mathematical model of the chosen OCP is introduced in this section.

A. Reference frames

The reference frames defined throughout this work are illustrated in Fig. 2, with Fig. 2a depicting the ECI and SLF

frames and Fig. 2b depicting the RTN frame. The definition of each reference frame is presented below:

• Earth-Centered Inertial (ECI): denoted by IL (𝑋̂,𝑌 , 𝑍̂), the ECI frame is centered on Earth’s barycenter 𝑂L.

The 𝑋̂ and 𝑌 axes lie in the ecliptic plane E, with the 𝑋̂ axis pointing in the direction of the vernal equinox at the

𝐽2000 epoch. The 𝑍̂ axis is perpendicular to the ecliptic plane pointing towards the North pole, with the 𝑌 axis

completing the right-handed frame. As no ephemeris models are considered in this work, all OCPs assume initial

time 𝑡0 = 𝐽2000 for simplicity.

• Sun-Light Fixed (SLF): denoted as S(𝑥, 𝑦̂, 𝑧), the SLF frame is centered on the sailcraft position 𝑂𝑠. The 𝑥

axis is aligned with the Sun-Earth direction (i.e., at 𝐽2000 it is aligned with 𝑋̂), while 𝑧 is aligned with 𝑍̂ , and 𝑦̂

completes the right-handed reference frame.

• Radial Tangential Normal (RTN): denoted as O(𝑅̂, 𝑇, 𝒏̂), the RTN frame has its origin on the sailcraft position

𝑂𝑠 . The 𝑅̂ axis is directed along the radial direction (away from the central body), 𝒏̂ is aligned with the angular

momentum vector, and 𝑇 completes the right-handed triplet. Assuming the sailcraft is only subject to in-plane

effects, the orbital plane P is fixed.

The angle between the Sun-line 𝑥 and the direction 𝒏̂ of orbit’s angular momentum vector is referred to as aspect

angle 𝐴𝐴 and shown in Fig. 2b. Limiting the analyses to polar orbits, varying aspect angles can describe all possible

orbit illumination conditions (𝐴𝐴 = 0◦ and 𝐴𝐴 = 90◦ indicate, respectively, orbits perpendicular and parallel to the

16

incoming Sun-light).

(a) Reference frames (b) Orbital plane definition and coordinates system

Fig. 2 Reference frames and coordinate systems representation

B. Dynamical model

The simplified transfer considered in this work accounts for Earth’s point-mass gravity and the solar-sail acceleration

(including eclipses). The following assumptions aim at replicating a Hohmann-transfer-like dynamical model to obtain

easily interpretable results while reducing computational complexity. Further works shall investigate the features of

orbital transfers under more representative dynamical models (i.e., including higher-order gravity terms, planetary

radiation pressure, aerodynamics, and third-body gravitational effects).

An ideal sail model is adopted for this work, assuming a planar, fully reflective, and rigid surface [1]. Non-ideal

effects (such as the ptical properties of the sail film, billowing under external loads, and long-term degradation [61, 62])

are neglected in favor of dynamical model simplicity, though they have been shown to have a significant impact on the sail

performance [7] and shall consequently be considered in future works. Incoming radiation is assumed to be uniformly

directed along the Sun-line 𝑥 (i.e., the Sun is infinitely far). Time-dependent variations in the Sun-Earth configuration

are accounted for by introducing a rotation of the SLF frame around its 𝑧 axis of 0.9863◦/𝑑𝑎𝑦 (corresponding to 360◦

per Earth year). The distance to the Sun is assumed to be constant, as the sailcraft is bound to planetary orbits: the

sail performance is described by its characteristic acceleration 𝑎0 (i.e., the magnitude of the maximum acceleration

attainable at Earth’s distance from the Sun using the considered solar sail). Under the previous assumptions, the

solar-sail acceleration only depends on the orientation of the sail, which thus serves as the control input to the OCP.

Different representations of the sail orientation can be adopted. Most literature [39, 46] adopts the cone-clock

angle pair (respectively 𝛼 and 𝛿) to describe the orientation of the sail’s normal vector, 𝒏̂𝑆 , with respect to the SLF

frame, hence the control input to the OCP is 𝒖 = [𝛼 𝛿]T. The cone angle 𝛼 represents the current illumination

conditions of the sail (angle between Sun-line and sail-normal vector), while 𝛿 defines its azimuthal orientation around

17

the Sun-line. Since the solar sail cannot produce a sunward acceleration, the set of admissible cone angle values is

restricted 𝛼 ∈ (0◦; 90◦). The solar-sail acceleration vector 𝒂S is defined in the SLF frame as:

𝒂S = 𝜁𝑎0 cos2 𝛼

[
cos𝛼 sin𝛼 sin 𝛿 sin𝛼 sin 𝛿

]T
(21)

where 𝜁 is the shadow factor. The condition 𝜁 = 0 represents an umbra region (i.e., no sunlight illuminating the solar

sail), while the condition 𝜁 = 1 indicates full illumination. The shadow factor in the penumbra region is computed

through a Heaviside step function, according to the model in Ref. [63].

An alternative representation of the OCP control inputs 𝒖 is achieved through the components of the sail-normal

vector in the SLF frame, thus yielding 𝒖 =
[
𝑛̂𝑥 𝑛̂𝑦 𝑛̂𝑧

]T. Physical solutions are guaranteed by constraining the

components of the normal vector 𝑛̂𝑆 𝑛̂𝑦 , 𝒏̂𝑧 ∈ (−1; 1), the sunward acceleration 𝑛̂𝑥 ∈ (0; 1), and the unit-vector norm

∥ 𝒏̂∥ = 1. The solar-sail acceleration vector is computed in the SLF frame as:

𝒂S = 𝜁𝑎0𝑛̂
2
𝑥

[
𝑛̂𝑥 𝑛̂𝑦 𝑛̂𝑧

]T
, such that :

−1 ≤ 𝑛̂𝑦 , 𝑛̂𝑧 ≤ 1

0 ≤ 𝑛̂𝑥 ≤ 1

∥ 𝒏̂∥ = 1

(22)

Both the cone-clock angles and the normal components formulations imply a restricted set of admissible controls

U, enforced through path constraints. Note that the set of admissible sail orientations (expressed in terms of normal

vector components) represents a bubble in 3D space [1]. A different formulation, based on the Pontryagin’s Minimum

Principle is now introduced, with the aim of providing an OCP formulation that does not require path constraints.

The primer-vector direction 𝜸, representing the direction along which the solar-sail acceleration is to be maximized

for an optimal solution, thus it is considered as a control variable [15, 60]. Under the 2D dynamics assumption, the

primer-vector direction 𝜸 necessarily lies in the orbital plane, and is uniquely described by its yaw angle 𝐴 (defined with

respect to the tangential direction), which becomes the control input to the OCP 𝒖 = 𝐴 [60]. The cone angle 𝛼 that

maximizes the sail acceleration along the primer-vector is computed using the locally optimal law from Ref. [1], while

the corresponding 𝛿 is chosen so that the resulting acceleration lies in the orbital plane. The solar-sail acceleration

18

vector is computed in the SLF frame through

𝜸S = 𝑅S
O

[
cos 𝐴 sin 𝐴 0

]T

𝜙 = tan−1

(
∥𝜸S × 𝑥∥

𝜸𝑇
S𝑥

)
𝛼 =

1
2

[
𝜙 − sin−1

(
sin 𝜙

3

)]
[1]

𝛿 = tan−1
(
𝜸𝑦

𝜸𝑧

)
𝒂S = 𝜁𝑎0 cos2 𝛼

[
cos𝛼 sin𝛼 sin 𝛿 sin𝛼 sin 𝛿

]T

(23)

where 𝑅S
O is the rotation from the RTN to the SLF frame and 𝜙 is the primer-vector cone angle (i.e.: the angle between

the primer-vector 𝜸 and the Sun-line 𝑥). The formula used to compute the primer-vector cone angle 𝜙 offers more

numerical stability than the traditionally used arc-cosine function for small angles.

C. Coordinate systems

The modeled dynamics are limited to only in-plane effects (2D dynamics assumption). Under such assumption, the

sailcraft state can be efficiently represented using polar coordinates, which provide advantageous numerical properties

while being singularity-free [64]. The polar coordinates are included in Figure 2b. The polar coordinates set is[
𝑟 𝜃 𝑢 𝑣

]
, where 𝑟 (radius) is the distance from the central body, 𝜃 (true anomaly) is the angle between the

spacecraft position vector and a chosen reference direction, 𝑢 is the radial velocity, and 𝑣 is the tangential velocity. The

chosen reference direction is the intersection line between the orbital plane P and the ecliptic plane E, with 𝜃 = 0◦

towards the positive 𝑌 direction (see Fig. 2b).

The numerical stability and discretization quality is improved by introducing a Sundman transform [65], consisting

of an independent variable transformation from time 𝑡 to true anomaly 𝜃. The change of variable ensures an equal

angular spacing between stages and improves numerical stability in many-revolutions transfers [66]. The sailcraft state

vector after the Sundman transform is defined as:

𝒙 =

[
𝑟 𝑡 𝑢 𝑣

]𝑇
(24)

D. Scaling

The defined OCP is scaled to improve numerical stability and convergence properties. The chosen scaling approach

follows the one from Ref. [24] (Appendix C.2). The chosen scaling factors are the initial radius 𝑟0, its corresponding

circular velocity 𝑣0, and the time of flight 𝑡 𝑓 . The true anomaly 𝜃 is scaled according to a 𝜃𝑠𝑐𝑎𝑙𝑒 value, which is varied

19

depending on the OCP sensitivity to variations in the independent variable (unless specified otherwise, 𝜃𝑠𝑐𝑎𝑙𝑒 = 𝜃 𝑓).

The full EoMs are defined as:

¤𝒙 =
𝑑𝒙

𝑑𝜃
=



¤̄𝑟

¤̄𝑡

¤̄𝑢

¤̄𝑣


=



𝑢̄
𝜂

𝜒

1
𝜒[(

𝑣̄2

𝑟
− 1

𝑟2

)
𝜂 + 𝑎𝑅

𝑡 𝑓

𝑣0

]
/𝜒[

− 𝑢̄𝑣̄
𝑟
𝜂 + 𝑎𝑇

𝑡 𝑓

𝑣0

]
/𝜒


, where 𝜂 =

𝑣0𝑡 𝑓

𝑟0
, 𝜒 =

𝑣̄𝜂

𝑟𝜃𝑠𝑐𝑎𝑙𝑒
(25)

where the □̄ symbol indicates scaled quantities, while 𝑎𝑅 and 𝑎𝑇 are the radial and tangential components of the

solar-sail acceleration. Under the defined scaling, it is noticed that the solar-sail performance can be defined through its

relative performance metric 𝜓 =
𝑎0
𝑔0

, where 𝑔0 is the planet’s gravitational pull at distance 𝑟0 from its center [60]. The

sailcraft dynamics are propagated by MATLAB® ode45 variable-step solver, using relative and absolute tolerances of

10−5 up to two-revolution transfers, while decreasing tolerances to 10−8 for many-revolution problems.

E. Problem formulation

The objective of the analysis is to identify time-optimal solutions to the C2C transfer problem, that is, solutions

that accomplish the best C2C performance (defined as the increase in orbital radius) in the minimum amount of time,

while resulting in circular final orbits. Due to the Sundman transformation, the minimum-time objective is substituted

by a minimum-angle objective (i.e., minimum final true anomaly 𝜃): since the Sundman transform only holds if the

relation between time and true anomaly is monotonically increasing, the minimum-time and minimum-angle terms can

be used equivalently [37]. To solve the C2C transfer problem, two possible formulations are available: the fixed-time

formulation consists of maximizing the increase in orbital radius over a fixed transfer duration, while the variable-time

formulation aims at achieving a certain increase in orbital radius in the minimum amount of time. Depending on the

chosen control representation, two formulations are available: the C2C-NC formulation adopts the components of the

sail-normal vector as control inputs (i.e., 𝒖 =
[
𝑛̂𝑥 𝑛̂𝑦 𝑛̂𝑧

]T), while the C2C-PY formulation defines the control input

as the yaw angle of the primer-vector (i.e., 𝒖 = 𝐴).

The fixed-time problem formulation implies maximizing the final orbital radius while satisfying the terminal

20

constraint on null eccentricity, resulting in:

min
𝒖

𝜑(𝒙𝑁+1) = −𝑟 𝑓 , such that:

¤𝒙 = Eq. 25 with 𝒂O = 𝑅O
S 𝒂S , where 𝒂𝑆 =


Eq. 23, if C2C-PY

Eq. 22, if C2C-NC

𝒙0 =

[
1 0 0 1

]𝑇
𝚿(𝒙𝑁+1) =


𝑢̄ 𝑓

𝑣̄ 𝑓 − 1√
𝑟 𝑓

 = 0

𝑡 (𝑘) = 𝑡0 +
𝜃 𝑓 − 𝜃0

𝑁
𝑘

(26)

where the 𝜃0 and 𝜃 𝑓 indicate the initial and final true anomaly.

The algorithm capability of handling variable-duration OCPs (introduced in subsection II.A) are tested on the

variable-time problem. This formulation is defined through:

min
𝒘

𝜑(𝒙𝑁+1, 𝒘) = 𝜃 𝑓 , such that:

¤𝒙 = Eq. 25 with 𝒂O = 𝑅O
S 𝒂S , where 𝒂𝑆 =


Eq. 23, if C2C-PY

Eq. 22, if C2C-NC

𝒙0 =

[
1 0 0 1

]𝑇

𝚿(𝒙𝑁+1) =



𝑢̄ 𝑓

𝑣̄ 𝑓 − 1√
𝑟 𝑓

𝑟𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑟 𝑓 + 𝑠


= 0

𝑡 (𝑘, 𝒘) = 𝜃0 +
𝜃 𝑓 − 𝜃0

𝑁
𝑘

(27)

where 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 is the target minimum final radius and 𝑠 is a slack variable used to transform the inequality constraint

𝑟𝑡𝑎𝑟𝑔𝑒𝑡 ≤ 𝑟 𝑓 into its equality form (using 𝑠 ≥ 0) [24]. The chosen stage collocation function implements time-dilation

by treating the transfer duration 𝜃 𝑓 as a static parameter for the chosen OCP (i.e., 𝒘 = 𝜃 𝑓) equally distributing changes

in 𝜃 𝑓 among all stages.

21

F. Initial guess

To initialize the HDDP solver, a feasible initial guess is needed: the initial guess is provided in the form of a set of

control inputs, used to forward propagate the sailcraft dynamics. Two different initial guesses are used throughout this

paper:

• Locally optimal guess: the OCP control input, regardless of its formulation, is defined such that the solar-sail

acceleration is maximized along the velocity direction (following the locally optimal orbit raising law derived in

Ref. [1]).

• Trivial guess: the OCP control input is defined with a constant trivial values, that is a primer-vector yaw angle

𝐴 ≡ 0◦ for the C2C-PY problem (i.e.: acceleration maximized along the tangential direction) and 𝒏̂ ≡ [1 0 0]T

for the C2C-NC (i.e.: solar-sail acceleration always directed away from the Sun)

Unless specified otherwise, showcased results are generated using the locally optimal initial guess, as it provides faster

convergence [39].

IV. Algorithm characterization
The following analysis aims to address the sensitivity of the algorithm to its hyper-parameters by providing a set

of observations and interpretations, ultimately allowing informed decisions when tuning the algorithm during further

analyses. Results presented in this section are obtained using the C2C-NC formulation (see Section III). The chosen

benchmark problem has a duration of two revolutions (𝑛𝑟𝑒𝑣𝑠 = 2), each discretized in 100 stages (𝑛𝑆𝑡𝑟𝑒𝑣 = 100) for

high-resolution results (using a 𝜃𝑠𝑐𝑎𝑙𝑒 = 1). The chosen solar sail has a characteristic acceleration 𝑎0 = 1 𝑚𝑚/𝑠2 and

initial conditions corresponding to GEO altitude 𝑟0 = 42164 𝑘𝑚. Given the short transfer duration, no Sun-line motion

is considered, and the shadow factor 𝜁 is kept constant 𝜁 = 1 (i.e., no eclipses). The benchmark problem is analyzed for

two aspect angle values: 𝐴𝐴 = 10◦ and 𝐴𝐴 = 40◦. As a reference, Fig. 3 shows 3D views of the resulting trajectories,

together with projections on the normal planes to the axes in the ECI frame, the Sun-line direction, and the time-histories

of the primer vector and the solar-sail acceleration vector.

The choice in aspect angles stems from conclusions drawn in Ref. [60], where a critical aspect angle of 𝐴𝐴𝑐 = 18.43◦

is identified: angles below 𝐴𝐴𝑐 fall in the so-caaled ion-drive regime (where optimal sail controls span the full admissible

set U), while angles above 𝐴𝐴𝑐 belong to the solar sail regime (where optimal sail control is restricted to only a subset

of U), which provides reduced performance in the C2C problem [60].

Bi-dimensional factorial analyses are carried out on different parameter groups, analyzing four different figures of

merit: the non-augmented cost function 𝐽, the feasibility metric 𝑓 , the number of iterations 𝑝, and the Total Variation of

the First derivative (TVF). The TVF provides a measure for the smoothness of the optimal control profile, and it is

22

-4

-4

-2

-2-4
#104

X [km]

0

-2

#104

Z
[k

m
]

#104

Y [km]

0

2

0 2

4

2
44

SSA

p-vec

Sun-line

Start

End

traj

(a)

-4-6
-2

-4

#104

X [km]

-4 0

-2

-2
#104

Y [km]

Z
[k

m
]

#104

0

20

2

42

4

SSA

p-vec

Sun-line

Start

End

traj

(b)

Fig. 3 3D views of the optimal trajectories in the considered benchmark problems for 𝐴𝐴 = 10◦ (left) and
𝐴𝐴 = 40◦(right), with trajectory projections along the ECI axes directions, orange arrows to indicate the history
of the sail acceleration vectors, green arrows for the history of the primer-vector direction, and a purple arrow
for the Sun-line

defined as:

𝑇𝑉𝐹 =

𝑁−1∑︁
𝑘=1

| ¤𝒖𝑘+1 − ¤𝒖𝑘 | (28)

where the control derivatives ¤𝒖 at each stage are computed using a finite differences method. The TVF metric is used to

investigate whether a solution has encountered diverging iterates (i.e., iterates where the control updates escape the

local-optimality region, causing jittery control profiles).

The following analyses are performed on a high-performance computing platform using 48 cores (each assigned

1GB of RAM) using 2 Intel Xeon E5-6248R 24C 3.0GHz processors. The default values for hyper-parameters in

the benchmark case are provided in Table 1, and are always used unless specified otherwise. The rationale behind the

values in Table 1 is provided in the following subsections when analyzing the corresponding hyper-parameter. The

objective of the following analyses is the definition of a reduced rule set to enable informed decisions throughout the

HDDP tuning process, extrapolating information to generic OCPs.

Table 1 Default HDDP hyper-parameters for benchmark problem

𝜖𝑜𝑝𝑡 𝜖 𝑓 𝑒𝑎𝑠 𝜖1 𝜖1,max Δ0 𝜎0 𝜅𝑑 𝜅𝜎 𝜅𝜖 𝑛𝑆𝑡𝑟𝑒𝑣 𝜖𝑝𝑎𝑡ℎ Δ𝜎

10−6 10−5 10−3 10−2 0.01 104 0.05 1.5 2.2 100 10−6 50

23

A. Convergence tolerances

First, the optimality and feasibility tolerances 𝜖𝑜𝑝𝑡 and 𝜖 𝑓 𝑒𝑎𝑠 are considered. The effects of the factorial analysis are

summarized in Fig. 4, displaying the solution optimality (with lighter colors corresponding to more optimal solutions)

and feasibility (with smaller markers indicating more feasible solutions (i.e., less constraints violation)) as a function

of the varied tolerances. The marker sizes are linearly scaled between the feasibility values indicated in the subtitles.

The pink color indicates parameter combinations that failed to converge due to hitting the allocated runtime limit of 2

hours. A positive correlation between the tolerance values and the corresponding quantities is expected: increasing the

optimality tolerance 𝜖𝑜𝑝𝑡 should lead to a less optimal solution (i.e., higher cost value 𝐽), while increasing the feasibility

tolerance 𝜖 𝑓 𝑒𝑎𝑠 should yield less feasible solution (i.e., higher feasibility metric 𝑓 , thus larger markers).

10!6 10!5 10!4 10!3

0feas [-]

10!7

10!6

10!5

10!4

0 o
p
t
[-
]

AA = 10°
f: 5 " 10!8) 3 " 10!7

-1.0437

-1.0436

-1.0435

-1.0434

-1.0433

-1.0432

-1.0431

-1.043

J
[-

]

10!6 10!5 10!4 10!3

0feas [-]

10!7

10!6

10!5

10!4

0 o
p
t
[-
]

AA = 40°
f: 3 " 10!8) 2 " 10!7

-1.0362

-1.0361

-1.036

-1.0359

-1.0358

-1.0357

-1.0356

-1.0355

-1.0354

J
[-

]

Fig. 4 Effects of 𝜖𝑜𝑝𝑡 and 𝜖 𝑓 𝑒𝑎𝑠 factorial analysis on optimality (𝐽, indicated by marker color) and feasibility (𝑓 ,
indicated by marker size and linearly scaled between the denoted values). The pink color indicates failure to
converge

Figure 4 only partly reflects the expected trends. Following the augmented Lagrangian approach, the optimality

tolerance 𝜖𝑜𝑝𝑡 inherently controls both the optimality and feasibility of the solution (embedded in the cost functional

through Eq. 1b): as a result, a positive correlation between optimality tolerance and constraint violation can also be

observed in Fig. 4, most noticeably for the 𝐴𝐴 = 40◦ case (right). The expected correlation between solution feasibility

and the corresponding tolerance can be observed in the 𝐴𝐴 = 10◦ case, while the 𝐴𝐴 = 40◦ case exhibits an opposite

behavior. The counter-intuitive feature is caused by the relaxation technique for the validity threshold 𝜖1 in Eq. 19:

solutions with higher feasibility tolerance 𝜖 𝑓 𝑒𝑎𝑠 detect earlier convergence, immediately enlarging the validity threshold

𝜖1 and successfully terminating the optimization process, while stricter 𝜖 𝑓 𝑒𝑎𝑠 tolerances allow the algorithm more ”time”

(i.e., more iterations) to trade-off feasibility for improved optimality (the additional iterations become detrimental to the

HDDP performance in the 2 failed runs, where the algorithm is prematurely interrupted).

24

The tolerance values displayed in Table 1 are chosen as a trade-off between accuracy (i.e., solutions that are close to

the minimal cost value 𝐽 found by the different parameter combinations) and robustness (i.e., ability to reliably converge

in the allocated runtime, thus excluding 𝜖 𝑓 𝑒𝑎𝑠 = 10−3, 10−4. Note that this analysis aims to investigate and summarize

the algorithm’s behavior affected by its hyper-parameters: while the cost value 𝐽 exhibits only minor variations, these

are considered relevant as they exceed the defined optimality tolerance 𝜖𝑜𝑝𝑡 and provide insight into the underlying

effects of hyper-parameter tuning on the HDDP procedure.

B. Quadratic model definition

The analysis is then extended to parameters defining the quadratic model accuracy, namely the number of stages per

revolution 𝑛𝑆𝑡𝑟𝑒𝑣 and quadratic model accuracy threshold 𝜖1. To avoid masking out features, the 𝜖1 relaxation is not

employed (i.e., 𝜖1,max = 𝜖1). This parameter combination fully defines the accuracy of the quadratic cost model used to

solve the OCP, with more stages (i.e., higher 𝑛𝑆𝑡𝑟𝑒𝑣 values) resulting in a finer discretization, while a stricter validity

tolerance 𝜖1 resulting in only accepting accurate trust-region iterations. Figure 5 showcases the effects of this parameter

combination on convergence speed (through the color-coded number of iterations 𝑝) and solution smoothness (through

the TVF, with smaller markers corresponding to smoother solutions). As done in Fig. 4, subtitles indicate the range

used to scale the marker sizes, and the pink color indicates a failure to converge. The validity tolerance 𝜖1 is expected to

significantly affect the convergence speed, as large values imply that trust-region iterations are accepted more often, thus

requiring fewer HDDP iterations, while the finer discretization is expected to yield smoother solutions, as it provides a

better approximation of the ”true” optimal control policy.

15 30 60 120

nStrev [-]

10!3

10!2

10!1

0 1
[-
]

AA=10°
TVF: 8 " 10!2) 12

500

1000

1500

2000

2500

p
[-

]

15 30 60 120

nStrev [-]

10!3

10!2

10!1

0 1
[-
]

Size: TVF [-] (AA=40°)
TVF: 2:6) 22

500

1000

1500

2000

2500

p
[-

]

Fig. 5 Effects of 𝑛𝑆𝑡𝑟𝑒𝑣 and 𝜖1 factorial analysis on the number of iterations (𝑝, indicated by marker color) and
smoothness (𝑇𝑉𝐹, indicated by marker size and linearly scaled between the denoted values). The pink color
indicates failure to converge

Figure 5 depicts the expected correlation between validity tolerance 𝜖1 and convergence speed (i.e.: iterates are

accepted more easily and therefore convergence is achieved in fewer iterations). No clear correlation can be identified

25

between the discretization quality and the convergence speed. Focusing on the 𝐴𝐴 = 40◦ case, it is clear that this

parameter combination has a significant effect on the algorithm’s reliability (i.e., its ability to converge to an optimal

solution even in complex OCPs), as shown by the several failures to converge.

Conversely from the analysis in subsection IV.A (where failures were caused by ”too slow” convergence), the failed

cases in Fig. 5 are caused by the algorithm diverging from its local-optimality region. Smoothness and discretization

quality display an opposite correlation with respect to the expected behavior: finer discretizations result in less smooth

solutions, ranging from only ”jittery” control profiles (e.g., the 𝑛𝑆𝑡𝑟𝑒𝑣 = 120, 𝜖1 = 10−3 combination) to the failed cases

where TVF values are even higher than scale provided in Fig. 5. The feature is caused by the reduced sensitivity of the

OCP with respect to its control inputs: the reduced control authority of the solar sail under the solar sail control regime

[60], coupled with the short duration of the trajectory arc associated to a certain stage, causes the control inputs of

each stage sub-problem to have a reduced effect on the solution of the sub-problem instead. Since the resulting TRQP

sub-problems are almost insensitive to the controls (i.e., gradient/Hessian close to 0), the trust-region procedure is likely

to accept iterates with diverging control inputs (even if in only some stages), as they have only a minor impact on the

actual cost value 𝐽 and thus do not reflect in the accuracy metric 𝜌 used in Eq. 20. The 𝐴𝐴 = 10◦ case highlights the

expected correlation between validity tolerance 𝜖1 and the smoothness of the solution: this trend is expected since a

strict tolerance 𝜖1 causes the trust-region procedure to only accept very accurate trial iterations, thus reducing the risk of

introducing diverging controls into the reference solution.

Effects of the factorial analysis on solution optimality-feasibility (similarly to the ones displayed in Fig. 4) are

presented in Fig. 6. While the validity tolerance 𝜖1 is not expected to correlate with optimality/feasibility specifically, a

finer discretization is expected to provide a more accurate approximation of the ”true” optimal control policy, thus

resulting in an improved solution.

15 30 60 120

nStrev [-]

10!3

10!2

10!1

0 1
[-
]

AA=10°
f: 8 " 10!10) 4 " 10!6

-1.0435

-1.043

-1.0425

-1.042

J
[-

]

15 30 60 120

nStrev [-]

10!3

10!2

10!1

0 1
[-
]

AA=40°
f: 3 " 10!10) 1 " 10!6

-1.037

-1.0365

-1.036

-1.0355

-1.035

-1.0345

J
[-

]

Fig. 6 Effects of 𝑛𝑆𝑡𝑟𝑒𝑣 and 𝜖1 factorial analysis on optimality (𝐽, indicated by marker color) and feasibility (𝑓 ,
indicated by marker size and linearly scaled between the denoted values). The pink color indicates failure to
converge

26

Figure 6 exhibits no clear trends in terms of optimality and feasibility. A minor exception is observed for the coarse

discretization (i.e., 𝑛𝑆𝑡𝑟𝑒𝑣 = 15): considering the combined effect of feasibility and optimality, the strict tolerance 𝜖1 is

shown to outperform larger values, displaying reduced constraint violations for identical values of optimality in the

𝐴𝐴 = 10◦ case. It is noticed that a finer discretization (i.e.: higher 𝑛𝑆𝑡𝑟𝑒𝑣) does not necessarily lead to improvements in

terms of optimality or feasibility, conversely from the expected behavior. The feature is linked back to the issues caused

by trust-region solvers for problems with very low control authority: addressing such limitations requires the coupling

of a fine discretization with a strict validity tolerance 𝜖1, allowing the algorithm to accurately and reliably approximate

the ”true” optimum. The alternative route is to adopt a coarse discretization using a larger tolerance 𝜖1, allowing the

exploitation of ”less predictable” behavior (i.e., more distant from the reference solution used to derive the quadratic cost

model): while resulting in faster convergence (due to the larger tolerance 𝜖1 and reduced number of decision variables),

the approach is also less robust, as noticed from the numerous failed cases registered for large tolerances 𝜖1.

The chosen parameter combination displayed in Table 1 corresponds to a balance between the aim for high-resolution

results (desired to understand the main features of the candidate solutions throughout the tuning process) and reliable

convergence, thus falling into the fine discretization (i.e., 𝑛𝑆𝑡𝑟𝑒𝑣 = 100) and strict tolerance (i.e., 𝜖1 = 10−3) logic.

C. Penalty parameter

Finally, the effectiveness of the automatically-tuned penalty parameter update is assessed. The procedure aims

at iteratively adjusting the penalty parameter to accurately meet the specified feasibility tolerance. For the scope of

this analysis, three approaches to update the penalty parameter 𝜎 are considered: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 0 corresponds

to the heuristics-based approach in Eq. 12, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 1 is the newly introduced update-rule in Eq. 18, and

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 2 is the nested trust-region approach defined in Alg. 1. Different guesses for the penalty parameter 𝜎

are provided, resulting in solutions with different balances between optimality and feasibility: the effects are shown in

Fig. 7.

It is immediately noticed how the adaptive procedures introduced in this work yield the desired effects, with the

corresponding solutions displaying constraint violations that closely meet the defined feasibility tolerance 𝜖 𝑓 𝑒𝑎𝑠 = 10−5

while resulting in more optimal solutions. Additionally, the nested trust-region procedure is shown to be particularly

robust with respect to the provided initial guess on the penalty parameter 𝜎. As expected, the heuristics-based approach

from Eq. 12 typically displays more feasible and less optimal solutions: the feature, justified by the conflicting nature

of the OCP objective and constraints, is caused by Eq. 12 only causing the penalty parameter 𝜎 to increase, thus

excessively prioritizing feasibility.

The adaptive procedures (i.e., 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 1, 2) are shown to accurately meet the required feasibility tolerance

𝜖 𝑓 𝑒𝑎𝑠. This feature constitutes a major benefit in terms of parameter tuning, as it removes (or reduces) the sensitivity

of HDDP to the tuning of the penalty parameter, which is known to have a noticeable impact on OCP solutions

27

1000 10000 20000 50000

< [-]

0

1

2

pe
na

lty
U

pd
at

e

AA = 10°
f: 2 " 10!9) 7 " 10!6

-1.0455

-1.045

-1.0445

-1.044

-1.0435

-1.043

J
[-

]

1000 10000 20000 50000

< [-]

0

1

2

pe
na

lty
U

pd
at

e

AA = 40°
f: 5 " 10!9) 6 " 10!6

-1.038

-1.0375

-1.037

-1.0365

-1.036

-1.0355

J
[-

]

Fig. 7 Effects of 𝜎 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 factorial analysis on optimality (𝐽, indicated by marker color) and
feasibility (𝑓 , indicated by marker size and linearly scaled between the denoted values). The pink color indicates
failure to converge

[33, 39]. These approaches, however, introduce significant computational overhead caused by the propagation of

multiple second-order models (one for each component of the constraint violation vector 𝚿) along with the quadratic

cost model required by HDDP, with the nested trust-region approach in Alg. 1 requiring an extension to the allocated

2 hours to reliably converge in all the considered cases. Since the optimization of many-revolution transfer OCPs

is an already computationally demanding task, the overhead is minimized by adopting the ”default” procedure (i.e.,

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 0) in Eq. 12.

D. Performance scaling

The advantageous feature of DDP algorithms is the linear memory scaling with problem dimensionality [32]. This

property is verified for the benchmark C2C problem, using the C2C-PY formulation to minimize the computational

effort (i.e., reduce the number of decision variables and path constraints) by gradually increasing the number of

orbital revolutions. The analysis is performed on a single AMD Ryzen 5 5600H processor, with 6 cores dedicated to

parallel computing. Three cases were analyzed, with 𝐴𝐴 = 10◦, 𝐴𝐴 = 40◦, and 𝐴𝐴 = 90◦: since identical results and

conclusions were drawn, only the 𝐴𝐴 = 90◦ case is shown in Fig. 8, displaying the average runtime required per HDDP

iteration and the estimated algorithm convergence order. The convergence order estimates the rate of descent of the

solution accuracy (with respect to the final ”true” minimum cost 𝐽 𝑓) over the algorithm iterations, computed as the best

approximation of:

(𝐽𝑝+1 − 𝐽 𝑓) = 𝑐𝑜𝑒 𝑓 𝑓 (𝐽𝑝 − 𝐽 𝑓)𝑜𝑟𝑑𝑒𝑟 (29)

where 𝑜𝑟𝑑𝑒𝑟 is the convergence order, 𝑝 is a generic HDDP iteration, and 𝑐𝑜𝑒 𝑓 𝑓 is a finite real number. The convergence

order is determined by performing an exponential fit of Eq. 29 over the HDDP iterations required to solve an OCP.

Previous works state that the DDP algorithm has a quadratic convergence order [32].

28

0 2 4 6 8 10 12 14 16 18 20

tf [nrevs]

0

5

10

15

av
er

ag
e

it
er

a
ti
o
n

d
u
ra

ti
o
n

[s
]

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

co
n
ve

rg
en

ce
or

d
er

[-
]

Algorithm performance scaling

Fig. 8 Performance scaling of the modified HDDP over increasing transfer durations, in terms of average
iteration duration and estimated convergence order

As expected, Fig 8 shows linearly increasing computational cost over transfer duration 𝑡 𝑓 : an exponential fit

determines that the average iteration duration (i.e., iteration effort) increases as O(𝑡1.2
𝑓
). The slightly super-linear trend

is caused by initialization overhead.

Conversely from theoretical guarantees, the convergence order is shown to be close to linear (i.e., close to 1) for the

considered time of flight values. The undesirable feature is caused by the need to enforce positive definiteness on the

Hessian matrices: since the property is artificially enforced through a Hessian-shifting algorithm [52], the convergence

order drops to only linear [67]. It is observed that longer transfer durations further reduce the convergence order,

meaning that an increased number of iterations requires the Hessian-shifting algorithm to enforce positive definiteness.

E. Considerations and summary

Results and features observed throughout the parameter analysis and algorithm tuning are now summarized, with

the goal of outlining a ’guide’ to HDDP tuning. Considerations regarding each parameter (or group of parameters) are

presented.

• 𝜖𝑜𝑝𝑡 , 𝜖 𝑓 𝑒𝑎𝑠: the tolerances, as expected, control their respective metrics, although the optimality tolerance

indirectly affects feasibility through the penalty parameter 𝜎 (for large values for 𝜎, 𝜖𝑜𝑝𝑡 can have a dominant

effect over 𝜖 𝑓 𝑒𝑎𝑠).

• 𝜖1: the validity threshold controls the acceptance of the trial iterates, significantly affecting solutions and

convergence properties. High values for 𝜖1 should be prioritized for faster convergence, at the risk of inducing

”jittery” controls or ”escaping” the current local-optimality region, resulting in failure to converge. Low 𝜖1 values

29

(coupled with the devised relaxation technique) are preferable for smoother solutions. If a high-resolution is

desired, the validity tolerance 𝜖1 shall be strict enough to avoid diverging iterates.

• 𝑛𝑆𝑡𝑟𝑒𝑣: a fine discretization ensures high-resolution solutions. The convergence properties of the HDDP algorithm

are improved under a coarse mesh, as the increased duration of the trajectory arc associated with each stage

implies that each TRQP sub-problem is more sensitive to the corresponding control inputs: in these conditions,

the trust-region procedure can reliably identify and discard iterations where control updates are diverging or

sub-optimal. Expectedly, a coarse mesh leads to faster convergence, although the interaction between mesh

collocation and problem dynamics (i.e., presence of control switches, uncontrollable trajectory arcs) is to be

considered: the devised algorithm allows to dynamically address such concerns through the stage collocation

function.

• 𝜎: the penalty parameter controls the balance between solution optimality and feasibility. The augmented

Lagrangian approach ensures that even under low 𝜎 values feasibility can be met. Lower values shall be preferred

for solution quality, while higher 𝜎 ensures faster convergence to feasible solutions. The adaptive tuning technique

successfully removes the need to manually tune the value for 𝜎, greatly adding to the HDDP framework’s reliability

at the cost of considerable computational overhead, thus requiring further investigation.

• Δ0: the initial value for the trust-region radius mainly controls the initial convergence speed of the algorithm, until

a trust-region radius Δ is reached such that iterates are only accepted for similar trust-region radius. Initializing

using a high Δ0 requires many trial iterates to achieve a successful trust-region step, but results in a maximization

of the available optimality gain in early iterations, and is therefore recommended.

• 𝜅𝑑 , Δ𝑚𝑖𝑛: the trust-region radius enlargement coefficient 𝜅𝑑 and the minimum trust-region radius Δmin control the

adaptive update of the trust-region radius in Eq. 20. The definition of a reliableΔ𝑚𝑖𝑛 depends on problem knowledge

and convergence requirements (i.e., a Δ𝑚𝑖𝑛 close to machine precision ensures uninterrupted optimization, but

also does not detect trust-region stalling). The adaptive enlargement of the validity threshold 𝜖1 was found to be a

reliable way to address trust-region stalling without requiring very low Δ𝑚𝑖𝑛. Low values for 𝜅𝑑 are recommended

(𝜅𝑑 = 0.05 was found to work reliably in all considered problems).

V. Results
The devised algorithm is applied to different solar-sail transfer problems. First, validation against a state-of-the-art

direct optimization solver is performed. The correct implementation of the HDDP framework is verified in Appendix B.

The validated algorithm is then applied to different many-revolution C2C problems, characterizing minimum-time C2C

solutions across multiple transfer durations and ultimately solving a variable-duration many-revolution C2C transfer.

30

A. Validation

The modified HDDP algorithm is validated against the state-of-the-art GPOPS-II solver, which adopts direct

collocation to transcribe the OCP into an NLP, solved with IPOPT [56]. The validation is performed successfully on

different problem formulations (from orbit raising to transfers, adopting different control representations), using the

hyper-parameter settings from Table 1. The results shown in Figure 9 refer to the 𝐴𝐴 = 10◦ 2-revolution C2C problem,

comparing the results of the C2C-PY and C2C-NC formulations, both solved using the modified HDDP algorithm and

benchmarked against the GPOPS-II solution to the C2C-NC problem (referred to as GPOPS-II-NC). All problems are

solved starting from a trivial initial guess. Results are shown in Fig. 9: Fig. 9a depicts the optimal profiles of cone angle

𝛼, Fig. 9b showcases the decrease in cost function decrease over the HDDP algorithm iterations, with dashed lines

representing the final cost values (the GPOPS-II final result is added as a reference, without displaying the evolution of

its candidate solutions.

0 0.5 1 1.5 2

t [days]

30

32

34

36

38

40

42

,
[d

eg
]

Cone angle comparison

C2C-PY
C2C-NC
GPOPS-II-NC

(a)

0 500 1000 1500 2000 2500 3000

p [-]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

J
[-

]

Cost function comparison

GPOPS-II-NC
C2C-NC
C2C-PY

2600 2700 2800

-1.04376

-1.04374

-1.04372

-1.0437

(b)

Fig. 9 Results from the path-constrained optimization validation on the 𝐴𝐴 = 10◦ C2C benchmark problem:
comparison of the cone angle 𝛼 profiles (left) and of the decrease in cost function over HDDP iterations (right),
with dashed lines indicating the final value of the cost function (the GPOPS-II result is added as a reference)

The identified solutions display minor differences in terms of optimal cone angle profiles while matching in terms

of solution optimality. The final values of the cost function shown in Fig. 9b show the C2C-NC formulation to be

advantageous in terms of optimality. A potential explanation of the phenomenon is in the nature of the solar-sail

acceleration, which depends on the Sun-line direction (i.e., the 𝑥 axis of the SLF reference frame, see Fig. 2a). Since

HDDP assumes control inputs to be constant over each stage, the C2C-NC can inherently ”track” the inertial Sun-line

direction better than the C2C-PY formulation, where the control inputs are defined in the (local) RTN reference frame.

Further work shall investigate the hypothesis by thoroughly comparing different state-control representations of the

problem.

Figure 9b shows that the trivial guess in the C2C-NC formulation performs better than its counterpart using the

31

C2C-PY formulation. The feature is caused by the different definitions of the adopted (trivial) initial guesses: the

C2C-PY initial guess constantly thrusts along the 𝑇 direction, significantly increasing the eccentricity and thus yielding

major constraint violations 𝚿 (affecting the augmented cost functional through Eq. 1b). Thanks to the augmented

Lagrangian formulation, the C2C-PY quickly reduces its constraint violation, achieving fast convergence. Conversely,

the C2C-NC initial guess remains close to circular due to the 𝐴𝐴 = 10◦ configuration, leading the trivial initial guess to

an almost entirely out-of-plane acceleration (which is neglected by the 2D dynamics assumption).

B. Many-revolution transfers

The validated algorithm is applied to time-optimal many-revolution transfers. The analysis is first carried out on

fixed-duration problems, investigating the solution features in different settings. A high-control-authority case is defined

at GEO altitude, where eclipses are almost negligible and the relative effect from Earth’s gravity is reduced: the resulting

OCP is highly sensitive to its control inputs, thus the problem also serves as a way to certify the algorithm’s capability to

reliably converge in complex problems (without additional overhead introduced by techniques such as multiple-shooting

[41, 68]). The low-control-authority case is defined at LEO altitude to test the algorithm’s computational limitations by

optimizing very large OCPs. The gathered information is exploited to derive a power-regression model to characterize

the time-optimal C2C performance, which is then used to define an initial guess for the FFT formulation. Computational

complexity is minimized by adopting the C2C-PY formulation, removing the need for path-constraints enforcement and

reducing the number of control variables. The adopted HDDP hyper-parameters follow the values from Table 1, with

only the penalty parameter being changed to 𝜎 = 106, proving the robustness of the tuning process outlined in Section

IV.

1. High control authority transfer

First, solutions to the C2C problem in a high-control-authority setting are investigated. The chosen scenario

corresponds to a GEO-altitude orbit (𝑟0 = 42164 𝑘𝑚) and an ACS3-like solar sail [6] (𝑎0 = 0.05 𝑚𝑚/𝑠2), resulting in

a relative performance 𝜓 =
𝑎0
𝑔0

= 2.64 · 10−4. The transfer starts at 𝐴𝐴 = 0◦ but gradually increases due to the time

variation of the orientation of the SLF frame. The mesh refinement procedure is initialized with 𝑛𝑆𝑡𝑟𝑒𝑣 = 15, and

ultimately converges in all cases to 𝑛𝑆𝑡𝑟𝑒𝑣 = 120, as the high control authority implies that the solution is sensitive to

the chosen discretization scheme. Results for 30, 90, and 180- revolution transfers are summarized in Fig. 10, with Fig.

10a displaying the eccentricity evolution for each of the analyzed transfers, while Fig. 10b depicts the 3D view of the

optimized 180-revolution transfer (following the same convention as Fig 3). The observed trends are analyzed on a

macroscopic scale, ignoring oscillations that occur within a single orbital period.

Two different trends can be identified in Figure 10a: for shorter transfers (i.e., 30 and 90 revolutions) the trajectory

goes through one cycle of eccentricity increase and decrease, whereas for longer durations two cycles are observed.

32

0 50 100 150 200 250

t [days]

0

0.005

0.01

0.015

0.02

e
[-

]

30 revs
90 revs
180 revs

(a)

-5

-5 -4

0

#104

Z
[k

m
]

Y [km]

#104 -2

X [km]

#1040
0

5

25

SSA

p-vec

Sun-line

Start

End

traj

(b)

Fig. 10 Results for the many-revolution C2C transfers in a high-control-authority setting (ACS3-like solar sail
at GEO altitude): time-history of the eccentricity (left) and 3D view of the optimal 180-revolution transfer (right)

Further analyses showed that the transition between the two regimes occurs at a ≃120-revolution transfer duration. To

explain this behavior, Fig. 11 is introduced, with Fig. 11a showing the orbital-plane view of the optimal trajectory (with

exaggerated proportions for easier visualization) and Fig. 11b displaying the time-evolution of the argument of periapsis

𝜔 (defined using the same convention as the true anomaly 𝜃, with respect to the positive 𝑌 direction of the ECI frame

using a counterclockwise rotation, see Fig. 2a).

-51616 -42164 0 42164 51615

Y [km]

-51616

-42164

0

42164

51615

Z
[k

m
]

0

45

90

135

180

re
vs

 [-
]

(a)

0 50 100 150 200

t [days]

0

90

180

270

360

!
[d

eg
]

(b)

Fig. 11 Orbital-plane view of the 180-revolution C2C transfer (left), with exaggerated proportions, and evolution
of the argument of periapsis (right) for the 180-revolution C2C transfer

The oscillating behavior in Fig. 11b (also later observed in Fig. 13b) is caused by the singularity in the argument of

periapsis in circular orbits. Figure 11b clearly shows the presence of an apogee reversal: the argument of periapsis

is defined through a positive rotation (i.e. counterclockwise) from the positive 𝑌 axis, thus Fig. 11b describes an

33

orbit that grows towards the positive 𝑍̂ direction (i.e., 𝜔 = 270◦), followed by the apogee reversal which causes the

orbit to extend towards the negative 𝑍̂ direction (i.e., 𝜔 = 90◦), as also visible from Fig. 11a. The apogee-reversal

maneuver can be justified considering that the long duration of the transfer introduces noticeable variations in the orbit

illumination conditions. Due to the time-varying nature of the aspect angle 𝐴𝐴, the Sun-line rotates around the 𝑧 axis of

the SLF frame (which is aligned with the 𝑍̂ axis of the ECI frame, see Fig. 2a): the in-plane projection of the Sun-line

is always directed towards the positive 𝑌 direction, with an increasing magnitude for aspect angles close to 𝐴𝐴 = 90◦.

Considering only this in-plane component, each revolution of the transfer trajectory can be split into two phases: an

acceleration phase, where the sailcraft moves in the Sun-line direction (i.e., the bottom part of Fig. 11a), and a drift

phase, where the sailcraft moves ”against” the Sun-line (i.e., the top portion of Fig. 11a) [69]. By initially placing

the perigee in the acceleration phase, the transfer trajectory maximizes the gain in orbital energy by thrusting during

the trajectory arc where the instantaneous velocity is maximal. The following apogee-reversal maneuver causes the

apogee to fall under the acceleration phase, exploiting the solar-sail acceleration to increase its apogee velocity thus

circularizing the final orbit (performing an ”apogee-burn-like” maneuver, as also found in Ref. [70]).

A complete overview of the optimal control profile is provided in Fig. 12, where Fig. 12a displays the optimal

cone angle 𝛼 (in the blue to red color scale) over the many revolutions, with the solid green line indicating perigee,

the dashed green line for apogee, black dots for eclipses, and the shaded area corresponding to 𝐴𝐴 ≤ 𝐴𝐴𝑐 conditions

(verified for both 𝐴𝐴 ∈ [0◦; 18.43◦] and 𝐴𝐴 ∈ [161.57◦; 198.43◦]). Figure 12b highlights the maximum slew rate ∥ ¤̂n∥

required by the analyzed many-revolution transfers.

0 50 100 150 200 250 300 350

3 [deg]

0

50

100

150

200

t
[d

ay
s]

0

10

20

30

40

50

60

70

80

90

,
[d

eg
]

(a)

30 90 180

revs [-]

7

8

9

10

11

m
a
x
(k

_̂ n
k)

[d
eg

/m
in

] k _̂nk threshold

(b)

Fig. 12 Optimal control profile over the 180-revolution transfer (left), with the solid and dashed green lines to
represent perigee and apogee, black dots for eclipsed conditions, and shaded areas for 𝐴𝐴 ≤ 𝐴𝐴𝑐. Maximum
slew rate required by the analyzed many-revolution transfers (right)

The cone angle profile in Figure 12a portrays a clear distinction between the two control regimes identified in Ref.

[60]: for 𝐴𝐴 ≤ 𝐴𝐴𝑐 the ion-drive regime yields a cone angle 𝛼 ≃ 35.26◦, where 𝛼 = 35.26◦ maximizes the in-plane

34

solar-sail acceleration when 𝐴𝐴 = 0◦. Conversely, the solar-sail regime requires periodic slewing of the solar-sail:

during the acceleration phase (for 𝜃 ≃ 270◦), the effect of solar-sail acceleration is maximized by adopting a cone angle

𝛼 ≃ 0◦, while the drift phase (for 𝜃 ≃ 90◦) corresponds to a cone angle 𝛼 ≃ 90◦, which minimizes the acceleration

component in the opposite direction of the velocity vector. The apogee reversal is also noticed in Fig. 12a, with the

acceleration phase (represented by the blue region) first being associated with the perigee (solid green line) and then

switching to apogee (dashed green line). Given the long orbital periods of the analyzed transfers, the required sail slew

rates in Fig.12b are, expectedly, well within solar-sail attitude-control limitations (in Ref. [71] a ≃ 10◦/𝑚𝑖𝑛 threshold is

defined for ACS3-like sails, specifying that limitations are typically introduced by the attitude control system, rather

than the sail structure).

2. Low control authority transfer

Many-revolution transfers are now investigated in a setting with much lower control authority, caused by the

increased magnitude of Earth’s gravitational pull as well as the frequent eclipsing phenomena. The chosen scenario

considers an orbit at 700 𝑘𝑚 altitude and the same ACS3-like sail with relative performance of 𝜓 = 7.45 · 10−6. As

for the high-control-authority case, the transfer starts at 𝐴𝐴 = 0◦. The mesh refinement procedure is initialized with

𝑛𝑆𝑡𝑟 𝑒𝑣 = 20 and converges at its first iteration with 𝑛𝑆𝑡𝑟𝑒𝑣 = 40, as the low control authority leads to negligible solution

improvement under higher resolutions. The algorithm hyper-parameters are the same as the high-control-authority

transfer (i.e., Table 1 with penalty parameter 𝜎 = 106). The results for up to 1000-revolution transfers are summarized

in Fig. 13, with Fig. 13a showing the eccentricity evolution and Fig. 13b showing the argument of periapsis for all

analyzed transfers.

0 10 20 30 40 50 60 70

t [days]

0

0.5

1

1.5

2

2.5

3

3.5

e
[-

]

#10!3

1000 revs

900 revs

800 revs

700 revs

610 revs

360 revs

270 revs

180 revs

90 revs

30 revs

(a)

0 12 23 35 46 58 69

t [days]

0

90

180

270

360

!
[d

eg
]

1000 revs

900 revs

800 revs

700 revs

610 revs

360 revs

270 revs

180 revs

90 revs

30 revs

(b)

Fig. 13 Results for the many-revolution C2C transfers in a low-control-authority setting (ACS3-like solar sail at
700 𝑘𝑚 altitude): time-history of the eccentricity (left) and of the argument of periapsis (right)

The eccentricity evolution in Fig. 13a displays the expected trend of a single eccentricity increase-decrease cycle

35

for all analyzed cases. The argument of periapsis in Fig. 13b highlights two ”regions”: short-duration transfers (up

to 360 revolutions) show fixed values 𝜔 = 270◦, while the longer-duration transfers display a slight increase and

irregularity in terms of argument of periapsis 𝜔 ≥ 270. The feature is caused by the presence of eclipsing phenomena

only in the long-duration transfers, as the time-varying Sun-line direction implies that the orbital plane intersects the

umbra/penumbra regions only after ≃ days. More detailed insight into the optimal control profiles and orbital geometry

is provided in Fig. 16, displaying the cone angle evolution for the 1000-revolution transfer in Fig. 14a (following the

same conventions as Fig. 12a) and the required slew rates for all analyzed cases in Fig. 14b.

0 50 100 150 200 250 300 350

3 [deg]

0

10

20

30

40

50

60

70

t
[d

ay
s]

0

10

20

30

40

50

60

70

80

90

,
[d

eg
]

(a)

30 90 180 270 360 610 700 800 900 1000

revs [-]

10

20

30

40

50

m
a
x
(k

_̂ n
k)

[d
eg
/
m
in
]

k _̂nk threshold

(b)

Fig. 14 Optimal control profile over the 1000-revolution transfer (left), with the solid and dashed green lines to
represent perigee and apogee, black dots for eclipsed conditions, and shaded areas for 𝐴𝐴 ≤ 𝐴𝐴𝑐. Maximum
slew rate required by the analyzed many-revolution transfers (right)

The cone angle profile depicted in Fig. 14a shows the transition between the ion-drive regime (where the optimal

cone angle is 𝛼 ≃ 35.26◦) and solar-sail control regime. Under the solar-sail control regime, the division between the

acceleration phase (i.e., 𝛼 ≃ 0◦) and the drift phase (i.e., 𝛼 ≃ 90◦) is different from the one in the high-control-authority

case (see Fig. 12a). The feature is caused by the presence of significant eclipsing phenomena: since only a limited

trajectory arc per revolution enables effective use of the solar-sail thrust, the optimal control profile maximizes the

portion of the acceleration phase spent under illuminated conditions. This logic causes the drift phase (red region in Fig.

14a) to be considerably shorter than the acceleration phase (the blue region in Fig. 14a). The increased argument of

periapsis 𝜔 ≥ 270◦ observed in Fig. 13b is also a result of this feature, as the optimal control law gradually shifts the

apogee of the transfer trajectory towards the acceleration phase (i.e., 𝜃 ≃ 90◦), prioritizing the orbit’s circularization at

the end of the transfer. The required slew rate shown in Fig. 14b displays considerable violations of the threshold defined

in Ref. [71], implying that future works shall investigate the effects of attitude-control limitations on optimal trajectories.

It is noticed that both in Fig. 12b and Fig. 14b the required slew rate ∥ ¤̂n∥ does not depend on the transfer duration:

since the optimal control laws require to periodically slew the sail, the maximum slew rate is only dependent on the

shortest orbital period observed during the transfer (i.e., from its initial conditions), thus explaining the considerable

36

differences observed between the attitude control requirements of GEO and LEO transfers.

3. Power-regression models

Having investigated the main features of the optimal control profiles for fixed-duration time-optimal many-revolution

transfers, the overall solar-sail performance in the considered C2C cases is examined. Following the approach of Ref.

[21], a power regression model Δ𝑟 = 𝐴𝑛𝑏𝑟𝑒𝑣 , predicting the orbital radius increase Δ𝑟 as a function of the number of

revolutions 𝑛𝑟𝑒𝑣 , is fitted to the optimized C2C transfers (with a coefficient of determination 𝑅2). The resulting models

are shown in Fig. 15, displaying the data points obtained from the optimized transfers against the model prediction and

coefficients, as well as the trajectory arc spent in umbra/penumbra conditions through the vertical gray bars.

0 50 100 150 200

nrevs [-]

0

2000

4000

6000

8000

10000

12000

"
r

[k
m

]

0

10

20

30

40

50

60

70

80

90

100

%
in

ec
li
p
se

High-control-authority C2C

A: 64.491
b: 0.96505
R2: 0.99006

data

model

0 200 400 600 800 1000 1200

nrevs [-]

0

50

100

150

200

250

"
r

[k
m

]

0

10

20

30

40

50

60

70

80

90

100

%
in

ec
li
p
se

Low-control-authority C2C

A: 0.409
b: 0.89701
R2: 0.96049

data

model

Fig. 15 Power regression models in the form Δ𝑟 = 𝐴𝑛𝑏𝑟𝑒𝑣 for the considered C2C transfers, combined with
trajectory percentage spent in umbra/penumbra conditions indicated by the vertical gray bars, the resulting
model coefficients 𝐴 and 𝑏, and the coefficient of determination 𝑅2

The regression on the high-control-authority transfers results in a quasi-linear model. While its high coefficient of

determination 𝑅2 can be attributed to the few available data points, no significant variations from the linear trend are

expected within the considered range (0 − 180 revolutions). As expected, eclipsing is negligible in such conditions and

yields no effects on the regression model. Conversely, the low-control-authority C2C analysis displays a sub-linear trend,

with significant portions of the transfers spent under umbra/penumbra conditions. The elbow-like feature causing the

sub-linear trend starts in correspondence with trajectory durations which imply significant eclipsed arcs (i.e., transfer

durations higher than 𝑛𝑟𝑒𝑣 = 600): as the sailcraft enters shadowed regions, its orbit-raising capabilities decrease,

causing the sub-linear trend. While the shadowed portion of the trajectory is observed to increase linearly with the

transfer duration (after the sailcraft has entered eclipsed conditions), a decreasing trend is expected for transfers that reach

37

higher aspect angles than 𝐴𝐴 ≥ 90◦, where the umbra/penumbra regions exit the orbital plane: the power regression

model is therefore unreliable for extrapolation.

4. Flexible-final-time solution

The devised power regression model is used to estimate the time-optimal duration for a C2C transfer with a given

orbital radius increase Δ𝑟. For the example in this subsection, a target orbital radius increase of Δ𝑟 = 150 𝑘𝑚 is

chosen, as it corresponds to a region where the defined model displays high accuracy (as shown in Fig. 15). Using the

low-control-authority model coefficients 𝐴 = 0.409 and 𝑏 = 0.89701, an estimate of ≃ 720 revolutions is obtained to

perform the 150 𝑘𝑚 orbit increase. Solving the fixed-time 720-revolution C2C transfer yields a Δ𝑟 = 147.25 𝑘𝑚 (i.e.,

the model overestimates the sail performance). The transfer is subsequently reformulated as a variable-duration problem

through Eq. 27, using the optimized 720-revolution transfer as the initial guess. The scaling factor on the independent

variable 𝜃𝑠𝑐𝑎𝑙𝑒 is reduced to 0.1 in this OCP, as the value was found to sufficiently reduce the high sensitivity of the

problem to its discretization. The adopted HDDP parameters are summarized in Table 2.

Table 2 Default HDDP hyper-parameters for the variable-time C2C problem

𝜖𝑜𝑝𝑡 𝜖 𝑓 𝑒𝑎𝑠 𝜖1 𝜖1,max Δ0 𝜎0 𝜅𝑑 𝜅𝜎 𝜅𝜖 𝑛𝑆𝑡𝑟𝑒𝑣 𝜖𝑝𝑎𝑡ℎ Δ𝜎

10−6 10−5 10−2 10−1 0.01 106 0.05 1.5 2.2 20 10−6 50

The identified solution is a 745-revolution C2C transfer: the optimal control profile of the variable-time solution is

shown in Fig. 16a, while the result of the 745-revolution fixed-time transfer is shown in Fig. 16b (both figures follow

the convention introduced in Fig. 12a).

0 50 100 150 200 250 300 350

3 [deg]

0

10

20

30

40

50

t
[d

ay
s]

variable-time formulation

0

10

20

30

40

50

60

70

80

90

,
[d

eg
]

(a)

0 50 100 150 200 250 300 350

3 [deg]

0

10

20

30

40

50

t
[d

ay
s]

fixed-time formulation

0

10

20

30

40

50

60

70

80

90

,
[d

eg
]

(b)

Fig. 16 Optimal control profile over the 745-revolution transfer using the variable-time (left) and fixed-time
(right) formulations, with the solid and dashed green lines to represent perigee and apogee, black dots for eclipsed
conditions, and shaded areas for 𝐴𝐴 ≤ 𝐴𝐴𝑐

The fixed-time formulation slightly outperforms the variable-time one, registering an increase in orbital radius of

38

Δ𝑟 = 150.2 𝑘𝑚 (against the increase Δ𝑟 = 150 𝑘𝑚 of the variable-time formulation). Both solutions display the features

observed for the 1000-revolution solution (see Fig. 14a), namely the uneven distribution of the acceleration and drift

phases, with the drift phase being ”allocated” to eclipsed trajectory arcs. The control profiles in Fig. 16 are overall very

similar, certifying the validity of the time-dilation approach introduced in subsection II.A. A minor difference can be

identified in the final portion of the transfer trajectory: while the fixed-time formulation manages to ”steer” the apogee

(dashed green line) towards the acceleration phase (blue region), thus efficiently circularizing its orbit, the variable-time

approach appears to follow an opposite policy. The feature can be attributed to the different formulations in terms of

cost and constraints (see Eq. 26 and Eq. 27): the variable-time formulation sacrifices the solution feasibility in favor of

a shorter-duration transfer, while the fixed-time formulation manages to identify a more feasible and optimal solution

(note that both results meet the specified tolerance 𝜖 𝑓 𝑒𝑎𝑠). While it is expected that the performance of the variable-time

formulation can be improved by accurately tuning the scaling factor 𝜃𝑠𝑐𝑎𝑙𝑒, it holds that the fixed-time formulation

provides a more reliable framework, consistently with other time-dilation approaches applied to different optimization

methods [21].

VI. Conclusions
This work presented a modified Hybrid Differential Dynamic Programming (HDDP) algorithm, enhanced with

novel techniques to address some of its limitations: path constraints are enforced using a second-order method,

variable-duration problems are accommodated through time-dilation and a modified framework for the propagation of

State Transition Maps (STM), and the sensitivity to its hyper-parameters is reduced through adaptive techniques to tune

the penalty parameter and the validity threshold of the quadratic cost model.

A simplified solar-sail circular-to-circular transfer problem was used to characterize the sensitivity of the algorithm

to its hyper-parameters. Key findings include the coupled effects of the optimality tolerance 𝜖𝑜𝑝𝑡 on both optimality and

feasibility, caused by the augmented Lagrangian approach used in HDDP, the numerical instabilities induced by the

highly influential quadratic cost model (both in terms of discretization and imposed accuracy threshold 𝜖1), and the

satisfying performance of the devised adaptive parameter algorithm (which, however, induces undesirable computational

overhead). The convergence properties of the modified algorithm were also verified, displaying the expected linear

increase in computational effort with OCP dimensionality and a reduced convergence order, caused by the complex

nature of the analyzed OCP. The full algorithm characterization was reduced to a small set of key takeaways, enabling

informed decisions when tuning the algorithm in future works.

The newly introduced methodologies were successfully validated against a state-of-the-art direct optimization solver

in the context of simplified solar sail transfer problems. The devised algorithm was then applied to more complex

many-revolution transfers: solving such transfers at GEO altitude (where the solar sail has a higher control authority)

highlighted unexpected features in the solutions, namely the presence of an apogee-reversal maneuver to address the

39

time-varying Sun-line direction in long-duration transfers. Optimal transfers at LEO altitude were shown to address

the significant eclipsing phenomena by shifting the orbital geometry, causing the drifting phase (i.e., the trajectory

arc where the sail moves towards the Sun) to occur in the eclipsed region. The characterized solutions were used to

derive a power regression model for the solar-sail performance in the analyzed transfer OCPs: the observed trends were

(close to) linear but significantly affected by the presence of eclipsing. The regression model was used to initialize a

variable-duration OCP, identifying a 745-revolution duration as the minimum time required to transfer between circular

orbits from 700 𝑘𝑚 to 850 𝑘𝑚 altitudes.

Some limitations were also observed throughout the work. Further work shall improve the adaptive tuning of the

penalty parameter introduced in subsection II.D to prioritize more computationally efficient approaches (e.g., the one

from Ref. [72]). The obtained results were limited to a simplified dynamical model, thus future studies shall leverage

the proposed HDDP implementation (available in Ref. [53]) to investigate higher-fidelity dynamical models and/or

different OCPs, exploiting the flexibility of the approach provided by the automatic differentiation framework.

The showcased methodology and results constitute a first step towards the broader understanding of optimal sail-

powered many-revolutions transfers around planetary bodies. The integration of variable-duration and path-constrained

problems into the HDDP framework expands its optimization capabilities, enabling its use in relevant solar sail OCPs,

from preliminary solutions to the space debris removal problem to trajectory optimization for long-duration missions.

Appendix A

Second-order feedback terms

The second-order terms for the path-constrained TRQP sub-problem solution introduced in Subsection II.B are:

0 =



2
∑𝑛𝑞

𝑘=1 𝝁
𝑘
𝒙 𝑗 (𝒒𝑘𝒖𝒙 + 𝒒𝑘𝒖𝒖𝑈𝒙)

𝑈𝑇
𝒙 𝑗 𝒒

1
𝒖𝒙 + 𝒒1

𝒙 𝑗𝒖
𝑈𝒙 + 𝒒1

𝒙 𝑗 𝒙
+𝑈𝑇

𝒙 𝑗 𝒒
1
𝒖𝒖𝑈𝒙

...

𝑈𝑇
𝒙 𝑗 𝒒

𝑛𝑞
𝒖𝒙 + 𝒒

𝑛𝑞

𝒙 𝑗𝒖
𝑈𝒙 + 𝒒

𝑛𝑞

𝒙 𝑗 𝒙
+𝑈𝑇

𝒙 𝑗 𝒒
𝑛𝑞
𝒖𝒖𝑈𝒙


+ (M +H)


𝑈𝒙 𝑗 𝒙

𝝁𝒙 𝑗 𝒙



0 =



2
∑𝑛𝑞

𝑘=1 𝝁
𝑘
𝒘 𝑗 (𝒒𝑘𝒖𝒘 + 𝒒𝑘𝒖𝒖𝑈𝒘)

𝑈𝑇
𝒘 𝑗 𝒒

1
𝒖𝒘 + 𝒒1

𝒘 𝑗𝒖
𝑈𝒘 + 𝒒1

𝒘 𝑗𝒘
+𝑈𝑇

𝒘 𝑗 𝒒
1
𝒖𝒖𝑈𝒘

...

𝑈𝑇
𝒘 𝑗 𝒒

𝑛𝑞
𝒖𝒘 + 𝒒

𝑛𝑞

𝒘 𝑗𝒖
𝑈𝒘 + 𝒒

𝑛𝑞

𝒘 𝑗𝒘
+𝑈𝑇

𝒘 𝑗 𝒒
𝑛𝑞
𝒖𝒖𝑈𝒘


+ (M +H)


𝑈𝒘 𝑗𝒘

𝝁𝒘 𝑗𝒘

 0 =



2
∑𝑛𝑞

𝑘=1 𝝁
𝑘

𝝀 𝑗 (𝒒𝑘𝒖𝒖𝑈𝝀)

0
...

0


+ (M +H)


𝑈𝝀 𝑗𝝀

𝝁𝝀 𝑗𝝀



40

0 =



2
∑𝑛𝑞

𝑘=1 𝝁
𝑘
𝒘 𝑗 (𝒒𝑘𝒖𝒙 + 𝒒𝑘𝒖𝒖𝑈𝒙)

𝑈𝑇
𝒘 𝑗 𝒒

1
𝒖𝒙 + 𝒒1

𝒘 𝑗𝒖
𝑈𝒙 + 𝒒1

𝒘 𝑗 𝒙
+𝑈𝑇

𝒘 𝑗 𝒒
1
𝒖𝒖𝑈𝒙

...

𝑈𝑇
𝒘 𝑗 𝒒

𝑛𝑞
𝒖𝒙 + 𝒒

𝑛𝑞

𝒘 𝑗𝒖
𝑈𝒙 + 𝒒

𝑛𝑞

𝒘 𝑗 𝒙
+𝑈𝑇

𝒘 𝑗 𝒒
𝑛𝑞
𝒖𝒖𝑈𝒙


+ (M +H)


𝑈𝒘 𝑗 𝒙

𝝁𝒘 𝑗 𝒙

 (27)

0 =



2
∑𝑛𝑞

𝑘=1 𝝁
𝑘
𝒙 𝑗 (𝒒𝑘𝒖𝒘 + 𝒒𝑘𝒖𝒖𝑈𝒘)

𝑈𝑇
𝒙 𝑗 𝒒

1
𝒖𝒘 + 𝒒1

𝒙 𝑗𝒖
𝑈𝒘 + 𝒒1

𝒙 𝑗𝒘
+𝑈𝑇

𝒙 𝑗 𝒒
1
𝒖𝒖𝑈𝒘

...

𝑈𝑇
𝒙 𝑗 𝒒

𝑛𝑞
𝒖𝒘 + 𝒒

𝑛𝑞

𝒙 𝑗𝒖
𝑈𝒘 + 𝒒

𝑛𝑞

𝒙 𝑗 𝒙
+𝑈𝑇

𝒙 𝑗 𝒒
𝑛𝑞
𝒖𝒖𝑈𝒘


+ (M +H)


𝑈𝒙 𝑗𝒘

𝝁𝒙 𝑗𝒘


. . .

Appendix B
The modified HDDP algorithm validation presented in Subsection V.A represents one of the different performed

tests. First, a linear-quadratic (LQ) problem is chosen as a test case, as augmented Lagrangian methods are known to

converge in a single iteration in this problem class [73]. Different variations in terms of objectives, formulation, and

initial conditions were tested: the LQ problem formulated here follows the test case in Ref. [48]:

min
𝒖𝑖,𝑘 , 𝒘𝑖

2∑︁
𝑖=1

5∑︁
𝑘=1

∥𝒖𝑖,𝑘 ∥2, such that„ for 𝑖 = 1, 2 & 𝑘 = 1, ..., 5:

𝚪1 =

[
1 1 1 1 1 1

]𝑇
𝚪2 = 𝒘2

𝒙𝑖,𝑘+1 =


𝒙𝑖,𝑘 (1 : 3) + 𝒙𝑖,𝑘 (4 : 6)

𝒙𝑖,𝑘 (4 : 6) + 𝒖𝑖,𝑘


𝚿1 (𝒙1,6, 𝒘1, 𝒙2,1, 𝒘2) = 𝒙1,6 − 𝒘2

𝚿2 (𝒙2,6, 𝒘2) = 𝒙2,6 −
[
1 −1 0

]𝑇

(30)

The algorithm is observed to achieve single-iteration convergence (as also in all considered LQ-problem variations), with

results summarized in Fig. 17: visual comparison with the results from Ref. [48] confirms the correct implementation.

41

2 4 6 8 10

t [-]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

u
[-
]

Control solution

u(1)
u(2)
u(3)

2 4 6 8 10

t [-]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x
[-
]

Position solution

x(1)
x(2)
x(3)

Fig. 17 Position states and controls resulting from the optimized LQ-problem (defined also in Ref. [48])

Acknowledgments
The authors acknowledge the use of computational resources of the DelftBlue supercomputer, provided by Delft

High Performance Computing Centre (https://www.tudelft.nl/dhpc).

References
[1] McInnes, C. R., Solar sailing. Technology, dynamics and mission applications., 1999. URL https://ui.adsabs.harvard.

edu/abs/1999sstd.book.....M, publication Title: Solar sailing. Technology ADS Bibcode: 1999sstd.book.....M.

[2] Sawada, H., Mori, O., Okuizumi, N., Shirasawa, Y., Miyazaki, Y., Natori, M., Matunaga, S., Furuya, H., and Sakamoto,

H., “Mission Report on The Solar Power Sail Deployment Demonstration of IKAROS,” 52nd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Denver,

Colorado, 2011. https://doi.org/10.2514/6.2011-1887, URL https://arc.aiaa.org/doi/10.2514/6.2011-1887.

[3] Alhorn, D., Casas, J., Agasid, E., Adams, C., Laue, G., Kitts, D. C., and O’Brien, S., “NanoSail-D: The Small Satellite That

Could!” Logan, UT, 2011.

[4] Ridenoure, R. W., Spencer, D. A., Stetson, D. A., Betts, B., Munakata, R., Wong, S. D., Diaz, A., Plante, B., Foley,

J. D., and Bellardo, J. M., “Status of the Dual CubeSat LightSail Program,” AIAA SPACE 2015 Conference and Exposition,

American Institute of Aeronautics and Astronautics, Pasadena, California, 2015. https://doi.org/10.2514/6.2015-4424, URL

https://arc.aiaa.org/doi/10.2514/6.2015-4424.

[5] Spencer, D. A., Betts, B., Bellardo, J. M., Diaz, A., Plante, B., and Mansell, J. R., “The LightSail 2 solar sailing technology

42

demonstration,” Advances in Space Research, Vol. 67, No. 9, 2021, pp. 2878–2889. https://doi.org/10.1016/j.asr.2020.06.029,

URL https://linkinghub.elsevier.com/retrieve/pii/S027311772030449X.

[6] Wilkie, W. K., “Overview of the NASA Advanced Composite Solar Sail System (ACS3) Technology Demonstration

Project,” AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, VIRTUAL EVENT, 2021.

https://doi.org/10.2514/6.2021-1260, URL https://arc.aiaa.org/doi/10.2514/6.2021-1260.

[7] Mengali, G., and Quarta, A. A., “Optimal Three-Dimensional Interplanetary Rendezvous Using Non-Ideal Solar Sail,”

Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 173–177. https://doi.org/10.2514/1.8325, URL

https://arc.aiaa.org/doi/10.2514/1.8325.

[8] Quarta, A. A., Mengali, G., Bassetto, M., and Niccolai, L., “Optimal interplanetary trajectories for Sun-facing ideal

diffractive sails,” Astrodynamics, Vol. 7, No. 3, 2023, pp. 285–299. https://doi.org/10.1007/s42064-023-0158-4, URL

https://link.springer.com/10.1007/s42064-023-0158-4.

[9] Lantoine, G., Cox, A., Sweetser, T., Grebow, D., Whiffen, G., Garza, D., Petropoulos, A., Oguri, K., Kangas, J., Kruizinga, G.,

and Castillo-Rogez, J., “Trajectory & maneuver design of the NEA Scout solar sail mission,” Acta Astronautica, Vol. 225,

2024, pp. 77–98. https://doi.org/10.1016/j.actaastro.2024.08.039, URL https://www.sciencedirect.com/science/article/pii/

S0094576524004788.

[10] Leipold, M. E., and Wagner, O., “Mercury sun-synchronous polar orbits using solar sail propulsion,” Journal of Guidance, Control,

and Dynamics, Vol. 19, No. 6, 1996, pp. 1337–1341. https://doi.org/10.2514/3.21791, URL https://doi.org/10.2514/3.21791,

publisher: American Institute of Aeronautics and Astronautics _eprint: https://doi.org/10.2514/3.21791.

[11] Macdonald, M., and McInnes, C. R., “Analytical Control Laws for Planet-Centered Solar Sailing,” Journal of Guidance, Control,

and Dynamics, Vol. 28, No. 5, 2005, pp. 1038–1048. https://doi.org/10.2514/1.11400, URL https://arc.aiaa.org/doi/10.2514/1.

11400.

[12] McInnes, C. R., Macdonald, M., Angelopolous, V., and Alexander, D., “GEOSAIL: Exploring the Geomagnetic Tail Using a

Small Solar Sail,” Journal of Spacecraft and Rockets, Vol. 38, No. 4, 2001, pp. 622–629. https://doi.org/10.2514/2.3727, URL

https://arc.aiaa.org/doi/10.2514/2.3727.

[13] Colombo, C., Lücking, C., and McInnes, C. R., “Orbital dynamics of high area-to-mass ratio spacecraft with J2 and solar radiation

pressure for novel Earth observation and communication services,” Acta Astronautica, Vol. 81, No. 1, 2012, pp. 137–150.

https://doi.org/10.1016/j.actaastro.2012.07.009, URL https://www.sciencedirect.com/science/article/pii/S009457651200272X.

[14] Kelly, P. W., Bevilacqua, R., Mazal, L., and Erwin, R. S., “TugSat: Removing Space Debris from Geostationary Orbits Using

Solar Sails,” Journal of Spacecraft and Rockets, Vol. 55, No. 2, 2018, pp. 437–450. https://doi.org/10.2514/1.A33872, URL

https://arc.aiaa.org/doi/10.2514/1.A33872.

43

[15] Kelly, P., and Bevilacqua, R., “Geostationary debris mitigation using minimum time solar sail trajectories with eclipse

constraints,” Optimal Control Applications and Methods, Vol. 42, No. 1, 2021, pp. 279–304. https://doi.org/10.1002/oca.2676,

URL https://onlinelibrary.wiley.com/doi/10.1002/oca.2676.

[16] Delft, T., “SWEEP,” , ???? URL https://www.tudelft.nl/en/ae/sweep.

[17] Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., and McInnes, C., “Solar Sails: Technology And Demonstration

Status,” International Journal of Aeronautical and Space Sciences, Vol. 13, No. 4, 2012, pp. 421–427. https://doi.org/10.5139/

IJASS.2012.13.4.421, URL http://koreascience.or.kr/journal/view.jsp?kj=HGJHC0&py=2012&vnc=v13n4&sp=421.

[18] Oguri, K., Lantoine, G., Petropoulos, A. E., and McMahon, J. W., “Solar Sailing Q-Law for Planetocentric, Many-

Revolution Sail Orbit Transfers,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 10, 2023, pp. 2005–2014.

https://doi.org/10.2514/1.G007103, URL https://doi.org/10.2514/1.G007103, publisher: American Institute of Aeronautics and

Astronautics _eprint: https://doi.org/10.2514/1.G007103.

[19] Betts, J. T., “Very low-thrust trajectory optimization using a direct SQP method,” Journal of Computational and Ap-

plied Mathematics, Vol. 120, No. 1, 2000, pp. 27–40. https://doi.org/10.1016/S0377-0427(00)00301-0, URL https:

//www.sciencedirect.com/science/article/pii/S0377042700003010.

[20] Topputo, F., and Zhang, C., “Survey of Direct Transcription for Low-Thrust Space Trajectory Optimization with Applications,”

Abstract and Applied Analysis, Vol. 2014, 2014, pp. 1–15. https://doi.org/10.1155/2014/851720, URL http://www.hindawi.

com/journals/aaa/2014/851720/.

[21] Graham, K. F., and Rao, A. V., “Minimum-Time Trajectory Optimization of Multiple Revolution Low-Thrust Earth-Orbit

Transfers,” Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 711–727. https://doi.org/10.2514/1.A33187, URL

https://arc.aiaa.org/doi/10.2514/1.A33187.

[22] Fitzgerald, R. M., “Characterizing Minimum-Time Solar Sail Geostationary Orbit Transfers Using Pseudospectral Optimal

Control,” Journal of Spacecraft and Rockets, Vol. 58, No. 4, 2021, pp. 997–1009. https://doi.org/10.2514/1.A34950, URL

https://arc.aiaa.org/doi/10.2514/1.A34950.

[23] Morante, D., Sanjurjo Rivo, M., and Soler, M., “A Survey on Low-Thrust Trajectory Optimization Approaches,” Aerospace,

Vol. 8, No. 3, 2021, p. 88. https://doi.org/10.3390/aerospace8030088, URL https://www.mdpi.com/2226-4310/8/3/88.

[24] Longuski, J. M., Guzmán, J. J., and Prussing, J. E., Optimal Control with Aerospace Applications, Springer New York, New

York, NY, 2014. https://doi.org/10.1007/978-1-4614-8945-0, URL https://link.springer.com/10.1007/978-1-4614-8945-0.

[25] Haberkorn, T., Martinon, P., and Gergaud, J., “Low Thrust Minimum-Fuel Orbital Transfer: A Homotopic Approach,”

Journal of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 1046–1060. https://doi.org/10.2514/1.4022, URL

https://arc.aiaa.org/doi/10.2514/1.4022, publisher: American Institute of Aeronautics and Astronautics.

44

[26] E, Z., and Guzzetti, D., “Multi-revolution low-thrust trajectory optimization using symplectic methods,” Science China

Technological Sciences, Vol. 63, No. 3, 2020, pp. 506–519. https://doi.org/10.1007/s11431-019-9511-7, URL http://link.

springer.com/10.1007/s11431-019-9511-7.

[27] Barles, A., Ceriotti, M., Ciampa, F., and Felicetti, L., “An optimal steering law for sailing with solar and planetary radiation

pressure,” Aerospace Science and Technology, Vol. 118, 2021, p. 107051. https://doi.org/10.1016/j.ast.2021.107051, URL

https://linkinghub.elsevier.com/retrieve/pii/S1270963821005617.

[28] Sackett, L. L., “Optimal Solar Sail Planetocentric Trajectories,” Tech. rep., The Charles Stark Draper Laboratory, Inc.,

Cambridge, Massachusetts, Sep. 1977.

[29] Petropoulos, A. E., “REFINEMENTS TO THE Q-LAW FOR LOW-THRUST ORBIT TRANSFERS,” 15th AAS/AIAA Space

Flight Mechanics Conference, Vol. 120, 2005, pp. 963–982.

[30] Shannon, J. L., Ozimek, M. T., and Atchison, J. A., “Q-LAW AIDED DIRECT TRAJECTORY OPTIMIZATION FOR THE

HIGH-FIDELITY, MANY-REVOLUTION LOW-THRUST ORBIT TRANSFER PROBLEM,” Journal of Spacecraft and

Rockets, Vol. 57, No. 4, 2020, pp. 672–682. https://doi.org/10.2514/1.A34586.

[31] Whiffen, G., “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust

Trajectory Design,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, American Institute of Aeronautics and

Astronautics, Keystone, Colorado, 2006. https://doi.org/10.2514/6.2006-6741, URL https://arc.aiaa.org/doi/10.2514/6.2006-

6741.

[32] Mayne, D. H., and Jacobson, D. Q., Differential dynamic programming, American Elsevier Pub. Co., New York, NY, 1970.

[33] Lantoine, G., and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control

Problems. Part 1: Theory,” Journal of Optimization Theory and Applications, Vol. 154, No. 2, 2012, pp. 382–417.

https://doi.org/10.1007/s10957-012-0039-0, URL http://link.springer.com/10.1007/s10957-012-0039-0.

[34] Whiffen, G. J., “OPTIMIZING A USEFUL OBJECTIVE,” , Dec. 2002.

[35] Whiffen, G. J., “THRUST DIRECTION OPTIMIZATION: SATISFYING DAWN’S ATTITUDE AGILITY CONSTRAINTS,”

Kauai, Hawaii, 2013.

[36] Hart, W., Brown, G. M., Collins, S. M., De Soria-Santacruz Pich, M., Fieseler, P., Goebel, D., Marsh, D., Oh, D. Y.,

Snyder, S., Warner, N., Whiffen, G., Elkins-Tanton, L. T., Bell, J. F., Lawrence, D. J., Lord, P., and Pirkl, Z., “Overview

of the spacecraft design for the Psyche mission concept,” 2018 IEEE Aerospace Conference, 2018, pp. 1–20. https:

//doi.org/10.1109/AERO.2018.8396444, URL https://ieeexplore.ieee.org/document/8396444.

[37] Aziz, J. D., Parker, J. S., Scheeres, D. J., and Englander, J. A., “Low-Thrust Many-Revolution Trajectory Optimization via

Differential Dynamic Programming and a Sundman Transformation,” The Journal of the Astronautical Sciences, Vol. 65, No. 2,

2018, pp. 205–228. https://doi.org/10.1007/s40295-017-0122-8, URL http://link.springer.com/10.1007/s40295-017-0122-8.

45

[38] Aziz, J. D., Scheeres, D. J., and Lantoine, G., “Hybrid Differential Dynamic Programming in the Circular Restricted Three-Body

Problem,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 963–975. https://doi.org/10.2514/1.G003617,

URL https://arc.aiaa.org/doi/10.2514/1.G003617.

[39] Leemans, G., Carzana, L., and Heiligers, J., “Many-Revolution Earth-Centred Solar-Sail Trajectory Optimisation Using

Differential Dynamic Programming,” AIAA SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics, San

Diego, CA & Virtual, 2022. https://doi.org/10.2514/6.2022-1776, URL https://arc.aiaa.org/doi/10.2514/6.2022-1776.

[40] Maestrini, M., “Hybrid Differential Dynamic Programming Algorithm for Low-Thrust Trajectory Design Using Exact High-

Order Transition Maps,” 2018. URL https://www.semanticscholar.org/paper/Hybrid-Differential-Dynamic-Programming-

Algorithm-Maestrini/6199f8e4be9350542bf46b6f1f4ea44da4121970.

[41] Pellegrini, E., and Russell, R. P., “A multiple-shooting differential dynamic programming algorithm. Part 1: Theory,” Acta

Astronautica, Vol. 170, 2020, pp. 686–700. https://doi.org/10.1016/j.actaastro.2019.12.037, URL https://linkinghub.elsevier.

com/retrieve/pii/S0094576519314705.

[42] Lantoine, G., and Russell, R. P., “A FAST SECOND-ORDER ALGORITHM FOR PRELIMINARY DESIGN OF LOW-THRUST

TRAJECTORIES,” 2008.

[43] Lantoine, G., and Russell, R., “The Stark Model: An Exact, Closed-Form Approach to Low-Thrust Trajectory Optimiza-

tion,” 2011. URL https://www.semanticscholar.org/paper/The-Stark-Model%3A-An-Exact%2C-Closed-Form-Approach-to-

Lantoine-Russell/c4e846ef74b58060d384452c0b7265a79fbc55a8.

[44] Lin, T. C., and Arora, J. S., “Differential dynamic programming technique for constrained optimal control,” Computational

Mechanics, 1991.

[45] Tassa, Y., Mansard, N., and Todorov, E., “Control-limited differential dynamic programming,” 2014 IEEE International

Conference on Robotics and Automation (ICRA), IEEE, Hong Kong, China, 2014, pp. 1168–1175. https://doi.org/10.1109/

ICRA.2014.6907001, URL http://ieeexplore.ieee.org/document/6907001/.

[46] Carzana, L., Visser, P., and Heiligers, J., “Locally optimal control laws for Earth-bound solar sailing with atmospheric

drag,” Aerospace Science and Technology, Vol. 127, 2022, p. 107666. https://doi.org/10.1016/j.ast.2022.107666, URL

https://linkinghub.elsevier.com/retrieve/pii/S1270963822003406.

[47] Zheng, X., He, S., and Lin, D., “Constrained Trajectory Optimization With Flexible Final Time for Autonomous Vehicles,”

IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 3, 2022, pp. 1818–1829. https://doi.org/10.1109/TAES.

2021.3121668, URL https://ieeexplore.ieee.org/document/9582791/.

[48] Lantoine, G., and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control

Problems. Part 2: Application,” Journal of Optimization Theory and Applications, Vol. 154, No. 2, 2012, pp. 418–442.

https://doi.org/10.1007/s10957-012-0038-1, URL http://link.springer.com/10.1007/s10957-012-0038-1.

46

[49] Bani Younes, A., “Exact Computation of High-Order State Transition Tensors for Perturbed Orbital Motion,” Journal

of Guidance, Control, and Dynamics, Vol. 42, No. 6, 2019, pp. 1365–1371. https://doi.org/10.2514/1.G003897, URL

https://arc.aiaa.org/doi/10.2514/1.G003897.

[50] Boone, S., and McMahon, J., “Directional State Transition Tensors for Capturing Dominant Nonlinear Effects in Orbital

Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 3, 2023, pp. 431–442. https://doi.org/10.2514/1.G006910,

URL https://arc.aiaa.org/doi/10.2514/1.G006910.

[51] Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton, 1957.

[52] Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust-region methods, MPS-SIAM series on optimization, Society for Industrial

and Applied Mathematics [u.a.], Philadelphia, Pa, 2000.

[53] Minnozzi, R., “https://github.com/ rikiminno/RiccardoMinnozzi_MScThesis,” , Apr. 2025. URL https://github.com/rikiminno/

RiccardoMinnozzi_MScThesis.

[54] Weinstein, M. J., and Rao, A. V., “A Source Transformation via Operator Overloading Method for the Automatic Differentiation

of Mathematical Functions in MATLAB,” ACM Transactions on Mathematical Software, Vol. 42, No. 2, 2016, pp. 1–44.

https://doi.org/10.1145/2699456, URL https://dl.acm.org/doi/10.1145/2699456.

[55] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific, 1996.

[56] Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I., and Huntington, G. T., “Algorithm

902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral

method,” ACM Trans. Math. Softw., Vol. 37, No. 2, 2010, pp. 22:1–22:39. https://doi.org/10.1145/1731022.1731032, URL

https://dl.acm.org/doi/10.1145/1731022.1731032.

[57] Pellegrini, E., and Russell, R. P., “On the Computation and Accuracy of Trajectory State Transition Matrices,” Journal

of Guidance, Control, and Dynamics, Vol. 39, No. 11, 2016, pp. 2485–2499. https://doi.org/10.2514/1.G001920, URL

https://arc.aiaa.org/doi/10.2514/1.G001920, publisher: American Institute of Aeronautics and Astronautics.

[58] Patel, P., and Scheeres, D. J., “A second-order optimization algorithm using quadric control updates for multistage optimal control

problems,” Optimal Control Applications and Methods, Vol. 30, No. 6, 2009, pp. 525–536. https://doi.org/10.1002/oca.876,

URL https://onlinelibrary.wiley.com/doi/10.1002/oca.876.

[59] Saeidian, Z., Aminifard, Z., and Babaie–Kafaki, S., “A nonmonotone adaptive trust region technique with a forgetting factor,”

International Journal of Computer Mathematics, Vol. 101, No. 5, 2024, pp. 512–523. https://doi.org/10.1080/00207160.2024.

2350447, URL https://www.tandfonline.com/doi/full/10.1080/00207160.2024.2350447.

[60] Gamez Losada, F., Visser, P., and Heiligers, M., “Fundamentals of Solar-Sail Transfers Around Planetary Bodies,” Proceedings

of the 29th International Symposium on Space Flight Dynamics, 2024.

47

[61] Mengali, G., Quarta, A. A., Circi, C., and Dachwald, B., “Refined Solar Sail Force Model with Mission Application,”

Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 512–520. https://doi.org/10.2514/1.24779, URL

https://arc.aiaa.org/doi/10.2514/1.24779.

[62] Dachwald, B., Mengali, G., Quarta, A. A., and Macdonald, M., “Parametric Model and Optimal Control of Solar Sails

with Optical Degradation,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1170–1178. https:

//doi.org/10.2514/1.20313, URL https://arc.aiaa.org/doi/10.2514/1.20313.

[63] Aziz, J., Scheeres, D., Parker, J., and Englander, J., “A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory

Optimization,” TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE

TECHNOLOGY JAPAN, Vol. 17, 2019. https://doi.org/10.2322/tastj.17.181.

[64] Hintz, G. R., “Survey of Orbit Element Sets,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 785–790.

https://doi.org/10.2514/1.32237, URL https://arc.aiaa.org/doi/10.2514/1.32237, publisher: American Institute of Aeronautics

and Astronautics.

[65] Sundman, K. F., “Mémoire sur le problème des trois corps,” Acta Mathematica, Vol. 36, No. none, 1913, pp. 105–179.

https://doi.org/10.1007/BF02422379, URL https://projecteuclid.org/journals/acta-mathematica/volume-36/issue-none/M%c3%

a9moire-sur-le-probl%c3%a8me-des-trois-corps/10.1007/BF02422379.full, publisher: Institut Mittag-Leffler.

[66] Aziz, J. D., Scheeres, D., and Lantoine, G., “Differential Dynamic Programming in the Three-Body Problem,” 2018

Space Flight Mechanics Meeting, American Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018. https:

//doi.org/10.2514/6.2018-2223, URL https://arc.aiaa.org/doi/10.2514/6.2018-2223.

[67] Yakowitz, S., and Rutherford, B., “Computational aspects of discrete-time optimal control,” Applied Mathematics and

Computation, Vol. 15, No. 1, 1984, pp. 29–45. https://doi.org/10.1016/0096-3003(84)90051-1, URL https://www.sciencedirect.

com/science/article/pii/0096300384900511.

[68] Pellegrini, E., and Russell, R. P., “A multiple-shooting differential dynamic programming algorithm. Part 2: Applications,” Acta

Astronautica, Vol. 173, 2020, pp. 460–472. https://doi.org/10.1016/j.actaastro.2019.12.038, URL https://www.sciencedirect.

com/science/article/pii/S0094576519314717.

[69] Leipold, M., Eiden, M., Garner, C. E., Herbeck, L., Kassing, D., Niederstadt, T., Krüger, T., Pagel, G., Rezazad, M.,

Rozemeijer, H., Seboldt, W., Schöppinger, C., Sickinger, C., and Unckenbold, W., “Solar sail technology development and

demonstration,” Acta Astronautica, Vol. 52, No. 2, 2003, pp. 317–326. https://doi.org/10.1016/S0094-5765(02)00171-6, URL

https://www.sciencedirect.com/science/article/pii/S0094576502001716.

[70] Oguri, K., and Lantoine, G., “Indirect trajectory optimization via solar sailing primer vector theory: Minimum solar-

angle transfers,” Acta Astronautica, Vol. 211, 2023, pp. 405–415. https://doi.org/10.1016/j.actaastro.2023.06.032, URL

https://www.sciencedirect.com/science/article/pii/S0094576523003314.

48

[71] Marshall, M. A., and Pellegrino, S., “Slew Maneuver Constraints for Agile Flexible Spacecraft,” Journal of Guidance, Control,

and Dynamics, Vol. 46, No. 12, 2023, pp. 2300–2314. https://doi.org/10.2514/1.G007430, URL https://arc.aiaa.org/doi/10.

2514/1.G007430.

[72] Mceowen, S., Calderone, D. J., Tiwary, A., Zhou, J. S. K., Kim, T., Elango, P., and Acikmese, B., “Auto-tuned Primal-dual

Successive Convexification for Hypersonic Reentry Guidance,” , Nov. 2024. https://doi.org/10.48550/arXiv.2411.08361, URL

http://arxiv.org/abs/2411.08361, arXiv:2411.08361 [math].

[73] Powell, M. J. D., “Algorithms for nonlinear constraints that use lagrangian functions,” Mathematical Programming, Vol. 14,

No. 1, 1978, pp. 224–248. https://doi.org/10.1007/BF01588967, URL http://link.springer.com/10.1007/BF01588967.

49

5
Conclusions and Recommendations

This thesis aimed at developing a flexible Hybrid Differential Dynamic Programming optimization frame-
work, integrating flexible-final-time handling and path constraints into algorithm’s formulation, and re-
ducing/assessing the effects of algorithm hyper-parameters. Additionally, an initial characterization of
circular-to-circular many-revolutions solar sail transfers around Earth was also tackled. Conclusions
drawn from the performed research are summarized in Section 5.1, while Section 5.2 outlines possible
paths for future research.

5.1. Conclusions
The conclusions are presented in the form of answers to the research questions presented at the end
of Chapter 2, as well as a final reflection on the research objective.

• RQ1: How can a robust and flexible optimization framework, aimed at optimizingmany-revolutions
solar sail transfers, be defined using HDDP?

The optimization algorithm presented in this thesis expands on the HDDP framework of [42]. Fol-
lowing such formulation, the solver is verified to work for multi-phase, constrained optimal control
problems, with parametrized initial conditions. By expanding the algorithm formulation to also
account for variable-duration, path-constrained problems, the resulting solver can be applied to
a broad class of optimal control problems. The flexibility of the approach is enhanced through
Object-Oriented Programming-based software architecture, accommodatingmodular changes/re-
placements for task-specific solvers. The HDDP algorithm also de-couples partial derivatives of
dynamics and cost/constraints functions: by leveraging automatic differentiation, quick iterations
between different problem formulations are greatly simplified. The introduction of an arbitrary
stage collocation function also enables further control over problem formulation.
The optimization framework is observed to be robust to poor control and hyper-parameter guesses,
namely in terms of penalty parameter σ and quadratic model validity threshold ϵ1. The introduced
safeguard on trust-region ”stalling” in Alg. 5, as well as the adoption of a robust trust-region
solver in Alg. 2, ensure convergence under poorly tuned hyper-parameters, alleviating the time-
consuming tuning process. Numerical instabilities are observed when tackling OCPs with high-
resolution and very low control authority: additional safeguards are suggested to address this
shortcoming.

– RQ1.1: How can time of flight be included as a decision variable within the HDDP optimiza-
tion algorithm?

As introduced in Subsection 3.2.1, two approaches where considered for the implementation
of a flexible-final-time HDDP. The choice, driven by accuracy and flexibility requirements,
lies on a time-dilation approach: parametrizing the problem discretization, its duration can
be included as a (static) decision variable. This practice requires the State Transition Map
approach to also account for changes in stage collocation, therefore variational equations

109

5.1. Conclusions 110

are modified accordingly (resulting in Eq. 3.19 and Eq. 3.20). The technique is successfully
applied to time-optimal many-revolution Optimal Control Problems in Chapter 4. The devised
stage collocation approach also enables further studies into adaptive mesh techniques.

– RQ1.2: How can path constraints be enforced reliably and efficiently within the HDDP opti-
mization framework?

Section 2.3 presents a trade-off between different approaches to implement constrained op-
timization within Trust-Region Quadratic Programming stage sub-problems (i.e., path con-
straints). Given the driving requirements of accuracy and efficiency, the chosen approach
is a quadratic approach to the Karush-Kuhn-Tucker conditions: leveraging a quadratic path-
constraints model, these are enforced up to second-order around the current solution point.
Since the resulting KKT system is linear, efficient solution techniques can be leveraged to
quickly solve constrained TRQP sub-problems. Using a quadratic approximation, the al-
gorithm offers exact convergence for both linear (i.e.: control bounds) and quadratic (i.e.:
distance or vector norm constraints) constraint functions.

– RQ1.3: How can HDDP sensitivity to its hyper-parameters be reduced?

Two approaches were devised to reduce HDDP hyper-parameter sensitivities, as introduced
in Section 3.2. The trust-region relaxation technique in Eq. 3.88 was shown to efficiently
’push’ final algorithm iterations towards more optimal and smooth solutions. Sensitivity to
the∆min, ϵ1 coupling is also reduced through the quadratic model validity adaptive enlarge-
ment in Alg. 5. Effects caused by penalty parameter tuning were shown to be mitigated
by the automatic-tuning procedure in Eq. 3.86. Due to its formulation, the novel approach
also implies tuning efforts (although with considerably reduced sensitivity): a solution was
identified in the nested-trust-region approach in Alg. 4. Despite its effectiveness, the tech-
nique is deemed too computationally demanding for application to high-dimensional OCPs,
thus further work on the adaptive penalty parameter tuning is encouraged. Sensitivity to
coarse discretization was also reduced by introducing a mesh refinement procedure. On
top of the active measures mentioned above, a ”rule-set” (found in Chapter 4) for HDDP
hyper-parameter sensitivity was derived, enabling informed decisions for algorithm tuning.

• RQ2: How does the defined optimization algorithm perform, when applied to the identification of
time-optimal many-revolution solar-sail transfers?

The convergence properties of the algorithm are verified on a set of many-revolutions transfer
cases. The computational cost of every iteration is shown to increase linearly, as expected, cer-
tifying the algorithm viability in the optimization of high-dimensional optimal control problems. A
convergence order analysis of the algorithm is also performed, highlighting linear convergence
properties dictated by the trust-region technique. Using the devised algorithm, many-revolutions
transfers are successfully optimized in different settings, up to 180 revolutions in a high-control-
authority environment (i.e., GEO altitude) and up to 1000 revolutions in a low-control-authority
setting (i.e., LEO altitude). Power regression models are derived to link orbit-increase perfor-
mance with transfer duration: as expected, regression coefficients reflect the orbit illumination
conditions (i.e., linearity is noticed in fully illuminated arcs, while sub-linear trends are introduced
by eclipsing conditions).

– RQ2.1: What are the effects of different orbital regimes on optimal many-revolution circular-
to-circular transfers?

Both many-revolutions solutions at GEO and LEO altitudes are showcased. The different
time scales imply that the solutions adjust differently to the control requirements dictated by
orbital motion and changes in the Sun-Earth configuration. In both cases, two different con-
trol regimens are identified, depending on the current orbit illumination conditions (referred
to as ion-drive and solar sail regimes). The long time scale of transfers at high altitudes
(in the high-control-authority setting) determines considerable variations in the Earth-Sun
configuration throughout a transfer: the control profile is shown to adapt to such changes,
by modifying orbital geometry such that the full power of SSA can be exploited at apogee,
efficiently performing orbit-circularization (similarly to the Hohmann transfer ”apogee-burn”
maneuver). In the lower-control-authority setting, the dominance of eclipses determines a

5.2. Recommendations 111

different adjustment to the changing illumination condition, with orbital geometry maximizing
the illuminated region close to apogee to efficiently circularize the final orbit. The high-control-
authority solution is shown to satisfy attitude-rate constraints (despite not being included in
the problem formulation), while the low-control-authority setting is shown to exceed such
limitations, hence requiring further investigation into enforcing control-limited solutions.

– RQ2.2: How do variable-time solutions compare to fixed-time circular-to-circular transfers?

The power regression model derived from the identified many-revolutions solutions is used
to initialize the search for a time-optimal solution to circular-to-circular transfers in the low-
control-authority setting. The time-optimal solution displays similar features to its fixed-time
counterparts (with distinct control regimes and exceeding of slew-rate constraints), further
certifying the validity of the flexible-final-time approach derived as part of this thesis. Themin-
imum time identified to perform the transfer is close to the power regression model prediction,
certifying its applicability. The accuracy of the power regression model can be significantly
improved by introducing more solutions in the eclipsed portion of the model, as the solar-
sail performance in the circular-to-circular transfer problem is greatly reduced in eclipsed
regions.

5.2. Recommendations
The outcome of this work is a general-purpose HDDP solver, enhanced with an automatic differen-
tiation framework to enable quick and easy iterations between different problem formulations. The
optimization solver accommodates multi-phase, constrained, and variable-duration OCPs. As such,
it is envisioned for extensive further use: given the high-dimensionality of solar-sail many-revolution
transfers, the devised algorithm provides an appealing technique to investigate optimal solutions to
this class of problems.

The dynamical model adopted to investigate time-optimal many-revolutions transfers is limited to in-
plane effects and includes several additional simplifying assumptions. It is natural for further works
to dive into higher-fidelity solutions, starting from 3D dynamics and expanding the dynamical model
to include additional effects (i.e., higher-order gravity terms, aerodynamic perturbations, third-body
gravitational effects). As HDDP requires two times differentiable functions, the differentiability of aero-
dynamical models (which typically depend on tabulated data) is to be addressed.

Given the flexibility of the approach, more relevant/realistic mission scenarios can be defined in further
studies. The most documented many-revolution transfer scenario in previous works (though limited to
EP-powered spacecraft) is the GTO toGEO orbital transfer case: although already characterized in [59],
the HDDP algorithm would allow a higher-fidelity orbit representation by removing the need for orbit-
averaging and control parametrization techniques. Additional relevant mission scenarios include active
debris removal missions, which can be defined as multi-phase OCPs with rendezvous constraints,
hence greatly benefiting from the algorithm’s flexible-final-time handling capabilities.

The advantageous flexibility properties of the devised framework greatly enable changes to dynamical
model formulation. The property can be leveraged to perform an extensive analysis of the effects
of different state/control representations on both convergence properties and solution optimality on
a specified many-revolutions solar-sail-powered benchmark problem. While similar comparisons are
available for EP-powered many-revolution transfers, solar-sail problems have not been characterized
to such an extent.

While the devised HDDP framework can be applied to a wide class of OCPs, the main focus of this
thesis is the algorithm development itself. For this reason, the following subsections present potential
improvements to address limitations in the developed algorithm, concluding with insights into potential
research outlook to greatly advance the HDDP algorithm capabilities.

5.2.1. Differential Dynamic Programming algorithm
Several recommendations for future developments are already defined in Section 3.2 when illustrating
the algorithm’s full formulation. More specifically, these include the further expansion of the adaptive
penalty parameter tuning approach in Subsection 3.2.7 (beyond the nested-trust-region approach in

5.2. Recommendations 112

Alg. 4), the extension of the flexible-final-time handling technique of [67] to the HDDP framework, the
introduction of uncertainty information (which can be easily propagated thanks to the available STMs)
to define a robust optimization framework, and the introduction of safeguards when defining the TRQP
sub-problems optimal feedback laws. Additional recommendations for specific elements of the HDDP
algorithm are now introduced.

State transition maps
Being the most computationally demanding step for the full HDDP procedure, the STMs propagation
is an essential element for further works. Following [86], semi-analytical propagation schemes can
be introduced, greatly reducing the runtime burden of HDDP optimization. Available semi-analytical
propagators for low-thrust spacecraft dynamics are the Kepler [104] and Stark [87] models, both known
to be twice differentiable and applied to solar-sail transfer problems.

The HDDP algorithm is limited to a second-order model of the cost function at every stage. The expan-
sion to higher-order models (by exploiting STMs of higher-orders with respect to the second-order ones
adopted by HDDP) offers a promising perspective for future works: it is known that higher-order deriva-
tive information improves algorithms convergence properties [42], but also introduces computational
overhead. The higher-order STMs can be leveraged to obtain not only more precise TRQP sub-problem
update laws, but also to provide a more accurate representation of the system’s dynamics, enabling
larger trust-region radius and therefore faster convergence. Different techniques are available for the
propagation of higher-order cost models, from differential algebra to complex-step differentiation.

Scaling
When solving variable-duration OCPs, the problem sensitivity to updates in static parameters (i.e., time
of flight) is considerably higher than stage-wise control sensitivities. The resulting OCP can suffer from
scaling issues, with the quadratic model validity being entirely dominated by static parameters: in
these conditions, strict trust-region radius ∆ values are required to maintain reasonable validity in the
quadratic model, consequently limiting control updates to be within the same ∆ range, thus leading
to slow convergence. An automatic scaling logic, aimed at balancing cost sensitivities throughout
the multiple HDDP steps, is recommended to define a more robust solver, reducing the tuning efforts
required to balance cost sensitivities among decision variables.

Performance improvements
The HDDP framework developed as part of this work is entirely implemented in MATLAB ®. The cho-
sen platform provides a solid foundation for prototyping and initial developments, however lower-level
programming languages (i.e., C++ or hardware-accelerated Python) can be adopted to speed up com-
putations, thus addressing the runtime limitations from which HDDP suffers. Switching to such lower-
level languages could also enable more effective exploitation of parallel computing capabilities, even
on low-performance computing platforms such as personal laptops.

Mesh refinement
The HDDP runtime limitations can also be addressed through a mesh refinement technique. The mesh
refinement introduced in this work is very basic and quickly becomes ineffective if initialized with an
untested number of stages. A significantly more promising approach is to perform mesh refinement
only between stages where optimal controls differ significantly, hence increasing resolution only where
needed. Thanks to the stage collocation function introduced in Subsection 3.2.1, a similar result can
be achieved through specific formulations of the stage collocation function, with the advantage of not
introducing additional stages to the discretization.

The HDDP algorithm implicitly assumes the controls over each stage to be constant, thus enabling the
use of STMs to efficiently perform the backward induction. The limitations of this assumption can be
reduced by introducing a control parametrization over each stage, where the dynamic controls become
the coefficients for the defined parametrization. The approach can be combined with an adaptive-mesh
algorithm, similar to Reference [57], to trade-off the complexity introduced by higher-order parametriza-
tions with the gains in computational efficiency obtained by reducing the number of stages.

5.2. Recommendations 113

Guess generation capabilities
While the HDDP algorithm can be used as an effective standalone OCP solver, its features make it a
promising tool for initial-guess generation. More specifically, thanks to the chosen path-constraints en-
forcement approach, Lagrange multipliers values for all constraints (both path and terminal constraints)
are available as part of the algorithm solution and can be used to quickly re-converge a full solution
using an NLP solver. The algorithm also provides the potential to generate initial guesses for indirect
optimization methods: since the backward induction propagates a quadratic cost model, the initial cost
sensitivities (obtained from Eq. 3.32 at the first stage of the first phase) can be used as an initial guess
for the problem co-states [44].

5.2.2. Research outlook
Despite the preliminary nature of the work, the devised HDDP implementation provides the potential
for a complete and efficient optimization solver. More specifically, integrating the defined framework
with an adaptive mesh technique (similarly to the GPOPS-II algorithm in Reference [57]) can result in
a solver capable of tackling high-dimensional OCPs (avoiding the ”curse of dimensionality” that affects
direct solvers [43]) while addressing the long runtime required for HDDP iterations. The proposed
approach is an expansion of the higher-order cost model concept previously mentioned.

The theorized approach shall leverage higher-order derivatives of the cost model, exploiting the more
accurate dynamical prediction model to considerably speed up the forward pass (by applying the STMs
similarly as in Eq. 3.8) as well as the STMs propagation. Performing the STMs propagation leveraging
entirely STMs information implies the loss of one order of derivative information (i.e., using a third-
order STMs model, only STMs up to second-order can be computed). Repeating the procedure allows
to conduct several HDDP iterations without the need for numerical integration, greatly speeding up the
algorithm. An adaptive mesh procedure, similar to the h − p technique described in Reference [57],
is to be defined to establish the STMs order required to achieve a specified degree of accuracy. The
research outcome is an HDDP-based OCP solver with the advantageous scaling properties typical of
DDP algorithms, and the promising runtime performance of direct transcription methods with adaptive
collocation.

References

[1] Whiffen, G. J. (2002, December). OPTIMIZING A USEFUL OBJECTIVE (US 6,496,741 B1).
[2] Hollerman, W. A. (2003). The Physics of Solar Sails.
[3] McInnes, C. R., Macdonald, M., Angelopolous, V., & Alexander, D. (2001). GEOSAIL: Exploring

the Geomagnetic Tail Using a Small Solar Sail. Journal of Spacecraft and Rockets, 38(4), 622–
629. https://doi.org/10.2514/2.3727

[4] Kelly, P. W., Bevilacqua, R., Mazal, L., & Erwin, R. S. (2018). TugSat: Removing Space Debris
from Geostationary Orbits Using Solar Sails. Journal of Spacecraft and Rockets, 55(2), 437–
450. https://doi.org/10.2514/1.A33872

[5] Gulkis, S., & de Pater, I. (2003, January). Radio Astronomy, Planetary. In R. A. Meyers (Ed.),
Encyclopedia of Physical Science and Technology (Third Edition) (pp. 687–712). Academic
Press. https://doi.org/10.1016/B0-12-227410-5/00637-2

[6] McInnes, C. R. (1999, January). Solar sailing. Technology, dynamics and mission applications.
[Publication Title: Solar sailing. Technology ADS Bibcode: 1999sstd.book.....M]. Retrieved April
17, 2024, from https://ui.adsabs.harvard.edu/abs/1999sstd.book.....M

[7] Dachwald, B., Mengali, G., Quarta, A. A., & Macdonald, M. (2006). Parametric Model and Opti-
mal Control of Solar Sails with Optical Degradation. Journal of Guidance, Control, andDynamics,
29(5), 1170–1178. https://doi.org/10.2514/1.20313

[8] MacNeal, R. H. (1967, March). The Heliogyro - an Interplanetary Flying Machine (tech. rep.
No. NASA-CR-84460) (NTRS Author Affiliations: Astro Research Corp. NTRS Document ID:
19670018298 NTRS Research Center: Headquarters (HQ)). Retrieved April 18, 2024, from htt
ps://ntrs.nasa.gov/citations/19670018298

[9] Fieseler, P. D. (1998). A method for solar sailing in a low earth orbit. Acta Astronautica, 43(9-10),
531–541. https://doi.org/10.1016/S0094-5765(98)00175-1

[10] Sawada, H., Mori, O., Okuizumi, N., Shirasawa, Y., Miyazaki, Y., Natori, M., Matunaga, S., Fu-
ruya, H., & Sakamoto, H. (2011). Mission Report on The Solar Power Sail Deployment Demon-
stration of IKAROS. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference. https://doi.org/10.2514/6.2011-1887

[11] Gong, S., & Macdonald, M. (2019). Review on solar sail technology. Astrodynamics, 3(2), 93–
125. https://doi.org/10.1007/s42064-019-0038-x

[12] Saiki, T., Tsuda, Y., Funase, R., Mimasu, Y., Shirasawa, Y., & Ikaros Demonstration Team.
(2012). Attitude Operation Results of Solar Sail Demonstrator IKAROS. TRANSACTIONS OF
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECH-
NOLOGY JAPAN, 10(ists28), To_4_1–To_4_6. https://doi.org/10.2322/tastj.10.To_4_1

[13] Mori, O., Shirasawa, Y., Mimasu, Y., Tsuda, Y., Sawada, H., Saiki, T., Yamamoto, T., Yonekura,
K., Hoshino, H., Kawaguchi, J., & Funase, R. (2014). Overview of IKAROS Mission. In M. Mac-
donald (Ed.), Advances in Solar Sailing (pp. 25–43). Springer Berlin Heidelberg. https://doi.org/
10.1007/978-3-642-34907-2_3

[14] Tsuda, Y., Okano, Y., Mimasu, Y., & Funase, R. (2012). On-orbit sail quality evaluation utilizing
attitude dynamics of spinner solar sailer IKAROS. ResearchGate, 143, 1609–1625. Retrieved
March 6, 2025, from https: / /www.researchgate.net /publication/291323306_On-orbit_sail_
quality_evaluation_utilizing_attitude_dynamics_of_spinner_solar_sailer_IKAROS

[15] Alhorn, D., Casas, J., Agasid, E., Adams, C., Laue, G., Kitts, D. C., &O’Brien, S. (2011). NanoSail-
D: The Small Satellite That Could!

[16] Krebs, G. D. (n.d.). NanoSail D. Retrieved April 22, 2024, from https://space.skyrocket.de/doc_
sdat/nanosail-d.htm

[17] Spencer, D. A., Betts, B., Bellardo, J. M., Diaz, A., Plante, B., & Mansell, J. R. (2021). The
LightSail 2 solar sailing technology demonstration. Advances in Space Research, 67(9), 2878–
2889. https://doi.org/10.1016/j.asr.2020.06.029

114

https://doi.org/10.2514/2.3727
https://doi.org/10.2514/1.A33872
https://doi.org/10.1016/B0-12-227410-5/00637-2
https://ui.adsabs.harvard.edu/abs/1999sstd.book.....M
https://doi.org/10.2514/1.20313
https://ntrs.nasa.gov/citations/19670018298
https://ntrs.nasa.gov/citations/19670018298
https://doi.org/10.1016/S0094-5765(98)00175-1
https://doi.org/10.2514/6.2011-1887
https://doi.org/10.1007/s42064-019-0038-x
https://doi.org/10.2322/tastj.10.To_4_1
https://doi.org/10.1007/978-3-642-34907-2_3
https://doi.org/10.1007/978-3-642-34907-2_3
https://www.researchgate.net/publication/291323306_On-orbit_sail_quality_evaluation_utilizing_attitude_dynamics_of_spinner_solar_sailer_IKAROS
https://www.researchgate.net/publication/291323306_On-orbit_sail_quality_evaluation_utilizing_attitude_dynamics_of_spinner_solar_sailer_IKAROS
https://space.skyrocket.de/doc_sdat/nanosail-d.htm
https://space.skyrocket.de/doc_sdat/nanosail-d.htm
https://doi.org/10.1016/j.asr.2020.06.029

References 115

[18] Ridenoure, R. W., Spencer, D. A., Stetson, D. A., Betts, B., Munakata, R., Wong, S. D., Diaz, A.,
Plante, B., Foley, J. D., & Bellardo, J. M. (2015). Status of the Dual CubeSat LightSail Program.
AIAA SPACE 2015 Conference and Exposition. https://doi.org/10.2514/6.2015-4424

[19] Betts, B., Spencer, D., Nye, B., Munakata, R., Bellardo, J., Wong, S. D., Diaz, A., Ridenoure, R.,
Plante, B., Foley, J., & Vaughn, J. (2016). LightSail 2 : Controlled Solar Sailing Using a CubeSat.
Retrieved April 18, 2024, from https://www.semanticscholar.org/paper/LightSail-2-%3A-Contr
olled-Solar-Sailing-Using-a-Betts-Spencer/5f2e8819b1dc9cccc38dd895abd37c75479b93d5

[20] Mansell, J., Spencer, D. A., Plante, B., Diaz, A., Fernandez, M., Bellardo, J., Betts, B., & Nye,
B. (2020, January). Orbit and Attitude Performance of the LightSail 2 Solar Sail Spacecraft. In
AIAA Scitech 2020 Forum. American Institute of Aeronautics; Astronautics. https://doi.org/10.
2514/6.2020-2177

[21] Lockett, T. R., Castillo-Rogez, J., Johnson, L., Matus, J., Lightholder, J., Marinan, A., & Few,
A. (2020). Near-Earth Asteroid Scout Flight Mission. IEEE Aerospace and Electronic Systems
Magazine, 35(3), 20–29. https://doi.org/10.1109/MAES.2019.2958729

[22] Wilkie, W. K. (2021). Overview of the NASA Advanced Composite Solar Sail System (ACS3)
Technology Demonstration Project. AIAA Scitech 2021 Forum. https://doi.org/10.2514/6.2021-
1260

[23] Carzana, L., Minervino Amodio, A., Visser, P., Wilkie, W. K., & Heiligers, M. (2024). Calibration
Steering Laws to Estimate the Optical Properties of NASA’s ACS3 Solar Sail: 29th International
Symposium on Space Flight Dynamics. Proceedings of the 29th International Symposium on
Space Flight Dynamics.

[24] Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., & McInnes, C. (2012). Solar
Sails: Technology And Demonstration Status. International Journal of Aeronautical and Space
Sciences, 13(4), 421–427. https://doi.org/10.5139/IJASS.2012.13.4.421

[25] Office, E. S. D. (2024, July). ESA Space Environment Report 2024. Retrieved December 5,
2024, from https: / /www.esa. int /Space_Safety /Space_Debris /ESA_Space_Environment_
Report_2024

[26] Colombo, C., Lücking, C., & McInnes, C. R. (2012). Orbital dynamics of high area-to-mass ratio
spacecraft with J2 and solar radiation pressure for novel Earth observation and communication
services. Acta Astronautica, 81(1), 137–150. https://doi.org/10.1016/j.actaastro.2012.07.009

[27] Leipold, M. E., & Wagner, O. (1996). Mercury sun-synchronous polar orbits using solar sail
propulsion. Journal of Guidance, Control, and Dynamics, 19(6), 1337–1341. https://doi.org/10.
2514/3.21791

[28] Macdonald, M., & McInnes, C. R. (2005a). Analytical Control Laws for Planet-Centered Solar
Sailing. Journal of Guidance, Control, and Dynamics, 28(5), 1038–1048. https: / /doi .org/10.
2514/1.11400

[29] Bonnal, C., Ruault, J.-M., & Desjean, M.-C. (2013). Active debris removal: Recent progress and
current trends. Acta Astronautica, 85, 51–60. https://doi.org/10.1016/j.actaastro.2012.11.009

[30] Delft, T. (n.d.). SWEEP. Retrieved April 22, 2024, from https://www.tudelft.nl/en/ae/sweep
[31] Carzana, L., Visser, P., & Heiligers, M. (2021). Solar-sail control laws for perturbed Earth-bound

trajectories: 72nd International Astronautical Conference. 72nd International Astronautical Con-
ference.

[32] Conway, B. A. (2012). A Survey of Methods Available for the Numerical Optimization of Con-
tinuous Dynamic Systems. Journal of Optimization Theory and Applications, 152(2), 271–306.
https://doi.org/10.1007/s10957-011-9918-z

[33] Morante, D., Sanjurjo Rivo, M., & Soler, M. (2021). A Survey on Low-Thrust Trajectory Optimiza-
tion Approaches. Aerospace, 8(3), 88. https://doi.org/10.3390/aerospace8030088

[34] Gardi, A., Sabatini, R., & Ramasamy, S. (2016). Multi-objective optimisation of aircraft flight
trajectories in the ATM and avionics context. Progress in Aerospace Sciences, 83, 1–36. https:
//doi.org/10.1016/j.paerosci.2015.11.006

[35] Chai, R., Savvaris, A., Tsourdos, A., Chai, S., & Xia, Y. (2019). A review of optimization tech-
niques in spacecraft flight trajectory design. Progress in Aerospace Sciences, 109, 100543.
https://doi.org/10.1016/j.paerosci.2019.05.003

[36] Aziz, J. D., Parker, J. S., Scheeres, D. J., & Englander, J. A. (2018). Low-Thrust Many-Revolution
Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation.

https://doi.org/10.2514/6.2015-4424
https://www.semanticscholar.org/paper/LightSail-2-%3A-Controlled-Solar-Sailing-Using-a-Betts-Spencer/5f2e8819b1dc9cccc38dd895abd37c75479b93d5
https://www.semanticscholar.org/paper/LightSail-2-%3A-Controlled-Solar-Sailing-Using-a-Betts-Spencer/5f2e8819b1dc9cccc38dd895abd37c75479b93d5
https://doi.org/10.2514/6.2020-2177
https://doi.org/10.2514/6.2020-2177
https://doi.org/10.1109/MAES.2019.2958729
https://doi.org/10.2514/6.2021-1260
https://doi.org/10.2514/6.2021-1260
https://doi.org/10.5139/IJASS.2012.13.4.421
https://www.esa.int/Space_Safety/Space_Debris/ESA_Space_Environment_Report_2024
https://www.esa.int/Space_Safety/Space_Debris/ESA_Space_Environment_Report_2024
https://doi.org/10.1016/j.actaastro.2012.07.009
https://doi.org/10.2514/3.21791
https://doi.org/10.2514/3.21791
https://doi.org/10.2514/1.11400
https://doi.org/10.2514/1.11400
https://doi.org/10.1016/j.actaastro.2012.11.009
https://www.tudelft.nl/en/ae/sweep
https://doi.org/10.1007/s10957-011-9918-z
https://doi.org/10.3390/aerospace8030088
https://doi.org/10.1016/j.paerosci.2015.11.006
https://doi.org/10.1016/j.paerosci.2015.11.006
https://doi.org/10.1016/j.paerosci.2019.05.003

References 116

The Journal of the Astronautical Sciences, 65(2), 205–228. https://doi.org/10.1007/s40295-
017-0122-8

[37] Oguri, K., & Lantoine, G. (2023). Indirect trajectory optimization via solar sailing primer vector
theory: Minimum solar-angle transfers. Acta Astronautica, 211, 405–415. https: / /doi .org/10.
1016/j.actaastro.2023.06.032

[38] Oguri, K., Lantoine, G., Petropoulos, A. E., & McMahon, J. W. (2023). Solar Sailing Q-Law for
Planetocentric, Many-Revolution Sail Orbit Transfers [Publisher: American Institute of Aeronau-
tics and Astronautics _eprint: https://doi.org/10.2514/1.G007103]. Journal of Guidance, Control,
and Dynamics, 46(10), 2005–2014. https://doi.org/10.2514/1.G007103

[39] Leemans, G., Carzana, L., & Heiligers, J. (2022). Many-Revolution Earth-Centred Solar-Sail
Trajectory Optimisation Using Differential Dynamic Programming. AIAA SCITECH 2022 Forum.
https://doi.org/10.2514/6.2022-1776

[40] Martens, R. (2023, February).Differential Dynamic Programming applied to Interplanetary Solar-
Sail Trajectory Optimization [Doctoral dissertation, TU Delft].

[41] Shannon, J. L., Ozimek, M. T., & Atchison, J. A. (2020). Q-LAW AIDED DIRECT TRAJEC-
TORY OPTIMIZATION FOR THE HIGH-FIDELITY, MANY-REVOLUTION LOW-THRUST OR-
BIT TRANSFER PROBLEM. Journal of Spacecraft and Rockets, 57(4), 672–682. https://doi.
org/10.2514/1.A34586

[42] Lantoine, G., & Russell, R. P. (2012a). A Hybrid Differential Dynamic Programming Algorithm
for Constrained Optimal Control Problems. Part 1: Theory. Journal of Optimization Theory and
Applications, 154(2), 382–417. https://doi.org/10.1007/s10957-012-0039-0

[43] Mayne, D. H., & Jacobson, D. Q. (1970). Differential dynamic programming. American Elsevier
Pub. Co.

[44] Longuski, J. M., Guzmán, J. J., & Prussing, J. E. (2014). Optimal Control with Aerospace Appli-
cations. Springer New York. https://doi.org/10.1007/978-1-4614-8945-0

[45] E, Z., & Guzzetti, D. (2020). Multi-revolution low-thrust trajectory optimization using symplectic
methods. Science China Technological Sciences, 63(3), 506–519. https : / /doi .org /10.1007/
s11431-019-9511-7

[46] Haberkorn, T., Martinon, P., & Gergaud, J. (2004). Low Thrust Minimum-Fuel Orbital Transfer:
A Homotopic Approach [Publisher: American Institute of Aeronautics and Astronautics]. Journal
of Guidance, Control, and Dynamics, 27(6), 1046–1060. https://doi.org/10.2514/1.4022

[47] Edelbaum, T. N. (1971). Optimal Nonplanar Escape from Circular Orbits [Publisher: American
Institute of Aeronautics and Astronautics]. AIAA Journal, 9(12), 2432–2436. https://doi.org/10.
2514/3.50047

[48] Wiesel, W. E., & Alfano, S. (1985). Optimal many-revolution orbit transfer. Journal of Guidance,
Control, and Dynamics, 8(1), 155–157. https://doi.org/10.2514/3.19952

[49] Sackett, L. L. (1977, September).Optimal Solar Sail Planetocentric Trajectories (tech. rep.). The
Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts.

[50] Macdonald, M., & McInnes, C. R. (2005b). Realistic Earth Escape Strategies for Solar Sailing.
Journal of Guidance, Control, and Dynamics, 28(2), 315–323. https://doi.org/10.2514/1.5165

[51] Carzana, L., Visser, P., & Heiligers, J. (2022). Locally optimal control laws for Earth-bound solar
sailing with atmospheric drag. Aerospace Science and Technology, 127, 107666. https://doi.
org/10.1016/j.ast.2022.107666

[52] Barles, A., Ceriotti, M., Ciampa, F., & Felicetti, L. (2021). An optimal steering law for sailing
with solar and planetary radiation pressure. Aerospace Science and Technology, 118, 107051.
https://doi.org/10.1016/j.ast.2021.107051

[53] Rao, A. (2010). A Survey of Numerical Methods for Optimal Control. Advances in the Astronau-
tical Sciences, 135.

[54] Topputo, F., & Zhang, C. (2014). Survey of Direct Transcription for Low-Thrust Space Trajectory
Optimization with Applications. Abstract and Applied Analysis, 2014, 1–15. https://doi.org/10.
1155/2014/851720

[55] Betts, J. T. (1998). Survey of Numerical Methods for Trajectory Optimization [Publisher: Amer-
ican Institute of Aeronautics and Astronautics]. Journal of Guidance, Control, and Dynamics,
21(2), 193–207. https://doi.org/10.2514/2.4231

https://doi.org/10.1007/s40295-017-0122-8
https://doi.org/10.1007/s40295-017-0122-8
https://doi.org/10.1016/j.actaastro.2023.06.032
https://doi.org/10.1016/j.actaastro.2023.06.032
https://doi.org/10.2514/1.G007103
https://doi.org/10.2514/6.2022-1776
https://doi.org/10.2514/1.A34586
https://doi.org/10.2514/1.A34586
https://doi.org/10.1007/s10957-012-0039-0
https://doi.org/10.1007/978-1-4614-8945-0
https://doi.org/10.1007/s11431-019-9511-7
https://doi.org/10.1007/s11431-019-9511-7
https://doi.org/10.2514/1.4022
https://doi.org/10.2514/3.50047
https://doi.org/10.2514/3.50047
https://doi.org/10.2514/3.19952
https://doi.org/10.2514/1.5165
https://doi.org/10.1016/j.ast.2022.107666
https://doi.org/10.1016/j.ast.2022.107666
https://doi.org/10.1016/j.ast.2021.107051
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://doi.org/10.2514/2.4231

References 117

[56] Betts, J. T. (2000). Very low-thrust trajectory optimization using a direct SQP method. Journal
of Computational and Applied Mathematics, 120(1), 27–40. https: / /doi .org/10.1016/S0377-
0427(00)00301-0

[57] Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I., & Huntington,
G. T. (2010). Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal
control problems using the gauss pseudospectral method. ACM Trans. Math. Softw., 37(2),
22:1–22:39. https://doi.org/10.1145/1731022.1731032

[58] Graham, K. F., & Rao, A. V. (2015). Minimum-Time Trajectory Optimization of Multiple Rev-
olution Low-Thrust Earth-Orbit Transfers. Journal of Spacecraft and Rockets, 52(3), 711–727.
https://doi.org/10.2514/1.A33187

[59] Fitzgerald, R. M. (2021). Characterizing Minimum-Time Solar Sail Geostationary Orbit Transfers
Using Pseudospectral Optimal Control. Journal of Spacecraft and Rockets, 58(4), 997–1009.
https://doi.org/10.2514/1.A34950

[60] Petropoulos, A. (2004). Low-Thrust Orbit Transfers Using Candidate Lyapunov Functions with
a Mechanism for Coasting. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. https:
//doi.org/10.2514/6.2004-5089

[61] Bianchi, C., Niccolai, L., Mengali, G., & Ceriotti, M. (2024). Preliminary design of a space debris
removal mission in LEO using a solar sail. Advances in Space Research, 73(8), 4254–4268.
https://doi.org/10.1016/j.asr.2024.01.024

[62] Petropoulos, A. E. (2005). REFINEMENTSTOTHEQ-LAWFORLOW-THRUSTORBIT TRANS-
FERS. 15th AAS/AIAA Space Flight Mechanics Conference, 120, 963–982.

[63] Kelly, P., & Bevilacqua, R. (2019). An optimized analytical solution for geostationary debris re-
moval using solar sails. Acta Astronautica, 162, 72–86. https://doi.org/10.1016/j.actaastro.2019.
05.055

[64] Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.
[65] Liao, L.-Z., & Shoemaker, C. (1993). Advantages of Differential Dynamic Programming Over

Newton’s Method for Discrete-Time Optimal Control Problems.
[66] Yakowitz, S. (1989). Algorithms and Computational Techniques in Differential Dynamic Program-

ming. In Control and Dynamic Systems (pp. 75–91, Vol. 31). Elsevier. https://doi.org/10.1016/
B978-0-12-012731-3.50008-1

[67] Zheng, X., He, S., & Lin, D. (2022). Constrained Trajectory Optimization With Flexible Final
Time for Autonomous Vehicles. IEEE Transactions on Aerospace and Electronic Systems, 58(3),
1818–1829. https://doi.org/10.1109/TAES.2021.3121668

[68] Giannessi, F. (2005). Constrained Optimization and Image Space Analysis: Volume 1: Separa-
tion of Sets and Optimality Conditions. Springer US. https://doi.org/10.1007/0-387-28020-0

[69] Kuhn, H. W., & Tucker, A. W. (1951, January). Nonlinear Programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability (pp. 481–493, Vol. 2).
University of California Press. Retrieved April 25, 2024, from https://projecteuclid.org/ebooks/
berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-
Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Nonlinear-Programming/bsmsp
/1200500249

[70] Tassa, Y., Mansard, N., & Todorov, E. (2014). Control-limited differential dynamic programming.
2014 IEEE International Conference on Robotics and Automation (ICRA), 1168–1175. https :
//doi.org/10.1109/ICRA.2014.6907001

[71] Pellegrini, E., & Russell, R. P. (2020a). A multiple-shooting differential dynamic programming
algorithm. Part 1: Theory. Acta Astronautica, 170, 686–700. https://doi.org/10.1016/j.actaastro.
2019.12.037

[72] Patel, P., & Scheeres, D. J. (2009). A second�order optimization algorithm using quadric control
updates for multistage optimal control problems. Optimal Control Applications and Methods,
30(6), 525–536. https://doi.org/10.1002/oca.876

[73] Conn, A. R., Gould, N. I. M., & Toint, P. (1991). A Globally Convergent Augmented Lagrangian
Algorithm for Optimization with General Constraints and Simple Bounds [Publisher: Society for
Industrial and Applied Mathematics]. SIAM Journal on Numerical Analysis, 28(2), 545–572. htt
ps://doi.org/10.1137/0728030

[74] Bertsekas, D. P. (1996). Constrained Optimization and Lagrange Multiplier Methods. Athena
Scientific.

https://doi.org/10.1016/S0377-0427(00)00301-0
https://doi.org/10.1016/S0377-0427(00)00301-0
https://doi.org/10.1145/1731022.1731032
https://doi.org/10.2514/1.A33187
https://doi.org/10.2514/1.A34950
https://doi.org/10.2514/6.2004-5089
https://doi.org/10.2514/6.2004-5089
https://doi.org/10.1016/j.asr.2024.01.024
https://doi.org/10.1016/j.actaastro.2019.05.055
https://doi.org/10.1016/j.actaastro.2019.05.055
https://doi.org/10.1016/B978-0-12-012731-3.50008-1
https://doi.org/10.1016/B978-0-12-012731-3.50008-1
https://doi.org/10.1109/TAES.2021.3121668
https://doi.org/10.1007/0-387-28020-0
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Nonlinear-Programming/bsmsp/1200500249
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Nonlinear-Programming/bsmsp/1200500249
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Nonlinear-Programming/bsmsp/1200500249
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Nonlinear-Programming/bsmsp/1200500249
https://doi.org/10.1109/ICRA.2014.6907001
https://doi.org/10.1109/ICRA.2014.6907001
https://doi.org/10.1016/j.actaastro.2019.12.037
https://doi.org/10.1016/j.actaastro.2019.12.037
https://doi.org/10.1002/oca.876
https://doi.org/10.1137/0728030
https://doi.org/10.1137/0728030

References 118

[75] Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust-region methods. Society for Industrial;
Applied Mathematics [u.a.]

[76] Lin, T. C., & Arora, J. S. (1991). Differential dynamic programming technique for constrained
optimal control. Computational Mechanics.

[77] Colombo, C., Vasile, M., & Radice, G. (2009). Optimal low-thrust trajectories to asteroids through
an algorithm based on differential dynamic programming. Celestial Mechanics and Dynamical
Astronomy, 105(1-3), 75–112. https://doi.org/10.1007/s10569-009-9224-3

[78] Ozaki, N., Campagnola, S., & Funase, R. (2020). Tube Stochastic Optimal Control for Nonlinear
Constrained Trajectory Optimization Problems. Journal of Guidance, Control, and Dynamics,
43(4), 645–655. https://doi.org/10.2514/1.G004363

[79] Julier, S., & Uhlman, J. K. (1996). A General Method for Approximating Nonlinear Transforma-
tions of Probability Distributions (tech. rep.). University of Oxford. Oxford.

[80] Lantoine, G., & Russell, R. P. (2012b). A Hybrid Differential Dynamic Programming Algorithm
for Constrained Optimal Control Problems. Part 2: Application. Journal of Optimization Theory
and Applications, 154(2), 418–442. https://doi.org/10.1007/s10957-012-0038-1

[81] Coleman, T. F., & Li, Y. (1996). An Interior Trust Region Approach for Nonlinear Minimization
Subject to Bounds [Publisher: Society for Industrial and Applied Mathematics]. SIAM Journal
on Optimization, 6(2), 418–445. https://doi.org/10.1137/0806023

[82] Maestrini, M. (2018). Hybrid Differential Dynamic Programming Algorithm for Low-Thrust Tra-
jectory Design Using Exact High-Order Transition Maps. Retrieved April 12, 2024, from https:
/ / www . semanticscholar . org / paper /Hybrid - Differential - Dynamic - Programming - Algorithm -
Maestrini/6199f8e4be9350542bf46b6f1f4ea44da4121970

[83] Whiffen, G. (2006). Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for
High-Fidelity, Low-Thrust Trajectory Design. AIAA/AAS Astrodynamics Specialist Conference
and Exhibit. https://doi.org/10.2514/6.2006-6741

[84] Whiffen, G. J. (2013). THRUST DIRECTION OPTIMIZATION: SATISFYING DAWN’S ATTI-
TUDE AGILITY CONSTRAINTS.

[85] Aziz, J. D., Scheeres, D. J., & Lantoine, G. (2019). Hybrid Differential Dynamic Programming
in the Circular Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics,
42(5), 963–975. https://doi.org/10.2514/1.G003617

[86] Lantoine, G., & Russell, R. P. (2008). A FAST SECOND-ORDER ALGORITHM FOR PRELIMI-
NARY DESIGN OF LOW-THRUST TRAJECTORIES. 7.

[87] Lantoine, G., & Russell, R. (2011). The Stark Model: An Exact, Closed-Form Approach to Low-
Thrust Trajectory Optimization. Retrieved April 12, 2024, from https: / /www.semanticscholar .
org / paper / The - Stark - Model%3A - An - Exact%2C - Closed - Form - Approach - to - Lantoine -
Russell/c4e846ef74b58060d384452c0b7265a79fbc55a8

[88] Sims, J., & Flanagan, S. (2000). Preliminary Design of Low-Thrust Interplanetary Missions. 103.
[89] Lantoine, G., & Russell, R. P. (2011). Complete closed-form solutions of the Stark problem.

Celestial Mechanics and Dynamical Astronomy, 109(4), 333–366. https : / /doi .org /10 .1007 /
s10569-010-9331-1

[90] Pellegrini, E., & Russell, R. P. (2020b). A multiple-shooting differential dynamic programming
algorithm. Part 2: Applications. Acta Astronautica, 173, 460–472. https: / /doi .org/10.1016/ j .
actaastro.2019.12.038

[91] Lantoine, G., Cox, A., Sweetser, T., Grebow, D., Whiffen, G., Garza, D., Petropoulos, A., Oguri,
K., Kangas, J., Kruizinga, G., & Castillo-Rogez, J. (2024). Trajectory & maneuver design of the
NEA Scout solar sail mission. Acta Astronautica, 225, 77–98. https://doi.org/10.1016/j.actaastro.
2024.08.039

[92] Powell, M. J. D. (1978). Algorithms for nonlinear constraints that use lagrangian functions.Math-
ematical Programming, 14(1), 224–248. https://doi.org/10.1007/BF01588967

[93] Marshall, M. A., & Pellegrino, S. (2023). Slew Maneuver Constraints for Agile Flexible Space-
craft. Journal of Guidance, Control, and Dynamics, 46(12), 2300–2314. https://doi.org/10.2514/
1.G007430

[94] Bani Younes, A. (2019). Exact Computation of High-Order State Transition Tensors for Per-
turbed Orbital Motion. Journal of Guidance, Control, and Dynamics, 42(6), 1365–1371. https:
//doi.org/10.2514/1.G003897

https://doi.org/10.1007/s10569-009-9224-3
https://doi.org/10.2514/1.G004363
https://doi.org/10.1007/s10957-012-0038-1
https://doi.org/10.1137/0806023
https://www.semanticscholar.org/paper/Hybrid-Differential-Dynamic-Programming-Algorithm-Maestrini/6199f8e4be9350542bf46b6f1f4ea44da4121970
https://www.semanticscholar.org/paper/Hybrid-Differential-Dynamic-Programming-Algorithm-Maestrini/6199f8e4be9350542bf46b6f1f4ea44da4121970
https://www.semanticscholar.org/paper/Hybrid-Differential-Dynamic-Programming-Algorithm-Maestrini/6199f8e4be9350542bf46b6f1f4ea44da4121970
https://doi.org/10.2514/6.2006-6741
https://doi.org/10.2514/1.G003617
https://www.semanticscholar.org/paper/The-Stark-Model%3A-An-Exact%2C-Closed-Form-Approach-to-Lantoine-Russell/c4e846ef74b58060d384452c0b7265a79fbc55a8
https://www.semanticscholar.org/paper/The-Stark-Model%3A-An-Exact%2C-Closed-Form-Approach-to-Lantoine-Russell/c4e846ef74b58060d384452c0b7265a79fbc55a8
https://www.semanticscholar.org/paper/The-Stark-Model%3A-An-Exact%2C-Closed-Form-Approach-to-Lantoine-Russell/c4e846ef74b58060d384452c0b7265a79fbc55a8
https://doi.org/10.1007/s10569-010-9331-1
https://doi.org/10.1007/s10569-010-9331-1
https://doi.org/10.1016/j.actaastro.2019.12.038
https://doi.org/10.1016/j.actaastro.2019.12.038
https://doi.org/10.1016/j.actaastro.2024.08.039
https://doi.org/10.1016/j.actaastro.2024.08.039
https://doi.org/10.1007/BF01588967
https://doi.org/10.2514/1.G007430
https://doi.org/10.2514/1.G007430
https://doi.org/10.2514/1.G003897
https://doi.org/10.2514/1.G003897

References 119

[95] Pellegrini, E., & Russell, R. P. (2016). On the Computation and Accuracy of Trajectory State
Transition Matrices [Publisher: American Institute of Aeronautics and Astronautics]. Journal of
Guidance, Control, and Dynamics, 39(11), 2485–2499. https://doi.org/10.2514/1.G001920

[96] Boone, S., & McMahon, J. (2023). Directional State Transition Tensors for Capturing Dominant
Nonlinear Effects in Orbital Dynamics. Journal of Guidance, Control, and Dynamics, 46(3), 431–
442. https://doi.org/10.2514/1.G006910

[97] Li, X. (n.d.). Overview of Trust�region Methods.
[98] Sang, Z., & Sun, Q. (2009). A self-adaptive trust region method with line search based on a

simple subproblem model. Journal of Computational and Applied Mathematics, 232(2), 514–
522. https://doi.org/10.1016/j.cam.2009.06.027

[99] Cui, Z., & Wu, B. (2012). A new modified nonmonotone adaptive trust region method for un-
constrained optimization. Computational Optimization and Applications, 53(3), 795–806. https:
//doi.org/10.1007/s10589-012-9460-4

[100] Saeidian, Z., Aminifard, Z., & Babaie–Kafaki, S. (2024). A nonmonotone adaptive trust region
technique with a forgetting factor. International Journal of Computer Mathematics, 101(5), 512–
523. https://doi.org/10.1080/00207160.2024.2350447

[101] Lin, C.-J., & Moré, J. J. (1999). Newton’s Method for Large Bound-Constrained Optimization
Problems [Publisher: Society for Industrial and Applied Mathematics]. SIAM Journal on Opti-
mization, 9(4), 1100–1127. https://doi.org/10.1137/S1052623498345075

[102] Minnozzi, R. (2025, April). Https://github.com/ rikiminno/RiccardoMinnozzi_mscthesis. https://
github.com/%20rikiminno/RiccardoMinnozzi_MScThesis

[103] Weinstein, M. J., & Rao, A. V. (2016). A Source Transformation via Operator Overloading
Method for the Automatic Differentiation of Mathematical Functions in MATLAB. ACM Trans-
actions on Mathematical Software, 42(2), 1–44. https://doi.org/10.1145/2699456

[104] Pellegrini, E., Russell, R. P., & Vittaldev, V. (2014). F and G Taylor series solutions to the Stark
and Kepler problems with Sundman transformations. Celestial Mechanics and Dynamical As-
tronomy, 118(4), 355–378. https://doi.org/10.1007/s10569-014-9538-7

[105] Gamez Losada, F., Visser, P., & Heiligers, M. (2024). Fundamentals of Solar-Sail Transfers
Around Planetary Bodies. Proceedings of the 29th International Symposium on Space Flight
Dynamics.

https://doi.org/10.2514/1.G001920
https://doi.org/10.2514/1.G006910
https://doi.org/10.1016/j.cam.2009.06.027
https://doi.org/10.1007/s10589-012-9460-4
https://doi.org/10.1007/s10589-012-9460-4
https://doi.org/10.1080/00207160.2024.2350447
https://doi.org/10.1137/S1052623498345075
https://github.com/%20rikiminno/RiccardoMinnozzi_MScThesis
https://github.com/%20rikiminno/RiccardoMinnozzi_MScThesis
https://doi.org/10.1145/2699456
https://doi.org/10.1007/s10569-014-9538-7

A
Software Verification

A consistent part of this thesis work is composed by software development, which is to be verified.
Section 4 describes how the developed optimization algorithm is verified (single-iteration convergence
in a linear-quadratic problem) and validated (comparing results against state-of-the-art direct optimiza-
tion solver). The results shown in Section 4 to verify and validate the algorithm are also integrated
within the software framework through unit tests: throughout the development and testing of different
solvers/approaches, the unit tests where used to continuously certify these implementation.

Separate verification steps are carried out on the dynamical models, and to justify numerical integration
tolerances. MATLAB ® utilities are widely used to perform multiple steps, including numerical integra-
tion, parallel computation, and coordinate transformations: being part of the MATLAB ® suite, these
functions do not require verification.

A.1. Dynamical models
Verification of the dynamical model is performed incrementally. First, the dynamics under point mass
gravity are verified by propagating a single orbital revolution neglecting any SSA (i.e.: a0 = 0 m/s2).
Given an initial circular orbit, the spacecraft state is expected to be exactly unchanged. The property is
verified by propagating the scaled dynamics, while re-scaled results (assuming initial r0 = 42164 km)
are shown in Figure A.1. The same analysis is performed using both time-dependent and Sundman-
transformed dynamics, yielding identical results. All the state vector components are observed to match
the respective initial conditions (i.e.: all ∆ values are null) except for the true anomaly θ, which exhibits
the expected 360◦ difference since a full revolution was completed.

The ideal SSA model is verified by plotting its resulting acceleration bubble (i.e.: the contour of all
attainable SSA vectors for any α, δ combination) for a sail with a0 = 1 mm/s2. The bubble is plotted
both in 2 and 3 dimensions in Figure A.2, observing that the resulting profiles match those shown in [6]
and [105].

The chosen eclipse model is validated by propagating the sailcraft dynamics on a AA = 90◦ orbit, using
the locally optimal orbit raising law from [6] (the sail characteristic acceleration is kept at a0 = 1mm/s2.
To better visualize the presence of eclipsing, results are shown for a trajectory at r0 = 20000 km. The
locally optimal orbit raising law is used to verify that the eclipsing phenomenon has an impact on the sail
performance: a comparison in drawn between the semi-major axis increase obtained from the eclipse
and non-eclipse models. Results from the analysis are shown in Figure A.3. As expected, the presence
of eclipsing manifests in overall ’delayed’ orbit raising with respect to the ’no eclipse’ case, as shown in
Figure A.3a. The 3D representation in Figure A.3b confirms that the eclipse occurs in the correct arc
of the orbit.

120

A.2. Numerical integration 121

Figure A.1: Verification of the point-mass gravity model

(a) 3D view (b) 2D view

Figure A.2: Solar-sail acceleration bubble representation

A.2. Numerical integration
The numerical integration solver choice is now justified. The analysis is performed directly on the scaled
dynamical model (over the default 2 revolutions propagation), to better justify the choices in accuracy
requirements. A benchmark integrator is first defined. Given the default optimization tolerance values
presented in Section 4, the benchmark results are deemed acceptable if the numerical integration error
is 2 (or more) orders of magnitude smaller than the defined ϵopt = 10−6, ensuring that the benchmark
choice does not significantly affect later results on integrator analysis. The integrator accuracy is as-
sessed by computing the relative error rel err between solutions with incrementally doubled step sizes
∆t. The relative error is computed on the state vector norm. The chosen benchmark integrator is the
ode8 (8th order Runge-Kutta integrator) implemented by MATLAB ®. Results are shown in Figure A.4.

A.2. Numerical integration 122

(a) Semi-major axis comparison (b) Full trajectory under eclipses

Figure A.3: Verification of the eclipse model

Figure A.4: Benchmark integrator analysis

The ∆t = 10−6 satisfies the relative error requirement of rel err = 10−8 and is therefore chosen. The
defined benchmark is then used to compare integrators of different orders and step-sizes/tolerances.
The comparison aims at identifying the combination which achieves a relative error that is 1 (or more)
order of magnitude below the defined ϵopt tolerance, while minimizing the number of function evalua-
tions required to propagate the trajectory. The choice aims at minimizing the numerical propagation
overhead to speed up the algorithm (as both the HDDP forward pass and STMs propagation require nu-

A.2. Numerical integration 123

merical integration), while avoiding interference between numerical integration errors and optimization
tolerances. The full set of results is provided in Figure A.5, while the chosen step-sizes and tolerances
(shown are both relative and absolute values) are summarized in Table A.1.

Table A.1: Swept step sizes and tolerances

Step Sizes 10−4 5 · 10−4 10−3 5 · 10−3 10−2 5 · 10−2

Tolerances 10−8 5 · 10−8 10−7 5 · 10−7 10−6 5 · 10−6 10−5 5 · 10−5 10−4

(a) Fixed-step solvers (b) Variable-step solvers

Figure A.5: Full integrator analysis

The fixed-step solvers in Figure A.5a generally have a larger number of function evaluations with re-
spect to their variable counterparts. The variable-step solvers are therefore preferred: Figure A.5b
shows the ode45 solver, with tolerances of 10−5, to meet the specified accuracy requirements.

Whenmoving to themany-revolutions transfer cases, integration errors are expected to increase. Since
a full integrator analysis on the long transfer cases is deemed too time-consuming, a different approach
is chosen. The ode45 solver relative and absolute tolerances are reduced to 10−8, as it was found to
provide acceptable computational overhead to perform the optimization. All generated solutions are
then benchmarked against a more accurate solver (ode45 with tolerances of 10−12), by fully propagat-
ing the sailcraft dynamics with the optimal control law. The full set of results presented in Section 4 was
observed to match the new benchmark accuracy to tolerances below the defined ϵopt, and are there-
fore deemed valid. As an example, a comparison of the 180 revolutions Circular To Circular (C2C)
case at GEO altitude is shown in Figure A.6, in terms of semi-major axis increase radius increase and
eccentricity.

A.2. Numerical integration 124

Figure A.6: 180 revolutions integrator verification

B
Project Management

The project management practices followed throughout the thesis are provided in this Section. First,
the Work-Breakdown Structure (WBS) outlined after the literature review process is provided. The
Gantt chart followed throughout the thesis work is also included, highlighting that red boxes indicate
non-working periods. The project plan devised after the literature review was followed successfully
throughout the whole thesis duration, with only minor setbacks. Additional (out of the thesis scope)
activities were also pursued: as these were not known at the time of project-planning, the thesis duration
had to be adjusted accordingly.

B.1. Work breakdown structure
WP1 (14 days) - Time optimal HDDP

Objective - reformulate the HDDP algorithm to include the time of flight as an optimization vari-
able

1. (3 days) Write down mathematical formulation of HDDP explicitly
2. (2 days) Write down mathematical formulation for flexible final time HDDP explicitly
3. (5 days) Integrate and test formulation within the full HDDP framework

Margin (2 days) - While the first part of this task purely consists in establishing notation and
conventions, a time optimal formulation for HDDP is not yet known and therefore
margin is introduced to allow deeper insight into derivations and trade-offs between
approaches (namely [67] and [85, 86]).

WP2 (10 days) - High-level software architecture

Objective - Design and implement a high-level software architecture that enablesmodular changes
to the various components of HDDP

1. (4 days) Design high-level algorithm structure
a. (1 days) Define required algorithm initialization settings
b. (3 days) Define comprehensive HDDP block diagram structure

2. (1 days) Define interfaces for the high-level algorithm blocks
3. (1 days) Define and implement external software interface (MATLAB or Python)
4. (3 days) Implement high-level HDDP architecture
5. (1 days) Report process and results into thesis document (relates to WP8)

Margin (2 days) - The flexibility and modularity requirements imply the need to foresee and
accommodate non-trivial features, such as the multi-phase formulation and/or the
introduction of Sundman transforms, which can complicate the architecture definition
and implementation.

125

B.1. Work breakdown structure 126

WP3 (10 days) - Propagator

Objective - Implement the routine to define and propagate the dynamics and STMs
2. (0 days) Define a flexible way to change integration scheme (comes from WP2)
2. (3 days) Define and implement flexible method for dynamical model implementation
3. (3 days) Derive the variational equations

a. (2 days) Investigate if automatic differentiation is feasible and effective in this
context

b. (1 days) Otherwise, use an automated Maple workflow
c. (1 days) Implement the chosen approach for the generation of the variational

equations
4. (2 days) Implement parallel propagation for the STMs
5. (1 days) Verify propagator implementation
6. (1 days) Report findings in thesis document (relates to WP8)

Margin (2 days) - The propagator implementation is relatively straightforward, thanks to the
availability of multiple off-the-shelf tools for numerical integration, however, some
uncertainty on the implementation of a modular approach to define the dynamical
model as well as automatic differentiation and parallelized propagation is present.

WP4 (10 days) - TRQP solver

Objective - Investigate and implement an algorithm to solve the TRQP in the backwards sweep
step of HDDP

1. (1 days) Implement interface for the TRQP solver block
2. (5 days) Research into the theory of Trust Reqion methods (available in [75])

a. (2 days) Investigate the different choices of Trust Region algorithms
b. (3 days) Investigate how the trust region radius update parameter can be gen-

eralized (answering RQ1.3)
3. (2 days) Implement the chosen TRQP solver with the pre-defined interface
4. (1 days) Verify the implementation
5. (1 days) Report findings and results into thesis document (relates to WP8)

Margin (2 days) - The generalization of the trust region radius update is an uncertain step, and
might require longer research or testing than what is foreseen.

WP5 (13 days) - HDDP algorithm integration

Objective - Integrate the whole HDDP algorithm within the high-level software architecture de-
fined in WP2

1. (1 days) Check that no conflicts between the interfaces defined in WP2 and those
required by the lower level blocks defined in WP3 and WP4 are compliant

2. (0.5 days) Integrate the propagator into its interface (requires WP2 and WP3)
3. (0.5 days) Integrate the TRQP solver into its interface (requires WP2 and WP4)
4. (1 days) Implement convergence tests
5. (4 days) Implement the iteration acceptance tests

a. (3 days) Investigate if the iteration acceptance threshold update can be gen-
eralized (answering RQ1.3)

b. (1 days) Implement the iteration acceptance threshold update
6. (4 days) Implement the constraint violations check

a. (3 days) Investigate if the constraint penalty update can be generalized (an-
swering RQ1.3)

b. (1 days) Implement the constraint penalty parameter update

B.1. Work breakdown structure 127

7. (1 days) Verify the implementation (mostly achieved in WP6)
8. (1 days) Report findings into thesis document (relates to WP8)

Margin (3 days) - The uncertainty on how to generalize parameter updates on constraints and
iteration acceptance means that time allocations defined a-priori are rather unreli-
able. Additionally, software integration is generally known to present unforeseen
challenges, therefore time allocations defined for this work package are already gen-
erous.

WP6 (6 days) - Basic validation case

Objective - The HDDP applied to a linear-quadratic problem is known to converge in a single
iteration (as illustrated, for instance, in [80]), therefore the first validation of the algo-
rithm is to be performed on such a benchmark

1. (0 days) Define the dynamical model (already available in [80])
2. (1 days) Implement the dynamical model into the tool (requires WP5)
3. (0 days) Define objective function and constraints (already available in [80])
4. (1 days) Implement objective function and constraints into the tool (requires WP5)
5. (3 days) Perform optimization
6. (1 days) Report findings into thesis document (relates to WP8)

Margin (3 days) - Being the first integral application of the tool, it is expected for most incon-
sistencies and errors to show up at this step, therefore a considerable margin is
allocated for debugging and code corrections.

WP7 (27 days) - Many-revolutions transfers

Objective - The HDDP framework is implemented with the main objective of identifying and
characterizing optimal solar-sail transfers (see RQ2)

1. (14 days) First validation case: many-revolutions transfer using simple dynamical model
(answering RQ2)

a. (0 days) Define the simplified dynamical model
b. (2 days) Implement the simplified dynamical model (requiresWP5, mostly achieved

in WP3)
c. (1 days) Define objective function and constraints
d. (1 days) Implement objective function and constraints into the tool (requires

WP5)
e. (1 days) Define trivial and non-trivial initial guesses
e. (5 days) Perform optimization (answering RQ2.1)
f. (3 days) Analyze results and compare with alternative approach (answering

RQ2.1)
g. (1 days) Report findings into thesis document (relates to WP8)

2. (13 days) Second validation case: many-revolutions transfer using more complex dy-
namical model (answering RQ2)

a. (0 days) Define the complex dynamical model
b. (3 days) Implement the complex dynamical model (requiresWP5, partly achieved

in WP7-1)
c. (0 days) Define objective function and constraints (done in WP7-1)
d. (0 days) Implement objective function and constraints into the tool (done in

WP7-1)
e. (1 days) Define trivial and non-trivial initial guesses (can technically benefit

from the solution available in WP7-1)
e. (5 days) Perform optimization (answering RQ2.1)

B.2. Time allocation 128

f. (3 days) Analyze results and compare with solution from simplified dynamical
model in WP7-1 (answering RQ2.1)

g. (1 days) Report findings into thesis document (relates to WP8)
Margin (5 days) - The amount of effort required in order to achieve convergence in the optimiza-

tion of both dynamical models is uncertain, and heavily depends on the quality of the
framework resulting from the previous work packages. Additionally, part of the tasks
(namely the comparison against an alternative optimization method and definition
of the first non-trivial initial guess) depend on external factors and therefore some
additional time margin is accounted for.

WP8 (17 days) - Thesis document

Objective - Finalize the thesis document by reporting the methodology, results and conclusions
from all the steps.

1. (2 days) Report findings from WP1
2. (1 days) Report findings from WP2
3. (1 days) Report findings from WP3
4. (1 days) Report findings from WP4
5. (2 days) Report findings from WP5
6. (1 days) Report findings from WP6
7. (2 days) Report findings from WP7
8. (1 days) Final adjustments for thesis document
9. (6 days) Receive and implement feedback

Margin (3 days) - The time margin is allocated here mainly to account for potential delays with
the writing process, as well as delays in the feedback.

B.2. Time allocation

1518 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 3 10 17
3/24 4/24 5/24 6/24 7/24 8/24 9/24 10/24 11/24 12/24 1/25 2/25

MSc Thesis
 Literature review
 Literature review
 Easter holidays
 Literature review
 Hand-in review document

 Time-optimal HDDP formulation
 Theoretical formulation
 Software implementation

 High-level software architechture
 High-level software architechture

 Propagator
 Simple dynamical model
 Many-revolutions model
 ESA Space Debris Academy Training

 TRQP Solver
 Basic TRQP solver
 Robust TRQP solver
 Path-constrained TRQP solver

 HDDP algorithm integration
 Basic HDDP algorithm
 Trust region adaptive relaxation
 Generalize penalty update
 Mid-term review

 Summer holidays
 Summer holidays

 Basic validation case
 Linear-quadratic problem
 Simple transfer

 Many-revolutions transfers
 GEO transfers
 LEO transfers (time-optimal)
 AIAA SciTech paper writing

 Finalize thesis document
 Finalize thesis document
 Christmas holidays
 AIAA SciTech presentation
 Thesis draft hand-in
 Green light meeting

Powered by TCPDF (www.tcpdf.org)

	Preface
	Summary
	List of figures
	List of tables
	Nomenclature
	Introduction
	Literature Review
	Solar sailing
	Solar-sail technology
	Solar sailing in the Earth environment

	Optimal control
	Indirect methods
	Direct methods
	Heuristic methods
	Dynamic programming
	Summary and considerations

	Constrained optimization
	Lagrange multipliers
	Penalty methods
	Augmented Lagrangian
	Approaches comparison

	Differential Dynamic Programming
	Algorithm formulation
	Theory
	Applications

	Research objective and research questions
	Research objective
	Research questions

	Methodology
	Problem formulation
	Hybrid Differential Dynamic Programming
	State Transition Maps
	Backwards induction
	Trust region quadratic sub-problem
	Forward Pass
	Trust region update
	Convergence test
	Penalty update
	Quadratic model tolerance relaxation
	Mesh refinement

	Software design
	Object-Oriented Programming
	Automatic differentiation

	Journal Article
	Conclusions and Recommendations
	Conclusions
	Recommendations
	Differential Dynamic Programming algorithm
	Research outlook

	References
	Software Verification
	Dynamical models
	Numerical integration

	Project Management
	Work breakdown structure
	Time allocation

