
The impact of Graph Neural Network task types on the stability of Graph Neural
Networks in face of perturbations.

A coded experiment on GNN stability

Vladimir Rullens1

Supervisor(s): Elvin Isufi1, Maosheng Yang1, Mohammad Sabbaqi1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Vladimir Rullens
Final project course: CSE3000 Research Project
Thesis committee: Elvin Isufi, Maosheng Yang, Mohammad Sabbaqi, Klaus Hildebrandt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Graph Neural Networks (GNN) are Machine
Learning models which are trained on graph data
in order to handle complex state-of-the-art tasks
such as recommender systems and molecular prop-
erty prediction. However, the graphs that these
models are trained on can be perturbed in various
ways post training resulting in reductions in perfor-
mance. This study compares the stability of various
Graph Neural Network task types (Node Classifi-
cation, Link Prediction, and Graph Classification)
by investigating each of their performances across
a range of perturbation severities performed on
graphs. Further experiments explore whether this
performance ranking changes for different types of
perturbations and GNN architectures. Through re-
sults, it is shown that there is a noticeable difference
in stability between the investigated tasks. How-
ever, it is also shown that under certain conditions,
such as different types of perturbations or architec-
tures, the performance ranking may shift. This pa-
per highlights weak points in GNNs that should be
explored for stronger defenses against potential at-
tacks.

1 Introduction
Graph Neural Networks, GNNs for short, are a field in Deep
Learning where graphs, containing nodes for objects and
edges connecting these nodes, are utilized to handle complex
problems like recommender systems and molecular property
prediction [1, 2, 3, 4]. This is thanks to graphs being able
to handle non-Euclidean data, such as social networks [4].
These GNNs tend to make use of Neural Message Passing
to perform computations on these graphs, where each node
sends their neighbors a ”message” related to i.e. the current
node, the edge type and their neighbor, depending on the uti-
lized GNN architecture [5]. The recipient then groups all re-
ceived messages in some way, and then uses that result to
update their current vector [5]. Combining this formula with
neural networks allows the GNN to determine a node’s struc-
tural relation to the rest of the graph [6], allowing for various
tasks to be executed such as:

1. Node classification, where nodes are classified individu-
ally. [1, 7].

2. Graph classification, where graphs are classified as a
whole, like in earlier mentioned molecular property pre-
dictions [1, 7].

3. Link prediction, where the existence of a link between
edges is predicted, like in earlier mentioned recom-
mender systems [1, 7].

4. Node clustering or Community Detection, where nodes
are divided into various clusters based on their similarity
to objects in the rest of the graph [1, 7].

5. Influence maximization, where the most influential
nodes are detected. [1, 7].

However, these graphs can be influenced by third parties in
the form of adverserial attacks, i.e. to change a node’s classi-
fication to no longer be seen as malicious. This is also con-
sidered a ”perturbation” [8]. A question then revolves around
the stability of GNNs: how do these GNNs fare against per-
turbations? Do small perturbations heavily influence their ac-
curacy?

For this topic, some research has been done on types of
attacks which can be performed, i.e. Random Walk Column
Sum mentioned in [9], which selects nodes which affect clas-
sification loss the most through feature perturbations. Some
properties which allow GNNs to be more resistant have also
been discussed, such as the notion of permutation equivari-
ance mentioned in [10]. Finally, edge removal/perturbation
effects have also been compared in the realm of Node Clas-
sification, such as in [11]. However, there is still research to
be done on which GNN design choices affect GNN stability,
as well as more research into the effects on other task types.
This could indicate which areas focus should be directed to-
wards the most in the pursuit of improving GNN stability.

This paper will attempt to find GNN stability weakpoints
in one aspect of GNNs, namely the choice of the earlier
mentioned task types. Here, the main research question that
will be tackled is:

How does choice of task types, namely node classifi-
cation, link prediction, graph classification, impact the
stability of a GNN in the face of perturbations?

For this research question the included subquestions are
as follows:

Research focused:
- What characteristics of GNN tasks have already been es-

tablished to affect the stability of GNNs?
- What GNN architectures are utilized to handle the re-

lated tasks?
Experiment focused:

- How do the established GNN task types perform com-
pared to each other in terms of stability, when applying
the same perturbations to each GNN?

- What core characteristics of these tasks may influence
stability based on the established ranking?

Shared:
- What is missing in the state-of-the-art literature dis-

cussing the stability of GNNs?
- What is the impact of GNN hyperparameters on the sta-

bility of GNNs across the varying task types?
The goal of this research paper is to highlight how much

GNN stability is impacted by a change in GNN tasks.
Through this it will be shown which tasks are most vulnerable
to perturbations, and thereby which areas are in need of the
most attention in regards to their improvement. It may also
show how consistent GNN architectures are across the vary-
ing task types. In Chapter 2, some background information is
given to highlight parts of the experiment, detailing the idea

Task Dataset Backbone Graphs Nodes Edges Features Classes
Node Classification Planetoid Pubmed 1 19717 88648 500 3
Graph Classification TUDatasetEnzymes MUTAG 188 1̃7.9 3̃9.6 7 2

Link Prediction Planetoid Cora 1 2708 10556 1433 7

Table 1: Graphs utilized in research

behind some aspects which are further described in Chapter
3. In Chapter 3, the experiment itself is described, detailing
the utilized GNN architectures, perturbation types, and their
expected results, as well as their reasoning. In Chapter 4, the
environment setup of the experiment will be described along-
side its results. In Chapter 5, the ethics behind this research
will be described and the reproducibility of this research is
discussed. In Chapter 6, the results will be discussed further.
Finally, in Chapter 7, the conclusions of this research are re-
ported, as well as any potential future research goals.

2 Methodology
2.1 Graphs
For this research, Pytorch Geometric1, a Python library dedi-
cated to graph neural networks, is utilized. This library con-
tains a simple format for building GNNs. The documentation
page also contains a list of referenced GNN architectures and
a list of referenced graph datasets. For every task, a graph
dataset is chosen from Pytorch Geometric’s dataset library
which matches it. This includes the graphs shown in Table 1.

All chosen graphs are homogeneous: There is only one
type of node and only one type of edge. Graph classification
has notably fewer features for its feature count, which is a
characteristic that can be seen on most graph-focused datasets
in Pytorch Geometric. These numbers can be found on Py-
torch Geometric’s dataset cheatsheet2.

2.2 GNN architectures
Utilizing these graphs, a GNN model is trained on the graph,
which is consistent across all tasks. The used GNN models
here are the Graph Convolutional Network (GCN) and the
Graph Attention Network (GAT).

- Graph Convolutional Networks are a spectral method
which utilizes normalized graph Laplacians and first-
order Fourier transforms to calculate a node’s neighbor-
hood position [12]. Due to its spectral nature, its learn-
ing is dependent on the graph’s structure [13]. Kipf and
Welling [12] derived their neural network propagation
rule for Graph Convolutional Networks:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

In this equation H(l+1) indicates the features at the l-th
layer, with the 0-th layer being equal to the initial node
features. Ã is equal to the adjacency matrix of the graph

1https://pytorch-geometric.readthedocs.io/en/latest/
2https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/

data cheatsheet.html

with added self-connections, while D̃ is the degree ma-
trix. Finally, W is the trainable weight matrix of layer l,
with σ being the activation function.
The GNN layout utilized for the course of this exper-
iment is a 3-layer GCN (Computing a neighborhood
depth of 3 nodes) with 64 hidden channels (variables)
per GNN layer.

- Graph Attention Networks are a non-spectral method
which utilizes a set of k ”attention heads” serving as
edge weights to learn a node’s neighborhood locally
[13]. Here an attention mechanism calculates the im-
portance of one node’s features compared to another by
acting as a neural network.
Velickovic et al. [13] note the GAT architecture as de-
scribed here. A neural network a, called a self-attention
mechanism, can compute attention coefficients as fol-
lows:

αij = softmaxj(a(Whi,Whj)) (2)

Here, a is the self-attention mechanism, with W being
the weight matrix and h being a set of features for node
i/j. Computed is the attention coefficient between two
nodes, which serves as an edge weight. The full func-
tion for calculating attention coefficients within the GAT
framework is then as follows:

αij =
exp(LeakyReLU(aT [Whi||Whj]))∑

k∈N(i) exp(LeakyReLU(aT [Whi||Whk]))

(3)
In this equation N(i) is the set of nodes within the cur-
rent node’s neighborhood. The above αij is utilized
in the following function for multi-head attention net-
works, where h́i, indicating the features at the next layer,
is computed as follows:

h́i =
K

||
k=1

σ(
∑

j∈N(i)

αk
i,jW

khj) (4)

The concatenation symbol || indicates concatenation
over the k available attention heads (here 5).
This method does not rely on the graph’s global structure
[13]. The GNN layout utilized for the course of this ex-
periment is a 3-layer GAT with 64 hidden channels and 5
attention heads. This multi-head attention structure was
deemed to allow the learning process to be more stabi-
lized [13].

2.3 Task type implementations
While the GNN structure is consistent across all task types,
different tasks require these GNNs to be used differently.

- For Node Classification, the GNN model is followed by
a linear classifier, which takes the previous hidden lay-
ers and classifies them in the output layer between the x
available classes in the dataset (here 3).

- For Graph Classification, the GNN model is followed by
the global mean pool method, which pools all final node
embeddings into one averaged embedding [14]. This
singular node embedding is then classified between the
x available classes through a linear classifier.

- For Link Prediction, a Graph Auto-Encoder (GAE) is
utilized. Graph Auto-Encoders encode the node features
of a graph by putting the graph through a GNN. Utilizing
this encoded format the adjacency matrix of the graph is
reconstructed to obtain all potential edges, to which the
training/test sets can be compared [15].
For Link Prediction, this experiment utilizes an exist-
ing implementation3, which creates predictions as float
values rather than a binary 1/0 for whether or not there
is a link. To accompany this, the original implemen-
tation utilized the roc auc score, which is a threshold-
free evaluation metric [16]. However, in order to reli-
ably compare it to the other tasks this was converted to a
threshold-dependent metric, namely the micro-averaged
F1 score, the same one used for the other tasks. To make
this work, a threshold had to be picked for the predicted
float values. Since these float values range from 0.5 to
1.0, a straight-forward threshold was taken at 0.75, in
order to give a fair split between links and non-links.
This is to avoid overfitting to the dataset with a trained
threshold.

2.4 Perturbation methods
After training is finalized, the graph is perturbed for a range
of perturbation severities, i.e. randomly removing 0%, 10%,
20%... of all edges on the graph. The perturbation methods
utilized are a variety of perturbation types: Edge Removal,
Node Removal, and Edge Rewiring, where each method is
done in a randomized format.

Edge Removal and Node Removal here are self-
explanatory: A percentage of all edges/nodes on the graph
are directly removed, giving nodes less of their neighbor-
hood to work with. The randomization is determined by ran-
dom.choice, which is accessible by importing random. In this
experiment, this generated a list of size ’node/edge count’
with x̃% of all kept nodes/edges being set to True, and the
rest being False.

Edge Rewiring keeps all nodes, only modifying the place-
ment of edges while making sure the number of edges each
node has (the degree of the node) stays the same. The utilized
method is similar to an attack performed by Ma et al. [17],
which showcased great results. To describe the process: For a

3https://github.com/AntonioLonga/PytorchGeometricTutorial/blob
/main/Tutorial12/Tutorial12%20GAE%20for%20link%20prediction
.ipynb

single perturbation 2 edges are taken, spanning across nodes
A and B for edge 1, and nodes C and D for edge 2. If no
connection yet exists for AC and BD, the edges between AB
and CD are moved to these new positions. If AC or BD is al-
ready taken, AD and BC are also checked for the same effect.
This is done on x% of all edges. This method keeps node
features in check and still gives the GNN a neighborhood to
work with, but forces the GNN to classify on incorrect neigh-
borhoods. Each perturbation method here is re-performed on
the original dataset for every trial.

The performance of the already trained GNN is then evalu-
ated on both the initial graph and its perturbed versions, after
which their results are compared. By doing this for each task
type over a range of perturbation strengths, a graph figure will
be obtained which showcases the degradation in performance
for each task type as perturbations become more severe, al-
lowing for insights on which task types are influenced most
by perturbations, as per the main research question defined in
Section 1.

3 Experiments
The following experiments are focused on comparing the per-
formance of task types while utilizing micro F1 loss as the
metric, where micro F1 loss utilizes the following function
[18]: ∑

TP∑
TP + 1

2 (
∑

FP +
∑

FN)
(5)

Here, TP , FP , FN refer to True Positive, False Positive,
and False Negative respectively, with the summation being
done over all classes.

3.1 Initial Task Type Performance Comparison
In the first experiment, all task types are compared to one an-
other under one GNN architecture and perturbation method.
Here, the GCN architecture is utilized as it runs faster than
the GAT architecture mentioned in Section 2 while giving
similar initial performance results. To reiterate, the utilized
GCN architecture contains 3 layers with 64 hidden channels
per layer. The chosen perturbation method is Edge Removal.
The goal of this perturbation method is to remove connections
between nodes, resulting in GNNs being given fewer nodes to
work within a node’s neighborhood.

3.2 Perturbation Effect on Performance
Comparison

In the second experiment, more perturbation methods are
tested to see if the chosen perturbation method has an ef-
fect on the ranking between task types. The remaining two
perturbation methods explained in Section 2 are utilized here,
Node Removal and Edge Rewiring. Edge Rewiring is deemed
the most interesting here as it is a significantly different type
of perturbation, which tampers with a GNN’s neighborhood
assessment directly. This is due to the fact that node connec-
tions are greatly altered, which results in each node having
connections to new (incorrect) neighborhoods. This is dif-
ferent from what happens in the other perturbation methods
where nodes tend to get isolated, subjecting them more to

their initial set of features. As a result, the stability of the
individual task types is expected to be impacted differently
from before.

3.3 Architecture Effect on Performance
Comparison

In the third experiment, architectures are compared to see if
these have an effect on the ranking between task types. Here
the GAT is included in the research and compared against the
GCN’s initial results. The provided GAT architecture con-
tained 3 layers with 64 hidden channels per layer and 5 at-
tention heads. This was chosen to keep the number of lay-
ers and hidden channels consistent while utilizing the GAT’s
main feature, the attention head. As the GAT is a non-spectral
architecture, and thereby does not rely on the graph’s global
structure [13], results are expected to be different.

4 Setup and Results

Figure 1: GCN micro F1 loss for a range of Edge Removal strengths
on various tasks. 25 trials per data point, seperated by 10% each.

The first experiment compared the various tasks among
one another for a given form of perturbation: Randomized
Edge Removal. This perturbation was done by obtaining a
randomized True/False list utilizing random.choice from the
’random’ import, where the length of the list equals the num-
ber of edges available. Here the percentage of kept edges
(True) and lost edges (False) could be specified, and the
False edges were removed by their ID. The databases uti-
lized are specified in Section 2, Table 1. The experiments
were conducted 25 times per measurement point, utilizing a
GCN with 3 layers, each with 64 hidden channels. For every
measurement point, the GNN was retrained with a new per-
turbed dataset to test on. Results are evaluated on a 6-core
Intel(R) Core(TM) i7-9750H CPU with 16GB memory and
an NVIDIA Quadro P2000 GPU. The goal of this experiment
is to identify whether there is a difference in stability between
the given tasks.

In Figure 1 the effect of Edge Removal can be seen on
the tasks Node Classification, Graph Classification, and Link
Prediction. It can be seen that Graph Classification has a sig-
nificantly greater loss than Node Classification and Link Pre-
diction, never falling below its opponents. On the other hand,
both Node Classification and Link Prediction produce similar

results, roughly matching one another in terms of accuracy
lost. For every task, the showcased trend appears to be linear.

Figure 2: GCN micro F1 loss for a range of Node Removal strengths
on various tasks. 25 trials per data point, seperated by 10% each.

Figure 3: GCN micro F1 loss for a range of Edge Rewiring strengths
on various tasks. 10 trials per data point, separated by 10% each.

The next experiment compares the above tasks on more
perturbation methods, namely Node Removal and Edge
Rewiring. Node Removal utilized the same method as Edge
Removal but adapted to nodes instead. Edge Rewiring are
explained further in Section 2. This experiment contained the
same graphs, but a lowered experiment count of 10 for Edge
Rewiring. This was due to the time required to produce per-
turbed graphs for Node Classification. The goal is to identify
whether different perturbation methods produce different re-
sults.

In Figure 2 and Figure 3 the effect of Node Removal and
Edge Rewiring can be seen on the same tasks. In Figure 2
Node Removal appears to have mostly the same results in
terms of ranking, though the effect on Node Classification
and Link Prediction is a lot less clear, despite having the
same experiment count as Edge Removal. On the other hand,
Figure 3 showcases a much clearer different outcome. Here,
Node Classification and Link Prediction perform significantly
worse than before, now performing worse than Graph Clas-
sification, which sees little change from Figure 2. This in-
dicates that under different perturbations, such as the imple-
mented Edge Rewiring, the stability ranking may shift. What
is also noteworthy is that, as opposed to the usual linear na-
ture of these results, Link Prediction’s effect decelerates over

time until around 36%. Taking into account its F score being
calculated over 2 classes (link or no link), it may have already
reached its worst-case prediction accuracy.

Figure 4: GAT Micro F1 loss for a range of Edge Removal strengths
on various tasks. 25 trials per data point, seperated by 10% each.

Figure 5: GAT Micro F1 loss for a range of Node Removal strengths
on various tasks. 25 trials per data point, seperated by 10% each.

Next, the non-spectral GAT architecture was compared to
the GCN. The experiments conducted here utilized a GAT
with 3 layers, each with 64 hidden channels, and 5 attention
heads. The utilized perturbation methods were kept the same,
though the amount of experiments was lowered due to the
GAT’s processing time. The goal is to identify whether a non-
spectral method has different effects on the various tasks.

In Figure 4 the effect of Edge Removal on the GAT archi-
tecture can be seen. These results do not align with its GCN
counterpart in Figure 1. Graph Classification and Link Pre-
diction have switched positions, placing Link Prediction as
the most affected task by Edge Rewiring. However, Graph
Classification does not tie Node Prediction, still performing
worse than it. Comparing the mentioned graphs showcases
that a change in architectures alone had a massive effect on
the results.

In Figure 5 and Figure 6 the effect of Node Removal and
Edge Rewiring can once again be seen, now on the GAT ar-
chitecture. This time around, there seems to be no notice-
able difference in ranking compared to before. In Figure 5
Link Prediction continues to be the worst-performing task,
with Graph Classification only performing a bit worse than
Node Classification towards larger perturbations. These re-

Figure 6: GAT Micro F1 loss for a range of Edge Rewiring strengths
on various tasks. 10 trials per data point, seperated by 10% each.

sults overall seem to line up heavily with Figure 4. Mean-
while, in Figure 6, roughly the same results can be seen as
in GCN’s counterpart in Figure 3, with Node Classification
once again performing worse than Graph Classification. Link
Prediction is affected just as heavily by the Edge Rewiring
method across both architectures.

5 Responsible Research
From a reproducibility standpoint, this research paper de-
scribes in detail what GNN structures and perturbation meth-
ods are utilized, and how their algorithms are laid out. The
ways the different tasks are handled from an algorithm view-
point are also described. Finally, the graphs on which they are
executed, as well as where one can find them, are described.
While it is believed anyone can recreate this work and test
it for themselves, elements such as potential unseen bugs in
written code may affect the attempt to reproduce results.

From an ethical standpoint, this research tackles vulnera-
bilities in GNNs. While this research could be utilized to im-
prove GNN capabilities, it may also be utilized nefariously,
resulting in attackers having a more effective job. This re-
search also tackles Machine Learning, specifically in the field
of Deep Learning, which falls under Artificial Intelligence. In
recent years this is a field that people such as artists have been
concerned about due to the ability of AI to create art and po-
tentially take jobs [19]. While GNNs are not necessarily the
specific field these people are concerned about, future devel-
opments in GNNs may result in more similar effects.

6 Discussion
The results summarized indicate the following:
- GCN Edge Removal and Node Removal: Here Graph Clas-
sification is the least stable, followed by Link Prediction and
Node Classification being roughly tied.
- GAT Edge Removal and Node Removal: Here Link Predic-
tion is the least stable, followed by Graph Classification and
then Node Classification.
- Edge Rewiring: Here Link Prediction is the least stable, fol-
lowed by Node Classification and then Graph Classification.

As can be seen by these results, the difference in task sta-
bility depends on both the chosen perturbation type and ar-
chitecture. Despite this, the worst-performing architecture in

all six experiments was either Link Prediction or Graph Clas-
sification, with a significant lead over the other tasks. In no
experiment was Node Classification deemed to be the least
stable task, always roughly matching a task while in last, or
ending up second behind Link Prediction.

When focusing on Edge Removal and Node Removal, Link
Prediction performing much better under the GCN frame-
work could be linked to the GCN being a spatial architecture
as opposed to the non-spatial GAT. This was further described
in Section 2, where it was mentioned that spatial architectures
take the global structure into account. The utilized implemen-
tation of Link Prediction made use of Graph Auto-Encoders
to encode and decode the graph, which may find this charac-
teristic of spatial architectures to be advantageous.

The heavy impact of Edge Rewiring falls in line with what
is shown in [17]. The results are comparable to the effect on
the IMDB-MULTI database for graph classification, which
was the database that was impacted the least.

Most accuracy lines in the graphs were linear, with the ex-
ception of Link Prediction in the Edge Rewiring graphs. This
could be explained by Link Prediction reaching its worst-case
accuracy. Further perturbations can only affect the accuracy
minimally from here.

No experiment is perfect, including this one, containing
a few shortcomings in its process. First of all, this experi-
ment contained fewer measurements due to limited process-
ing power. This is most noticeable in Figure 2, where Node
Classification and Link Prediction have many ups and downs,
with some measurement points even hitting negative loss at
times in both Node Removal graphs. As a result, these tasks
could not be reliably compared in the mentioned figure. This
need for more measurement points could also be due to the
concept of Node Removal resulting in there being fewer test
cases to work with for both Node Classification and Link Pre-
diction.

This experiment also did not contain equal class counts for
each task, resulting in bottom line accuracy being inconsistent
for Node Classification, which contained 3 classes, compared
to the other tasks, which contained 2 classes. As a result, its
effects could have been higher than on the other tasks. This
was attempted to be avoided as much as possible, however
no group of databases could be found that had equal class
counts. While this is unlikely to have had an effect in the
long run, with Node Classification generally being the most
stable, it should be noted in case of future research.

Finally, Link Prediction does not have a single agreed upon
method. For this experiment, this task was handled by a
Graph Auto-Encoder, but perhaps with a different method,
there would be different results.

7 Conclusions and Future Work
At the start of this paper the following question was asked:
How does the choice of task types, namely node classifica-
tion, link prediction, and graph classification, impact the sta-
bility of a GNN in the face of perturbations? To answer this,
the impact of three perturbation methods was assessed over
a range of perturbation strengths on both the GCN and GAT
architectures.

According to the results, there is no definitive ranking for
the investigated tasks. The stability of task types depends
on both the chosen architecture and the chosen perturbation
method. Despite this, Link Prediction did perform the worst
across all perturbation methods on the GAT framework and
was the most unstable in 4/6 experiments. Graph Classifi-
cation followed suit, being the most unstable in 2/6 experi-
ments. Despite this, Node Classification was generally the
most stable when compared to the other tasks, even if it was
more unstable than Graph Classification on Edge Rewiring.
All of this indicates that it may be more advantageous to
utilize non-spatial architectures for Graph Classification and
spatial architectures for Link Prediction. However, across the
board, all need to be improved under Edge Rewiring.

From here a few more direct paths can be taken for further
research. First of all, as described in Section 2 and reiter-
ated in Section 6, Link Prediction was done utilizing a Graph
Auto-Encoder implementation. As there are more methods,
it could be interesting to compare different Link Prediction
methods in terms of their stability. This could bring better
results than described in this paper. It could also be inter-
esting to explore architectures which are more stable against
Edge Rewiring for every single task type, as the effect of this
method is most noticeable across the board. However, due to
the large impact of this perturbation method, it may be more
advantageous to split this up into separate research papers per
task type.

References
[1] A. A. Awan, “A Comprehensive Introduction to Graph

Neural Networks (GNNs),” 7 2022.

[2] M. Labonne, “Graph Convolutional Networks: Intro-
duction to GNNs — Towards Data Science,” 8 2023.

[3] Y. Wang, Z. Li, and A. Barati Farimani, Graph Neural
Networks for Molecules, p. 21–66. Springer Interna-
tional Publishing, 2023.

[4] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu,
L. Wang, C. Li, and M. Sun, “Graph neural networks:
A review of methods and applications,” 2021.

[5] D. Grattarola, “A practical introduction to GNNs - Part
2,” 3 2021.

[6] O. Hussein, “Graph Neural Networks Series — Part 4
—The GNNs, Message Passing Over-smoothing,” 5
2023.

[7] A. Daigavane, B. Ravindran, and G. Aggarwal, “Un-
derstanding convolutions on graphs,” Distill (San Fran-
cisco, Calif.), vol. 6, 8 2021.

[8] H. Kenlay, D. Thano, and X. Dong, “On the stabil-
ity of graph convolutional neural networks under edge
rewiring,” in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, June 2021.

[9] J. Ma, S. Ding, and Q. Mei, “Towards more practical
adversarial attacks on graph neural networks,” 2021.

[10] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties
of graph neural networks,” IEEE Transactions on Signal
Processing, vol. 68, p. 5680–5695, 2020.

[11] X. Liu, Y. Zhang, M. Wu, M. Yan, K. He, W. Yan,
S. Pan, X. Ye, and D. Fan, “Revisiting edge perturba-
tion for graph neural network in graph data augmenta-
tion and attack,” ArXiv, vol. abs/2403.07943, 2024.

[12] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” 2017.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio, “Graph attention networks,”
2018.

[14] PyG Team, “pool.global mean pool,” 2021.
[15] T. N. Kipf and M. Welling, “Variational graph auto-

encoders,” 2016.
[16] T. Zhou, “Discriminating abilities of threshold-free

evaluation metrics in link prediction,” Physica A:
Statistical Mechanics and its Applications, vol. 615,
p. 128529, 2023.

[17] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph
adversarial attack via rewiring,” in Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, KDD ’21, (New York, NY, USA),
p. 1161–1169, Association for Computing Machinery,
2021.

[18] R. Kundu, “F1 Score in Machine Learning: Intro amp;
Calculation,” 4 2024.

[19] V. Thorpe, “‘ChatGPT said I did not exist’: how artists
and writers are fighting back against AI,” 3 2023.

	Introduction
	Methodology
	Graphs
	GNN architectures
	Task type implementations
	Perturbation methods

	Experiments
	Initial Task Type Performance Comparison
	Perturbation Effect on Performance Comparison
	Architecture Effect on Performance Comparison

	Setup and Results
	Responsible Research
	Discussion
	Conclusions and Future Work

