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Main symbols

N

max

™|, e

mean waterdepth

dimensionless approximated characteristic direction
=A.(I—80).q/VAng

dimensionless approximated characteristic direction

=B. (1-€,).q/vAgD;’

characteristic directions

volume concentration of sediment

volume concentration of sedimentfraction i

Chézy-roughness of the grains

total Chézy-roughness of the bed

grain-diameter of sedimentfraction i

mean grain-diameter of a sediment-mixture

Froude-number

energy-slope

probability of sedimentfraction i

probability of sedimentfraction i at the lower boundary of
the transportlayer

transportprobability of sedimentfraction i
sedimenttransport in volume(real) per unit time and width
sedimenttransport of fraction i in volume(real) per unit
time and width

hydraulic radius

sedimenttransport in volume(including pores) per unit time
and width

sedimenttransport of fraction i in volume(including pores)
per unit time and width

watervelocity averaged over the waterdepth

mean bed-level

level of the upper boundary of the transportlayer
distribution coefficient of sedimentfraction i

quotient of the effective transportlayer-thickness(concentration:
1-€,) and the actual transportlayer—thickness
transportlayer—thickness

=(Pg= P)/P :relative density of the sediment

porosity of the sediment in the bed

dimensionless characteristic directions
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= ¢1,2.(l— €¢).q/vAgD,

dimensionless transportconcentration parameter

dimensionless transportconcentration parameter of fraction i
critical shear stress of sedimentfraction i

dimensionless critical shear stress of fraction i
dimensionless effective shear stress of fractiom 1

ripple factor
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In Chapter 4 four simple applications of the mathematical model for two
sedimentfractions are treated. The watermotion is simplified in order
to be able to carry out the calculations partly by hand.

In Chapter 5 a summary and conclusions are given.



0. Introduction

The mathematical prediction of morphological changes in rivers due to
natural causes or human interference has got much attention during

the last two decades.

The basic equations for the movement of water and sediment can be de-

coupled under some restricting assumptions (de Vries, 1959, 1966).

For sufficiently low Froude numbers the watermovement can be supposed

to be quasi steady. The range of practical problems that can be solved

in this way is sufficiently large to use this attractive simplificationm.

The main restricting assumptions that are used are

(1) The sediment transport is a function of the Zocal hydraulic con-—
ditions

(ii) The bedroughness is supposed not to vary in time

(iii) The sediment is supposed to be uniform enough leading to a constant

representative grainsize both in time and place.

With respect to these restrictions the following remarks can be made

ad. (1) The transport can not be written as a function of the local hydrau-
lic conditions if transport in suspension prevails. More pre-
cisely stated such a direct relation can only be assumed if the
lengthscale in the morphological process is large compared to
the adaptation length in the flow direction for the change in a
concentration profile due to a change in the hydraulic condition
in space (Kerssens, 1974 and Kerssens et al, 1979).

ad.(ii) Alluvial roughness predictions for steady uniform flow are not
very accurate. For unsteady flow they do not exist. Some attempts
have been made to incorporate predicted roughness values in the
morphological computations discussed here. (Chollet and Cunge,
1979, 1980).

ad.(iii) Hardly some attention is paid as yet to morphological computations
in which the sediment consists of a mixture of different grain-sizes
and an interaction exists between composition—-changes of the bed and
the morphological changes itself.
For example: Downstream of a fixed weir in a rivergenerally erosion
of the river-bed takes place caused by the blocked sediment-trans-
port. Because of selective erosion of the finer fractions of the

present bed-material, the coarse fractions will stay behind and

—




eventually can form a layer on top of the river-bed, which gives

a protection against further erosion ('armouring').

The objective of this study is to get rid of this last restriction viz.
the presence of (nearly) uniform sediment. In order to reduce the com-
plexity of the analysis this study postulates:

e the flow is quasi-steady

e the local tramsport is a function of the local conditions

e the bedroughness is constant.

In spite of these restrictions the impression is that sufficient practical
problems can be tackled in addition to the one that are now (1980) solved
on a routine basis by using the original model for (nearly) uniform sedi-

ment.

This study does not yet consider the important numerical problems that have
to be solved before morphological computations can be carried out on a
routine basis. For review of the numerical aspects in the case of (nearly)

uniform flow reference can be made to Vreugdenhil (1981).

In Chapter | a derivation of the equations and an extension of the mathe-
matical model will be carried out. The sediment-mixture is separated in a
number of fractions - each with a representative grain size - and the
equations describing the sediment-movement are split up for every fraction

separately.
In order to get some insight in the new model in Chapter 2 a restriction

will take place to sediment-mixtures consisting of only two sediment-frac-
tiomns.

As a result only one extra dependent variable vZ3. the probability of one
of the fractions, comes into the equations.

Moreover the characteristic directions and relations belonging to the

set of partial differential equations will be derived mainly in order to
obtain information concerning the time-scales of changes in bedlevel and
bedcomposition; also the interaction between these changes and the in—
fluence of some determining parameters will be studied.

In Chapter 3 specific calculations will be carried out of the characteris-
tic directions and relations and the influence of two possible concepts for

a transportformula per fraction is studied.



1. Basic equations

1.1. General

The existing mathematical model for morphological computations in rivers
(see for example de Vries, 1976) consists of two water—equations and two
sediment-equations. In principle these equations are a continuity equation
and an equation of motion for both phases. The watermovement is described
by the one-dimensional long-wave equation and the continuity equation and

is assumed to be quasi-steady.

The equation of motion of the sediment is a sedimenttransport formula
which implies a direct relationship between sedimenttransport and the
depth-averaged watervelocity.

As was stated before this direct relation can be questionable because of

a delayed reaction of the sediment on changing hydraulic conditions
(hysteresis—effect). In the transportformula the sediment is characterised

by one representative grain—diameter.

The continuity—equation for the sediment is rahter simple and it describes
the local change of the bed-level caused by a sedimenttransport gradient

in the flow—direction.

If the sediment consists of a large-range mixture of grainsizes then the
above-described mathematical model is less accurate and it might be useful
to set up both sediment equations for every sediment fraction separately.
In the next sections these equations and the unchanged water-equations

will be treated.



1.2. The watermovement

The watermovement in rivers is generally described by the one-dimensional

"long-wave equation' and continuity-equation (see for example Jansen,
1979):

o9z
u Ju %a o _
YR TETE R CR (1
9z
da o du oa _
TR TR R il -l (2)

in which: u = time-averaged and depth—averaged watervelocity in x-direction

[1+]
1]

waterdepth
z = bedlevel
o

R = friction term.

The riverwidth is supposed to be constant and the waterequations therefore
are given per unit width. Important assumptions are the occurence of small
bed slopes (i, << 1) and the validity of the hydrostatic pressure dis-
tribution. This confines the problems in which this set of equations can
be applied to long-wave problems, in which vertical accelerations are
negligible with respect to the acceleration of gravity. This means that
for example in regions with sudden bedlevel changes these one-dimensio-

nal equations generally are too simple.

The water turbulence which takes places on much smaller time and distance-
scales than long waves is included in the friction term R. Before inte-
gration in the vertical direction took place this was realised by averaging
both equations over a certain time period (much larger than the scale of
the turbulent fluctuations but much smaller than the time-scale of the

long-wave motion itself) and making use of Reynolds shear stresses.



+1.3. The sediment-movement

1.3.1. General

Analogous to the watermovement the sedimentmovement takes place on dif-
ferent scales. In this report the bedlevel-fluctuations because of
bedforms are treated in a comparable way as the turbulence in the

watermovement.

The rate of sedimenttransport (bed-load) and the particle velocities
will vary along a bedform; the process of sedimenttransport considered
on bedform scale is therefore often described as being in a '"dynamical
equilibrium". The sedimentequations which will be treated in this report
can only be applied for large-scale processes. This means that only

sandwaves (or bedlevel <changes) are treated which have a period much

larger than the period of the bedforms.

As was mentioned in the previous section the long-wave equation will be
applied and the local dissipation of energy behind bedforms ("wakes')

can artificially be seen as an energy-loss because of an additional
bedroughness and be included in the bedfrictionterm. Analogous to
waterturbulence the parameters playing a role in the sediment process will
be averaged over a period much larger than the bedformperiods but much

smaller than the period of the '"long sand-waves" itself.

The derivation of the continuity equation per sedimentfraction is given
in Appendix 1. It is shown that the definitions of bedlevel (z,),
transportlayerthickness (§) and sedimentconcentration per fraction (Ci)

are rather important.

It also shows that in contrast with the transport of uniform sediment a
term describing the storage of sediment in the transportlayer is included;
this term arises from the possibility of exchange of sedimentfractions in

the transportlayer in case of sedimentmixtures.




In the first sections of this report the sedimenttransportformula per
fraction will be written in a general form. The difficulties in using
this formula were mentioned before. Cases in which these difficulties
arise will be treated and a general condition for the application of

this formula will be given.

1.3.2. Continuity~-equation per sedimentfraction

The complete derivation of the continuity-equation per sedimentfraction
takes place in Appendix 1.

Before giving the resulting equation the definitions of bedlevel (zo),

transportlayerthickness (8) and sedimentconcentration per fraction (Ci)

as used in the appendix will be treated.

The local bedlevel z(x,t) 1is defined as the level below which no
grainmovement occurs. Because of the existence of bedforms this level

will fluctuate and it is therefore possible to define a mean bedlevel:

z(x,t) = z(x,t)dt ‘ (3)

O~ 3

2
T

The period of this averaging process is chosen much longer than the
period of the bedforms but much smaller than the period of the '"long
sandwave'.

During this period this mean level z(x,t) must not change much; the in-

stantaneous bedlevel z(x,t) will be assumed to fluctuate between an upper

and a lower boundary zmax(x,t) and zmin(x,t) (see Fig. 1).

The averaged bottomlevel which will be used in the equatiomns 1is zo(x,t) =

=z in(x,t) because during period T below this level no grainmovement occurs.

m
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Fig. | Registration of z(x,t) during the averaging period T

The transportlayerthickness 6(x,t) (in case of bed-load) is defined as

§(x,t) = zmax(x,t) - zmin(x,t) (4)

Remark: Experiments showed ( Willis and Kennedy (1977)) that the
fluctuations of the local bed elevation can be described by a

gamma function. The upper and lower boundaries of the transportlayer can
then be defined as the levels of the ja-tails of this probability density
function. In the theoretical model, however, it is assumed that all

sedimenttransport is occurring between two fixed boundaries.

Because of the existence of bedforms only a small part of the sediment in the
transportlayer is moving at ome instant. In case of bed-load this happens in a
thin layer on top of the bedforms. The propagation of the bedforms in
direction of the flow (Fr < 1) finds its cause in a continuous erosion

and sedimentation at respectively the front and lee side of the bedform.
Because of this phenomenon and the definition of the transportlayer an
elementary volume dx-dz (unit width) can contain particles in rest as

well as particles in motion.



The concentration (volume) Ci(x,z,t) used in the continuity-equation of
sedimentfraction i is defined as the averaged value (period T) of the

overall concentration (moving + resting particles) of sedimentfraction 1i.

A resulting version of the one-dimensional continuity-equation of sedi-

mentfraction i is (see Appendix 1):

as.

) = i _
P, 3t T3t (aiBPiS) ¥ = 0 (5)

in which Ei is the double-averaged (over period T and transportlayer-
thickness §) value of the probability of sedimentfraction i. Under certain
assumptions (see App. 1) the following relation between Ei and the double-

averaged concentration C(x,t) 1is true:

all
~
"
(a3
SN

(]

o, Clx, £).p, (x, ) (6)

in which o, is a distribution coefficient which determines the distribution
of fraction i in the transportlayef in z-direction.

The double-averaged concentration E(x,t) of all the sediment in the
transportlayer is dependent on "the shape of the bedforms" and the poro-

sity €.t
Clx,t) =B . (1 - e.) (7

in which €, is supposed to be constant and B is a factor indicating to what

extent the transport layer is filled with sediment.




Remark: If the "shape of the bedforms" or the probability density function

(p.d.f) of the fluctuations is always constant, B will be constant too.
Formally B is defined as the mean value of the cumulative p.d.f. of the

bedlevelfluctuations (averaged over transportlayer §). See Appendix 1.

In Eq. (5) Biz is the time-averaged value of P; at the lower boundary
)

of the transportlayer z = zo(x,t).
With the assumptions that the transportlayerthickness § as well as factor

B (constant p.d.f.) and the distribution-coefficient a, are constant the

second term of Eq. (5) can be written as:

) = al:’i

Under these assumptions it can also be proven (see App. |) that uii= 1

for all fractions and Eq. (5) can now be written as:

—-— 0 .-
S TS T P (8)

This form of the continuity-equation of sedimentfraction i will be used

in the theoretical model.

.3.3. Sedimenttransportformula per fraction

Because of the change of hydraulic conditions along a bedform the

sedimenttransport (bed-load) is variable. It is said that because of the

variations of the transport in time and place, the sedimenttransportprocess

is in a dynamical equilibrium.



A sedimenttransportformula only relates the mean value of the transport
to the mean watervelocity, the bedroughness and a representative grain-

diameter.

Because of the necessary averaging time (Tav) of the different parameters
the sedimenttransportformula can only be used in very slowly varying

circumstances (T >> Tav)'

Besides,in Section 1.l1. it was mentioned that the use of a sedimenttransport
formula becomes questionable in some cases because of the existence of
hysteresis—phenomena:
1. Suspended-~load: A sudden change of hydraulic conditions causes
a delayed reaction of the sediment. It takes time or distance
for the sediment particles to redistribute over the concentration
vertical; during this response-time the transportformula cannot
be correct.
2. Bed-load: A similar process can happen in case of bed-load when
a delayed reaction of the bed-forms takes place on changing
hydraulic conditions.
In both cases an adaptation occurs which can be symbolized by an adapta-
tionperiod (Ta) or adaptation length ( Kerssens, 1974 ). Because of
these hysteresis-phenomena a second condition for the use of a
sedimenttransportformula can be giveq; this is again the necessity of

very slowly varying circumstances (T >> Ta).

A general form of a sedimenttransportformula is:

s = £(u, D, C.) (9)

in which: Dm mean grain diameter

€

Chézy-roughness.



If the sediment is uniform and the bed-roughness is supposed to be fixed

Eq. (9)

becomes:

s = f(u) (10)

transportformula for uniform sediment has similar restrictions.

1.

Suspended load: It is a known fact that the different fractions
are distributed along the concentration vertical in a different
way ( Sengupta, 1975 ). The reactiontimes of the separate
distributions on changes in hydraulic conditions must be taken
into account. The time or length scale of the adaptation of the
finest fraction can be used as a measure of this reaction process.
Bed-load: Analogous to suspended load the size-fractions are not
necessarily uniformly distributed over the transportlayer (in
vertical direction). It is plausible that the''shape of the bed-
forms" is important in this respect. A change in hydraulic con-
ditions has its influence on the bedforms and thus the distribu-
tion of the different fractions in the bedforms (transportlayer)
may be influenced too. Little is known about the adaptation

of bedforms or the adaptation of grainsize distributions.

Again the time-scale of the interesting processes (bedlevel and bedcompo-

sition changes) must be an order of magnitude larger than the different

adaptation periods Ta (T >> Ta).

A general form of a sedimenttransportformula per fraction i is:

s; = fi(u’pl’°°"P"'"’pn-l’Dl""’Dn’Ct) (11)

i=1,...,n (fractions)
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In this formula the transport of fraction i depends not only on its own
(double averaged) probability in the transportlayer but also on the

probabilities of the other fractions.

A simplified form is:
I
85 pi'fi(u’Di’Ct) (12)

in which fi is the transportrate of fraction i in case of uniform sedi-
ment (D = Di) under the same hydraulic conditioms.
In this formula the transport of fraction i is a linear function of its

probability Bi'

This "basic hypothesis' and other available concepts of bed-load formulae
for non-uniform sediment are treated in a literature survey

(Ribberink, 1978).

Later in this report a more specific form of the transportformula will
be chosen and the influence of this form and some alternatives on the

mathematical model will be studied.

1.4. The set of equations

The following set of equations has been described in the previous

sections:



_l]_

~
equation of motion 9z
of water: ot ox ox ox
continuity-equation 9z
da ER - 227+ a o, 0 (14)

of water: ot ot ox 9%
continuity-equation 9s. 3p. 9z

. W == +BE == +D, r =—==0 (15)
of sedimentfraction i: ox ot lz ot

o
1=1,...,n

transportformula _ = _ _
of sedimentfraction i: 5i % fi(u’pl""pi""’pn-!Dl""’Dn’Ct) (16)

Remark: The averaging- bars of u and P will be omitted in the following.

It will be assumed that the watermovement can be treated as being in a
quasi steady state. Because of the bed-level-changes the terms du/dt

and 3a/dt are not equal to zero but because of the large time-scale of
these changes these terms and Bzolat in Eq. (14) can be neglected (quasi
steady state).

Equation (14) is obtained by combining the continuity-equation of water and
sediment., Because generally the transport of sediment is small compared

to the waterdischarge (small transport concentration) it can be stated

that Eq. (14) is a good approximation of the continuity-equation of

water only.

Because of these simplifications Eqs. (13) and (14) can be combined to:
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_ gay du 9z
(u u) 9x *8 9x R

which is a differential equation describing a backwatercurve.

(17)

With the assumption that the total Ché&zy-roughness Ct is constant both

sedimentequations (15) and (16) can be combined to:

of ;. du afi Egi . . of,  dp; . of, 9p_,
ou 0x Bp] ox Bpi 0x op,_, O
azo api
* Piz 5 RS s =0 (18)
o

Remark: In the following all differentiations of fi (generally:

o9f./ob) will be written as £, .
i iy

The original set of 2n + 2 (n fractions) equations is now reduced to

n + 1 equations:

® small transport concentration

e constant Chézy-roughness

- 83y du e
(u u) ox = 90X 5 (19)
op op. op
ou 1 i n-1
B T T R T T 5% ¢
P i Ph-1
Bzo Spi
*Py o tREmp =0 (20)
o
L= 1,00e,n
@ quasi-steady watermotion

—
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In case of only two .sedimentfractions (n = 2) the set of equations

becomes more handy and raduces to 3 equations:

8 ga, 3du azo |
(W= 5 *83; =R (21)
ap 9z ap
du ] o 1 _
flLsx*8 = *P G tREgp -0 (22)
v p1 o
ap 9z ap
du 1 o _ 1 _
f) 5x* % Jx *Pp 3t Bépr -0 (23)
u P zg
® quasi-steady watermotion
L_ ® small transport concentration )

® constant Chézy-roughness

® two fractions (n = 2)

Remark: The last term in eq. (23) is resulting from Pt Py = 1, and

2
therefore 8p2/8t = - Bpl/Bt.

In principle this set of 3 partial differential equations with 3 dependent
variables viz. u, z and P, can be solved. To get more insight in this
set of equations the characteristics and characteristic relations will

be derived in the next chapter.



—14—
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2. Characteristics of the set of equations

2.1. General

By deriving the characteristics of a set of quasi-linear partial differen-
tial equations (p.d.e) it is possible to get more insight in the mathema-
tical character of the set of equations as well as the processes described

by these equations.

The mathematical character can give information about the solution method
which has to be chosen. In case of real and unequal characteristic directions
the set of p.d.e. is hyperbolic and can be solved by integration along charac-
teristics. This leads to a new set of ordinary differential equations in

stead of p.d.e. (characteristic relations) which are valid along the cha-

racteristics.

The characteristic directions can also be used as estimates of the celerities
of the described physical processes. In the original set of p.d.e. describing
the unsteady watermovement and the transportof uniform sediment (de Vries,
1965, 1976) three real and unequal characteristic directions were found. Two
of these characteristic directions can be very well approximated by the well
known expressions resulting form the long-wave watermovement (¢1’2 =1+ Fr™l).
The third one generally is much smaller then the other two and can be approxi-
mated by the expression ¢, = v/ (1 - Frz), in which ¢ is a dimensionless trans-
portconcentration parameter. This expression is even found exactly if the
watermovement is assumed to be quasi-steady; this is a reasonable assumption
because of the magnitude of ¢, and |¢2| >> ¢3) which means that the water-
movement reacts much faster to disturbances than the sedimentmovement.

If integration along characteristics is used the following charcteristic rela-

tion is valid along ¢ = ¢,:

R
T g (24)
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The left~hand side of this equation can be written as:

dz Bzo ¢3 Bzo

&t "3t T (23)

The right—hand side of Eq. (24) takes care of the damping of the sand-wave }
(or bottom-level wave). If the bottomfriction is negligible with respect to

the other terms in the long-wave equation (R = 0) a simple-wave relation }
results in which ¢3 = ¢3/u represents the propagation velocity (celerity) |
of a certain bed-level . Generally —also if R#0 - c3(=lb.u/(l - Fr?))
describes the celerity of an infinite small disturbance in the independent

variable z .

In the new set of p.d.e. describing the quasi-steady watermovement and the
sedimentmovement in case of two sedimentfractions a new dependent variable |
Vi3, P is introduced (see Eqs. (21), (22), (23)).

It is interesting to know whether this set of p.d.e. is hyperbolic again

and whether new characteristics can be derived. Moreover it is important

to know the order of magnitude of the characteristic directions and whether
it is possible to interprete them as celerities of infinite small
disturbances in bedlevel (zo) and bedcomposition (p]).

In the following sections the characteristic directions and relations

will be derived. In order to give some interpretation,approximations are

made and it is tried to estimate the order of magnitude of the characteris-

tic directions in a simple way.

2.2. Characteristics and mathematical character

2.2.1. Derivation

Elimination of the term du/3x in the Eqs. (22) and (23) using Eq.
(21) gives two resulting equations with two dependent variables,p1 and

z .
o]
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9z gf]_u 320 8p1 8p1 f]_u R
P, 3t " Te ax PO tin TG (26)
a9z _ gfzu 320 45 Ezi . 9p1 . fzu.R 27
P2z, ot G ox 3t 2p, ax G

in which G = u - ga/u = %? (Fr? - 1).

The variation of p;(x,t) and zo(x,t) in any direction c in the x~t plane

can be written as:

Szo azo
dZO = -ﬁ* . dt + W . dx
ap1 9P
dp; = 3F dt + K . dx
dz0 820 azo
Ll o " TSR Ay
dp1  9p; ap1
T TR > (29)

in which ¢ = = direction coefficient of the variation.

2.3
dt

The equations (26)...(29) can be written in matrix—form as follows

9z
o]
9120 -gf, /6 BS £, o £1 R/G
Bzo
Pzzo ~8f2u/G -B6 fzp1 I 'fzuR/G
8p1 - dz (30)
(o]
1 c 0 0 e ey
op1 dp;

° ot e 3 T
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If it is assumed that there is no contradiction in this set of p.d.e.
the determinant D of the coefficient matrix can only be zero if the

derivatives BZo/Bt, azo/Bx, dp1/3t and 3p,/3x are indeterminate.

The direction coefficients c belonging to this situation (D = 0) are defined

as the characteristic directions of the set of p.d.e. After some simple

mathematical operations D = O results in the following expression:

BaGCZ - C{G(fl :P2 - fz «P1 ) - Bdg(fl + fz )}+
P Zo Pa Zo u u

= g{fzu.flpl = flu.fzpl} = 0 (3])

Because Eq. (31) is a quadratic equation in ¢, two characteristics can be

expected.

Substitution of: ¢ = c¢/u (= dimensionless celerity)

wi = fi /a (= dimensionless transportconcentration para-
u meter of fraction 1)
and: G=u- ga/u-= %? (Fr?2 - 1) = u(l - Fr?)
yields:
£ - £ . + £ - +F
5 - q)!.lplpzzo&S 2p,*Plz, . Uy *+ U2 _ 1} 25, b2 TN
[ " 1 - Fr2 BSu(l - Fr?)
Substitution of:
£1_ P2z~ £2_ .P1,
A = P1 Ogéu P1 o (32)
Y1 + P2
5 = : (33)
1 - Fr
of - £
S 13} 25, T V2-f1 30
| B.S.u(l - Fr?)
)
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gives: $2 - ¢(A+B) +C =0 (35)
which can be easily solved by the quadratic formula:
61,2 = 4(a + B + [(a + B2 - 4c]) (36)

This solution can also be written as: |

41,2 = A+ B+ [(A-B)2 +4(aB - )]%) (37)

In the following it will become clear why Eq. (37) is written in this form.

2.2.2. Mathematical character

The mathematical character of the set of p.d.e. is determined by the

sign of D'(= (A + B)2 - 4C, see Eq. (36)). If D' < 0, = 0 or > O the charac-
teristic directions are respectively complex, real and equal or real and
different and the set of p.d.e. is then elliptic, parabolic or hyper-

bolic respectively

In Appendix 2.1 an estimation of the sign of D' is given with a simple

derivation. The main assumptions which are made in this derivation are:
1. The sedimenttransport of fraction i can be written in the fi

following way:

n-
s; = fi(u,pi) =m,.u 1 (38)

in which: m, function of P; and not a function of u.

n.
1

2. Another way of writing the transport of sedimentfraction i is

not a function of 12 and u.

(see also Appendix 1):

§
Si = fi(u,pi) = ']—_—-e— . Upi « C . p. (39)



in which it is assumed that the variables § (= transportlayer-
thickness), up, (= double averaged grain velocity of fraction i)
and C (= double averaged value of the sedimentconcentration) and
porosity €, are not a function of p; -

With these simplifying assumptions it can be proven that

(AB - C) can never be negative which is a necessary condition for an

elliptic and parabolic character of the set of p.d.e.

The conclusion that can be drawn from this estimation is that the set of

2.2.3. Approximated characteristics

With help of some assumptions and approximations it is possible to write both

characteristic directions in a more simple form then the complex expression of
Eq. (37).

Equation (33) can be written as:

V1 + Yo

1 - Fr?

(—u uy L £, /a  _ 1]

1 - Fr? 1 - Fr? 1 - Fr?

B Ll
a

This corresponds to the characteristic direction as_found in the original
set of equations (uniform sediment); it can be interpreted in that context
as the celerity of an infinite small disturbance in bedlevel (zo).

However, this expression is not found as one of the exact roots of Eq. (35)
unless a condition is fulfilled. From Eq. (37) follows that if AB = C both

roots become:
¢1 2 = (A + B + |A - B]) (40)

which means that ¢, is always larger then ¢, and two cases can be considered:

I
>

A>B: ¢, =
B<A: ®

$¢> = B
B ¢2=A

(41)
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So, if the condition AB = C is fulfilled

P25 -f1

- pig .f2 Y1 + Y2
A (,_. pl "O

P1
) and B (= ————) are exact roots of Eq. (35)
Bdu 1 - Fr?

In Appendix 2.1 however it is shown with a simple estimation that generally

AB - C has a positive sign. In Appendix 2.2 a further interpretation of

this condition AB = C is carried out.
Better conditions for A and B to be good approximations of the exact charac-

teristic directions must be formulated; two cases can be considered:

1. Clearly hyperbolic case: VD' (= {(A - B)? + 4(AB - C)}%) is of the
same order of magnitude as A + B. (see Eq. 37)). In this case the

condition is:
4(AB - C) << (A - B)?
which generally means: A >> B or B >> A (42)
2. Approximately parabolic case (but still hyperbolic): vD' is much
smaller than A + B. In this case A and B approximately have the same

magnitude (A = B) and AB - C approaches zero.

In Appendix 3 simplified expressions for A and B are derived with the aid

of similar assumptions (Eqs. (38) and (39)) as have been used for the
estimation of the mathematical character of the set of p.d.e. The result

of this derivation is:

v

B Pzzo-flp1 - Plzo-fzp1 N P2z Yp, * Piz,-Uup2
A= e = = (43)
+ +
L Mt gon.S (Paup, * Pzup)) (44)
1 - Fr? e v

If it is assumed that the probability of fraction i on the level z = zo(x,t)
is equal to the averaged value of pi(x,t) over the transportlayer (pi) and

§ . ; .
B-nrg is approximately equal to one both expressions become:
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A= 1 = 2 (44)

Pl'up G PZ-up
B = 1 - 2 (45)

Expression (4 ) for B which agrees with the characteristic direction for

uniform sediment (= T—:Eg;r),represents a dimensionless sum of grain-
velocities weighed with the probabilities P; in such a way that it can be interpreted
as the (dimensionless) mean gr;in velocity of the sedimentmixture.

Expression (45) for A also represents a dimensionless grain-velocity but

is weighed in the opposite way. In Fig. 2 the ratio A/B is shown as a

function of p; for different ratio's of grain-velocities upl/upz. It is

assumed that always up1 > up which generally means that fraction 1 is the
2

finer sedimentfraction.

50
4.0 10

20~
A/B

10

0.5
0.4

0.3+

0.2+

—f

0 02 04 05 08 08 1.0

Fig. 2 Estimation of the ratio of the approximated characteristic

directions A/B.

0.1
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In the Equations (44) and (45) as well as in Fig. 2 it can be seen that

if one of the fractions is hardly present (pi +-0) A appréaches the grain-
velocity of this particular fraction and B approaches the grain-velocity

of the other fraction j (pj > 1).

If it is assumed that A and B are good approximations of the exact characteristic
directions and that A and B can be interpreted as celerities of infinite

small disturbances in p; and z, respectively the following conclusions can

be drawn:

1. An infinite small disturbance in bedlevel z is approximately
propagating with the mean grain velocity of the sedimentmixture
(two fractions).

1 - Fr
If p; >+ O B approaches up,

If p; =+ 1 B (= Eﬂ—i;i%o approaches Up,

2. An infinite small disturbance in bedcomposition p; approaches the

grainvelocity of the fraction which is in the minority

P2, -f1_ = p1z_.f2
Ifp, > 1 A (= . pIBGu © _Ply approaches up,

If pp >0 A approaches u,,1
3. If the grain-velocities of both fractions do not differ too much
(for example in case of bedload) both celerities have the same

order of magnitude.

Remark:

Many assumptions have been made before these conclusions could be drawn.

They are:

- The transportformula per sedimentfraction is assumed to be of a
certain form (see Eqs. (38),(39)). A specific form of this formula
still has to be found.

- A and B are assumed to be good approximations of the exact charac-
teristics; this can only be verified with a specific transportformula.

~ The characteristics are interpreted as dimensionless celerities of
infinite small disturbances in the dependent variables (pi and z).
This assumption depends on the characteristic relations which

are true along the characteristics.

In the following section these characteristic relations will be derived.
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2.3 Characteristic relations

2.3.1 Derivation

Characteristic relations are ordinary differential equations which are
true along the characteristics. They give additional information about
the meaning of the characteristics. With help of Eqs. (26) and (27) (which
are the resulting p.d.e. after elimination of 9u/9x) and the additional
equations (28) and (29) the characteristic relations can be derived. The
number of equations can be reduced by elimination of Bzo/at and 3p, /3t,

which results in:

3p1 gflu 320 flu.R dZO dp]_
Grp, "B g = oy e g % =" TP @ BT
op1 gfo azo fzu.R dz dp,

u _ _ _o -
(fzp1 + B(SC) —a;' = (pzzOC + d ) 3 = G pzz T +BG dt

X

gfi,

With the substitution of Fi =z i=1,2
Rfiu

and Ri m i=1,2

the equations (46) and (47) can be written in matrix-form:

; s 9p, dz dp,

p, Foc Prg, = ¢ 7T\ [ % Ry TP, e BT
9z dz dp

f + B6 = . B = . R - 0 1
2p, s Papy ¢ 7 T\ R, " P2, It MLRT:

Putting the determinant of matrix I equal to zero yields the characteristic

directions again.

(46)

(47)

(48)
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The original condition for Bzo/Bx and 9p;/9x to be indeterminate is that
the left-hand side of the eqs. (46) and (47) must be dependent. However,
the right-hand side of these equations must be dependent too. This condi-
tion can be realised by replacing one of the columns of matrix I by the
only column of matrix II and putting the determinant of this new matrix
equal to zero again.

The result will be a ordinary differential equation with ¢ as an unknown
variable. Substitution of both characteristic directions results in two
characteristic relations holding along ¢, and c,.

Carrying out this procedure with Eq. (48) the following equation is found:

dp, dz Pzzooflp1 = Pig,-f2

- __o _ P -
ey (flpl + fzpl) * = (e 35 ) c(Ry + Rp) +

f1 .R1 - fz «R

+ P1 5 P12 (49)

With ¢ = c/u and the substitutions carried out before Eq. (49) can be written

in a dimensionless form:

(~ )

dPl fl 4 f2 dz “Dl + l’)z
P1 P1 o - = - Ww -

 CET P e n - e ——

(Pzzo-wl - Plzo-WZ)(flpl+ fzpl)

3y = (50)
g BS(1 - Fr2)

with ¢ = by,

_

A different expression for this characteristic relation can be found by

carrying out the same procedure but in this case replacing the other column

of matrix I. The resulting equation is now:

——— e~ —
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q )
dpi dz_ p1, Y2 = p2, .U (p2z Y1 = P15 _-V2)
T OB - R R - 51)
BS(1 - Fr?) g BS(1 - Fr?)
L with ¢ = ¢ 2 y

It can be shown that the equations (50) and (51) are identical. They show
that bedcomposition pj(x,t) and bedlevel zo(x,t) are coupled along the
characteristics. Therefore generally it cannot be said that infinite small
disturbances in bedlevel, and bedcomposition are propagating along both
characteristics separately. Or in other words the exact characteristic direc-
tions cannot be interpreted as celerities of infinite small disturbances in
p1(x,t) and zo(x,t).

However, under certain conditions approximated characteristic relations

can be derived and separate propagation becomes possible.

2.3.2. Approximated characteristic relatioms

Under the same (exact) condition that the expressions A and B are equal to the
exact characteristic directions, the characteristic relations can be replaced
by simpler differential equations.

This condition is: AB — C = 0 (see Section 2.2.1) or formulated in another

way (see Appendix 2):

- £, + f =0
(P220W1 Plzowz)( 1 2P1)

which means:
either: pzz ‘\Dl = plZ “()2 =0 (52)
or: f;, +f, =0 (53)

or: both parts are zero. (54)
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In Appendix 2.2. these conditions are interpreted. Applying the conditionms

(52) and (53) to the exact characteristic directions (Egs.(40), (41)) and

to the exact characteristic relations (Eqs. (50) and (51)) more simple

expressions can be derived.

In Table I the results of this approximation are shown. In the first and

second column the condition for the approximation and the used characteristic

direction (A or B) along which the characteristic relation (fourth column) is

true are placed. In the third column the equation used for the charac-

teristic relation (Eq. (50) or (51)) can be found.

Remark: In two cases the approximated characteristic relations cannot be
determined with one of the available equations because all terms
become zero. In that case the other equation delivers the right

equation.

In two cases very simple expressions for the characteristic relations are

found:

1. In the last case of Table I (Eq. (58))k

_©o _Uu _n-b + ¥
dt—g.B,alongd)—B T < Fel

This expression is the same as found in case of uniform sediment

(see de Vries, 1976). It means that an infinite small disturbance

in bedlevel zo(x,t) is propagating with (dimensionless) celerity

¢ = B.

Under the same condition the other characteristic relation holding

along ¢ = A is complicated and zo(x,t) and p; (x,t) are coupled again.
2. In the first case of Table I (Eq. (55)):

dp, . Prgg-f1y = Pigg-fo,,

Bdéu

This means that an infinite small disturbance in bedcomposition
p1(x,t) is propagating without damping with dimensionless celerity
$ = A. In this case the characteristic relation along ¢ = B is

more complicated.



Condition Characteristic direction Equation used for Characteristic relation
(approximated) characteristic relation (approximated)
p2, -f1_ - p1y .f2 dp,
A = Zo P1 o P1 (63) —_—=0
BSu dt
52 55
(52) o (55)
_ - (64) — =0
Pz, V1 —p1, Y2 =0 dt
o o
Y1 + Yo dp, f£1  + f2 dz
D= (63) (P2 Ply + (B-A) = (B-A4).
2 dt u dt
1 - Fr
- f + f
uR P + mg LR (P22 1 Prz, W2) ( %o 2pl)
g 1 - Fr* g BS(1 - Fr?)
(56)
(64) undetermined
p2z_.f1_ -~ p1, .f2
A= g plBGu N . (63) undetermined
(57)
dp dz_ pi1, V2 — P2z U1
1 _ _ (o] (o] o] -
(53) L% ae BB - Cma e )
P2z V1 — P1z Y2
fl + f2 =0 = A EIS zo o
P1 P1 & BS(1 - Fr?)
Y1 + P2 dz
R Y (63) N
1 - Fr2 de g
(58)
dz
(64) I " s B

Table I: Approximated characteristic relations

_82_
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In the case that both conditions (52) and (53) (See (54)) are true it
can be easily seen in table I that both simple characteristic relations

((55) and (56)) are true at the same time.

Remarks:

1.It should be realised that the approximations carried out in the
preceding pages are possible in a mathematical sense. Whether the
approximated relations have any physical meaning is not clear and
has to be investigated.
For example: the exact condition AB = C which is the basis of the
approximated characteristic relations generally is not exactly
true. In Appendix 2 a simple consideration with help of some
physical laws showed that the sign of AB - C is always positive
(hyperbolic character).
Formally in stead of this condition the conditions (42) and (43)
must be used. Nevertheless the approximated characteristic relatioms
of table I show the extreme possibilities of the set of equationms.
2. A general conclusion of this chapter can be that generally bedlevel
zo(x,t) is coupled to bedcomposition p,(x,t). A change of one of
these variables has an immediate influence on the other one.
A simple physical example may illustrate this: Consider a uniform

steady watermovement over a plane bed in which a small disturbance

in bedcomposition is made (See Fig. 3)

Fig. 3 A small disturbance in bedcomposition and its consequences
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If it is assumed that the composition of this disturbance is finer than
the surrounding sediment it is possible that this fine sediment moves
faster and therefore over the original bed, leaving an erosion hole.

The consequences of this disturbance are then:

1. A disturbance in bedcomposition p](x,t) and bedlevel zo(x,t)

propagating with celerity °

2. A disturbance in bedlevel zo(x,t) propagating with celerity c

2
(< cl).
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3. Specific characteristic directions and relations

3.1. General

In the Chapters |1 and 2 no specific transportformula per sedimentfraction has been

used, A general form was taken according to:

Si=fi (u’Dl, oo ey Dn’ pl’ cees pn—l)

(n fractions)

In order to study the behaviour of the derived characterictic directions and
relations some simple approximations for a transportformula per fraction were

assumed to be true like for example the basic hypothesis:

s, = p;

. fi' (u, Di)

In this Chapter the influence of more specific tranportformulae per fraction on
the characteristic directions and relations will be studied. In the first Section

a summary is given of a literature survey concerning bed-load formulae for non-
uniform sediment which was carried out earlier, After that a specific choice is
made and the influence of two bed-load formulae per fraction will be studied in
the following sections. First the characteristic directions are calculated and the
influence of a number of dimensionless parameters is studied. Items like the
absolute as well as relative behaviour of the two exact characteristic directions
and the accuracy of the approximated characteristics will then be paid attention

to.

Next the characteristic relations will be studied which is of importance because
they describe the processes taking place along the characteristics. Questions con-
cerning the time scales of bed—-level and bedcomposition-changes will come up

for discussion. Using some dimgnsionless parameters several cases will be dis-
tinguished in which the characteristic relations are fundamentally different

and consequently the processes propagating along the two characteristics are

different also,

3.2, Bed-loadformulae per sedimentfraction

3,2.1, A literature survey
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In this Section a summary is given of the results of a literature survey which
was carried out earlier (Ribberink, 1978). It was shown in the previous sections
that the derived mathematical model for morphological computations in case of
non-uniform sediment requires a transport—-formula for every sedimentfraction
separately. The applications of this model are confined to bed-load problems and
as a consequence suspended load is not considered in this literature survey.

A well-known example in which the sediment-transport is already separated for
every fraction is the bed-loadconcept of Einstein (1950). Other bed-loadformulae
per sedimentfraction are based on one of the classical formulae like the formula
of Kalinske (1947) and that of Meyer-Peter & Muller (1948). In these formulae the
sediment-transport is a function of one representative grain-diameter. A general

form of a transportformula per sedimentfraction is:

s; = fi( W, Dy eees Dy Pys eees By 3 (57)
The transport of fraction i is described as a function of the flowvelocity,
the grain-diameters of all n fractions and the probabiliteis of all fractions minus
one (because of % p; = 1.

i=1
A bedroughness parameter (for example Ché&zy-roughness Ct) is as in the complete
mathematical model assumed to be constant and therefore not included in Eq. (57).
Several investigators have tried to extend the basic transportformulae for large-
range mixtures of sediment. Pantelopoulos (1955, 1957) shows an identical deri-
vation as Kalinske (1947) for every sediment fraction separately. In his stoch-
astical consideration the waterturbulence near the bed is included. The resulting

formula is:
a,, = 2/3 p(D;) AD, D, up(Dg) (58)

in which: p(Di) ADi = part of the unit bed-area occupied by grains with a dia-

meter between D. and D. + AD..
i i i

According to Pantelopoulos the mean particle-velocity ap(Di) is a function of

the critical shear-stress of fraction i (Tci) and a waterturbulence parameter.
However, there is no theoretical expression available and Pantelopoulos only draws
some conclusions about T.. with help of some experiments. The experimental verifi-
cation of the whole formula is very restricted. The bedload-formula of Einstein
(1950) also results from stochastical considerations. On the grounds of earlier
experiments Einstein assumes a normal probability distribution of the liftforce

acting on bedparticles.



_33_

The dimensionless transport of fraction i can be written as:

Is; P P
= = (59)
VAgDi5 = | -p

in which A* is a universal constant and p is called the 'probability of erosion'.
This parameter p includes a dimensionless flow-parameter which on its turn in-
cludes a hiding-factor €. This factor must compensate the liftforce for the pheno-
menon of 'hiding of smaller grains behind larger ones'. With the aid of experiments
with 'large range' mixtures of sediment Einstein and Ning Chien (1953) empirically
modified this hiding-factor £. A disadvantage of Einstein's formula appears to be
the complex form of it. Many correction-coefficients and figures hardly make it

possible to write this formula in a form like expressiomn (57).

Under certain conditions 'a basic hypothesis' can be derived from Einstein's

formula; it can be written in a general form as:

— ' ;
s; = p;.f (u, D;) (60)

Comparison of this expression with Eq. (57) shows that the transport of fraction

i is proportional to the probability of this fraction (pi). The influence of the
probabilities and grain-diameters of the other fractions has disappeared (the
different fractions are transported independently). The term f' (u, Di) 1in Eq.(60)
represents the transport of fraction i in case of uniform sediment under similar
hydraulic conditions. Antsyferov (1973) combines Eq. (60) with the transportformula
of Engulund & Hansen which however is a total transportformula (bed-load + sus—
pended-load). In case of bed-load only it is also possible to combine the 'basis
hypothesis' with a classical formula like for example Meyer—Peter & Milller (1948);

the result can then be written as:

I S 3 Tu‘ % 0.047) 1? 1
Bz}

The ripple-factor M is in principle a function of the bedroughness C which can

be influenced by P;- However, the basic-hypothesis does not take this into account.
Other investigators which used M,P & M or similar basic concepts realised that
this 'basic hypothesis' probably is too simple and that Eq. (61) should be cor-
rected by way of U or by the constant 0.047, Starting from physical considera-
tions Egiazaroff (1965) derives an expression for the dimensionless critical shear

stress for every fraction as a part of a sediment mixture (Eq. 62).
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n
in which: D_ = 2 p, D.

The resulting effect of Egiazaroff's expression is a decrease of the critical
shear stress of the larger fractionms (Di > Dm) and an incr?ase of Tci for the
smaller fractions (Di < D). Egiazaroff substitutes Eq. (62) in a transport-
formula (of the type of M.P & M) but does not verify the resulting formula
with experiments or rivermeasurements. Ashida & Michiue (1973) also combine a
transportformula like that of M.P & M (including basic-hypothesis) with the

derived expression of Egiazaroff; the result can be written as:

u

ds; Te, . *®
i 7 p..tir - =By - Sy (63)
3 1 = T u
VAg Di % ki3

in which Toe is the dimensionless total shear stress working on the bed
2

Pu
(= *

(pg = P)g D3

) and u is the shear velocity.

Remark:Ashida & Michiue (A & M) modify Egiazaroff's expression for D;/D, < 0.4

which, however,is based on only one experiment.

The total formula (63) is verified by A & M with laboratory-experiments (no
bedforms!). They conclude that the bed-load per sedimentfractions is sufficiently
described by Eq. (63) except for the coarse part of the sedimentmixture

(D; /Dy > 1). Suzuki (1976) directly uses the bed-load formula of M.P & M (in-

cluding 'basic hypothesis') and Egiazaroff's theory. The resulting equation is:

q U Ry ¢ ’
b 1 _ 3/2
D 0.77 Ta ) (64)

pl -——.—
VAg Di3 i %]

with T, according to Eq. (62).

*

For D; = D, the expression 0,77 Te&. = 0.047 and Eq. (64) is identical to Eq.

. i
(61). Suzuki verifies this formula with a small number of experiments (with bed-
forms) and finds a reasonable agreement. However, the number of experiments is too

small to get a real verification of Eq. (64),
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General conclusions from this literature survey are:
(i) There is a lack of verification of the available concepts for a bed-load
formula per sedimentfraction.
(ii) The stochastical-empirical approaches are rather complex because of the
large number of empirical correction-coefficients and figures. Upmost
it hardly seems possible to write these formulae in a suitable form
for the mathematical model.
(iii) Use of a bed-load formula per fraction based on the formula of Meyer-Peter
& Miller seems to be the most promising way.
Advantages are:
- The majority of the experimental verifications were carried out on this
type of formula.
- This formula is written in a rather simple analytical way which can
easily be used in the mathematical model.
-~ Two variations are possible: the formula of M.P & M with and without the

use of Egiazaroff's theory.

Remark: In the following Sections 'Egiazaroff's theory' will be abbreviated as
'Eg.'s theory'.

3.2.2. Some properties of two bed-load concepts per fraction

Using the conclusions in the previous section both transportformulae of the
type M.P & M (with or without Egiazaroff's theory) will be considered more closely.

The first formula (without Eg.'s theory) can be written as:

dg, H Rb 1
i 3/2
—_——— =8 p. ( - 0,047) (65)
rxgjigﬂ i EDi

According to Meyer-Peter & Muller the ripple-factor M is defined as:

=
[

= (. /ey (66)

in which: Ct
C
g

'total' Chézy-roughness of the bed

Chézy-roughness of the grains

Combination of the Eqs.(65) and (66), usage of the Chézy-equation (u = CVRy i)

and writing of Eq. (65) in a non-dimensionless form, yields:
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2
dg: = Ds 8 YAg [ —————— = 0.047 D, 3/2 (67)
i i C1/2 c3/2 A 1
t g

Equation (67) shows that the transport of fraction i is strongly influenced by
the flowvelocity u and in first view linearly dependent of Py - However, Cg is

dependent of a roughness parameter kg according to:

12 R.b

C =18 log —— (68)
& kg + 0.3 6"
with: ks = equivalent sand-roughness of Nikuradse
§' = thichness of the viscous sub-layer.

In general k_ is set equal to D90 of the sedimentmixture (90% is smaller than
Dso) which in its turn is a function of p; . However, Eq. (68) shows that this

dependency is very small and it will therefore be neglected in the following.

Equation (67) also shows the influence of the total Ch&zy-roughness C, on s+

In an earlier stage in this report this parameter was taken constant. However,

it must be realised that this assumption is a restriction of the mathematical model
because roughness-variations can be considerable in rivers. These variations are
influenced by the hydraulic conditions and the type of bedforms which in its turn

also is a function of the bedcomposition (p;).

The second possible bed-loadformula per fraction (with Eg.'s theory) is similar

to the concept of Suzuki:

g .
i HRy 1 3/2
-—-————-—=8.pi(T - 0.77 T, ) (69)
Vg Df i %
with: T _ 0.1
C*. - D. 2
1 (1%10g 19 519
m
HR1-
Concerning T (= ) the same assumptions are true as in the first formula
e AD.

(Eq. (67)). =i *

In this section a comparison will take place of both formulae (Eqs. (67) and (69))
and the influence of some parameters will be studied. Analogous to the complete
mathematical model a restriction will take place to two sediment—fractions,

It will be assumed that:
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9.
Xi ='-——£L—-‘(= dimensionless transportparameter) (70)
Yig Di5
T R Rb i 3 ;
e*i = =i (= dimensionless flow parameter or
t dimensionless effective shear stress) (71)

Substitution of Eq. (70) and (71) in both transport concepts (Egs. (67) and (69)

yields: .
i /
= _ /2
X, = 8.p.(T, 0.047)
¥
1
X, = 8.p,(1, - 0.047) %2 (72)
*
\.
Meyer-Peter & Muller without
Egiazaroff's theory (M.P & M).
and
i /
3/2
X, = 8.p,(Te =077 7T )
1 )
X, =8.p.(ty =0.77 T jpd (73)
E *, *,
Meyer-Peter & Miller with
Egiazaroff's theory (M.P & M + Eg.)
Remarks:

(1) In order to distinguish clearly between the dimensionless transport with
or without Eg.'s theory Xi will be provided by an index E (XiE) in case that
Eg.'s theory is used.
(ii) Analogous to the foregoing sections it will be assumed that fraction 1 is
always the finer fraction.
(iii) The 'Egiazaroff-term' can be written as:

n
Te = 10 _ 2 _ 10
c*i 0.1 / (*"1og 19 D; / Dm) 0.1 / (*1og 19 Di/ iz]

or in case of two fractions (n = 2):

T, =0.1/ ("log 19/{p, + (1 - p,) D,/ })’
*)
Te =0.1/ (lolog 19/{p1 Dl/D2 + (1 - pl)})2
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The influence of three variables viz.Te Pys DI/D2 on the Eqs. (72) and
X'i,

(73) will be studied in the following. In Fig. 4 the dimensionless transport

of fraction 1 with and without Eg.'s theory is shown as a function of Tag

for different grain-diameter ratio's DI/D2 and a fixed P, - It can be seen that

X, _is_smaller than X, . Moreover this influence is larger when the grain-diameters

deviate more (D2 >> Dl) and it becomes smaller when the dimensionless effective

shear stress is far from 'initiation of motion' (T > 1. ).In Fig. 5 an
e Cc

5 e

analogous picture is shown for fraction 2. Now X, _is_larger than X, and the

difference is becoming larger when D; becomes smaller and when T, ~ TE
*, *;
Remark: It must be realised that in the Figs.4 and 5 the dimensionless transport

of fraction i (i = 1,2) is shown, which is equal to:

X Y8
* VAg Di§

In order to study the influence of Dl/D2 on the real transport of fraction

i (qs-) by means of these figures D, must be kept constant (e.g. D, = con-
i

stant in case of studying g and variations of D1/D2 are in fact only

. 1
variations of D2).

10 ™ . X1E
x1(E) P1=O.q.
107k
10/
fs
//
109 / . e,

004 006 01 0.2 04 1.0

Fig. 4. The dimensionless transport of: fraction 1 with/without Eg.'s theory as

a function of Tg  for different values of D,/D,.
=
1



—
(=]
T

107"

102 o/, l .

004 006 01 0.2 0.4 1.0
Fig. 5 The dimensionless transport of fraction 2 with/without Eg.'s theory

as a function of T, for different values of Dl/Dz'

*®,
2

In Fig. 6 the influence of Eg.'s theory on the dimensionless transport per fraction
is shown in another way. Because Tog, ™ Tei / (Pg, = p) g Eﬁ_the magnitude of

TQ& must always be a factor Dl/D2 lower then the magnitude of TQ* to let

3 1
the same effective shear stress (Te) work on both fractions and to get comparable
dimensionless transports of both fractions. Assuming that Tg [Te = Dz/D1 also
. . . *2 - .
means that the ripple-factor U is the same for both fractions (Te = Tei = u.pgRbl).
In Fig. 6 Tey s D /D, and therefore also Te,, are fixed. The dimensionless trans—
1

port of both fractions (X, and X,) is 11near1y dependent of P, ("basic hypothesis').
Application of Eg.'s theory again causes a reduced transport of the finer fraction

and an increased transport of the coarse fraction.

It can be concluded from these calculationms:

(1) The application of Egiazaroff's theory does not fundamentally change the in-
fluence of the dimensionless effective shear stress on the dimensionless trans-
port of each fraction. For very large Texi (>>Tc“i) this theory even hardly

has some inluence.

(ii) However, because of Eg.'s theory the transport of the finer fraction is smaller

and of the coarse fraction is larger. Especially for small grain-diameter ra-

tio's (Dl/D2 << 1) this influerice can be considerable.
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0121
010t
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Fig. 6 The dimensionless transport of both fractions with/without Eg.'s theory

as a function of p, for fixed values of T and D, /D,.

%
Remarks:1.All calculated values of Chapter 3 can be found in a number of

tables in Appendix 7.
_2Transportprobability of fraction i(piT)can be defined as:

n
= Qs / (Z
i=1

Pi ds;)

T
In case of two fractions and use of the formula of M.P & M without
Eg.'s theory the ratio qsl/qSz can be written as:

U Ri_ 3/2
P, { R 0.047 Dl}

ds, _ plT ~

9s, Pagp D, {E—Ig—k - 0.047 D2}3/2

Because D, > D, p, /p?T must always be smaller than pl/pz. Or if both
fractions are transported with an equal rate (plT = pZT) the coarse fraction
must dominate in the bed (p, > p,). This phenomenon disappears for very
large shear-stresses (Texi >> 0.047). Using Eg.'s theory the same phenomenon

is present in a less pronounced way.

3.3. Characteristic directions

3.3.1. General

In Chapter 2 the following expressions for exact and approximated characteristic
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directions of the mathematical model were derived:

¢1,2=%{A+Bi[(A+B)2—4C]1/2}.... exact (74)

in which:
P2y, o, /oy - plzo of ,/3p,

A= (75)
BSu

.+« approximated
=Yty
s bt 79)
Yy, of /ép, - ¥, 3f,/dp,

BSu (1 - Fr?)

In order to be able to calculate especially Eq. (75) the following assumptions
will be made:
(1) The probability of fraction i at the lower boundary z = z, of the trans-

portlayer is equal to the averaged value of p; over this layer:
p. = p.
iz, i

This assumption generally is not true in case of erosion of the bed but
'is true in.case of sedimentation.

(ii) Factor B(= ﬁ?(l - €,) is equal to ome. This of course is not exactly
true because it would mean that the transport—lager is completely filled
with sediment without any dunes or throughs. However, this assumption does

not change the order of magnitude of Eq. (75) and (77).

Using a simple expression fora transportformula per fraction the approximated

characteristic directions turned out ta be accurate approximations of the exact

characteristic directions when the grain-diameter ratio DI/D2 approaches one (see

Appendix 2), The general goal of Section 3.3. is to calculate the approximated and

exact characteristic directions using the transportformulae per sedimentfraction

as described in Section 3.2.2.. The following items can then be verified:

l. The absolute as well as relative magnitude of the two exact characteristic
directions.

2. The accuracy of the approximated characteristic directions.

3. The influence of Egiazaroff's theory.

4, The mathematical character of the set of p.d.e.

Remark: In the following Sections some abbreviations will be used:
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'exaxt characteristic directions' ='ex. char.'s'.

'approximated characteristic directions' = 'app. char.'s'.

3.3.2. A dimensionless notation

In order to calculate ¢1 , 3 A and B (Eqs. (74)...(77) it is usefull to write
k]

these expressions in a different dimensionless form. In that case no absolute

values of the mean flow velocity u, the mean waterdepth a, the transportlayer

thickness § and the grain-diameters of both fractiomns D, and D, have to be chosen.

Substitution of: s; = f. = qSi / (1 - eo)
b =5,/ a
in the Eqs. (75)...(77) yields:
qS qs Jrm———
T §P Lo, 2 (2 3/2} LB (78)
2
/hgp?  JAgp, ‘D1 (1 -€,) 8 u
as —
o)y 1y .y Szu (21)3/23 Ag Df (79
Agp®  vhgp, \D2 (1-8,) a u (1-Fr?)
q q q q = —
C = °2u Slpl 1y S2p, /Ag D vAg D,

-u
/Zg D;‘ Vﬁg Df vAg Df VAg D; u? a(]-!—:o)2 § (1-Fr?)

(80)

Substitution of the dimensionless derivatives according to:

Ay

and some derivation yields:

i

qp- = —rP-l—--
1 /Ag Di

u qsi

.Vqu D-is

u

1,2 (81)

4

i=1,2 (82)

|

o)

0l

A(l - Eo) au

B(l - €5)au

/Eg D

/2
- - JURY )3
= (P2 qpl pl qu (Dl 6 (83)

1

VAg D13

c(l - g,)? a® u?

/
(ot (B) )—= e

1 - Fr?

=(qu2 qp1 - Qul q'p2>('512 (85)

Vhg Df
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- b, ,,(1 =€) au - o _q1/2
$, , = — =} {E+B+ [@+B)2 -4C) } (86)
’ VAg D.°

The values of the dimensionless derivatives Qu; and qp; can be calculated using
one of the bed-load formulae per fraction. Three dimensionless parameters are

necessary for these calculations (see Section 3.2.2.):

HR1

: dimensionless effective shear stress ( = 7ﬁ§7°
i

D. /D : grain-diameter ratio (always < 1)
P, : probability of fraction 1

For the calculation of the Egqs. (83)...(86) another two parameters must be known:

Fr : Froude number
al/é : waterdepth—-transportlayerthickness ratio
Remarks:

(i) The Egs. (83), (84) and (86) show that the app. char.'s A and B and the
ex. char.'s ¢1,2 are made dimensionless in the same way. This means that
the relative behaviour of A, B and ¢1’2 can be studied by considering
A, B and &)-1’2.

(ii) A, B and ¢, ,2 are made dimensionless by u, a and D, . These three variables
are also 1nc1uded in the parameters to be varied viz, Te, r, a/§, D, /D .
Therefore it is not allowed to draw conclusions about the absolute behav1our

of A, B and ¢ from the values of A, B, ¢1’2 as a function of these dimen-

152
sionless parameters (e.g. studying the behaviour of B with values of B as

a function of D1/D2 is only allowed if D, = constant and D, varies).

In case that the bed-load formula of M.P & M (without Eg.'s theory) is used, the

following dimensionless derivatives can be derived:

= . - 1/2 ] =
Qug 24 pl.('l:e%i 0.047) 1< Te*i i 1,2 (87)
dp, = 8 (Te* - 0.047)3/2 (88)
1
qp, = -8 (Te* - 0.047)3/2 | (89)
“ 2 Meyer-Peter & Muller without

Egiazaroff's theory ('basic

hypothesis')



_44_

Use of the same bed—-load formula with Egiazaroff's theory yields:

Qug = 24 pi (T = 0.77 rc_x_i)l/z Ty (90)
/2 Dy-Dy TCx }
4, = 8 (T - 0.77 To, )32 + 8.01 p 1 (Tew.=0.77T,. )*
P 1 e*l (:xl 1 Dm 10 log -1_921- e‘)el C*l)

Dm

(91)
Te |
- - /2 D, =D, *) _ }
ap, =8 (Tea{_z 0.77 Tcxz) +8.01 p, 5 (Tey, =0.77T¢,. )

1016g(19 22-)
Dm

| (92)

Meyer-Peter & Muller with

Egiazaroff's theory

with (see Section 3.2.2.):

Te, =0.1/ (*°log 19 / {p, + (1 = p;) D,/D,}?
1
Te, =0.1/ (*°log 19 / {p, D,/D, + (1 = p)})?

In the following section A, B and 5;’2 will be calculated by substitution of
Eqs (87)...(89) or Eqs. (90)...(92) for different values of the dimensionless
parameters Fr, a/é, T, , D,/D, and P, -

)

3.3.3. Results

3.3.3.1. General

In the first part of this section the influence of the dimensionless parameters
Fr, a/s§, P, D1/Dz and Tex1 on the exact and app. char.'s will be studied.
Because of the large number of parameters only a limited number of combinations
is chosen. The influence of every parameter will be studied at fixed values of
the other parameters. During these calculations the bedloadformula of M.P & M
including Egiazaroff'é theory will assumed to be true. In the second part of this
section (3.3.3.3.) the influence of Egiazaroff's theory will be studied while in

Section 3.3.3.4, the mathematical character of the set of p.d.e. will be treated.

3.3.3.2. Influence of the dimensionless parameters

The calculation of the dimensionless exact and app.char.'s can be carried out
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using the Eqs. (83)...(86) and (90)... (92). Table 2 shows the different
calculations and the chosen values of the dimensionless parameters. Some values
are rather extreme e.g. Fr = 0.8, a/8 = 50, Tey, = 1.0 and D1/D2 = 0,2 but they

1
also give information about the extreme possibilities of the mathematical model.

dimensionless
arameter D
T P =L a/é Fr
€5 1 D
5 1 2
calculation
influence of = 0,06 0,4 0.4 5 0.2
Texl < 1.0
influence of 0.1 20 8'2
p, and D /D, 1.0 <1 0.6 > 0.2
0.8
influence of . | >0
Fr and a/é 0.1 0.8 0.4 5 < 0.8
) 10
25
50

Table 2: Diagram of calculations and the chosen values of the dimensionless

parameters,

Remarks:

(1) Generally not all dimensionless parameters are independent; this means that
studying the influence of one of the parameters and fixing the other para-
meters is mot always correct., For instance: changing TQ&I may cause a change
of the Froude—number Fr which in its turn may have its influence on the
a/8-ratio.Despite this problem a separate variation of every parameter
delivers insight in the relative behaviour of exact and app. char.'s.

(ii) The calculations are carried out using a CPS—computer programme which is

described in Appendix 5.

Dimensionless effective shear stress T,
2%
1

2

Analogous to the assumptions made in sectiom 3.2.2 T, (= Egzﬁﬁfo is only a
p. & t 1
i

function of u. The ripple~factor | and the total Ch&zy-roughness are assumed
to be constant. Also the ripple-factor p is assumed to have the same value for

both fractions and consequently the following relation is true:
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Fig. 7 Exact and approximated char. directions (dimensionless) as a function

of T .
%*1

The following conclusions about the relative behaviour of exact and app. char.'s

can be drawn:

(i) The ex. char.'s are well approximated by A and B for large values of the
dimensionless effective shear stress (see Remark made below).

(ii) A 'switching point' appears to be present (A = B) down which ¢, (largest
root) is best approximated by B and above which 51 is best approximated
by A.For ¢, the contrary is true (switching-effect).

(iii) Both characteristic directions have the same order of magnitude except for

small shear stresses when the coarse fraction approaches 'initiation of

motion'.

Remark: One of the exact conditions for A an B to be accurate approximations is

(see App. 2):
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p, ¥y = p¥, =0 (93)
It can be shown that Eq. (93) is true for large values of T, . For T >>Tq
* ) )

Eq. (90) can be written as:
v 3/2
Gug = 26 Pi Tel!

.

which is identical to:

u qg. ;. 3
i T p. HR1L e
/hg 0;3/% o apg

The ratio ds, /qs2 (=¥ ,/¥, ) is then:
u u

q
S2u

which shows that Eq. (93) is ful-filled.

Probability of the fine fraction p; and the ratio of grain-diameters D;/Ds

Figure 8 and Fig. 9 show the influence of p, on the exact and app. char,'s with

D,/D, as a parameter and for two different values of T . Because 51,2’X and B

Ex
are not made dimensionless with P, and D, it is now allowed to draw conclusions

from these figures about the behaviour of ¢ A and B as a function of p, and

1,2°
Dl/D2 (only variation of Dyl):

(i) A finer sedimentmixture (increase of p,) causes an increase of both exact and
app. char,'s.
(ii) The app. char.'s are more accurate when:
-p, 0 orp, »1
- 1)1/132 + 1
= T >2 Te
%xi 38
The second and third condition influence each other; for instance if fraction
2 becomes coarser (increase of D2) it automatically means that the third con-
dition is fullfilled less easy (To_ " 1/D2).
;)

(iii) There appears to be a remarquable difference between Fig. 8 and Fig. 9.

For 1, = 0.1 (Fig. 8) : B > A and 6} + B
)
For Tex. = 1,0 (Fig. 9) : A > B and ¢1 -+ A

1
Apparently the same 'switching effect' as in Fig. 7 also occurs in these

figures,



_48_

Remark: Figure 8 shows for Dl/D2 = 0.4 that both lines suddenly stop at
p, = 0.4, The reason is that for lower values of P, (0.2 <p1 < 0.4)

the coarse fractionreaches 'initiation of motion' (Te + 0,77 Ty )a

32.A 31.B 2 2

-
o
[+2]

Ll

o
wn
i
-
o

1 A ]

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

_..P1 —»P

1
Fig. 8 Dimensionless exact and app. char.'s as a function of P, and DI/D2

-— = ex - —
g1.A ! ?2.B

1.,
f38- 1

36

34

32

30

@ 2

—»3

0 0.2 0.4 0.6 0.8 10 0 02 0.4 0.6 08 10
Fig. 9 Dimensionless exact and app. char.'s as a function of p, and D, /D2

Te-x-l =1.,0,Fr =0.2,a/8§ =5
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Froude-number Fr and waterdepth-transportlayerthickness ratio a/§

Equations (83) and (84) show the influence of the Froude-number Fr and the a/é-

ratio on the app. char.'s:

- D

=9 -5 9 (320793 (94)
= D 1

B = (u, *au, (5 )2/2) T (95)

Because of the dependency in the parameters and the way A and B are made dimen-

sionless again no conclusions will be drawn about A and B as a function of

a/8 and Fr from the behaviour of A and B . It can be assumed that generally

Fr << | which means that for fixed values of the other parameters (TQ* s Py

D,/D,) B will be nearly constant while A is largely influenced by the ransport-

layerthickness 8, Figure 10 and Figure 11 show the exact and app.char.'s as a

function of Fr and a/g.

The following conclusions can be drawn from these figures:

(1) The approximations $} + A, 62 + B are more accurate when a/8 increases and
Fr decreases (a/d8 =+ <, Fr =+ 0),

(ii) The approximations $} + B, 5; + A are more accurate when the opposite is
true (a/6 = 0, Fr »~ 1).

(iii) Apparently the 'switching effect' occurs in these figures which can be

explained by the fact that two possibilities exist:

el el

=

N

= >
v
v

-

\A
v

>
>

=] |

-+ A,
-+ B,

&l ol
>l wl

N

Remark: If the assumption is made that A and B represent separate celerities of
infinite small disturbances in bedcomposition p, resp. bedlevel z;it
becomes clear that:

- A ('composition') increases when the transportlayer becomes thinner
(a/8 + »); this could be explained by the fact that in that case the
bedcomposition can change faster because of the decreased vertical.
mixing-length.,

- B ('level') increases when the Froude- number increases (Fr » 1)

because of the changed hydraulic conditions,
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Fig. 10 Largest ex. char. ¢

, and Fig., 11 Smallest ex. char. Eé and
A and B A and B

Tay, = 0-15D,/D, = 0.4,p, = 0.8
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3.3.3.3. Influence of Egiazaroff's theory

In Section 3.2.2. the difference between the bed-load concepts with and
without Egiazaroff's theory was treated. The main difference is the in-
creased transport of the coarse fraction and the decreased tranpsort of
the fine fraction in case Egiazaroff's theory is used. In this section the
influence of Eg.'s theory on the exact and app. char.'s is studied with
the aid of some calculations. - P

The different influence of both bed-load concepts can be shown clearly by
considering the influence of P, and DI/D2 while the other parameters are

fixed,

Figure 12 shows the ex. char.'s with and without usage of Eg.'s theory.

It can be seen that the order of magnitude of both char.'s is not changed.
The main difference is that an increase of p; causes with the use of Eg.'s
theory an increase of both char.'s while without Eg.'s theory a majority of

the char.'s is decreasing.

In Figure 13 exact and app. char.'s are shown without usage of Eg.'s theory
("basic-hypothesis') for two values of D, /D,. It can be seen that app. char.
A is decreasing when p, increases. When Eg.'s theory is used both app. char.'s
A and B increase (see Section 3.3.2.). This means that especially A is in-
fluenced by Egiazaroff's theory. This change of A is also mainly responsible

for the observed differences in Fig. 12,

Moreover Fig. 13 shows the 'switching effect'. Especially for D,/D, = 0.4 it
can be seen that 5} is approximated by B for small values of P, and by A for

large values of . For . the contra is true.
g P, 2 ry

This different influence of both bed-load concepts on especially the app. char.
A may have some consequences. Lf the assumption is made that A can be considered
as a dimensionless celerity of an infinite disturbance in bedcomposition p, the

effect of Eg.'s theory can be illustrated by the following example.

Examgle:

Consider a riverbed with no bed-level disturbance but with a positive gradient

of P, in x-direction,. The hydraulic conditions are assumed to be quasi-steady

and uniform in x-direction. Figure l4a shows the propagation of a 'bedcomposition-
wave' without usage of Eg.'s theory while Fig. 14b shows the same with usage of

Eg.'s theory.
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Fig. 12 Influence of Eg.'s theory on both exact char.'s as a function of P,

for different values of Dl/Dz'
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Fig. 13 Exact and app. char.'s without Eg.'s theory ('basic-hypothesis') as a

function of p, for two values of D,/D,.

Fr=0.2 , a/§ =5, 1, =0.2

)



-53-

S S S S S S S S

—_ X —» K

a without Eg.'s theory b with Eg.'s theory

Fig., 14 The influence of Eg.'s theory on the propagation of a 'bed composition-

wave',

Figure l4a shows a steepening or compressing wave because of the increased
celerity for decreasing values of p,. Figure 14b shows a gradient which is
flattened out (expansion-wave) because of the increased celerity for in-

creasing values of p,.

3.3.3.4, Mathematical character

As was treated before the mathematical character of the set of p.d.e. is deter-
mined by the characteristic directions which can be written as:

%,

, =3 G+ +{E-B%+ 4 @F-0OM/2 (96)

It was shown in Section 2.2.2. that under certain conditions the sign of the
expression under the root can never be negative which means an hyperbolic

set of p.d.e. In all calculations carried out in the previous sections with
two bed-load concepts per sedimentfraction no complex or equal characteristic
directions were found. It can therefore be concluded that in the whole area
covered by the dimensionless parameters as chosen in the previous sections the
set of p.d.e. is hyperbolic., By writing Fq. (96) in the original way it can be

seen that the smallest second char.'$2 can be negative only when C < 0:
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9, =1 A+B-{E+B? -4 D2

This theoretical possibility never occurred during the calculations which means
that both exact char.'s have a positive sign and no disturbances in bedlevel
or composition can propagate upstream (the Froude-number is restricted to

]
Fr £ 0.80).

3.3.4. Summary

In Table 3 the main results of the calculations of exact and app.char.'s in
Section 3.3.3.2. are shown. With the difference between the exact char.'s
as a basis several cases are distinguished concerning the accuracy of the
approximated char.'s, the difference between them and the behaviour of the

dimensionless parameters.
If the behaviour of a dimensionless parameter is not mentioned it means that this

parameter does not necessarily have an extreme value. Some remarks will be made for

every case:

(i) A >> B : In general the app. char.'s are accurate. This case can be reached
especially for a small transportlayerthickness (a/§ >> 1) and small
Froude-numbers (Fr << 1).If it isassumed that 6} and $; can be con-
sidered as dimensionless celerities of infinite small disturbances

in P, resp. z (see Section 3.4.) it can be concluded that in this

0
case bed-compostition changes propagate faster than bed-level
changes.

(ii) B >> X : Also in this case A and B generally are accurate approximations
of $; resp. 5}. Especially for a thick transportlayer (a/é6 Y 1).
and large Froude-numbers (Fr - 1). Under identical assumptions as
for A >> B it can now be concluded that bed-level changes pro-
pagate faster than bed-composition changes. Apparently going from
A > B toB > A the "switching-effect' occurs which coincides
with a change of role of both exact char,'s.

(iii) A= B with AB # C : This case can be reached when the Froude-number Fr
and a/§ have no extreme values and the coarse fraction 2 comes near

"initation of motion' (T ¥ Tey ). This occurs even faster when

S
2 2

fraction 2 is becoming coarser (D1/D2 << 1), The accuracy of the

app. char.'s is bad because of AB # C. This condition is especially

true when the grain—diameters and/or grain-velocities of both frac-

tions deviate much (see Appendix 2).
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WA

el

A> Bor B Awith AB Y C: In this situation the exact and app. char.'s
approximately have the same magnitude. Especially for large shear
stresses (Te* >> Teg ), nearly equal graindiameters of both fractions
(D1/D2 - 1) a%d interéediate values of Fr and a/§ this case can occur.

In the asymptotic case that D; ¥ Dy, the difference between the ex.
char.'s is very small and the app. char.'s are very accurate

@, ¥ 9, v A n B).Therefore this case is only of importance for large

time and distance scales. Else the mathematical model for uniform sediment

is probably equally accurate.

The influence of parameter p, has not been mentioned in the preceding cases;
in general it can be concluded that app. char.'s become more accurate when

P, * 0 or P, ~ L.

Especially the app. char. A is influenced by the usage of a bed-load formula with
or without Egiazaroff's theory. Its dependency of p, is opposite in both cases
(compression-wave or expansion-wave). In all calculations the mathematical cha-
racter of the set of p.d.e. is hyperbolic and the existence of negative cele-

rities could not be proven.

difference difference accuracy behaviour of the dimensionless
between between the | of the parameters
exact char.'s | app. char.'s| app. char.'s |Fr a/é P T D, /D
1 Cory 1%
6'1 >, A> B ¢, > & <<y | >
5; + B
— — - o— -)o
B >> A f} - E. -1 =g -1 - -
¢, > A
An B 'bad' - - - > T, << 1
-
(AB # C) *
¢, 2 9, Az Bor 6, ~ 5,9, > B
B 2 A or - - - >> Tcxi > 1
(AB o C) 9, + 5,9, > A

Table 3 Results of the calculations of exact and approximated characteristic
directions.
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3.4 Characteristic relations

3.4.1. General

In the previous section the characteristic directions of the mathematical model

were studied without considering the relations which hold along these charac-

teristics. However, the characteristic relations are rather important because
they replace the original set of p.d.e. and have to be solved in combination
with the characteristic directions in case of some morphological problem

(integration along characteristics). Moreover it is interesting to know whether

and in which cases the exact characteristic relations (see Section 2.3) can be

replaced by more simple relations. In this regard two questions are of impor-
tance:

(1) Is it possible that infinite small disturbances in bedlevel resp. bed-
composition propagate along two characteristics separately and what are
the conditions for it?

(ii) 1If 'separate propagation' is possible which of the disturbances is pro-
pagating faster? Is the bedlevel adapting faster to changing conditions
than the bedcomposition or is it the other way around! What are the con-

ditions for these phenomena?

In Section 3.4.2. a general consideration is given of the behaviour of the

exact characteristic relations in some extreme cases and the above-mentioned
questions come up for discussion. In Section 3.4.3. some specific calculations
are made of the coefficients of the terms in the characteristic relations. The
bed-load formula of M.P & M including Egiazaroff's theory will be used and by
writing the characteristic relations in a dimensionless form it will be possible

to use dimensionless parameters like Te“z’ p,» D,/D,, Fr and a/s.

Remark: In the following sections 'characteristic relations'will be abbreviated

as ‘char. rel.'s.

3.4.2. The 'switching effect' and separate propagation

In Section 2.3. the expressions for exact and approximated char. rel.'s were
derived. The app. char. rel.'s are derived from the ex. char. rel.'s with sub-

stitution of the app. char.'s ; two cases were distinguished (see Section 2.3.2.).

|
jo]

(97)
(98)

o p¥, - p0,
2, flp * fZ

]
o

1 p1
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It was shown that these conditions never are exactly true. As a consequence the
exact and app. char.'s are never exactly equal. This means that the app. char.
rel.'s cannot be applied without formulating more extensive conditions.

Two (identical) expressions for the char. rel.'s are (see Section 2.3.):

f + £ (p . -p. W (£, +£, )
B M SR PP R PR R B R i i Sl Nl
dt u dt g g Su (1 = Fr?)
¢ N ¢1:2 (99)
dp: - _ dz P,Wz - Ezw]= uR (P¥y -~ pVs)
I @ -B '&'to' (1 - Fr?) ¢ g (11- Fr’-)z (100

¢ =1¢,,,

Division of Eq., (99) by transportlayerthickness § and multiplication of Eqs.(99)
and (100) by dt yields:

(P2¢1 - lez) (flpi + fzpl)

dp, [F |+ + dz [0 - &)]=2R (¢ -a) B+ dt
tLef 8™ g0 Su (1 - Fr?)
6= 0, , (101)
dp,[ 6 - B)| + = dz [ P¥|= X ¢ pv dt =0 (102)
1 § o gd 1,2
in which: Fp = (f1Pl B fzpl)/éu (103)
v = (p,¥, - p,¥,)/(1 = Fr?) (104)

If both terms on the left-hand side of Eq.(101) or Eq. (102) have a large diffe-

rence in magnitude, the dependent variables z, and p, are propagating independently,

0
Therefore an estimation of the order of magnitude of both terms is necessary.

It is impossible to do this generally because every specific morphological problem
will have its specific influence on these terms. Therefore an assumption has to

be made:

dp, 3,%’-_ © (105)

A change of bedcomposition of the order 0(l) must then coincide with a bedlevel
change of the same order as the transportlayerthickness §. This assumption may

be arbitrary but it gives the possibility to estimate the terms in the char. rel.'s.
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This estimation can now be carried out by determination of the coefficients

L}

belonging to dp, and 3 dz in Eq. (101) or Eq. (102):

Fp (= (£, + fp )/6u) and (¢ - A) in Eq. (101) (106)

(6 = B) and py (= (p,¥, = p,¥,)/(1 = Fr?) in Eq. (102) (107)

Before treating the specific possible forms of the char. rel.'s first the

coefficients from expression (106) and (107) will be considered

(1)

¢ —Aand o - B (¢ = ¢1’2) or the deviations between the exact (¢1’2)
and app. char.'s (A, B). In Appendix 4 the following form of the exact

char.s's is derived:

¢, =41 {a+B 2+ [a-3B]+g] (108)

in which B/2 is the deviation between exaxt and approximated characteristic
directions. If for example A > B, ¢, = A + {f and ¢, = B - }B.
Another expression in which B is written implicitly is also derived in

Appendix 4:
B2 + 28 |A - B| = 4 (109)
in which: a = AB - C.
Equation (109) shows that the magnitude of B is influenced by the relative

magnitudes of A and B and the magnitude of AB - C. In the following sections

two extreme cases concerning the relative magnitudes of A, B and|8|will be

considered:
1. A>> B b, = A+ 48
¢, = B - iB
1 accurate app. 2 accurate app.
char, direction char, directions
¢1 - A ¢, »> A

¢2—>B
|8l B << A |B] << B << A
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2., B > A ¢, =B + iB
1 accurate app. 2 accurate app.
char, direction char, directions
¢1+B ¢1+B
9, > A
IBla A << B Bl << A << B

(ii) The terms Fp and py.

It can be derived easily that the product of Fp and py is equal to AB - C:

(15, * fzpl) (p,¥, = p,¥,)

Fp.py = AB - C = (110)
Ou (1 - Fr?)
It is shown in Appendix 4.2 that:
(i) Fp % A, |py|<< B (111)
(ii) Fp & A, |[pY|y B (112)

are two representative combinations and approximations of both coefficients.
It has been made clear that when the graindiameters of both fractions deviate
more (Dl/D2 << 1) and/or the coarse fraction reaches initiation of motion

(Te. > T, ) the first combination gradually shifts to the second one.

X3 £

Now the magnitudes of the coefficients in the char.rel.'s can all be approximated
by the magnitudes of A and B. However, not every combination of ¢ - A, ¢ = B, Fp
and py is possible. Substitution of Eq. (110) in Eq. (109) yields on extra con-

dition:
B2 + 28 |A - B|] = 4o = 4(AB - C) = &4 Fp.py (113)

Example:
Suppose A >> B andlBl% B (one accurate app. char. direction ¢, > A) then Eq. (113)

can be replaced by:
IZABlk 4|Fp v |

which means that Fp % A must coincide with]pw|w,B (Eq. (112)).
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If in the same situationlBl<< B (two accurate app. char. directions) the choice

Fp & A must coincide withlpw|<< B (Eq. (111)).

On the grounds of the previous estimations and choices and the knowledge of the
previous section (characteristic directions) the following table, showing app.
char, rel.'s in some extreme cases, has been composed (Table 4). It also shows
the tendencies of the different dimensionless parameters (Fr, a/$§ , Te, » D;/D,,

s . . 1
pl) for the application of every app. char. relation,

It can be seen that the propagation of disturbances in bedlevel z, and bedcom-
position p, can take place separately ('separate propagation'). In all four

cases in the largest characteristic direction separate propagation of one of the
variables occurs. In the smallest characteristic direction this happens only once
and three times a combined change of bedlevel and bedcomposition is propagating
along this characteristic. The case of separate propagation is approached better
if the accuracy of the approximated char. directions (A and B) becomes better also.
Also the meaning of the 'switching-effect' (¢, > A or B for A >> B or B >> A)
becomes clear in this table; apparently this effect is directly connected to which
one of the variables (z, or p,) is propagating in the largest characteristic direc-
tion and which one in the smallest characteristic direction. If ¢, > A and ¢, > B
bedcomposition changes propagate faster than bedlevel changes and for ¢, >~ B and

¢, > A the reverse is true.

Remarks:

(1) The app. char. rel.'s of Table 4 can be found with Eq. (103) as well as
Eq. (104).

(ii) Because of the basic assumption of the previous consideration
Table 4 has no general value. For example when A ? B or B g A it is also
possible that A and B are accurate approximations and'separate propagation’
and the 'switching effect' are possible also (Te*i >> qui, DI/D2 < 1.
Table 4 only shows some possible cases.

(iii) One of the basic assumptions of the mathematical model is the quasi-steadiness
of the water-movement which requires low Froude-numbers. In case of uniform
sediment the transition from the quasi-steady to the unsteady set of p.d.e.
is noticeable in the third char. direction ¢3 /(1 - Frz)) for Fr 2 0.8
in case of normal transportconcentrations (Y < 0.01) (Ribberink, 1978). It
seems right to use this limit (Fr < 0.8 also in case of non-uniform sediment.
This means that in Table 4 Fr - 1 must be interpreted as a tendency for the

Froude-number with a maximum Fr = 0.8,



¢, B
¢, > A
[B] << A << B

App. char.'s Fr, a/é Accuracy of Coefficients Characteristic Characteristic Tendencies of
the app. char.,'s Fp, py relation along relation along p,» D,/p,, Te,
0=0, (6, >0 o=,
A >>B Fr >0 l .accurate Fp VA D,/D, <<1
a,
a/d >> | app. char, EwlA,B Te*i > Tq*i
¢, + A
A B <<
BI% B << a Adp, =y, dt Adp, - A dz, = D,/D, < 1
2.accurate Fp YA - %
e*i Cx.
app. char., lpwl<< B p, >0, pl1+ ]
b, > A
¢, + B
IBl<< B << A
I 1
B >> A Fr ~ 1 l.accurate Fp ¥ A Bzdz =y, dt Bdp,+ Bydz, = D,/D, << 1
8 . & > T
a/é % 1 app. char byl B qui Bes
¢, + B
I8l A << B
|
N s = =
T fﬂ = 2.accurate Fp ~ A B < dz, = v, dt Adp, =Y, dt D1/D2 <1
M app. char,'s ‘plp|<< B Te > Ty
i

Table 4 Approximated characteristic relations in some extreme cases

_[9_
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The right-hand sides of the characteristic relations are written as y; dt
(for ¢ = ¢;, 1 = 1,2) in all cases. Nevertheless these coefficients y; do not
have the same value in these cases., In the extreme case of 'sepatate propagation'

these right-hand sides can be considered more closely:
1. Separate propagation of the bedlevel along ¢ = ¢;

This can occur in case of a uniform bedcomposition P, in x-direction and in case
a disturbance in bedlevel z  propagates along ¢ = ¢; without influencing the
bedcompostition seriously. In the exact characteristic relation (see Eq. (102))
this means that the 'dp;-term' can be neglected and the following equation remains:

dz, = S ¢y dt (114)

This expression is identical to the characteristic relation of the mathematical
model for uniform sediment and its right-hand side generally has a negative

sign (R < 0 and ¢i > 0 for Fr < 1), Substitution of the friction—term in Eq. (114)

yields:
ulu
dz°~— - —g:;& ci dt (115)
. s 1
in which ey = ¢i/u v E'(wl + wz)/(] - Fr?).

In caseaof a sudden step in bedlevel z, (according to Fig. 15) this relation

generally shows a damping expansion-wave.

NS ZAt’—SAt"'_;-

T

Fig. 15 A damping expansion-wave

.

The wave is expanding because an increase of z, generally causes an increase

0
in watervelocity u which in its turn causes an increased celerity cj. The wave is

damped because an increase of z; causes a decrease of a(= uR ¢;/g, see Eq. (114)).
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2. Separate propagation of the bed composition along ¢ = b;

This case can occur in case of a uniform flow over a sediment-bed in which a
disturbance in bedcomposition propagates with no serious influence on the

bedlevel z . Now the dzo-term' can be neglected in Eq. (102) and the following

relation results:

- UR Y
dp) = o5 ﬁ:—B 9. dt (116)

However, in this particular case of uniform flow the back-water curve becomes:
aZo
& 3% "R

which can be written as:

Because the bedlevel is not influenced, 3z,/3dt is very small and consequently this

relation can be written as:

9z, dzg dzg dz uR
. ’\J = o - - e
¢i3x -3¢t i x dt ¢ g

which is identical to Eq. (114).
Consequently neglecting the 'dzo-term' of Eq. (102) must coincide with neglecting

the right-hand side of this equation and Eq. (116) becomes:

SBL - 0 along ¢ = ¢, (117)

Eq. (117) shows a 'bedcomposition-wave' wyhich is not amplified or damped out but
which can be an expansion-wave or a com pression-wave - (shock!) depending of:
(i) Which bed-load formula has been used (see Section 3.3.3.3.).

(1i1) The sign of apllax (see Fig. 16).

—»X —>X

expansion—wave compression—wave (shock!)

Fig. 16 Bedcomposition-waves using a bed-load formula including Egiazaroff's

theory for 9p,/3x > 0 and 3p,/3x < 0.
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3.4.3. Some calculations

In order to calculate the coefficients in the char. rel.'s with the same dimen-
sionless parameters as used for the calculation of the char.'s (viz.

Texl’ P, > D1/D2’ Fr, a/§) the dimensionless form of the char. rel.'s has to be
adapted. Because both expressions for the char. rel.'s (Eq. (101) and Eq. (102))
are identical a choice has to be made. Eq.(102) is chosen because of its sim—

pler form:
dp, (4 = B) +3dz, pp = S5 de ¢ py (118)
with: py = (p,¥, - p,¥,)/(1 - Fr?).

Using identical substitutions as in Section 3.3.2. Eq. (118) can be written

as:
dp, (-5—-B_)+-(]S-dzo Qu . _¥AgD R'q?dn%—g-‘-‘-—
1 - Fr? g(l - Eo) a® 1 - Fr?

. e~ D
with: Qu = (p, qu, - p, (Tfi)a/zquz)
1

Division of both sides of this equation by (¢ - B) yields:

)

Qu 1 — a 63 '
1 |dp, + - = dz, = | § & - R' dt  (119)
' @ - BY(1 - Fr?) & e 5 (¢ - B)(1 - Fr?)
withs p' =228 07 R
g(l - so) a?

The marked coefficients can be calculated after the choice of a specific trans-
portformula per sedimentfraction and the dimensionless parameters Teg DI/DZ’
P,s Fr and a/6. Again the formula of M.P & M including Egiazaroff's theory will
be used. In Table 5 the resulting char., rel.'s in case of two extreme examples
are shown as calculated with Eq. (119). Situation 1 can be described by a small
Froude-number and a large a/d-ratio (A >> B).Situation 2 can be described by a
large Froude-number and a small a/S-ratio (B >> A). Analogous to Table 4 both
situations are divided in two cases:

(i) One accurate app. char. direction (B A the smallest app. char. direction).

(ii) Two accurate app. char, directions (B << the smallest app. char. direction).



..gg..

1. a/(s = 50 (& >> B) ¢1 > A ?il = ].88} dpl + '(;—dz(,' 0.038 = R'. dt . 3,61
Fr = 0.1 A =1,73
- D, /D
92 " 0.053} dp, - 'é‘ dzy. 0.4 =-R'.dt. 1.l
B = 0.209
WAl et 2‘89} dp, + -é—dzo. 0.006 = R'.dt . 0,911
¢, > B & = 2.87 o /o
?F - 0°43}- dp, - %-dzo- 0.697= -R'.dt.14.84 Te, = 0.1
B = 0.45
2, al§ =1 —_ ¢, +~ B 31 = 0.348} dp, + % dz, - 3.88 = R'.dt. 1.35 p, = 0.4
Fr = 0.6 B = 0.323
o D,/D
%2 " 0‘009} dp, - % dz; . 0.32 = R'.dt. 0.003
A =0.035
A I 0'804} dp, + % dz,-23.9 = R'.dt.19.2
b, > A B = 0.804 0
92 = 0'08]} dp, - —é— dz, . 0.011 =-R'.dt. 0.00I
A = 0,081

Table 5 Characteristic relations and characteristic directions in some extreme cases.
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The marked terms in this table are calculated using an earlier mentioned CPS-
computer programme (see Appendix 5); in this programme the exact and approxi-
mated characteristic directions are calculated also and Fr, a/$§, p,, D,/D, and
‘l'ex_1 are input parameters.

In all the calculated examples of Table 5 TQ* and p, have the same value
(Tq*l =0.1 5 p, = 0.4). As was shown before the case with one accurate app.
char. direction shifts to the case with two accurate app. char. directions
when the grain-diameter ratio(Dl/D2 + 1) is increased. If the basic—assumption
of Table 4 (dp1 Y é-dzo).is also supposed to be true in Table 5 the marked
coefficient of the 'dzy,-term' indicates which term can be neglected. Table 5
shows that this coefficient can be much smaller as well as larger than unity and
it can be seen that: £

s P, 1p; RS fzpl s . -
(i) Along ¢ N A (= o )} the 'dpl-term' is dominating or has the

same order of magnitude as the 'dzy—term'.
Y

(ii) Along ¢ ¥ B (= Tl::F%% ) the 'dz -term' is dominating or has the same

order of magnitude as the 'dpl-term'.

The difference between situation (i) and situation (ii) in Table 5 1is clearly
shown. In situation (i) first a fast adaptation of the bed-composition (neglec-
ting the 'dz,-term' along ¢ = al) followed by a slow combined change of bed-

level and bed-compostition., In situation (ii) first a bed-level resp. combined

adaptation followed by a slow combined resp. bed-compostition change.

Concerning the right-hand side of the char. rel.'s it can be concluded from
Table 5 that generally the magnitude of the coefficient of the right-hand side
is simultaneously changing with the coefficient of the 'dz,-term'. This is in
agreement with the consideration of separate propagation of bed-compostition in
Section 3.4.2._(dp1/dt = 0).
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4. Some applications of the mathematical model in a simplified form

4,1 General

In the following sections integration along characteristics

will be used for solving some applications of a simplified mathematical model.
In the examples which will be treated the initial condition (t = 0) of the sedi-
ment bed is a continuous linear step in bedlevel z, and bedcomposition P, (see
Fig. 17).

Two kinds of stepsare possible:

(i) Positive steps (causing sedi-

— e —

ey U
mentation)

{ 2 (ii) Negative steps (causing ero-

| : sion).

| |

| p | By carrying out a number of calcu-

| L : lation steps the propagation of
the 'bedlevel-wave' and the 'bed-
composition-wave' in time and

Fig. 17. Initial condition place can be determined.

In principle the mathematical model is only capable in solving sedimentation
problems because of the assumption p, (composition of the transportlayer) =

plzo (composition at the lower boundary z = z, of the transportlayer). If erosion
problems are solved with this model this assumption means that the eroded sedi-
ment (from below the tramsportlayer) has the same composition as the sediment in
the transportlayer. This of course is not true generally but nevertheless insight
can be obtained how the mathematical model works for erosion problems.

Remark:

It will be shown in the next sections that erosion problems have an important
advantage vZz. shocks are less éasily formed and the calculation can be carried

out during a longer time-period.

In this particular case with two positive: characteristic directions integration

along characteristics requires the following calculation-procedure:

(1) Calculation of the watervelocities in equally spaced points (along the
x—-axis) using a backwatercurve-calculation (constant waterdischarge, fixed
bed).
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(ii) Calculation of the characteristic directions and their charac—
teristic relations in the chosen grid-points.

(iii) Intersection of the characteristics in the x-t plane.

(iv) Calculation of p, and z, in these points of intersection using a finite

difference approximation of the characteristic relations.
The result in the x—t-plane is for example Fig. 18.

The next step in the calculation procedure

should be a backwatercurve-calculation
, c2 again. However, the points of intersection
do not have the same time—value t. There-
fore an interpolation should be necessary.

A more simple and less time-consuming cal-

| culation-procedure can be obtained by

simplifying the watermotion: the waterlevel
. . . . is supposed to be fi a ri-
Fig. 18. Points of intersection after ® BURPOSE & fized tm & coustent hord
. . . Zo 1 itio s
one step with integration BERL PoslEtlon oF

along characteristics.

&=§3+_3_z_0_=0 and—a—}-l-=o
X 9% X at

in stead of the backwatercurve (constant waterdischarge):

- 82y da 329 .
(u u ) 9x te ox R
This assumption includes:
(i) a small Froude-number (Fr = u//gs << 1)

(ii) a small friction-term R,

Now the waterlevel is known in every position of the x-t plane, the backwatercurve-
calculation as well as the interpolation is not necessary. Exner (1925) already
carried out calculations, in principle using a simplified form of the mathematical
model for uniform sediment (neglecting the friction-term R). The result is a

simple-wave equation for the bedlevel z,(x,t) without damping:

9z 9z
____D. ___°_=
T + c(x,t) oy 0

The following subjects will be studied in the examples:
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(1) Erosion and sedimentation

(ii) 1Influence of the tranmsportlayerthickness §; in this respect two cases
are treated:
e § << a and consequently A >> B
e § 4 a and consequently B >> A.

(iii) Influence of Egiazaroff's theory (only in case of sedimentation).
All calculations of the characteristic directions and the characteristic rela-
tions are carried out by an earlier mentioned CPS—computerprogramme (see

Appendix 5).

4.2 Examples

In the four examples which will be treated the following experimental conditions

are identical.

sediment: two fractions D, = 0.4 mm

" 1.0 mm

porosity €, = 0.4

0.5
U Ri
Di

a constant ripple-factor u

in the flow-parameter Texi =

(when Egiazaroff's theory is not used u = 0.6)
a constant Ch&zy-roughness: C .= 30 mllzs'1
initial bedcomposition for z; = 0 :p, = 0.5
water: discharge q = 0.1376 m?s™!
waterdepth for z; = 0:a = 0.4 m.
In order to study the extreme possibilities of the mathematical model two types
of examples will be treated, one with A >> B the other with B >> A. These two
types will be created by varying the transportlayerthickness § which especially

influences A. In Table 6 the differences between the four examples are shown.

Example! initial } condi tions 8 usage of number of
boundary Egiazaroff's gridpoints along
Az, Ap, theory the initial step
(m) (=) (m)

1 -0.04 -0,2 0.01 with 2 and 5

2 -0.04 -0.2 0.2 with 2

3 +0.04 +0,2 0.01 | with/without 2

4 +0.04 +0.2 0.2 with/without 2

Table 6 Descriptioﬁ of the examples
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The examples will be treated according to the order of succession in Table 5.

Example 1

Erosion and a negative composition change (coarsening) at a small transportlayer-

thickness (a/§ >> 1).

In this example an initial condition according to Fig. 19 is present. At the

upstream-side the bedlevel z, and bedcomposition P, will be kept at a constant

0
value (boundaryconditions: zo(o,t) =0, pl(o,t) = 0.5).
In order to study the effect of the number of grid points over the initial step

this number will be varied from 2 to 5.

According to the calculation-procedure as

a described in Section 3.5.1 the characteris—

a=04im

tic directions and their charac-—

teristic relations are calculated for every

grid-point at t = 0.

3 s 1 In the points of intersection of the cha-
/ I_ Py =% P racteristics the values of z; and p are

—_X determined and the calculation can be

] repeated for the next time-step. Fig. 20
Fig. 19. Initial condition example 1. shows the x—-t plane after a number of cal-

(t =0) culation—-steps until t = 6 h.

It can be seen that the characteristic directionms c, and c,

(because of A >> B) and it is interesting what kind of influences are propagating

have a different value

along these characteristics (see Fig. 21). This figure shows that after a certain
interaction-period both initial steps (in 2z, and p,) are completely separated in

two combined influences each propagating with a different celerity:

1. A front consisting of a large step in p, (causing a very coarse transport-
layer) and a relatively small step in z, (causing erosion) propagating with
a large celerity (¢ = c,) and a constant amplitude. The front is expanding,
i.e. because the down-stream side of the front propagates faster than the
upstream-side of it, the front is more or less stretched out in x-direction.
2. A tail consisting of a small step in P, (causing a finer transportlayer again)

and a large step in z, (causing a large erosion). This combined tail-wave pro-

0
pagates with a smaller celerity (c = cz) a constant amplitude and expands also.
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During the interaction-period both waves are interacting and they cannot be
separated clearly but after this period a temporarily equilibrium between

both waves develops (zeq'~ 0.03 , pleq = 0.4).

The x-t plane can be devided in a number of areas each with its own meaning
(see Fig. 22).

Tz
P

interaction 1
period

LIRS
@ ®

ty
(:) = area of interaction
<:) = a slowly propagating expanding tail
(:) = a fast propagating expanding front
@

= temporarily equilibrium

Fig. 22 Areas in the x~t plane

It can be shown easily why in area 3 the front propagates along straight
characteristics (c,~-A.u) and in area 2 the tail propagates along straight

characteristics (c,®B.u) (see Section 4.3 and Appendix 6).

Figure 23 shows the influence of the number of grid-points along the initial

step. The crossing-point of all the areas in the x—~t plane shifts to a large
x- and t-coordinate (larger interaction-period) but the values of Pigg and Z0gq
are nearly the same. Because the only goal of this section is to know the
approximate effect of the mathematical model very accurate calculations are

not necessary; therefore in the following examples only two grid-points along the

initial step will be taken.
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Fig. 23. Influence of the number of grid-points along the initial step.

Tabel 7 and Table 8 show all necessary parameters and results in the points of

intersection in the x~t plane during the calculation.

Remark:

azl and azz represent the coefficients of the characteristic relations:

"
[e]

dp, + azl dz, 0 along c

"
(e}

dp1 + az dz 0 along c

2 Q



Point X t By Py a u Fr a/é Te, |1 2y A B Gz ag, -
@ | ® @ [0 @ e [0 |0 meyws) | @eh @ehe e
1 0 0 0.0 0.500]0.40 10.344|0.174}40 0.10 10.774}0.061 0,685 0.149 4.176 -
2 0,5 0 0.01 0.550(0,39 | 0.353[{0.181|39 0.105/0.914/ 0,118 } 0.831 0,202 | 3.199 -27.242
3 1.0 0 0.02 0.600{0.38 | 0.362|0.188|38 |0,110/1,120{0.184 1.106 0,271 2.391 -28.281
4 1.5 0 0.03 0.650({0,37 {0.372]0.195}37 0.116|1.389{0.257 1.329 0.318 1.763 -31.021
5 2.0 0 0.04 0.700]|0.36 10.382|0,203|36 0.123}1.717/0,335 1.502 0.385 - -34.900
6 0.590| 0.762|0.0071({0.471{0.393(0.350/0.179(39,310.103/0.831/0,078 | 0.745 0.163 3.850 —_
7 0.626) 0.685|0.0174|0.52610,383/0.360|0.186{38,310.109|1.028]0,147 0.951 0.225 2,846 -29.140
8 0.649] 0.579(0.0278|0.581]0,372{0.37010.194{37.210,115/1.287{0.220 | 1.220 | 0.288 | 2.111 -31.056
9 0.659 | 0.474(0.0382]|0.636(0.362(0,380|0.202{36.2|0.122]|1.611|0.301 1,553 | 0.357 - -34,534
10 1.255( 1.563|0.,014510.44210.386| 0.357{0.184|38,6 {0.107|0.915{0.104 | 0.835 0.184 3.412 -
11 1.821| 1.360)0.0253|0.50410.375/0.367]0.192{37.51[0.114{1.170/0.181 1.097 0.253 2.495 -31,449
12 2,355 1.128|0.0361|0.564|0.364(0.378|0.200|36.4 |0.120|1.491{0,263 1.428 10,325 - -34.335
13 2.006| 2.384(0.0225(0.415(0.378{0,365/0.190(37,8 |0.112]|1.029|0.137 | 0.956 0,211 2.944 -
14 2,589 2.017{0.0337{0.483]0.366{0.376|0.198(36.6 [0.119(1.354{0,223 1.288 |0.290 - -34.,342
15 2.855( 3.209{0.0310|0.389(0,369|0.373(0.196 |36.9 (0.177|1.180(0.177 1113 0.244 - -
Table 7. Examplel: Erosion and a small transportlayerthickness (5 grid-points over the initial step).
Point X t z, P, a u Fr a/§ Te*i c, Ey A B azl @y,
(m) (h) | (m) ) |m @sH|¢) () () fmbHYwm.h7") | @h!) (mbt) | (@m?) (m—1)
] 0 0 0.0 0.50 [0.40 | 0.344|0,174{40" [0.10 |0.774/0.061 | 0.A85 |0.149 | 4.176 -
5 2.0 0 0.04 0.70 [0.36 |0.382}0.203 (36 0.123]1.717] 0,335 1,502 10.385 |- -34,900
15 3.53 4,.56210.0306(0.37210.37 [ 0.372]0.195]37 0.11611,123]0.163 1.055 |(0.231

Table 8. Example |: Erosion and a small transportlayerthickness (2 grid-points over the initial step).

_gL_
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Example 2

Erosion, a negative composition—change ('coarsening') and a large transportlayer-—

thickness.

This example is similar to Example | except that the transportlayerthickness has
been increased. Two grid—-points are taken along the initial step and the resul-
ting x—t diagram can be seen in Fig. 24. Figure 25 shows the propagation of both

initial steps in z_ and P,- Again after a certain interaction-périod two separated

influences propagaie with different celerities:

1. A front consisting of a large step in z, (erosion below z, = 0) and a small
step in p, (a small coarsening of the transportlayer) propagating with a
large celerity (c = cl) and a constant amplitude. Again the front expands
during its propagation.

2. A tail consisting of smaller step in z, (sedimentation until z; = 0) and a
large step in P, (large coarsening of the transportlayer) propagating with
a small celerity (c = c,) and a constant amplitude. However, in this case

the tail is compressing; eventually a shock phenomenon will be formed.

Also in this example a temporarily equilibrium situation (between both waves)

N A
develops (ze ~ -0,03, pleq Y 0.68).

q

Table 9 shows all calculated parameters of Example 2.

Example 3

Sedimentation, a positive composition change (finer transportlayer) and a

small transportlayerthickness (influence of Egiazaroff's theory).

In contrast with Example 1 and 2 the initial condition has been reversed (see
Fig. 26). At the upstream side the bedlevel z, and the bedcomposition p, are
kept at a comstant value (z, = 0.04 m, p, = 0.7).

a=04m

Fig. 26 1Initial condition Example 3 (t = 0)
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The transportlayerthickness is small (a/8 >> 1) and two grid-points are taken
along both initial steps in z

in Fig. 27.1,

, and P,5 the resulting x-t diagram can be seen

Figure 28.] shows the propagation of both steps in z_ and P, It can be seen that

0
again after an interaction-period two separate waves are formed. However, in this
case both waves are compressed and shocks are formed. The <c¢alculation is not
continued after the formation of a shock because then the theoretical model

cannot be applied anymore.

Both waves can be described as:

1. A front consisting of large step in P, (an extra fine transportlayer, P, > 0.7)
and a small step in z; (small sedimentation) propagating with a large celerity
and a constant amplitude. The front is compressed.

2, A tail with a small step in P, (a small coarsening until P, = 0.7 of the trans-

portlayer) and a large step in z_ (large sedimentation) propagating with a

a
small celerity and a constant amplitude. The tail is compressing also.

The temporarily equilibrium situation between these waves can be described
with z“eqz 0.01 , p‘eq% 0.75.
In this example also the influence of Egiazaroff's theory (used in the transport-
formula per fraction) is studied. Figure 27.2 and Fig. 28.2 show the results of
the same calcul ation while Egiazaroff's theory is not used.

Remark:

Unfortunately the ripple-factor had to be increased (from y = 0.5 to y = 0.6)

in order to avoid a situation in which no transport of the coarse fractiom occurs
(Tex2 < 0.047). Therefore this case can only be compared roughly with the prece-

ding one.

It can be seen that the results are roughly similar but that the fast propagating
front is an expansion-wave now in stead of a compression-wave.
The"equilibrium values' of z, and p, are slightly different: zceq‘z 0.005,

Pi_.q ® 0.85. Table 10 shows the main calculateid parameters of Example 3. »
eq p mp

Example 4
Sedimentation, a positive composition—change (finer tranmsportlayer) and a small

transportlayerthickness (influence of Egiazaroff's theory).
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This example is similar to Example 3, except that the transportlayerthickness
has been increased (a/6 = 1). The resulting x—t diagram and the propagation

of both initial steps are shown in Fig. 29.1 and Fig. 30.1 respectively. Again
after a certain interaction-period two separated waves are formed:

1. A front consisting of a large step in z,Z (sedimentation aboven z, = 0.04)

0
and a small step in P, (finer transportlayer) propagating with a large
celerity (c = ¢; ® B) and a constant amplitude. The front is compressing

and a shock is formed at t = 16 h.

2. A tail consisting of a relatively small step in z, (now erosion!) and a large
step in p, (finer transportlayer) propagating with a small celerity
(c = c, ®A) and a constant amplitude. The tail is expanding.

During the temporarily equilibrium situation zoeq Y 0.06 and Pieq Y 0.55.

The influence of not using Egiazaroff's theory in this example is shown in

Fig. 29.2 and 30.2 (again with a different ripple~factor u).

It can be seen that Egiazaroff's theory hardly influences the rough results

of the calculation. Table 11 shows the main calculated parameters of Example 4.
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Fig. 27 Example 3. the x—t plane with Egiazaroff's theory (1)

without Egiazaroff's theory (2)
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Point X t z, P, a u Fr a/é TQ*I .91_ Cy A B aél azz
(m) (h) (m) g (m) |@s™Y)| (=) (=) =) @b b~ ') @.b) @bt) ()| (met)
] 0 0 0.0 0.5 0.4 10,344 | 0,174 | 2 0.1 0.170] 0.014 |0.034| 0.149 |6.385 -
2 2 0 0.04 0.7 0.36 {0,382 | 0.203 | 1.8 0.123 0.395{ 0,073 |0.083]{ 0.385 - |-0.275
3 3.51 20.62| -0.028| 0.681 | 0.428]0.321 | 0.157 | 2.14| 0.087 0.138| 0.004 [0.023| 0.118 - -
Table 9. Example 2: Erosion and a large transportlayerthickness (2 grid-points along the initial step).
oint x t 24 P, a u Fr a/é Tey ¢ ¢, A B Uz, [%=z,
1
(m) (h) (m) () (m) {@s™1)| (-) -) -) @.h™H) @bh™H|@h™ )| @h™?) | @) | @)
1 0 0 0,04 0.7 0.36 {0.382 | 0.203 | 36 0.123 | 1,717 |0,335 |1.668 |0.385 |1.287 -
3.1 2 4.0 0 0 0.5 0.40 10.344 | 0.174 | 40 0.10 0.774 {0,061 |0.685 [0.149 - 1-29.94
" 4.15 2.42 0.0082| 0,741| 0.3924 0.351} 0.179 | 39.2| 0.104 | 0.948 {0,180 |0.881 |0.247 = -
1 0 0 0.04 0.7 0.36 | 0.382] 0.203 | 36 0.148 | 2.211 |0.398 |2.062 |0.546 |3.586 -
3.2{ 2 4.0 0 0 0,5 0.40 | 0.344 1 0,174 | 40 0.12 1.700 |0.067 |[1.532 |0.229 - |- 48.44
3 4.12 1,87 0.0066 | 0.819| 0,393 0,350 | 0.178 | 39.3 | 0.124 | 0.919 [0,109 l0.664 |0.365 - -

Table 10. Example 3! Sedimentation and a small transportlayerthickness (2 grid-points)

3.1.Using Egiazaroff's theory

3.2.Not using Egiazaroff's theory

-G8~



Point X t 2y P, a u Fr a/é Te*i & c, A B Az o,
(m) (h) (m) ) (m) |@s™)| (=) -) =) @b~ )| @h™) | @h™H){@b"Y) | @) | (@ ?)
1 0 0 0.04 | 0.7 0.36 [0.382 | 0.203 | 1.8 0.123 | 0.395 | 0,073 | 0,083 |0.385 | 7.8l -
4,11 2 4,0 0 0 0.5 0.4 10.344 | 0.174 | 2.0 0.10 0.170 | 0.014 | 0,034 (0.149 - -0.965
3 4.15 10.5 0.058| 0.556( 0.342{0.403 | 0.22 1.71 0.137 | 0,479 | 0.099 |0.111 |0.467 - -
1 0 0 0.04 | 0.7 0.36 (0,382 | 0.203 | 1.8 0.148 | 0.572 1 0.077 | 0,103 [0.546 | 11.35 -
4.21 2 4.0 0 0 0.5 0.4 10.344 | 0.174 ] 2.0 0,120 ; 0.286 | 0,020 |0.077 (0.229 - 1.88
3 4.14 | 7.24 0.049| 0.593} 0.351{0.393 | 0.212 | 1.75 0.156 | 0.628 |[O0,116 |[0.148 |0.596 - -
Table 11, Example 4! Sedimentation and a large transportlayerthickness (2 grid-points).

4.1, Using Egiazaroff's theory

4,2, Not using Egiazaroff's theory

_98_
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4.3 Discussion of results

4,3.1. General results

In all four examples which were treated after a certain Znteraction—period
Tint two separated waves were formed, a front wave and a tail wave, each
propagating with a different celerity. Both waves propagate without loss of
amplitude (because of the simplifications of the mathematical model) and are

separated by a temporarily equilibrium situation (zoeq ) which grows

s Pleq

in length during the calculation—time. It was also shown that both waves can

be expansion—-waves as well as compression-waves (eventually shocks!) which

depends on:

1. Whether it regards erosiog or sedimentation

2. Whether or not Egiazaroff's theory is used in the transportformula per
sedimentfraction

4.3.2. Influence of transportlayer thickness

In case of erosion as well as sedimentation the transportlayerthickness has a

considerable influence on the propagation of the waves:

1. For a small transportlayerthickness (a/d >> 1) the fast propagating front
(c = ¢; ® A.u) mainly consists of a change in composition (Apl) and the
tail (c = ¢, ® B.u) consists of a combined influence (Ap1 and Az,).

2. For a large transportlayerthickness (a/d§ = 1) the fast propagating front
(now ¢ = ¢, ~B.u!) mainly consists of a change in bedlevel (Az,) and the

tail @ = e, A.u) consists of a combined influence (Azo and Ap,).
These results are in agreement with the results of Section 3.3 and 3.4 in which
approximated characteristic direcitons and relations were derived for some ex-—

treme cases (see for example Table 4).

Example ! and 2 but also Example 3 and 4 démonstrate the 'switching effect' as

was described in Section 3.4.2.
The results of the Examples ! ... 4 are summarized in Table 12.

Through a direct comparison of Example 1 and 2 (both treating erosion) after

t=20.7 h (= Tint for Example 2) Figure 31 results.
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Example Results
Zy P
-——-(”" ,l
1 edil AN
X R X
a/6>1 erosion extra coarse
transportlayer
(A >>8) Ak
P __//T“‘?\
A
? A
. - x' - §'
sedimentation extra fine
transportlayer
Zy P
V. v ya > yd 1 1 —
S~L___L” X X
o extra erosion coarse
a/d 1 transportlayer
(A >>B)
z -
0 --—”T :“
i 1\
l. : J \\ e \l-_--?\ B
X X
extra sedimentation fine
transportlayer

Table 12. Summary of the results of the Examples 1 ... 4.

_Ex2 _ __ _
T /, / EX.1
~
/
\\\//
P, 4 Ex.2 ~—7 77777777
//
7 Ex.1
L/
> X

Fig. 31. Comparison of Ex. 1 and 2 at t =

20,7 h.
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It can be seen that the bedcomposition is influenced mostly by the different trans-—
portlayerthickness 6. This is not surprising because, as was shown before, bed-
composition-changes are approximately propagating with c = A.u’(which is inversely
proportional to §) and bed—level changes are approximately propagating with

¢ = B.u (which isnot a function of § at all).

However; the bedlevel is also influenced seriously: in Example 1 a fast front,
causing only little erosion, and a temporarily equilibrium situation are present.
The tail of Ex. 1 has approximately the same celerity as the front of EX. 2

(c; ® B) but in Ex. 2 a serious erosion occurs (z, < 0).

In Ex. 2 a temporarily equilibrium is still not present and a very slow tail
causes sedimentation again. A rough explanation of the differences between both

examples can be given.

In both examples a positive gradient in sedimenttransport in x—direction

( %ﬁ > 0) exists. Because of selective transport of the fine fraction,.coarsening
of the transportlayer will occur. In case of a thin transportlayer (Ex. 1,a/é>>1)
this selection-proces does not take much time; therefore in Ex. | a fast propaga—
ting composition-change is present. Moreover a coarse transportlaver (or bed)

does not allow so much erosion as a fine one. Therefore this fast composition-

change is combined with a less serious erosion than Example 2 shows.

Because In Example 1 A >> B, in Example 2 B >> A and in both Examples B approxi-
mately has the same magnitude, the interaction-period T;,.. is much larger in case

of Example 2.

Remark:
For relatively, short ranges of interest (in place or time), long initial steps

and only a small difference between the characteristic directions ¢, and c,, it

1
is possible that a temporarily equilibrium will not occur and consequently the

separation in two combined waves (front and tail) will never occur.

A similar comparison can be carried out for Example 3 and 4.

4.3.3. Propagation of front and tail-wave

All four examples showed that outside the area of interaction in the x-t diagram the

characteristics are straight lines.

.
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In the front and the tail-wave P, and z, are constant in resp. the largest
characteristic direction (c = c,) and the smallest characteristic direction

(c = cz). Consequently the front and the tail-wave propagate without damping
or amplification.

It canbe showneasily that in these calculations with two positive characteristic
direction the above mentioned must be true (see Appendix 6). In the front and the

tail the following relations are true:

apy apy _

ot * ¢1 Y x T g (f20)
9z 9z

J 40 220 -

T + ¢, u e 0 (121)

with: ¢; = ¢, in the front-wave

¢; = ¢, in the tail-wave.

Neglecting the friction term R and assuming a horizontal fixed waterlevel the

mathematical model can be written as:

dz 9z 3 ]
P, ?ﬁ% +uy, TS% + 8 ?ﬁf + flpl Tﬁf =0 (122)
9z 9z 9 3
929 929 _ g 9P1 P - 123
P, §¢ T U v, 9x 4 at T fzp1 ox P (123)

Elimination of 3z,/3t in Eqs.l122) and (123)and substitution of 9p,/dt (Eq.(120))
yields:

9p, _ o9z
8(0; = A) - = (p0, - py¥,) T (124)
which is true in the front-wave (¢i = ¢,) and in the tail-wave (¢; = ¢,). It

is also possible to eliminate 3p, /3t in Egs.(122) and (123) and to substitute
dz, /3t (Eq. (1)):

9py _ gy 920
(f1p1 * fzpl) ox v (¢i B) 9x (1:23)

which is identical to Eq. (124)

Both equations relate the gradients of z, and p, in x-direction to each other as

present in the front or the tail.

Remark:

It can be shown that generally in the front the gradients of z_  and P, have

0
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an equal sign; in the tail these signs are opposite. In the extreme situation
that flp1 + f2p1 + 0 and p,¥;, = p1Y, * 0 (which is true for Te_, >> Tc*i or
DI/D2 + 1) these relations can also be used to show the existence of the
asymptotic case of separate propagation in an alternative way. For example

if p,¥;, = py¥, > 0 and ¢; ~ B (# A) Eq.(124) shows that then 9p,/dx'> 0 and
only 9z,/9x can have a certain magnitude. In other words, along ¢; + B (front
or tail) a disturbance in 2z, will propagate. In a similar way Eq(125) can be
used to show that along ¢; + A (front or tail) a disturbance in p, will pro-

pagate.

4.3.4. Egiazaroff's theory

In Example 4 (a/8 ¥ 1) Egiazaroff's theory hardly has some influence. In both
cases the front (mainly a bedlevel-change) is compressed and the tail (a
combined change) is expanding. However, in Example 3 (a/é >> 1) the fromt
(mainly a bedcomposition—change) is influenced considerably. Usage of Egiazaroff's
theory causes a compressing front while an expanding front develops if this
theory is not used. This completely agrees with the results of Section 3.3.3.3.
in which the propagation of a bedcomposition—change with and without usage of
Egiazaroff's theory was treated. It can be explained by the fact that use of
Egiazaroff's theory causes increased transport of the coarse fraction and a

decreased transport of the fine fraction.

4.3.5. Conditions for mathematical models for uniform or non—uniform sediment

It has been shown in the Sections 3.3.and 3.4. that the extreme case of separate
propagation is approximated if one or more of the following conditions are full-
filled:

1. A>> B or B >> A

>> TC

2. Ta_.
ex 261

i
3. DI/DZ - 1

As a consequence then the accuracy of the approximated characteristic
directions is very good (¢; = A, ¢j +B; i=1,2 ,—j = 2,1) and the
characteristic relations can be simplified.

In the Examples 1 ... 4 (with R = 0 and a horizontal fixed waterlevel) the

characteristic relations in case of separate propagation become:
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Along ¢ = ¢i dz,
Along ¢ = ¢j dp, =

(]
e
]

1,2
2,1

|
e
[l

Figure 32 compares the propagation of the waves in a similar case as Example 2

with and without separate propagation.

Zg P

separate s /
propagation —& 7 -’c}/

Xy
*®

no separate
propagation

Fig. 32 Example 2 with/without separate propagation

It is shown that in case of separate propagation both waves do not influence each
other and do not consist of a combined front or tail wave. In that case the bed-
level changes can be predicted by the mathematical model for uniform sediment
equally well because of the similarity of the resulting characteristic direction
and relation (in this particular case with R = 0, Fr << | describing the bedlevel

propagation):
c=Bu=4yu Z dz, =0

A difference exists between the case with A >> B and B >> A:

If B >> A (Example 2) and the extreme case of separate propagation occurs the
bedlevel changes can be calculated with the model for uniform sediment while P,

is kept at a constant value. If A >> B and again the extreme case of separate
propagation occurs the model for uniform sediment can be uséd also but the bed-
composition is now in a quasi-steady state.

Similar to the water-motion the bedcomposition is assumed to react instantaneously

(with a celerity c =+ «) to bedlevel chénées. As a result after every time-step in
the calculation: :
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1. A backwater curve describing the watermotion is determined.
2. A new bedcomposition along the whole range of interest is calculated
(c = »: dp, = 0 which means that the upstream boundary condition of

P, is immediately true everywhere along the x-axis).

However, in the general Gase of 'nmo separate propagation' extra erosion (below

z, = 0) occurs (see Fig. 32) which can only be predicted by the mathematical

0
model for non-uniform sediment.
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5. Summary and conclusions

5.1 Summary

The mathematical model for morphological computations in case of non-uniform
sediment as derived and studied in the preceding sections consists of the

following equations:

u,  da, Bz _
UE"‘ g N g 3% R (126)
ox ox
8_51.+65E2L+ -a—g-q-=0 (128)
ax 3t~ Plzy ot
3 _gs ., dm. (129)
ox ot p2zo ot
s, = £,(u, p)) (130)
s, = £,(u, p)) (131)

Several assumptions were made during the derivation of this model, viz.:

1. Long-wave approximation of the watermotion which includes small transport-
concentrations.

2. A quasi-steady water-motion including a small Froude—number.

3. Bed-level variations which proceed slowly with respect to the small-scale
bedlevel variations of the bedforms, i.e. |3z4/9t| << |3z'/3t|

4, A sedimentmixture consisting of 2 fractions (remark: the mathematical model
can easily be extended for more fractionms).

5. A constant effective transportlayerthickness, i.e. B 8 = constant

6. A small instantaneous transportlayerthickness (on top of the bedforms)
with respect to the overall transportlayerthickness(d§' << §)

7. Uniform vertical distribution of every sedimentfraction over the transport=>
layer (ai =1).

8. Constant Ché&zy-roughness of the bed and constant grain-diameters

9. Constant porosity €, of the sediment in the bed.

The number of equations is reduced by substituting the Eqs.(130) and (131)in the
Eqs.(128) and (129) respectively and combining the Eqs.(126) and (127); three partial

differential equations remain, VZ3.:
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- g2, 3du 3z9 .

(u o ) N + g e R (132)
du 3p, 3zg 3P .

fla3x * f1p. By * P, e * BS S> =0 (133)
du 3p, 329 _ g5 3Py

foudx * f2p ax pzz0 ot - 5t 0 (1343

In order to get more insightin this set of equations and the mathematical cha-
racter of it, characteristic directions and the acessory characteristic

relations were derived.

The resulting dimensionless characteristic directions are:

( )
Py, = 4 [A +B + {(A - B)2 + 4(&B ~ c)}1/2]

. _ +
with: B = T —7r2
£, - £
A o L2zg “lpy i Plz, “2p,
u
— ° i

The expressions A and B are called the approximated characteristic directions
(B is identical to the characteristic direction belonging to the mathematical
model for uniform sediment, describing the celerity of disturbances in bed-
level).

The resulting characteristic relations are:

~
dE (¢. _ B) _ dZn P1zu‘l’z = Pzznw), " ) ll—R_ Pzzo‘lﬁ - PIZsz
i dt (1 = Fr?) ig (1 - Fr2)
and are true along ¢ = ¢; (with i = 1,2)
-/

These equations can be approximated by more simple expressions in special con-

ditions ('separate propagation'):

dp; _
Along ¢i - A 3t
dz uR
5 —_—t =
Along ¢1 + B T S B

These approximated characteristic directions and relations are true in a mathe-
matical sense, but whether they have any practical meaning is studied in

Chapter 3.

The characteristic directions and relations are written in a different dimension-

less notation and are a function of five dimensionless parameters, Viz.:
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Teg, : dimensionless effective shear stress of the finer fraction I
D,/D, : grain-diameter ratio

P, : probability of the finer fraction

Fr : Froude~number

a/é : waterdepth-transportlayerthickness ratio.

The general form of the bed-load formulae per sedimentfraction (sj = £;(u, pl))is
replaced by two possible bed-load concepts which result from a literature sur-
vey:

1. Meyer-Peter & Muller (including 'basic hypothesis')

2. Meyer-Peter & Muller with Egiazaroff's theory.

The influence of each of the above-mentioned dimensionless parameters and of
both bed-load concepts on the characteristic directions and relations is stu-

died. In order to simplify the calculations extra assumptions are made:

1. The ripple—factor y (of the bed-loadformula) is constant in time and place
and is identical for both fractionms.

2. The probability of the finer fraction at the lower boundary (z = z;) of the
transportlayer (plzo) is equal to the mean probability ;: in the transport-
layer (this is true in case of sedimentation but is not necessarily true
in case of erosion!). |

3. Factor B (= C/(1 - €y) 1is constant and is set equal to unity.

Table 3 is the result of the calculations of the characteristic directions;
conclusions are:
1. The accuracy of the approximated characteristic directions A and B becomes

better if:

a large difference in magnitude exists between A and B (A >>> B or
B >>> A); this is especially influenced by Fr and a/§.
J=

- the coarse fraction is far from initiation of motion (Te_x2 >> Teg,
~ the grain-diameter ratio D,/D, approaches unity (D,/D, + 1).
- the probability of fraction (p;) approaches zero (p1 + 0) or unity (p, ~ 1)
2. A switching-effect appears to be present. The characteristic directions ¢,
and ¢, can be approximated by A resp. B (A > B) but also by B resp. A (B > A),

which especially depends of Fr and a/§.

After these calculations the characteristic relations were studied and

the magnitude of the terms of these relations were estimated.
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Some extreme cases were treated resulting in Table 4 and Table 5. Conclusions
are:
1. A direct relationship exists between the accuracy of A and B and the occurrence

of separate propagation (= propagation of each variable p, or z;, along its

0
own characteristic (¢, or ¢2)). If this accuracy becomes worse (see above—
mentioned conditions) this asymptotic case gradually shifts to a situation
in which combined disturbances of p, and z, propagate along both characteris-
tics.

2. If 'separate propagation' is reached asymptotically two extreme cases can be
distinguished ('switching effect'):

I. Fr >0
a/6>>1: in this case a disturbance in bedcomposition propagates faster
(¢, = A) than a disturbance in bedlevel (¢, = B); or, the time-
scale of bedcomposition—changes is smaller than of bedlevel-
changes.

2. Fr =+ 1

a/8§ ® 1: in this case the reverse is true (¢; = B and ¢, = A).

In Chapter 4 these extreme cases are illustrated by treating some applications

of a simplified form of the mathematical model (fixed, horizontal waterlevell).
Because of the difference in magnitude of both characteristic directioms in all
cases which were treated (erosion/sedimentation, small/large transportlayerthick-
ness, bed-load formula with/without Egiazaroff's theory) after a certain inter-
action-period two separate waves were formed:

1. A front propagating with a large celerity ¢ = ¢,

2. A tail propagating with a small celerity ¢ = ¢,.

Between these waves 'a temporarily equilibrium' situation is developed.

In all four examples the case of separate propagation was not reached exactly and
combined changes of p, and z; were propagating along the characteristics. However,
the tendency of the extreme case of separate propagation was clearly shown and
the results of the examples confirm the results of the preceding sections.

In Chapter 3 and Chapter 4 Egiazaroff's theory mainly influences celerity

¢i + A (® celerity of a disturbance in bedcomposition). Especially Example 4
shows that a compressing (eventually a shock!) or expanding bedcomposition wave

develops if Egiazaroff's theory is used or not used respectively.
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In all the extreme cases which were treated no complex characteristic directions

are found and the set of partial differential equations is always hyperbolic.

5.2 Conclusions

In general the goal of morphological computations in rivers is the prediction
of bed-level changes and in many applications the existing mathematical model
for uniform sediment can be used. However, under certain conditions an exten-
sion of this model to a model for non—uniform sediment is necessary. These
conditions are:

1. Not only bed-level changes but also bed-composition changes must be pre-—
dicted; this seems to be a theoretical case.

2. Large time-~ and distance scales are present in the problem; even small
differences in characteristic directions and relations may have large
consequences at a large distance after a long period.

3. A large interaction exists between bed-level changes and bed-composition
changes or, in other words, the asymptotic case of separate propagation
is not reached at all. This is especially true if:

(i) The exact characteristic direction ¢1’2 are badly approximated by
A (= (p2fip, = P1fyp )/BSu) and B (= () + ¥2)/1 - Fr’).
(ii) The approximated characteristic directions A and B approximately

have the same magnitude.

This implies that the mathematical model for non-uniform sediment is es-
pecially meaningful if:

(i) A large difference in the grain-diameters of both sedimentfractions

exists.
(ii) Both sedimentfractions are close to 'initiation of motion'.
(iii) Nor the coarse, nor the finer fraction is dominating in the trans-

portlayer.
(iv) No extremely thin transportlayer combined with a small Froude-number

(a/§ >> 1, Fr << 1) or an extremely. thick transportlayer combined with

a large Froude-number (a/§ = 1, Fr + 1) occurs.

5.3 Suggestions for continuation

1. Experiments

Many uncertain factors are still present in the mathematical model for non-—

uniform sediment e.g. an unknown bed-load formula per sedimentfraction, many
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assumptions which are not or hardlv verified.

Because an integral verification of the complete model with an unsteady

non—uniform experiment is not able to verify each of these uncertainties

individually a number of experiments in steady/uniform conditions should

be carried out first.

The goal of these experiments will be:

(i) Determination of the influence of varying hydraulic conditions and
sedimentmixtures on a number of parameters, viz.:

-~ The transportlayer thickness

- The total bed-roughness; this is mainly determined by the bedforms
and therefore connected to the transportlayerthickness.

- The uniformity of the vertical distribution of the sediment~fractions
in the transportlayer.

(ii) Determination of empirical relations

- An important empirical relation is the bed-load formula per sediment-
fraction. With the aid of experiments existing concepts can be verified
and possibly extended. Recent experiments of Ranga Raju(see Misri ,
Garde and Ranga Raju ,1980) may be very usefull in this respect.

- If the assumptions concerning the transportlayerthickness and the to-
tal bed-roughness C¢ should be seriously inaccurate, the mathematical model
must be extended with (empirical) relations in which 6 and Cy are a func-
tion of the hydraulic and sediment conditions. The necessary experiments
could be combined with the preceding omes.

(iii) Determination of the influence of bedforms
The fluctuations of bedlevel z; and bedcomposition p{ because of the exis-—
tence of bedforms can be serious disturbances of the average bedlevel z,
and bedcomposition P,- Experiments under steady uniform conditions are
necessary in order to determine:
- a time-scale of these fluctua?ions (bedforms) besause of the assumption
in the mathematical model [%§?| >> |%§f| and I%ﬁfl >> [%ﬁfl.
- an accurate way of measuring the bedcomposition (taking bedsamples).
-~ an accurate statistical treatment of the bedlevel- and bedcomposition-

measurements.

Experiments under unsteady, non-uniform conditions are necessary in order to
carry out the verification of the complete model. Some possibilities exist to
create the unsteady non-uniform conditions:

(i) Changing the hydraulic conditions (e.g. lowering of the waterlevel).
(ii) Changing the upstream sediment input (e.g. change of the total sediment

input and/or its composition.
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2. Numerical model

In this report the method of characteristics was used for the calculation of

some simple applications. The water-motion was extremely simplified in order

to be able to carry out the calculations (partly) by hand.

In order to know the results of the mathematical model in more general situations
a numerical model is necessary. This model can also be used for the experimen-

tal verification of the complete theoretical model for two fractionms.
3. The assumption p; = plzo'

Using the calculation of characteristic directions and relations the assumption
P1 = Py, Was made. It means that the double-averaged probability of fraction
1 in the transportlayer (p;) is equal to the time-averaged probability of
this fraction at the lower boundary (z = z,) of the transportlayer. This
assumption is correct in case of sedimentation in combination with a uniform
vertical distribution of the fractions in the transportlayer. Two cases can be
considered in which p, # Piz}
(i) In all erosion problems; extra information is necessary about the compo-
sition of the bed below the transportlayer.
(ii) 1In case of sedimentation and a non-uniform vertical distribution of the
fractions in the transportlayer extra information is necessary about
the shape of this distribution in different circumstances.

In both cases an extra veriable plzo must be introduced. Because

Piz L1 = Pyg I,
A(= 0 P1 2 pl) is a function of Piz,

RSu

Y, + Y

and B (= T—:—f;f ) is not a function of plzait can be expected that especially

the propagation of bedcomposition-changes (¢ = A) will be influenced by P1, -
0
4. Extension of the mathematical model for more than two grain-fractionms

Every extra fraction means an extra variable pi(x,t), an extra characteristic

direction and as a result a more complicated mathematical model.
5. Extension of the mathematical model to large Froude-numbers

For large Froude-numbers (especially Fr = 1) the quasi-steady approach of the

watermotion is not applicable anymore. The approximated characteristic direc-



-102-

tion B (= %h::?%% ) will have the same order of magnitude as the characteristic

directions of the watermotion. The approximated characteristic direction A is

not directly influenced by Fr and in case the transportlayer is not too thin,

and consequently B >> A, in theory a situation is created in which

- bedlevel changes propagate very fast (¢ = B) and should be calculated with an
unsteady watermotion.

- bedcomposition changes propagate slowly (¢ = A) and the quasi-steady approach

of the watermotion can still be used.
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Appendix 1 Continuity-equation of sedimentfraction i

1.1. General

Starting from the general two-dimensional mass—balance a derivation will

take place of a continuity-equation per sedimentfraction 1i.

After averaging out the turbulent fluctuations and an integration in
vertical direction a one-dimensional form of this equation results,

which can be applied in the set of one-dimensional equations (see section
1.4.).

A definition of bed-level, transportlayerthickness (bed-load),
concentration and grain-velocity will be found necessary and will be

given.

1.2. Two~dimensional form

On the assumption that the mass—density of sediment pg is constant,

the general mass balance (per unit width) can be written in the following

way:

.%% + Q%gﬁ + agfg = source/sink term (1.0

in which: C = C(x,2,t) = sediment concentration

u up(x,z,t) grain-velocity in x—-direction

wp wp(x,z,t) = grain-velocity in z—-direction.
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Because of water—turbulence and the sedimentmovement itself (see Section
i.2.) these dependent variables will fluctuate. It will be assumed that
these fluctuations can be averaged out without influencing the large-

scale processes which will be considered.

Before carrying out this averaging process Eq.(1.1) will be written per

sedimentfraction i:

acC. Bupi.ci awbi.c.

i_ . . .
T + % + P source/sink of fractiom i (1.2)

in which Ci’ up;» Wp, are the variables for sedimentfraction 1i.

The probability of fraction i is defined as:
Pi(X,Z,t) = Ci(x,z,t)/C(x,z,t) (1.3)

Because of the fluctuations the dependent variables can be written as a

sum of an averaged part and a fluctuating part:

C, (x,2,t) = Ei-(x,z,t) * Ci(x,2,t)
up, (x,2,t) = iP—__i_(x’z’t) *+ up i (x,2,t) (1.4)
W, (%,2,t) = wp . (x,2,t) + wpi(x,2,t)

In these expressions the overlined symbols are averaged over a certain

period, according to:

L
o~ 1
Ci(X,Z,t) ‘E é Ci(x’z,T)dT

H[—

up ; (%,2,t) up; (x,2,7)dr

H|—

wpi(x,z,T)dT

O-SH&-HA

.%?—i(x,z’t)
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As was mentioned before, a condition for this averaging process is:

- ]
aC. Efi
ot ot

The same condition can be written for the other variables. Substitution

of Eq. (1.4) in Eq. (1.2) results in:

9C, 3C! Bup..C! Bup!.C., dup..C. dup!.C!
i, i L Pi'7i i i, iTi o,
at at ax ax 9x 9x

+

— ' [ — 1 T

Bwpi.Ci Bwpi.Ci B“Pi'ci Bwpi.ci )
+ + + + =
92z oz 9z 9z

source/sink of fractiom i

Averaging this equation over period T gives

e TT - Tt
BC1 . BupiC1 . BuPiC1 . auPici . Bwpicl )
ot ox 9x 9z 9z
= source/sink of fraction 1 (1.5)

Before integration of this two-dimensional equation over the vertical,
definitions of bed-level,transportlayerthickness, concentration and grain-

velocity (in case of bed-load) will be given.
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1.3. Bed-level, transportlayer, concentration and grainvelocity

The bed-level z(x,t) .can be defined as the level below which no grain-
movement occurs. Because of the existence of bedforms this level will

fluctuate and therefore an averaged bed-level will be defined.

H|—

T
E(X,t) == [ z(x,t)dt
0

The instantaneous bed-level will fluctuate around this mean level and

can be written as:
z(x,t) = z(x,t) + 2" (x,t)

A condition for this averaging process is similar to the one given before

vLz, :

3z (x,t) 3z' (x,t)
ot e ot

This means that the large—-scale erosion or sedimentation of the mean
bottom proceeds much slower than the small scale fluctuations due

to the bedforms.

The instantaneous bed-level can be considered as a stochastical variable
which is distributed according to a certain probability density function

(p.d.f.) in vertical direction (see Fig. 1.1).
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Zmax (%,t) |

2T 7 N\ e~

-l
o |

= |
=

_.r-

Fig. 1.1 P.d.f. of the instantaneous bottomlevel

It will be assumed that the p.d.f. takes the value zero at two fixed
boundaries vZ2. an upper boundary zmax(x,t) and a lower boundary
zmin(x’t)'

The definition of bed—level zo(x,t) which is used in the equations is:

zo(x,t) = zmin(x’t) (1.6)

because below this level no grainmovement occurs. In case of bed-load the
instantaneous sedimenttransport takes place in a thin layer on top of the

bedforms,

The transportlayer &6(x,t) will be defined as:

§(x,t) = zmax(x,t) - zmin(x’t) (1.7)

because it can be assumed that the overall transport takes place between

these two levels.
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I1f in this transportlayer an element dx—-dz (unit width) is considered

it can contain water, moving and resting sedimentparticles (see Fig. 1.2).

Bx
—ii>
Fig. 1.2. Moving and resting particles in an element dx—-dz of the
transportlayer.
If: Cm = volume concentration of the moving particles of fraction i
up;. = particle velocity of the moving particles of fraction i

1 . . : : ;
Cri = volume concentration of the resting particles of fraction i

the following consideration can be given.

The mean velocity of all the particles of fraction i in the element is:

u . ©® C
u,!' = M (1.8)
Pi Cmi + Cri :

The total volumeconcentration of all the particles of fraction i is:
o= . + C.. .
C1 le Crl (1.9)

The flux of sedimentfraction i in x-direction is the product of the

velocity and concentration of the moving particles:
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which can be written with Eqs. (1.8) and (1.9) as:

- = 1 e
¢xi Up - Cmi up: . Ci

Because of the turbulent watermovement and the irregularities of the bed-
forms upi'en Ci' (written as upe and Ci in the following) will fluctuate

in time.

Carrying out the averaging process (as described in section }.2) for the
total concentration and the mean particle velocity (including restperiods)

the overall flux of fraction i in x-direction becomes:

i Jies o Tt AT
9x; = up;. C; + up;Cl

It can be concluded that the variables Ci and uPi as used in the sediment

continuity-equation (Eq. !.5) can be considered as the total sediment

concentration of fraction i and the mean particle velocity (including

restperiods) of fraction 1i.

Remark:
With the assumptions:
1. The thickness of the instantaneous moving layer on top of the bedforms
is small compared to the transportlayerthickness §(x,t).
2. The porosity of the sedimentmixture €, is constant;
it is admissible to determine the concentration distribution in the transport
laﬁer (in vertical direction) from the p.d.f. of the instantaneous bed-

level.
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The averaged concentration at level z,C(z),is then equal to the product

of 1 - €, and the cumulative p.d.f. (see Fig. }.3.)

Fig. 1.3. The distribution of the averaged concentration in the transport-

layer
Hence:
C(z) = (1 - e,) J £().dn (1.10)
z

in which f(z) is the p.d.f. of the instantaneous bedlevel.

| .4. One~dimensional form

The two-dimensional equation(!.5)can now be integrated in vertical

direction to get the one-dimensional form. If the integrationboundaries
are — « and + ® it is not necessary to make use of the source/sink term
for expressing the erosion/sedimentation term. It is therefore neglected

in the following.

Integration of every term of Eq.(1.5) gives:
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S —Eli- dz
40 3C.

[ —=—=.dz
o t

7? Bu?i.Ci
e ox
4;0 Buplci
o 9x
+;° Z)vv'pl.-.Ci
e 9z
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z zZ

5 +00 5 0 o ___ 1 :
- T.. =-2{f C.dz + [ C.dz + [C.dz
ot {j; Cle} ot {_m i o 1 , I

]

z, (x,t) = the upper boundary of the transportlayer =
= zmax(x,t). It will be assumed that below z = 0 no sedi-
mentmovement occurs which means that the first integral

can be dropped; it follows that:

z z
3 0w e
== {f C.dz + [ C.dz}
ot i 1
0 zé*-
(1.11)
-
dz = % {fupi.Cidz
-00
For z < z, there is no sedimentmovement.
For z > z there is no sediment.
So it follows that:
z
x Pi*"i (1.12)
(o]
400
dz = [wp;-C;] =0 (1.13)
—00
+00 %
9 2y A - 9 a.'.c'd (1.14)
dz = 3}—{- {f upi.Cidz} 3% {Zf up.l i Z}
-—00 o
e (1.15)
I b i s - .
dz [WPi'Ci]_m 0
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Summation of all the integrated terms (Eqs.(1.11)...(1.15))gives:

Z Z z

Z
1
3 o . B 3 — _
T3 {é C,dz} +—{_/‘ Cdz}+—-{;f up;Crdz} + == { [ upiCi dz} =

O o (o]

(1.16)

In the following all four terms will be written in a simplified form.
The first term of Eq. (1.16) can be written as:

VA —

3 zo _ o 9d 09z
ﬁ{écid2}=é_a_ i 3t

Because for z <z, mo sedimentmovement occurs the first term of the right-

hand side is zero; the following expression remains:

%{foﬁi‘”} -7, % (1.17)
0 z=z 9t :
o
This is the erosion/sedimentation term (fraction i); Ei = sediment-
concentration of fraction i on boundarylevel z = z . 2=2,
The second term in Eq. (l.16) can be written as
Z
Bq = 3 =
3¢ {zf C;dz} = =% (C,.8) (1.18)
)

in which Ek(x,t) is the averaged value of E;(x,z,t) over the transport-

layer (vertical direction).
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The third term of Eq. (1.16) represents the change in x-direction of that
part of the sediment flux ¢xi of fraction i, resulting from the average

motion.

The fourth term represents another part of ¢xi’ resulting from the fluc-

tuations.

Because ¢Xi(x,z,t) = Gpi(x,z,t).ai(x,z,t) + upi(x,z,t).Ci(x,z,t) the third

and fourth term of Eq. (1.16) can be combined to:

z z
l I i ——
3 — 3 pal R R
= {;’ uPi'CidZ} + T {:’ upi.Cidz} =7 (¢xi.6) (1.19)
0 )

Substitution of Eqs. (1.17)...(1.19) in Eq. (1.16) gives:

(§g;+8) = 0 (1.20)

The transport of fraction i in real volume per unit width can be written

as:

q, (x,£) = By, (x,£).8(x,t) (1.21)
1

Substitution of Eq. (1.21) in Eq. (1.20) gives:

= Bzo 8 = SQSi q
G, Bt tor Co® Tt 0 (1.22)

Through some simplifications this one-dimensional form of the continuity-
equation of sedimentfraction i will be written in a form in which it will

be used in the set of equations (see Section 1.4).
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T.5. Simplifications of the one-dimensional form

Several assumptions can make Eq. (I.22) suitable for use in the set of

equations.

The concentration of the sediment in the bedforms will be influenced by
several factors:
1. The way of packing of the grains: It is plausible that the packing
is different on either the front side or the leeside of a
bedform.
2. The grainform
3. Different grain-sizes: In case of a sedimentmixture the pores
between the large grains can be filled by small grains.
Despite these factors it is assumed that the sedimentconcentration in the

bedfdrms is equal to | - g, with a constant porosity €,

If g is not a function of x and t, division of every term of Eq.

(3. 22) by 1 - €, gives:

Y #mctm 0 £ % Dynenyh (1.23)

in which s; is the transport of fraction i in volume (including pores)

per unit width.

According to Eq. (1.3):

Ci(x,z,t) = pi(x,z,t) . C(x,2z,t)

In general both P; and C are stochastic variables; a time-averaged value

of Ci can be written in the usual way:
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T
= = T Ty = = 1 T
é C.dt C.p; (C+cC )(pi + Pi) C Pyt C Py

If it is assumed that:

1. The thickness of the instantaneous transportlayer on top of the
bedforms is negligible with respect to the overall transportlayer
thickness

2. In the bedforms the total sedimentconcentration is | - €, (e, =
constant); (this was assumed before)

it can be stated that
(i) In the bedforms C does not fluctuate but p; can.
(ii) In the troughs between the bedforms where is no sediment:
C = P; = 0.
As a direct comsequence that: ETSZ =0 and Ei = C.p. (1.24)

1

Integration of Ei over the transportlayer gives:

z z

I ;= wE *

= ?S' J Ci.dz = g f G,
z z

o (o)

all
o

o

N

1

ol
g

i

Because in general C and Ei are not uniformly distributed over the transport-

layer (vertical direction) it can be stated that:

i i i (1.25)
in which a, = distributioncoefficient (ui £ 1)
Substitution of Eqs. (1.24) and (1.25) inEq. (1.23) gives
C.plzgz azo 3 aié.;iﬁ Bsi
T 5T + T ( =& ) + el 0 i=1,...,0(1.26)
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According to Eq. (1.10), which was derived under identical assumptions

(see remark of Section 1.3):

oo

C(z) = (1 - ¢)) J £(n)dn
zZ

This can be written as:

C(2) = (1 - € )8(2)

(1.27)

in which B(z) is the cumulative p.d.f. of the instantaneous bed-level.

Averaging Eq. (1.27) over the transportlayer (vertical direction) gives:

) = (1 - ¢ B
in which:
2, o
B =5 [ ( £(m)dn)dz
Zo Z

(1.28)

(1.29)

which is the mean of the cumulative p.d.f. of the instantaneous bottom-

level.

Substitution of Eqs. (1.27) and (1.28) in Eq. (1.26) gives:

3 = i :
P; v + 3t (a.R(z).p..8) + —X =0 i=1,..

.,n (1.30)
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If it is assumed that:
(i) B(z).8 = constant,i.e.the integrated cumulative p.d.f. of the

instantaneous bottomlevel (see Eq. (1.29)) is constant;

B(z).8 can be defined as an effective transportlayerthickness
Soff = B(2).6 = 8.C(2)/1 - €.

(ii) a, = constant, or the distributioncoefficient per fraction i

is constant, which automatically means that a, = 1 (see remark),

the following equation results:

i=1,...,n (1.31)

Remark:
In the following consideration it will be shown that assuption (ii) viz.
a constant distributioncoefficient per fraction a also means that a, = 1

or all fractions are uniformly distributed over the transportlayer (ver-

tical direction).

According to Eq. (1.25): Ci = aiC.pi

Summation of this expression over all fractions gives:

R
all
"
on
"
SR
Q
XL
ol

or:
n =
L oo..p.=1 (1.32)

This relation links all distributioncoefficients to each other. Also the

sum of the probabilities of all fractions is equal to one, so:
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[ o I =
Rl
]

(1.33)

Consideration of one single fraction (i) and the rest of the mixture as

a whole (r) the Egqs. (1.32) and (F.33) can be translated to:

al.pi + o.p. = 1
p; *+P. =1

in which ﬁr and a_ are defined as:

ol
f
Lo Lo
-]
'—l
k=
Q
]
vul_
Cmde Lo
T -
He —
&
e
Y

(1.34)

(1.35)

The only way for o, and o, to be constant or to be independent of
- i

a change of Bi is being equal to one. Because fraction i could have

been any fraction of the mixture a, = 1 for all fractions of the

sediment mixture.

For two sedimentfractions (n=2) Eq. (1.31) can be written as:

P, - 332 + B(2) G,EEL + Eil =0 (1.36)
1z ot ot 9x :
o
dz 3p, 9s
= 0 _ BT 1 2
pzz’_t (z).G-—t+—§;-—0 (1-.37)
o

In Section 1.3.2. B(z) will be written as B.
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In the derivation of these equations the following assumptions have been

made: -
. . . 2z 9z '
® Slow erosion/sedimentation: 3t << STy
Sedimentconcentration in the bed is constant =1 - € .

o

Instantaneous transportlayerthickness §' << §.

Constant effective transportlayerthickness S,¢¢ = B(2).6.

Uniform distribution of every fraction over the transportlayer (&)

or 0. = 1.
i
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Appendix 2 Mathematical character and an interpretation of the condition
AB =C

2.1. Mathematical character

A necessary condition for the elliptic or parabolic character of the

set of p.d.e. is:

(A+B)?-4C<0

or: 4C

|v

(A + B)?

or: 4(C - AB) > (A - B)?

Because the righthand side of this inequality is always positive a
necessary but not sufficient condition for the elliptic or parabolic

character is:

AB - C<O0 (2.1)

Substitution of the expressions for A, B and C (see Eqs. (32)...(34)) the

following form can easily be derived:
Py - . f + £ <0 2.2
(Pzzo " Plzo Y2)( . 2p1) < (2.2)

If it is assumed that the sedimenttransport of fraction i can be written

as follows:

ni )
fi(u,pi) =m.u (2.3)

2]
]

in which: m, function of P; and not a function of u

n. = not a function of P; and u.
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(This assumption means that for two fractions with given grain diameters

the roughness parameter Ct is assumed to be conmstant).

the derivatives fi (i =1,2) can be written as:
u
flu = n1.f1/u
f2u = nz.fz/u

The ratio Y;/Y2 ( = ratio of transportconcentrations of both fractionms)

can then be written as:

—_—E —— = — Y — ifn1=n2 (2'4)

If it is assumed that:

. u .C.p;.8 (2.5)

in which u_ , C and § are double-averaged variables and the distribution-
coefficients are assumed to be equal to one(see App. 1) and furthermore it

is assumed that &, uP , C and €, are not a function of P;> the derivatives

fi (1 =1,2) can belwritten as follows:
P1

£y mebaes ,uw . 04 B

P1 1 -e P1

(2.6)

f2 b ! . u cC.3$é6

P1 1 - ¢ P2

o

Substitution of (2.4) and (2.6) in the condition (2.2) with the assumption
that the composition at level zo(x,t) (Piz ) is equal to the mean value of
o

P; in the transportlayer gives the following inequality:
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.Pr.C.0.
P1-V2 8 upz (upl

1 - Eo Up2

-1N2<o0 (2.7)

This expression can never have a negative value which implies_ that

the set of p.d.e. is always hyperbolic.

Remark:It should be realised that this is only a rough estimation with many
assumptions made. A specific transportformula per sedimentfraction
is necessary to give a more definite conclusion about the mathe-

matical character of this set of p.d.e.

2.2. Interpretation of the condition AB = C

An (exact) condition for the approximated characteristics to be exact is:
AB - C=0, This means as is derived in the first part of this appendix
that:

(pzzowl - Plzowz)(flpl * 2,0 =0 (2.8)

Three cases can be considered:

either: P2, Yy - P1, P, =0 (2.9)
or: £, +f, =0 : (2.10)
or: both expressions are zero.
In Section 2.3.2. these equations aré used as conditions for the approximated

characteristic relations.

In the following the validity of these conditions is discussed.
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% Condition (2.9): P2, Uy - P1, Yo =0
o o

If it is assumed that P, =P, this can be written as:

Z
o

- B (2.12)

This means that the ratio of the transportconcentration parameters of both
fractions is equal to the ratio of the probabilities of both fractions
in the transportlayer.

If the assumptions made in the first part of this appendix are used the

expressions (2.4) and (2.5) can be combined to

« U
p1 P,
Pz-up2

by
i (2.13)

Comparison of Eq. (2.12) and (2.13) learns that condition (2.9) is fulfilled
better when the grain-velocities of both fractions approximate each other
with generally means that the grain-diameters of both fractions approximate
each other.

Another possibility for estimating the ratio ¥;/yY, is to use a specific simple
transportformula per fraction.

In Chapter | a "basic hypothesis" is formulated (see Eq. 12) which will be
combined in this case with the Engelund-Hansen formula (see also Ribberink,
1978).

The result is then:

_ _ Vg 512 1
s; = fi(u’pi’Di) =p; = 0,084 i (HR1) 5;

The ratio of the derivatives with respect to u_for_both fractions becomes:

(2.14)
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Again it can be seen that the grain-diameters have to approximate each

other in order to satisfy condition (2.9).

Condition (2.10) £, + £, =0
P1 P1

If £ is defined as the total sedimenttransport this condition can be written

as.

The "basic hypothesis" for a sedimenttransportformula per fraction is used

again in its general form:

= = '
Bf = B 0L,0,) = py-F]
in which fi is the hypothetical transport of fraction i if the bed
consists of this fraction only.

In Fig. 2.1. this formula is illustrated.

-5
7
~~
o ~
/6‘/’ )
f
=T 5P, fi
~
~
~
f3 >
— ! 3
0 (1} 10
.—.p

Fig. 2.1 "Basic hypothesis"
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The derivative 3f/3p; is approaching zero when 3f,/3p: + 9f,/9p, which is
identical to £} - £35.
This result also means that condition (2.10) is satisfied better when

the grain-diameters of both fractions approach each other.

It can be concluded from this consideration (including all its assumptions)
that the condition AB = C (for the approximated characteristics and charac-
teristic relations to be exact) is satisfied better when the graindiameters
of both fractions approach each other.

It may be expected inthat case that also both exact characteristic directions

approach each other.
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Appendix 3: A simple form of the approximated characteristic directions

Using some assumptions the expressions A and B (approximated characteristic

directions) will be written in a simple form which can be interpreted

more easily.

For Froude-numbers Fr << ] expression B can be written as:

Y1 + Py
B=——m—=1y; + g
1 - Fr?

Because y; = £, /a this becomes:
u

B = (f1u + fzu)/a = fu/a (3.1)

Using a simple general transportformula:

in which m and n are no function of u, the derivative fu can be written as:

£f smae® lem, £ (3.2)
u u
Substitution of Eq. (3.2) into Eq. (3.1) gives:
. £
B=n. . (3.3)

Analogous to the assumption made in Appendix 2 it will be assumed that

the total transport can be written as:

f=—-—. « C « 6 3.4
L . (3.4)
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2
in which: u = I & = 5 + .u 3.5
. 2 2 Prety * Prauy (3.5)

Substitution of Eqs. (3.4) and (3.5) into Eq. (3.3) gives:

. + .
B ~ 1€ $ (p1 Yp, T P2 uPz)
1 - €, ‘a u

Remark: The parameters C, u_ .  and P; are time-averaged as well as averaged

Pi
over the transportlayer and should have been written formally as

c, GP and Ei (see Appendix 1).
i

With C = (1 - Eo).B (see also Appendix 1) this becomes:

8 (pl-upl * pzupz)

B=g8 .n. S = (3.6)

If it is assumed that the transport per sedimentfraction can be written as

(see also Appendix 2):

Si=fi=l—_-To.pi.upi.C.5 (l=l,2)

in which fi is a linear function of p; ("basic hypothesis") and &, €,
up; and C are no function of P;> the expression A can also be -simplified.

The derivatives fiP1 (i = 1,2) can then be written as:
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Substitution in the expression for A gives:

£ - £
P2z0 Ipl Plzo 2p1 C

Bdu - e )B.u (pzzo-up1 TP, 'upz)

A=

With C = B(1 - eo) and the assumption that P; at level z = z is equal to

the averaged value of P; in the transportlayer this becomes:

_ (pzeup + preup))

A= (3.7)

u
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Appendix 4 The coefficients in the characteristic relations

4,1, Deviation of the approximated and exact characteristic directions

It is shown in Section 3.4.2. that the terms ¢ - A (¢ = ¢1’2) and ¢ - B

(9 = ¢1’2) are of importance for the estimation of the order of magnitude
of the terms in both identical expressions for the characteristic relations.
After a general derivation some possible approximations of these terms will

be considered. The exact characteristic directions as derived in Section 2.2.1.

can be written as:
6,,,=4{a+B+ [a-B)2+ 4B - 0] (4.1)
with o = AB - C this becomes:
¢, =4 {a+3+ [(a-B2 +4l]t/?) (4.2)
By assuming that:
(A-B)? +4a /2 = |a-B| +8 (4.3)
Equation (4.2) becomes:

¢, ,=32{a+B2 |a-B| +81} (4.4)

Equation (4.4) shows that B/2 is the deviation between the exact characteristic

directions and their approximatioms.

A+ B
B - iB

Example: Suppose A > B then Eq. (4.4) yields: ¢,
¢,

The magnitudeof |B| with respect to A and B determines the accuracy of the app.

char.'s.

With help of Eq. (4.3) o can be expressed in f8:

a =48 |a-B| + ig? (4452
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The following relation is true also:

AB - C

e
i

f + 1,

= —Pi__ "P1 P2y Z Ryl

& Su ° (1 - Fre)
or: a =TFp . py (4.6)
Substitution of Eq. (4.6) in Eq. (4.5) yields:

Fp.py = 4B |A - B| + {p® (4.7)
It is shown in Section 3.4.2. that also the terms Fp and py are important for
the estimation of the terms in the char. rel.'s. Equation (4.7) yields a con-
dition for the product of Fp and py when the values A, B and B are known.
Example: If A >> B it generally means that A and B are accurate approximations

of ¢, and ¢, (see Section 2.2.3.). However, it is still possible that[8|has the

same order of magnitude as B. In that case according to Eq. (4.4) it follows that:

¢, =A+ B~ A+ {BxA

I

¢, =B - iB~ B

and consequently A is an accurate approximation of ¢, ; B has the same order

of magnitude as ¢,. Equation (4.7) yields a condition for Fp . py:
Fp . py = 4B . A

Another possibility is that|R|<< B; again:
¢, ™ A
¢, B

2

and Eq. (4.7) now becomes:

Fppy =~ 4A . B

In the next part of this Appendix the behaviour of Fp and py will be studied.
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4.2. The terms Fp and py

According to Eq. (4.6) the expressions Fp and py can be written as:

£,, + 1, P.¥, -~ pY,
Fp = —El—s-u——-m- pw =

1 - Fr?

The numerators of these expressions were discussed in Appendix 2. According
to this consideration both terms become smaller when the grain—diameters and/
or grain-velocities of both fractions approximate each other. With a specific
transportformula per fraction like M.P & M including Eg.'s theory,Fp and py

become smaller when:

D,/D, + 1
Te,. > Te
) ot
The last condition is of importance because despite a small difference in grain-
diameters near 'initiation of motion' of the coarse fraction there probably is

a large difference between the behaviour of both fractions (e.g. grain-velocities).

In the fqllowing the magnitudes of Fp and py will be considered with respect
to A and B.

1. Magnitude of Fp with respect to A

It will be assumed in this estimation that the 'basic-hypothesis' can be used

as a transportformula per fraction (see Fig. 4.1).

r'-?r
-1 f;
th 22
—_—— L ——y
0 05 10
—P,

Fig. 4.1 the 'basic-hypothesis': s
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In that case:

fl = -giL = f!
pl p]_

£, = %EL = - f!
P, P,

and A and Fp can be written as:

_ Py £f] = p 5
A= I (4.8)
[ S |
Fp = £ Sa £ (4.9)

Three cases will be distinguished:

2p1

This case is reached when D1/D2 -+ 1 and Tex >> T . Equation (4.8) and
)
(4.9) can be approximated by: z

- Dol +pif) _ £
A Su Su
Fp =+ 0

which means that : Fp << A.

£
INRN

In this case A and

A small shift takes place to : D,/D, < I and T > To
= 2t

Fp have the same order of magnitude: Fp = A. z z
£ >> £ .
£, 1 > 15, |
This case can be reached for very large grain-diameter differences
(DI/D2 << 1) and the coarse fraction near 'initiation of motion' (T
Two extreme cases can be distinguished:
p, >0 Fp s X f{/éu
p, > 1 Fp>>AYf)/6u

Apparently Fp can be smaller, equal and larger than A. The choice Fp= A

seems to be a representative estimate.
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2. Magnitude of py with respect to B

Because w1(= flu/a) and Y, (= fzu/a) always have a positive sign, py is
always smaller than B:
pw = e X B = e
1 - Fr? 1 - Fr?
1f D1/D2-*l and T, >> T, both fractions will behave rather similar;
% %

2
according to the "basic hypothesis':

s{ = Pi - f{
and: i
Sk
T
s, P, £,

The quotient ¥, /¢, becomes:

1
?i - flu _ Py flu
wZ fzu pZ féu

I1f both fractions behave rather similar this becomes:
¥, ~ P,
v, p,

or in other words, py appproaches zero and:

|pw| << B

When this situation gradually shifts to Dl/D2 << 1 and Te, ~ Tcﬁz it is
possible that Y,>> Y, because near initiation of motion a’small velocity
change has a large influence on the transport (large power of the M.P & M
formula near initiation of motion!)

In this situation two cases can be distinguished:

p, >0 [pp|e——r—e<<B=

From this consideration two choices for a representative estimate of py will

be made:

1. |py| ~B
2. |p¥| <«<B
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Appendix 5 CPS-computerprogramme for thedetermination of dimensionless

characteristic directions and relations

The exact and approximated characteristic directions and the char.rel.'s are:

ex. char.'s : ¢1,2 = } {Aa+B+[(a-38)?2 +4(aB - C)]llz} (5.1)
app.char.'s : A= (p, flp - p fzp )/Su (5.2)
1 1
£ + £
e, dpy . _lp, ’p, dzg - A) = (6 — A) UR
char. rel.'s: it s e s (¢ - A) (¢ - A) e B +

+ l‘éli (AB - C) (5.3)

¢ =9, ,

Equation (5.3) is one of the two possible char.rel.'s which are available.
With the help of some substitutions (see Sections 3.3.2. and 3.4.3.) Egs.

(5.1)...(5.3) can be written in a different dimensionless form:

ex.char.'s : §, , =3 {E+B+[@&-B)2 + 4(AB - O11/2
3 ) ¢1’2(l - g,)a.u
Is2
’ VAg D13
— A(l - g,)a.u D 3l2 a
app.char.'s : A= - = (p,.qp; - Pl-qu(‘& )""
e e n,) /'3
/2
= _B(l - gp)a.u D, \3'% 1
s =(ay ¥ q“z("‘z‘) )=
/A—nga—— ( Dl 1 Fr
char.rel.'s: dp. ++.dz,.8 .(zi) = ar . R' . (&)
. .'s: P, 5-dzp.— - (zi . . (Ri
i=1,2
with: R' = __R_.Ag._D.l___
g(1 - g))a®
$i _K —- -
zi = along ¢; = ¢
D 1 1,2
(ap, + (—j—)a/z ap,) ’
= e o D,
. (¢; - A).B (p, qu, pl(-]-)-:—)al.z qu, )
Ri = ) 7 +
(qp, + (_; 3% qp,) §/a . (1 = Fr?)
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With the help of a transportformula per fraction and values of Te, » Dl/Dz’ Py
8/a and Fr the ex.char.'s 6;,2, the app. char.'s A and B and the coefficients

z,, z,, R, and R, of the char. rel.'s can be calculated.

In the computer-programme the formula of M.P & M including Egiazaroff's theory
has been used. The required input-parameters, their synonyms in the programme
and the number of these parameters which can be processed every run are shown in
Table 5.1.

Fr b3 (line number 340) 1

a/s h (line number 320) 1

Teg tau 5
1

D, /D, rd 5

P, P 6

Table 5.1 Input—parameters

The synonyms of the output-parameters are shown in Table 5.2.

9, 01
P, 02
A

B B
zl zl
z2 z2
Rl R1
R2 R2

Table 5.2 Output-parameters

A listing of the CPS-programme is given below.
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10, DECLARE tau(S)srd(5)ip(4)i

20, GET LIST(tau);

30, GET LIST(rd)i

40, GET LIST(m)} 7

30, PUT IMAGE(‘01’9’02’9’'A’s’B'y 21’1722 9y'R1’»'R2/)(Inl)}
60, DO ld=1 TO 5

70, PUT LIST(’dl/d2="srd(1d))}

80, B0 1t=1 TO 5;

90, PUT LIST(’tauel=’stau(lt))i ’
100, DO 1e=1 TO &;

110, ard1=19/(2(1P)+(1-p(1lr))/rd(1d))}

120, ard2=19/(r(1p)Xrd(1d)+1-pr(1r))}

130, taucl=,1/1lo0410{(ar<d1)%%25

140, tauc2=,1/10410(3r42)%%2;j

150, ri=tau(lt)-.768%ta3ucl’

140, IF r1<0 THEN GO TO con3j

170, conl! arl=8%r1%%x1.548.01xr(1lp)%(1~ rd(ld))/(P(lP)trd(ld)+1-P(1P))*taucl/lo!lO(arsl)xrixt S
180, aul=24xp(1lp)xtau(lt)Erixx,S5;

190, r2=rd(ld)xtau(lti-,768%tauc2}

200, IF r2>=0 THEN GO TO con2j

210, conl?$ 01=,999€E335

220, 02=,999E33}

230, 3=.999€E33%

240, b=,999€E33}

250, zel=.999€333

260, 2e2=,999E33}

270, Rel=,999E33}

280, Re2=,999E33}

290. GO TO a2j

300, con2} ar2==-BXr2%%1,5+8. 013(1-p(1r))%(1-rd(1d))/(r(1P)Srd(1d) +1-r(lr))Stauc2/10810(ard2) Xr23%. 5}
310, au2=24x(1-p(1P))Ird(1d)2tau(1t)¥r223,5}
320, h=1.9%

330, a=hx((1-p(1lr))sarl-p(lr)%ar22(1/rd(1d))%%1,5)}
3400 -03471

350, b=(aultou2x(1/rd(1d))221.5)/(1-7822)}

360, csh/(1-f%22)x(au2xarl~aulRar2)%(1/rd(1d) ) %%1.5;
370, wi=(3-b)xx2;

380, w2=43%(3xb-c)i

390, vi=sart(ul)}

400, v2=sart(uwltu2)j

410, zl=arltar2k(1/rd(1d))2%1.5;}

420, 22=(1-p(1r) ) 2aul-p(lr) Xau2X(1/rd(1d))s21.5}
430, 0l=(3+b)/2+v2/2%

440, 02=(3+b)/2-v2/2;}

430, zel=(ol-a)/z1;

460, ze2=(02-3)/z1} .

470, Rel=((ol-a3)%btz1X=2%h/(1-03%2))/21}

480, Re2=((02-3)%b+z21%22%xh/(1-x%2))/21}

490, a2i PUT IHAGE(OI;OZ:arbvzelrze2vRelvRe2)(In2)r
300, ¢ END

510, PUT LIST(*’);

520, END

330, END 3

340, PUT LIST(’’);

550, Ia2¢ INAGES}

myTeeen e cemce cecesee -, ————

960, Ini? INAGES

- -

570, STO0P
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Appendix 6 Propagation of the front and the tail-wave

It will be shown in this Appendix that the front and the tail-wave propagate along

straight characteristics without damping or amplification with celerity:

—

.

0
[

c, in the front

N
0
]

c, in the tail.
In Fig. 6.1 the x-t diagram is shown and the different areas can be seen.

The front-wave:

According to the initial condition point 2 is identical to point 1. Because
point 4 is determined by the characteristics originating from these points,

point 4 1is identical to point 1 also.

Point 3 satisfies the characteristic relation (with ¢ = ¢,) originating from
point I but then also the characteristic relation (with ¢ = c,) from point

4. Ofcourse point 3 also satisfies the characteristic relation (c = c,) origina-
ting from point 3 itself. Result: Point 5, satisfying the characteristic rela-

tion originating from point 3 and 4 must be identical to point 3.

In other words: The front-wave propagates without damping or amplification with

celerity ¢ = c;.

The tail-wave:

An analogous consideration can be given for the tail-wave. The only difference is
that a minus-sign must be added to indicate the point-numbers and ¢, and c, must

be replaced by c, and ¢, respectively.

1

Result: The tail-wave propagates without damping or amplification with celerity

After the interaction-period point 6 is reached and the front and tail-wave are
intersecting. As a result p, and z, of point 6 are constant along both charac-
teristics originating from point 6 and a temporarily equilibrium situation develops

with zoeq = z06 and pleq = pls.

Remark: It must be realised that this specific propagation of front and tail in
only possible because of the simplification of the watermotion in the mathemati-

cal model:



2. Assuming small Froude-numbers (Fr << 1, no backwatercurve 8h/dx

-138-

1. Neglecting the friction—term R (+ 0) results incharacteristic relations with a

zero right-hand side (so no damping or amplifi cation during one step of the
calculation-procedure).

= 0) and a
0) causes that the characteristic directions and
relations are completely determined by z;, and p, only. Consequently the

fixed waterlevel (dh/9t =

characteristics,along which z, and p, are constant,will be straight lines.

o

9

"

AT TN TR W T ALY

L tam povarily
. aquilibrivm

Ll {

Fig.6.1.Propagation in the x-t plane
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Appendix 7 Tables of Chapter 3 .
/| T | Fig | 2 1 %
%]
0.06 - 0.0171
0.1 - 0.0764
0.2 0.2 0.0499)0.3167
0.4 0.4303|1.0510 |
1.0 2,563114.5381
0.06 &= 0.0177 0.0047| 0.0071
0.1 0.0257|0.0673 0.0390| 0.0586
0.6 0.2 0.1679{0.3019 0.1915; 0.2873
0.4 0.6348.1.0287 0.67t1{ 1.0067
1.0 2.917 [4.5018 2.9771| 4.4656
0.06 }0.0047{0.0071 A
0.1 0.0390|0.0586
1.0 0.2 0.1915|0.2873
0.4 0.6711(1.0067
1.0 2.9771 (4.4656
Table 7.1. The dimensionless transport of fraction I (finé) and
fraction 2 with/without Egiazaroff's theory as a function
of Texi for different values of DI/DZ and for pl=0.4
(Fig.4 and Fig.5)
P, Y1g %2, X X
0 0 0.0977 0 0.0977
0.2{0.0108 [0.0839 0.0195 | 0.0781
0.4]0.0257 |0.0673 0.0390 ; 0.0586
0.6{0.0450 }0.0479 0.0586 | 0.0390
0.8}0.0689 |0.0254 0.0781 | 0.0195
1.0]0.0977 0 0.0977 0
Table 7.2.The dimensionless transport of fraction 1 and 2 with/without

Egiazaroff's theory as a function of P, for T, =0.1, Dl/D2=0.6
B
(Fig.6)
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Texl &;l EE.2 A B
0.06 - - - -
0.1 0.359 | 0.029 0.173 | 0.215
0.2 1.866 | 1.384 1.602 | 1.659
0.4 7.180 | 5.502 7.112 | 5.570
1.0 | 35.084 |23.828 | 35.059 | 23.852

Table 7.3.Dimensionless approximated and exact characteristic

directions as a function of'Texi for Fr=0.2 , a/é§

Dl/D2=0.4 and p1=0.4

(Fig.7)
Fr a/ 1 2 A B
1 0.031 0.040 0.470
5 0.529 0.140 0.199 "
0.0 10 0.634 0.234 0.398 i
25 1.140 0.326 0.995 "
50 2.108 0.352 1.990 i
1 0.499 0.031 0.040 0.490
5 0.548 0.141 0.199 i
0.2 10 0.650 0.238 0.398 "
25 1.148 0.337 0.995 "
50 2.114 0.366 1.990 "
1 0.031 0.04 0.560
5 0.615 0.144 0.199 .
0.4 10 0.708 0.249 0.398 "
25 1.181 0.374 0.995 -
50 2.197 0.528 1.990 it
1 0.743 0.031 0.040 0.735
5 0.786 0.147 0.199 W
0.6 10 0.864 0.268 0.398 i
25 1.275 0.455 0.995 "
50 2.197 0.528 1.990 "
1 1.314 0.031 0.040 1.306
5 1.353 0.152 0.199 -
0.8 10 1.412 0.292 0.398 -
25 1.692 0.609 0.995 -
50 2457 0.839 1.990 "

Table 7.4.Dimensionless exact and approximated characteristic

=0.

directions as a function of Fr and a/§ for T
Dl/D2=O.4 and p1=0.8

(Fig.10 and Fig.l1)

=

3,
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Te*! 0.1 1.0
0/ py & [ % [ B 5 19, 5 | % B

0.0 | - = = - 27.107 | 21.868| 27.107 | 21.868
0.2 | - - - - 30.393 | 22.235| 30.313 | 22.315

a.g | Dukk [= - - - 32.033 | 22.661| 31.854 | 22.840
0.6 | - - - - 32.770 | 23.174| 32.557 | 23.387
0.8 | - - - - 33.250 | 23.776| 33.108 | 23.918
1.0 |0.576| 0.003| 0.003| 0.576 | 34.256 | 24.406| 34.256 | 24.406
0.0 | - - - - 34.210 | 23.486 | 34.210 | 23.486
0.2 | - - - - 34.719 | 23.651 | 34.704 | 23.667
0.4 0.359| 0.029 | 0.173| 0.215 | 35.084 | 23.828| 35.059 | 23.852

0-4 | 0.6 |0.482| 0.084 | 0.185| 0.382 | 35.368 | 24.104| 35.343 | 24.040
0.8 [0.548| 0.141 | 0.199 | 0.489 | 35.638 | 24.208 | 35.621 | 24.225
1.0 [0.576| 0.226 | 0.226 | 0.576 | 35.973 | 24.406 | 35.973 | 24.406
0.0 [0.368 | 0.221 | 0.221 | 0.368 | 35.946 | 24.001 | 35.946 | 24.001
0.2 [0.436]0.237 | 0.257 | 0.417 | 36.106 ' 24.079 | 36.103 | 24.082
0.4 [0.489|0.259 | 0.287 | 0.461 | 36.246 | 24.159 | 36.242 | 24.163

-6 | 0.6 [0.528 | 0.286 | 0.312 | 0.502 | 36.376 | 24.240 | 36.371 | 24.245
0.8 [0.557 | 0.318 | 0.335 | 0.540 | 36.503 | 24.322 | 36.499 | 24.325
1.0 [0.576 | 0.359 | 0.359 | 0.576 | 36.638 | 24.406 | 36.638 | 24.406
0.0 [0.508 | 0.382 | 0.382 | 0.508 | 36.747 |24.255 | 36.747 |24.255
0.2 [0.526 { 0.390 | 0.394 | 0.522 | 36.798 |24.285 | 36.798 |24.285

0.8 | 0+4 [0-542]0.400 | 0.406 | 0.536 | 36.849 |24.315 | 36.848 |24.315
0.6 [0.555 | 0.411 | 0.416 | 0.549 | 36.898 |24.345 | 36.898 |24.346
0.8 [0.567 | 0.423 | 0.427 | 0.563 | 36.946 |24.375 | 36.946 |24.376
1.0 [0.576 | 0.437 | 0.437 | 0.576 | 36.995 |24.406 | 36.995 |24.406
0.0 4
!

1.0 | 0-4 [0.576 0.489 0.489 0.576 | 37.215 24.406 37.215 24.406
0.6
0.8
1.0 |

Table 7.5.Dimensionless exact and approximated characteristic directions

as a function of P, and DI/DZ for two values of Te§
and a/§ =5 .

(Fig.8 and Fig.9)

1

, Fr=0.2
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b, /D, Py (2 [ A B
0.0 | 2.394 |  1.436 2.394 1.436
0.2 | 2.269 1.375 2.105 1.540
0. 0.4 | 2.163 1.297 1.815 1.644
0.6 | 2.076 1.198 1.526 1.748
0.8 | 2.008 1.081 1.237 1.852
1.0 | 1.956 0.948 0.948 1.956
0.0 | 2.39 1.744 2.394 1.744
0.2 | 2.300 1.741 2.254 1.786
0.6 0.4 | 2.208 1.736 2.115 1.829
0.6 | 2.119 1.728 1.976 1.871
0.8 | 2.033 1.717 1.837 1.913
1.0 | 1.956 1.698 1.698 1.956
0.0 | 2.39 1.879 2.394 1.879
0.2 | 2.347 1.887 2.339 1.894
r 0.4 | 2.298 1.897 2.286 1.910
0.6 | 2.247 1.910 2.232 1.925
0.8 | 2.191 1.927 2.178 1.940
1.0 | 2.123 1.956 2.123 1.956
0.0 )
0.2
1.0 0.4 1 2.394 1.956 2.394 1.956
0.6
0.8
1.0 '

Table 7.6. Dimensionless exact and approximated characteristic directions

as a function of p, and DI/DZ for Fr=0.2 , a/d =5 and Tay =0.2
1
without Egiazaroff's theory (Fig.12 and Fig.13)
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