

Delft University of Technology

The Scent of a Smell
An Extensive Comparison between Textual and Structural Smells
Palomba, Fabio; Panichella, Annibale; Zaidman, Andy; Oliveto, Rocco; De Lucia, Andrea

DOI
10.1109/TSE.2017.2752171
Publication date
2018
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., & De Lucia, A. (2018). The Scent of a Smell: An
Extensive Comparison between Textual and Structural Smells. IEEE Transactions on Software Engineering,
44(10), 977-1000. https://doi.org/10.1109/TSE.2017.2752171

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2017.2752171
https://doi.org/10.1109/TSE.2017.2752171

The Scent of a Smell: An Extensive Comparison
between Textual and Structural Smells

Fabio Palomba1, Annibale Panichella2, Andy Zaidman1, Rocco Oliveto3, Andrea De Lucia4

1TU Delft, The Netherlands, 2SnT Centre — University of Luxembourg, Luxembourg,
3University of Molise, Italy — 4University of Salerno, Italy

f.palomba@tudelft.nl, annibale.panichella@uni.lu, a.e.zaidman@tudelft.nl
rocco.oliveto@unimol.it, adelucia@unisa.it

Abstract—Code smells are symptoms of poor design or implementation choices that have a negative effect on several aspects of
software maintenance and evolution, such as program comprehension or change- and fault-proneness. This is why researchers have
spent a lot of effort on devising methods that help developers to automatically detect them in source code. Almost all the techniques
presented in literature are based on the analysis of structural properties extracted from source code, although alternative sources of
information (e.g., textual analysis) for code smell detection have also been recently investigated. Nevertheless, some studies have
indicated that code smells detected by existing tools based on the analysis of structural properties are generally ignored (and thus
not refactored) by the developers. In this paper, we aim at understanding whether code smells detected using textual analysis are
perceived and refactored by developers in the same or different way than code smells detected through structural analysis. To this
aim, we set up two different experiments. We have first carried out a software repository mining study to analyze how developers act
on textually or structurally detected code smells. Subsequently, we have conducted a user study with industrial developers and quality
experts in order to qualitatively analyze how they perceive code smells identified using the two different sources of information. Results
indicate that textually detected code smells are easier to identify and for this reason they are considered easier to refactor with respect
to code smells detected using structural properties. On the other hand, the latter are often perceived as more severe, but more difficult
to exactly identify and remove.

Index Terms—Code Smells, Empirical Study, Mining Software Repositories

F

1 INTRODUCTION

T ECHNICAL debt is a metaphor introduced by Cun-
ningham in 1993 to indicate “not quite right code

which we postpone making it right” [25]. The metaphor
tries to explain the compromise of delivering the most
appropriate but still immature product, in the shortest
time possible [25], [18], [53], [60], [92]. Code smells, i.e.,
symptoms of poor design and implementation choices
applied by programmers during the development of
a software project [35], represent an important factor
contributing to technical debt [53]. The research com-
munity spent a lot of effort studying the extent to which
code smells tend to remain in a software project for
long periods of time [4], [22], [61], [84], as well as their
negative impact on non-functional properties of source
code, such as program comprehension [1], change- and
fault-proneness [48], [49], testability [77], [68] and, more
generally, maintainability [97], [111], [109]. As a conse-
quence, several tools and techniques have been proposed
to help developers in detecting code smells and to
suggest refactoring opportunities [12], [8], [65], [67], [74],
[75], [100].

So far, almost all detectors try to capture code smell
instances using structural properties of source code as
the main source of information. However, recent studies
have indicated that code smells detected by existing

tools are generally ignored (and thus not refactored) by
the developers [4], [10], [94]. A possible reason is that
developers do not perceive the code smells identified by
the tool as actual design problems or, if they do, they
are not able to practically work on such code smells.
In other words, there is misalignment between what
is considered smelly by the tool and what is actually
refactorable by developers.

In a previous paper [75], we introduced a tool named
TACO that uses textual analysis to detect code smells in
source code. The performances of this novel tool have
been compared with the ones of traditional structural-
based tools. Besides showing that TACO has good per-
formances, the results indicate that textual and structural
techniques are complementary: while some code smell
instances in a software system can be correctly identified
by both TACO and the alternative structural approaches,
other instances can be only detected by one of the two
alternative approaches [75].

In this paper, we investigate whether code smells
detected using textual information are as difficult to
identify and refactor as structural smells or if they follow
a different pattern during software evolution. To this
aim, we conducted two different studies investigating
how developers act on code smell instances of the same
type but detected either by TACO or by the structural-
based tools (but not both). Our conjecture is that code

1

smells detected using textual analysis are easier to iden-
tify and refactor by developers with respect to code
smells detected by structural-based tools.

To verify our hypotheses, we firstly performed a soft-
ware repository mining study considering 301 releases
and 183,514 commits from 20 open source projects in
order (i) to verify whether textually and structurally
detected code smells are treated differently, and (ii) to
analyze their likelihood of being resolved with regards
to different types of code changes, e.g., refactoring op-
erations. Since our quantitative study cannot explain
relation and causation between code smell types and
maintenance activities, we perform a qualitative study
with 19 industrial developers and 5 software quality
experts in order to understand (i) how code smells
identified using different sources of information are per-
ceived, and (ii) whether textually or structurally detected
code smells are easier to refactor. In both studies, we
focused on five code smell types, i.e., Blob, Feature Envy,
Long Method, Misplaced Class, and Promiscuous Package.

The results of our studies indicate that textually de-
tected code smells are perceived as harmful as the
structural ones, even though they do not exceed any
typical software metrics’ value (e.g., lines of code in a
method). Moreover, design problems in source code af-
fected by textual-based code smells are easier to identify
and refactor. As a consequence, developers’ activities
tend to decrease the intensity of textual code smells,
positively impacting their likelihood of being resolved.
Vice versa, structural code smells typically increase in
intensity over time, indicating that maintenance oper-
ations are not aimed at removing or limiting them.
Indeed, while developers perceive source code affected
by structural-based code smells as harmful, they face
more problems in correctly identifying the actual design
problems affecting these code components and/or the
right refactoring operation to apply to remove them.

Structure of the paper. Section 2 introduces the textual
and structural code smell detection techniques exploited
to identify the two categories of code smells object of our
study. In Section 3 we report the design and the results
of the software repository mining empirical study where
we analyze how code smells detected using different
sources of information are treated during their evolution.
Section 4 reports the design and results of the study
aimed at understanding the developers’ perception of
structurally and textually detected code smells. Section
5 discusses the related literature on code smells, while
Section 6 concludes the paper.

2 TEXTUAL AND STRUCTURAL CODE SMELL
DETECTION

Starting from the definition of design debt proposed
in [19], [35], [85], [107], researchers have devised tools
and techniques to detect code smells in software systems.
Most of them are based on the analysis of the structural
properties of source code (e.g., method calls) and on

the combination of structural metrics [51], [56], [65],
[67], [69], [72], [88], [95], [99], [103], while in recent
years the use of alternative sources of information (i.e.,
historical and textual analysis) have been explored [74],
[75], together with methodologies based on machine
learning [3], [33] and search-based algorithms [17], [46],
[47], [87].

Besides code smell detectors, refactoring techniques
may be also adopted to identify code smells in source
code [11], [12], [16], [30], [100], [101]. Rather than iden-
tifying code smell instances directly, such approaches
recommend refactoring operations aimed at removing
a code smell. Also in this case, the primary source of
information exploited is the structural one [30], [100],
[101], while few works have explored a combination of
structural and textual analysis [11], [12], [16].

Table 1 briefly describes the code smells considered
in this study. Basically, we focus on code smells char-
acterizing poorly cohesive code elements, i.e., Long Method
[35], Blob [35], and Promiscuous Package [36], and misplaced
code elements, i.e., Feature Envy [35] and Misplaced Class
[36]. All of them belong to the initial catalog defined by
Fowler [35] or its newer version available on-line [36].

More specifically, the Long Method affects methods
implementing a main functionality together with other
auxiliary functions that should be placed in other meth-
ods [35]. The Blob is a class containing methods im-
plementing two or more different responsibilities [35],
while the Promiscuous Package is a package containing
classes implementing different unrelated responsibilities
[13], [36]. Feature Envy affects methods having more
relationships with other classes with respect to the class
they are actually in [35]. Finally, the Misplaced Class
represents a class located in a package that contains other
classes that are not related to its function [36], [82], [97].
The interest in these code smells is dictated by the fact
that they have been recognized as important threats to
the maintainability of a software system [1], [40], [48],
[50], [97], [109], but also because they are considered
harmful by developers [73].

In our study, we consider a smell textual when it is
detected using a textual-based detection technique, i.e.,
it is characterized by high textual scattering among the
elements it contains (e.g., textual content of methods or
statements). On the other hand, a code smell is structural
if it is detected by a detector purely based on the analysis
of structural properties of source code (e.g., number of
attributes, size or number of dependencies with other
classes). The following subsections describe the detection
rules applied in the context of our empirical study.

2.1 Textual-based Code Smell Detection

Only one technique is able to identify all the code smells
considered in our study by solely relying on textual
analysis, namely TACO (Textual Analysis for Code smell
deTection) [75]. TACO follows a three-step process: (i)
textual content extraction, (ii) application of Information

2

TABLE 1
The Code Smells considered in our Study

Name Description
Blob A large class implementing different responsibilities [35].
Feature Envy A method is more interested in a class other than the one it actually is in [35].
Long Method A method that implements more than one function [35].
Misplaced Class A class that should be placed in another package [36], [82], [97].
Promiscuous Package A large package composed of sets of classes implementing different functionalities [13], [36].

Retrieval (IR) normalization process, and (iii) application
of specific heuristics in order to detect code smells
related to promiscuous responsibilities (e.g., Blob).

In the first step, the approach extracts all textual
elements needed for the textual analysis process of a soft-
ware system, i.e., source code identifiers and comments.
Then, the approach applies a standard IR normalization
process [7] aimed at (i) separating composed identi-
fiers, (ii) reducing to lower case letters the extracted
words, (iii) removing special characters, programming
keywords, and common English stop words, and (iv)
stemming words to their original roots via Porter’s
stemmer [83]. The code smell detection process relies on
Latent Semantic Indexing (LSI) [27], an extension of the
Vector Space Model (VSM) [7], that models code compo-
nents as vectors of terms occurring in a given software
system. LSI uses Singular Value Decomposition (SVD)
[24] to cluster code components according to the relation-
ships among words and among code components (co-
occurrences). The original vectors (code components) are
then projected into a reduced k space of concepts to limit
the effect of textual noise. To this aim, TACO uses the
well-known heuristic proposed by Kuhn et al. [54], i.e.,
k = (m×n)0.2 where m denotes the vocabulary size and
n denotes the number of documents (code components).
In the third step code smells are detected by measuring
the lack of textual similarity among their constituent
code components (e.g., vectors) using the cosine distance.

Following such a process, a Blob is detected (i) by
computing the average similarity among the methods of
the class, which corresponds to the conceptual cohesion
of a class defined by Marcus and Poshyvanyk [63]; and
(ii) by applying the following formula measuring the
probability PB that a class is affected by the Blob code
smell:

PB(C) = 1− ClassCohesion(C) (1)

where ClassCohesion(C) represents the textual cohesion
of the class C [63]. Using the same steps, TACO is able to
detect Long Method instances. Specifically, the code blocks
composing a method are firstly extracted exploiting the
approach by Wang et al. [105]. This approach is able to
automatically segment a method into a set of “consecutive
statements that logically implement a high-level action” [105].
Once TACO identifies the sets of statements (i.e., seg-
ments) composing the method, it considers each of them
as a single document. Then, the probability a method is

smelly is measured by applying the following formula:

PLM (M) = 1−MethodCohesion(M) (2)

where MethodCohesion(M) represents the textual cohe-
sion of the method M and it is computed as the average
similarity among the segments composing a method.

Instances of Promiscuous Package are instead detected
by exploiting the lack of cohesion among the classes
composing a package. In particular, TACO applies the
following formula:

PPP (P) = 1− PackageCohesion(P) (3)

where PackageCohesion(P), i.e., the textual cohesion of
the package P , is computed as the average similarity
among the classes of the considered package.

On the other hand, to detect the Feature Envy code
smell, for each method M belonging to the class CO, the
approach firstly retrieves the more similar class (Cclosest)
by computing the textual similarity between M and the
set of classes in the system sharing at least one term
with M . Then, the probability that the method is smelly
is given by the difference between the textual similarities
of M and the two classes Cclosest and CO:

PFE(M) = sim(M,Cclosest)− sim(M,CO) (4)

The formula above is equal to zero when Cclosest =
CO, i.e., the method M is correctly placed. Otherwise, if
Cclosest 6= CO, the probability is equal to the difference
between the textual similarities of M and the two classes
Cclosest and CO. Finally, TACO identifies Misplaced Class
instances by retrieving the package Pclosest (i.e., the more
similar package) for a class C contained in the package
PO, and then computing the probability that this class
is misplaced by measuring the difference between the
textual similarities of C and the two packages Cclosest

and CO:

PMC(C) = sim(C,Pclosest)− sim(C,PO) (5)

Also in this case, the value is equal to zero if Pclosest =
PO. Otherwise, if Pclosest 6= PO, the probability is equal
to the difference between the textual similarities of C
and the two packages Pclosest and PO.

3

2.2 Structural-based Code Smell Detection

Related literature proposes a large variety of techniques
able to detect code smells from a structural point of view
[28]. However, none of them can simultaneously detect
all the code smells considered in our study. Therefore,
we had to select more than one technique to carry
out our investigation. Given our definition of structural
code smells, we discarded all the approaches that use
a combination of more sources of information (e.g., the
techniques by Bavota et al. [8], [11], [12]), as well as
the approaches using other types of information (e.g.,
the change history information [74]). Furthermore, we
avoided the use of (i) industrial tools such as inCode
[43] and iPlasma [44], and (ii) code quality checkers (e.g.,
PMD1 or Checkstyle2) for two main reasons: in the first
place, for most of them there is no available empirical
evaluation about their detection accuracy; secondly, even
though some tools (e.g., inCode) are inspired by the
detection strategies proposed by Marinescu [65], they
have an accuracy comparable to tools exploited in this
study [28], which are described in the following.

Given the size of our empirical studies, we selected the
structural code smell detection tools that provided the
best compromise between detection accuracy and com-
putational performance. For this reason, where possible
we selected code smell detection tools (e.g., [67]) instead
of refactoring recommenders. In particular, we did not
use Extract Method [93], [101] and Extract Class [9], [12],
[14], [30] refactoring tools, because they use computa-
tionally more expensive algorithms to recommend one
or more possible splittings of a method or class (in
this case, the refactoring recommendation would also
indicate the possible detection of a code smell). As a
result, we selected DECOR [67] for the detection of
Long Method and Blob instances because (i) it has been
employed in several previous investigations on code
smells demonstrating good performance [32], [34], [41],
[50], [72], [74]; and (ii) it is simple to re-implement as
its detection rules are based on the analysis of code
metrics extractable from source code. This approach
uses a set of rules, called rule cards3, describing the
characteristics a code component should have in order
to be classified as smelly. In practice, rules are sets of
conditions based on code metrics (e.g., line of codes)
with respect to fixed thresholds. In the case of Blob, a
smelly instance is detected when a class has an LCOM5
(Lack of Cohesion Of Methods) [89] higher than 20, a
number of methods and attributes higher than 20, and
it has a one-to-many association with data classes. Note
that while the original rule card proposed by Moha et
al. also incorporates a textual rule to select the classes
having the role of controllers (i.e., classes that manage
the processing of other classes [67]), in the context of this
paper we excluded that part in order to obtain a pure

1. https://pmd.github.io
2. http://checkstyle.sourceforge.net
3. http://www.ptidej.net/research/designsmells/

structural-based detector. As for Long Method, DECOR
classifies a method as affected by the code smell if it has
more than 100 lines of code.

In general, tools detecting the Feature Envy code smell
[8], [88], [100] are also Move Method refactoring tools,
although algorithms used to recommend refactoring so-
lutions are more lightweight than the decomposition al-
gorithms used by Extract Method and Extract Class refac-
toring tools. We selected JDeodorant [100] as there are no
other structural-based tools able to correctly detect this
smell with a comparable accuracy [28]. Moreover, it is
important to note that other refactoring tools having sim-
ilar performance to JDeodorant, e.g., MethodBook [8] and
JMove [88], (i) rely on a combination of conceptual and
structural analysis or (ii) require some parameter tuning.
Thus, they are not suitable for our purposes. Given a
method M , JDeodorant forms a set T of candidate target
classes where M might be moved. This set is obtained
by examining the entities (i.e., attributes and methods)
that M accesses from the other classes. In particular, each
class in the system containing at least one of the entities
accessed by M is added to T . Then, the candidate target
classes in T are sorted in descending order according
to the number of entities that M accesses from each of
them. In the subsequent steps, each target class Ti is
analyzed to verify its suitability to be the recommended
class. In particular, Ti must satisfy three conditions to be
considered in the set of candidate suggestions: (i) Ti is
not the class M currently belongs to, (ii) M modifies at
least one data structure in Ti, and (iii) moving M in Ti
satisfies a set of behavior preserving preconditions (e.g.,
the target class does not contain a method with the same
signature as M) [100]. The set of classes in T satisfying all
the conditions above are put in the suggested set. If the
set of suggestions is non-empty, the approach suggests
to move M to the first candidate target class following
the order of the sorted set T . On the other hand, if the
set of suggestions is empty, the classes in the sorted set T
are analyzed again by applying milder constraints than
before. In particular, if a class Ti is the class owning
M , then no refactoring suggestion is performed and
the algorithm stops. Otherwise, the approach checks if
moving the method M into Ti satisfies the behavior
preserving preconditions. If so, the approach suggests
to move M into Ti. Thus, an instance of the Feature Envy
code smell is identified.

Finally, as for Misplaced Class and Promiscuous Package,
we re-implemented the approaches proposed by Atkin-
son and King [6] and by Girvan et al. [38], respectively.
This choice was driven by the fact that, to the best of
our knowledge, these are the only structural tools able
to identify these code smell types. Other approaches able
to recommend Move Class and Extract Package refactoring
operations (see e.g., [11], [16]) combine both conceptual
and structural information, thus being not suitable in our
context.

The technique selected for the detection of Misplaced
Class instances [6] traverses the abstract syntax tree of

4

TABLE 2
Characteristics of the Software Projects in Our Dataset

System #Releases #Commits Classes Methods KLOCs

ArgoUML 16 19,961 777-1,415 6,618-10,450 147-249
Apache Ant 22 13,054 83-813 769-8,540 20-204
aTunes 31 6,276 141-655 1,175-5,109 20-106
Apache Cassandra 13 20,026 305-586 1,857-5,730 70-111
Eclipse Core 29 21,874 744-1,181 9,006-18,234 167-441
FreeMind 16 722 25-509 341-4,499 4-103
HSQLDB 17 5,545 54-444 876-8,808 26-260
Apache Hive 8 8,106 407-1,115 3,725-9,572 64-204
Apache Ivy 11 601 278-349 2,816-3,775 43-58
Apache Log4j 30 2,644 309-349 188-3,775 58-59
Apache Lucene 6 24,387 1,762-2,246 13,487-17,021 333-466
JEdit 29 24,340 228-520 1,073-5,411 39-166
JHotDraw 16 1,121 159-679 1,473-6,687 18-135
JVLT 15 623 164-221 1,358-1,714 18-29
Apache Karaf 5 5,384 247-470 1,371-2,678 30-56
Apache Nutch 7 2,126 183-259 1,131-1,937 33-51
Apache Pig 8 2,857 258-922 1,755-7,619 34-184
Apache Qpid 5 14,099 966-922 9,048-9,777 89-193
Apache Struts 7 4,297 619-1,002 4,059-7,506 69-152
Apache Xerces 16 5,471 162-736 1,790-7,342 62-201
Overall 301 183,514 25-2,246 188-17,021 4-466

a class C in order to determine, for each feature, the
set T of classes referencing them. Then, the classes in T
are sorted based on the package they belong to in order
to extract the number of dependencies each package
P ∈ T has with the class C. If C has more dependencies
with a different package with respect to the one it is
actually in, an instance of Misplaced Class is detected.
Our re-implementation relies on the publicly available
Java Development Tools APIs4.

The approach selected for the detection of Promiscuous
Package instances [38] is based on a clustering algorithm
that groups together classes of a package based on the
dependencies among them. In the re-implementation,
we exploited the X-Means algorithm [80], an extension
of the traditional K-Means [59] where the parameter X
(i.e., the number of clusters the algorithm must form)
is automatically configured using a heuristic based on
the Bayesian Information Criterion [80]. If the algorithm
finds more than one cluster, it means that the classes
contained in the package under analysis contain unre-
lated responsibilities and, therefore, an instance of the
Promiscuous Package code smell is detected.

3 STUDY I: THE EVOLUTION OF TEXTUAL AND
STRUCTURAL CODE SMELLS

In this study, we mined several software repositories
to empirically investigate how developers deal with
textually and structurally detected code smells.

3.1 Empirical Study Definition and Design
The goal of the empirical study is to evaluate the im-
pact of different sources of information on developers’
notion of code smells. Our conjecture is that code smells
characterized by an inconsistent vocabulary are easier to
identify and/or easier to remove for developers when
compared to code smells characterized by structural
problems, such as a high number of dependencies or

4. http://www.eclipse.org/jdt/

large size, since conceptual aspects of source code can
provide direct insight that a developer can use to un-
derstand and work on code components affected by
code smells. The context of the study consists of the five
code smells presented in Section 2. We conducted our
analyses on twenty open source software projects. Table
2 reports the characteristics of the analyzed systems5,
namely the number of public releases, and their size
in terms of number of commits, classes, methods, and
KLOC. Among the analyzed projects, twelve projects
belong to the Apache ecosystem6 hosted on GitHub,
and eight projects belong to the Sourceforge repository7.
Given the list of projects available in the two reposito-
ries, we randomly selected twenty systems among the
most popular ones having at least 500 commits. These
filters allowed to (i) identify popular systems in the
two repositories, and (ii) discard systems having a short
development history. As a result, we analyzed projects
belonging to different ecosystems, having different size
and scope.

Our investigation aims at answering the following
research questions:

• RQ1: Are textually or structurally detected code smells
more likely to be resolved?

• RQ2: Do structural or textual code smells evolve dif-
ferently with respect to different types of changes (Bug
fixing, Enhancement, New feature, Refactoring)?

To answer RQ1, we first manually detected the re-
leases (both major and minor ones) of the software
projects in our dataset, for a total of 301 releases. Then,
our ChangeHistoryMiner8 tool analyzed each release
R of a software project pi to detect code components (i.e.,
methods or classes) affected by one of the considered
code smells.

To monitor the evolution of code smells, a simple
truth value representing the presence or absence of a
code smell instance is not enough because we might not
evaluate how the severity of structurally and textually
detected code smells varies (decreases/increases) over
the releases of the projects in our dataset. Hence, once a
code smell was detected we monitored its evolution in
terms of intensity, i.e., in terms of variation of the degree
of severity of a code smell.

Computing the intensity is easy for TACO, since it
outputs a value ∈ [0; 1] indicating the probability that a
code component is affected by a code smell. In the other
cases, we followed the guidelines by Marinescu [64],
who suggested to compute the severity index by consid-
ering how much the value of a chosen metric exceeds a
given threshold. In particular, DECOR classifies a code
component as smelly if and only if a set of conditions
(rules) are satisfied, where each condition has the form
if metrici ≥ thresholdi. Therefore, the higher the

5. The list of repositories is available in our on-line appendix [76]
6. http://www.apache.org/ verified April 2017
7. https://sourceforge.net
8. The tool is available in our online appendix [76].

5

TABLE 3
Overlap between TACO and the structural techniques

(ST) employed in the study.

Code Smell TACO∩ST TACO\ST ST\TACO
% # % # %

Long Method 364 60% 188 31% 53 9%
Feature Envy 101 46% 58 26% 62 28%
Blob 138 42% 138 42% 49 16%
Promiscuous Package 43 28% 78 51% 33 21%
Misplaced Class 12 21% 39 67% 8 12%
Overall 658 48% 501 37% 205 15%

distance between the actual code metric (metrici) and
the fixed threshold value (thresholdi), the higher the
intensity of the flaw. Thus, we measured the intensity of
classes detected as Blob by DECOR as follows: (i) we
computed the differences between the actual values of
software metrics (e.g., LCOM5, number of methods, etc.)
with respect to the corresponding thresholds reported in
the rule card [67]; (ii) we normalized the obtained scores
in [0; 1], and (iii) we measured the final intensity as the
mean of those normalized scores.

As Long Methods are detected by only looking at the
LOC (lines of code), the intensity is measured as the
normalized difference between the LOC in a method and
its threshold in the rule card, which is 100.

JDeodorant marks a method m as Feature Envy if and
only if it has more structural dependencies with another
class C∗ with respect to the number of dependencies m
has with the original class C (and if all preconditions
are preserved). Therefore, the intensity is given by the
normalized difference of the number of dependencies
with C∗ (new class) and the number of dependencies
with C (original class).

The same strategy can be applied to measure the inten-
sity of Misplaced Class instances. Indeed, as the technique
by Atkinson and King [6] identifies this code smell by
looking at the difference between the dependencies a
class C has toward a package P ∗ and the dependencies
C has with the original package P , the intensity is given
by the normalized difference between them.

Finally, we measured the intensity of Promiscuous Pack-
age code smell by applying a min-max normalization on
the number of clusters of classes found by the approach
for a package P . In this way, the higher the number of
clusters detected the higher the proneness of the package
to be promiscuous.

It is worth noting that since our goal is to investigate
to what extent textual and structural code smells evolve
differently, in this study we do not consider the code
smell instances identified by both types of detector,
i.e., textual-based and structural-based detectors. Table 3
shows the data, aggregated by code smell type, about (i)
the number of instances detected by both the detectors
(column “TACO∩ST”), (ii) the number of instances de-
tected by TACO and missed by the structural detectors
(column “TACO\ST”), and (iii) the number of instances
detected by the structural detectors and missed by TACO

TABLE 4
Tags assigned to commits involving code smells.

Tag Description

Bug fixing The commit aimed at fixing a bug [102].
Enhancement The commit aimed at implementing an enhancement in the system [102].
New feature The commit aimed at implementing a new feature in the system [102].
Refactoring The commit aimed at performing refactoring operations [102].

(column “ST\TACO”). Therefore, we excluded 658 (48%)
code smell instances of the 1,364 detected. Thus, our
analysis is carried out on 52% of the code smell instances
detected by the tools.

From the analysis of the structural and textual smelli-
ness, we obtained two distributions for each type of
code smells: one related to the variation of intensity for
textual code smells (∆text) over the different releases,
and the other one regarding the variation of intensity for
structural code smells (∆struct) over the same releases.
Negative values for ∆text (or ∆struct) indicate that the
intensity of textual (or structural) code smells decreased
over time, while positive values indicate increase of
the intensity. To verify whether the differences (if any)
between ∆text and ∆struct are statistically significant, we
used the non-parametric Wilcoxon Rank Sum test [23]
with ρ-value = 0.05. We also estimated the magnitude of
the observed differences using Cliff’s Delta (or d), a non-
parametric effect size measure [39] for ordinal data. We
followed the guidelines in [39] to interpret the effect size
values: small for d < 0.33 (positive as well as negative
values), medium for 0.33 ≤ d < 0.474 and large for
d ≥ 0.474.

As for RQ2, we are interested in understanding
whether particular types of changes made by developers
have a higher impact on the increase/decrease of the
intensity of code smells. To this aim, we conducted a fine-
grained analysis, investigating all the commits available
in the repositories of the involved projects (overall, we
mined 183,514 commits) in order to understand what type
of action the developer was doing when modifying smelly
classes. Given a repository ri, ChangeHistoryMiner
mines the entire change history of ri, and for each
commit involving a code smell runs the mixed technique
proposed by Tufano et al. [102] in order to detect the
types of changes shown in Table 4, i.e., Bug Fixing,
Enhancement, New Feature, and Refactoring. To this aim,
we downloaded the issues for all 20 software projects
from their BUGZILLA or JIRA issue trackers. Then, we
checked if a commit involving a textual or structural
code smell was actually related to any collected issues.
To link issues to commits, the approach by Tufano et
al. complements two distinct approaches: the first one is
based on regular expressions [29], which match the issue
ID in the commit note, while the second one is ReLink,
the approach proposed by Wu et al. [108], which consid-
ers several constraints, i.e., (i) a match exists between the
committer and the contributor who created the issue in
the issue tracking system, (ii) the time interval between
the commit and the last comment posted by the same

6

contributor in the issue tracker is less than seven days,
and (iii) the cosine similarity between the commit note
and the last comment referred above, computed using
the Vector Space Model (VSM) [7], is greater than 0.7.
When it was possible to find a link between a commit
and an issue, and the issue had a type included in the
catalogue of tags shown in Table 4, then the commit was
automatically classified. In the other cases, we assigned
the tags using a semi-automatic process. Specifically, we
used a keyword-based approach to detect a commit’s
goal similar to the one presented by Fischer et al. [29],
and then we manually validated the tags assigned by
analyzing (i) the commit message and (ii) the unix diff
between the commit under analysis and its predecessor.
Overall, we tagged 27,769 commits modifying instances
of textually and structurally detected code smells. For
18,276 of them, we found the tag automatically, while
the remaining 9,493 were manually assigned.

Out of the total 9,493 commits, we needed to fix
the initial classification of 3,512 commits (i.e., 37% of
commits were misclassified) made by the approach by
Fischer et al [29]. Of these, 1,545 were related to enhance-
ment operations wrongly classified as new feature im-
plementations (44% of the misclassified instances), 1,229
to non-documented refactoring operations (i.e., 35% of
the misclassified instances), 562 to bug fixes wrongly
classified as enhancements (i.e., 16% of the misclassified
instances), and finally 176 to the implementation of new
features wrongly classified as enhancements (5% of the
misclassified instances). We adopted a formal procedure
to assign a tag to these commits. The first two authors
(the inspectors) independently analyzed each of the 9,493
commits with the aim of identifying its goal. Once
this first stage was completed, the inspectors compared
their classifications: the commits classified in the same
manner by both the inspectors were not discussed, while
in the other cases the inspectors opened a discussion
to resolve the disagreement and reach consensus. The
overall agreement9 between the two inspectors was 84%
(i.e., 7,982 commit goals classified in the same manner
over the total 9,483). This process took approximately
320 man/hour distributed in one month of work.

Once we obtained the tagged commits, we investi-
gated how the different types of code changes (inde-
pendent variables) impacted the variation of intensity of
textual and structural code smell (dependent variable).
In particular, for each object project and for each kind
of code smell we applied logistic regression models [42]
using the following equation:

π(BF,E,NF,R) =
eC0+C1·BF+C2·E+C3·NF+C4·R

1 + eC0+C1·BF+C2·E +C3·NF+C4·R
(6)

where the independent variables are the number of
Bug Fixing (BF), Enhancement (E), New Feature (NF) and

9. Measured using the Jaccard similarity coefficient [45], i.e., the
number of commit tags classified in the same way by the inspectors
over the number of all the commits.

Refactoring (R) operations applied by developers dur-
ing the time period between two subsequent releases;
the (dichotomous) dependent variable is whether the
intensity increases/decreases between two subsequent
versions; and Ci are the coefficients of the logistic re-
gression model. Then, for each model we analyzed (i)
whether each independent variable was significantly
correlated with the dependent variable as estimated by
the Spearman rank correlation coefficient (we considered
a significance level of α = 5%), and (ii) we quantified
such a correlation using the Odds Ratio (OR) [91] which,
for a logistic regression model, is given by eCi . Odd
ratios indicate the increase in likelihood of a code smell
intensity increase/decrease as a consequence of a one-
unit increase of the independent variable, e.g., number
of bug fixing operations (BF). For example, if we found
that Refactoring has an OR of 1.10 with textual Blobs,
this means that each one-unit increase of the Refactoring
made on a textual Blob mirrors a 10% higher chance for
the Blob of being involved in a decrease of its intensity.

Overall, the data extraction to answer RQ1 and RQ2

took five weeks on 4 Linux machines having dual-core
3.4 GHz CPU (2 cores) and 4 Gb of RAM.

3.2 Analysis of the Results
Table 5 reports the mean and the standard deviation
scores of the variation of intensity for textual (∆text)
and structural (∆struct) code smells, collected for Blob,
Feature Envy, Long Method, Misplaced Class, and Promis-
cuous Package instances. The results clearly indicate that
textual smells are treated differently than structural ones:
in most cases the intensity of textual code smells tends
to decrease over time, i.e., the ∆text values are nega-
tive; vice versa, the intensity of structural code smells
tends to increase over time, as indicated by the positive
∆struct scores. For example, blobs in JVLT detected by
structural tools have an average ∆struct=0.86, i.e., their
structural metrics (e.g., LCOM5) increase (worsen) by
86% on average at each new release. Instead, for the
same project, the intensity of textual Blobs decreases (im-
proves) 21% on average. An interesting example can be
found in Apache Ant, when analyzing the evolution of
the class Property of the org.apache.tools.ant.-
taskdefs package. The class is responsible for man-
aging the Ant build properties. In the first versions
of the project—from version 1.2 to version 1.5.4—the
class was affected by a Blob code smell (it had a level
of textual intensity equal to 0.83) since it implemented
seven different ways to set such properties. During its
evolution, the intensity has been reduced by developers
through the application of different types of operations,
such as code overriding (version 1.6) and refactorings
(version 1.6.1), leading to a decrease of the complexity
of the class, and consequently to the removal of the Blob
code smell. Currently, the class is responsible to set the
execution environment of the build process by getting
the desired properties using a string. A similar discus-
sion can be made for the other studied code smells. Code

7

TABLE 5
Mean and Standard Deviations of ∆text and ∆struct of our dataset. Decreasing variations are reported in bold face.

TS = Textual Smells; SS = Structural Smells.

Project
Blob Feature Envy Long Method Misplaced Class Promiscuous Package

TS SS TS SS TS SS TS SS TS SS
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ArgoUML -0.08 ±0.23 0.13 ±0.33 -0.03 ±0.20 0.10 ±0.26 -0.03 ±0.17 0.11 ±0.22 - - - - -0.12 ±0.25 0.38 ±0.24
Apache Ant -0.11 ±0.27 0.18 ±0.47 -0.05 ±0.22 0.11 ±0.43 -0.04 ±0.20 0.09 ±0.38 -0.05 ±0.12 0.04 ±0.39 -0.07 ±0.13 0.37 ±0.24
aTunes -0.08 ±0.24 0.11 ±0.25 -0.01 ±0.27 0.10 ±0.41 -0.06 ±0.28 0.08 ±0.42 - - - - -0.01 ±0.11 0.49 ±0.33
Apache Cassandra -0.08 ±0.25 0.18 ±0.35 -0.06 ±0.26 0.21 ±0.19 -0.06 ±0.26 0.23 ±0.24 - - - - -0.15 ±0.12 0.33 ±0.25
Eclipse Core -0.08 ±0.23 0.12 ±0.31 -0.03 ±0.21 0.18 ±0.37 -0.03 ±0.23 0.15 ±0.35 -0.04 ±0.14 0.05 ±0.14 -0.08 ±0.16 0.44 ±0.31
FreeMind -0.07 ±0.21 0.23 ±0.41 0.01 ±0.01 0.15 ±0.36 0.01 ±0.06 0.16 ±0.32 - - - - -0.05 ±0.07 0.14 ±0.09
HSQLDB -0.07 ±0.21 0.15 ±0.27 -0.03 ±0.13 0.08 ±0.14 -0.04 ±0.12 0.14 ±0.11 -0.03 ±0.30 0.11 ±0.15 -0.09 ±0.22 0.38 ±0.14
Apache Hive -0.04 ±0.16 0.14 ±0.45 0.04 ±0.14 0.12 ±0.38 -0.02 ±0.17 0.13 ±0.43 -0.01 ±0.10 0.03 ±0.11 -0.03 ±0.27 0.24 ±0.36
Apache Ivy -0.10 ±0.23 0.19 ±0.32 -0.03 ±0.14 0.10 ±0.37 -0.01 ±0.18 0.10 ±0.36 -0.04 ±0.25 0.11 ±0.09 -0.02 ±0.14 0.27 ±0.42
Apache Log4j -0.05 ±0.16 0.18 ±0.13 0.01 ±0.08 0.25 ±0.12 -0.01 ±0.13 0.21 ±0.11 - - - - 0.02 ±0.11 0.32 ±0.22
Apache Lucene -0.11 ±0.24 0.11 ±0.32 -0.02 ±0.07 0.12 ±0.25 -0.01 ±0.07 0.11 ±0.23 0.01 ±0.05 0.14 ±0.06 -0.03 ±0.07 0.38 ±0.14
JEdit -0.11 ±0.25 0.12 ±0.15 -0.04 ±0.23 0.23 ±0.35 -0.02 ±0.25 0.23 ±0.35 - - - - -0.16 ±0.05 0.26 ±0.11
JHotDraw -0.09 ±0.23 0.10 ±0.27 -0.04 ±0.23 0.13 ±0.05 -0.04 ±0.22 0.12 ±0.19 -0.07 ±0.10 0.01 ±0.04 -0.08 ±0.12 0.11 ±0.24
JVLT -0.21 ±0.27 0.86 ±0.03 -0.10 ±0.41 0.68 ±0.07 -0.10 ±0.41 0.76 ±0.20 - - - - -0.04 ±0.17 0.08 ±0.04
Apache Karaf -0.06 ±0.16 0.29 ±0.12 -0.02 ±0.15 0.16 ±0.35 -0.02 ±0.16 0.16 ±0.38 -0.07 ±0.34 0.05 ±0.12 -0.15 ±0.19 0.21 ±0.34
Apache Nutch -0.09 ±0.24 0.12 ±0.05 -0.01 ±0.02 0.05 ±0.32 -0.02 ±0.08 0.05 ±0.31 - - - - 0.01 ±0.27 0.23 ±0.09
Apache Pig -0.02 ±0.30 0.09 ±0.36 -0.06 ±0.17 0.08 ±0.31 -0.01 ±0.12 0.11 ±0.24 -0.17 ±0.07 0.02 ±0.13 -0.24 ±0.25 0.12 ±0.04
Apache Qpid -0.09 ±0.23 0.06 ±0.41 -0.08 ±0.29 0.11 ±0.26 -0.01 ±0.15 0.10 ±0.22 -0.23 ±0.17 0.25 ±0.11 0.02 ±0.13 0.04 ±0.11
Apache Struts -0.04 ±0.14 0.10 ±0.18 -0.01 ±0.03 0.11 ±0.27 -0.02 ±0.11 0.10 ±0.25 - - - - -0.18 ±0.33 0.25 ±0.12
Apache Xerces -0.06 ±0.19 0.16 ±0.31 -0.02 ±0.12 0.09 ±0.31 -0.03 ±0.12 0.10 ±0.28 -0.08 ±0.16 0.28 ±0.29 -0.03 ±0.20 0.29 ±0.21
Overall -0.09 ±0.24 0.14 ±0.35 -0.03 ±0.20 0.15 ±0.35 -0.04 ±0.19 0.14 ±0.34 -0.06 ±0.18 0.17 ±0.22 -0.15 ±0.23 0.37 ±0.26

TABLE 6
Comparison between ∆text and ∆struct for Blob, Feature Envy and Long Method. We use S, M, and L to indicate

small, medium and large Cliff’s d effect sizes respectively. Significant p-values are reported in bold face

Textual vs. Structural
Blob Feature Envy Long Method Misplaced Class Promiscuous Package

Project p-value d M p-value d M p-value d M p-value d M p-value d M

ArgoUML <0.01 -0.76 L <0.01 -0.85 L <0.01 -0.88 L - - - <0.01 -0.51 L
Apache Ant <0.01 -0.66 L <0.01 -0.67 L <0.01 -0.71 L <0.01 -0.79 L <0.01 -0.62 L
aTunes <0.01 -0.84 L <0.01 -0.52 L <0.01 -0.59 L - - - <0.01 -0.57 L
Apache Cassandra <0.01 -0.76 L <0.01 -0.89 L <0.01 -0.91 L - - - <0.01 -0.60 L
Eclipse Core <0.01 -0.83 L <0.01 -0.77 L <0.01 -0.74 L <0.01 -0.76 L <0.01 -0.78 L
FreeMind <0.01 -0.78 L <0.01 -0.83 L <0.01 -0.79 L - - - <0.01 -0.72 L
HSQLDB <0.01 -0.83 L <0.01 -0.72 L <0.01 -0.84 L <0.01 -0.92 L <0.01 -0.84 L
Apache Hive <0.01 -0.65 L <0.01 -0.70 L <0.01 -0.68 L <0.01 -0.89 L <0.01 -0.98 L
Apache Ivy <0.01 -0.89 L <0.01 -0.78 L <0.01 -0.63 L <0.01 -0.73 L <0.01 -0.66 L
Apache Log4j <0.01 -0.76 L <0.01 -0.82 L <0.01 -0.78 L - - - <0.01 -0.79 L
Apache Lucene <0.01 -0.83 L <0.01 -0.89 L <0.01 -0.91 L <0.01 -0.68 L <0.01 -0.71 L
JEdit <0.01 -0.95 L <0.01 -0.79 L <0.01 -0.76 L - - - <0.01 -0.63 L
JHotDraw <0.01 -0.80 L <0.01 -0.92 L <0.01 -0.89 L <0.01 -0.72 L <0.01 -0.61 L
JVLT <0.01 -1.00 L <0.01 -1.00 L <0.01 -0.98 L - - - <0.01 -0.70 L
Apache Karaf <0.01 -1.00 L <0.01 -0.87 L <0.01 -0.79 L <0.01 -0.72 L <0.01 -0.68 L
Apache Nutch <0.01 -1.00 L <0.01 -0.81 L <0.01 -0.81 L - - - <0.01 -0.97 L
Apache Pig <0.01 -0.78 L <0.01 -0.90 L <0.01 -0.82 L <0.01 -0.64 L <0.01 -0.71 L
Apache Qpid <0.01 -0.70 L <0.01 -0.84 L <0.01 -0.85 L <0.01 -0.59 L <0.01 -0.65 L
Apache Struts <0.01 -0.94 L <0.01 -0.88 L <0.01 -0.90 L - - - <0.01 -0.79 L
Apache Xerces <0.01 -0.85 L <0.01 -0.81 L <0.01 -0.86 L <0.01 -0.95 L <0.01 -0.82 L
Overall <0.01 -0.78 L <0.01 -0.78 L <0.01 -0.77 L <0.01 -0.74 L <0.01 -0.69 L

elements affected by textual code smells are seemingly
more carefully managed by developers. On the other
hand, code smells detected by DECOR tend to have a
different evolution. For instance, the evolution of the
method org.hsqldb.JDBCBench.createDatabase
of the HSQLDB project is quite representative. This
method should manage the functionality for creating
a new database, but during evolution its size strongly
increased as more sub-functionalities have been added,
resulting in a Long Method. Interesting is the comment
left by a developer in the source code of the method
at version 1.7.3 of the project: “Totally incomprehensible!
One day or another, we should fix this method... I don’t
know how!”. This comment gives strength to our initial
conjecture, namely that textual code smells are easier

to identify and refactor with respect to structural code
smells.

Our preliminary findings seem to confirm the obser-
vations made by Vidal et al. [104] on the limited support
provided by structural-based code smell detectors due
to the fact that they tend to highlight a large amount
of design problems that developers are not able to deal
with. Also, the statistical tests confirmed our results (see
Table 6). Specifically, for all the studied code smells
the difference between the two distributions ∆text and
∆struct is always statistically significant (ρ-values<0.01),
i.e., the variations of intensity for structural and textual
code smells are statistically different. It is worth noting
that the magnitude of Cliff’s d measure is always large.

Having observed that textual and structural code

8

TABLE 7
Percentage of Different Types of Changes applied over
Textual and Structural Code Smells. NF = New Feature;

BF = Bug Fixing; R = Refactoring; E = Enhancement

Code Smell Textual Smells Structural Smells
NF BF R E NF BF R E

Blob 10 32 14 44 10 32 10 48
Feature Envy 12 28 14 46 10 34 8 48
Long Method 8 34 13 45 8 38 6 48
Misplaced Class 15 21 14 50 17 25 5 53
Promiscuous Package 11 33 17 39 9 37 7 47

smells are treated differently, we turn our attention to
investigating which types of operations are performed
by developers on the two sets of code smells and to
what extent such operations have an effect on the in-
crease/decrease of their intensity. As for operations hav-
ing the effect of increasing the intensity of textually and
structurally detected code smells, we did not find a clear
relationship between specific changes and the increase
of intensity. When considering textually detected code
smells, we found that for 35% of changes implementing
new features the intensity tends to increase; 57% of
times an increase is due to enhancement or bug fixing
activities. Also for structurally detected code smells, we
observed that most of the times (91%) changes aimed
at implementing new features, enhancing or fixing bugs
in the project tend to increase the code smell intensity.
Moreover, for both textual and structural code smells,
we found that in a small percentage (8% for textual code
smells, 9% for structural code smells) refactoring oper-
ations increase the level of intensity. Even though this
result can appear unexpected, it confirms previous find-
ings that sometimes refactorings can also be the cause of
introducing code smells [102]. A complete report of this
analysis is available in our online appendix [76].

Regarding the operations reducing the level of in-
tensity, Table 7 reports the percentage of the different
types of changes, i.e., New Feature (NF), Bug Fixing
(BF), Refactoring (R), and Enhancement (E), applied to
the set of textual and structural code smells in our
dataset. Considering the results achieved in previous
work [10], [22], [52], [81], [94], the most unexpected
result is the one related to the percentage of refactoring
operations. In fact, even if the number of refactoring op-
erations performed on code smells remains quite low—
confirming that code smells are poorly refactored—we
observed that textual code smells are generally more
prone to be subject to these operations (Blob=+4%, Fea-
ture Envy=+6%, Long Method=+7%, Misplaced Class=+9%,
Promiscuous Package=+10%). In the following, we provide
detailed results on the types of changes positively influ-
encing the intensity for each code smell in our study.

Blob. Table 8 shows the Odds Ratios of the different
types of changes applied to textual and structural code
smells, obtained when building a logistic regression
model for data concerning the decrease of code smell

intensity. In the following, we will mainly focus our
discussion on statistically significant values. First of
all, we can notice that changes tagged as Refactoring
often have higher chance to decrease the intensity of
textual Blobs (the ORs are higher than 1 in 85% of
significant ORs). Thus, refactoring operations applied to
Blob instances characterized by textual problems have a
higher chance of being effective in the reduction of the
code smell intensity. Another unexpected result regards
what we found for the category Enhancement: indeed,
also in this case such changes have more chance to be
effective in the reduction of the complexity of a textual
Blob. A possible reason behind this finding concerns the
better ability of developers to enhance code components
affected by textual code smells, as they have less diffi-
culties understanding the problems affecting the source
code. This result somehow confirms previous findings
on the usefulness of textual information for program
comprehension [57]. As for structural Blob instances, the
results show that Bug Fixing operations have a higher
chance to reduce the code smell intensity. This means
that code components having low quality as measured
by software metrics are mainly touched by develop-
ers only when a bug fix is required. Looking at these
findings, we can conclude that textual Blob instances are
on the one hand more prone to be refactored and on the
other hand more likely to be resolved by such operations,
while the complexity of structural Blob instances is mainly
reduced through bug fixing operations. This claim is also
supported by the analysis of the number of textual and
structural Blob instances actually removed in our dataset
(see Table 10). Indeed, we observed that 27% of textual
code smells in our dataset have been removed over time,
and in 12% of the cases they have been removed using
refactoring operations. At the same time, we can see
that the percentage of structural Blob instances removed
over time is much lower (16%) and the percentage of
refactorings is 7% lower with respect to textual blobs.

Feature Envy. The ORs achieved when applying the
logistic regression model relating the types of changes
to the decrease of code smell intensity for Feature Envy
are reported in Table 8. In most cases changes classified
as New Feature, Bug Fixing, and Refactoring do not reduce
the intensity of either textual and structural Feature Envy
instances. Instead, the enhancement operations made on
textually detected Feature Envy code smells have, overall,
14% more chance of reducing the code smell intensity.
Looking at the results of structurally detected Feature
Envy code smells, none of the analyzed changes seem
to lead to an intensity reduction. Moreover, it seems
that textually detected Feature Envy instances differ from
structurally detected ones, since other than being re-
moved more frequently (see Table 10), the refactoring op-
erations are slightly more effective (+2%) in the removal
of the code smell. Since this code smell arises when a
method has more in common with another class with
respect to the one it is actually in, such a difference can

9

TABLE 8
OR of different types of changes applied to Blob, Feature Envy, and Long Method instances when building logistic

model. Statistically significant ORs are reported in bold face.

Project
Blob Feature Envy Long Method

Textual Smell Structural Smell Textual Smell Structural Smell Textual Smell Structural Smell

NF BF R E NF BF R E NF BF R E NF BF R E NF BF R E NF BF R E

ArgoUML 0.78 0.85 1.11 1.50 0.81 1.00 0.87 0.89 0.81 0.97 0.89 1.10 0.80 0.83 0.93 0.95 0.87 1.05 0.99 1.01 0.73 0.89 0.89 0.74
Apache Ant 0.99 1.01 1.00 1.01 0.97 1.01 0.99 1.00 0.88 0.93 0.91 1.02 0.87 0.82 0.81 0.92 0.86 1.01 1.11 1.02 0.69 0.98 0.84 0.89
aTunes 1.01 0.98 1.01 1.14 0.98 1.01 0.95 0.87 0.98 0.89 0.92 1.01 0.87 0.77 0.91 0.96 0.89 1.02 1.10 1.00 0.99 0.97 1.01 0.88
Apache Cassandra 0.99 1.00 1.00 1.00 0.97 1.01 0.99 1.00 0.83 0.87 0.92 1.03 0.87 0.78 0.76 0.93 0.93 0.98 1.01 1.01 0.89 0.92 0.95 0.91
Eclipse Core 0.88 1.01 1.10 1.34 0.99 0.97 1.00 1.02 0.81 0.84 0.97 1.04 0.83 0.92 0.83 0.97 0.98 1.10 1.15 0.97 0.68 1.02 0.98 1.01
FreeMind 0.91 1.02 0.89 1.22 0.92 0.98 0.78 0.88 0.72 0.81 0.94 1.02 0.71 0.82 0.91 0.99 0.86 1.02 0.99 0.87 0.83 0.97 0.94 0.91
HSQLDB 1.01 0.97 1.06 1.18 1.01 0.93 1.00 0.99 0.75 0.81 0.98 1.10 0.72 0.89 0.93 0.84 0.92 0.97 1.02 0.88 0.91 0.97 0.99 0.78
Apache Hive 0.99 1.00 1.01 1.00 0.97 1.01 0.99 1.00 0.87 0.93 0.84 1.11 0.73 0.74 0.81 0.96 0.89 0.97 1.00 0.87 0.79 0.81 0.74 0.89
Apache Ivy 0.99 1.00 1.02 1.00 0.96 0.99 0.99 1.00 0.74 0.73 0.92 1.08 0.86 0.74 0.72 0.83 0.92 0.98 1.01 0.98 0.91 0.86 0.81 0.92
Apache Log4j 0.86 1.02 1.06 1.19 0.94 0.98 1.01 1.01 0.83 0.92 0.97 1.05 0.78 0.70 0.91 0.96 0.91 1.02 1.10 0.82 0.72 0.76 0.93 0.83
Apache Lucene 0.99 1.00 1.20 1.00 0.97 1.01 0.99 1.00 0.81 0.84 0.92 1.04 0.79 0.84 0.81 0.97 0.97 1.14 1.36 1.02 0.89 0.93 1.05 0.82
JEdit 0.88 1.04 1.18 1.24 0.0 0.65 0.18 0.66 0.83 0.98 0.82 1.03 0.85 0.78 0.97 0.98 0.85 1.01 0.99 0.84 0.92 0.78 0.92 0.89
JHotDraw 0.67 0.88 1.02 1.09 0.54 0.41 0.88 0.64 0.84 0.87 0.93 0.99 0.84 0.78 0.84 0.91 0.92 1.21 0.97 0.88 0.93 0.99 0.96 0.88
JVLT 0.51 0.75 1.01 0.97 0.87 0.99 1.01 0.77 0.95 0.83 0.99 1.06 0.91 0.84 0.93 0.97 0.88 1.02 1.02 0.87 1.00 0.99 0.99 0.97
Apache Karaf 0.99 1.00 1.00 1.01 0.96 1.00 0.99 1.00 0.86 0.88 0.98 1.11 0.87 0.94 0.82 0.98 0.91 1.01 0.97 0.89 0.96 1.01 0.89 0.79
Apache Nutch 0.99 1.00 1.02 1.00 0.95 0.99 0.93 1.00 0.81 0.78 0.98 1.08 0.89 0.79 0.83 0.93 0.86 0.97 1.03 1.12 0.78 0.85 0.96 0.98
Apache Pig 0.99 1.01 1.12 0.97 0.96 1.01 0.99 1.00 0.88 0.87 0.92 1.07 0.71 0.76 0.77 0.86 0.93 0.99 1.02 1.12 0.87 0.79 0.96 1.02
Apache Qpid 0.99 1.10 1.04 1.00 0.97 0.99 1.00 1.01 0.87 0.82 0.88 1.12 0.72 0.86 0.84 0.91 0.82 1.00 1.01 1.22 0.87 1.02 0.98 0.92
Apache Struts 0.87 1.05 1.15 1.27 0.93 0.97 0.91 0.89 0.87 0.97 1.02 1.17 0.73 0.83 0.98 0.98 0.76 1.01 1.06 1.11 0.87 0.99 0.98 1.02
Apache Xerces 0.92 1.01 1.52 1.23 0.95 0.97 0.91 0.99 0.78 0.92 0.97 1.21 0.86 0.83 0.92 1.02 1.01 1.09 1.05 1.12 0.98 1.01 0.99 1.03
Overall 0.99 1.02 1.23 1.20 0.97 1.01 0.98 0.99 0.81 0.85 0.91 1.14 0.79 0.86 0.91 0.93 0.96 1.05 1.18 1.02 0.88 0.95 0.97 0.97

TABLE 9
OR of different types of changes applied to Misplaced Class and Promiscuous Package instances when building

logistic model. Statistically significant ORs are reported in bold face.

Project
Misplaced Class Promiscuous Package

Textual Smell Structural Smell Textual Smell Structural Smell

NF BF R E NF BF R E NF BF R E NF BF R E

ArgoUML - - - - - - - - 1.02 0.93 1.04 0.99 0.97 0.98 0.88 1.01
Apache Ant 0.81 1.04 1.08 0.91 0.82 1.01 0.79 1.01 0.96 0.80 1.02 0.71 1.02 0.82 0.94 1.01
aTunes - - - - - - - - 0.82 1.01 0.77 0.92 1.01 0.67 0.92 0.81
Apache Cassandra - - - - - - - - 0.72 1.04 1.11 0.77 0.80 1.01 0.99 0.60
Eclipse Core 0.97 1.01 1.18 0.83 0.98 0.88 0.91 1.01 1.01 0.92 1.12 0.84 0.95 1.08 0.81 0.72
FreeMind - - - - - - - - 0.84 1.02 0.97 0.99 0.98 1.01 0.85 0.68
HSQLDB 0.86 0.79 1.17 0.80 0.71 0.66 0.91 1.02 0.51 1.01 1.02 0.81 0.98 1.05 0.95 0.83
Apache Hive 0.91 0.87 1.18 0.98 0.79 0.71 0.92 1.02 0.89 0.99 0.80 0.77 0.92 0.82 0.84 1.02
Apache Ivy 0.86 0.78 0.99 0.92 0.78 0.92 0.87 1.06 0.88 0.61 1.11 0.87 0.91 0.82 0.65 1.03
Apache Log4j - - - - - - - - 0.72 0.69 1.20 0.92 0.55 1.06 0.91 0.83
Apache Lucene 0.81 1.04 1.21 0.72 0.52 0.64 0.89 1.01 1.03 0.98 1.02 0.78 0.56 0.61 0.54 0.89
JEdit - - - - - - - - 0.88 0.99 0.92 0.88 0.79 0.76 0.66 0.93
JHotDraw 0.82 1.01 1.22 0.91 0.88 0.87 0.72 0.84 0.72 0.77 1.05 1.08 0.79 0.82 0.99 0.60
JVLT 0.51 - - - - - - - 0.95 0.73 1.09 0.74 0.69 0.59 0.68 0.99
Apache Karaf 0.81 1.01 0.90 0.82 0.81 0.57 0.82 0.95 0.69 0.72 1.01 0.92 0.74 0.92 0.81 1.04
Apache Nutch - - - - - - - - 0.77 1.02 1.08 0.98 0.96 0.88 0.92 0.81
Apache Pig 1.01 0.81 1.27 0.89 0.52 0.76 0.99 0.92 0.78 0.91 1.21 0.72 0.74 0.72 0.89 0.71
Apache Qpid 0.83 0.88 1.11 0.98 1.01 1.05 0.66 0.82 0.60 0.72 1.20 0.82 0.72 0.61 0.86 0.87
Apache Struts - - - - - - - - 0.81 1.01 1.06 0.62 0.81 0.86 0.99 1.02
Apache Xerces 0.92 0.99 1.09 1.02 0.82 1.01 0.89 1.05 0.99 1.05 1.14 0.74 0.88 1.04 0.89 0.71
Overall 0.89 0.99 1.15 0.92 0.76 0.91 0.94 1.02 0.86 1.01 1.10 0.84 0.93 0.98 0.85 0.98

be explained considering the way developers perceive
different types of coupling. Indeed, as shown by Bavota
et al. [15], semantic coupling better reflects the mental
model of developers. So, it seems that developers are
able to better perceive the symptoms of a textual Feature
Envy, by providing solutions to limit it, or in some cases
provide accurate solutions to remove it.

Long Method. Table 8 reports the results achieved
when comparing textually and structurally detected Long
Method instances. Regarding long methods textually de-
tected, there are several causes which relate with the
decrease of their intensity. Overall, we can see that refac-

toring operations have 18% more chance of reducing
the complexity of the code smell, while Bug Fixing and
Enhancement operations have 5% and 2% more chance,
respectively. These findings highlight how the decrease
of the intensity of long methods textually detected de-
pends on the activity of the developers, confirming
previous findings by Silva et al. [94]. When analyzing
the results for structurally detected long methods, we
observed that there are no specific types of changes that
strongly influence the decrease of code smell intensity.
Thus, also in this case we can claim that textual long
methods are easier to be detected and removed from the
source code. Table 10 highlights these differences, since

10

textually detected Long Method instances are removed in
35% of cases over time (18% of removals are due to
refactoring), while structurally detected long methods
are removed in 20% of the cases (8% of cases due to
refactoring activities).

Misplaced Class. When evaluating the differences be-
tween textually and structurally detected instances of
this code smell (Table 9), we can outline a clear trend
in the results. Indeed, textual Misplaced Class instances
undergo a considerable reduction of their intensity when
refactoring is applied (changes of this type have 15%
more chance of reducing the intensity of the code smell).
The claim is also supported by the percentage of code
smell instances removed by developers shown in Table
10, where we can observe that the code smell is removed
in 18% of the cases over time and, more importantly,
11% of removals are due to refactoring. As previously
explained for the Feature Envy code smell, the reasons
behind this strong result can be found in the developers’
perception of software coupling [15]. In fact, the code
smell arises when a class has responsibilities closer to the
ones of another package with respect to the one it is actu-
ally in. Therefore, if developers better comprehend the
semantic relationships between classes it is reasonable
to assume that they are more inclined to move classes
to better locations. Concerning instances of the code
smell found by the structural approach, the situation
is different because of the limited values of the ORs
achieved by the considered types of changes. The higher
value is the one found by considering changes of the
category Enhancement (+2% more chance of reducing the
intensity). This means that developers actually reduce
the intensity of structural misplaced classes only in cases
where an enhancement is needed, rather than limiting
the intensity through appropriate refactoring operations.
It is worth noting that the percentage of instances of
this code smell removed over time is lower than the
one of textual code smells (-11% of removals) and that
refactoring is the cause of removal only in 3% of the
cases.

Promiscuous Package. The discussion of the results
for this code smell type is quite similar to previous
ones. Indeed, from Table 9 we can observe that in most
cases refactorings are limiting the intensity of textually
detected instances (+10% chance to reduce the severity),
while for structural code smells there are no specific
types of changes that influence the decrease of code
smell intensity. This result seems to highlight the higher
ability of developers to deal with promiscuous pack-
ages characterized by scattered concepts rather than by
structural symptoms. Therefore, also in this case we
can claim that developers are more able to identify
textual code smells than structural ones and provide
adequate solutions to reduce the intensity of the code
smell. Notably, such instances are removed in 26% of
the cases over the release history of the projects analyzed
(+13% with respect to structural instances), and 11% of

TABLE 10
Percentage of Removed Textual (TS) and Structural

Code (SS) Smell instances

Code Smell % TS Removed % SS Removed Residual(% due to refact.) (% due to refactor.)

Blob 27 (12) 16 (5) +11 (+7)
Feature Envy 16 (4) 11 (2) +5 (+2)
Long Method 35 (18) 20 (8) +15 (+10)
Misplaced Class 18 (11) 7 (3) +11 (+8)
Promiscuous Package 26 (11) 13 (4) +13 (+7)

the times the reason of the removal is refactoring (+7%
with respect to structural promiscuous packages).

Summary for RQ1. We found statistically significant
differences in the way textually and structurally detected
code smells are treated by developers. Specifically, the
intensity of code smell instances characterized by textual
problems tends to decrease over time, while the inten-
sity of structural code smells always increases over the
release history of the projects considered. Notably, we
also found that textual code smells are more prone to be
refactored (+7% on average).

Summary for RQ2. Refactoring is the activity that in-
fluences the decrease of intensity of textual Blob, Long
Method, Misplaced Class, and Promiscuous Package in-
stances the most. The decrease of the intensity of Feature
Envy instances is instead influenced by enhancement
activities. For structurally detected code smells, we gen-
erally did not find specific types of changes explaining
their reduction in terms of intensity. Moreover, textual
code smells are removed, on average, 11% more than
structural code smells and 7% more as a consequence of
refactoring operations.

3.3 Threats to Validity

Threats to construct validity concern the relationship
between theory and observation, and are mainly related
to the measurements we performed in our study. Specif-
ically, we monitored the evolution of the level of smelli-
ness of textual and structural code smells by relying
on five tools, i.e., TACO, DECOR [67], JDeodorant [100],
and the approaches by Girvan et al. [38] and Atkinson
and King [6]. All these tools have been empirically val-
idated, providing good performances. Nevertheless, we
are aware that our results can be affected by the presence
of false positives and false negatives. At the same time,
our results might be affected by the presence of the so-
called “conceptual” false positives [31], i.e., code smell
instances identified by detection tools as true positives
but not perceived as such by developers. However, we
limited this threat by investigating code smell types that
previous research found to be critical for developers [40],
[73], thus focusing on code smell instances likely to be
perceived by developers as actual design problems.

We re-implemented all the structural-based techniques
except for JDeodorant because these tools are not publicly

11

available. To make sure that our implementation was not
biased, we replicated the studies presented in [6], [38],
[67], obtaining similar results. When re-implementing
DECOR we only considered the structural-based rules of
the approach, while we avoided the use of the textual-
based one exploited by the approach to identify the
controller classes in a system. While this choice might
have implied a higher recall and a lower precision of the
approach, we assessed the accuracy of the tool replicat-
ing the study conducted by Moha et al. [67], achieving
comparable results. We are aware of other techniques
proposed in literature to detect code smells [28], as well
as of the availability of industrial tools such as inCode
[43] or iPlasma [44]. However, we selected DECOR
because of its proven performances [32], [34], [41], [50],
[72], [74], and the techniques by Atkinson and King [6]
and Girvan and Newman [38] because of the lack of
other techniques able to detect the Promiscuous Package
and Misplaced Class code smells. Moreover, it is worth
noting that for most of the industry-level detectors an
empirical evaluation of the performance is not available.

For the commit goal tag assignment to commits involv-
ing code smells, we used methodologies successfully
used in previous work [102]. Moreover, we manually
validated all the tags assigned to such commits.

Since our goal was to investigate whether and to
what extent textual and structural code smells evolve
differently, our study did not focus on the overlapping
instances, i.e., code smells identified by both types of
detector. However, for sake of completeness we re-ran
our evolutionary study on this set of code smells. Being
these instances detected by both textual and structural
techniques exploited, we needed to evaluate both their
textual and structural intensity evolution. As a result,
we found that the increasing of both the intensity scores
was limited during the evolution: in other words, we
observed that the smelliness of overlapping instances
increased over time but in a limited manner. From a
practical perspective, while the intensity of code smells
detected by only textual analysis decreases over time and
the one of structural code smells increase over time, the
smelliness of the overlapping instances remains almost
stable during the evolution. A likely cause behind this
result is that textual issues somehow counterbalance the
structural problems of classes, making developers able
to keep the quality of such classes under control. The
complete results of this analysis are available in our
online appendix [76].

Threats to internal validity concern factors that could
have influenced our results. The fact that code smells
are removed may or may not be related to the types of
changes we considered in the study, i.e., other changes
could have produced such effects. Since the findings
reported so far allow us to claim correlation and not
causation, in Section 4 we corroborate our quantitative
results with a user study where we involve industrial
developers and software quality experts, with the aim
of finding a practical explanation of our quantitative

results.
Threats to conclusion validity concern the relationship

between the treatment and the outcome. In our case,
a threat can be related to the fact that we tailored the
experiments presented in this paper to the benefit of the
tool because of the knowledge of the inner-workings of
the textual-based tool we previously built, generating the
so-called observer-expectancy effect [86]. However, it is im-
portant to note that in this study we have not evaluated
the benefits provided by the textual information on sin-
gle snapshots of a software system, but we conducted an
evolutionary study aimed at understanding whether the
textual smelliness evolves differently from the structural
one: thus, the knowledge of the inner working of the tool
as well as the knowledge of the detection performance
of TACO did not influence our observations. Moreover,
as a further mitigation all the authors of this paper
looked critically at the experimental data to ensure the
correctness of the results.

Threats to external validity concern the generalization
of the results. A specific threat to external validity is
related to the number of subject systems used in our
empirical evaluation. To show the generalizability of
our results, we conducted an empirical study involving
20 Java open source systems having different size and
different domains. However, it could be worthwhile to
replicate the empirical study on other projects written in
different programming languages.

4 STUDY II: THE PERCEPTION OF TEXTUAL
AND STRUCTURAL CODE SMELLS

In the previous section, we found evident differences
in the way developers treat textual and structural code
smells. However, we cannot speculate on the reasons
behind such differences by solely looking at historical
data. On the one hand, it is possible that developers
perceive textual code smells more as problems than
structural code smells, while on the other hand it is also
possible that this difference relies on the fact that textual
code smells are easier to maintain. To better understand
the reasons behind the results achieved in the previous
analysis, we conducted a qualitative study investigating
how developers perceive instances of structural and
textual code smells.

4.1 Empirical Study Definition and Design
This study reports on a qualitative investigation con-
ducted with (i) professional developers through a ques-
tionnaire, and (ii) software quality experts through semi-
structured interviews, with the goal of investigating
their perception of code smells with respect to different
sources of information, i.e., textual and structural. Hence,
we designed this study to answer the following research
questions (RQs):

RQ3: Do developers perceive design problems be-
hind textual code smells more than design problems
behind structural code smells?

12

RQ4: Do developers find textual code smells easier
to refactor than structural code smells?

The context of the study consists of three software
projects, i.e., Eclipse 3.6.1, Lucene 3.6, and ArgoUML
0.34 that have already been used in Section 3. For each
of them, we selected four instances of Blob, Feature Envy,
Long Method, Misplaced Class, and Promiscuous Package
adhering to the following process:

1) we computed the level of structural and textual
intensity for all packages, classes, and methods in
Eclipse, Lucene, and ArgoUML;

2) we selected two instances of each code smell type
correctly detected by structural tools but not by
TACO;

3) we also selected two other instances of each type of
code smell that are correctly classified by TACO and
not by structural tools.

Note that we selected instances classified by the detec-
tors as the ones having highest intensity (i.e., the selected
instances have similar intensity values). Moreover, to
avoid possible biases caused by the interaction of more
code smells [1], [109], we selected instances affected by
only one single type of code smell. Finally, we also
randomly selected two code elements of different gran-
ularity (i.e., a package, a class, or a method) not affected
by any of the code smells considered in our study. This
was done to limit the bias in the study, i.e., avoiding that
participants always indicated that the code contained a
problem and the problem was a serious one. Table 11
details the characteristics of code elements used in the
experiment.

To answer our research questions, we invited indus-
trial developers from different application domains hav-
ing a programming experience ranging between 2 and
9 years and that generally work on Java development.
The invitations were sent via e-mail. We have contacted
77 developers in total, receiving 19 responses (≈ 25%
of response rate). Each participant performed the tasks
related to one single software system: eight participants
analyzed code smell instances for Eclipse, eight partici-
pants for Lucene, while three participants for ArgoUML.

The participants received the experimental material
via the eSurveyPro10 online platform and, hence, they
used their own personal computer with their preferred
IDE to answer the proposed questions. The survey pro-
vided (i) a pre-test questionnaire, (ii) detailed instruc-
tions to perform the experiment, and (iii) the source code
of the three projects involved in the study, i.e., Eclipse,
Lucene, and ArgoUML.

During the initial step, participants were asked to sign
a statement of consent and fill in a pre-test question-
naire in which we collected information about their pro-
gramming experience and background on code smells.
Afterwards, each participant was required to inspect a
total of twelve code elements related to one of the three
projects in our study, namely five pairs of instances

10. http://www.esurveyspro.com

TABLE 11
Java code elements used as objects in the study.

Project Code Component Type Detector

Parser.java Blob DECOR
CompletionEngine.java Blob DECOR
JavaModelManager.java Blob TACO
OperatorExpression.java Blob TACO
SelectionEngine.findAllTypes Feature Envy JDeodorant
DeltaProcessor.resourceChanged Feature Envy JDeodorant
BasicSearchEngine.getMatchRuleString Feature Envy TACO
ClassFile.traverse Feature Envy TACO
ClassFile.addAttributes Long Method DECOR
Expression.checkCastTypesCompatibility Long Method DECOR
CompilerOptions.set Long Method TACO
ASTParser.createASTs Long Method TACO
SortElementsOperation.java Misplaced Class Technique in [6]
SourceRefElement.java Misplaced Class Technique in [6]
SourceMethod.java Misplaced Class TACO
SourceMapper.java Misplaced Class TACO
org.eclipse.jdt.internal.core.builder Promiscuous Package Technique in [38]
org.eclipse.jdt.internal.core.dom.rewrite Promiscuous Package Technique in [38]
org.eclipse.jdt.internal.formatter Promiscuous Package TACO
org.eclipse.jdt.internal.compiler Promiscuous Package TACO
CodeFormatterVisitor.visit Non Smelly -
AbstractCommentParser.parseReference Non Smelly -
ITypeParameter.java Non Smelly -

Eclipse

org.eclipse.jdt.internal.compiler.codegen Non Smelly -

BrazilianStemmer.java Blob DECOR
HTMLParserTokenManager.java Blob DECOR
DocumentsWriter.java Blob TACO
IndexWriter.java Blob TACO
ToStringUtil.getRomanization Feature Envy JDeodorant
HTMLStripCharFilter.nextChar Feature Envy JDeodorant
QueryParser.getFieldQuery Feature Envy TACO
DisjunctionMaxQuery.explain Feature Envy TACO
WikipediaTokenizerImpl.getNextToken Long Method DECOR
WeightedSpanTermExtractor.extract Long Method DECOR
CheckIndex.checkIndex Long-method TACO
AttributeSource.java Misplaced Class Technique in [6]
PrefixAwareTokenFilter.java Misplaced Class Technique in [6]
InstantiatedIndex.java Misplaced Class TACO
QueryParser.java Misplaced Class TACO
org.apache.lucene.store Promiscuous Package Technique in [38]
org.apache.lucene.util.packed Promiscuous Package Technique in [38]
org.apache.lucene.analysis.de Promiscuous Package TACO
org.apache.lucene.analysis.payloads Promiscuous Package TACO
CodeStream.

invokeStringConcatenationAppendForType Non Smelly -
DefaultCodeFormatterOptions.

setJavaConventionsSettings Non Smelly -
InternalCompletionProposal.java Non Smelly -

Lucene

org.apache.lucene.util Non Smelly -

JavaRecognizer.java Blob DECOR
JavaLexer.java Blob DECOR
GeneratorJava.java Blob TACO
Modeller.java Blob TACO
Init.init Feature Envy JDeodorant
JavaRecognizer.field Feature Envy JDeodorant
GeneratorJava.generateClassifier Feature Envy TACO
UMLComboBoxModel.targetChanged Feature Envy TACO
UseCaseDiagramRenderer.getFigEdgeFor Long Method DECOR
ParserDisplay.parseOperation Long Method DECOR
PropPanelAssociationEnd.makeFields Long Method TACO
ProjectBrowser.initMenus Long Method TACO
ResourceBundleHelper.java Misplaced Class Technique in [6]
ModuleHelper.java Misplaced Class Technique in [6]
CriticUtils.java Misplaced Class TACO
NotationHelper.java Misplaced Class TACO
org.argouml.language Promiscuous Package Technique in [38]
org.argouml.model Promiscuous Package Technique in [38]
org.argouml.cognitive.ui Promiscuous Package TACO
org.argouml.xml Promiscuous Package TACO
UMLComboBoxModel.init Non Smelly -
ClassdiagramLayouter.layout Non Smelly -
FigAssociation.java Non Smelly -

ArgoUML

org.argouml.kernel Non Smelly -

affected by either structural or textual code smells (i.e.,
Blob, Feature Envy, Long Method, Misplaced Class, and
Promiscuous Package) plus a pair of code elements not
affected by code smells.

The experiment was composed of six consecutive ses-
sions with two tasks each. During each session, partic-
ipants performed two tasks related to the same type
of code smell but detected by different tools: one task
involving a code smell detected by TACO and a second
task related to the same type of code smell but detected
by structural-based tools. In each task, participants were
asked (i) to analyze the target code component (either a
package, a class or a method), (ii) to fill in a post-task
questionnaire indicating whether the code component

13

was affected by a code smell or not, and (iii) to suggest
possible refactoring operations aimed at removing a
detected code smell. Moreover, participants were also
asked to evaluate the proneness of the analyzed code
element to contain a code smell instance as well as
the severity of different source code properties (e.g.,
size, complexity, number of dependencies, etc.) using
a Likert scale ranging from 1 to indicate a very low
risk to 5 to denote very high risk. The questionnaire is
available in our online appendix [76]. Participants were
also allowed to browse other classes or methods to better
understand the responsibilities of the code component
under analysis and find possible dependencies. Clearly,
we did not reveal the types of code smells, nor whether
they were detected by structural or textual tools.

Participants were instructed to spend no more than 30
minutes for completing each task and they were allowed
to finish earlier if and only if they believed that all
code smells were found (if any) and the corresponding
refactoring operations were identified. Participants had
up to four weeks to complete the survey.

To complement the analysis and receive opinions
from people having a solid knowledge about source
code quality [5] and code smells, in this stage we
also recruited five software quality consultants: four
consultants from the Software Improvement Group
(SIG) in the Netherlands11, and one consultant from
Continuous Quality in Software Engineering
(CQSE) in Germany12. Both companies carry out soft-
ware quality assessments for their customers. The mis-
sion of both the companies is the definition of tech-
niques and tools able to diagnose design problems in
the clients’ source code, with the purpose of providing
consultancy on how to improve the productivity of their
clients’ developers. Our decision to involve these quality
consultants was driven by the willingness to receive
authoritative opinions from people that are used to
finding design problems in source code. All participants
have an average industrial experience of 4 years, an
average programming experience of 9 years (one of
them 20 years). This experiment was conducted in the
headquarters of the SIG company when we interviewed
the consultants from SIG, while the quality expert from
CQSE was interviewed via Skype.

The consultants were asked to fill-in the same ques-
tionnaire provided to the industrial developers. How-
ever, due to time constraints, in this case the quality
experts only answered the questions related to a subset
of code smells, i.e., Blob, Feature Envy, and Long Method,
belonging to two of the considered systems, i.e., Eclipse
and Lucene. We distributed the experimental material
in order to have a balanced number of answers. For
this reason, three experts answered questions related to
Eclipse, the other two worked on code elements from
Lucene.

11. https://www.sig.eu/en/
12. https://www.cqse.eu/en/

At the end of the experiment, the quality experts were
also required to participate in an open discussion session
of 30 minutes think about the tasks performed and to
answer questions that we used to collect feedback for
qualitative analysis. In particular, two of the authors
first asked them to walk through the classes in order
to explain the responsibilities they implemented; then,
we asked them to explain if and how they identified a
code smell in the source code (e.g., which characteristic
of the source code allowed them to recognize a code
smell). The discussion session was conducted by the
first two authors of this paper. The total duration of the
experiment was 2 hours and 30 minutes, including the
time needed to complete the experimental sessions, to fill
in the questionnaires and participate in the discussion.

The data collected by the post-task questionnaires
were used to answer RQ3 and RQ4. Specifically, we
addressed RQ3 by analyzing the code smells identified
by each participant for the code components; we com-
pared their classification to the classification made by
the textual and structural tools (i.e., Blob, Feature Envy,
Long Method, Misplaced Class, and Promiscuous Package).
Moreover, we also compared the distributions of the
Likert values assigned by participants when providing
the indication of the proneness of a code element to
be involved in a code smell. In this way, we measured
the perceived levels of risk for the two groups {textual,
structural} of code smells to investigate how participants
perceived the strength of code smells as identified by
textual and structural based tools. To verify the statistical
significance of the differences between the two distribu-
tions (i.e., risk levels perceived for textual and structural
code smells) we used the non-parametric Wilcoxon Rank
Sum test with a significance threshold of ρ−value = 0.05.

For RQ4, we analyzed the refactoring operations sug-
gested by participants for removing the identified code
smells. Indeed, for each different code smell type there
is a specific set of refactoring operations considered as
suitable to address it. The refactoring associated with
Long Method is Extract Method, for Feature Envy the corre-
sponding refactoring is Move Method, for Blob an Extract
Class refactoring is advised, for Misplaced Class a Move
Class refactoring should be applied, and for Promiscuous
Package the associated solution is represented by the
Extract Package refactoring [36], [82], [98].

Finally, we provide an overview of the discussion, as
well as hints provided by quality consultants during the
open discussion session that followed the interview.

4.2 Analysis of the Results

Before answering the two research questions formulated
in the previous section, we analyze to what extent profes-
sional developers perceived the presence of a code smell
in code elements not containing any of the code smells
considered in our study. As previously explained, this is
a sanity check aimed at verifying whether participants
were negatively biased. As a result, none of the involved

14

developers marked such code elements as affected by
code smells. Hence, this result indicates the absence of
a negative bias in the respondents.

Turning to the answers provided by participants when
analyzing code elements affected by a code smell, Figure
1 depicts the bar plots reporting the percentage of code
smells perceived (in grey) and identified (in black) by the
professional developers who participated to the survey.

Specifically, with perceived we mean that the developer
recognized the presence of a design problem in the code
element inspected, but she was not able to define the
code smell affecting it. Conversely, with identified we
mean that the developer was not only able to under-
stand that the inspected class was affected by a design
problem, but she also provided a clear explanation of
the problem affecting the class. Note that we consider
a code smell as identified only if the design problem
described by the participant can be directly traced to the
definition of the code smell affecting the code element.
For instance, when analyzing a Long Method instance,
one of the involved developers explained that:

“This method is too long, hard to understand,
test, and profile. It does multiple things – the com-
ments already indicate that.”

Clearly, the definition given by the developer matches
the definition of the code smell provided by Fowler
[35]. Thus, we considered it as a code smell identified.
Obviously, a code component that is correctly identified
is also perceived (the opposite is not true). Besides the
results on the perception of textual and structural code
smell instances, Table 12 reports the percentage of refac-
toring operations correctly suggested by participants.
Finally, Table 13 illustrates the code smells observed as
well as the refactoring operations suggested by each
quality expert involved in the study. The rows represent
participants while the columns depict the type of code
smell (i.e., Blob, Feature Envy and Long Method) and
the source of information used for the detection (i.e.,
structural or textual).

Looking at Figure 1 we can immediately make two
important general observations: first of all, in most cases
textual code smells are considered actual problems by
developers, even though they do not exceed any struc-
tural metrics’ value. Secondly, not only does the anal-
ysis reveal important differences between textual and
structural code smells in the way developers perceive
them, but also that textually detected code smells are
generally correctly identified. At the same time, profes-
sional developers are also generally able to provide good
suggestions on how to refactor the identified code smells
(see Table 12). This result confirms the observations
made by Mäntylä and Lassenius [62], who showed how
more experienced developers have higher abilities in
the identification of code smells affecting the source
code. This is particularly true for textual code smells,
where the developers almost always indicate the right
refactoring to apply (for all the code smells but Feature

TABLE 12
Percentage of refactoring operations correctly suggested

by professional developers.

Code Smell Structural Textual
% # %

Long Method 13 68% 15 79%
Feature Envy 0 0% 5 26%
Blob 9 47% 16 84%
Promiscuous Package 1 5% 17 89%
Misplaced Class 2 10% 18 95%

Envy more than 79% of participants described well the
refactoring aimed at removing the code smell). This
trend is confirmed when considering the answers pro-
vided by software quality consultants (see Table 13). In
this case, we can observe that in all the cases the quality
experts perceived the presence of a design problem in
the proposed code components.

Blob. Blob instances characterized by textual problems
are always perceived and correctly classified by the par-
ticipants. On the other hand, only 53% of the structurally
detected instances are identified by developers, even if
the problem is always perceived. While this result is in
line with previous findings demonstrating that complex
or long code is more easily detectable by developers
[73], the different nature of the code smells lead us to
think that developers better understand design problems
affecting textual properties of source code.

As for the quality consultants, structural blobs are
correctly identified by participants in only three out of
five cases. Note that in these cases participants also
correctly indicate the refactoring operation (i.e., Extract
Class) for removing the code smell. In the remaining two
classes, they describe symptoms referable to other code
smells, such as Complex Class [19] and Duplicate Code [35].
Moreover, participants were not able to identify an ap-
propriate refactoring to remove these code smells. Dur-
ing the open discussion, the quality experts were invited
to think aloud [55] on the design problems affecting the
analyzed code components. In this session, participants
re-elaborated their analysis, correctly detecting the pre-
viously missed Blob instances. They also explained that
the main reason of the misclassification is the extreme
complexity of the (structurally detected) code components
that does not allow the correct identification of the design
problems affecting them. For textual blobs, the discussion is
different. Here we observed a complete agreement with
the experts’ perception: all classes detected as blobs by
TACO are also identified as actual Blob instances by the
participants. At the same time, it is worth observing
that participants also identified the correct refactoring
operation aimed at removing the code smell.

The open discussion session confirms our conjecture,
i.e., developers better understand code smells character-
ized by textual problems.

15

Fig. 1. Percentage of Textual and Structural Code Smells Perceived and Identified by Professional Developers.

TABLE 13
Results obtained from Study II. Labels marked with (*) indicate that the code smells identified by participants match

the classification provided by textual or structural tools

Structural Textual

Blob Feature Envy Long Method Blob Feature Envy Long Method
Participant

Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring

Expert1 Blob* Extr. Class* High Complex. Long Method* Blob* Extr. Class* Feature Envy* Move Method* Long Method* Extr. Method*
Long Param. List Long Param. List High Complex.

High Complex.
Expert2 Code Duplic. Clone Reun. High Complex. Rename Long Method* Extr. Method* Blob* Extr. Class* High Complex. Rename Long Method* Extr. Method*

Bad Identifiers High Complex
Expert3 Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method* Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method*

Bad Identifiers Feature Envy Move Method
Redundant Code

Expert4 Complex Class Long Method Extr. Method Long Method* Introd. Polym. Blob* Extr. Class* Feature Envy* Move Method* Long Method* Extr. Method*
Extr. Class Bad Identifiers

Expert5 Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method* Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method*
Bad Identifiers Rename

Long Method. When considering the Long Method code
smell, the discussion is quite similar. Indeed, here we
found that almost all the industrial developers per-
ceived a problem. However, there are two details to
further analyze. In the first place, unlike the struc-
turally detected ones, 95% of the long methods de-
tected by TACO and perceived by developers were also
correctly identified. On the other hand, there was a
specific case in which a textual Long Method instance
was marked as not affected by any design problem. It
is the ASTParser.createASTs method of the Eclipse
project, which is responsible for the analysis of the source
code classes of a Java project and the subsequent creation
of the Abstract Syntax Tree (AST) for all of them. Even
though the method does not have excessive length (i.e.,
68 lines of code), it should be considered as a design
problem since it manages all the operations needed to
build the AST of a class (i.e., reading, parsing, and AST
building). However, one of the professional developers
involved in the study did not perceive this code smell.

On the other hand, the quality experts perceived
and correctly identified all instances of long methods
detected by either approach. However, Table 13 high-

lights evident differences between the refactoring op-
erations suggested by participants to remove structural
and textual code smells. Indeed, while for structurally
detected code smells the correct refactoring (i.e., Ex-
tract Method) was identified in only three out of five
cases, for textual code smell participants always in-
dicated the Extract Method refactoring as ideal solu-
tion for removing the identified code smells. For in-
stance, when indicating the possible refactoring for
the long method TieredMergePolicy.findMerges
of the Apache Lucene project, a quality consultant an-
swered that “parts of the method are separated by comments;
at which points usually an extract method refactoring should
be applied; then the names of the new methods can replace the
comments”. This example is quite representative since the
quality expert not only identified the correct refactoring
to use, but also gave us hints on how the refactoring
may be applied practically.

Feature Envy. For the Feature Envy, we obtain different
results when compared to the two types of code smells
discussed above. While the problem is generally per-
ceived by professional developers, none of them was
able to characterize the symptoms behind the struc-

16

tural instances of this code smell. Conversely, textual
instances are perceived more (89% vs 79%) and in
some cases (42%) participants were able to describe
the problem well. Concerning the refactoring sugges-
tions, only five developers who identified the problem
correctly suggested the application of a Move Method
refactoring. For instance, let us consider the case of the
QueryParser.getFieldQuery method of the Lucene
system, affected by Feature Envy because it is more
closely related to the PhraseQuery class. When ana-
lyzing it, developer #6 claimed that “the method seems to
be more related to the class PhraseQuery, even if there are not
so many dependencies between the two classes”.

The observations that we collected from surveying the
quality experts are in line with those reported above.
Indeed, in the majority of the cases the consultants did
not classify this code smell type correctly, even if they
perceived that the subject code components actually
had some design problems. However, it is worth noting
that the method getMatchRuleString from the
class BasicSearchEngine (Eclipse), and the method
explain from class DisjunctionMatchQuery
(Apache Lucene) were correctly classified as Feature
Envy instances in agreement with the detection made
by TACO (textual tool), and, at the same time, correct
refactoring solutions were suggested (Move Method
refactoring). On the one hand, the higher ability of
developers to detect textual Feature Envy instances is a
likely consequence of the fact that textual coupling is
more easily perceived than structural coupling [15]. On
the other hand, hints provided by participants in the
open discussion can allow us to draw a conclusion on
why developers often do not identify this code smell
type. Indeed, they reported that “dependency on other
classes is the less important point”, indeed, “as long as
a method is short and well documented (e.g., with proper
identifiers), there is no real need to move it to a different
class”.

Misplaced Class and Promiscuous Package. The impor-
tance of textual aspects of source code for the practical
usefulness of code smell detectors is even more evident
when considering Misplaced Class and Promiscuous Pack-
age code smells. Indeed, in these cases the structurally
detected instances are almost never perceived and iden-
tified, while the results achieved for textual instances are
exactly the opposite (see Figure 1). At the same time,
it is worth observing that the higher the granularity of
the code smell, the lower the ability of the developers
in perceiving structurally detected code smells. A pos-
sible reason behind this result is related to the need of
developers of having higher level information to build
a cognitive model to comprehend larger parts of source
code [90], [66]. On the other hand, textual analysis seems
to be easier to perform by developers to comprehend the
problems affecting a higher-level code component such
as a package.

General observations. In general, we observe two dif-

0%
7%

93%
73%

7%
20%

13%
13%

80%
47%

7%
40%

0%
20%

100%
60%

0%
20%

60%
40%

13%
40%

27%
20%

47%
60%

27%
20%

27%
20%

7%
40%

80%
60%

13%
0%

13%
20%

60%
67%

27%
13%

Proneness to be involved in a design problem

Complexity of the source code

Size of the code component

Number of dependencies with other classes

Low identifiers quality

Lack of comprehensibility of the code component

Number of implemented responsibilities

Structural
Textual

Structural
Textual

Structural
Textual

Structural
Textual

Structural
Textual

Structural
Textual

Structural
Textual

100 50 0 50 100
Percentage

Response Very Low Low Medium High Very High

Evaluate the severity of the following properties for the source code you analyzed

Fig. 2. Likert chart for post-task questionnaires, where the
same questions are asked at the end of each task

ferent trends for the code smell types (Table 13) detected
by quality experts depending on whether code compo-
nents are affected by structural and textual code smells.
While for structurally detected code smells the experts
generally identified only one design problem per code
component (often missing the actual problem affecting
the analyzed code), for textual code smells participants
detected other problems related to textual aspects of
source code, such as the presence of poor identifiers,
in addition to the main design problem. For example,
Expert3 identified three different design problems for the
class OperatorExpression extracted from the Eclipse
project: it is a Blob (in agreement with TACO) affected
by redundant code and with meaningless identifiers.

At the end of each task, participants were asked to
evaluate the severity of different properties (e.g., size,
complexity, number of dependencies, etc.) for the ana-
lyzed code using a Likert scale intensity from very-low
to very-high. Figure 2 compares the scores assigned to
the code smells according to whether they were detected
by textual or structural tools.

Such an analysis allows us to gain more insight into
the perception of code smells stemming from different
sources of information.

In most cases, the structural instances were marked
as more severe than the textual ones. While developers
considered structural code smells as more severe, they
were not able to correctly diagnose the problems behind
this type of code smells because of their higher complex-
ity. Therefore, we can claim that the analysis of textual
properties is useful for code smell detection since they
allow developers to understand design problems affect-
ing code components. At the same time, considering the
refactorings that participants suggested, there is the need
for tools providing better support in the refactoring of
structural code smells.

When considering properties as code size and num-

17

ber of responsibilities, we did not find any statistical
difference between structural and textual code smells.
However, in the open discussion session, the quality
experts observed that “size and number of responsibilities
are quite related to each other” when the goal is to un-
derstand whether a specific code unit is affected by a
code smell or not. Indeed, they observed that if a class
is too large this is a first symptom for the class to be
a potential Blob. However, they also noted that “raw
number of lines is not the end of the story because developers
have to read the code”, build their own mental model and
then “figure out whether the class or the method implements
too many responsibilities, which is the main reason of other
issues”. Moreover, the quality experts observed that “the
number of lines in a method and the presence of unrelated
parameters are the two aspects to look at” when identifying
code smells at method level, where unrelated parame-
ters denote “parameters that are interpreted by developers
as unrelated looking at the identifier names”. Finally, for
code smells at the class level they mentioned that “the
number of concepts that can be derived by method names and
attributes” is the main source of information while the
raw number of lines is not a good approximation of the
phenomenon. Through this analysis, we learned that the
size of a code unit does not always represent a good
measure to identify code smells, since to better evaluate
the presence of spurious responsibilities the analysis of
textual components is needed.

Participants also evaluated the severity of two other
dimensions for the code components analyzed, namely
complexity and comprehensibility. From Figure 2 we
can observe that participants perceived the structural
code smells as more complex (80%) with respect to
textual code smells (47%). The Wilcoxon test reveals
that such difference is marginally significant (ρ=0.057)
with a negative medium Cliff’s d effect size (d=-0.36).
Similarly, for comprehensibility we observe that 80% of
participants labeled the structural code smells as difficult
to comprehend (high or very high severity) with respect
to 60% of participants for textual code smells. Such a
difference is statistically significant with ρ=0.029 and has
a negative small Cliff’s d effect size (d=-0.275). This result
highlights that structural code smells are perceived as
more difficult to deal with.

To practically understand the effect of these differ-
ences, during the open discussion we asked the qual-
ity consultants to directly compare pairs of code com-
ponents (e.g., textual vs structural blobs) in order to
illustrate possible steps for the application of a refac-
toring. All the experts stated that in each pair there
was “one instance much more complex to understand,
which makes difficult the derivation of a precise refactor-
ing operation that should be applied”. For example, Ex-
pert1 reported that “looking at the raw number of decision
points”, the two methods addAttributes from the
class ClassFile (structural long method) and set from
the class Options (textual long method) “seem to be
equally complicated”, but by looking more carefully at the

code, the method set “is instead well structured because
there is a pattern in the if conditions. For this method, it is
easier to imagine that a potential way to fix the problem is
to write different methods for different if conditions”. While
the structural long method addAttributes from class
ClassFile “is very complicated and deciding the refactor-
ing operations to apply is not so simple”. As another ex-
ample, Expert4 reported that the method explain from
class DisjunctionMatchQuery “is quite complicated
despite its length: it contains too many concepts and some
parameters are simply passed to other methods”. It is worth
noting that this method contains only 17 lines of code
and it is detected as Feature Envy by TACO (textual tool).
The structural Feature Envy, i.e., method nextChar from
HTMLStripCharFilter, is perceived “more complex to
manage because it contains too many responsibilities spread
across external classes; it implements a state machine with no
meaningful names to help the comprehension”. Thus, we can
claim that the higher comprehensibility of textual code
smells seems to help developers in finding appropriate
refactoring solutions. The result is in line with what
we found studying the evolution of textual code smells,
i.e., they are generally more prone to be refactored, as
well as more prone to be subject to activities aimed
at reducing their intensity over time. More in general
our results complement previous findings in the field,
showing that even though developers are sometimes not
properly able to perceive the presence of code smells
in source code [4], [109], the usage of textual analysis
provides useful additional information for the diagnosis
of code smells. More importantly, these results highlight
the need for novel detection approaches able to extract
recommendations closer to the developers’ perception
of code smells, e.g., by combining structural and textual
information.

Summary for RQ3. Textual code smells are generally
perceived as actual design problems and correctly di-
agnosed by developers. Conversely, only in a few cases
structurally detected code smells are correctly identified
even though developers perceive them as more severe.
As a consequence, structurally detected code smells tend
to be not refactored over time, as pointed out in our min-
ing study. We also noticed that while code smells affected
by textual problems are easy to identify independently
from the granularity of the code smell, structural code
smells at a higher level of granularity are more difficult
to identify.

Summary for RQ4. Both industrial developers and
quality consultants found code elements affected by
structural code smells as more difficult to understand
making the identification of the design problem and of
the corresponding refactoring operations more difficult.
This finding gives a practical explanation of the results of
the mining study in Section 3: since textual code smells
are perceived as easier to understand, developers more
likely derive accurate refactoring operations to reduce
their intensity. Therefore, we can conclude that textual

18

analysis is as useful as the more traditional structural
analysis. Moreover, tools helping developers in refactor-
ing structural code smells are particularly desirable, due
to the higher complexity of dealing with these types of
code smells.

4.3 Threats to Validity

The main threat related to the relationship between
theory and observation (construct validity) is represented
by the subjectivity of textual and structural code smell
perception. To limit this bias, we carefully selected the
participants by recruiting developers having industrial
experience as well as a quite long career in software
development. Moreover, we complemented our analysis
by involving five quality consultants having a solid
knowledge about software quality and code smells.

As for the factors potentially influencing our findings
(threats to internal validity), we ensured that participants
were not aware of the types of code smells affecting the
provided instances nor the underlying techniques used
for detection. Another threat is related to the fact that
developers performed the study using their preferred
IDE: this might have led them to browse the text and
focus the attention on the identifiers, thus biasing the
results in favor of the textual analysis. However, it is
important to note that the experimental design repro-
duces a real-case scenario, where developers have to
read code components and understand how to maintain
(and refactor) them. Thus, our results on the one hand
suggest that textual information is useful to understand
code smells, while on the other hand highlight that visu-
alization features might be required to abstract structural
information, helping developers in diagnosing and refac-
toring structural code smells. Indeed, even if some IDEs
might provide some visualization features we cannot say
whether developers performing the task remotely used
them. However, we observed that such features where
not used by the interviewed quality experts.

Finally, as for the generalizability of our results
(threats to external validity), possible threats can be re-
lated to the set of chosen objects and to the pool of the
participants in the study. Concerning the chosen objects,
we are aware that our study is based on code smell
instances detected in two Java systems only, and that
further studies are needed to confirm our results. In this
study, we had to constrain our analysis to a limited set of
code smell instances, because the task to be performed
by each respondent had to be reasonably small (to ensure
a decent response rate). As for the participants, we
involved 19 industrial developers. While a replication
of the study aimed at corroborating the results achieved
could be worthwhile, the developers involved have a
strong experience in the development. At the same time,
we complement our analyses by involving 5 quality
consultants having a solid knowledge about software
quality and code smells.

5 RELATED WORK

This section reports the literature related to (i) empirical
studies investigating the evolution of code smells as well
as their impact on non-functional attributes of the source
code, (ii) empirical studies on the developers’ perception
of code smells, and (iii) studies investigating how devel-
opers perform refactoring operations in practice.

5.1 Code Smell Evolution

Concerning the evolution of code smells, three main
studies have been proposed in literature. Tufano et
al. [102] mined the evolution history of 200 software
projects in order to investigate when and why code
smells are introduced. Their findings show that code
smells are generally introduced during the first commit
of the artifact affected by the code smell, even though
several instances are introduced after several mainte-
nance operations performed on an artifact. Moreover,
code smells are introduced because of operations aimed
at implementing new features or enhancing existing
ones, even if in some cases also refactoring can be the
cause of code smell introduction.

Chatzigeorgiou and Manakos [22] found that the num-
ber of code smells generally increase over time, and that
only few instances are removed from software projects.
Interestingly, in most cases their removal is not due to
specific refactoring operations, but is rather a side-effect
of maintenance operations [22]. Peters and Zaidman [81]
on the one hand confirmed these results, while on the
other hand they found that even if developers are some-
times aware of the presence of code smells in their code,
they often deliberately postpone refactoring activities.
Our investigation confirms that code smells generally
persist over time and that they are not often object of
specific refactoring activities. However, we found that
the textually detected code smells are more prone to be
refactored.

Vidal et al. [104] observed that the number of code
smells suggested by existing metric-based tools usually
exceed the amount of design problems that developers
can deal with. For this reason, they proposed a priori-
tization approach based on previous modifications of a
class, important modifiability scenarios for the consid-
ered system, and the relevance of the code smell type.
Our study on code smell perception confirms that not all
code smells are equally important for developers, since
structurally detected ones are more complex to diagnose
and refactor than textually detected ones.

Recently, Oizumi et al. [70] investigated whether ag-
glomerations of code anomalies can indicate evolution-
ary code smells. Key results from the study highlight
that (i) 80% of semantic agglomerations are related to
code smells, and (ii) change history information is not
always able to locate code smells because they are often
already introduced in the initial versions of systems. The
results of our study are complementary to Oizumi et al.’s

19

[70], since we demonstrated how textually detected code
smells are treated differently than structural ones.

5.2 Impact of Code Smells on Non-Functional At-
tributes of Source Code
In the first place, Abbes et al. [1] reported the results
achieved from three controlled experiments aimed at
investigating to what extent the Blob and Spaghetti Code
code smells impact on program comprehensibility. In
particular, they found that the presence of single in-
stances of these code smells does not result in a reduction
of program comprehensibility, while the co-occurrence of
the two code smells significantly impact on developers’
ability to understand the source code. These results have
been confirmed by Yamashita and Moonen [109], who
deeper analyzed the interaction of different code smells.
They observed that maintenance issues are strictly re-
lated to the presence of more code smells in the same
file. Later on, the same authors analyzed the impact
of code smells on maintainability characteristics [111],
identifying which maintainability factors are reflected
by code smells and which ones are not basing their
results on (i) expert-based maintainability assessments,
and (ii) observations and interviews with professional
developers. Yamashita et al. [110] also proposed a repli-
cated study where they investigated the co-occurrence
problem in both open and industrial systems, finding
that the relation between code smells vary depending
on the type of system taken into account. In order to
ensure a fair comparison, the user study proposed in this
paper selects code components (i.e., packages, classes, or
methods) affected by a single code smell instance.

Several previous studies tried to explain the rela-
tionship between code smells and change- and fault-
proneness. Specifically, Khomh et al. [48] presented the
results of a preliminary analysis where they found that
smelly classes are significantly more change-prone than
other classes not affected by code smells. In another
study, the authors also discovered [49] that classes af-
fected by code smells are more fault-prone than non-
smelly classes. This is especially true for some specific
code smell types, such as Message Chains [35]. The results
achieved in the paper mentioned above have been con-
firmed by Gatrell and Counsell [37], who quantified the
effect of refactoring on change- and fault-proneness of
classes. The authors monitored a commercial C# system
for one year, detecting the refactoring operations applied
during the first four months, and examining such refac-
tored classes for the second four months in order to
determine whether and to what extent the refactoring
actually produces classes having lower change- and
fault-proneness. At the same time, the authors compared
such classes with the classes of the system that were
not refactored. Their findings revealed that refactored
classes have a lower change- and fault-proneness, both
considering the time period in which the same classes
were not refactored and classes in which no refactoring
operations were applied.

Li and Shatnawi [58] obtained similar results analyz-
ing the post-release bugs of three software systems. The
findings suggest that the refactoring activities improve
the architectural quality, but also reduce the likelihood
that a class will contain a bug in the future. Olbrich et
al. [71] investigated the maintainability of two specific
code smells, i.e., God Class and Brain Class, finding that
they were generally changed less after refactoring, but
also that they contained a lower number of defects.
D’Ambros et al. [26] studied the relationship between
Feature Envy, Shotgun Surgery and the fault-proneness
of code elements, however they have not found a clear
correlation between the two phenomena. Finally, recent
findings demonstrated the usefulness of smell-related
information to improve the performances of bug predic-
tion models [79].

5.3 Developers’ Perception of Code Smells

Some previous studies analyzed the perception of code
smells from the developers’ perspective. Clearly, these
studies are related to the one proposed in this paper.
Arcoverde et al. [4] investigated how developers react
to the presence of code smells in code. Their results
indicate that code smells tend to remain in the source
code for a long time. The main reason is that developers
do not refactor the source code in order to avoid API
modifications [4]. Yamashita and Moonen [112] reported
the results of an empirical study aimed at evaluating the
code smell severity perceived by industrial developers.
They found that over 32% of the surveyed developers
do not know the concept of a code smell and that in
most cases their removal is not a priority since con-
tinuous deadlines and/or lack of adequate automatic
tools represent effective deterrents. In addition, Sjøberg
et al. [97] demonstrated that sometimes code smells do
not represent an actual problem for the maintainers, and
that class size impacts on maintainability performance
more than the presence of code smells. The results of our
study demonstrate how this observation is not entirely
true when considering textual code smells. Indeed, de-
velopers tend to better diagnose design problems char-
acterized by textually detected code smells with respect
to structurally detected ones.

Mäntylä [62] reports the results of an empirical study
conducted in the context of a Finnish software product
company, where the author observed that (i) developers
with different levels of experience rate the existence of a
code smell affecting the source code differently, and (ii)
code metrics do not fully correlate with the developers’
perception of code smells. Our findings confirm both
aspects studied by Mäntylä: on the one hand, we found
that in general software quality consultants were able
to better diagnose code smells than the other industrial
developers; on the other hand, we observed that struc-
turally detected code smells are felt harder to understand
by developers.

More recently, Palomba et al. [73] surveyed developers

20

from three open source systems with the aim of un-
derstanding how they perceive 13 different code smell
types. They observed that code smells related to com-
plex/long source code are generally considered harmful
for developers, while the perception of other code smell
types strongly depend on the “intensity” of the problem.
With respect to this paper, our empirical investigation (i)
involves code smells detected using different sources of
information, i.e., textual and structural, and (ii) analyzes
the way the developers treat code smells of different
nature during evolution.

Finally, Aniche et al. investigated whether metric val-
ues are contextual to the architecture of a system [2].
Their study indicates that metric values differ signifi-
cantly depending on the architectural context, with high
metric values in certain architectural circumstances being
found to be unproblematic. This leads to the conjecture
that thresholds for metric values used in code smell
detection should be adjusted depending on the archi-
tectural context.

5.4 Refactoring of Code Smells

In this category, there are three studies that are more
closely related to the one presented here.

Firstly, Wang et al. [106] characterized the factors that
motivate developers in performing refactoring opera-
tions, finding two main categories, i.e., intrinsic motivators
and external motivators. The former are factors mainly
related to the willingness of developers to maintain
their code cleaned (e.g., the Responsibility with Code Au-
thorship). On the other hand, the latter category refers
to motivations related to the willingness of developers
to achieve external rewards, such as Recognition from
Others, i.e., high technical ability can help the software
developers gain recognition.

Bavota et al. [10] investigated the relationship between
code quality, intended as code metric values and code
smells, and refactoring. Specifically, they analyzed the
change history of 63 releases of three open source sys-
tems. The results indicate that in most cases refactor-
ing is not performed on classes having a low metric
profile, while almost 40 % of refactoring operations are
performed on classes affected by a code smell. Unfortu-
nately, they also found that only a small percentage (i.e.,
7%) of refactorings are effective and help in removing
the code smells. In this paper, we demonstrate how
refactoring operations performed on code elements char-
acterized by textual problems are more efficient, other
than more frequent, than refactoring operations applied
on structurally detected code smells.

More recently, Silva et al. [94] surveyed Github con-
tributors of 124 software projects in order to find the
motivations behind the application of refactoring oper-
ations. The main finding is that refactoring is mainly
driven by changes in the requirements rather than by the
presence of code smells. This finding was also confirmed
in a recent study on the relationship between changes

and refactoring [78]. With the empirical study conducted
in Section 3 we complement the findings reported in
the paper by Silva et al. [94] by studying the way
developers act on code smells of different nature, finding
that refactoring code smells is more common when the
code elements are affected by textual code smells.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we conducted a systematic investigation to
analyze how developers perceive and act on code smell
instances depending on which source of information is
used for the detection, i.e., structural versus textual. To
this aim, we mined historical data from 301 releases
and 183,514 commits of the 20 open source projects in
order to monitor developers’ activities on textual and
structural code smells over time. We also conducted a
qualitative study with industrial developers and soft-
ware quality consultants to analyze how they perceive
and react to code smell instances of different nature. The
results of the study highlight four key findings:

1) Textually detected code smells are generally per-
ceived by industrial developers as actual design
problems and as dangerous as structural code
smells, even if they do not exceed any structural
metrics’ thresholds.

2) Textual and structural code smells are treated differ-
ently: the intensity of the former tends to decrease
over time, while the intensity of the latter tends to
increase.

3) Textually detected code smells are more prone to be
resolved through refactoring operations or enhance-
ment activities.

4) Textual code smells are perceived as easier to un-
derstand. As a consequence, accurate refactoring
operations can be derived more quickly.

Our findings confirm that software metrics are not
the unique source of information that developers use to
evaluate the quality of source code [20], [96], [21]. The
results achieved represent a call to arms for researchers
and practitioners to investigate the human’s perspective
for building a new generation of code smell detectors
and refactoring tools. Our future agenda includes, in-
deed, the definition of a new set of hybrid techniques
that efficiently use both sources of information to detect
code smells.

Moreover, our results shed light on an important
motivation behind the lack of refactoring activities per-
formed to remove code smells [4], [10], [94], i.e., it
seems developers are not able to practically work on
structurally detected code smells. Therefore, our results
clearly highlight the need of having techniques and tools
able to help developers in refactoring code smells charac-
terized by structural design problems, which are difficult
to understand for developers. Finally, our findings also
highlight the need of conducting controlled experiments
with developers on the perception and identification of

21

structural code smells, to understand whether the use of
IDEs including visualization facilities improves the way
developers identify and remove structural code smells.

REFERENCES
[1] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An

empirical study of the impact of two antipatterns, Blob and
Spaghetti Code, on program comprehension,” in European Con-
ference on Software Maintenance and Reengineering. IEEE, 2011,
pp. 181–190.

[2] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A.
Gerosa, “SATT: Tailoring code metric thresholds for different
software architectures,” in International Working Conference on
Source Code Analysis and Manipulation. IEEE, 2016, pp. 41–50.

[3] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Software Engineering, vol. 21,
no. 3, pp. 1143–1191, 2016.

[4] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory
survey,” in International Workshop on Refactoring Tools. ACM,
2011, pp. 33–36.

[5] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test
code quality and its relation to issue handling performance,”
IEEE Trans. Software Eng., vol. 40, no. 11, pp. 1100–1125, 2014.

[6] D. Atkinson and T. King, “Lightweight detection of program
refactorings,” in Asia-Pacific Software Engineering Conference, Dec
2005, pp. 8–18.

[7] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[8] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lu-
cia, “Methodbook: Recommending move method refactorings
via relational topic models,” IEEE Transactions on Software En-
gineering, vol. 40, no. 7, pp. 671–694, July 2014.

[9] G. Bavota, R. Oliveto, A. D. Lucia, G. Antoniol, and Y. G.
Guhneuc, “Playing with refactoring: Identifying extract class
opportunities through game theory,” in International Conference
on Software Maintenance, Sept 2010, pp. 1–5.

[10] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
“An experimental investigation on the innate relationship be-
tween quality and refactoring,” Journal of Systems and Software,
vol. 107, no. 9, pp. 1–14, Sep. 2015.

[11] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using
structural and semantic measures to improve software modular-
ization,” Empirical Software Engineering, vol. 18, no. 5, pp. 901–
932, 2013.

[12] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating
extract class refactoring: An improved method and its evalua-
tion,” Empirical Software Engineering, vol. 19, no. 6, pp. 1617–1664,
Dec. 2014.

[13] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, Recommending
Refactoring Operations in Large Software Systems. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2014, pp. 387–419.

[14] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: The aries
project,” in International Conference on Software Engineering, 2012,
pp. 1419–1422.

[15] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception
of software coupling,” in Proceedings of the International Conference
on Software Engineering. IEEE, 2013, pp. 692–701.

[16] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de Lu-
cia, “Improving software modularization via automated analysis
of latent topics and dependencies,” ACM Transactions on Software
Engineering and Methodology, vol. 23, no. 1, pp. 4:1–4:33, Feb. 2014.

[17] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and
S. Ben Chikha, “Competitive coevolutionary code-smells detec-
tion,” in Search Based Software Engineering, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, vol. 8084,
pp. 50–65.

[18] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten,
E. Lim, A. MacCormack, R. L. Nord, I. Ozkaya, R. S. Sangwan,
C. B. Seaman, K. J. Sullivan, and N. Zazworka, “Managing tech-
nical debt in software-reliant systems,” in International Workshop
on Future of Software Engineering Research. ACM, 2010, pp. 47–52.

[19] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
and T. J. Mowbray, Anti Patterns: Refactoring Software, Architec-
tures, and Projects in Crisis. John Wiley and Sons, March 1998.

[20] R. Buse and W. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546–
558, July 2010.

[21] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion
and coupling for software remodularization: Is it enough?” ACM
Transactions on Software Engineering and Methodology, vol. 25,
no. 3, pp. 24:1–24:28, Jun. 2016.

[22] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution
of bad smells in object-oriented code,” in International Conference
on Quality of Information and Communications Technology. IEEE,
2010, pp. 106–115.

[23] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley,
1998.

[24] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations. Boston: Birkhauser, 1998,
vol. 1, ch. Real rectangular matrices.

[25] W. Cunningham, “The WyCash portfolio management system,”
OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[26] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of
design flaws on software defects,” in International Conference on
Quality Software, July 2010, pp. 23–31.

[27] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of
the American Society for Information Science, vol. 41, no. 6, pp. 391–
407, 1990.

[28] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo,
“A review-based comparative study of bad smell detection
tools,” in nternational Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’16. New York, NY,
USA: ACM, 2016, pp. 18:1–18:12. [Online]. Available: http:
//doi.acm.org/10.1145/2915970.2915984

[29] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in
International Conference on Software Maintenance, 2003, pp. 23–.

[30] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“Identification and application of extract class refactorings in
object-oriented systems,” Journal of Systems and Software, vol. 85,
no. 10, pp. 2241–2260, 2012.

[31] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Antipattern and code smell false positives: Preliminary con-
ceptualization and classification,” in International Conference on
Software Analysis, Evolution, and Reengineering, vol. 1, March 2016,
pp. 609–613.

[32] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and
A. Tonello, “An experience report on using code smells detection
tools,” in International Conference on Software Testing, Verification
and Validation, March 2011, pp. 450–457.

[33] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code
smell detection: Towards a machine learning-based approach,”
in International Conference on Software Maintenance, Sept 2013, pp.
396–399.

[34] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection
of bad smells in code: An experimental assessment.” Journal
of Object Technology, vol. 11, no. 2, pp. 5: 1–38, 2012. [Online].
Available: http://dblp.uni-trier.de/db/journals/jot/jot11.html#
FontanaBZ12

[35] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[36] ——, “Refactoring catalog,” 2017. [Online]. Available: https:
//refactoring.com

[37] M. Gatrell and S. Counsell, “The effect of refactoring on change
and fault-proneness in commercial c# software,” Science of Com-
puter Programming, vol. 102, no. 0, pp. 44 – 56, 2015.

[38] M. Girvan and M. E. Newman, “Community structure in social
and biological networks.” Proc Natl Acad Sci U S A, vol. 99, no. 12,
pp. 7821–7826, June 2002.

[39] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[40] M. Hall, M. A. Khojaye, N. Walkinshaw, and P. McMinn, “Es-
tablishing the source code disruption caused by automated
remodularisation tools,” in International Conference on Software
Maintenance and Evolution, Sept 2014, pp. 466–470.

22

[41] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code
smells have a significant but small effect on faults,” ACM
Transactions on Software Engineering and Methodology, vol. 23,
no. 4, pp. 33:1–33:39, Sep. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2629648

[42] D. Hosmer and S. Lemeshow, Applied Logistic Regression (2nd
Edition). Wiley, 2000.

[43] inCode Team, “incode tool,” 2017. [Online]. Available: https:
//marketplace.eclipse.org/content/incode-helium

[44] iPlasma Team, “iplasma tool,” 2017. [Online]. Available:
http://loose.upt.ro/reengineering/research/iplasma

[45] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des Alpes et des Jura,” Bulletin del la Société Vaudoise des
Sciences Naturelles, vol. 37, pp. 547–579, 1901.

[46] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from
perfection is a better criterion than closeness to evil when
identifying risky code,” in International Conference on Automated
Software Engineering. ACM, 2010, pp. 113–122.

[47] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and
A. Ouni, “A cooperative parallel search-based software engi-
neering approach for code-smells detection,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 841–861, Sept 2014.

[48] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory
study of the impact of code smells on software change-
proneness,” in Working Conference on Reverse Engineering. IEEE,
2009, pp. 75–84.

[49] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empirical Software Engineering, vol. 17,
no. 3, pp. 243–275, 2012.

[50] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empirical Software Engineering, vol. 17,
no. 3, pp. 243–275, 2012.

[51] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A
bayesian approach for the detection of code and design smells,”
in International Conference on Quality Software. IEEE, 2009, pp.
305–314.

[52] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical
study of refactoring: Challenges and benefits at microsoft,” IEEE
Transactions on Software Engineering, vol. 40, no. 7, pp. 633–649,
Jul. 2014.

[53] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Software, vol. 29, no. 6,
pp. 18–21, 2012.

[54] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Iden-
tifying topics in source code,” Information & Software Technology,
vol. 49, no. 3, pp. 230–243, 2007.

[55] H. Kuusela and P. Paul, “A comparison of concurrent and
retrospective verbal protocol analysis,” The American Journal of
Psychology, vol. 113, no. 3, pp. 387–404, 2000.

[56] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2006.

[57] S. Letovsky, “Cognitive processes in program comprehension,”
Journal of Systems and Software, vol. 7, no. 4, pp. 325 –
339, 1987. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/016412128790032X

[58] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” Journal of Systems and Software, pp. 1120–1128,
2007.

[59] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means
clustering algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451
– 461, 2003, biometrics.

[60] E. Lim, N. Taksande, and C. B. Seaman, “A balancing act: What
software practitioners have to say about technical debt,” IEEE
Software, vol. 29, no. 6, pp. 22–27, 2012.

[61] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the
impact of bad smells using historical information,” in Interna-
tional Workshop on Principles of Software Evolution. ACM, 2007,
pp. 31–34.

[62] M. V. Mäntylä and C. Lassenius, “Subjective evaluation
of software evolvability using code smells: An empirical
study,” Empirical Software Engineering, vol. 11, no. 3, pp.
395–431, 2006. [Online]. Available: http://dx.doi.org/10.1007/
s10664-006-9002-8

[63] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of
classes,” in International Conference on Software Maintenance.
IEEE, 2005, pp. 133–142.

[64] R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM Journal of Research and Develop-
ment, vol. 56, no. 5, pp. 9:1–9:13, Sept 2012.

[65] ——, “Detection strategies: Metrics-based rules for detecting
design flaws,” in International Conference on Software Maintenance,
2004, pp. 350–359.

[66] A. V. Mayrhauser and A. M. Vans, “Program comprehension
during software maintenance and evolution,” Computer, vol. 28,
no. 8, pp. 44–55, Aug 1995.

[67] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“DECOR: A method for the specification and detection of code
and design smells,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 20–36, 2010.

[68] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On
the interplay between software testing and evolution and its
effect on program comprehension,” in Software Evolution, T. Mens
and S. Demeyer, Eds. Springer, 2008, pp. 173–202.

[69] M. J. Munro, “Product metrics for automatic identification of
“bad smell” design problems in java source-code,” in Interna-
tional Software Metrics Symposium. IEEE, 2005, p. 15.

[70] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, and
Y. Zhao, “Code anomalies flock together: Exploring code
anomaly agglomerations for locating design problems,” in
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 440–451. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884868

[71] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The
evolution and impact of code smells: A case study of two open
source systems,” in International Symposium on Empirical Software
Engineering and Measurement, 2009, pp. 390–400.

[72] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Nu-
merical signatures of antipatterns: An approach based on B-
splines,” in European Conference on Software Maintenance and
Reengineering. IEEE, 2010, pp. 248–251.

[73] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,
“Do they really smell bad? a study on developers’ perception of
bad code smells,” in International Conference on Software Mainte-
nance and Evolution. IEEE, 2014, pp. 101–110.

[74] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “Mining version histories for detecting code
smells,” IEEE Transactions on Software Engineering, vol. 41, no. 5,
pp. 462–489, May 2015.

[75] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaid-
man, “A textual-based technique for smell detection,” in Interna-
tional Conference on Program Comprehension, May 2016, pp. 1–10.

[76] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De
Lucia, “Online appendix: An extensive comparison between
textual and structural smells,” https://doi.org/10.6084/m9.
figshare.3102244.

[77] F. Palomba and A. Zaidman, “Does refactoring of test smells
induce fixing flaky tests?” in Proceedings of the International
Conference on Software Maintenance (ICSME). IEEE, 2017, pp.
xxx–xxx.

[78] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, “An
exploratory study on the relationship between changes and
refactoring,” in International Conference on Program Comprehension.
IEEE, 2017, pp. 176–185.

[79] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and
R. Oliveto, “Smells like teen spirit: Improving bug prediction
performance using the intensity of code smells,” in International
Conference on Software Maintenance and Evolution. IEEE, 2016,
pp. 244–255.

[80] D. Pelleg and A. W. Moore, “X-means: Extending k-means with
efficient estimation of the number of clusters,” in International
Conference on Machine Learning. Morgan Kaufmann, 2000, pp.
727–734.

[81] R. Peters and A. Zaidman, “Evaluating the lifespan of code
smells using software repository mining,” in European Conference
on Software Maintenance and Reengineering. IEEE, 2012, pp. 411–
416.

[82] B. Pietrzak and B. Walter, “Exploring bad code smells dependen-
cies,” in International Conference on Software Engineering: Evolution
and Emerging Technologies. Amsterdam, The Netherlands, The

23

Netherlands: IOS Press, 2005, pp. 353–364. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1565142.1565180

[83] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[84] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in European
Conference on Software Maintenance and Reengineering. IEEE, 2004,
pp. 223–232.

[85] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley,
1996.

[86] D. L. Sackett, “Dl: Bias in analytic research,” J Chron Dis, pp.
32–51, 1979.

[87] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell
detection as a bilevel problem,” ACM Transactions on Software
Engineering and Methodology, vol. 24, no. 1, pp. 6:1–6:44, Oct. 2014.

[88] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente, “Recom-
mending move method refactorings using dependency sets,” in
Working Conference on Reverse Engineering, Oct 2013, pp. 232–241.

[89] B. H. Sellers, L. L. Constantine, and I. M. Graham, “Coupling
and cohesion (towards a valid metrics suite for object-oriented
analysis and design).” Object Oriented Systems, vol. 3, pp. 143–
158, 1996.

[90] M. Shaw, “Larger scale systems require higher-level abstrac-
tions,” Software Engineering Notes, vol. 14, no. 3, pp. 143–146,
Apr. 1989.

[91] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[92] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, Per-
spectives on the Future of Software Engineering. Springer, 2013, ch.
Technical Debt: Showing the Way for Better Transfer of Empirical
Results, pp. 179–190.

[93] D. Silva, R. Terra, and M. T. Valente, “Recommending automated
extract method refactorings,” in International Conference on
Program Comprehension, ser. ICPC 2014. New York, NY,
USA: ACM, 2014, pp. 146–156. [Online]. Available: http:
//doi.acm.org/10.1145/2597008.2597141

[94] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor?
confessions of github contributors,” in International Symposium
on the Foundations of Software Engineering. ACM, 2016, pp. 858–
870.

[95] F. Simon, F. Steinbr, and C. Lewerentz, “Metrics based refactor-
ing,” in European Conference on Software Maintenance and Reengi-
neering. IEEE, 2001, pp. 30–38.

[96] C. Simons, J. Singer, and D. R. White, “Search-based refac-
toring: Metrics are not enough,” in International Symposium on
Search-Based Software Engineering, M. Barros and Y. Labiche, Eds.
Springer, 2015, pp. 47–61.

[97] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance
effort,” IEEE Transactions on Software Engineering, vol. 39, no. 8,
pp. 1144–1156, 2013.

[98] D. Sjoberg, A. Yamashita, B. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,”

Software Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1144–
1156, Aug 2013.

[99] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting
defects in object-oriented designs: using reading techniques to
increase software quality,” in Object-Oriented Programming, Sys-
tems, Languages, and Applications. ACM, 1999, pp. 47–56.

[100] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[101] ——, “Identification of extract method refactoring opportunities
for the decomposition of methods,” Journal of Systems and Soft-
ware, vol. 84, no. 10, pp. 1757–1782, Oct. 2011.

[102] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code
starts to smell bad,” in International Conference on Software Engi-
neering. IEEE, 2015, pp. 403–414.

[103] E. van Emden and L. Moonen, “Java quality assurance by de-
tecting code smells,” in Working Conference on Reverse Engineering.
IEEE, 2002.

[104] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to
prioritize code smells for refactoring,” Journal of Automated Soft-
ware Engineering, vol. 23, no. 3, pp. 501–532, Sep. 2016. [Online].
Available: http://dx.doi.org/10.1007/s10515-014-0175-x

[105] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic seg-
mentation of method code into meaningful blocks to improve
readability,” in Working Conference on Reverse Engineering. IEEE,
2011, pp. 35–44.

[106] Y. Wang, “What motivate software engineers to refactor source
code? evidences from professional developers,” in International
Conference on Software Maintenance, 2009, pp. 413 –416.

[107] B. F. Webster, Pitfalls of Object Oriented Development. M & T
Books, February 1995.

[108] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: recovering
links between bugs and changes,” in Symposium on the Founda-
tions of Software Engineering. ACM, 2011, pp. 15–25.

[109] A. Yamashita and L. Moonen, “Exploring the impact of inter-
smell relations on software maintainability: An empirical study,”
in International Conference on Software Engineering. IEEE, 2013,
pp. 682–691.

[110] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter,
“Inter-smell relations in industrial and open source systems:
A replication and comparative analysis,” in International
Conference on Software Maintenance and Evolution, ser. ICSME
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp.
121–130. [Online]. Available: http://dx.doi.org/10.1109/ICSM.
2015.7332458

[111] A. F. Yamashita and L. Moonen, “Do code smells reflect im-
portant maintainability aspects?” in International Conference on
Software Maintenance. IEEE, 2012, pp. 306–315.

[112] ——, “Do developers care about code smells? an exploratory
survey,” in Working Conference on Reverse Engineering. IEEE,
2013, pp. 242–251.

24

