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NOMENCLATURE

ATECs Adipose Tissue Endothelial Cells - Endothelial cells derived from fat tissue, mostly from adipose hu-
man subjects.

bFGF basic Fibroblast Growth Factor - An angiogenic growth factor secreted by fibroblasts.

BM Basement Membrane or Boundary Membrane. A fibrous structure underneath ECs consisting laminin
and type IV collagen

CPM Cellular Potts model

DLL4 Delta-like ligand 4

DTECs Dermal Tissue Endothelial Cells - ECs derived from the dermis.

ECF Extracellular Fluid

ECM Extracellular Matrix - The mixture of proteins, growth-factors and carbohydrates surrounding cells in
vivo

ECs Endothelial Cells

FEM Finite Element Method

MDGFs Macrophage Derived Growth Factors

MMP Matrix metalloproteinases - A group of proteases degrading the basement membrane

PDE Partial Differential Equation

PDF Probability Density Function

SDCBM Substrate Dependent Cell-Based Model

TNF-α Tumor Necrosis Factor alpha - A cytokine secreted by a variety of cells.

TST Tissue Simulation Toolbox

uPA urokinase-type Plasminogen Activator - Protease degrading fibrin.

VE-cadherin Vascular Endothelial Cadherin

VEGF Vascular Endothelial Growth Factor

VU Vrije Universiteit
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1
INTRODUCTION

Angiogenesis1 is the biological mechanism by which new blood vessels sprout from existing ones. It differs
from vasculogenesis, which is the de novo growth of the primary vascular network from initially dispersed
endothelial cells (ECs). Vasculogenesis is predominant in embryonic tissue whilst new vasculature in the
adult body arises mostly from angiogenesis. ECs, lining the inside of blood vessels, react to different angio-
genic stimuli and inhibitors. Among the stimuli is the vascular endothelial growth factor (VEGF) which is
up-regulated in tissue where the vascular structure is damaged or insufficiently developed to meet oxygen
demand.

The identification of the processes involved in angiogenesis is quite recent and has stirred increased inter-
est in therapeutic and clinical applications according to Carmeliet et al. [1]. One can think of tissue repair
in wound beds, inhibition of growth of tumorous tissue or vascular reform during the female reproductive
cycle. Rossiter et al. [2] showed that VEGF induced angiogenesis is crucial for wound healing in an experi-
ment where wounds were inflicted upon normal and VEGF-deficient mice. New vasculature ensures supply
of oxygen and lymphocytes and disposal of carbon dioxide and lactates, accelerating wound healing and tis-
sue reconstruction. The increased creation of new vasculature around tumorous tissue is believed to follow
the same process and inhibiting angiogenesis is therefore an important topic in clinical studies on cancer
treatment.

Biochemical laboratory experiments can be hard, time consuming, expensive or unethical. Computational
models can be used to provide an easy, quick and cheap way to get insights that would otherwise require
laboratory experiments. The understanding of biological processes needs quantification and in this sense
mathematical formulation of the relations involved becomes useful. Their mathematical interpretation and
experimental verification is an iterative process resulting in better understanding of the process itself. Com-
puter simulation will never make laboratory experiments obsolete, but it can provide guidance in targeting
viable hypotheses before conducting in vitro or in vivo experiments.

Mathematical modeling of biological cellular processes dates back to the simulation by Glazier and Graner in
1992. They describe natural sorting behavior of different cell types [3] and different re-arrangement patterns
driven by the differential adhesion hypothesis [4]. This hypothesis states that cells of different types have
specific potential energies upon adhesion, driving sorting behavior. In these simulations, the cellular Potts
model2 (CPM) is used. A CPM for vasculogenesis based on this work was made by Merks et al. [5, 6] in which
a layer of partial differential equations (PDEs) models the chemoattractants. Later, Merks added Vascular
Endothelial cadherin (VE-cadherin) caused contact-inhibited chemotaxis to simulate angiogenic-like sprout
formation [7]. From an initial clump of ECs in the model sprouting behavior appears. Merks postulates that
both vasculogenesis and angiogenesis must be driven by the same principles. To produce these results, a
generic library called the Tissue Simulation Toolkit (TST) was written in C++ starting from 2004 modeling the
CPM described by Glazier et al. [4] in a generic way. Merks [7] extensively describes the advantages of a cell

1We present a useful glossary of biochemical terms for the mathematical reader in Appendix A.
2Also sometimes referred to as the large-Q Potts model or Glazier-Graner-Hogeweg model.
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2 1. INTRODUCTION

based approach over a continuum approach that is widely used in mathematical biology. Although his CPM
is a nice method that increases insight in the angiogenic process, it is computationally heavy, limiting the
scalability of the tractable problem domain.

Vermolen and Gefen [8] described tissue behavior using a semi-stochastic cell-based formalism to model the
migration of cells in colonies in the context of wound healing, tumor growth, bone ingrowth and contraction
formation. Movement of cells is assumed to be the result of a strain energy density working as a mechanical
stimulus. Like the CPM, the model tracks displacement and viability of individual cells.

The aim of this study is to adapt this semi-stochastic cell-based formalism to describe angiogenesis, hence
connecting this modeling approach to the subject of Merks’ work. The need for such a model is clearly stated
in the discussion of Vermolen’s work [9]. Thanks to the computational less heavy character in comparison
with the CPM, we hope to be able to simulate larger areas to get a better glance at large scale behavior whilst
still being able to benefit from the cell-based character of the model. We also improve the biochemical model
for the degrading of the substrate by the cells and formulate all relevant parameters based on local proper-
ties. The challenge is to translate the advantages of Merks’ CPM, like cell shape specific behavior, tracking of
elongation patterns and cell-cell contact behavior, to this new formalism without compromising the compu-
tational simplicity.

To verify our simulation results with biochemical experiments, this study is performed in collaboration with
the Dermatology Department of the VU Medical Center. This department does in vitro laboratory research
on many processes that occur in the skin, for example the role of endothelial cells during skin wound healing.
The first aim of this research is to mimic their in vitro angiogenesis sprouting assay using our computational
model, simulating the response to different chemical stimuli like VEGF. Formulating a way to visually and
numerically compare the laboratory work to the simulated results is key to making the model applicable in
practice.

In Chapter 2.1, we explain the biochemical background of angiogenesis, we describe the in vitro sprouting
assay as performed by the VU Medical Center and we give an overview of the processes involved in cell mi-
gration. Chapter 3 is devoted to an overview of existing models for angiogenesis and cell colonies. In Chapter
4, a new model for angiogenesis is formulated, the results of which are discussed in Chapter 5. We formulate
conclusions to this study in Chapter 6.

The appendices to this thesis are used to elaborate on subjects and mathematical formulations. In Appendix
A we give an overview of all biochemical processes, physiological definitions and chemical substances useful
as a reference tool for readers without a biochemical background. Appendix B describes a CPM implemen-
tation we developed during the literature study. In Appendix C, we formulate the complete derivation of the
Galerkin equations to our system of PDEs and formulate the mass matrices of our Finite Element Method
(FEM). Appendix D gives the details of the time stepping scheme used for the cell movement. Numerical con-
siderations like dealing with spurious oscillations, meshing and the time stepping scheme for the chemicals
are formulated in Appendix E. We conclude with an overview of the different options in our computational
model and explain the different methods of visualization in Appendix F.



2
ANGIOGENESIS

2.1. IN VIVO ANGIOGENESIS
Sprouting angiogenesis is the formation of new blood vessels from existing ones, usually towards hypoxic tis-
sue to meet oxygen demand. In sprouting angiogenesis new micro-vascular structures “sprout” from existing
blood vessels. Angiogenesis is present in tissue remodeling after trauma and around tumorous tissue. The
present vasculature in these settings is damaged or underdeveloped to meet the oxygen demand. The process
can be roughly divided in five phases depicted in Figure 2.1. First, angiogenic growth factors, like VEGF, are
secreted by oxygen deprived cells. ECs in existing vessels get activated to form new vasculature and a selected
number of ECs differentiate to tip cells which lead the sprouts. The tip cells release proteases, among others
matrix metalloproteinases (MMP) degrading the basement membrane (BM) underneath the endothelium.
For a detailed description of the interactions between ECs and the different components of the BM we refer
the reader to the work by Form et al. in [10]. The selection process of tip cells is mediated through a combina-
tion of stimulation by VEGF and inhibition by Delta-like ligand 4 (DLL4), a protease secreted by the tip cells
themselves. The ECs than migrate into the surroundings, forming sprouts by degrading the extracellular ma-
trix (ECM) by proteases like the urokinase-type plasminogen activator (uPA) . In the morphogenesis phase,
by the lack of VEGF, the sprouting stabilizes and new boundary membrane is formed around the formed
vasculature. Sprouting occurs at a rate of several millimeters per day.

Figure 2.1: Phases of sprouting angiogenesis. (taken from Marti et al. [11])

In intussusceptive angiogenesis, also splitting angiogenesis, ECs in an existing vessel connect to form two
lumen, splitting an existing vessel into two vessels. This type of angiogenesis is not considered in this study.

3



4 2. ANGIOGENESIS

2.2. SETUP OF THE IN VITRO SPROUTING ASSAY
The dermatology department of the VU University Amsterdam Medical Center carries out several in vitro
assays using either Adipose Tissue Endothelial Cells (ATECs) or Dermal Tissue Endothelial Cells (DTECs) on
different substrates like fibrin. In this study, our particularly focus is on the sprouting assay on fibrin gel
which is carried out in a standard 96 well plate depicted in Figure 2.2. In this assay, angiogenic responses to
two different angiogenic growth factors VEGF and basic Fibroblast Growth Factor (bFGF) are measured for
different concentrations.

Figure 2.2: Standard 96 well plate. Wells are cylindrical with a diameter of 7 mm and a total volume of around 300 µL.

On the first day, a vF = 100µL fibrin gel (3 mg
mL fibrinogen with 0.5 µg

mL thrombine IIa) is placed in a total of 39
wells on top of which a 100 µL solution is poured containing around N = 20.000 ECs. The total volume in the
well then is v = 200µL. Experimental observations show that ECs have a typical diameter of around 45µm,
and hence a radius of R = 22.5µm. ECs are ellipsoidal being twice as long as wide. The ECs sink and adhere
to the fibrin matrix, thus forming a confluent mono layer covering the surface of the fibrin almost completely
as depicted in the microscopic images in Figure 2.3.

On the second day, different concentrations are added, with the exception of three control wells. The rest of
the wells get a 2 ng

mL Tumor Necrosis Factor alpha (TNF-α) solution, a cytokine that activates the ECs. Further-

more, concentrations of 25,10,3.3,1.1,0.3 and 0.1 ng
mL of either VEGF or bFGF are added. Since the recombi-

nant bFGF used is a stronger angiogenic growth factor than VEGF for this assay, the 25 ng
mL bFGF concentration

is omitted since the entire matrix would degrade so fast that individual sprouts can no longer be observed.
All different concentrations are replicated in threefold to compare the results and the well numbers are used
to label the microscopic images. We summarize the different concentrations in Table 2.1.

2 3 4 5 6 7 8 9
B Control T VT 0.1 VT 0.3 VT 1.1 VT 3.3 VT 10 VT 25
C Control T VT 0.1 VT 0.3 VT 1.1 VT 3.3 VT 10 VT 25
D Control T VT 0.1 VT 0.3 VT 1.1 VT 3.3 VT 10 VT 25
E BT 0.1 BT 0.3 BT 1.1 BT 3.3 BT 10
F BT 0.1 BT 0.3 BT 1.1 BT 3.3 BT 10
G BT 0.1 BT 0.3 BT 1.1 BT 3.3 BT 10

Table 2.1: Control wells have nothing added to them. All wells with a “T” have a 2
ng
mL TNF-α solution added. Wells with a “V” have

VEGF added to them in the given concentrations. Wells with a “B” have bFGF added to them in the given concentrations.

Depending on the donor specific cell motility1, the substrates are fixated 48 to 72 hours after stimulation. The
sprouting into the fibrin gel is observed using microscopic images like those in Figure 2.4. The images have
names coinciding with the well number. In this Figure, we see well “9d”. The monolayer is roughly undam-
aged, except for a couple of circular-like structures with dark edges. These dark edges form the premises of
the newly formed sprouts and are most likely the effect the fibrous layer underneath the monolayer bending
out of the focal reach of the microscope.

1We will call the specific motility βi in subsequent chapters.



2.3. DRIVING FORCES ON CELLS IN SPROUTING ANGIOGENESIS 5

Figure 2.3: Dermal ECs in control well “2d”. No sprouting can be seen.

In Figure 2.5, we zoom in on one of the sprouts. Inside the sprout, the fibrin matrix is degraded and this shows
up slightly lighter on the microscopic image. We can see that no ECs show up in the image inside the sprout.
This is due to the fact that the sprouts move into the matrix and get out of focus in the microscopic image.
The amount of sprouting in an assay is quantified using image processing software. The darker edges of the
sprouts are colored and the cumulative area of the colored regions is calculated as a percentage of the total
area of the image. When arriving at our results in Chapter 5, we will calculate this percentage over time and
call it P (t ).

Although it can not be seen in these microscopic pictures, we know that sprouts are, as a rule of thumb, twice
as deep as their diameter at the top of the fibrin matrix. One can conclude this by varying the focal depth of
the microscope. Sprouts usually are in downwards direction, but slightly bending sprouts are also observed.

2.3. DRIVING FORCES ON CELLS IN SPROUTING ANGIOGENESIS
The motility of cells on the fibrin scaffold is subject to many mechanical and chemical factors. We identify
several factors driving the movement of cells on the fibrin matrix. The mathematical formulation of these
principles is covered in Chapter 4. For detailed cell biological descriptions of the hereafter listed phenomena,
we refer the reader to the extensive work on cell movements by Bray [12].

2.3.1. CHEMOTAXIS

Gamba [13] and Serini [14] describe chemotaxis as the movement of cells in response to a chemical stimulus.
One speaks of positive (negative) chemotaxis if the movement is in the (opposite) direction of the gradi-
ent and the chemical is called a chemoattractant (chemorepellent). Chemoattractants can be, following the
Keller-Segel model formulated by Horstman [15], secreted by the cells themselves, leading to the formation of
isolated clusters of cells. The chemotactic process takes place thanks to pseudopodia on the cell membranes



6 2. ANGIOGENESIS

Figure 2.4: Dermal ECs in well “9d” after stimulation with 25ng /ml VEGF and 2 ng /ml TNF-α. The circular structures form the
boundaries of newly formed sprouts.

that are formed on the sides of the cell in high concentrations of the chemoattractant and “reach” towards
higher concentrations, pulling the cell in the desired direction. Inflammatory mediators such as TNF-α may
increase the motility of cells.

2.3.2. CELL-CELL FORCES
Cells can adhere to each other by physically attaching their cell membranes using surface proteins like cad-
herins. ECs adhere to each other using Vascular Endothelial cadherin (VE-cadherin) bonds. VE-cadherin at
the same time works as in inhibitor of chemotactic movement caused by VEGF by binding to the same recep-
tor used in the chemotaxis signaling pathway. Merks describes this contact inhibition in his CPM in [16].

ECs have a certain optimal elliptical shape induced by their cytoskeleton and will try to elastically return to
this shape upon deformation. The magnitude of these forces is proportional to the elasticity of the cell and
the severity of the deformation. We will denote this effect by contact mechanics in further chapters.

2.3.3. CELL-MATRIX FORCES
Trans-membrane integrin proteins on the cell membrane adhere to fibrous scaffolds such as fibrin or col-
lagen and exert contractile forces causing cell-matrix adhesion. Since these forces are caused by physical
attachment to the fibrin scaffold, the net force will be in the direction of the fibrin gradient. However, high
density fibrin scaffolds may be too stiff to move into.

The same cell-matrix adhesive forces cause strain in the elastic fibrin scaffold which on its turn is sensed by
other cells adhering to the matrix and they get pulled along the stress lines. This effect is called haptotaxis
or mechanotaxis and as of 1995, mathematical models have been proposes by Vernon [17], Namy [18] and
Manoussaki [19, 20].
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Figure 2.5: Dermal ECs in well “9d” after stimulation with 25ng /ml VEGF and 2 ng /ml TNF-α. The circular structures form the
boundaries of newly formed sprouts.

Reinhart-King et al. [21] conducted a series of experiments considering the interplay between cell-cell adhe-
sion and haptotactic forces for endothelial cells. They conclude that matrix stiffness is an important factor
for the cell motility and the ability to mechanically communicate through the substrate.

2.3.4. GRAVITY
Cells do usually have a higher density than the fluid they are initially dissolved in according to Urbanchek et
al. [22]. This lets gravity act a downwards directed force upon the cells causing them to “sink” onto the fibrin
scaffold. We must note that gravity in the field of cellular biology is not dominant over the adhesive forces.
A sprouting assay where a clump of ECs is embedded inside a fibrin scaffold will show sprouting behavior
in all directions. However, in the sprouting assay setup used at the VU medical center, gravity together with
contact mechanics form a reasonable explanation for the formation of the initial confluent mono-layer.





3
EXISTING MODELS FOR ANGIOGENESIS

In this chapter, we explore the different methods of modeling angiogenesis mathematically. We distinguish
between CPMs, continuum models and sem-stochastic cell-based models and compare them. It is impor-
tant to note that all models use PDEs to model the diffusion, reaction and production of chemoattractants
and other substances. We therefore choose not to go into detail considering these PDE layers.

The distinction lies in the way the models describe cell motility and behavior. The CPM models individual
cells as collections of lattice sites that can behave separately, the semi-stochastic cell-based model proposes
that individual cells are spherical and continuum models describes cell as densities over a domain and there-
fore do not track movement of individual cells.

3.1. THE CELLULAR POTTS MODEL
The CPM for simulation of biological cells was first used by Glazier and Graner in 1992 [3] in a 2 dimensional
setting. It is a lattice-based computational model derived from cellular-automaton models having stochas-
tic evolvement. These models were firstly developed for various branches in theoretical and computational
physics. The computational domain consists of a square lattice of nx ×my sites, denoting the lattice sites by
(n,m) for n = 1, . . . ,nx and m = 1, . . . ,my . The model assigns a cell ID σ= 1, . . . , i , . . . , j , . . . , N (formerly “spin”)
to each lattice site~x = (n,m). Lattice sites having the same ID together form one biological cell, hence creat-
ing a total of n cells. The model evolves by updating the lattice-sites one at a time according to probabilistic
rules and a Hamiltonian function H(n,m,σ), assigning an effective energy to each lattice-site (n,m) for every
cell ID σ.

At each time step, a lattice site (n,m) is picked randomly and its cell ID i is changed to j whenever the effec-
tive energy gain ∆H =H(n,m, j )−H(n,m, i ) is negative (i.e. more energy efficient) and it is changed with a
probability whenever the gain is positive, i.e.

P(∆H) =
{

1 if∆H< 0,

e
−∆H

kT if∆H≥ 0.
(3.1)

Here, T is the temperature and k is a parameter governing the likelihood of energy inefficient changes. Cell
ID changes are only allowed to cell IDs of the adjacent lattice sites.

The Hamiltonian plays a central role in the proliferation of the cells. Glazier and Graner [3] implemented a
Hamiltonian incorporating cell-cell adhesion, elasticity based on an area and length constraint and chemo-
taxis. Connections between neighboring lattice sites~x and~x ′ of unlike spinσ(~x) 6=σ(~x ′) represent membrane
bonds, where the bond energy is J~x,~x′ . Cells are given a target area At ar g et (σ) and length Lt ar g et (σ) and are
given penalties for large deviations. A concentration c(~x) of chemoattractant is modeled over the problem
domain. Chemotaxis is added using the difference in concentration between neighboring lattice sites. Alto-
gether Merks derives the following Hamiltonian in [5–7]:

9
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H=Hcont act +Hshape +Hchemot axi s

= ∑
~x,~x′

Jσ(~x),σ(~x′)
(
1−δσ(~x),σ(~x′)

)
+∑

σ
λar ea(σ)[A(σ)− At ar g et (σ)]2 +λl eng th(σ)[L(σ)−Lt ar g et (σ)]2

+ λchemot axi s [c(~x ′)− c(~x)].

The λ’s are scaling parameters to give weights to the different effects and Merks finds values based on simu-
lation observation. The chemicals in their model follows a diffusion, reaction, sourcing PDE given by

∂c

∂t
=αδσ(~x),0 − (1−δσ(~x),0)εc +∇2c,

assuming that there is no decay within a cell. Here, δσ(~x),0 is 1 inside cells and 0 outside and α and ε are
sourcing and reaction constants. The PDE is solved by a finite difference scheme on a lattice coinciding with
the CPM lattice.

Although not necessarily shaped like this, CPMs mostly have a fixed square lattice. This can lead to coarse cell
shapes, especially for cells containing few lattice sites. The recursive lattice updates can be computationally
heavy. In older applications, the sequential modified Metropolis algorithm described by Chen [23] is used.
In 2007 Chen et al. introduced a parallel algorithm using checkerboard subgrids to speed up computations.
This allows for simulations with up to 107 lattice sites on cluster computers.

Merks claims that the CPM is more useful in describing cell phenomenology like shape, elongation and cell-
cell contact interaction in comparison with continuum models. Furthermore he claims the model to be ad-
vantageous in describing how collections of cells, exhibiting a certain phenomenology, interact during bio-
logical morphogenesis [5]. The TST was used to study the effects of cell elongation on vasculogenesis [6] and
Merks conclude that cell shape and cell-cell contact interaction are of crucial importance in the process of
angiogenesis.

3.2. CONTINUUM MODELS
There is a large number of continuum models consisting of systems of PDE’s. Alarcon and Chaplain [24] give
an excellent overview of continuum models up to the year 2005 for tumor induced angiogenesis as well as a
list of advantages and disadvantages of these models. Many early models, like those proposed by Gaffney [25]
or Anderson [26] are based on phenomenological arguments or design principles to describe the angiogenic
process. Anderson [26] came up with a continuum-discrete model including fibronectin induced haptotaxis
as a governing factor. As the research into different angiogenic growth factors progressed, models following a
more biochemical reasoning appeared like those by Orme [27], Levine [28] and Vermolen [29]. Schugart et al.
[30] and Xue et al. [31] both propose elaborate models incorporating multiple cell types (ECs, fibroblasts, tip
ECs and inflammatory cells) and different substances (oxygen, VEGF and ECM) in one coupled continuum
system to describe oxidative stress and angiogenesis in wound healing. An elaborate continuum model on
wound closure incorporating contraction and angiogenesis is proposed by Vermolen and Javierre [32]. We
believe that these models provide the most recent developments in continuum modeling of angiogenesis.

In both types of models, cells are modeled as densities or concentrations over the computational domain.
To illustrate this, we briefly consider the model by Gaffney [25] who models concentrations of tip cells n and
stalk cells b incorporating behavior like capillary sprouting, branching, tips joining each other (anastomosis)
and tips joining other sprouts. The coupled system derived from a conservation relation is given by

∂n
∂t =− ∂J (n)

d x + f (n,b),
∂b
∂t =−λ5

∂J (n)
d x + g (n,b).

In this coupled system they set the tip cells’ flux to

J (n) =−D1
∂n

∂x
−D2n

∂b

∂x
,
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the tip cells’ kinetics to

f (n,b) =λ2n −λ3n2 −λ4nb,

and the EC’s kinetics to

g (n,b) =λ2νb(b0 −b)+λ6χnb(b1 −b)+λ5(λ3n2 +λ4nb).

The model replaces both the haptotactic and the chemotactic movement we saw in previous models by a
movement in the direction of decreasing blood vessel density. The parameter λ2 governs tip branching, λ3

governs the joining of tips to create a circuit and λ4 governs tips joining the side of a capillary. The parameter
λ5 ensures the proportionality between the flux of the tips and the flux of the ECs and is given by the average
number of ECs in a capillary sprout. Gaffney uses dimensionless scaling and stationary point analysis to find
the dynamics of the system. The parameters are estimated using experimental results. Finally, boundary con-
ditions and initial conditions are formulated and an analytical solution is found using perturbation theory.

Maggelakis [33] proposed a widely used continuum model for angiogenesis in a circular wound bed of ra-
dius R, in which capillary tips modeled by a density n act as the main source of the oxygen concentration cO .
Oxygen diffuses with a rate DO , sources from the capillaries at a rate λn and is consumed by macrophages at
a rate λO from some critical oxygen level cθ at which macrophages become active at the wound site. The
macrophages release chemoattractants called Macrophage Derived Growth Factors (MDGFs) denoted by
concentration cm . The MDGFs diffuse at a rate Dm , are produced at a rate λm , react within the capillary
tips at a rate λc and degrade naturally at a rate λ. High concentrations of MDGFs trigger capillary logistic
growth up to a certain maximal vascular density L. The system of PDEs describing this process is given by

∂cO

∂t
= DO∇2cO +λnn −λO

cO

cθ
,

∂cm

∂t
=

{
Dm∇2cm −λcm +λm

(
1− cO

cθ

)
+ , for 0 ≤ r ≤ R,

Dm∇2cm −λcm −λc
cm

cmax
, for R < r ≤ Rmax.

∂n

∂t
=µcmn

[
1− n

L

]
.

Note that the secretion of the MDGFs only takes place inside of the wound bed due to the presence of
macrophages.

3.3. SEMI-STOCHASTIC CELL-BASED MODEL
Vermolen and Gefen [8] formulated a semi-stochastic cell-based formalism for migration of cells in colonies.
In their work on a simulated substrate Ω ⊂ R2, a set of N hemispherical cells is modeled. The choice for
(hemi)spherical cells is to speed up the analysis since cells do not have an orientation. For an overview of
possibilities to include cell shape changes induced by chemotaxis or mechanical influences, we refer the
reader to Vermolen and Gefen [34]. They model four different types of cell motility: haptotaxis, prolifera-
tion, random movement and elastic contact movement. Chemotaxis is not yet implemented in this model in
published work. We consider these effects separately.

3.3.1. HAPTOTAXIS

The haptotactic response of cells to strain in the matrix is caused by the effect of traction forces of the cells
themselves. We first encounter this concept in a continuum model by Manoussaki in 1996 [19] and 2003 in
[20]. By this traction force, the substrate is distorted around the cell. This distortion is felt by other cells,
which distort the substrate as well by applying their own upward pulling forces. If we denote the elasticity
modulus or Young’s modulus of the substrate by Es and the strain by ε, we have the strain energy M = 1

2 Esε
2,

i.e. the energy stored in a medium undergoing the deformation caused by the strain. Individual cells sense the
distortion field through the strain energy density and then move along the stress lines. Vermolen and Gefen
in [8] state that the strain energy density caused by an individual cell i , following Hooke’s law, is maximal at
the cell center ri , as if the cell acts a point force upon the matrix in its center, i.e.
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M 0
i = F 2

i

2π2Es (ri )R4 , (3.2)

where Fi is the maximal traction force of cell i , Es (ri ) is the local elasticity modulus of the substrate and R
is the cell radius. Furthermore they approximate, according to the findings by Merkel in [35], that the strain
energy density decays exponentially with the radius with a rate proportional to λi , the ratio of the elasticity
modulus of the substrate and the elasticity modulus Ec of the cell itself, i.e.

Mi (r) = M 0
i exp

(
−λi

‖r− ri‖
R

)
= M 0

i exp

(
−Es (ri )

Ec

‖r− ri‖
R

)
. (3.3)

They then argue that the total strain energy density is the sum of the strain energies of the individual cells and
determine the total strain energy density at a cell center ri to be

M(ri ) = M 0
i +

N∑
j=1 j 6=i

M 0
j exp

(
−Es (r j )

Ec

‖ri − r j ‖
R

)
.

Now consider the displacement of a cell by means of the sensed mechanical stimulus. The displacement of
cell i caused by cell j is proportional to the strain energy density caused by cell j at cell center ri , i.e. M j (ri )

and in the direction of the line segment connecting cells i to j , i.e. vi j = ri−r j

‖ri−r j ‖ . Vermolen and Gefen [8]

argue that the total displacement of cell i is parallel to the sum of the directional displacements zi caused by
all other cells, i.e.

zi =
N∑

j=1 j 6=i

M j (ri )vi j =
N∑

j=1 j 6=i

M 0
j exp

(
−Es (r j )

Ec

‖ri − r j ‖
R

)
ri − r j

‖ri − r j ‖
.

One can normalize the direction of the total displacement ẑi = zi
‖zi ‖ . The displacement over time is propor-

tional to the strength of the mechanical signal leading to

ri (t +∆t )− ri (t )

∆t
=αi M(ri (t ))ẑi ,

ri (t +∆t ) = ri (t )+∆tαi M(ri (t ))ẑi ,

whereαi is a parameter with dimension
[

m3

N s

]
in which the force is directed along the substrate, perpendicular

to the upward force Fi . Finally, Gefen [36] argues that this quantity for viable cells equals

αi = βi R3

µFi
,

where βi quantifies the motility of the cell surface of a cell and µ it the cell friction coefficient quantifying the
amount of friction that the cell experiences from the matrix. The latter variable is a dimensionless quantity
experimentally tested to be 0.2 according to Gefen [36]. Especially for cells far away from each other, the
strain energy M j (ri ) can attain very small values, nullifying the contribution to zi . This advocates a detection
threshold for the strain energy density as a minimal signal strength that a cell can detect to reduce computa-
tional complexity. For details we refer to Vermolen’s work [8] and the work by Reinhardt-King et al. [37].

In an additional paper, Vermolen and Gefen [38] add inertia to the movement of the cells and a slowing pa-
rameter depending on the lactate concentration in infected wound tissue. The concentration of the lactate is
modeled by a PDE where bacteria are added as point sources of lactate.

3.3.2. PROLIFERATION
Vermolen and Gefen introduce cell death and proliferation into the model using a stochastic process. At each
time step, each cell has a probability of dying, making the cell stationary and not contributing to the strain
energy. Proliferation is modeled by adding a daughter cell and giving both cells a displacement as the mother
cell would have gotten with an extra tangent displacement ±R. Improvements upon this process can be made
and suggestions are made by Vermolen and van der Meijden [39] in unpublished work.
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3.3.3. RANDOM MOVEMENT
Vermolen and Gefen add random movement to the cells using a term ∆t (1−ui )w where

ui = ui (yi ) =
{

1, if yi ≤ pmp

0, if yi > pmp

for Yi ∼ U (0,1), pmp is a parameter and w is a unit vector with stochastic angle. Alternatively, Dudaie et al.
[40] propose to model the random movement using a Wiener process. We will follow this approach later on
in deriving our new model.

3.3.4. ELASTIC CONTACT MOVEMENT
Cells impinging on each other will exercise repulsive forces. The direction of the force is along the line seg-
ment connecting the cell centers and the magnitude is, according to elastic contact mechanics described by
Gefen in [36], depending on the depth h both cells have to dent due to the collision. Using arguments from
contact mechanics from Johnson [41], Gefen describes the strain energy M i j due to a collision between cells
i and j to be

M i j = 4

15
p

2

Ec

π

(
h

R

)5/2

. (3.4)

Since the contact forces are always in the opposite direction of the haptotactic forces, Vermolen [8] subtracts
this strain energy from the strain energy density caused by the haptotactic cell forces in Equation 3.3, i.e.
M̃i (r j ) = Mi (r j )−M i j and use M̃i (r j ) in Equation 3.3.

3.4. COMPARISON OF THE MODEL TYPES
It can be expected that all three types of models have their advantages and disadvantages. We discuss their
merits and demerits here briefly.

In the CPM, it is easy to track specific cell motility and implement cell shape and size specific behavior as
well as cell contact interface specific properties such as contact inhibited chemotaxis. However, the model is
computationally heavy and relies on many model choices such as the weight factors for the different terms
in the Hamiltonian function. These factors do not have a physical background and they are “fitted” to reach
the desired model outcome. Hence, the model has a phenomenological nature and one can question the
adaptability to changing conditions, different topologies and real life applications.

Possibly the main criticism of continuum models for angiogenesis stems from their inability to track indi-
vidual capillary tips and to accurately reproduce the patterns of vascular growth. Cell-cell and cell-matrix
interaction is more complex to incorporate. They are however computationally scalable to a very large ex-
tent, making them useful for simulating of tissue on a large scale. Continuum models exist that are of a more
physical and phenomenological nature.

The semi-stochastic cell-based model is computationally less heavy but can still follow cells on an individual
level and we hypothesize that the model is able to track capillary formation in the angiogenic process. It ben-
efits from cell-cell and cell-matrix interaction like contact mechanics, haptotaxis and adhesion. The model
is however not able to incorporate very complex cell shape dependent mechanics like contact inhibition be-
cause of the simplified spherical shape of individual cells. It is a challenge for this study to overcome this
limitation to such an extent that we reach reliable model outcomes. Finally, all parameters have a physical
origin and the model is therefore adaptable to changing conditions and domains.

We conclude that the CPM is especially useful to model specific cell behavior on a small scale. The semi-
stochastic cell-based model works on a mid-large scale and the continuum models gives the desired results
on a large scale where both the CPM and the semi-stochastic cell-based models grow intractable.





4
A NEW 3-D SUBSTRATE DEPENDENT

CELL-BASED MODEL (SDCBM)

In order to mimic the sprouting assay performed by the VU medical center dermatology department, we
propose a new computational Substrate Dependent Cell-Based Model (SDCBM). Similar to existing models,
the SDCBM also consist of two layers: a PDE layer governing the chemicals and a mechano-biological layer
governing the cell movement. In this chapter we formulate both. We first propose a relational model that
reflects how the different substrate components, chemicals and cells influence each other. We then come up
with a system of differential equations governing the concentrations of the different chemicals and substrate
components over time and we formulate the initial and the boundary conditions. We use a finite element
discretization which we derive in Appendix C to approximate the solution. We choose to do so in a three di-
mensional setting to closely mimic the lab work carried out by the dermatology department of the VU Medical
Center. Secondly, we give an overview of the mechanical and chemical effects on cells and we formulate the
cell movement based on the semi-stochastic cell-based formalism as proposed by Vermolen and Gefen in [8].
We conclude by stating our choice of parameters, domain and initial cell distribution.

Two model design principles are central to our approach. First of all, we will model the substrate composition
and degrading continuously. This is contrary to the discrete formulation in the CPM by Merks where lattice
sites are either substrate or Extra-Cellular Fluid (ECF) . Parameters like viscosity, density, elasticity, friction
and diffusion rates become continuous functions of the substrate composition over the domain. This im-
provement mimics the real experiments more closely and avoids unexpected discontinuous behavior of the
model. Secondly, we try to use physical parameters with values that are as realistic as possible and try to
refrain from using “fitting parameters” such as scale factors. This will give us a better understanding of the
physical and physiological background of the angiogenesis process which makes the model adaptable to a
wider range of problems and increases the predictive value of the simulation outcome.

4.1. FEEDBACK PROCESSES IN THE SDCBM
We start with a qualitative description of the components of our SDCBM. We distinguish between cells, sub-
strate components and chemicals. ECs in our model can be of two phenotypes: tip cells and stalk cells.
We model four different chemicals: Vascular endothelial growth factor (VEGF), Matrix Metalloproteinases
(MMP), Urokinase-type type Plasminogen Activator (uPA) and Delta-like ligand 4 (DLL4), the biochemical
functions of which are described in Section 2.1. The substrate consists of fibrin, BM and ECF.

Tip cells secrete DLL4, uPA and MMP. uPA and MMP degrade fibrin and BM into ECF and are consumed in the
process. Degraded substrate has a higher permeability and cell movement increases. Tip cells move towards
higher concentrations of VEGF and consume it. Stalk cells move towards higher concentrations of DLL4 and
consume it. VEGF up-regulates tip cell selection whilst DLL4 inhibits it. All these factors form a feedback loop
given in Figure 4.1.

15
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Figure 4.1: Schematic feedback loop of all processes in the model. Green arrows (with plus signs) constitute positive feedback. Red
arrows (with minus signs) constitute negative feedback. Square boxes represent substrate components. Rounded boxes represent

chemicals. Block arrows represent cell movement.

4.2. SYSTEM OF PDE’S GOVERNING THE CHEMICALS AND SUBSTRATE COM-
PONENTS

Comparable to almost every model for biochemical processes, we model the dynamics of a chemical c based
on Reaction-Diffusion-Sourcing equations of the form

∂c

∂t
=∇· [D(x)∇c]− r c +S(x),

where D(x) is a (possibly location dependent) diffusion constant, r is a reactive constant and S(x) is a source
term. We will explain our adaptations to this standard formulation here.

As proposed, we model the substrate as fractions BM fB and fibrin fF . We consider the case where both sub-
strate components can be degraded into Extracellular Fluid (ECF) denoted by fE continuously. This entails
describing PDEs not only for the chemoattractants, but also for the fractions fF , fB and fE . Following conser-
vation of mass, the substrate fractions must add up to 1 (100%), i.e. the amount of fibrin and BM degrading
in the reactive term must be equal to the gain in mass for the ECM in the source term. There is no sourcing of
fibrin and BM and we model that there is no diffusion of the substrate.

We introduce diffusive terms for the four chemicals dependent on the composition of the substrate. For
instance, for the diffusive factor of the concentration VEGF cV we write DV = DV ( fF , fB , fE ), making the dif-
fusion process substrate dependent1. We will come back to the precise formulation of the diffusive function

1In our computational model, the option g.chemO.nonLinearDiffusion is used to use these non-linear diffusion functions.
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after formulating the PDEs.

The rate at which the BM degrades under influence of MMP is in the continuous substrate setting propor-
tional to both the fraction of BM and the concentration of MMP cM . If there is no MMP, the BM will not
degrade and conversely if there is no BM, there is nothing for the present MMP to degrade. This leads to a
multiplicative cross term in the reactive parts of the equations for the concentration MMP and the fraction
BM. The same holds for the fibrin fraction fF and the uPA concentration cU . Furthermore we call the con-
centration VEGF cV and the concentration DLL4 cD .

Finally, we model the reaction and sourcing to take place at the cell centers. VEGF is consumed within all
cell types and DLL4 is consumed only within stalk cells. DLL4, MMP and uPA is sourced from tip cells. We
model that the rate of sourcing is proportional to the concentration VEGF. This entails that cells feeling in
higher stimulated with higher concentrations VEGF will degrade the substrate faster and will give a stronger
chemotactic response to surrounding stalk cells.

We number our cells q = 1, . . . , N . Furthermore θ is the index set of all cells and θt ⊂ θ is the index set of all tip
cells and θs ⊂ θ is the index set of all stalk cells such that θt ∩θs =; and θt ∪θs = θ. The Cartesian coordinates
of the cell center of cell q are denoted by xq . We now use Dirac delta distributions δ(x−xq ) to locate the re-
action and sourcing within cell q and sum over the reactive an sourcing terms over the appropriate set of cells.

Altogether, this leads to the following coupled, non-linear system of 7 PDEs.

Chemicals

VEGF
∂cV

∂t
=∇· [DV ( fF , fB , fE )∇cV ] − ∑

q∈θ
rV cV δ(x−xq ), (4.1)

DLL4
∂cD

∂t
=∇· [DD ( fF , fB , fE )∇cD ] − ∑

q∈θs

rD cDδ(x−xq ) + ∑
q∈θt

sD cV δ(x−xq ), (4.2)

uPA
∂cU

∂t
=∇· [DU ( fF , fB , fE )∇cU ] − rU cU fF + ∑

q∈θt

sU cV δ(x−xq ), (4.3)

MMP
∂cM

∂t
=∇· [DM ( fF , fB , fE )∇cM ] − rM cM fB + ∑

q∈θt

sM cV δ(x−xq ), (4.4)

Substrates

Fibrin
∂ fF

∂t
= − rF cU fF , (4.5)

BM
∂ fB

∂t
= − rB cM fB , (4.6)

ECF
∂ fE

∂t
= + rF cU fF + rB cM fB . (4.7)

︸ ︷︷ ︸
Di f f usi on

︸ ︷︷ ︸
Reacti on

︸ ︷︷ ︸
Sour ci ng

Note that the left hand side of the equations for the chemicals have dimension ng
µm3s

. We then see that for

the diffusive functions we must have [D] = µm2

s . The Dirac delta distributions have dimension 1
µm3 and

hence [rV ] = [rD ] = µm3

s . However, [rU ] = [rM ] = 1
s and [rF ] = [rB ] = µm3

ng s . The sourcing rates have dimen-

sion [sD ] = [sU ] = [sM ] = µm3

s .

The four chemicals VEGF, DLL4, uPA and MMP also have different diffusion constants DV ,DD ,DU and DM

measured in µm2

s . The three different substrate components Fibrin, BM and ECF all have different permeabil-
ities to let chemicals diffuse through them. We model this using the dimensionless constants DF ,DB and DE .
The combined diffusive factor is given by the diffusive constant of the given chemical multiplied by a linear
combination of the permeabilities of the substrate. We set DF = 1 and scale DB and DE accordingly. Together
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we see four functions that make the diffusive process dependent on the composition of the substrate and the
diffusive properties of the respective chemicals:

DV ( fF , fB , fE ) = DV [ fF DF + fB DB + fE DB ],

DD ( fF , fB , fE ) = DD [ fF DF + fB DB + fE DB ],

DU ( fF , fB , fE ) = DU [ fF DF + fB DB + fE DB ],

DM ( fF , fB , fE ) = DM [ fF DF + fB DB + fE DB ].

Notes on the stationary points and stability of the PDEs are presented in Appendix E.5.

4.2.1. BOUNDARY VALUES AND INITIAL CONDITIONS
The sprouting assay takes place in a closed 96 well plate. No transport of chemicals can take place through
the walls or bottom. Imposing a no-flux boundary condition

DV
∂cV

∂n
= DD

∂cD

∂n
= DU

∂cU

∂n
= DM

∂cM

∂n
= 0,

over the entire boundary Γ of our problem domain forms a natural boundary condition. We will use this
boundary condition in the derivation of our Galerkin equations used in the FEM that we use to numerically
solve the system of PDEs in Equation C.1.

The initial conditions for the substrate components is formulated by the dimensions of the sprouting assay.
We know that in the sprouting assay, a well has a diameter of dtop = 7mm and we fill the wells with volF =
100µL = 1mm3 of fibrinogen and thrombin. We have the relation πr 2h = 100 and the height of the fibrin in
the well is hsub = 100

π3.52 mm. The top layer consists of boundary membrane and we assume this layer has a
thickness equal to the diameter of the ECs, i.e. 2R. For a point x = (x, y, z) we impose

fF (x) =
{

1 if z < hsub −2R

0 otherwise
, fB (x) =

{
1 if hsub −2R ≤ z < hsub

0 otherwise
, fE (x) =

{
1 if z ≥ hsub

0 otherwise
,

Since in our FEM we only impose initial conditions on the nodal point, we see that for a nodal point n with
z-coordinate zn this translates to

fF (n) =
{

1 if zn < hsub −2R

0 otherwise
, fB (n) =

{
1 if hsub −2R ≤ zn < hsub

0 otherwise
, fE (n) =

{
1 if zn ≥ hsub

0 otherwise
, (4.8)

Note that since our FEM mesh is unstructured and the concentrations inside the elements is linearly inter-
polated, we do not start with a perfectly flat substrate surface. For a fine discretization however, this effect is
smaller.

ECs are not activated by the lack of a VEGF gradient and are all assumed stalk cells at the beginning of the
sprouting assay. This entails that none of the three chemicals that source from tip cells is present initially.
At the start of the experiment, a VEGF concentration of concentration c0

V is added and we model that this
concentration is only present within the fibrin scaffold. The initial conditions are then given by

cV (x) =
{

c0
V if z < hsub −2R

0 otherwise
, cD (x) = 0, cU (x) = 0, cM (x) = 0.

4.2.2. SOLVING THE SYSTEM OF PDES AND TIME STEPPING
The PDEs can be solved in different ways and we choose to to implement a finite element scheme with linear
basis functions as fully described in Appendix C. We perform the time stepping using a variable time step
IMEX scheme described in Appendix E. In this Appendix we will also make some notes on spurious oscilla-
tions occurring caused by the FEM scheme and how to account for this.
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4.3. SUBSTRATE DEPENDENT CELL MOVEMENT
We introduced the dynamics of the chemicals and the substrate components and subsequently we propose
equations for the cell dynamics. The haptotactic mechanics are based on the 3-D counterpart of the work by
Vermolen and Gefen [8] as was introduced in Section 3.3. We come up with new formalisms for chemotaxis
and cell-matrix adhesion and we implement gravity in a straightforward physical sense.

An overview of the cells on the substrate with the given forces acting upon them is given in Figure 4.2. Note
that this is a simplified impression of the model since it is two dimensional and the substrate components
are displayed as discrete layers whilst in the model we have a continuous mixture.

Figure 4.2: Schematic overview of the different forces acting upon cells based on their position with respect to other cells, the substrate
and chemical gradients. Thick arrows represent forces. Thin arrows represent secretion of chemicals.

The dynamics of a cell i at location ri are of the form

dri = d t

 αM(ri )ẑ︸ ︷︷ ︸
H aptot axi s

+γ(δi∈θs∇cD +δi∈θt ∇cV )︸ ︷︷ ︸
C hemot axi s

+ λ∇ fS︸ ︷︷ ︸
Adhesi on

+ vg︸︷︷︸
Gr avi t y

+ σW dWt︸ ︷︷ ︸
Di f f usi on

. (4.9)

Here, α is a parameter governing the haptotactic response as was formulated before by Vermolen and Gefen
[8]. Further, γ is a parameter governing the chemotactic response, λ is a parameter governing the adhesive
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strength, vg is the velocity due to gravitation and Wt is a stochastic Wiener process with corresponding stan-

dard deviation σW
p

d t . Tip cells (stalk cells) chemotact towards the VEGF gradient (DLL4 gradient) only
and this is monitored by δi∈θt (δi∈θs ) being 1 if cell i is a tip cell (stalk cell) and 0 otherwise. Cells adhere to
the substrate and since the substrate consists of both fibrin and BM, cells adhere to the combined substrate
denoted by fS := fF + fB . The adhesive movement is in the direction of the combined substrate gradient
∇ fS =∇( fF + fB ).

We will hereafter show that all parameters α,γ,λ and vg are substrate dependent and we may write α =
α(ri ),γ = γ(ri ),λ = λ(ri ) and vg = vg (ri ). We will formulate in subsequent sections how all parameters are
formulated and how they depend on the substrate composition. The variable time step predictor-corrector
scheme we propose to use can be found in Appendix D.

4.3.1. HAPTOTAXIS AND CONTACT MECHANICS IN A 3D SETTING
In the 3 dimensional setting, spherical cells act a force along their entire cell surface, opposed to their circular
perimeter in the 2 dimensional model by Vermolen and Gefen [8]. We account for this by substituting the
perimeter in Equation 3.2 by the cell surface Surfi = 4πR2 and see

M 0
i = 1

2
Esε

2 = 1

2
Es

(
1

Es

Fi

Surfi

)2

= 1

2
Es

(
1

Es

Fi

4πR2

)2

= F 2
i

32Esπ2R4 .

In the setting where the substrate continuously degrades from fibrin and BM into ECM, we model the elastic-
ity of the substrate as

Es = Es (ri ) = fF

fF + fB
EF + fB

fF + fB
EB ,

where EF and EB are the elastic moduli of fibrin and BM. The new local elastic modulus of the substrate is a
linear combination of the elastic moduli of fibrin and BM weighted by their fractions. If the environment is
completely ECF, cells have no fibrous matter to exert any pulling forces on and there will not be any generated
strain energy. We reduce the force for increasing fE linearly using a term (1− fE ) and we conclude that

M 0
i = F 2

i (1− fE )

32Es (ri )π2R4 .

The strain energy decays exponentially by increasing radius as modeled by Vermolen and Gefen [8] with a
factor Es

Ec
. The elastic modulus acts as a “spring constant” of the elastic medium in between the cells i and j

and hence it makes sense to use the mean value of Es (ri ) and Es (r j ), i.e. Es (ri ,r j ) = Es (ri )+Es (r j )
2 and we see

Mi (r) = F 2
i (1− fE )

2π2Es (ri )R4 exp

(
−Es (ri ,r j )

Ec

‖r− ri‖
R

)
. (4.10)

The strain caused by contact mechanics between cells also differs in the 3 dimensional setting. A relation
between the produced strain Mi j as a function of the depth h cells have to dent due to collision in 3 dimen-
sions has already been derived by Dudaie et al. in [40]. A schematic representation of the distance h (in 2
dimensions) is given in Figure 4.3. They conclude that the 3 dimensional counterpart of Equation 3.4 reads

Mi j =
p

2

5π
Ec

(
h

R

) 5
2

,

where h = max
{

2R−‖ri−r j ‖
2 ,0

}
and thus we see

Mi j =


p
2

5π Ec

(
1− ‖ri−r j ‖

2R

) 5
2 , for ‖ri − r j ‖ < 2R,

0 for ‖ri − r j ‖ ≥ 2R,

for cells i and j in contact and Mi j = 0 otherwise. Now given a cell i we subtract the contact mechanical
strain Mi j caused by cell j from the haptotactic strain M j (ri )) caused by j and we end up with the total strain
felt by cell i
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M(ri ) = M 0
i +

N∑
j=1 j 6=i

[
M j (ri )−Mi j

]
.

Figure 4.3: Given a cells with centers r1 and r2, the dent distance h is given in this figure. The graphics are taken from unpublished work
by Vermolen and van der Meijden [39].

When calculating the value forαi = βi R3

µ(ri )Fi
, we have to take the composition of the substrate into account too.

The parameters βi , R and Fi are cell-specific and will not change. The friction constant µ however will be
higher within fibrin and on the BM. We model the frictions caused by the different substrate fractions to be
proportional to their elastic moduli. Noting that in the original model by Vermolen and Gefen [8] the friction
caused by the fibrin was equal to µ̂, we set

µi =µ(ri ) = µ̂
(

fF (ri )
EF

EF
+ fB (ri )

EB

EF
+ fE (ri

EE

EF

)
.

The derivation of ẑi remains unchanged. This concludes the derivation of all terms in the haptotactic part of
the cell dynamics in Equation 4.9.

4.3.2. CHEMOTAXIS
We distinguish between tip cells and stalk cells for the chemotactic movement. Tip cells chemotact towards
the VEGF gradient ∇cV present in the substrate. Stalk cells chemotact towards the DLL4 gradient ∇cD se-
creted by the tip cells.

Dimensional analysis dictates that [γ∇cV ] = µm
s . Since [∇cV ] = ng

µm4 we must have [γ] = µm5

ng s . We take into

account four factors: the cell motility ([β] = 1
s ), the maximal exerted force ([Fi ] = nN ), the elastic modulus of

the substrate ([ES ] = nN
µm2 ) and the density of the substrate denoted by ρS . The local density is dependent on

the substrate composition and we argue that it must be equal to the weighted average of the densities of the
different components:

ρS = ρS (ri ) = fF (ri )ρF + fB (ri )ρB + fE (ri )ρE . (4.11)

We see [ρS ] = ng
µm3 . It is reasonable to assume that the chemotactic cell velocity increases when the motility

and the exerted force increase and decreases when the density or elastic modulus of the matrix increases.
Furthermore, whenever fS tends to 1, the matrix is so dense that we have almost no movement. Whenever fE

tends to 1, the cells have nothing substantial to "pull" on and we also have almost no movement. We correct
for these two effects using a term fS fE and conclude

γ= γ(ri ) = βFi

ES (ri )ρS (ri )
[ fF (ri )+ fB (ri )] fE (ri ). (4.12)

We indeed have [γ] = µm5

ng s .
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4.3.3. CELL-MATRIX ADHESION

We model cell-matrix adhesion by assuming that cells move towards locations with a combined substrate
density fS := fF + fB = 0.5. The direction of the movement is towards increasing substrate density ∇ fS for
substrate densities fS < 0.5 and towards decreasing substrate density for substrate densities fS > 0.5. The
strength of the cell’s response to adhesion is monitored by a parameter λ.

Dimensional analysis dictates that [λ∇ fS ] = µm
s . Since [∇ fS ] = 1

µm , we must have [λ] = µm2

s . As with the

chemotactic parameter γ, we take into account the cell motility ([β] = 1
s ), the maximal exerted force ([Fi ] =

nN ) and the elasticity of the substrate ([ES ] = nN
µm2 ) and follow the same reasoning as in the derivation of

the chemotaxis parameter γ. Furthermore, in order to make cells adhere to substrate densities fS = 0.5, we
multiply by a dimensionless polynomial Q( fS ). We see

λ=λ(ri ) = βi Fi

ES (ri )
Q( fS (ri )), (4.13)

and check that indeed [λ] = µm2

s . We try to find a suitable polynomial by reasoning from a biochemical point
of view. Cells completely dissolved in ECF have no substrate to adhere to and we must have λ= 0 for fS = 0.
Cells that are completely surrounded by substrate are not able to move because of the matrix stiffness and
we must have λ = 0 for fS = 1. Finally, cells that are already at a 50% substrate density must not move and
we must have λ = 0 for fS = 0.5. λ must be positive for substrate densities below 50 % and and negative for
substrate densities above 50 %. Polynomial Q( fS (ri ) that has all these properties and is normalized to have a
maximum value of 1:

Q( fS (ri )) = 12
p

3 fS (ri )[ fS (ri )− 1
2 ][ fS (ri )−1]. (4.14)

Implementing this λ(ri ) leads to a very low response to adhesion. Apparently there is some factor of im-
portance that we do not take into account. We use a factor λ̂ = 15 to scale the adhesive movement to the
haptotactic and chemotactic movements. Improvements upon equation 4.13 or 4.14 can be introduced to
make this factor obsolete. In Chapter 5, we will perform a sensitivity analysis on this parameter to find out
what the effect of a faulty estimate of the parameter λ̂ is on the model outcome. Furthermore we refer to
Chapter 6 with recommendations for future research into this topic.

4.3.4. GRAVITY

We incorporate gravity using the Newton’s first law
∑

F = ma. Assuming a = 0 to make computations easy
does not work in practice since cells then “fall” at terminal velocity which requires a very small time step
to obtain stable results. This however does entail storing the previous gravitational speed vk−1

i for a cell i

in order to approximate ak
i ≈ vk

i −vk−1
i

∆t using a finite difference scheme. In our force balance we incorporate
gravitational force Fg , buoyant force Fb and drag force Fd . Gravitational force is in the downward direction
and of magnitude mc ∗ g where the subscript c stands for “cell”. We know that mc = ρcVc , where ρc is the
density of the cell and Vc = 4

3πR3 is the volume of the cell. The buoyant force is in the upward direction and of
magnitude Fb = mS g = ρSVc g where the s stands for “substrate”, ρS is the local substrate density as defined
in Equation 4.11. The drag force is defined by Stokes law for frictional force as Fd = 6πµS Rv , where µS is the
viscosity of the substrate and R is the radius of the spherical cell and v = dr

d t . The drag force is slowing down

movement and is in the opposite direction of the initial velocity vk−1. We set v0 = 0 as initial condition for
the recursive relation for the acceleration. We sum all forces and isolate the speed at time step k to derive a
recursive relation for the gravitational speed for cell i .
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−Fg +Fb −Sign(vk−1
i )Fd = ma

−ρcVc g +ρSVc g −Sign(vk−1
i )6πµS Rvk−1

i = ρcVc
vk

i − vk−1
i

∆t

(ρS −ρc )Vc g −Sign(vk−1
i )6πµS Rvk−1

i = ρcVc
vk

i − vk−1
i

∆t
∆t

ρc

[
(ρS −ρc )g −Sign(vk−1

i )
9µS

2R2 vk−1
i

]
= vk

i − vk−1
i

vk−1
i +∆t

ρc

[
(ρS −ρc )g −Sign(vk−1

i )
9µS

2R2 vk−1
i

]
= vk

i

The viscosity µS is again dependent on the substrate composition and we take a linear combination of the
viscosities of the different substrate components:

µS =µS (ri ) = fF (ri )µF + fB (ri )µB + fE (ri )µE .

4.3.5. DIFFUSION
We model the diffusion of cells by adding stochastic movement to the cells. We will use a different approach
than Vermolen and Gefen [8] by adding a 3 dimensional Wiener process σW Wt = σW [W 1

t ,W 2
t ,W 3

t ]T having
W0 = 0 with for 0 ≤ s ≤ t having W i

t −W i
s ∼ N (0, t − s) for i = 1,2,3. It follows that t → Wt continuous a.e..

Discretized, this entails drawing random numbers N ∼N (0,1) and adding σW
p
∆t N to the displacement.

4.4. TIP CELL SELECTION AND CONTROLLING MOTILITY
The fact that ECs can change from stalk cells to tips cells based on local chemical conditions is of essential
importance to the sprout formation. Higher VEGF concentrations will stimulate tip cell selection while higher
concentrations of DLL4, secreted by tip cells themselves, will inhibit the selection process. We propose a
probabilistic model for the selection process and we consider options for differentiation in cell-type behavior.

4.4.1. CELL DIFFERENTIATION

EC’s can change from stalk cells into tip cells (and reversibly) based on the local chemical properties2. Higher
concentrations of VEGF will increase the chance of a stalk cell to become a tip cell. However, a nearby tip cell
that sources DLL4 inhibits a stalk cells from becoming tip cells.

We model the changing time of a stalk cell to become a tip cell using an exponential distribution with a rate
λ̃ST . We also model the changing time of a tip cell to change back into a stalk cell using an exponential
distribution with rate λ̃T S . The probability density function (PDF) of the exponential distribution is given by

f (t ,λ) =
{
λe−λt for t ≥ 0,

0 for t < 0.

The changing times are then distributed as

P(T |S) ∼ Exp(λ̃ST ) and P(S|T ) ∼ Exp(λ̃T S ).

The rates λ̃ST and λ̃T S are dependent on cell specific factors and local chemical conditions. Since the con-
centration VEGF cV only decreases over time, we know that we have cmax

V = c0
V and we normalize using cV

cmax
V

.

The concentration DLL4 cD can take arbitrary positive values but in practice almost never exceeds the con-
centrations VEGF so again we “normalize” by setting cD

cmax
V

. For ideal circumstances, i.e. cV = cmax
V and cD = 0,

we define the maximal rate of changing from stalk to tip per second to be pST . The rate λ̃ST increases for
increasing cV and decreases for increasing cD . We model

2In our computational model, this option can be used by setting the g.cellO.cellDifferentiation = 1. Otherwise tip cells are
selected randomly in the initial distribution.
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λ̃ST (cV ,cD ) = pST e
−ps

(
1− cV

cmax
V

)
e
−pi

cD
cmax

V . (4.15)

The strength of the DLL4 induced inhibition is governed by the parameter pi (i for inhibition) and higher
values of pi constitute stronger inhibition. The strength of the stimulation by VEGF is governed by the pa-
rameter ps (s for stimulation) and lower values of ps constitute stronger stimulation even for low values of
cV . We plot the rate function λ̃ST (cV ,cD ) with parameters ps = 4, pi = 10 and pm = 0.0001 for different values
of the chemical concentrations in Figure 4.4.
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Figure 4.4: The rate λ̃ST (cV ,cD ) of stalk cells changing into a tip cells for different values of 0 ≤ cV ≤ 0.01 and 0 ≤ cD ≤ 0.01. The
maximum value is pm is attained for cV = 0.01 and cD = 0, i.e. maximal stimulation without inhibition. The inhibiting effect is stronger

than the stimulating effect because pi = 10 > ps = 4.

Tip cells can change back into stalk cells at a rate governed by the decreasing of a VEGF gradient. We model

λ̃T S (cV ) = pT S e
−ps

cV
cmax

V , (4.16)

and set pT S = 1 ·10−6. The rates in Equations 4.15 and 4.16 are per second. During a time step of length ∆t ,
we see that we have the following probability of a cell type change, where we approximate the exponential
with its first order Taylor expansion around t = 0.∫ ∆t

0
λ̃e−λ̃t d t =

[
1−e−λ̃t

]∆t

0
= 1−eλ̃∆t ≈ 1− (1− λ̃∆t ) = λ̃∆t .

This approximation is suitable for small enough time steps∆t , and we have to specifically ensure that λ̃T S∆t ≤
pT S∆t ≤ 1. Bayes theorem now dictates that P (S|T )

P (T |S) = P (S)
P (T ) and we end up with an equilibrium ratio between

tip cells and stalk cells given the local chemical conditions.

The values for pm , ps and pi should be found based on experimental data. Microscopic images show us
that for large concentrations of VEGF (25 ng

mL ), we see around one sprout for every fifty ECs after two days.
We assume that every sprout is led by one tip cell. Furthermore we assume that all tip cells are selected at
12 hours after stimulation with VEGF and that no additional tip cells are formed due to inhibition by the
existing ones afterwards. This means that a cell has a probability of 0.02 per 12 hours of becoming a tip cell
not changing back again. This is equivalent to 0.02

12·3600 = 4.6 ·10−7 per second. The VEGF concentration is not
maximal over the entire domain, so we choose pm = 4 ·10−6. We know that the inhibiting effect of DLL4 is
stronger than the stimulating effect by VEGF, so we model pi = 10 and ps = 4 and conclude that these values
are suitable for our modeling purposes. Better estimations for these values might be obtained by fitting model
results to experimental observations, but this is cumbersome due to the long execution time of the model.
An investigation of the magnitude of these parameters reasoning from a more biochemical point of view is a
useful recommendation.
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4.4.2. DIFFERENT MOTILITY TIPS AND STALKS
This model could be easily extended to give tip cells and stalk cells different parameters. A possibility is to give
tip cells a higher motility constant βi to make them more motile. After consulting the dermatology depart-
ment on this matter, we found that no biochemical or biological reason exists that makes such an assumption
reasonable. Therefore we take the value of βi equal for all cells i = 1, . . . , N .

Dudaie et al., in unpublished work [40], use a model that is in many ways similar to our model. They do differ
the value of βi for different cells and approximating the motility with a Gamma distribution function.

4.5. PARAMETERS AND DOMAIN
Our model uses a number of parameters, most of a physical or chemical nature. We try to find accurate values
for these parameters in literature as much as possible although some values are hard to estimate. We list all
our parameters with description, symbol, programming code name, value, dimension and where possible a
source in Tables 4.1, 4.2, 4.3 and 4.4.

The elastic modulus of endothelial cells Ec is approximately 10 kPa according to Kuznetsova et al. [42]. They
found this value in a study using atomic force microscopy probing. This is higher than the value used in the
model by Vermolen and Gefen [8].

According to the work of Ganz et al. [43], traction forces Fi are also higher than the 1nN used by Vermolen
and Gefen [8]. Reinhart-King et al. [37] conducted in vitro studies measuring the forces exerted by ECs on
polyacrylamide substrates. On page 1578 we see see the relation between cell area and exerted force of ECs.
Since we model our cell radius as R = 22.5µm, we have an area of 22.52π = 1590µm2 = 1.59 ·10−5cm2. The
graph gives a force of 0.1d yne = 10−6N = 1000nN and we choose to use this value in our model. Using this
value gives more realistic movements in our simulations than copying the 1 nN used by Vermolen and Gefen
[8].

Elasticity of fibrin EF is approximately 10 kPa according to Rowe et al. [44]. Zhu et al. [45] propose values for
the elastic modulus of collagen-chitosan scaffolds in the order of 10 kPa. Since BM consist of collagen and
more stiff components, we use an estimate EB = 20kPa.

Plank et al.[46] set the diffusion coefficient for VEGF DV = 3.6×10−3 mm2

h = 1µm2

s (in matrigel). We have found
no references on the diffusion coefficients of the concentrations DLL4, uPA and MMP so we estimate them
using their molecular weights. We assume that substances diffuse more slowly for larger molecular weights.
All four substances are sold commercially and molecular weights m are specified very accurately. We see that
mV ≈ 38.2kDa3, mD ≈ 75kDa4, mU ≈ 31kDa5 and mM ≈ 72kDa6. We estimate

DD = mV

mD
DV = 0.51, DU = mV

mU
DV = 1.23, DM = mV

mM
DV = 0.53,

all measured in µm2

s . Contradictorily, Bauer et al. [47] sets the diffusion coefficient for VEGF to 1698 µm2

s and
Miura et al. [48] measured in an in vitro experiments that the VEGF diffusion constant in matrigel (similar to

fibrin gel) is equal to 278µm2

s . The coefficient used by Plank et al. [46] seems to make the most physical sense
and produces reasonable results in our computational model. Further research into the difference between
these values might be useful.

Plank et al. [46] furthermore set the VEGF uptake rate rV within cells to 8.66 ·10−5 mm2

h = 0.024µm2

s . Note that

Plank et al. work in a 2D setting and that in the 3D setting, the dimension would be mm3

s . We set the uptake
rates rD , rU and rM equal to this value since we could not find any references concerning these quantities.

The degrading rate rF of the fibrin fraction by uPA is, according to Lutolf et al. [49] of magnitude 1.21 s−1

and we use this value in our model. We estimate that the degrading rate rB of the BM by MMP is of the same

3http://www.shenandoah-bt.com/Human_Vascular_Endothelial_Growth_Factor-165.html
4http://www.phosphosite.org/proteinAction.do?id=24218
5http://www.oxfordbiomed.com/active-mouse-upa-functional-assay-kit
6http://www.rndsystems.com/mini_review_detail_objectname_MR99_MMPs.aspx

http://www.shenandoah-bt.com/Human_Vascular_Endothelial_Growth_Factor-165.html
http://www.phosphosite.org/proteinAction.do?id=24218
http://www.oxfordbiomed.com/active-mouse-upa-functional-assay-kit
http://www.rndsystems.com/mini_review_detail_objectname_MR99_MMPs.aspx
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magnitude.

Viscosity of water is 0.6531 · 10−3 N s
m2 at 40 degrees centigrade and 0.7978 · 10−3 N s

m2 at 30 degrees centigrade
according to Streeter [50]. Our experiment is conducted in an incubator at 37 degrees and we therefore take
µE = 0.6965 ·10−3 N s

m2 . Viscosity fibrin is approximately 7.000 ·10−3 N s
m2 according to Ehrlich [51].

According to Urbanchek et al. [22] the density of myocytic cells is 1.06010−3 kg
cm3 . Water at 37 degrees centi-

grade has a density of 0.9933 ·10−3 g
cm3 .

We model one well in a 96 well plate. We take the same dimensions of diameter 7 mm (i.e. dtop = 7000µm)
and a height determined by filling the well with vF = 100µL fibrin and 100 µL fluid to a total of v = 200µL
with N = 20.000 suspended EC’s. This mimics the laboratory setting one-to-one. To decrease computational
time and load on memory, we introduce a linear scaling factor ξ and we have scaled domain parameters

ṽ = v
ξ3 , ṽF = vF

ξ3 , d̃top = dtop

ξ2 and Ñ = N
ξ2 to keep an equal aspect ratio of the domain and a monolayer of cells

that is constant in density (cells per µm2).

Table 4.1: Domain parameters

Parameter Symbol Code name Value Dimension Source
Domain scaling factor ξ g.dom.scaling [1 - 10] - -
Diameter well dtop g.dom.dTop 7000 µm experiment
Volume well v g.dom.vol 200 µL experiment
Volume fibrin vF g.dom.volFibrin 100 µL experiment

Table 4.2: Chemical simulation parameters

Parameter Symbol Code name Value Dimension Source
Substrate threshold f0 g.chemP.minThres boolean - -
Diffusion coef. VEGF DV g.chemP.dV 1.00 µm2s−1 [46]
Diffusion coef. DLL4 DD g.chemP.dD 0.51 µm2s−1 Est. on [46]
Diffusion coef. uPA DU g.chemP.dU 1.23 µm2s−1 Est. on [46]
Diffusion coef. MMP DM g.chemP.dM 0.53 µm2s−1 Est. on [46]
Diffusion factor Fibrin DF g.chemP.dF 1.00 - -
Diffusion factor BM DB g.chemP.dB 2.00 - -
Diffusion factor ECF DE g.chemP.dE 0.10 - -
Reactive rate VEGF rV g.chemP.rV 0.024 µm3s−1 [46]
Reactive rate DLL4 rD g.chemP.rD 0.024 µm3s−1 Est. on [46]
Reactive rate. uPA rU g.chemP.rU 0.024 s−1 Est. on [46]
Reactive rate MMP rM g.chemP.rM 0.024 s−1 Est. on [46]
Reactive rate Fibrin rF g.chemP.rU 1.210 µm3ng−1s−1 [49]
Reactive rate BM rB g.chemP.rM 1.210 µm3ng−1s−1 Est. on [49]
Sourcing rate DLL4 sD g.chemP.sD 10.00 µm3s−1 -
Sourcing rate uPA sU g.chemP.sU 10.00 µm3s−1 -
Sourcing rate MMP sM g.chemP.sM 10.00 µm3s−1 -
Initial density VEGF c0

V g.chemP.iV 0.01 ngµm−3 -

Table 4.3: Cell parameters
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Parameter Symbol Code name Value Dimension Source
The number of cells in the well N g.cell.nCells 20.000 - experiment
Radius of an EC R g.cell.rCell 22.5 µm -
Elastic modulus of an EC Ec g.cell.Ec 10 nNµm−2 [42]
Maximal exerted force of an EC Fi g.cell.Fi 1000 nN [37, 43]
Motility of the cell surface βi g.cell.beta 0.02 s−1 [8]
Friction coefficient µ̂ g.cell.muHat 0.2 - [8]
Adhesive scaling factor λ̂ g.cell.lambda 15 - -
Density of an EC Pc g.cell.densityC 1.030 ·10−3 ngµm−3 [22]
St. dev. of stoch. movement σW g.cell.sigmaW [0 - 0.1] µm -
Gravitational constant g g.cell.gravitation 9.810 ·10+6 µms−2 -
Max. prob. stalk becoming tip pST g.cell.pMaximumS2T 4.000 ·10−6 s−1 -
Governs tip cell stimulation ps g.cell.pStimulation 4 - -
Governs tip cell inhibition pi g.cell.pInhibition 10 - -
Max. prob. tip becoming stalk pT S g.cell.pMaximumT2S 1.000 ·10−6 s−1 -

Table 4.4: Substrate Parameters

Parameter Symbol Code name Value Dimension Source
Elastic modulus fibrin EF g.sub.Ef 10 kPa = nNµm−2 [44]
Elastic modulus BM EB g.sub.Eb 20 kPa = nNµm−2 [45]
Elastic modulus ECF EE g.sub.Ee 1 kPa = nNµm−2 -
Viscosity fibrin µF g.sub.viscosityF 0.007 ·10+6 ngµm−1s−1 [51]
Viscosity BM µB g.sub.viscosityB 0.007 ·10+6 ngµm−1s−1 Est. based on [51]
Viscosity ECF µE g.sub.viscosityE 0.001 ·10+6 ngµm−1s−1 [50]
Density fibrin ρF g.sub.densityF 1.060 ·10−3 ngµm−3 -
Density BM ρB g.sub.densityB 1.060 ·10−3 ngµm−3 -
Density ECF ρE g.sub.densityE 0.9933 ·10−3 µm [50]

4.6. DATA VISUALIZATION

We developed a series of methods to visualize the data acquired by the time stepping scheme. We explain
four types of plots in this section.

4.6.1. CHEMICAL SLICES PLOT

To visualize the chemical concentrations over our domain, we choose to plot the concentrations on slices7.We

fixate a point P =
(

dtop

2ξ ,
dtop

2ξ , hF
ξ

)
. This point then lies in the middle of the disk of the initial cell distribution.

We plot the chemical concentrations on three surfaces through this point P , each with one coordinate fixed.
Underneath each slice plot, we plot a histogram of the concentrations of the given chemical on the nodes.
The result for plotting the substrate fractions in the beginning of a simulation can be seen in Figure 4.5.
Although this method of data visualization only gives information about the chemical concentrations on
specific planes, it is insightful since it gives a view on the chemical process inside the problem domain.

4.6.2. CELLS PLOT

To visualize cell positions in 3D8, we plot cells as spheres with radius R. We choose a camera angle from
slightly below the horizontal x − y-plane so that we view the initial cell distribution from the bottom, as if
we were looking through the fibrin scaffold. This allows us to see sprout formation since they move in a
downward direction. We plot the edges of the computational domain as thick lines to help the viewer orient
from the point of view we have. Optional, we can plot red and blue arrows from each cell in the direction of
the haptotactic and chemotactic movement9. Stalk cells are plotted in green and stalk cells in red. Next to
this plot, we plot smaller x − y , z − y and x − z. The result is given in Figure 4.6.

7Setting g.plot.plotType = 4 plots the substrate components on slices. Setting g.plot.plotType = 5 plots the four chemical con-
centrations on slices.

8Setting g.plot.plotType = 3 plots the cells as spheres in 3D.
9The movement direction arrows can be plotted by setting g.plot.quiverOn = 1.
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Figure 4.5: (almost) Initial condition plot for the substrate components using the slice plot.

Figure 4.6: Cells plot. Tip cells are colored red. The thick black lines form the outline of the computational domain and aid the viewer in
orienting the plot. The camera is in an angle slightly lower than the x − y-plane.

4.6.3. ISO-SURFACE PLOT
We are interested in the morphology of the fS = 0.5 iso-surface because we model cells to adhere to this
surface10. The 50 % substrate surface can be seen as the boundary between blood vessel and the ECM. For

10Setting g.plot.plotType = 11 plots the 50 % substrate iso-surface.
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the same reasoning as in the cells plot, we choose a camera angle from slightly below the x − y-plane to be
able to see sprout formation and we again plot the domain edges in thick lines to aid the viewer in orienting
the plot. Also the smaller x− y , z− y and x−z views are plotted so we can keep track of the position of the tip
cells. The result is given in Figure 4.8.
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Figure 4.7: fS = 0.5 Iso-surface plot. The thick black lines form the outline of the computational domain and aid the viewer in orienting
the plot. The camera is in an angle slightly lower than the x − y-plane.

4.6.4. MICROSCOPIC PLOT
Finally, we are interested in comparing the microscopic photographs of the sprouting assay, like those in Fig-
ure 2.5 taken by the VU medical center dermatology department, to our simulation result11. We therefore
plot our cells in the x− y plane fixated at z = hF . However, the microscopes used have a focal range of around
80µm. We plot all cells q that have a z-coordinate hF −R ≤ zq ≤ hF +R in blue and denote these as “mid level
cells”. Cells that are one layer higher, i.e. hF +R ≤ zq ≤ hF +3R, are denoted as the “high level cells” and are
plotted in red. The layer beneath the mid level cells, i.e. hF −3R ≤ zq ≤ hF −R are denoted as “low level cells”
and are plotted in green. The radius of the plotted cells is given by the radius of the coupe of the cells at the
three focal heights hF +2R for the high level cells, hF for the mid level cells and hF −2R for the low level cells.
High level cells that move downwards will then first decrease in radius before turning blue. Cells out of range
of these three focal heights are not plotted in the main window since they are “out of focus”. This leads to
empty spaces at the locations of the sprouts. Note that cells with different colors are on different levels and
can overlap in the x − y view. Cells of the same color however are on the same height and will not overlap
much thanks to the contact mechanics in the model.

In the microscopic photos we see the sprout perimeters as dark edges. We model our cells to adhere to the
fS = 0.5 iso-surface. We calculate the fS = 0.5 iso-lines in the x − y plane fixated at the height of the low level
cells, i.e. z = hF −2R, and plot these. In practice, these lines positions agree with the sprout edges as seen
on the photos. Tip cells are plotted as red crosses. A thick circle is drawn on the edges of the computational
domain. Note that we have not modeled repulsive forces from the boundary and cells can move through this
boundary. Alongside this main plot, we again plot the x − y , z − y and x − z views. in the y − z and x − z plots,
we draw a red, a blue and a green line at the three different focal heights zF +2R, zF and zF −2R.

11Setting g.plot.plotType = 10 plots the cells in the microscopic view.
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Figure 4.8: Microscopic plot.

4.7. INITIAL DISTRIBUTION CELLS
We need to impose an initial condition on the distribution of the cells. We propose a total of three different
initial conditions and three test cases.

We know that the petri dish has diameter d̃top and we denote the radius by r̃top . The fibrin scaffold has area

Ãtop = πr̃ 2
top . Therefore, the height of the top of the fibrin scaffold is equal to h̃F = ṽF

Ãtop
= 2598µm. The

height of the entire domain is h̃ = ṽ
Ãtop

. We denote the cell radius by R. Since we describe a distribution

over a cylindrical domain, we will use cylindrical coordinates ri = (r,θ, z) and we use the transformation to
Cartesian coordinates x = r cosθ, y = r sinθ, z = z.

RANDOM MONOLAYER

The first option is placing the cell centers randomly12 on the disc of radius (r̃top −R). We have to account
for the fact that we have to place more cells at larger values of r to get an even distribution. We add a small
perturbation with a standard deviation of magnitude R

5 to the height z. Let ui
θ

,ui
r and ui

z be random numbers
drawn from a distribution U (0,1) for each cell i = 1, . . . , N . Then we define the initial location ri of cell i by

θi = 2πui
θ, r i =

√
ui

r (r̃top −R)2, zi = h̃F + R

5
ui

z .

The advantage of this distribution is that it is stochastic, as can be expected from the physical process. How-
ever, cells can by chance overlap heavily, making the initial contact mechanical forces big in magnitude. This
can produce erratic behavior in the first time step. An initial distribution formed using this mechanism is
depicted in Figure 4.9.

12In our computational model, this option can be used by setting g.cellO.randomLayer = 1
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Figure 4.9: Random initial distribution of cells as produces using the option g.cellO.randomLayer = 1.

STRUCTURED MONOLAYER

To prevent the initial distribution of cells from having heavily overlapping cells, we implemented the option
of placing cells in a monolayer in a structured way13. Consider cell numbers i = 1, . . . , N . At each cell number,
we both increment the radius ri and the angle θ using

θi =πp2i , r i = (r̃top −R)

√
i

N
, zi = h̃F .

We do not add a perturbation to the height. Note that this produces a non-repetitive grid in angular symmet-
ric sense thanks to the irrationality of the factor

p
2 in the increments of θ. The advantage of this distribution

is that is does not have the erratic behavior that may occur in the random initial distribution. However, this
pattern is not likely to immerse in biochemical applications. A structured initial condition produced by this
mechanism is depicted in Figure 4.10.

Figure 4.10: Structured initial monolayer distribution of cells as produced using the option g.cellO.monoLayer = 1.

DISPERSED CELLS

We know that in the sprouting assay, ECs are dispersed within the ECF that is poured on top of the fibrin scaf-
fold. We assume that cells sink to the fibrin scaffold under the influence of gravity and that contact mechanics
play a role in the formation of the monolayer like marbles poured out over a table top. Since we have both

13In our computational model, this option can be used by setting g.cellO.monoLayer = 1
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implemented gravity and contact mechanics in our model, we can initially suspend cells in the ECF and see
if a monolayer is formed14. We set r i and θi in the same way as in the random layer. For the heights zi , we
pick a random value between the top of the domain h̃ and the top of the fibrin scaffold h̃F , i.e.

θi = 2πui
θ , r i =

√
ui

r (r̃top −R)2, zi = h̃F + (h̃ − h̃F )ui
z .

This initial condition seems to mimic the biochemical setting as close as possible and a generated distribu-
tion is depicted in Figure 4.11. Right after 5 minutes (300 seconds), we see the formation of a monolayer as
depicted in Figure 4.12. We clearly see that cells do not all adhere to the fibrin scaffold at the same hight. This
is to be expected since the top of the fibrin scaffold is somewhat uneven due to the fact that that the FEM
mesh is unstructured.

Figure 4.11: Suspended initial distribution of cells as produced using the option g.cellO.suspended = 1.

Figure 4.12: Formed monolayer after 598 seconds using a suspended initial cell distribution.

TEST CASES

For testing and development purposes, we have implemented initial conditions with only two, four or eight
cells. These distributions can be used by setting the parameters g.cellO.twoCells, g.cellO.fourCells
or g.cellO.eightCells to 1. We chose to leave these options in the model for future developers.

14In our computational model, this option can be used by setting g.cellO.suspended = 1



5
RESULTS

In this chapter, we present the results of the model simulations. We start with a brief summary of the me-
chanics of our model, for both the chemicals and the cell movement. We then introduce metrics to monitor
the “amount of sprouting” and analyze the variance of the metrics for the model outcome. A sensitivity anal-
ysis is performed to quantify the response of the model in terms of the introduced metrics to variation in the
model parameters as formulated in the previous chapter. We conclude by comparing our model outcomes to
the work done by the VU medical center dermatology department and by mentioning the relation between
matrix elasticity and vasculogenesis-like pattern formation.

For every model simulation, we produced a video file containing a combination of the cells plot, the micro-
scopic plot, the iso-surface plot and the x − y , y − z and x − z plots. These video files are submitted digitally
together with this thesis. Along with the video files, we store data files containing all the time series of the
proposed metrics and a file containing the parameters used in each specific simulation.

5.1. MODEL MECHANICS
We model our chemicals using reaction-diffusion-sourcing equations and we numerically solve the solutions
using the FEM scheme as derived in Appendix C. Concentrations DLL4, uPA and MMP source at the locations
of the tip cell centers and then diffuse into their surroundings. uPA and MMP react with the substrate com-
ponents and their concentrations will decrease. The initial VEGF distribution will diffuse from the substrate
into the ECF. We show all these effects after one hour of simulated time using a slice plots in Figure 5.1. We
tested diffusion, reaction and sourcing separately1 and the results are as one would expect.

We model the cell movement using haptotaxis, contact mechanics, chemotaxis, adhesion and diffusion. We
expect from the contact mechanics that cells will not overlap to a large extent. The haptotactic movement will
cluster cells together. Chemotaxis will cause stalk cells to move towards the tip cells sourcing the chemoat-
tractant DLL4. Finally, adhesion will cause cells to adhere to the fS = 0.5 iso-surface. Since our initial sub-
strate is not perfectly flat due to the initial condition for the substrate components on the nodes as described
in Equation 4.8, we expect to see cells taking higher or lower positions locally based on the substrate con-
ditions. We put all these expectations for the cell movement to the test using a simulation with an initial
random layer of cells, allowing cells to overlap initially. We plot the microscopic view for the fixed moments
t = 47s, t = 106s, t = 286s, t = 446s, t = 1066s and t = 2206s. The results are given in Figures 5.2 to 5.7.

We see that initially all cells are on the “mid level” (i.e. blue) and they do overlap and leave some space
empty. Initially, the contact mechanics are predominant and we see large cell overlaps disappear quickly.
With smaller cell overlaps, contact mechanical forces decrease and the adhesive forces become dominant.
Cells are pushed or pulled towards the fS = 0.5 iso-surface and we witness height differences appear in the
form of cells moving to different levels (colors). As each cell is at the level of the 50 % substrate density,
adhesive forces decrease and finally haptotactic forces grow relatively dominant. We see that holes in the

1Diffusion can be turned off by setting g.chemO.diffusionOn = 0. Reaction can be turned off by setting g.chemO.reactionOn = 0.
Sourcing can be turned off by setting g.chemO.sourcingOn = 0.
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monolayer are filled up with cells to reach the final distribution of cells. We even see a newly formed sprout
appear in Figure 5.7. All moments in time in the plots in Figures 5.2 to 5.7 are in a too early stage to really
witness the chemotactic movement. Gravity does not play a role since the cells already lie on the matrix. We
have tested all the cell movement effect separately2 and the results are as one would expect.

5.2. METRICS FOR THE AMOUNT OF SPROUTING
In order to compare the model outcomes for different sets of parameters, we propose eight metrics that give
an indication of the “amount of sprouting”. During a simulation, we keep track of the number of tip cells nt (t )
over time and we denote individual tip cells by q ∈ θt . For each tip cell q we keep track of its z-coordinate

over time zq (t ) as a measure of sprout depth. The time derivative of this metric
d zq

d t for each tip cell q gives
the speed at which sprouts are moving downwards. It is insightful to calculate the average sprout depth z̄(t )
and the average sprout speed d z̄

d t (t ) given all sprouts in one simulation.

Some tip cells will not form a sprout and some sprouts are led by more than one tip cell and we keep track
of the number of sprouts ns (t ) in the domain separately. The ratio ns

nt
(t ) gives the percentage of tip cells that

succeeded in forming a sprout. We say that we have an isolated sprout whenever we have a closed fS = 0.5
iso-line directly beneath the surface of the initial cell distribution at z = hF −2R with outwards directed gradi-
ent. Figure 5.8 shows a situation with a total of 8 sprouts delineated by the black fS = 0.5 iso-lines. We denote
the total area within the iso-lines as a percentage of the total area A(t ). The perimeters of the sprouts on the
microscopic photos in Figure 2.5 have an approximate width of one cell radius. We multiply the combined
length of the iso-lines by the cell radius R and calculate this as a percentage of the total area to get metric
P (t ). This metric closely resembles the measured value in the sprouting assay. Finally, we keep track of the
total mass-percentage of the initial substrate that has degraded into ECF using the metric V (t ) (V for “vascu-
lature”).

We choose to plot the metrics nt (t ), ns (t ) and ns
nt

(t ) together since they provide insight in how many cells
sense the chemical stimulus to start forming new vasculature and how successful they are in this process.
The three metrics A(t ), P (t ) and V (t ) are comparable since they all give insight in the magnitude of the total
formed vascularization and we choose to plot these together. We plot the two metrics z̄(t ) and d z̄

d t (t ) together
since they give insight in the dynamics of the sprout fronts. An overview of the metrics and their dimensions
is given in Table 5.1. The metrics nt (t ), V (t ), z̄(t ) and d z̄

d t (t ) are known at each time step. The values for ns (t ),
ns
nt

(t ), A(t ) and P (t ) however are calculated only whenever we plot a frame to reduce computational load.
In order to compute the value of these metrics, we have to calculate the iso-lines in the cells plot, which is
computationally expensive. We choose to produce movie files with a duration of 45 seconds at 24 frames per
second. For four hours of simulated time, this entails one frame every 13.3 seconds of simulated time whereas
the variable time stepping scheme can choose to do much smaller time steps.

5.3. ESTIMATORS FOR THE MEAN OF THE METRICS
Now we have defined metrics to measure the “amount of sprouting”, we can analyze the model outcome.
Since we know that there is a stochastic factor in both the cell movement and in the tip cell selection, we
expect slightly different outcomes for different simulations. Using the parameters given in Tables 4.2, 4.3 and
4.4 we simulated 12 sprouting assays. Since the total time for one simulation can exceed 24 hours for a very
fine grid with small time steps, we simulate multiple runs simultaneously. The Department of Precision and
Microsystems Engineering of the Delft University of Technology was so kind to give us computational time on
their cluster computer. Figures 5.10, 5.11 and 5.12 give the sprouting metrics over time for each simulation.
Figures 5.13, 5.14 and 5.15 give the estimator for the mean of all metrics and a 95% confidence interval based
on the average over these simulations under the normality assumption. We conclude that using the standard
parameters, we see that after 4 hours of simulated time (i.e. 14400 seconds), the 95% confidence intervals for
the mean of the metrics are as given in Table 5.1.

It should be noted that we calculated the speed of the sprouts d z̄
d t (t ) using a first order approximation d z̄

d t (t ) ≈
2Haptotaxis and contact mechanics together can be turned off by setting g.cellO.haptotaxisOn = 0. Chemotaxis can be turned off

by setting g.cellO.chemotaxisOn = 0. Adhesion can be turned off by setting g.cellO.adhesionOn = 0. Gravity can be turned off by
setting g.cellO.gravityOn = 0.
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Figure 5.8: We see a total of ns = 8 sprouts of different sizes in order of decreasing area at locations approximately
(x, y) = (1250,1200), (1100,2200), (550,550), (2200,1900), (1700,500), (1800,1000), (1000,2500) and (1300,1100). We also see tip cells

(denoted by red x-marking) that have not formed a sprout. The iso-lines are calculated in the surface at z = 1039.4 directly beneath the
initial placement of the cells. The total number of tip cells is nt = 9.

z̄d+1−z̄k

∆t k . Since we use a predictor-corrector scheme for the cell movement, the numerical error on z̄ is of or-

der O(∆t 2). The first order approximation of d z̄
d t (t ) makes the estimation of order O(∆t ). The accuracy of the

sprout speed should therefore be treated with a certain caution.

We witness a jump in the value of A(t ) and P (t ) for a certain simulation (light green line in Figure 5.11) at
t = 14000. Looking in the video file of this specific simulation, we see that two sprout perimeters merge, but
their surfaces do not connect. Apparently both the these perimeters ands areas are counted twice. The “half
merged sprouts” are depicted in Figure 5.9. We have not encountered this problem anywhere else.

Figure 5.9: Only half merged sprouts, leading to an overshoot in the values of A(t ) and P (t ).

Metric Metric for Symbol Dimension
95% confidence
int. for the mean

Number of tip cells Sensed angiogenic urge nt (t ) - 22±2.6
Number of sprouts Sensed angiogenic urge ns (t ) - 12.8±1.7
Successfulness of tip cells Sensed angiogenic urge ns

nt
(t ) - 0.58±0.054

Sprouted area at z = hF Vascular construction A(t ) - 0.145±0.027
Sprouted perimeter at z = hF Vascular construction P (t ) - 0.051±0.0067
Degraded substrate Vascular construction V (t ) - 0.066±0.011
Average depth tip cells (sprouts) Sprout dynamics z̄(t ) µm 593±46
Average speed tip cells (sprouts) Sprout dynamics d z̄

d t µms−1 0.053±0.0098

Table 5.1: Overview of the eight metrics for the “amount of sprouting” together with the 95% confidence intervals of the estimators for
their mean values.
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5.4. SENSITIVITY ANALYSIS

We want to test the response of the model to variation of the parameters listed in Tables 4.2, 4.3 and 4.4. We
choose a total of five parameters to vary, which are the initial concentration VEGF c0

V , the sourcing rates of the
substrate degrading proteases sU and sM , the maximal rate of tip cell selection per second pST , the scaling
factor for the adhesive force λ̂ and the elasticity of the substrate EF .

For each sensitivity analysis, we do five model simulations with different values of one of these specific pa-
rameters, keeping all other parameters constant at the values given in Tables 4.2, 4.3 and 4.4. For the varying
parameter, we choose the standard value, a half and a quarter the standard value and twice and four times the
standard value. We formulate a prediction based on the influence diagram we based our model on in Figure
4.1 and discuss the results for each parameter variation.

5.4.1. VARYING THE INITIAL CONCENTRATION VEGF c0
V

We are interested in the model response to varying initial conditions VEGF c0
V because we model this sub-

stance as the driver of the chemotactic movement, the tip cell selection and the protease secretion. In our
influence diagram, the amount of secreted proteases is dependent on both the VEGF concentration itself as
well as on the number of tip cells nt (t ), which on its turn is up-regulated by VEGF. We therefore expect a rapid
increase in the substrate degrading, measured by the metrics A(t ), P (t ) and V (t ). The increased chemotactic
movement should increase both the sprout depth z̄(t ) and the sprout speed d z̄

d t (t ).

Figures 5.16, 5.17 and 5.18 give the results of the variation of the initial VEGF concentration c0
V . We indeed see

large differences in the values of A(t ), P (t ), V (t ), z̄(t ) and d z̄
d t (t ) that exceed the random fluctuations given in

Table 5.1. However, tip cell selection is not influenced by the variation of the VEGF concentration. This is due
to the fact that in the probabilistic rate of tip cell selection in Equation 4.15, we scale the VEGF concentration
by it’s initial value. This assumption in the probabilistic model may be reconsidered to improve the model.

It is notable that for both metrics A(t ) and P (t ) we see that the high concentration produces larger values than
the very high concentration. In the video files we see that for the very high concentration, the tip cells move
downwards so quickly that they degrade the matrix at the top level for a smaller length of time, decreasing
the values of A(t ) and P (t ). Very high values of c0

V will indeed induce more secretion of proteases and hence
over all cause more substrate degrading V (t ). Sprout morphology for the very high concentration is more
tube shaped, whereas for other concentrations, we see more conical shaped sprouts with larger perimeters at
the top level. It is interesting to note that for the in vitro experiment by the VU medical center dermatology
department, we see the same pattern in the assay with bFGF.

5.4.2. VARYING THE PROTEASE SOURCING RATES sU AND sM

We are interested in the model response to varying sourcing rates sU and sM because we expect protease
induced degrading of the substrate to drive sprout morphology. From the influence diagram we expect that
increased protease secretion will increase substrate degrading and increase all parameters A(t ), P (t ) and
V (t ). This on its turn could increase sprout movement metrics z̄(t ) and d z̄

d t (t ) since cells are more free to
move. Since we have seen that increasing the VEGF concentration does not increase the number of tip cells,
we expect similar results.

Figures 5.19, 5.20 and 5.21 give the results to the variation of the secretion parameters. We indeed see a simi-
lar result as the variation of the VEGF concentration. All metrics A(t ), P (t ), V (t ), z̄(t ) and d z̄

d t (t ) increase with
increasing protease secretion.

It is interesting to note that we also see an increased success rate ns
nt

(t ). We postulate that it is the tip cell’s
ability to degrade the substrate that drives its probability of producing a viable sprout over the chemotactic
response to a higher concentration VEGF. Sprouts are even faster and reach deeper for increasing protease
secretion then for increasing VEGF concentration. Apparently, the increased chemotactic forces induces by
higher concentrations VEGF do not translate into more sprout movement whenever a tip cell does not have
the ability to degrade the substrate underneath itself sufficiently.
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5.4.3. VARYING THE MAXIMAL RATE OF TIP CELL SELECTION pST
We are interested in the model response to varying maximal rates pST in the probabilistic process of tip cell
selection. Tip cells lead the sprout formation and we are interested to see if more tip cells will produce more
sprouts or if a growing number of tip cells will be at the expense of the success rate. We have seen that it is
the protease secretion that mediates the sprout speed and we therefore do not expect raised values for d z̄

d t (t ).
An larger number of tip cells does increase the total secretion of proteases and we therefore expect to see
increased values for A(t ),P (t ) and V (t ).

Figures 5.22, 5.23 and 5.24 give the results for the variation of the maximal tip cell selection rate. We indeed
see a larger number of tip cells appear for higher values of pST . More tip cells do produce more sprouts ns ,
but we have to note that the success rates ns

nt
(t ) do not seem to be influenced by the maximal probability. As

expected, we witness increased values for A(t ),P (t ) and V (t ).

We see that the speed of sprout movement is not influenced as much as when we varied the VEGF concentra-
tion and the protease secretion rates. We do see that more tip cells are selected early in the process for higher
selection rates pST and this gives formed sprouts more time to reach further, resulting in higher values of z̄(t ).
This observation backs our conjecture that sprout speed is dominantly mediated through protease secretion.
It is interesting to see that for very high values of pST , tip cell selection stagnates after 10.000 seconds to a
total of 50 tip cells. This entails that 1.6 % of the ECs are tip cells. The stagnation can be explained by the
inhibition of the selection process due to the raised DLL4 concentration. For low values of PST we do not
witness this stagnation.

5.4.4. VARYING THE ADHESIVE SCALING CONSTANT λ̂

We are interested in the model variations for varying values of the adhesive strength scaling parameter λ̂ be-
cause this parameter has a non-physical nature and must therefore be specifically tested for model influence.
We expect that stronger adhesion will influence the contiguity of the monolayer but not directly influence one
of the measured metrics.

Figures 5.25, 5.26 and 5.27 give the results for variation of λ̂. We indeed see that variations do not influence
any of the metrics in a coherent manner. Variations between the simulations are not ordered according to
the size of the variations and they are within the range of the variance we expect from the stochastic nature of
the model itself. This observation is beneficial for the validation of our model since the uncertain parameter
λ̂ apparently does not have a big influence on the process that we try to model.

However, we do see in the video files that for high adhesive values, the cells adhere to the substrate more
strongly in comparison to the other forces involved and we witness the confluent monolayer of cells breaking
apart. We therefore hold on to the value for λ̂ as chosen in Table 4.3.

5.4.5. VARYING THE ELASTICITY OF THE SUBSTRATE EF
We are interested in the model variations for varying substrate elasticities. We have previously modeled that
EB = 2EF , so when we increase EF , we will increase EB accordingly. We know that Namy et al. [18] find that
substrate elasticity is an important factor in EC pattern formation on in vitro substrates. We are interested to
see if our model verifies this result.

Figures 5.28, 5.29 and 5.30 give the results for variation of EF . We directly conclude that none of the metrics
for angiogenesis as proposed are influenced by this variation. However, looking at the video files, we see very
interesting differences in pattern formation on the substrate surface and we devote the subsequent chapter
to this phenomenon.
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5.5. COMPARISON TO THE IN VITRO WORK
Let us start by stating that the time scale of our simulation is clearly not consistent with the in vitro results.
For our sensitivity and variance analysis, we consistently used a total simulated time of 4 hours. In these
simulations however, we witness a comparable amount of sprouting activity we see in vitro after two or three
days, meaning that our simulation is a factor 12 up to 18 times as fast. Since we saw in the sensitivity analysis
that protease-substrate interactions are the main driver for sprout formation, we formulate the hypothesis
that our chosen values for the sourcing rates sU and sM and reaction rates rF and rB are to high. It can be a
starting point for future studies to see if lowering these values by a factor 12 to 18 sets our simulated process
to the right time scale.

We would like to compare our simulation results for varying concentrations VEGF to the results obtained by
the VU medical center dermatology department. As mentioned in Section 2.2, the metric used at the end
of their sprouting assay is comparable to our simulated metric P . For the above mentioned reason we use
the data P (14400) (i.e. 4 hours of simulated time) in this comparison. In calculating the metric P (t ) from
our simulations, we assumed that the thickness of the dark sprout perimeter is equal to R. This assumption
is, based on inspection of the microscopic photographs, reasonable not free of error. The sensitivity of the
image processing software used by the dermatology department and the focus of the microscopic images are
another source of uncertainty. This makes quantitative comparison of our results hard, although our data
seems to align well. Figure 5.31a shows the data of the in vitro assays for concentrations VEGF ranging from
0.1 to 25 ng

mL . The simulated metric values P (14400) for varying VEGF as given in Figure 5.17 are repeated in
Figure 5.31b to allow for easy comparison.

For both the in vitro results and the simulated results, we witness an increase in the metric P for increased
values of VEGF. The response is however not completely equal, e.g. the in vitro increment in P is slightly more
gradual. For the simulated results we have an increase of 2 % in P every time we double the concentration
VEGF. In the simulated results we see a drop in the sprouting percentage for the very high concentration that
we do not see in the in vitro results. We already mentioned that this drop does occur in the bFGF in vitro
assay. It is therefore to quick to conclude that this is a flaw in the model. Both metrics are in the same range
between 0 % and 6%.We conclude that the response of the metric P to increasing concentrations VEGF is
qualitatively comparable to the in vitro results, but they do not align quantitatively.

(a) The metric P in % as measured by the VU Medical
Center Dermatology Department after the third day.

The black bars are DTECs and the gray bars are ATECs.

(b) The metric P at t = 14400. We do not make a distinction
between the two EC types.

Figure 5.31: Metric P (% area sprout perimeter at the top level), both from experiments our simulations for varying values of VEGF.

From laboratory observations, we witness sprouting speeds of several millimeters per day. In comparison,
our sprouting speed under normal parameters is 0.053µm

s = 4.6 mm
d ay . We conclude that this is in the right or-

der of magnitude. We also see in the in vitro assays that sprouts have a roughly conical shape, being twice as
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long as their diameter on the top level. Our simulations for normal parameters generates sprouts that are of
this morphology as can be seen for example in Figure 5.32. This figure is the last frame from the video file of
a normal parameter simulation.

Figure 5.32: The metric P in % as measured by the VU Medical Center Dermatology Department for varying concentrations VEGF. The
black bars are for DTECs and the gray bars are for ATECs.

We can conclude that qualitatively we have simulation results that mimic the in vitro angiogenesis assay
closely. A comparison of a quantitative nature is hard to give by the lack of quantitative data from the in vitro
assay and the methods of measurement used. We do know that the model responds in the way one would
expect to the variation of all important parameters.

5.6. VASCULOGENESIS-LIKE STRUCTURE FORMATION
Namy et al. [18] conclude that substrate elasticity is important when studying vasculogenesis on substrates.
When varying the elastic modulus EF in the sensitivity analysis, we witnessed pattern formation by cells on
the initial cell layer. This gave us the idea to see if we could produce vasculogenesis-like patterns using our
computational model. Setting the rate parameter pST = 0 allowed us to do multiple model simulations for
different values of EF without the involvement of tip cells and the chemical influences from their sourcing.
We start each simulation with a random initial distribution of cells. The results for values EF = 10,EF = 2 and
EF = 1 are given in Figures 5.33 to 5.38.

For EF = 10 we see the formation of an almost perfect monolayer. For EF = 2 we see that cells cluster to-
gether but parts of the monolayer are still intact. Setting EF = 1, we see cells cluster together along lines and
the monolayer has completely disintegrated. It would be highly interesting to investigate the possibility of
simulating vasculogenesis using this model in future studies.
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6
CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS
Our proposes SDCBM is qualitatively successful in describing the in vitro angiogenesis sprouting assay as
performed by the VU medical center dermatology department. We modeled the degrading of the substrate
by proteases secreted by ECs as a continuous process dependent on the properties of the substrate itself. Cell
motility is modeled using a cell based formalism based on mechano-biological principles that are well es-
tablished in cell biology. A probabilistic model based on local chemical conditions is proposed to model the
differentiation of ECs into tip cells and stalk cells.

The proposed metrics of “the amount of sprouting” seem to align with the in vitro results on a qualitative level.
Quantitative comparison is hard due to many uncertainties, both in the proposed computational model as
well as in the measurement techniques used for the in vitro experiment. Sprout morphology is of the form
witnessed in the experimental setting.

The metrics over time produced by the model respond to variation in parameters as we would expect from
biological reasoning. Only the variation of the VEGF concentration is performed in the laboratory setting and
the results are comparable. The area of sprouted perimeter range from 1% to 5% in the in vitro experiments
and range from 0.5% to 6% in the simulations for varying concentrations VEGF.

VEGF concentrations, protease secretion rates and the probabilistic model for tip cell selection are important
factors in sprout formation process. We postulate that it is the tip cell’s ability to degrade the substrate in its
surroundings that drives the successfulness of producing a viable sprout, the sprouts proliferation speed and
its final depth. This factor is of greater importance than the chemotactic response to a higher concentration
VEGF or the adhesive properties. The success rate of sprout formation for a tip cell are between 50 % and 60
%, independent of the number of tip cells present. We postulate that also in vitro we have more tip cells than
actual sprouts.

The SDCBM was built to simulate angiogenesis. Vasculogenesis is another process witnessed in studies con-
taining ECs as described by Namy et al. [18] and Merks et al. [5]. Since our SDCBM describes EC behavior
in a general sense, we also witness vasculogenesis-like structure formation for varying values of the substrate
elasticity. Since modeling vasculogenesis was not the scope of this study, we leave further investigation of this
phenomenon for future research.

6.2. DISCUSSION AND RECOMMENDATIONS
In the modeling process, we made choices and performed analyses as presented in this thesis. For some of
these, other choices could have been made and we present an overview of them.

We based most parameters and scaling factors in the derivation of the cell movement model on physical
or biological principles. The only parameter that forms the exception is the dimensionless scaling factor λ̂.
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Although we have seen in our sensitivity analysis that this parameter does not play an important role in an-
giogenesis, it does mediate the contiguity of the monolayer of cells. Further investigation of the adhesive
process and the way to capture it in a mathematical formalism is advised.

Proteins decay naturally over time, a property that is not reflected in the chemical model as used. This prop-
erty may be implemented by adding a decay factor to the system of PDEs. E.g. for the concentration VEGF,
we add −dV cV to the right hand side of the PDE. Here, dV is a decay factor with dimension [ 1

s ]. In our FEM,
this would entail an extra term in the mass matrix SV .

Limited by computational resources, we have only performed a sensitivity analysis on five parameters and
we only did twelve model runs for the estimator of the mean of all sprouting metrics. Extra computational
power or parallelizing the code could improve these numbers.

We used a FEM scheme with linear basis functions. Moving to a higher order basis functions could improve
the accuracy of the computational scheme. However, using Newton-Cotes integration over the mass matrix
M to avoid spurious oscillations introduces a O(h) error. Implementing a higher order scheme is only use-
ful if the oscillatory problem is dealt with in another way and to do so we present a still not fruitful onset in
Appendix E.4.3. Furthermore, all the interpolations we made for the cell movement parameters are linear. It
might be useful to validate the derivation and the modeled linearity of the terms α,γ and λ.

It might be useful to conduct further investigation into the chosen parameters. Sources in the literature give
very different values for for example the diffusive speed DV . Other parameters were not found in literature
and estimated based on the known ones. Our initial concentrations VEGF are very different from the real
values used in the in vitro study. We compensate by scaling down the chemotactic response to the VEGF con-
centration accordingly. Substituting these factors with more realistic values will probably not alter the model
outcome but will make the model more understandable. Validation of all these choices will make the model
more solid and can maybe solve te problem of the wrong time scale.

In the current model, the edges of the domain do not act forces on the cells, making it possible for cells to
move out of the computational domain. Cells that have moved out of the domain are not within an element
of the FEM mesh and therefore can not sense or source any chemicals or react to the substrate properties.
This fact on itself forms no problem for the rest of the computational model, but does require much use-
less computational effort, predominantly in trying to find the (non existing) element a cell is located in. An
improvement would be to remove these cells from the computations. Another approach could be to give the
boundaries contact mechanical properties or to lay a monolayer of ghost cells on the boundaries that provide
the contact mechanical forces to keep the cells in the problem domain.

In the formulation of the rates λ̃ST and λ̃ST of tip cell selection, we normalize the VEGF and DLL4 concen-
trations with the initial concentration VEGF c0

v . In hindsight, this is no reasonable assumption since tip cell
selection is now not dependent on the absolute VEGF concentration, but rather on a saturation with respect
to the initial condition. It would be an improvement to remove this normalizing factor and reconsider these
rates.

We model the contact mechanics between cells and this seems to work well. It would be interesting to see
what happens if we incorporate cell-matrix contact mechanical properties. We can also incorporate matrix
porosity and permeability to improve the model for cell-matrix interaction. As an improvement upon this
work, viability of cells and cell proliferation can be modeled.

It would be very interesting to see if we can verify more of our simulation results with laboratory measure-
ments. This incorporates measurement of other metrics than only P (t ) and maybe 3D visualization of the
sprouting assay using multi-focal plane microscopy or other techniques.

Extensions of the proposed model can be made to work towards the in vivo situation. We can model cells
contained in the ECM that consume oxygen and secrete VEGF when deprived of oxygen. We could addition-
ally monitor the oxygen concentrations. Oxygen sources from existing vessels at a constant rate and reacts
all types of cells proportional to the concentration. We will have a similar diffusion-reaction-source equation
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governing the concentration of oxygen cO :

∂cO

∂t
=∇· [DO( fF , fB , fE )∇cO]− ∑

q∈θ
rOδ(x−xq )cO +SOδ(x−xl ),

where DO is a diffusive function, SO is the source strength, δ(x− rl ) is 1 inside the lumen and rO is the re-
action constant. The cells secrete VEGF reversely proportional to the oxygen concentration. For a certain

concentration c s
O , the secretion of VEGF stops. Hence the source strength is proportional to max

(
0,1− cO

c s
O

)
.

The diffusion-reaction-source equation governing the concentration of VEGF cV looks like:

∂cV

∂t
=∇· [DV ( fF , fB , fE )∇cV ]− ∑

q∈θ
rV δ(x−xq )cV + ∑

q∈θ
SV max

(
0,1− cO

cOs

)
δ(x−xq ),

where DV is the diffusion constant, SV is the source strength and rV is the reaction constant. This model to
some extent follows the reasoning of Maggelakis in [33].





A
GLOSSARY OF BIOCHEMICAL TERMS AND

PROCESSES

A.1. PROCESSES
• Angiogenesis: Creation of new blood vessels from pre-existing vessels.

• Vasculogenesis: Creation of new blood vessels by forming endothelial cells from endothelial progenitor
cells.

• Proliferation: Cell division.

• Chemotaxis: Active cell migration in response to a chemical stimulus. Mostly in the direction of the gra-
dient of a concentration field solvent in the surroundings. The substance that cells are being attracted
towards is called the chemoattractant.

• Haptotaxis: Active cell migration in response to adhesion to proteins fixed in the extracellular matrix.
Fibronectin is an example of a protein in the basement membrane causing haptotaxis.

• Elongation: Changing shape towards an attractant.

• Contact Inhibition: A cell not being respondent to autocrine chemotaxis when the membrane is in
contact with another cell. For example, VE-cadherin which binds cells together causes cells to not
respond to autocrine chemotaxis.

• Autocrine Chemotaxis: Chemotaxis caused by a chemical gradient secreted by the cell itself.

• Anastomosis: The process in angiogenesis where sprouts join. Sprouts can join tip-to-tip or the tip cell
of a sprout can join halfway with another sprout.

A.2. PHYSIOLOGICAL DEFINITIONS
• In vitro: In a laboratory setting

• In vivo: In a living organism

• De novo: Newly formed

• Endothelial cells: Cells that line the inside of a blood vessel in a mono-layer. They rest on the basement
membrane.

• Endothelium: The monolayar of endothelial cells forming the inner layer of a blood vessel.

• HUVECs. Human Umbilical Vein Endothelial Cells. Endothelial cells acquired from the Umbilical Vein.

• Motility: Ability to move and migrate.
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• Mesoderm: The skin layer between the ectoderm and the endoderm.

• Fibroblast: Cells that, amongst other functions, form the ECM.

• Granulation Tissue: New connective tissue in the wound healing process that is filled with blood vessels
formed by angiogenesis. It is deposited by fibroblasts, which rely on oxygen from the blood vessels to
do so.

• ECM: Extra Cellular Matrix. Everything outside the cells in a multi-cellular structure. Consists of fiber
like structures such as collagen,elastin and fibronectin. The Basement membrane is part of the ECM.

• Basement membrane: Thin sheet of fibres beneath the endothelium.

• Hypoxic tissue: Tissue that is low on oxygen supply. Hypoxic tissue secretes, among other things, VEGF.

• Matrix: A substance used to grow cell cultures on. Examples are fibrin matrices or matrigel matrices.

• Sprout: Start of a new micro vessel.

• Tip Cells: Endothelial cells that are leading the growth of a sprout. Tip cells secrete a signal substance
that inhibit stalk cells to differentiate into tip cells. Tip cells secrete proteases that degrade the fib-
rin matrix and the boundary membrane. The selection of the tip cell is regulated by VEGF, DLL4 and
Notch1 signaling [52].

• Stalk Cells: Endothelial cells that follow a tip cell.

• Lumen: The space between endothelial cells in which blood can flow.

• Pseudopodia: Temporary longitudinal bulges of the cell membrane. In chemotaxis towards higher con-
centrations of chemoattractant.

A.3. SUBSTANCES
• Angiogenesis inhibitor: Group of substances that can slow down the process of angiogenesis.

• Angiogenic Growth Factors: Group of substances that can speed up the process of angiogenesis.

• VEGF: Vascular Endothelial Growth Factor. An angiogenic growth factor. A signal protein given off
by hypoxic tissue to induce angiogenesis. It activates endothelial cells in pre-existing blood vessels to
degrade the basement membrane.

• bFGF: basic Fibroblast Growth Factor, sometimes FGF-2. An angiogenetic growth factor.

• Collagen: Structural protein in skin.

• Fibrin: Structural protein formed in wound beds.

• VE-cadherin: A homophilic, trans-membrane cell-adhesion cadherin type protein that binds cells to
one another. Besides its adhesive function, it plays an inhibiting role in the VEGF signaling pathway
[53]. The contact inhibited chemotaxis is modeled after this effect [16].

• Proteolytic enzymes: Enzymes that degrade proteins.

• TNFα: Tumor necrosis factor alpha. Induces receptor bound u-PA (urokinase-type plasminogen ac-
tivator) activity, a proteolytic enzyme, which degrades fibrin matrices. It is used in fibrin mono layer
experiments to maintain the mono-layer.

• MMP: matrix metalloproteinases. Proteolytic enzymes that degrades boundary membrane.

• uPA: urokinase-type plasminogen activator. A proteolytic enzyme that degrades fibrin.

• DLL4: Enzyme secreted by tip cells to prevent stalk cells to transform into tip cells and make them
chemotactically move towards the tip cell.

• fibronectin: a matrix macromolecule which occurs in two different forms. 1. As a soluble glycopro-
tein found in various body fluids (including blood), known as plasma fibronectin. 2. As an insoluble
constituent of the extracellular matrix and basement membranes of cells, known as cellular fibronectin



B
CPM IMPLEMENTATION

As a way of getting acquainted with the existing CPM models as used by Merks [16] during the literature study,
a stripped-down version of a CPM was implemented. This chapter briefly summarizes the choices made in
the implementation of this model. In our computational model, we solve the PDEs on a grid identical to the
lattice sites using a finite volumes scheme. Each time step consists of three phases. First, the chemicals are
updated. Based on the new distribution of the chemicals, the substrate sites are stochastically degraded. At
last, we calculate the maximal and minimal energy lattice site for each cell and acquire and repel the lattice
sites successively.

B.1. DIFFERENTIAL EQUATIONS GOVERNING THE CHEMICALS
Our domain consists of a square lattice of size N ×M . Each lattice site has a spin σx , describing the content
inside. The spin can a number c ∈ θ = {1, . . . ,n}, meaning that the lattice site belongs to the biological cell
c or one of the substrate components fibrin F , BM B , ECF E or Lumen L. Opposed to our newly proposed
SDCBM, we distinguish between lattice sites that have fluid (ECF) in them and which are in direct contact
with the lumen and those lattice sites that are not in direct contact. Sites not in contact have spin E and sites
in direct contact with the “blood flow” have spin L We denote the set of stalk cells θs and the set of tip cells θt .
We define indicator functions

δσx ,θ =
{

1 if σx ∈ θ,

0 otherwise,
δσx ,θt =

{
1 if σx ∈ θt ,

0 otherwise,
δσx ,θs =

{
1 if σx ∈ θs ,

0 otherwise.

δσx ,F =
{

1 if σx = F,

0 otherwise,
δσx ,B =

{
1 if σx = B ,

0 otherwise,
δσx ,E =

{
1 if σx = E ,

0 otherwise.

In analogy to Gamba [13], Serini [14] and Merks [5], the concentration of the chemoattractant VEGF cV is
governed by the diffusion-reaction PDE

∂cV

∂t
= DV ∇2cV − rV δσx ,θcV ,

where DV is a diffusive constant, rV is the reaction speed. Diffusion is assumed to be independent of the type
of medium it is in. Besides this assumption, VEGF reacts with endothelial cells at a rate that is proportional
to the concentration cV .

The three enzymes MMP, uPA and DLL4 are secreted by tip cells and diffuse through the tissue. Their concen-
trations are denoted by cM ,cU and cD . MMP reacts with the boundary membrane to degrade it. uPA reacts
with fibrin to degrade it. DLL4 reacts within stalk cells. The governing equations are

∂cM
∂t = DM∇2M −rMδσx ,B cM +SMδσx ,θt ,
∂cU
∂t = DU∇2U −rUδσx ,F cU +SUδσx ,θt ,
∂cD
∂t = DD∇2D −rDδσx ,θs cD +SDδσx ,θt .
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We model the boundary conditions as “no flux” boundaries. Chemicals can not pass through the boundaries.
This is unlike the model uses by Merks [5], where a Dirichlet boundary condition is used to be “absorbing”
the chemoattractant. Merks uses a 500× 500 lattice where each site is around 4µm2 in area. Cells contain
around 45 lattice sites, giving them a radius of 7.5 µm.

We solve the equations for the chemicals on the lattice using a finite volume method upon which we will not
elaborate here.

B.2. INITIAL CONDITIONS
Initially, the upper two fifth of the lattice sites get spin L. The lower three fifth get spin F and in between there
is a single row of lattice sites having spin B . We specify a number of rectangular cell morphologies as initial
states. We randomly select a cell morphology and place the cells next to each other on the BM layer, changing
the spins of the lattice sites accordingly. One in every seven cells is appointed to be a tip cell. We give each
cell a distinct color and we fill the lattice sites of tip cells with asterisks.

The initial conditions of the chemical is consistent with the initial conditions in our SDCBM. They are all of
value 0, except for the concentration VEGF which is c0

V within the fibrin. The initial distribution of the lattice
sites can be seen in Figure B.1.

Figure B.1: Initial distribution of the lattice sites in our CPM model.The tip cell is marked with asterisks.

B.3. STOCHASTIC DEGRADING OF THE SUBSTRATE
The BM degrades into ECF with a probability proportional to the concentration MMP. For each lattice site
we formulate a probability function P(E |B) : cM → [0,1] giving the probability that a lattice site with spin B
changes to spin E per unit of time and we define

P(E |B) = δσx ,B

[
1−e

− cM
µB−

]
,

Here, µ−
B is a reaction coefficient determining the “durability” of the BM. Note that thanks to the factor δσx ,B ,
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we only have non-zero probabilities for lattice sites that actually have spin B . Likewise for the lattice sites with
a fibrin spin F , we define a probability of a spin change to E per unit of time dependent on the concentration
uPA given by

P(E |F ) = δσx ,F

[
1−e

− cU
µF

]
.

Lattice sites with spin E that are a direct neighbor of a lattice site with spin L immediately change their spin
to L as if they “fill up” with the blood stream. BM can form between stalk cells (not tip cells) and either fibrin
or the ECF. The concentration MMP should be sufficiently small. We model per unit of time

P(B |E) = δσx ,E e
− cM
µ+B .

We empirically set the parameters µ−
B = 10, µ−

B = 5 and µ+
B = 0.2.

B.4. STOCHASTIC ELONGATION OF THE CELLS
Cells stay at the same size. Every time step, the most positive and the most negative lattice site in the cell and
it’s surrounding is calculated and they are acquired and repulsed respectively. This is the largest difference
compared to the CPM implemented by Merks. We implement a Hamiltonian function H as is usual when
implementing a cellular Potts model and we define the probability of a spin change using the same function
Merks uses in Equation 3.1. Both tip and stalk cells chemo-attract towards a gradient of VEGF. Stalk cells also
chemo-attract towards a gradient of DLL4. We implement this by modeling

Hchemo =λV cV +λD cD

for stalk cells. For tip cells, we omit the cD term. We set λV = λD = 50. Cells adopt lattice sites more easily
in ascending order from the BM, Lumen, Fibrin and ECF. Cells never add any lattice sites from the boundary.
The Hamiltonian energies are chosen such that this order is attained. We implement this by modeling

Hsubstr ate = δσx ,EµE +δσx ,FµF +δσx ,BµB +δσx ,LµL ,

and setting penalties µF = −200 and µB = −600 and bonuses µE = 50 and µL = 0. Cells tend to stay in a
compact shape. Lattice sites in the cell further away from the center of gravity get smaller positive energies.
For a cell i we denote the center of gravity by ri and for a given lattice site (n,m) we model

Hshape =
σ

‖(n,m)− ri‖+1
,

and we set σ= 200. Cells tend to stick together. Lattice sites directly adjacent to lattice sites in other cells get
positive energies. For a cell i we model

HCel l−Cel l = δσx ,θ\iλc ,

and we set λc = 100. Cells tend to stick to the fibrin matrix and to the BM. Lattice sites directly adjacent to
elements in the BM or the fibrin scaffold get positive energies. We model

HCel l−M atr i x = δσx ,BλB +δσx ,FλF ,

and we set λB = 200 and λF = 100.

The total energy of a lattice site (n,m) for a given cell i is given by the sum of all the individual Hamiltonian
functions.

B.5. RESULTS
We run two separate simulations for a different number of time steps in Figures B.2 and B.3. It is clear that
the mechanism of this model gives results that we would expect, but since CPM’s are not the main subject
of this thesis, we will not go into detail on how to tune all the parameters and speed up the model to work
reasonable for a large number of cells. It can be concluded that the set of biochemical and biomechanical
mechanisms implemented indeed causes angiogenic-like behavior. This strengthens us in implementing
these same mechanisms in our newly proposed SDCBM.
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Figure B.2: The elongated cells in our CPM after several time steps.

Figure B.3: The elongated cells in our CPM after several time steps.



C
THE FEM FOR THE PDE LAYER

C.1. GALERKIN EQUATIONS FOR THE PDE OF cM
We derive the Galerkin equations for the PDE of only one of these equations. The derivations for the other
equations follow the same principles. Consider the PDE on Ω ⊂ R3 for the concentration of MMP cM where
we abbreviate DM = DM ( fF , fB , fE ) to shorten notation:

∂cM

∂t
=∇· [DM∇cM ]− rM cM fB + ∑

q∈θt

sMδ(x−xq )cV ,

with a no-flux boundary condition ∂cM
∂n = 0 on the boundary Γ. We multiply by a test function ϕ ∈ H 1(Ω) and

integrate overΩ:∫
Ω

∂cM

∂t
ϕdV =

∫
Ω
∇· [DM∇cM ]ϕdV −

∫
Ω

rM cM fBϕdV +
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕdV.

Using ∇· [DM∇cM ]ϕ=∇· [DM∇cMϕ]− (∇ϕ) · (DM∇cM ) and Gauss’ divergence theorem we see

∫
Ω

∂cM

∂t
ϕdV =

∫
Ω
∇· [DM∇cMϕ]dV −

∫
Ω

(∇ϕ) · (DM∇cM )dV −
∫
Ω

rM cM fBϕdV +
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕdV ,

and

∫
Ω

∂cM

∂t
ϕdV =

∫
Γ

[DM∇cMϕ] ·ndΓ−
∫
Ω

(∇ϕ) · (DM∇cM )dV −
∫
Ω

rM cM fBϕdV +
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕdV.

=
∫
Γ

D
∂cM

∂n
ϕdΓ −

∫
Ω

D(∇cM ) · (∇ϕ)dV −
∫
Ω

rM cM fBϕdV +
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕdV.

Because of the boundary condition, we see that the boundary term drops out and we end up with the weak
formulation∫

Ω

∂cM

∂t
ϕdV =−

∫
Ω

DM (∇cM ) · (∇ϕ)dV −
∫
Ω

rM cM fBϕdV +
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕdV , (C.1)

and we have to find a cM ∈ L2([0,T ], H 1(Ω)) that satisfies Equation C.1 ∀ϕ ∈ H 1(Ω) on our domain Ω and
for t ∈ [0,T ]. The concentration MMP cM is varying in both time and space and we may write cM = cM (x, t ).
We introduce a time independent discretization into nel tetrahedral elements with in total n nodal points
(nodes). We denote the elements by el for l = 1, . . . ,nel . We denote the nodal points by n j for j = 1, . . . ,n and
we denote their spacial coordinates by x j = (x j , y j , z j )T . Corresponding with each node n j we introduce a
piecewise linear basis functionϕ j (x) =α j +β j x+γ j y+δ j z. We choose the parametersα j , . . . ,δ j (inside each
element) such that on each nodal point ni we have ϕ j = 1 if i = j and 0 otherwise, so called tent functions.
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On every element el we introduce a local numbering and we reserve the only subscript notation for global
numbering and the superscript-subscript notation for local numbering. Element el has four nodal points nel

p

for p = 1, . . . ,4 and we denote their spacial coordinates by xel
p = (xel

p , yel
p , zel

p )T . Inside the element, the param-

eters α, . . . ,δ are constant for each ϕel
p and we denote the parameters using αel

p , . . . ,δel
p . For the concentration

cM we introduce a vector [cm] of length n and we say that the j -th element [cm] j coincides with the value of
the concentration MMP cM on the nodal point n j at location x j . Since the concentration on the nodal points
may change over time, we can write [cm] = [cm](t ). In local numbering we will denote this as [cm]el

p . Note that
for the concentration MMP we use cM with capital M and for the corresponding vector of parameters we use
[cm] with lower case m. We can now approximate the concentration cM (x) ≈ ∑n

j=1[cm] jϕ j (x). To conclude,
we define

• elements el for l = 1, . . . ,nel ;

• using global numbering, nodes n j for j = 1, . . . ,n having spacial coordinates x j = (x j , y j , z j )T . We de-
note possibly different nodes on the global scale with numbers i and j ;

• using local numbering, the four vertices nel
p of an element el for p = 1, . . . ,4 having spacial coordinates

xel
p = (xel

p , yel
p , zel

p )T . We denote possibly different nodes on the local scale with numbers p and k

• using global numbering, basis functions ϕ j (x) =α j +β j x +γ j y +δ j z on a node n j such that ϕ j (xi ) = 1
for i = j and 0 otherwise;

• using local numbering, basis functionsϕel
p (x) =αel

p +βel
p x+γel

p y+δel
p z on a node nel

p such thatϕel
p (xel

k ) =
1 for p = k and 0 otherwise;

• using global numbering, a vector of parameters [cm](t ) with values [cm] j (t ) on each node n j equal to
the value of cM (x j ) at that nodal point;

• using local numbering, a vector of parameters [cm](t ) with values [cm]el
p (t ) on each node nel

p equal to

the value of cM (xel
p ) at that nodal point;

• an approximation cM (x, t ) ≈∑n
j=1[cm] j (t )ϕ j (x).

• biological cells numbered q = 1, . . . , N .

• the index set of cells θ and the subsets θt for tip cells and θs for stalk cells.

For notational simplicity, we will often use [cv ] instead of [cv ](t ) and ϕ j instead of ϕ j (x). Substituting the
approximate form for cV into the weak formulation in Equation C.1 and choosing ϕ = ϕi for i = 1, . . . ,n we
see

∫
Ω

∂

∂t

(
n∑

j=1
[cm] jϕ j

)
ϕi dV =−

∫
Ω

(∇ϕi ) · (DM∇
(

n∑
j=1

[cm] jϕ j

)
)dV

−
∫
Ω

rM

(
n∑

j=1
[cm] jϕ j

)
fBϕi dV +

∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕi dV for i = 1, . . . ,n.

Changing the order of integration and summation yields a system M ∂cm
∂t +Scm =Q where the matrix elements

Mi j and Si j and the vector elements Qi are given by

n∑
j=1

∫
Ω
ϕ jϕi dV︸ ︷︷ ︸

Mi j

∂[cm] j

∂t
+

n∑
j=1

∫
Ω

DM∇ϕi ·∇ϕ j + rM fBϕiϕ j dV︸ ︷︷ ︸
Si j

[cm] j =
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕi dV︸ ︷︷ ︸
Qi

for i = 1, . . . ,n.

We calculate the matrix entries Mi j and Si j and the vector elements Qi by splitting up the integrals over all
elements, i.e.
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Mi j =
∫
Ω
ϕ jϕi dV =

nel∑
l=1

∫
el

ϕ jϕi dV︸ ︷︷ ︸
M

el
i j

,

Si j =
∫
Ω

DM∇ϕi ·∇ϕ j + rM fBϕiϕ j dV =
nel∑
l=1

∫
el

DM∇ϕi ·∇ϕ j + rM fBϕiϕ j dV︸ ︷︷ ︸
S

el
i j

,

Qi =
∫
Ω

∑
q∈θt

sMδ(x−xq )cV ϕi dV =
nel∑
l=1

∫
el

∑
q∈θt

sMδ(x−xq )cV ϕi dV︸ ︷︷ ︸
Q

el
i

.

C.2. LINEAR BASIS FUNCTIONS
By the nature of the basis functions ϕel

p with p = 1, . . . ,4 within an element el , we know that they must attain

values 1 on their corresponding node p and attain values 0 at all other nodes. If we write ϕel
p = α

el
p +βel

p x +
γ

el
p y +δel

p z for p = 1, . . . ,4, we can write these equalities as a system
1 xel

1 yel
1 zel

1
1 xel

2 yel
2 zel

2
1 xel

3 yel
3 zel

3
1 xel

4 yel
4 zel

4



α

el
1 α

el
2 α

el
3 α

el
4

β
el
1 β

el
2 β

el
3 β

el
4

γ
el
1 γ

el
2 γ

el
3 γ

el
4

δ
el
1 δ

el
2 δ

el
3 δ

el
4

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and we can solve for our parametersαel
p , . . . ,δel

p for p = 1, . . . ,4 by matrix inversion. Since our mesh is constant
in time, this can be done once prior to the time stepping.

C.3. (APPROXIMATE) INTEGRATION OVER TETRAHEDRA
For the integrals over tetrahedra involving the basis functions, we use the Holand-Bell integration formu-
las for linear basis functions over simplices proved in [54]. Each element el has four corresponding nodes
(vertices), denoted by nel

p for p = 1, . . . ,4. If ϕp are linear basis functions on the nodes nel
p of the tetrahedral

element el (simplex in 3d), then we have the exact integral∫
el

(ϕel
1 )a (ϕel

2 )b (ϕel
3 )c (ϕel

4 )d dV = ‖∆‖el
a! b! c ! d !

(a +b + c +d +3)!
, (C.2)

where ‖∆‖el

6 is the volume of the element el . We calculate ‖∆‖ using the determinant

‖∆‖el =

∣∣∣∣∣∣∣∣
1 1 1 1

xel
1 xel

2 xel
3 xel

4
yel

1 yel
2 yel

3 yel
4

zel
1 zel

2 zel
3 zel

4

∣∣∣∣∣∣∣∣ . (C.3)

Next, we introduce Newton-Cotes integration for approximation of volume integrals of other than basis func-
tions over a tetrahedron el . We see∫

el

f (x)dV u
‖∆‖el

6

(
1

4

4∑
p=1

f (xel
p )

)
= ‖∆‖

24

4∑
p=1

f (xel
p ), (C.4)

where equality holds if f (x) is linear.

C.4. BARYCENTRIC COORDINATES, LINEAR INTERPOLATION AND DIRAC DELTA

INTEGRATION
Cells secrete the different chemoattractants where they are located. In the numerical model, the chemicals
source within an element of the finite element mesh and it is therefore essential to know in which element
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el a certain cell n is located. Hence, we have to develop a test to see whether a cell is inside a tetrahedron.
Furthermore, we would like to easily linearly interpolate in space inside a tetrahedron. Both challenges can
be taken care of by introducing barycentric coordinates.

Assume that element el has vertices nel
p for p = 1, . . . ,4 with Cartesian coordinates xel

p = (xel
p , yel

p , zel
p )T and we

have a point xq inside the tetrahedron having coordinates (xq , yq , zq )T . To each vertex p = 1, . . . ,4 we associate
a parameter ζel

p such that point xq is a linear combination of the vertex coordinates with weight factors ζel
p .

Since we only need three points to describe a point in 3D, we furthermore constraint ζel
1 +ζel

2 +ζel
3 +ζel

4 = 1.
These constraints in matrix form give

1
xq

yq

zq

=


1 1 1 1

xel
1 xel

2 xel
3 xel

4
yel

1 yel
2 yel

3 yel
4

zel
1 zel

2 zel
3 zel

4



ζ

el
1
ζ

el
2
ζ

el
3
ζ

el
4

 ,

and we find the ζ’s by explicit inversion. Since for our problem the finite element mesh is constant in time,
so is the matrix of node coordinates for each element el . It is therefore computationally advantageous to
calculate and store the inverses beforehand. Assume we have a function cV approximated at the vertices xel

p

by values [cv ]el
p . If we have a point xq inside el and we want to linearly interpolate between the vertices to get

the value of cV at P , we simply take the inner product of the values cv and the barycentric coordinates, i.e.

cv (P ) =
4∑

p=1
ζ

el
p [cv ]el

p = ζel
1 [cv ]el

1 +ζel
2 [cv ]el

2 +ζel
3 [cv ]el

3 +ζel
4 [cv ]el

4 .

To check whether a point (e.g. a cell center) is inside an element el , we calculate the barycentric coordinates.
The point lies inside of the tetrahedron if and only if we have 0 < ζ

el
p < 1 for all p. When the point lies on the

boundary of the tetrahedron we have 0 ≤ ζel
p ≤ 1 for all p and ζel

p = 0 for at least one p. It is therefore sufficient
to check whether these conditions apply. Every cell lies within exactly one element, and we begin our search
with the elements with the smallest distance between the element center and the cell center.

We finally introduce integration over tetrahedra for integrands involving Dirac delta distributions δ(x−xq ).
We know that

∫
f (x)δ(x−xq )dΩ= f (xq ). For the integrals that contain linear basis functions we see∫

el

ϕ
el
p δ(x−xq )dV =ϕel

p (xq ) = ζel
p (q),

where ζel
p is the pth barycentric coordinate of the point xq whenever xq lies within el .

C.5. THE ELEMENTS MATRICES AND VECTORS FOR THE PDE OF cM
We derive approximations for the integrals M el

i j , Sel
i j and f el

i . We apply Holand-Bell integration (Equation C.2)

to M el
i j . We note that, integrating over el , we only have non-zero values for i , j ∈ {nel

p |p = 1, . . . ,4} and this

entails

M el
i j =


0 for ni ,n j ∉ {nel

p |p = 1, . . . ,4},
‖∆‖el

120 for p 6= k,
‖∆‖el

60 for p = k.

We now calculate M el
i j for all ni ,n j ∈ {nel

p |p = 1, . . . ,4} and we call this M el :

M el = ‖∆‖el

120


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 . (Holand-Bell)

Note that M el is an n ×n matrix, but only the rows and columns of the nodes nel
p corresponding to element

el are shown here and the rest of the elements are equal zero.
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However, we find that the element matrix M el derived using Holand-Bell has an unwanted diffusive effect
and we calculate the “lumped” mass matrix using Newton-Cotes integration. We note that we introduce an
O(h2) error using this approximation. This is however acceptable since we have already introduced an O(h2)
using linear basis functions under the assumption that our solutions are smooth enough. We see

M el = ‖∆‖el

24


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (Newton-Cotes)

We approximate Sel
i j by using Newton-Cotes integration (Equation C.4) and Holand-Bell integration (Equa-

tion C.2). Since the basis function on node i reads ϕi =αi +βi x +γi y +δi z, we see that ∇ϕi ·∇ϕ j = (βiβ j +
γiγ j +δiδ j ). Therefore

Sel
i j =

∫
el

DM∇ϕi ·∇ϕ j + rM fBϕiϕ j dV ,

=
{

0 for ni ,n j ∉ {nel
p |p = 1, . . . ,4}

(βel
p β

el
k +γel

p γ
el
k +δel

p δ
el
k )

∫
el

DM dV + rM
∫

el
fBϕiϕ j dV otherwise

≈


0 for ni ,n j ∉ {nel

p |p = 1, . . . ,4}

(βel
p β

el
k +γel

p γ
el
k +δel

p δ
el
k ) ‖∆‖el

24

∑4
p=1 DM ( fF (xel

p ), fB (xel
p ), fE (xel

p )) for p 6= k,

((βel
p )2 + (γel

p )2 + (δel
p )2) ‖∆‖el

24

∑4
p=1 DM ( fF (xel

p ), fB (xel
p ), fE (xel

p ))+ rM
‖∆‖el

24 fB (xel
p ) for p = k.

Here, by definition of the parameters for the different chemical variables, we have fF (xel
p ) = [ f f ]el

p , fB (xel
p ) =

[ fb]el
p and fE (xel

p ) = [ fe ]el
p , hence

Sel
i j ≈


0 for ni ,n j ∉ {nel

p |p = 1, . . . ,4}

(βel
p β

el
k +γel

p γ
el
k +δel

p δ
el
k ) ‖∆‖el

24

∑4
p=1 DM ([ f f ]el

p , [ fb]el
p , [ fe ]el

p ) for p 6= k,

((βel
p )2 + (γel

p )2 + (δel
p )2) ‖∆‖el

24

∑4
p=1 DM ([ f f ]el

p , [ fb]el
p , [ fe ]el

p )+ rM
‖∆‖el

24 [ fb]el
p for p = k.

Now, if we define

Lel =

 β
el
1 γ

el
1 δ

el
1

...
...

...
β

el
4 γ

el
4 δ

el
4

 ,

then for an element el we see that the element matrix becomes

Sel = ‖∆‖el

24

4∑
p=1

DM ([ f f ]el
p , [ fb]el

p , [ fe ]el
p )Lel (Lel )T + rM

‖∆‖el

24

 [ fb]el
1 ;

. . .
; [ fb]el

4

 .

The mixed terms [ f f ]el
p , [ fb]el

p , [ fe ]el
p must be taken explicit care of when we try to implement an implicit time

stepping scheme. More on this issue will be discussed in Appendix E.1.

We finally calculate the element vector Qel
i = ∫

el

∑
q∈θt sMδ(x−xq )cV ϕi dV . We see that the Dirac delta distri-

butions give only non-zero contributions whenever xq ∈ el
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Qel
i =

∫
el

∑
q∈θt

sMδ(x−xq )cV ϕi dV = sM
∑

q∈θt

∫
el

δ(x−xq )cV ϕi dV

= sM
∑

q∈θt ,xq∈el

∫
el

δ(x−xq )cV ϕ
el
p dV

= sM
∑

q∈θt ,xq∈el

cV (xq )ϕel
p (xq )

= sM
∑

q∈θt ,xq∈el

[
4∑

p=1
[cv ]el

p ζ
el
p (q)

]
ζ

el
p (q).

Hence the element vector becomes

Qel = sM · ∑
q∈θt ,xq∈el


[

4∑
p=1

[cv ]el
p ζ

el
p (q)

]
·


ζ

el
1 (q)
ζ

el
2 (q)
ζ

el
3 (q)
ζ

el
4 (q)


 .

In this derivation, we make the assumption that the cell centers do not lie precisely on the boundary between
two or more elements, i.e. ζel

p = 0 for some node p in element el . If this were to happen, the sourcing from the
cell would be added to all elements and we would count the sourcing term multiple times. However, since
the boundaries of our elements form a null-set in our domainΩ, the chances of this happening are negligibly
small.

C.6. REST OF THE ELEMENT MATRICES AND VECTORS
Likewise, we derive the elements matrices and vectors for all other equations. We use the same nodal points,
hence we have the same basis functions ϕ j and the same matrices L. We approximate

cV ≈
n∑

j=1
[cv ] jϕ j , cD ≈

n∑
j=1

[cd ] jϕ j , cU ≈
n∑

j=1
[cu] jϕ j , cM ≈

n∑
j=1

[cm] jϕ j ,

cF ≈
n∑

j=1
[c f ] jϕ j , cB ≈

n∑
j=1

[cb] jϕ j , cE ≈
n∑

j=1
[ce ] jϕ j .

We write M el
V , . . . , M el

E and Sel
V , . . . ,Sel

E for the element matrices and Qel
V , . . . ,Qel

E for the element vectors for each
variable. Again note that all matrices M el and Sel are n×n matrices equal zero except for the entries (nel

p ,nel
k )

for n,k = 1, . . . ,4. The vectors Qel are vectors of length n. Hence we derive systems

nel∑
l=1

M el
V

∂[cv ]

∂t
+

nel∑
l=1

Sel
V [cv ] =

nel∑
l=1

Qel
V ,

...
nel∑
l=1

M el
E

∂[ce ]

∂t
+

nel∑
l=1

Sel
E [ce ] =

nel∑
l=1

Qel
E ,

C.6.1. ELEMENT MATRICES M el FOR THE TIME DERIVATIVE
M el is the same for all PDE’s

M el = ‖∆‖el

120


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .
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C.6.2. ELEMENT MATRICES Sel FOR THE SPACIAL DERIVATIVES
Sel is different for each PDE:

Sel
V = ‖∆‖el

24

4∑
p=1

DV ([ f f ]el
p , [ fb]el

p , [ fe ]el
p )Lel (Lel )T + rV


∑

q∈θ,xq∈el

(
ζ

el
1 (q)

)2
. . .

∑
q∈θ,xq∈el

ζ
el
1 (q)ζel

4 (q)
...

. . .
...∑

q∈θ,xq∈el
ζ

el
4 (q)ζel

1 (q) . . .
∑

q∈θ,xq∈el

(
ζ

el
4 (q)

)2

 .

Sel
D = ‖∆‖el

24

4∑
p=1

DD ([ f f ]el
p , [ fb]el

p , [ fe ]el
p )Lel (Lel )T + rD


∑

q∈θs ,xq∈el

(
ζ

el
1 (q)

)2
. . .

∑
q∈θs ,xq∈el

ζ
el
1 (q)ζel

4 (q)
...

. . .
...∑

q∈θs ,xq∈el
ζ

el
4 (q)ζel

1 (q) . . .
∑

q∈θs ,xq∈el

(
ζ

el
4 (q)

)2

 .

Sel
U = ‖∆‖el

24

4∑
p=1

DU ([ f f ]el
p , [ fb]el

p , [ fe ]el
p )Lel (Lel )T + rU

‖∆‖el

24

 [ f f ]el
1 ;

. . .
; [ f f ]el

4

 .

Sel
M = ‖∆‖el

24

4∑
p=1

DM ([ f f ]el
p , [ fb]el

p , [ fe ]el
p )Lel (Lel )T + rM

‖∆‖el

24

 [ fb]el
1 ;

. . .
; [ fb]el

4

 .

Sel
F = + rF

‖∆‖el

24

 [cu]el
1 ;

. . .
; [cu]el

4

 .

Sel
B = + rB

‖∆‖el

24

 [cm]el
1 ;

. . .
; [cm]el

4

 .

Sel
E = [;]

C.6.3. ELEMENT VECTORS
Qel is different for all variables

Qel
V = [;],

Qel
D = sD · ∑

q∈θt ,xq∈el


[

4∑
p=1

[cv ]el
p ζ

el
p (q)

]
·


ζ

el
1 (q)
ζ

el
2 (q)
ζ

el
3 (q)
ζ

el
4 (q)


 ,

Qel
U = sU · ∑

q∈θt ,xq∈el


[

4∑
p=1

[cv ]el
p ζ

el
p (q)

]
·


ζ

el
1 (q)
ζ

el
2 (q)
ζ

el
3 (q)
ζ

el
4 (q)


 ,

Qel
M = sM · ∑

q∈θt ,xq∈el


[

4∑
p=1

[cv ]el
p ζ

el
p (q)

]
·


ζ

el
1 (q)
ζ

el
2 (q)
ζ

el
3 (q)
ζ

el
4 (q)


 ,

Qel
F = [;],

Qel
B = [;],

Qel
E =−rF

‖∆‖el

24

 [cu]el
1 ;

. . .
; [cu]el

4


 [ f f ]el

1
...

[ f f ]el
4

− rB
‖∆‖el

24

 [cm]el
1 ;

. . .
; [cm]el

4


 [ fb]el

1
...

[ fb]el
4

 .





D
CELL MOVEMENT TIME STEPPING

ALGORITHM

Assume at time step k cell i is at location rk
i . We calculate all parameters and gradients at this location and

approximate ∂ri
∂t ≈ rk+1

i −rk
i

∆t . We use this time stepping scheme to predict the new location r̃k+1
i , i.e.

r̃k+1
i = rk

i +∆t

[
α(rk

i )M(rk
i )ẑ(rk

i )+γ(rk
i )(δi∈θs∇cD (rk

i )+δi∈θt ∇cV (rk
i ))+λ(rk

i )∇ρS (rk
i )+ vg (rk

i )+ σWp
∆t

N

]
,

where N ∼N (0,1). We may now use rk+1
i = r̃k+1

i as the new cell location at time step k +1, or we can make
use of a predictor-corrector scheme1. In order to do so, we calculate all parameters at the predicted location
r̃k+1

i and take the average values of these predicted parameters and the parameters at the initial location

α̃= α(rk
i )+α(r̃k+1

i )

2
, γ̃= γ(rk

i )+γ(r̃k+1
i )

2
, λ̃= λ(rk

i )+λ(r̃k+1
i )

2
,

ṽg = vg (rk
i )+ vg (r̃k+1

i )

2
, M̃ = M(rk

i )+M(r̃k+1
i )

2
, ˜̂z = ẑ(rk

i )+ ẑ(r̃k+1
i )

2
,

˜∇cD = ∇cD (rk
i )+∇cD (r̃k+1

i )

2
, ˜∇cV = ∇cV (rk

i )+∇cV (r̃k+1
i )

2
, ˜∇ρS = ∇ρS (rk

i )+∇ρS (r̃k+1
i )

2
,

and calculate

rk+1
i = rk

i +∆t

[
α̃M̃ ˜̂z + γ̃(δi∈θs

˜∇cD +δi∈θt
˜∇cV )+ λ̃ ˜∇ρS + ṽg + σWp

∆t
N

]
. (D.1)

Especially in the first time steps, one can notice differences between the predictor displacement and the cor-
rector displacement. This is due to the fact that initially gravity and contact mechanics are dominant over the
other forces. After the formation of a confluent mono-layer of cells, these forces decrease in magnitude and
we notice that the predictor and corrector displacements are almost equal.2

Since the magnitude of the cell movements can change drastically over time, we implement a variable time
stepping scheme. We want to limit the maximal displacement of cells in a time step to a certain maximum
d̂max. We use the maximal displacement of all cells in the last time step k −1 to k to determine the ∆t in the
next time step from k to k+1. Assume that for time step k−1 to k we have∆t k−1 and define the maximal dis-
placement as d k−1

max = maxi∈θ{‖rk
i −rk−1

i ‖}. Then for time step k to k+1 we raise∆t by a factor 1.2 whenever the
maximal displacement is a factor 1.2 below the threshold and lower ∆t whenever the maximal displacement
is above the threshold. I.e.

1In our computational model, the option g.cellO.displacementCorrector is used to implement this predictor-corrector scheme.
2In our computational model, the option g.plot.plotMovements is used to plot the predictor and corrector movements.
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∆t̂ k =


1.2 ·∆t k−1 for d k

max < 1
1.2 · d̂max,

1
1.2 ·∆t k−1 for d k

max > d̂max,

∆t k−1 otherwise.

We furthermore set a hard minimal and maximal permitted time step ∆tmin and ∆tmax and set

∆t k = min{max{∆t̂ k ,∆tmin},∆tmax},

and we replace ∆t in Equation D.1 with ∆t k .

Numerically, the gradient of a concentration is easily calculated using the basis functions of our FEM. We
refer the reader to Appendix C for a detailed description and further notes on used notation. We know that
within an element cV ≈∑4

p=1 cv (nel
p )ϕel

p where ϕel
p =αel

p +βel
p x +γel

p y +δel
p z are basis functions. The gradient

is then given by ∇cV ≈∇∑4
p=1 cv (nel

p )ϕel
p =∑4

p=1 cv (nel
p )∇ϕel

p and hence

∇cV ≈
(

4∑
p=1

cV (nel
p )

) β
el
p

γ
el
p

δ
el
p

 .



E
NUMERICAL CONSIDERATIONS

E.1. IMPLICIT/EXPLICIT (IMEX) TIME STEPPING FOR PDES
We now approximate the time derivative for the equation for variable [cm] at time step k +1 by a Euler back-

ward discretization ∂[cm ]
∂t ≈ [cm ]k+1−[cm ]k

∆tk
, for a time step ∆tk , possibly depending on the time step. We begin

with the original system

MM
∂[cm]

∂t
+SM [cm] =QM ,

which is integrated by

MM
[cm]k+1 − [cm]k

∆t k
+S[cm]k+1 =QM ,

and gives

(MM +∆t k SM )[cm]k+1 = MM [cm]k +∆t kQM ,

and can be rewritten to

[cm]k+1 = (MM +∆t k SM )−1(MM [cm]k +∆t kQM ).

We would have liked to conclude that we have derived a fully implicit scheme. However, there are explicit
terms coming from the cross terms in the reactive parts in the matrices S and in the vectors QD ,QU ,QM and
QE . Furthermore, the diffusive functions and the indicator functions make the matrices S and the vectors Q
time dependent. Fortunately, because both M and S are symmetric and non-diagonal, inverting (M +∆tS) is
not computationally harder than inverting M as we would have to do in the explicit scheme.

We have to take special care when assembling the element vector QE . We want to maintain conservation of
mass and therefore the amount of Fibrin and BM dissolving must be added to the ECF. The amount of fibrin
dissolving at time step k +1 in element el is equal to

rF
‖∆‖el

24


([cu]el

1 )k ;
. . .

; ([cu]el
4 )k




([ f f ]el
1 )k+1

...
([ f f ]el

4 )k+1

= rF
‖∆‖el

24


([cu]el

1 )k ([ f f ]el
1 )k+1

...
([cu]el

4 )k ([ f f ]el
4 )k+1

 ,

and we have a similar relation for the reaction of the BM. This together constitutes for the element vector for
the ECF Qel

E :

Qel
E =−rF

‖∆‖el

24


([cu]el

1 )k ([ f f ]el
1 )k+1

...
([cu]el

4 )k ([ f f ]el
4 )k+1

− rB
‖∆‖el

24


([cm]el

1 )k ([ fb]el
1 )k+1

...
([cm]el

4 )k ([ fb]el
4 )k+1

 .

Note that the signs change due to the fact that the source terms QE are on the right hand side of the equation
whilst the reactive counterparts are on the left hand side.
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E.2. MESHING AND NODE NUMBERING

For the 3D mesh generation we use an open source application ISO2Mesh created by Fang and Boas [55].
The domain used is given by the parameters in Table 4.1 and the result is depicted in Figure E.1. To gain
extra computational speed, we use Cuthill-McKee bandwith reduction1 [56] for our node ordering built into
MATLAB by the function symrcm. The results of the bandwidth reduction can be seen in Figure E.2.

Figure E.1: Meshed domain by the ISO2Mesh mesh generator written by Fang and Boas [55].
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Figure E.2: Spy plots for our mass matrix M . The left figure is in default node order, the right figure numbered the nodes using
Cuthill-McKee numbering and we see a reduction in the matrix bandwidth. Computational time reduced from 160 seconds to 140

seconds.

1In the computational model, the option of Cuthill McKee numbering can be used by setting g.num.CuthillMckee = 1.
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E.3. TRUNCATION VERY LOW SUBSTRATE DENSITIES
Due to the exponential decaying behavior of the fibrin and the boundary membrane, the fractions fF and
fB can become very close to 0, causing numerical errors in the calculation of the fraction in Equation 4.12.
Therefore, we use a threshold2 f0 and say that fractions fF and fB passing below the threshold are truncated
towards 0 in favor of the fraction fE . It is hard to find any references on what a physically sensible value for f0

should be, so we empirically set f0 = 10−4.

E.4. SPURIOUS OSCILLATIONS ON SOURCE TERMS USING HOLAND-BELL
In our 3D setting, we witness oscillation behavior of the solution around point sources, even when we do not
take the diffusive and reactive terms into account. We investigate this behavior by examining the 1D situation.
Consider the concentration c with initial condition c0(x) = 0 on every node j = 1, . . . ,n of a 1D domain. The
nodes divide the domain into l = 1, . . . , (n − 1) elements of width ‖∆‖ = h. We model the time dependent
differential equation with point source at rate s at xq in the middle of element ek for which we have the weak
form

∫
∂c

∂t
ϕdV = Sϕ(xq ).

The analytical solution is c(x, t ) = Stδ(x − xq )+ c0(x) = Stδ(x − xq ) and we do not expect any oscillating or
diffusive solution. Approximating c(t , x) =∑n

j=1 c jϕ j (x), the Galerkin equations for this PDE are

n∑
j=1

∫
ϕiϕ j dV

∂c

∂t
=

∫
Sδ(x −xq )ϕi dV , for i = 1, . . . ,n.

Assuming xq = xk+xk+1
2 , this gives rise to a system Mc ′ =Q with

M = h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2


and Q = s



;
1
2
1
2

;


← k th

← (k +1)th .

Time stepping gives the iterative scheme ck+1 = M−1(Mck +∆tQ). We simulate n = 100 nodes, sourcing in
element k = 50, grid width h = 0.05, sourcing at rate S = 1 and time step ∆t = 0.1. We also use Newton-Cotes
integration on the element matrix M el

i j to derive the ’lumped’ matrix M lumped:

M lumped = h

6



3
6

6
. . .

6
6

3


,

and we perform the time stepping with this matrix too. The results after 3.6 seconds is given in Figure E.3.
We clearly see the unwanted spurious oscillations using the Holand-Bell integration. This effect is occurs for
every size of the time step and the grid width. As expected, the lumped matrix does not have the spurious
oscillations since it has identity support3. In the following chapter, we will show that the oscillations are
independent of the problem and the time step. We therefore use the lumped mass matrix.

2In our computational model, the option of truncating small substrate fractions is used by setting g.chemO.truncateSubstrate = 1.
3In our computational model, the option of “lumping” the mass matrix M can be used by setting g.num.lumped = 1.
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Figure E.3: Spurious oscillations using Holand-Bell (left) integration on mass matrix M . Oscillations do not occur for Newton-Cotes
(right) integration.

E.4.1. PROOF EXISTENCE TIME STEP AND GRID SIZE INDEPENDENT SPURIOUS OSCILLATIONS

IN 1D
Consider a 1D FEM discretization with constant grid width h, nodes j = 1, . . . ,n and a concentration c with
zero initial condition. Let us first consider the discretized equations without a diffusive term and a point
source with rate s > 0 precisely on the first node, i.e. Mc ′ =Q with

M = h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2


and Q = S



1

;


.

We discretize in time to get Mck+1 = Mck +∆tQ, i .e.

h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2





ck+1
1

...

ck+1
n


= h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2





ck
1

...

ck
n


+∆tS



1

;


. (E.1)

We now prove by induction over the time steps k = 0, . . . , tend that we have a oscillating solution over the nodes
for every time step. First consider the time step from k = 0 to k = 1. Since we have a zero initial condition, this
time step reduces to Mck+1 =∆tQ. The first equation in this system is

h

6
(2c1

1 + c1
2 ) =∆tS.

As an Ansatz, we look for solutions that satisfy the recursive relation
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c1
j+1 =αc1

j . (E.2)

Then we have

h

6
(2c1

1 +αc1
1 ) =∆tS,

and

c1
1 = 6∆t s

h(2+α)
:= B.

The j th ( j 6= 1, j 6= n) equation of the this system is

h

6
(c1

j−1 +4c1
j + c1

j+1) = 0.

Substituting the recursive relation from Equation E.2 we see

h

6
(c1

j−1 +4αc1
j−1 +α2c1

j−1) = 0,

and we have

h

6
(1+4α+α2)c1

j−1 = 0.

For a non-trivial solution we must have 1+4α+α2 = 0 and henceα1,2 =−2±p
3. Both values ofα are negative,

so we have an oscillating solution. Only α1 = −2+p
3 satisfies −1 ≤ α ≤ 1, which constitutes damping. The

value α = −2−p
3 would constitute a negative value for B , entailing that the response in concentration to

positive sourcing would be negative. So we choose α = −2+p
3 and we see that B = 6∆tS

h
p

3
= 2

p
3∆tS
h . We now

have a recursive relation for time step k = 1, i.e. c1
j+1 =αc1

j with initial condition c1
1 = B . This entails a direct

relation c1
j = B(α) j−1 that forms an oscillating solution c at time step 1. Since the solution to the system must

be unique, the Ansatz in Equation E.2 must indeed hold.

Now assume (induction assumption) at time step k we have a direct relation for the solution of ck
j = kB(−α) j−1.

The first equation in the system from time step t = k to t = k +1 is

h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2





ck+1
1

...

ck+1
n


= h

6



2 1
1 4 1

1 4
. . .

. . .
. . . 1
1 4 1

1 4 1
1 2





kB

...

kB(−α)n−1


+∆tS



1

;


.

We again assume an oscillating recursive relation

0 <β< 1 such that ck+1
j+1 =−βck+1

j . (E.3)

We would like to show that the factor β=α and that ck+1
j = (k +1)B(−α) j−1. The first equation in the system

is

h

6
(2ck+1

1 + ck+1
2 ) = h

6
(2kB −kBα)+∆tS.

Substituting the recursive relation from equation E.3 gives

h

6
(2ck+1

1 −βck+1
1 ) = h

6
(2kB −kBα)+∆tS,
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and we have

ck+1
1 = kB

2−α
2−β + 6∆tS

h(2−β)
. (E.4)

The j th equation ( j 6= 1, j 6= n) of the system is

h

6
(ck+1

j−1 +4ck+16
j + ck+1

j+1 ) = h

6
(kB(−α) j−2 +4kB(−α) j−1 +kB(−α) j )

h

6
(ck+1

j−1 −4βck+1
j−1 +β2ck+1

j−1 ) = h

6
kB(−α) j−2(1−4α+α2)

h

6
(1−4β+β2)ck+1

j−1 = 0,

since (1−4α+α2) = 0 by choice ofα. Hence, for non-trivial ck+1 we must have β= 2−p
3 =α. Then Equation

E.4 reduces to

ck+1
1 = kB

2−α
2−α + 6∆tS

h(2−α)

= kB +B

= (k +1)B ,

and the recursive relation for ck+1 reads ck+1
j+1 = −αck+1

j with ck+1
1 = (k +1)B = 6(k+1)∆tS

h(2−α) . This proves by re-

cursion that that for every time step k we have an oscillating decaying solution characterized by the function
value at the source location and a fixed decay rate −α. Furthermore, the rate α only depends on the structure
of the mass matrix M and not on the time step of grid width.

E.4.2. ADDING DIFFUSION TO SMEAR OUT THE OSCILLATIONS
If we add a diffusive term

∂c

∂t
−D∇2c =Q,

we end up with a system Mc ′+Sc = f , leading to the implicit time stepping scheme (M +∆tS)ck+1 = Mck +
∆t f , with the same matrix M and the same vector f . S becomes

S = D

h



1 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2 −1

−1 2 −1
−1 1


.

We know that we cancel the spurious oscillations whenever matrix (M+∆tS) is a diagonal dominant Z-matrix.
We see

(M+∆tS) = 1

6h



(2h2 +6∆tD) (h2 −6∆tD)
(h2 −6∆tD) (4h2 +12∆tD) (h2 −6∆tD)

(h2 −6∆tD)
. . .

. . .
. . .

. . . (h2 −6∆tD)
(h2 −6∆tD) (4h2 +12∆tD) (h2 −6∆tD)

(h2 −6∆tD) (2h2 +6∆tD)


.

For sure, diagonal dominance is fine. (M+∆t X ) becomes a Z-matrix whenever all non-diagonal elements are
negative. This is the case whenever h

6 < ∆tD
h , i.e. 6∆tD

h2 > 1. We expect that a similar stability relation M ∆tD
h2 > 1

holds in the 3-d setting where h is the radius of the elements and M ∈R is some factor.
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E.4.3. COMPENSATING THE SPURIOUS OSCILLATIONS BY OTHER NUMERICAL SCHEMES
John et al. [57] and Fries et al. [58] describe the Streamline Upwind/Petrov Galerkin (SUPG) method. The
method introduces a certain amount of artificial diffusion in streamline direction only of which the amount
is controlled by a variable θ. Much research has been devoted to finding suitable values, but no general
method to find the optimum exists. John [57] also describes various Spurious Oscillations at Layers Dimin-
ishing (SOLD) methods and compares them. SOLD methods add another stabilization term to the SUPG
method to reduce its spurious oscillations. Most commonly, this is an anisotropic diffusion term. At last,
John et al. [59] give an overview of finite element methods for solving time dependent 3D convection-
diffusion-reaction equations. They focus on the effect of spurious oscillations in the computed solutions.
They compare a SUPG scheme with two choices of SOLD schemes and two variants of a Finite Element
Method Flux–Corrected–Transport (FEM–FCT) scheme. They conclude that, both for damping spurious os-
cillations, as well as for computational time, it is best to use a FEM-FCT scheme, either the linear or the
non-linear variant. All these schemes however are used to damp oscillations in advection dominated flow
problems. We however do not have an advective term and hence this does not seem suitable for our problem.

E.5. ON THE EQUILIBRIUM POINTS AND STABILITY OF THE PDES
We try to find stable solutions of the system of Equations 4.1 - 4.7. We start with the substrate fractions. From

Equation 4.5 we see that ∂ fF
∂t = 0 only if fF = 0 or cU = 0. From Equation 4.6 we see that ∂ fB

∂t = 0 only if fB = 0
or cM = 0. Whenever we have these two equations stable, Equation 4.7 is automatically stable. This means
that in equilibrium, the substrate if fully vanished and we have fF = fB = 0 and fE = 1 (by initial condition),
or we have a non-trivial equilibrium substrate together with cU = cM = 0. In practice this entails we have no
proteases to degrade the substrate.

The case for a non-trivial equilibrium substrate gives a trivial solution for the chemicals. If cU = 0, than in

Equation 4.3 we also have ∂cU
∂t = 0, ∇2cU = 0 and the reactive term vanishes, leaving us with

0 = ∑
q∈θt

sUδ(x−xq )cV .

This must hold for all possible cell positions xq and we must have cV = 0. The same holds for Equation 4.4.
Since cV = 0, Equation 4.1 is automatically stable. This leaves us with the reduced version of Equation 4.2.
This equation is only stationary whenever ∂cD

∂t = 0 and we must have

∇· [DD ( fF , fB , fE )∇cD ] = ∑
q∈θs

rD cDδ(x−xq ). (E.5)

Only the trivial solution cD = 0 satisfies this relation. We can see this by integrating over the left hand and use
Greens divergence theorem and integrating over the right hand side and applying the definition of the Dirac
distribution.

Next we consider the the stationary substrate solution fF = fB = 0 and fE = 1. The diffusive functions reduce
to DD (0,0,1) = DD ·DE and the reactive terms in Equations 4.3 and 4.4 drop out. The system for our four
chemicals, with the time derivative set to zero in order to find stationary solutions, reduces to

0 = DV DE∇2cV − ∑
q∈θ

rV cV δ(x−xq ),

0 = DD DE∇2cD − ∑
q∈θs

rD cDδ(x−xq ) + ∑
q∈θt

sDδ(x−xq )cV ,

0 = DU DE∇2cU + ∑
q∈θt

sUδ(x−xq )cV ,

0 = DM DE∇2cM + ∑
q∈θt

sMδ(x−xq )cV .

Following the same reasoning as in Equation E.5, we see that cV = 0 and all the source terms drop out. The
equation for cD reduces to the form we just encountered for cV and we conclude that cD = 0. The equation
for cU and cM reduce to DU DE∇2cU = 0 and DM DE∇2cM = 0, which have linear functions as solutions. Our
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no-flux boundary conditions dictate that this solution must be a constant.

Having our stationary point, we can linearize around it and we see that we can write the equation for the
concentration VEGF as

∂cV

∂t
+LcV = 0,

with L =−DV DE∇2+∑
q∈θ rV δ(x−xq ). Since all our concentrations cV take real values, self-adjointness of the

operator L is almost trivial. Positive definiteness is proven when we see

< LcV ,cV >=
∫
Ω

L(cV )cV dV = −DV DE

∫
Ω

(∇2c)cdV +
∫
Ω

∑
q∈θ

rV δ(x−xq )c2
V dV

= −DV DE

∫
Ω
∇· (c∇c)dV +DV DE

∫
Ω

(∇c)2dV + ∑
q∈θ

rV cV (xq )2

= −DV DE

∫
Γ

c∇c ·n dV +DV DE

∫
Ω

(∇c)2dV + ∑
q∈θ

rV cV (xq )2

= 0+DV DE

∫
Ω

(∇c)2dV + ∑
q∈θ

rV cV (xq )2 > 0.

This together makes the equation stationary point stable. The same analysis holds for the other equations. All
this makes physical sense. If our entire substrate is degraded and all the initially present VEGF is consumed
by the cells, the sourcing of the three other chemicals will stop. DLL4 will be consumed by the cells and the
“left over” uPA and MMP will smear out over the entire domain.



F
COMPUTATIONAL MODEL OPTIONS

Numerical parameters
Parameter Code name Value
Time step g.num.dt 1
Final time g.num.finalTime 48*3600
Maximal element radius g.num.maxVolSize [2.5 - 3.0]
Number of points in domain model g.num.nx 100
Use Cuthill-Mckee numbering g.num.CuthillMckee boolean
Use lumped mass matrix g.num.lumped boolean
Print execution time per time step g.num.timeKeeping boolean
Print all parameters g.num.plotParams boolean

Plotting output parameters
Parameter Code name Value
The type of plot wanted g.plot.plotType [1 - 10]
Resolution of the structured grid g.plot.resolution [20 - 30]
Plot quivers in movement directions g.plot.quiverOn boolean
Plot histograms of motilities g.plot.plotMovements boolean
Plot frame every so many time steps g.plot.plotInterval [1,2, . . . ]
Figure number main plot g.plot.fig 1

Video output parameters
Parameter Code name Value
Store plotted frames as video file g.vid.movieOn boolean
Number of frames per second g.vid.fps 24
Duration of the video g.vid.length 60
Use transcoder to convert ras video g.vid.transcode boolean
Keep raw video after transcoding g.vid.keepOriginal boolean

Chemical simulation options
Parameter Code name Value
Include diffusive terms in PDEs g.chemO.difusionOn boolean
Include reactive terms in PDEs g.chemO.reactionOn boolean
Include sourcing terms in PDEs g.chemO.sourcingOn boolean
Use non-linear diffusion functions g.chemO.nonLinearDiffusion boolean
Truncate low substrate fractions g.chemO.truncateSubstrate boolean
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Cell movement and initial distribution options
Parameter Code name Value
Use predictor-corrector scheme g.cellO.displacementCorrector boolean
Include haptotactic movement g.cellO.haptotaxisOn boolean
Include chemotactic movement g.cellO.chemotaxisOn boolean
Include movement due to gravity g.cellO.gravityOn boolean
Include cell-matrix adhesion g.cellO.celMatrixAdhesionOn boolean
Include stochastic movement g.cellO.stochasticOn boolean
Use stochastic cell differentiation g.cellO.cellDifferentiation boolean
Use random layer as initial distribution g.cellO.randomLayer boolean
Use structured monolayer as initial distribution g.cellO.monoLayer boolean
Dissolve cells in ECF as initial distribution g.cellO.suspended boolean
Use a test case with 2 cells g.cellO.twoCells boolean
Use a test case with 4 cells g.cellO.fourCells boolean
Use a test case with 8 cells g.cellO.eightCells boolean
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