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Abstract: For the univariate current status and, more generally, the in-
terval censoring model, distribution theory has been developed for the max-
imum likelihood estimator (MLE) and smoothed maximum likelihood es-
timator (SMLE) of the unknown distribution function, see, e.g., [10, 7, 4,
5, 6, 9, 13] and [11]. For the bivariate current status and interval censoring
models distribution theory of this type is still absent and even the rate at
which we can expect reasonable estimators to converge is unknown.

We define a purely discrete plug-in estimator of the distribution function
which locally converges at rate n1/3, and derive its (normal) limit distribu-
tion. Unlike the MLE or SMLE, this estimator is not a proper distribution
function. Since the estimator is purely discrete, it demonstrates that the
n1/3 convergence rate is in principle possible for the MLE, but whether
this actually holds for the MLE is still an open problem.

We compare the behavior of the plug-in estimator with the behavior of
the MLE on a sieve and the SMLE in a simulation study. This indicates
that the plug-in estimator and the SMLE have a smaller variance but a
larger bias than the sieved MLE. The SMLE is conjectured to have a n1/3-
rate of convergence if we use bandwidths of order n−1/6. We derive its
(normal) limit distribution, using this assumption. Finally, we demonstrate
the behavior of the MLE and SMLE for the bivariate interval censored
data of [1], which have been discussed by many authors, see e.g., [18, 3, 2]
and [15].
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1. Introduction

We consider the bivariate current status model, also called the bivariate interval
censoring, case 1, model. This means that our observations consist of a quadruple
(T, U,∆1,∆2), where

∆1 = 1{X≤T}, ∆2 = 1{Y≤U}, (1.1)

and (X,Y ) is independent of the observation (T, U). We want to estimate the
distribution function F0 of the ‘hidden’ random vector (X,Y ).
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Amaximum likelihood estimator F̂n of F0, the distribution function of (X,Y ),
maximizes the expression

n
∑

i=1

{∆i1∆i2 logF (Ti, Ui) + ∆i1 (1−∆i2) log {F (Ti,∞)− F (Ti, Ui)}

+ (1−∆i1)∆i2 log {F (∞, Ui)− F (Ti, Ui)}

+(1−∆i1) (1−∆i2) log {1− F (∞, Ui)− F (Ti,∞) + F (Ti, Ui)}}

over all bivariate distribution functions F . Another formulation is that F̂n max-
imizees

∫

δ1δ2 logF (u, v) dPn +

∫

δ1(1 − δ2) log {F1(u)− F (u, v)} dPn

+

∫

(1− δ1)δ2 log {F2(v) − F (u, v)} dPn

+

∫

(1− δ1)(1 − δ2) log {1− F1(u)− F2(v) + F (u, v)} dPn

over F , where F1 and F2 are the first and second marginal dfs of F , respec-
tively, and Pn is the empirical measure of the observations (Ti, Ui,∆i1,∆i2),
i = 1, . . . , n.

One looks for a solution of the form

F̂n =

m
∑

j=1

αj1[τj,∞),

m
∑

j=1

αj ≤ 1, αj > 0, 1 ≤ j ≤ m = mn,

where we denote by [τj ,∞) an infinite rectangle [tj1,∞)× [tj2,∞), where τj =
(tj1, tj2). Then the (Fenchel or Kuhn-Tucker) duality conditions for the solution
are:

∫

[t,∞)

δ1δ2
F (u, v)

dPn +

∫

[t1,∞)×[0,t2)

δ1(1− δ2)

F1(u)− F (u, v)
dPn

+

∫

[0,t1)×[t2,∞)

(1− δ1)δ2
F2(v)− F (u, v)

dPn

+

∫

[0,t1)×[0,t2)

(1− δ1)(1− δ2)

1− F1(u)− F2(v) + F (u, v)
dPn

≤ 1, (1.2)

for all t = (t1, t2) ∈ R2, where Pn is the empirical df of the observations
(ui, vi, δi1, δi2). We must have equality in (1.2), if t = τj , j = 1, . . . ,mn, is
a point of mass of the solution (i.e., the constraints are active!), where the
rectangles [τj ,∞) are the generators of the solution.

An R package, called ‘MLEcens’ is available for computing the MLE. The
algorithm determines the maximal intersection rectangles where the MLE has
mass via a preliminary reduction algorithm, and next computes the mass of the
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MLE in these rectangles, using the support reduction algorithm of [12]. The
reduction algorithm is described in [15]. The R package uses as an example a
data set, studied in [1], which is actually not of the current status type but has
interval censoring, case 2, data. We shall discuss these data in section 5. The
MLE for this data set is also discussed in section 7.3.3 of [18], who also refers
to [3] and [2] for discussions of the computation of the MLE for this data set.
The computation of the rectangles where the MLE puts mass is also treated in
[17], where also minimax lower bounds for the estimation rate of the MLE and
consistency of the MLE are derived.

There is an extensive discussion on where to put the mass, once one has
determined rectangles which can have positive mass, see, e.g. [18], section 7.3,
[3, 2] and [15]. The algorithm for computing these rectangles, proposed in [15],
seems at present to be the fastest.

It is in our view somewhat doubtful whether all the energy spent on comput-
ing these maximal intersection rectangles and the ensuing question of whether
one should place the mass of the MLE at the left lower corner or the right upper
corner of the rectangles is really worth the effort. One could also specify in ad-
vance a set of points where one allows mass to be placed. In this way one obtains
an MLE on a sieve, where the sieve consists of distributions having discrete mass
at these points. The bottleneck in the computation of the MLE for the bivariate
interval censoring problem is not the determination of the maximal intersection
rectangles, but the computation of the mass the MLE puts on these rectangles,
since there usually are very many!

The latter phenomenon shows up in particular in simulations. As an example,
simulating data from the distribution with density f(x, y) = x + y on the unit
square, with a uniform observation distribution, we got for sample size n = 5000
about 5 · 105 possible rectangles where the masses could be placed, which is (at
present) an almost prohibitive number if one wants to do simulations of the
limit behavior of the MLE on an ordinary table computer or laptop. Ultimately,
the discussion on these matters should in our view be determined by insights
into the distribution theory of the MLE or the MLE on the chosen sieve.

In section 2 we show that a purely discrete plug-in estimator locally attains
the n1/3 rate. We also determine its asymptotic (normal) distribution. In sec-
tion 3 we study the local limit behavior of the smoothed maximum likelihood
estimator and derive its asymptotic distribution under the assumption that it
can asymptotically can be represented by an integral in the observation space,
proceeding along similar lines as in the one-dimensional case (see, e.g., [5, 9] and
[8]). Section 4 presents a simulation study, comparing the behavior of the MLE,
the SMLE and the plug-in estimator. The results seem to be in accordance with
Theorems 2.1 and 3.1 in sections 2 and 3, respectively. Section 5 extends the
MLE and SMLE to a more general setting of interval censoring and applies the
methods on a data set in [1], which has been discussed by many authors, see
e.g., [18, 3, 2] and [15]. The paper ends with some concluding remarks on faster
rates for the SMLE, which can be attained if one uses higher order kernels.



1786 P. Groeneboom

2. A purely discrete n
1/3-rate estimator for the bivariate current

status model

Basically, the MLE for the 1-dimensional current status model is the monotone
derivative of the cusum diagram

(Gn(t), Vn(t)) , t ∈ I, Vn(t) =

∫

u≤t

δ dPn(u, δ),

where I is the observation interval and Gn the empirical distribution function
of the observations T1, . . . , Tn. So it can be considered to be a monotone version
of the ‘derivative’ dVn(t)/dGn(t). Note that if we replace Vn and Gn by their
deterministic equivalents, the derivative becomes

F0(t)g(t)

g(t)
= F0(t),

so is indeed the object we want to estimate.
For the simplest bivariate current status model, which is sometimes called

the ‘in-out’ model, we only have the information whether the hidden variable
is below and to the left of the observation point (Ti, Ui) or not. In this case we
could also define

Vn(t, u) =

∫

v≤t, w≤u

δ dPn(v, w, δ),

where δ = 1 represents the situation that the hidden variable is below and to
the left of (v, w). If the empirical observation distribution is again denoted by
Gn, we this time want to estimate the ‘derivative’ dVn(t, u)/dGn(t, u), since,
replacing Vn and Gn by their deterministic equivalents, the derivative becomes

F0(t, u)g(t, u)

g(t, u)
= F0(t, u).

So we want to find a version of the derivative dVn(t, u)/dGn(t, u), under the
(shape) restriction that it is a bivariate distribution function.

However, a natural cusum diagram for this situation does not seem to exist.
But we can define a 2-dimensional ‘Fenchel process’, incorporating the duality
conditions for a solution of the optimization problem. Analogously to the 1-
dimensional current status model, the Fenchel duality conditions for the isotonic
least squares (LS)estimate, minimizing

n
∑

i=1

{∆i − F (Ti, Ui)}
2
, ∆i = 1{Xi≤Ti, Yi≤Ui}

over all bivariate distribution functions F , where the (Xi, Yi) are the hidden
variables, are:

∫

v≥t, w≥u

{δ − F (v, w)} dPn(v, w, δ) ≤ 0, (2.1)
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with equality if (t, u) is a point of mass of the solution. So we have to deal with
a process

(t, u) 7→

∫

v≥t, w≥u

F (v, w) dGn(v, w) (2.2)

which has to lie above the process

(t, u) 7→

∫

v≥t, w≥u

δ dPn(v, w, δ),

with points of touch at points of mass of F . Denoting temporarily the process
(2.2) by Qn, we get that the isotonic least squares estimator can (formally)
be denoted by dQn(t, u)/dGn(t, u) (which no longer necessarily coincides with
the MLE!). Note, however, that the function Qn is not necessarily close to a
convex or concave function, so here the analogy with 1-dimensional current
status breaks down. But it must have the property that its ‘derivative’ w.r.t.
dGn must be a distribution function, which is analogous to the fact that the
derivative of the convex minorant of the cusum diagram must be a distribution
function in the 1-dimensional case.

For the real current status model the situation is more complicated, since we
then have to deal with 4 regions instead of 2. From (1.2) we get:

∫

[t,∞)

δ1δ2

F̂n(u, v)
dPn +

∫

[t1,∞)×[0,t2)

δ1(1− δ2)

F̂n1(u)− F̂n(u, v)
dPn

+

∫

[0,t1)×[t2,∞)

(1− δ1)δ2

F̂n2(v)− F̂n(u, v)
dPn

+

∫

[0,t1)×[0,t2)

(1− δ1)(1 − δ2)

1− F̂n1(u)− F̂n2(v) + F̂n(u, v)
dPn

≤ 1,

where t = (t1, t2), with equality if (t1, t2) is a point of mass of F̂n.

It has been conjectured that the MLE in the bivariate current status model
converges locally at rate n1/3, just as in the 1-dimensional current status model
(with smooth underlying distribution functions). [17] proves a minimax lower
bound of order n−1/3. It would be somewhat surprising if the 1-dimensional rate
would be preserved in dimension 2, since in general one gets lower rates for den-
sity estimators if the dimension gets up, and the estimation of the distribution
function in the current status model is similar to density estimation problems,
as argued above.

To show that it is in principle possible to attain the local rate n1/3, we
construct a purely discrete estimator, converging locally at rate n1/3. We restrict
ourselves for simplicity to distributions with support [0, 1]2 in the remainder of
this section, but the generalization to more general rectangles is obvious. We
have the following result, which is proved in the Appendix.
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Theorem 2.1. Consider an interior point (t, u), and define the square An, with
midpoint (t, u), by:

An = [t− hn, t+ hn]× [u− hn, u+ hn].

Moreover, suppose that the observation distribution G is twice continuously dif-
ferentiable at (t, u) with a strictly positive density g(t, u) at (t, u), and that F0

is twice continuously differentiable at (t, u). Moreover, suppose

lim
n→∞

h2
nn

1/3 = c > 0. (2.3)

Then the estimator

F̃n(t, u)
def
=

∫

An
δ1δ2 dPn(v, w, δ1, δ2)
∫

An
dGn(v, w)

, (2.4)

where Gn is the empirical distribution function of the observations (Ti, Ui) and
Pn is the empirical distribution function of the observations

(Ti, Ui,∆i1,∆i2) , i = 1, . . . , n,

satisfies:

n1/3
{

F̃n(t, u)− F0(t, u)
}

D
−→ N

(

β, σ2
)

,

where N(β, σ2) is a normal distribution with first moment

β = c

{

1
6

{

∂2
1F0(t, u) + ∂2

2F0(t, u)
}

+
∂1F0(t, u)∂1g(t, u) + ∂2F0(t, u)∂2g(t, u)

3g(t, u)

}

,

and variance

σ2 =
F0(t, u) {1− F0(t, u)}

4cg(t, u)
.

We now allow as possible points of mass the points (tn1, un1), . . . , (tn,mn
,

un,mn
), running through a rectangular grid, where the distances between the

points on the x- and y-axis are of order n−1/3, and define the estimate F̃n at
each point (tni, uni) as in Theorem 2.1. Next we define the masses pni at the
points (tni, uni) by the equations

∑

j:tnj≤tni, unj≤uni

pnj = F̃n(tni, uni), i = 1, . . . ,mn.

Note that the estimate F̃n we obtain in this way is not necessarily a distribution
function and that the masses pnj can have negative values.

Also note that we get roughly order n1/3 × n1/3 equations in this way, which
turned out to be solvable, although it is not clear beforehand that the system
one gets is non-singular. Nevertheless, one can build up the system from left
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(a) Plug-in estimator
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(b) MLE on the points of mass of the
plug-in estimate

Fig 1. The plug-in estimator F̃n and the MLE, for a sample of size n = 5000 of bivariate
current status data, where the hidden variables have a distribution with density f0(x, y) =
x+ y, and the observation distribution is uniform on [0, 1]2.

and below up to the right and above, where one gets more an more values in
the corresponding matrix, so it seems likely that in general the solution exists.
This seems a point for further research. A picture of F̃n, together with the MLE,
computed on the sieve of points of mass of the plug-in estimator, is shown in
Figure 1. The sieved MLE is a proper (discrete) distribution function, so all its
masses are nonnegative.

Assuming the support of the distribution with function F0 to be [0, 1]2, we
treat the points near the upper and right boundary in a special way in computing
F̃n. If, for example tni > 1−hn, where hn ∼ n−1/6 and (tni, uni) is a point of the
grid, we put the δj1 corresponding to the contribution of observations (Tj , Uj)
such that Tj ≥ 2−tni−hn, equal to 1. We treat the second coordinate in the same
way. This reduces the bias we otherwise would get, with an underestimation of
the distribution function near the right and upper boundary. The idea to treat
the points near the boundary in this way is inspired by, but different from, the
reflection method proposed by [16]. For points near the left and lower boundary,
we follow a similar procedure. If, for example t < hn, where hn ∼ n−1/6 and
(t, u) is a point of the grid, we put the δj1 corresponding to the contribution
of observations (Tj , Uj) such that Tj ≤ hn − t, equal to 0. The bias near the
boundary is actually of order O(hn) in this way and we do not attain the O(h2

n)
for interior points, though.

3. The smoothed maximum likelihood estimator

Throughout this section we will assume for simplicity that the support of the
distribution of the ‘unobservables’ is [0, 1]2 and that we want to estimate the
corresponding distribution function F0 on [0, 1]2. The generalization to more
general rectangles is obvious.
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Let K be a symmetric non-negative kernel, for example the triweight kernel

K(x) = 35
32

(

1− x2
)3

1[−1,1](x),

and Kh(x) = h−1K(x/h), for h > 0. Moreover, let the integrated kernel IK be
defined by

IK(x) =

∫ x

−∞

K(y) dy.

We follow the approach for the 1-dimensional case, discussed in the references
[4] to [9].

At an interior point (t, u), not too close to the boundary, the smoothed max-
imum likelihood estimator (SMLE) is just defined by

F̂
(SML)
nh (t, u) =

∫

IKh(t−v)IKh(u−w) dF̂n(v, w), IKh(x) = IK(x/h). (3.1)

To prevent the negative bias at the right and upper boundary of the support,
we also perform a correction by extending the definition of IK near the upper
and right boundary by:

IKb(x) =

∫ ∞

x

K(y) dy (3.2)

and defining

F̂
(SML)
nh (t, u)

=

∫

{

IKh(t− v) + IKb
h(2− t− v)

}{

IKh(u− w) + IKb
h(2− u− w)

}

dF̂n(v, w),

(3.3)

and IKb
h(x) = h−1IKb(x/h). This definition of the (integrated) boundary kernel

is based on the reflection boundary correction method for density estimates,
proposed in [16]. Note that the definitions (3.1) and (3.3) coincide if max(t, u) ≤
1− h.

We next define the score function in the hidden space:

κ(t,u)(x, y) =
{

IKh(t− x) + IKb
h(2− t− y)

} {

IKh(u− x) + IKb
h(2− u− y)

}

,

Scores in the observation space are given by

θF0
(v, w, δ1, δ2) = E

{

a(X,Y )
∣

∣ (T, U,∆1,∆2) = (v, w, δ1, δ2)
}

, (3.4)

where a is a score in the hidden space. We have, for example

E
{

a(X,Y )
∣

∣ (T, U,∆1,∆2) = (v, w, 1, 1)
}

=

∫

x≤v, y≤w
a(x, y) dF0(x, y)

F0(v, w)
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With this notation, we want to solve the equation

E
{

θF0
(T, U,∆1,∆2)

∣

∣ (X,Y ) = (x, y)
}

=

∫

v≥x,w≥y

θF0
(v, w, 1, 1) g(v, w) dv dw +

∫

v≥x,w<y

θF0
(v, w, 1, 0) g(v, w) dv dw

+

∫

v<x,w≥y

θF0
(v, w, 0, 1) g(v, w) dv dw

+

∫

v<x,w<y

θF0
(v, w, 0, 0) g(v, w) dv dw

= κ(t,u)(x, y). (3.5)

Defining

φF0
(x, y) =

∫

v≤x,w≤y

a(v, w) dF0(v, w), (3.6)

where a is a score function in the hidden space, and differentiating (3.5) w.r.t.
x and y, we now obtain the equation:

φF0
(x, y)

F0(x, y)
−

φF0
(x, 1)− φF0

(x, y)

F0(x, 1)− F0(x, y)
−

φF0
(1, y)− φF0

(x, y)

F0(1, y)− F0(x, y)

−
φF0

(x, 1) + φF0
(1, y)− φF0

(x, y)

1− F0(x, 1)− F0(1, y) + F0(x, y)

= g(x, y)−1 ∂
2κ(t,u)(x, y)

∂x∂y

=
{Kh(t− x) +Kh(2− t− x)} {Kh(u− y) +Kh(2 − u− y)}

g(x, y)

This equation has the solution

φF0
(x, y)

=
{Kh(t− x) +Kh(2− t− x)} {Kh(u− y) +Kh(2− u− y)}

g(x, y)

·

{

1

F0(x, y)
+

1

F0(x, 1)− F0(x, y)
+

1

F0(1, y)− F0(x, y)

+
1

1− F0(x, 1)− F0(1, y) + F0(x, y)

}−1

(3.7)

Note that the solution satisfies:

φF0
(1, y) = φF0

(x, 1) = 0, x, y ∈ [0, 1].

This suggests that the asymptotic behavior of the SMLE is given by:
∫

θF0
(x, y, δ1, δ2) d (Pn − P ) (x, y, δ1, δ2), (3.8)
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where

θF0
(v, w, δ1, δ2)

=
δ1δ2φF0

(x, y)

F0(x, y)
−

δ1(1− δ2)φF0
(x, y)

F0(x, 1)− F0(x, y)
−

(1− δ1)δ2φF0
(x, y)

F0(1, y)− F0(x, y)

+
(1 − δ1)(1− δ2)φF0

(x, y)

1− F0(1, y)− F0(x, 1) + F0(x, y)
,

leading at interior points (t, u) to an asymptotic variance, given by:

1

n

∫

(x,y)∈[0,1]2

{

1

F0(x, y)
+

1

F0(x, 1)− F0(x, y)
+

1

F0(1, y)− F0(x, y)

+
1

1− F0(1, y)− F0(x, 1) + F0(x, y)

}−1

·
{Kh(t− x) +Kh(2− t− x)}

2
{Kh(u− y) +Kh(2− u− y)}

2

g(x, y)
dx dy

∼
(

nh2
)−1

{

1

F0(t, u)
+

1

F0(t, 1)− F0(t, u)
+

1

F0(1, t)− F0(t, u)

+
1

1− F0(1, u)− F0(t, 1) + F0(t, u)

}−1

g(t, u)−1

{
∫

K(v)2 dv

}2

.

Assume that max(t, u) ≤ 1− h. Then the bias is given by:
∫

IKh(t− v)IKh(u − w)f0(v, w) dv dw − F0(t, u)

=

∫
{
∫

Kh(t− v)

∫ v

0

f0(x,w) dx dv

}

IKh(u − w) dw − F0(t, u)

=

∫

Kh(t− v)Kh(u − w)F0(v, w) dv dw − F0(t, u)

=

∫

K(v)K(w) {F0(t− hv, u− hw)− F0(t, u)} dv dw

= 1
2

{

∂2
1F0(t, u) + ∂2

2F0(t, u)
}

h2

{
∫

x2K(x) dx

}2

+ o
(

h2
)

.

The SMLE is compared with the MLE in Figure 2. Using the assumption

that F̂
(SML)
n (t, u)−F0(t, u) has the asymptotic representation (3.8), we get the

following result.

Theorem 3.1 (Conjecture). Under the conditions of Theorem 2.1 we have for
each point (t, u) ∈ (0, 1)2 satisfying these conditions, if c = limn→∞ n1/3h2

n,

n1/3
{

F̂
(SML)
n,hn

(t, u)− F0(t, u)
}

D
−→ N

(

β, σ2
)

,

where N(β, σ2) is a normal distribution with first moment

β = 1
2c
{

∂2
1F0(t, u) + ∂2

2F0(t, u)
}

{
∫

x2K(x) dx

}2

,
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Fig 2. The MLE and SMLE for for a sample of size n = 1000 of bivariate current status
data, where the hidden variables have a distribution with density f0(x, y) = x + y, and the
observation distribution is uniform on [0, 1]2.

and variance

σ2 = c−1

{

1

F0(t, u)
+

1

F0(t, 1)− F0(t, u)
+

1

F0(1, t)− F0(t, u)

+
1

1− F0(1, u)− F0(t, 1) + F0(t, u)

}−1

g(t, u)−1

{
∫

K(v)2 dv

}2

.

Remark 3.1. Note that choosing hn ≍ n−1/6 is the asymptotically optimal
choice (modulo constants) since the variance is of order 1/(nh2

n) and the bias of
order h2

n, unless the bias is of order o(h2
n) (as happens when F0 is the uniform

distribution function on [0, 1]2). Also note that the bias term, caused by the
interaction of the observation distribution G and the distribution function F0,
which entered into the bias term of Theorem 2.1, plays no role here.

4. A simulation study

In order to compare the behavior of the three estimators, we took 1000 samples
from the distribution with distribution function

F0(x, y) =
1
2xy(x+ y), x, y ∈ [0, 1]2,

and generated bivariate current status data from this with respect to the uniform
distribution on [0, 1]2. The samples size taken were n = 100, 500, 1000 and 5000,
respectively. So we have observations (Ti, Ui) from the uniform distribution in
[0, 1]2, and for each such pair we get from the corresponding pair (Xi, Yi), drawn
from F0, independently w.r.t. (Ti, Ui), the indicators

∆i1 = 1{Xi≤Ti} and ∆i2 = 1{Yi≤Ui}.

Since simulations for sample size 5000 with the ‘real’ MLE, based on the
maximal intersection rectangles, would have taken prohibitively long, we in-
stead computed the MLE on a sieve, constructed in the following way. For each
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Table 1

Estimated values of the standard deviations times n1/3 for three estimators of F0(t, u) at a
number of values of (t, u), where F0(t, u) =

1

2
tu(t + u). The values corresponding to ∞ are

the asymptotic values, deduced from Theorems 2.1 and 3.1. The asymptotic values for the
MLE are unknown

u = 0.6
t n MLE SMLE Plug-in
0.2 100 0.251 0.133 0.185

500 0.257 0.132 0.152
1000 0.247 0.128 0.142
5000 0.246 0.123 0.126
∞ − 0.130 0.107

0.4 100 0.379 0.212 0.198
500 0.367 0.194 0.176
1000 0.360 0.190 0.179
5000 0.357 0.178 0.156
∞ − 0.182 0.162

0.6 100 0.475 0.263 0.226
500 0.412 0.223 0.221
1000 0.450 0.238 0.215
5000 0.441 0.218 0.205
∞ − 0.203 0.206

0.8 100 0.550 0.276 0.290
500 0.508 0.253 0.265
1000 0.503 0.255 0.266
5000 0.514 0.236 0.240
∞ − 0.183 0.236

(a) n1/3 times SD

u = 0.6
t n MLE SMLE Plug-in
0.2 100 0.003 0.043 0.205

500 −0.001 0.037 0.263
1000 −0.037 0.029 0.264
5000 −0.0002 0.030 0.230

∞ − 0.044 0.133
0.4 100 −0.004 0.061 0.155

500 −0.006 0.056 0.169
1000 −0.022 0.048 0.164
5000 −0.006 0.049 0.167

∞ − 0.056 0.166
0.6 100 0.115 0.099 0.015

500 0.003 0.084 0.202
1000 −0.036 0.080 0.190
5000 0.007 0.072 0.188

∞ − 0.067 0.200
0.8 100 0.118 0.124 −0.152

500 −0.018 0.112 −0.078
1000 0.006 0.117 −0.090
5000 −0.0002 0.116 −0.006

∞ − 0.078 0.233

(b) n1/3 times bias

sample of size n, we distributed mn =
[

n2/3
]

points on the unit square, by

letting their x- and y-coordinates be multiples of n−1/3 and permuting these
coordinates randomly, according to the uniform distribution on permutations.
Here [x] denotes the largest integer ≤ x.

So we start with order n2/3 points on which the sieved MLE can place its
mass, to which we add the vertices of the unit square to ensure a finite log
likelihood, and compute the MLE which only is allowed to have mass at these
points. This set of points is shown in Figure 3, corresponding to sample size
n = 1000, and the reduced set of points on which the MLE actually puts positive
mass is also shown in this picture.

The rather different set of points on which the plug-in estimate puts its mass
is shown in Figure 4. In fact, inspection of the set of points on which the MLE,
based on the maximal intersection rectangles puts its mass, shows that that
such sets are rather similar to Figure 3b and not similar to Figure 4. By the
rather irregular structure of sets like Figure 3b the bias of the MLE is reduced
w.r.t. the plug-in estimator which is constant on squares with sides of order
n−1/3. We note, however, that the number of points in Figure 3a is the same as
in Figure 4 (the number is 121).

We took the bandwidth hn for the SMLE equal to n−1/6 and we also used this
as binwidth for the plug-in estimator. Table 1a shows that there is no indication
that n1/3 times the standard deviation of the MLE is increasing with sample
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(a) Initial set of points of possible mass
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(b) Mass points of MLE

Fig 3. A set of points on which the MLE is allowed to put its mass and the actual set of mass
points of the MLE for a sample of size n = 1000.
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Fig 4. The set of points on which the plug-in estimator puts its mass for n = 1000.

size, and Table 1b suggests that the bias times n1/3 is vanishing (as is also true
in the one-dimensional case!), as n → ∞, so the hypothesis that the rate of
convergence of the MLE is n1/3 is not contradicted.

However, if the rate of the MLE is actually of order n1/3(logn)−1/3, for
example, we can probably not detect this in the present way. The theory for
the MSLE and plug-in estimators seems to be confirmed by the simulations, in
particular at the points (0.4, 0.6) and (0.6, 0, 6), where the boundary effects are
still not active. Note that if, for example, n = 500, the bandwidths for the SMLE
are equal to 500−1/6 ≈ 0.3549537, so the boundary kernel starts getting active
for the points (0.2, 0.6) and (0.8, 0.6). This is still true for sample size n = 5000,
where the bandwidth is 5000−1/6 ≈ 0.2418271. It is clear from Table 1a that
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Table 2

Estimated values of the standard deviations times n1/3 for three estimators of F0(t, u) at a
number of values of (t, u), where F0(t, u) = tu. The values corresponding to ∞ are the

asymptotic values, deduced from Theorems 2.1 and 3.1. The asymptotic values for the MLE
are unknown

u = 0.6
t n MLE SMLE Plug-in
0.2 100 0.371 0.199 0.388

500 0.367 0.173 0.286
1000 0.363 0.145 0.262
5000 0.360 0.121 0.195
∞ − 0 0

0.4 100 0.458 0.266 0.511
500 0.438 0.220 0.391
1000 0.447 0.197 0.332
5000 0.438 0.159 0.257
∞ − 0 0

0.6 100 0.480 0.294 0.576
500 0.486 0.239 0.433
1000 0.491 0.221 0.362
5000 0.470 0.178 0.301
∞ − 0 0

0.8 100 0.517 0.303 0.602
500 0.497 0.242 0.438
1000 0.490 0.226 0.386
5000 0.479 0.177 0.303
∞ − 0 0

(a) n1/3 times SD

u = 0.6
t n MLE SMLE Plug-in
0.2 100 −0.032 −0.009 −0.007

500 0.001 0.037 0.005
1000 −0.027 −0.006 −0.008
5000 0.006 0.024 −0.009

∞ − 0 0
0.4 100 −0.016 −0.009 −0.028

500 0.018 0.007 0.004
1000 −0.022 −0.001 0.001
5000 −0.008 −0.003 0.004

∞ − 0 0
0.6 100 0.106 0.023 −0.025

500 0.011 0.022 0.014
1000 −0.004 0.005 −0.008
5000 0.027 0.010 0.004

∞ − 0 0
0.8 100 0.092 0.033 −0.011

500 −0.015 0.037 −0.001
1000 0.012 0.012 0.008
5000 0.014 −0.011 0.006

∞ − 0 0

(b) n1/3 times bias

the MLE has a bigger variance than the other two estimators, but on the other
hand the bias of the MLE is usually smaller than that of the other estimators.

If the second order partial derivatives of the distribution function F0 vanish
at (t, u), as happens, for example, with the uniform distribution, it is possible to
achieve higher rates of convergence with the SMLE and the plug-in estimator.
We demonstrate this for the uniform distribution function F0, where we keep
the bandwidth constant and equal to 0.4 for the SMLE and equal to 0.2 for the
plug-in estimator (to avoid the boundary correction). In this case the bias times
n1/3 tends to zero for the SMLE and the plug-in estimator, see Table 2b. If we
keep the bandwidth constant, the variance of the SMLE and plug-in estimator
should be of order n−1 and these estimators should therefore actually attain a
parametric rate of convergence in this case. We expect the MLE to have again
rate n1/3 in this case however, which is also (to a certain extent) suggested by
Table 2.

5. More general bivariate interval censoring

The purpose of this section is to show that the MLE and SMLE, discussed in
the preceding sections in the context of the bivariate current status model, can
also be used for more general interval censored data. As mentioned earlier, the
current status model is the simplest case of the interval censoring model. For
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the bivariate interval censoring, case 2, model, the data are of the form
(

Ti1, Ui1, Ti2, Ui2,∆
(1)
i1 ,∆

(1)
i2 ,∆

(2)
i1 ,∆

(2)
i2

)

, i = 1, . . . , n,

where

∆
(1)
i1 = 1{Xi1≤Ti1}, ∆

(2)
i1 = 1{Ti1<Xi1≤Ui1}, ∆

(1)
i2 = 1{Xi2≤Ti2},

∆
(2)
i2 = 1{Ti2<Xi2≤Ui2},

Defining

∆
(3)
i1 = 1−∆

(1)
i1 −∆

(2)
i1 , ∆

(3)
i2 = 1−∆

(1)
i2 −∆

(2)
i2 ,

and defining the corresponding generic values δ
(j)
i similarly, we can define the

measure dV
(ij)
n by

dV (ij)
n = δ

(i)
1 δ

(j)
1 δ

(i)
2 δ

(j)
2 dPn

(

t, u, v, w, δ
(i)
1 , δ

(i)
2 , δ

(j)
1 , δ

(j)
2

)

, 1 ≤ i, j ≤ 3,

and an MLE of F is then obtained by maximizing

ℓ(F )

=

∫

logF (t, v) dV (11)
n

+

∫

t≤u, v≤w

log {F (u,w)− F (t, w)− F (u, v) + F (t, v)} dV (22)
n

+

∫

u≥t

log {F (u, v)− F (t, v)} dV (21)
n +

∫

w≥v

log {F (t, w)− F (t, v)} dV (12)
n

+

∫

u≥t

log {F1(u)− F1(t)− F (u,w) + F (t, w)} dV (23)
n

+

∫

w≥v

log {F2(w) − F2(v)− F (u,w) + F (u, v)} dV (32)
n

+

∫

w≥v

log {F1(t)− F (t, w)} dV (13)
n +

∫

u≥t

log {F2(v)− F (u, v)} dV (31)
n

+

∫

log {1− F1(u)− F2(w) + F (u,w)} dV (33)
n (5.1)

over bivariate distribution functions F . The Fenchel duality conditions become:

∫

t≥x, v≥y

dV
(11)
n

F (t, v)
+

∫

t<x≤u, v<y≤w

dV
(22)
n

F (u,w)− F (t, w)− F (u, v) + F (t, v)

+

∫

t<x≤u, v≥y

dV
(21)
n

F (u, v)− F (t, v)
+

∫

t≥x, v<y≤w

dV
(12)
n

F (t, w) − F (t, v)

+

∫

t<x≤u,w≥y

dV
(23)
n

F1(u)− F1(t)− F (u,w) + F (t, w)
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+

∫

u≥x, v<y≤w

dV
(32)
n

F2(w)− F2(v)− F (u,w) + F (u, v)

+

∫

t<x≤u, v≥y

dV
(13)
n

F1(t)− F (t, w)
+

∫

t≥x, v<y≤w

dV
(31)
n

F2(v)− F (u, v)

+

∫

u<x,w<y

dV
(33)
n

1− F1(u)− F2(w) + F (u,w)
≤ 1, (5.2)

with equality if (x, y) is a point of mass of dF .
For computational purposes (but probably not for the development of distri-

bution theory!) it is more convenient not to distinguish between the measures

V
(ij)
n and just to introduce rectangles to which the unobservable observations

are known to belong, where we represent the (one-sided) unbounded rectangles
by finite rectangles with upper or lower bounds outside the range of the observed
data. In this set-up we simply have to maximize

∑

fi logH
′
ip, (5.3)

where p = (p1, . . . , pm)′ is a vector of probability masses at possible points of
mass (xj , yj) and Hi is a vector of length m, consisting of ones and zeros, where
the component Hij is equal to 1 if the point (xj , yj) is contained in the rectangle

[Li1, Ri1]× [Li2, Ri2],

and is zero, otherwise, and where the fi denote the multiplicities at the ith
observation point. The masses pj should be nonnegative and sum to 1. This
optimization can easily be handled by using iterative quadratic minimization
and the support reduction algorithm, documented in [12]. In fact, the treatment
is completely analogous to the treatment of the Aspect experiment for quantum
statistics, discussed there.

The data of [1] are given in Table 3, where the rectangles to which the hidden
observations are known to belong are denoted by [Li1, Ri1] × [Li2, Ri2], i =
1, . . . , n. The frequencies of the hidden observations belonging to these rectangles
are given in the 5th and 10th column. There are 87 observation rectangles and
the total sample size, taking the frequencies into account, is 204. The table is
also given in [18], Table 7.1, p. 165, but there the rectangles are slightly changed
from the data in [1] by lowering the left bounds by 1 if they are larger than zero.
Since we do not see a pressing reason for doing that, we just give the data here
as they were given by [1]. If the upper bound Rij is unknown, we put Rij = ∞
and if the lower bound Lij is unknown, we put Lij = −∞.

The maximal intersection rectangles where the MLE will put its mass are
given in Table 4a. They can be computed, for example, by applying the reduction
algorithm, used in the R package MLEcens.

To facilitate the comparison with the existing literature, we will only discuss
the MLE, based on the preliminary reduction to rectangles which can have mass,
and not follow the procedure we used for computing the MLE on a sieve in the
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Table 3

The Betensky-Finkelstein data

Li1 Ri1 Li2 Ri2 frequency Li1 Ri1 Li2 Ri2 frequency
0 3 0 − 3 6 − 6 − 3
0 3 3 − 1 6 − 9 − 1
0 3 6 − 3 9 − 0 − 2
0 6 6 − 1 9 − 9 − 3
0 3 9 − 1 9 − 12 − 1
0 3 12 − 5 12 − 0 − 5
0 3 15 − 5 12 − 6 − 1
0 6 15 − 1 12 − 9 − 4
3 3 3 − 1 12 − 12 − 10
3 3 6 − 1 15 − 0 − 3
3 3 9 − 3 15 − 3 − 1
3 6 9 − 2 15 − 6 − 1
3 6 12 − 3 15 − 9 − 2
3 3 15 − 2 15 − 12 − 8
3 6 15 − 2 15 − 15 − 9
3 6 18 − 1 18 − 0 − 1
3 3 21 − 1 18 − 6 − 1
6 6 0 − 2 18 − 9 − 1
6 9 0 − 1 18 − 12 − 1
6 9 9 − 1 18 − 15 − 3
6 6 12 − 1 18 − 18 − 6
6 9 12 − 2 21 − 15 − 1
6 6 15 − 1 − 0 0 − 9
6 9 15 − 1 − 0 3 − 3
6 6 18 − 1 − 0 6 − 10
6 9 18 − 2 − 0 9 − 6
9 9 0 − 1 − 0 12 − 8
9 12 0 − 2 − 0 15 − 5
9 9 9 − 2 − 0 18 − 4
9 12 9 − 1 − 0 21 − 1
9 12 12 − 3 0 − 0 3 1
9 9 15 − 1 6 − 0 6 1
9 12 24 − 1 6 − 6 6 1
9 9 27 − 1 12 − 0 3 1
12 12 0 − 1 12 − 0 6 1
12 15 0 − 1 15 − 0 3 1
12 15 6 − 1 21 − 15 15 1
12 15 15 − 1 3 − − 0 1
12 15 21 − 1 9 − − 0 1
0 − 0 − 6 12 − − 0 1
3 − 0 − 2 0 3 0 6 1
6 − 0 − 1 3 6 6 12 1
6 − 3 − 2 9 9 9 9 1
− 0 − 0 1

simulation from the density f(x, y) = x+y on [0, 1]2. We will use the convention
of putting the mass of the MLE in the right upper corner of these rectangles,
and compute the MLE by the support reduction algorithm of [12]. The result is
shown in Table 4, where the masses of the MLE are given. It is seen that this is
in close correspondence with Table 7.2 on p. 166 of [18], apart from the slightly
different definition of the rectangles. The R package MLEcens also gives this
result (in all 9 decimals).
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Table 4

Maximal intersection rectangles and masses of MLE

Lj1 Rj1 Lj2 Rj2

0 0 0 0
0 0 21 −

3 3 21 −

6 6 6 6
6 6 18 −

9 9 9 9
9 9 27 −

12 12 0 0
12 12 24 −

15 15 0 0
15 15 21 −

21 − 15 15
21 − 18 −

(a) Canonical rectangles

Lj1 Lj2 mass MLE
0 0 0.013676984
0 21 0.307533525
3 21 0.087051863
6 6 0.014940282
6 18 0.062521573
9 9 0.010009349
9 27 0.071073995

12 0 0.004836043
12 24 0.053334241
15 0 0.042456241
15 21 0.021573343
21 15 0.044427509
21 18 0.266565054

(b) Masses of MLE
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(b) SMLE

Fig 5. MLE and SMLE for the Betensky-Finkelstein data, restricted to the interval [0, 18]×
[0, 24].

The SMLE for bivariate interval censoring is again defined by (3.1). A picture
of the MLE and the SMLE is shown in Figure 5 and the picture of the level
curves in Figure 7. For the meaning of the codings CMV (cytomegalovirus)
and MAC (mycobacterium avium complex), see [1] or [18], section 7.3. Both
the MSLE and the MSLE indicate that CMV shedding occurs prior to MAC
colonization.

It can be seen from this picture that the steep increase of the first marginal
df of the MLE and SMLE, shown in Figure 6, is due to the ‘ridge’ for the
larger values of the second coordinate. The levels of both estimates are shown in
Figure 7. It seems to me that the SMLEmight be the more sensible estimate, also
in view of the representational non-uniqueness of the MLE, which is somewhat
‘washed out’ by the SMLE.
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Fig 6. The first marginal df of the data set in [1], computed on the interval [0, 21) (the largest
observation point on the first coordinate is 21). The solid curve gives the first marginal df of

the MLE and the dashed curve the first marginal of the SMLE, taking bandwidth n−1/6.
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(a) Level plot of the MLE

0 5 10 15

0

5

10

15

20

(b) Level plot of the SMLE

Fig 7. Contourplot of the MLE and SMLE for the Betensky-Finkelstein data, restricted to
the interval [0, 18]× [0, 24].

6. Concluding remarks

In the preceding, three estimators for the bivariate current status model were
studied: the maximum likelihood estimator (MLE), which in the simulation
study was restricted to the MLE on a sieve, the smoothed maximum likelihood
estimator (SMLE), obtained by integrating a kernel w.r.t. the masses of the
MLE, and a purely discrete plug-in estimator. The SMLE and plug-in seem to
attain the n1/3 rate, with asymptotically normal distributions.
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It might be somewhat surprising that the SMLE have the same rate, whereas
the natural rates in the one-dimensional case are n1/3 and n2/5, respectively,
see [9]. But in the bivariate case the variance is of order 1/(nh2) and the bias
of order h2, if a bandwidth h is taken in both directions and the kernel is of the
usual symmetric and positive type. This makes the optimal choice of bandwidth
of order n−1/6, leading to a rate of order n1/3.

We concentrated on compact support, but since we focused on local estima-
tion, this restriction does not seem essential, except for the SMLE, since there
the boundary played an important role. Further research on this matter seems
needed.

It is also possible to attain again the local n2/5 rate in the bivariate case, but
then one has to take recourse to higher order kernels K with the property

∫

u2K(u) du = 0.

One also has to take bandwidths of order n−1/10 instead of order n−1/6 in this
case, which makes the judicious choice of boundary kernels even more important.
Moreover, one has to strengthen the conditions of the theorems to the existence
of 4th derivatives. However, if one is willing to do that, it is easy to strengthen
Theorem 3.1 by letting the kernel IK be based on, for example, the kernel

K1(u) =
315
512

(

1− u2
)3

(11u2 − 3)1[−1,1](u)

which is the fourth order kernel corresponding to the Triweight kernel

K(u) = 35
32

(

1− u2
)3

1[−1,1](u).

But one loses the property that the resulting estimate is necessarily a distribu-
tion function, since the kernel K1 is no longer positive. For the choice of higher
order kernels, see, e.g., [14].

7. Appendix

Proof of Theorem 2.1. We use the representation

∫

An
δ1δ2 dPn(v, w, δ1, δ2)
∫

An
dGn(v, w)

− F0(t, u)

=

∫

An
δ1δ2 dPn − E

{

∫

An
δ1δ2 dPn

∣

∣ (Ti, Ui), i = 1, . . . , n
}

∫

An
dGn(v, w)

+
E
{

∫

An
δ1δ2 dPn

∣

∣ (Ti, Ui), i = 1, . . . , n
}

∫

An
dGn(v, w)

−
n−1

∑n
i=1 F0(t, u)1An

(Ti, Ui)
∫

An
dGn(v, w)

.

(7.1)
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The numerator of the first term on the right-hand side can be written:

n−1
n
∑

i=1

{∆i1∆i2 − F0(Ti, Ui)} 1An
(Ti, Ui).

This is the sum of i.i.d. random variables, and

var ({∆11∆12 − F0(T1, U1)} 1An
(T1, U1)) ∼ 4n−1/3g(t, u)F0(t, u) {1− F0(t, u)} ,

as n → ∞. Hence:

n1/3

∫

An
δ1δ2 dPn − E

{

∫

An
δ1δ2 dPn

∣

∣ (Ti, Ui), i = 1, . . . , n
}

∫

An
dGn(v, w)

D
−→ N(0, σ2),

where

σ2 =
F0(t, u) {1− F0(t, u)}

4g(t, u)
.

The numerator of the second term on the right-hand side of (7.1) can be
written:

n−1
n
∑

i=1

{F0(Ti, Ui)− F0(t, u)} 1An
(Ti, Ui).

Note that, putting h = hn ∼ n−1/6,

n−1
n
∑

i=1

E {F0(Ti, Ui)− F0(t, u)} 1An
(Ti, Ui)

=

∫

max{|v−t|,|w−u|}≤h

{F0(v, w) − F0(t, u)} g(v, w) dv dw

= ∂1F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(v − t) g(v, w) dv dw

+ ∂2F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(w − u) g(v, w) dv dw

+ 1
2∂

2
1F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(v − t)2 g(v, w) dv dw

+ 1
2∂

2
2F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(w − u)2 g(v, w) dv dw + o
(

n−2/3
)

= ∂1F0(t, u)∂1g(t, u)

∫

max{|v−t|,|w−u|}≤h

(v − t)2 dv dw

+ ∂2F0(t, u)∂2g(t, u)

∫

max{|v−t|,|w−u|}≤h

(w − u)2 dv dw

+ 1
2∂

2
1F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(v − t)2 g(v, u) dv dw
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+ 1
2∂

2
2F0(t, u)

∫

max{|v−t|,|w−u|}≤h

(w − u)2 g(v, u) dv dw + o
(

n−2/3
)

= 4
3 {∂1F0(t, u)∂1g(t, u) + ∂2F0(t, u)∂2g(t, u)}h

4

+ 2
3

{

∂2
1F0(t, u) + ∂2

2F0(t, u)
}

g(t, u)h4 + o
(

n−2/3
)

.

Moreover,

var

(

n−1
n
∑

i=1

{F0(Ti, Ui)− F0(t, u)} 1An
(Ti, Ui)

)

= O

(

n−1

∫

max{|t−t0|,|u−u0|}≤h

{F0(t, u)− F0(t0, u0)}
2
g(t, u) dt du

)

= O
(

n−5/6
)

.

The result now follows.
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