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Abstract

Temporal networks, like physical contact networks, are networks whose topol-
ogy changes over time. However, this representation does not account for group
interactions, when people gather in groups of more than two people, that can
be represented as higher-order events of a temporal network. The prediction
of these higher-order events is usually overlooked in traditional temporal net-
work prediction methods, where each higher-order event of a group is regarded
as a set of pairwise interactions between every pair of individuals within the
group. However, pairwise interactions only allow to partially capture interac-
tions among constituents of a system. Therefore, we want to be able to predict
the occurrence of such higher-order interactions one step ahead, based on the
higher-order topology observed in the past, and to understand which types of
interactions are the most influential for the prediction. We find that the simi-
larity in network topology is relatively high at two time steps with a small time
lag between them and that this similarity decreases when the time lag increases.
This motivates us to propose a memory-based model that can predict a higher-
order temporal network at the next time step based on the network observed
in the past. In particular, the occurrence of a group event will be predicted
based on the past activity of this target group and of other groups that form a
subset or a superset of the target group. Our model is network-based, so it has a
relatively low computational cost and allows for a good interpretation of its un-
derlying mechanisms. We propose as a baseline the memory-based method for
the traditional pairwise network prediction problem. In this baseline model, the
predicted higher-order events at a prediction time step are then deduced from
the predicted pairwise network at the same prediction time step. We evaluate
the prediction quality of all models in eight real-world physical contact networks
and find that our model outperforms the baseline model. We also analyze the
contribution of group events of different sizes to the prediction quality. We find
that the past activity of the target group is the most important factor for the
prediction. Moreover, the past activity of groups of a larger size has, in general,
a lower impact on the prediction of events of an arbitrary size than groups of a
smaller size.
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1 Introduction

Real-world complex systems are often represented as networks. In this repre-
sentation, the nodes are the components of the system, and the links between
nodes denote an interaction or a relation between the components. In many
cases, the interactions between the components are not continuously active. In-
dividuals may have a face-to-face interaction, send an email, or have a phone
call, at a specific time. Temporal networks represent these systems more realis-
tically with time-varying network topology, where each link between two nodes
is activated only when the node pair interacts [1][2][3].

Studies in physical contact temporal networks usually focus on pairwise in-
teractions. However, pairwise interactions do not allow to capture all the in-
formation about some specific behaviors of the network [4][5]. In the case of
physical contacts, individuals may tend to gather in groups [6], which can not
be seen directly from pairwise interactions. For another example, collaboration
networks often have more than two authors for a scientific paper. Interactions
that involve an arbitrary number of nodes are called higher-order interactions.

The classic temporal network prediction problem consists of predicting tem-
poral contacts one step ahead based on the temporal network topology observed
in a past window. It enables better forecast and mitigation of the spread of epi-
demics or misinformation on the network. The temporal network prediction
problem is also equivalent to problems in recommender systems. For instance,
it can be predicting which user will purchase which product, or which individuals
will become acquaintances [7][8].

Different methods have been proposed for pairwise link prediction on tempo-
ral networks. Some methods rely on network embeddings: nodes are represented
as points in a dimensional space where connected nodes are supposed to be closer
in this embedding space [9][10][11]. Alternatively, deep learning methods have
also been proposed [12], for instance, using LSTM methods [13] or adversarial
networks [14]. However, these methods are at the expense of high computational
costs and are limited in providing insights regarding which network mechanisms
enable network prediction.

Finally, a few papers have recently proposed methods to predict the occur-
rence of higher-order interactions in the future. For example, network metrics
[15][16] and embeddings [17] have been used to predict the chance of a set of
nodes to be part of an event involving exactly that set of nodes, the so-called
simplicial closure problem. However, this work does not correspond to the def-
inition we gave of the classic temporal network prediction problem since they
rather focus on predicting whether one interaction will occur at some point in
the future.

Therefore, we want to be able to predict the occurrence of higher-order
interactions one step ahead, based on the higher-order topology observed in the
past, and to understand which types of interactions are the most influential for
the prediction. In this paper, we propose a model that predicts which events
will happen at a given time step based on the network observed in the past. For
this, we establish a memory-based model that is a generalization to higher-order
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of the pairwise model proposed by Zou et al. [18]. Our model assumes that the
occurrence or not of a group event at the next time step is influenced by the
past activity of this target group and of other groups that form a subset or
a superset of the target group. Furthermore, the influence of recent events is
considered more impactful than the influence of older events. Finally, we make
two other assumptions to simplify the problem: the first one is that the number
of group events of a given size at the prediction time step is known, and the
second one is that the model has the knowledge of which group events occur at
least once in the network. We propose as a baseline the memory-based method
on traditional pairwise networks, adapted such that the predicted higher-order
events at a prediction time step are then deduced from the predicted pairwise
network at the same prediction time step. The predictions from our model
consistently outperform this baseline, as evaluated in eight real-world physical
contact datasets. We find that the past activity of the target group is the most
important factor for the prediction. Moreover, the past activity of groups of
a large size has, in general, a lower impact on the prediction of events of an
arbitrary size than groups of a smaller size.

The rest of the paper is organized as follows. We introduce in Section 2 the
representation of higher-order temporal networks and in Section 3 the datasets
we use to design and evaluate our prediction method. Key temporal network
properties are explored in Section 4 to motivate the design of our model, which
is explained in Section 5. In Section 6, our model is evaluated and compared to
our baseline before we discuss further analysis and interpretation of the results
in Section 7.

2 Higher-order temporal network representation

We define a pairwise temporal network in strictly the same way as what was done
by Zou et al. [18]. A pairwise temporal network G measured at discrete times
can be represented as a sequence of network snapshots G = {G1, G2, ..., GT },
where T is the duration of the observation window, Gt = (V,Et) is the snapshot
at time step t with V and Et being the set of nodes and contacts, respectively. If
nodes a and b have a contact at time step t, then (a, b) ∈ Et. Here, we assume all
snapshots share the same set of nodes V . The set of links in the time-aggregated
network is defined as E =

⋃t=T
t=1 Et. A pair of nodes is connected with a link

in the aggregated network if at least one contact occurs between them in the
temporal network. The total number of links is ME = |E|. We give each link in
the aggregated network an index i, where i ∈ [1,ME ]. The temporal connection
or activity of link i over time can then be represented by a T -dimension vector
xi whose element is xi(t), where t ∈ [1, T ], such that xi(t) = 1 when link i has
a contact at time step t and xi(t) = 0 if no contact occurs at t. A temporal
network can thus be equivalently represented by its aggregated network, where
each link i is further associated with its activity time series xi.

This traditional temporal network representation records social contacts as
a set of pairwise interactions. However, individuals may gather in larger groups,
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where more than two people interact with one another at the same time. For
instance, an interaction between three nodes a, b, c at time step t is usually
measured and recorded as three pairwise interactions (a, b), (b, c), (a, b). Physi-
cal interactions can be more accurately represented as a higher-order temporal
network H (or temporal hypergraph, following the definition from Cencetti et
al. [19]), which is a sequence of network snapshots H = {H1, ...,HT }, where
T is the duration of the observation window, HT = (V, Et) is the snapshot at
time step t with V being the set of nodes shared by all snapshots and Et the set
of hyperlinks of arbitrary order that are activated at time step t. The activa-
tion of a hyperlink (u1, ..., ud) at time step t corresponds to a group interaction
between nodes u1, ..., ud at time step t. The size or order of an interaction
is the size of the group, i.e., the set of nodes involved in the interaction. The
hyperlink (u1, ..., ud) active at time step t is called an event, its size is d. We
call a hyperlink of size d a d-hyperlink and an event of size d a d-event. For a
hyperlink h1 = (u1, ..., ud1

) and another hyperlink h2 = (u1, ..., ud1
, ..., ud2

) such
that d1 ≤ d2, which means that h1 is included in h2, we call h2 a super-hyperlink
of h1 and h1 a sub-hyperlink of h2. The set of hyperlinks in the higher-order
time-aggregated network is defined as E =

⋃t=T
t=1 Et. A hyperlink belongs to E

if it is activated at least once in the temporal network. The total number of
hyperlinks is ME = |E|. We give each hyperlink in the higher-order aggregated
network an index i, where i ∈ [1,ME ]. The temporal connection or activity
of hyperlink i over time can then be represented by a T -dimension vector xi

whose element is xi(t), where t ∈ [1, T ], such that xi(t) = 1 when hyperlink
i is activated at time step t and xi(t) = 0 if no group interaction occurs at t.
A higher-order temporal network can thus be equivalently represented by its
higher-order aggregated network, where each hyperlink i is further associated
with its activity time series xi.

3 Datasets

To design and evaluate our temporal network prediction methods, we consider
eight empirical physical contact networks from the SocioPatterns project1. They
are collections of face-to-face interactions at a distance smaller than 2 m, in sev-
eral social contexts such as study places (Highschool2012, Highschool2013, Pri-
maryschool), conferences (SFHH, Hypertext2009), workplaces (Hospital, Work-
place) or an art gallery (Science Gallery). These face-to-face interactions are
recorded as a set of pairwise interactions. Based on them, group interactions
are deduced by promoting every fully-connected clique of

(
d
2

)
contacts happen-

ing at the same time step to an event of size d occurring at this time step.
Since a clique of order d contains all its sub-cliques of order d′ < d, only the
maximal clique is promoted to a higher-order event, whereas sub-cliques are
ignored. This method has been used by Cencetti et al. to deduce higher-order
interactions from datasets of human face-to-face interactions [19]. The datasets
are also preprocessed by removing nodes not connected to the largest connected

1http://www.sociopatterns.org/
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Dataset Order 2 Order 3 Order 4 Order 5 Order 6+

Science Gallery 12770 1421 77 7 0
Hospital 25487 2265 81 2 0

Highschool 2012 40671 1339 91 4 0
Highschool 2013 163973 7475 576 7 0
Primaryschool 97132 9262 471 12 0
Workplace 71529 2277 14 0 0

Hypertext 2009 18120 874 31 12 4
SFHH Conference 48175 5057 617 457 199

Table 1: Number of events of every order for every dataset after preprocessing.

component in the pairwise time-aggregated network and long periods of inac-
tivity, when no event occurs in the network. Such periods usually correspond,
e.g., to night and weekends, and are recognized as outliers. This corresponds
to the preprocessing done by Ceria et al. [20][21], and we are using the same
preprocessed datasets for our work. The distribution of events in our datasets,
after preprocessing, is shown in Table 1.

4 Network memory property

Zou et al. observed properties of time-decaying memory in pairwise temporal
networks. This means that different snapshots of the network share certain
similarities. These properties were used to better predict pairwise interactions
[18]. Inspired by this, we also want to know whether higher-order temporal
networks have similar properties at different orders and whether this property
can be used to predict higher-order events in temporal networks.

Therefore, we examine the Jaccard similarity of the network at two different
time steps and for every order. The Jaccard similarity measures how similar two
given sets are by taking the ratio of the size of the intersection set over the size
of the union set. In our case, we compute the Jaccard similarity, for every order
n, between the set of n-hyperlinks active at a time step t1, called En

t1 , and the
set of n-hyperlinks active at a time step t2, called En

t2 . Therefore, we compute

the Jaccard similarity:
|En

t1
∩En

t2
|

|En
t1

∪En
t2

| . The difference t2 − t1 is called the time lag.

As shown in Figure 1, the similarity decays as the time lag increases for
orders 2, 3, and 4. This behavior can be observed for all datasets. The time-
decaying memory at order 5 has not been observed except for SFHH. This is
because the number of 5-events is very small in all networks except for SFHH,
as shown in Table 1.

Finally, we check if these properties are also present in the case of collabo-
ration networks, whose topological-temporal properties of events were shown to
be substantially different than physical contact networks [21]. We thus compute
the Jaccard similarity for every order on collaboration networks (see Figure A1
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(a) Order 2 (b) Order 3

(c) Order 4 (d) Order 5

Figure 1: Jaccard similarities as a function of the time lag, for orders 2, 3, 4,
5, in eight real-world physical contact networks.

in the Appendix), and we find that collaboration networks do not show a signif-
icant pattern of decay with regard to the time lag. Therefore, we focus in this
paper on physical contact networks, which possess the memory property that
we will utilize to make the prediction.

5 Models

5.1 Baseline

Based on the observed time-decaying memory of the physical contact networks,
Zou et al. created a memory-based model called SD (for Self-Driven model)
that predicts a link’s activity at the next time step based on its past activity
[18]. The SD model makes a prediction of the links active at a time step t + 1
based on the metric of the activation tendency. The tendency wj(t+1) of a link
j to be active at time t+ 1 is defined as:

wj(t+ 1) =
∑k=t

k=t−L+1 xj(k) exp
−τ(t−k),
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where t + 1 is the time of interest for the prediction, j is the link of inter-
est, L is the length of the window to use for the prediction, τ is the exponential
decay factor, and xj(k) is the activation state of link j at time k: xj(k) = 1 if
the link j is active at time k and xj(k) = 0 otherwise.

The model has the knowledge of the aggregated network, so it only computes
the activation tendency of links that belong to E. We also give the model the
number of contacts n occurring at time t + 1. Therefore, the model will select
the n links with the highest activation tendency value at t + 1. These will be
the n predicted contacts at time t+ 1.

We propose a baseline model that deduces a higher-order prediction from
the pairwise prediction. At every time step t + 1, there is a set of links that
are predicted as active by the model. This set of pairwise links is promoted to
a set of higher-order hyperlinks of arbitrary order using the same method from
Cencetti et al. [19] as the one we explained in Section 3. This set of higher-order
hyperlinks is considered the prediction made by the baseline of which hyperlinks
will be active at time step t+ 1.

5.2 Generalized model

Since the time-decaying memory is also observed at different orders on the
higher-order temporal networks, this inspires us to create a model that gener-
alizes the memory-based model to higher-order networks. The essence of the
model is that the future activity of a hyperlink should be dependent on its past
activity. Furthermore, since Ceria et al. [21] showed that events of different
orders that occur close in time tend to overlap in component nodes, we also
consider that the activity of a hyperlink should be dependent on the past ac-
tivity of its sub-hyperlinks and super-hyperlinks. Finally, recent events should
have more influence than older events, based on the observed memory property.

Therefore, similarly to what was done for the SD model, we propose a gen-
eralized version of the tendency that applies to hyperlinks of arbitrary order.
The activation tendency of a higher-order hyperlink j at t+ 1 is defined as:

wj(t+ 1) =
∑k=t

k=t−L+1

∑
i∈Sj

cdidj
xi(k) exp

−τ(t−k),

where t + 1 is the time of interest for the prediction, j is the hyperlink of
interest, L is the length of the window to use for the prediction, τ is the expo-
nential decay factor, Sj is the set of hyperlinks that are either sub-hyperlinks of
j or that have j as a sub-hyperlink, and xi(k) is the activation state of hyperlink
i at time k: xi(k) = 1 if the hyperlink i is active at time k and xi(k) = 0 oth-
erwise. cdidj is the coefficient of cross-order influence, for which di is the size of
hyperlink i and dj is the size of hyperlink j. For instance, c32 is the coefficient
associated with the influence of the activation of a 3-hyperlink on the activation
of one of its sub-hyperlinks of size 2. We put cdd = 1 for any arbitrary hyperlink
size d. The different sub-models of our general model are obtained by varying
the values of the cross-order coefficients cd1d2

for d1 ̸= d2.
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The model has the knowledge of the aggregated network, so it only com-
putes the activation tendency of hyperlinks that belong to E . For every order o
considered, we give to the model the number no of events of size o occurring at
time t+ 1. Therefore, for every order o, the model will select the no hyperlinks
with the highest activation tendency value at t+ 1.

Thus, our model does not require the assumption used in Section 3 for the
reconstruction that two events of different orders can not occur at the same time
step if one is included in the other.

6 Model evaluation

6.1 Network prediction quality

We aim to predict the activation of hyperlinks at time step t + 1 based on the
higher-order temporal network observed between t−L+1 and t. Therefore, for
the evaluation of the model, we make a prediction for every time step t+1 that
is between L+1 and T , where T is the global lifespan of the network. At every
time step, we count the number of true positives for every order. In the end,
the prediction quality for an arbitrary order is the ratio between the count of
true positives for that order and the total number of events of that order that
occurred between L+1 and T . Our prediction is deterministic and will give the
same result for every run with the same parameters since it does not sample
randomly but considers all time steps once. As the model knows how many
events of every order to predict, the count of false positives is the same as the
count of false negatives, and therefore they do not offer any extra information.

6.2 Choice of model parameters

Since the events of orders higher than 4 are very few in number in the real-world
physical contact networks considered, we focus on the prediction of events of
orders 2, 3, and 4 based on the previous activities of events of orders 2, 3, and
4. Therefore, events of order higher than 4 are ignored. For every order, we
make its associated pair of cross-order coefficients take all possible values in
{0.0, 0.1, ..., 1.0} × {0.0, 0.1, ..., 1.0}.

We choose the value L = 30, which is equivalent to 600s in our real-world
physical contact networks (20s interval time between two time steps). This
also corresponds to 10 min. The value of L = 30 was found by comparing the
accuracy of the prediction for different values of L between 1 and T/2 and for
different values of τ between 0.25 and 1. Choosing L = 30 instead of the value
of L = T/2 that was chosen by Zou et al. [18] does not result in a drop in
accuracy and allows for much faster computations.

We also compared the prediction performance for different values of the
decay factor τ . We tried different values τ ∈ {0, 0.25, ..., 1.5}. τ = 0 gave the
worst results in every order for all datasets. At orders 2 and 3, the higher
the value of τ ∈ [0.25, 1.5], the lower the prediction performance. However,
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Dataset Order 2 Order 3 Order 4

Science Gallery 0.33 (0.33) 0.23 (0.16) 0.57 (0.22)
Hospital 0.53 (0.52) 0.50 (0.32) 0.72 (0.17)

Highschool2012 0.56 (0.55) 0.50 (0.38) 0.67 (0.19)
Highschool2013 0.61 (0.61) 0.40 (0.34) 0.61 (0.36)
Primaryschool 0.32 (0.32) 0.19 (0.16) 0.33 (0.09)
Workplace 0.57 (0.56) 0.49 (0.30) 0.50 (0.07)

Hypertext2009 0.50 (0.50) 0.52 (0.34) 0.68 (0.10)
SFHH Conference 0.53 (0.52) 0.45 (0.38) 0.58 (0.39)

Table 2: Highest prediction accuracy obtained for our model per order for
every dataset, compared to the baseline in parentheses.

the difference in the accuracy was always very small, around 1.5% difference
between the prediction accuracy for τ = 0.25 and the prediction accuracy for
τ = 1, for instance. At order 4, no value for τ consistently gave better results
across all datasets, with a difference in the prediction accuracy of the order of
1%. Substantially, we concluded that using any value τ ∈ [0.25, 1.5] did not
significantly change the quality of the prediction. Since the highest prediction
accuracy was obtained with the value τ = 0.25, our further results analysis is
done with this value τ = 0.25.

6.3 Prediction performance

For every order (2, 3, and 4), we compute the prediction accuracy obtained
at this order with any pair of cross-order coefficients in {0.0, 0.1, ..., 1.0} ×
{0.0, 0.1, ..., 1.0}, which we compare with the prediction accuracy that we obtain
from the baseline. Both the computations for the baseline and for our model
are done with the value τ = 0.25. The profiles are similar for other values of
τ . We show in Figure 2 the prediction accuracy per order of our model, as a
function of the coefficients, for all datasets together.

The highest prediction performance obtained per order for every dataset can
be found in Table 2. At order 2, the best results of our model perform between
0.5% and 1.5% higher than the baseline, depending on the datasets. At order 3,
the improvement compared to the baseline is between 2% and 25%, depending
on the datasets. At order 4, it is between 18% and 60% of increase, depending on
the datasets. Therefore, we find that our highest accuracy obtained consistently
outperforms the baseline.

From our results, we find that the prediction accuracy changes significantly
depending on the pairs of coefficients, especially at orders 3 and 4. We show
in Figure 3 the ratio of true positives for every order and for two datasets,
compared to the value achieved by the baseline. Our model beats the baseline
for the majority of the pairs of coefficients. The same graphs for all datasets
can be found in the Appendix in Figure A2. We summarize in Table 3 the
percentage of pairs of coefficients for which the prediction accuracy is worse
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(a) Order 2 (b) Order 3

(c) Order 4

Figure 2: Ratio of true positives as a function of the coefficients, for orders 2,
3, 4, in eight real-world physical contact networks.

than the baseline. For extra information, Figure A3 in the Appendix shows
which pairs of coefficients lead to a worse prediction accuracy than the baseline.

Our model predicts events of orders 2, 3, and 4 independently. This means
that the predicted network does not correspond to the type of reconstructed
networks that we gave in Section 3. Indeed, our model can predict without any
restriction that a 2-hyperlink (a, b) and a 3-hyperlink (a, b, c) will be active at the
same time step. Since the baseline reconstructs the higher-order network with
the same process as the one described in Section 3, this represents a limitation
in the comparison between the baseline and our model.
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Figure 3: Ratio of true positives for every order, for Highschool2012 and
Hypertext2009. One data point represents the ratio of true positives obtained
with one pair of coefficients. The horizontal bar represents the value achieved

by the baseline.

Dataset Order 2 Order 3 Order 4

Science Gallery 0.83% 0 0
Hospital 0 0 0

Highschool2012 0.83% 9.09% 0
Highschool2013 17.36% 54.55% 43.80%
Primaryschool 0 45.45% 0
Workplace 0 0 0

Hypertext2009 0 0 0
SFHH Conference 17.36% 45.45% 47.93%

Table 3: Percentage of the pairs of coefficients for which the prediction
accuracy of the model is worse than the baseline (out of a total of 121 pairs of

coefficients for every cell).

7 Analysis and interpretation of the results for
different values of the coefficients

7.1 Coefficients analysis

As we saw in 6.3, the accuracy of the prediction that we obtain is dependent on
the coefficients chosen. Therefore, we want to understand how different elements
contribute to the prediction performance. At first, we find which coefficients
perform best across all datasets.

The best results for order 2 (order 3) are generally obtained for small values
of c32 and c42 (c23 and c43). Typically, c32, c42, c23 ∈ {0.1, ..., 0.4} and c43 ∈
{0.1, ..., 0.5}. The most notable exception is at order 3 for both Primaryschool
and Science Gallery, which have the highest results for c43 = 1. This may be
due to the relatively low time-decaying memory pattern exhibited by these two
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networks at order 3, as shown in Figure 1b in Section 4. For order 4, there is not
a clear pattern to achieve the highest result across all datasets. The main thing
we can notice is that for the four datasets Highschool2012, Highschool2013,
Primaryschool, and SFHH, the highest result is obtained for values clustered in
this area: c24 ∈ {0.1, ..., 0.3}, c34 ∈ {0.3, ..., 0.6}.

Therefore, in most cases, except for c34, smaller values for the coefficients
(except for the values 0 and 1 which are outliers) tend to lead to better prediction
accuracy in general.

7.2 Influence of different orders

In order to better understand the influence of every order on the prediction
performance, we draw the prediction accuracy at a given order as a function of
one coefficient, with the other coefficient fixed.

Figure 4: Ratio of true positives at order 2 as a function of c32, with c42 fixed,
for two datasets.

Excluding values c42 = 0 and c42 = 1 which are outliers, c42 has barely
any impact at all on the ratio of true positives at order 2 for datasets Hospital,
Hypertext2009, Science Gallery and Workplace. This is shown in Figure 4 for
two datasets. Moreover, in general, neither c32 nor c42 have a big impact on
the prediction accuracy at order 2. All results can be found in the Appendix in
Figures A4 and A5.

At order 3, we see in Figure 5 that there is a higher plateau for c23 ∈
{0.1, ..., 0.4} and a lower plateau for c23 ∈ {0.6, ..., 0.9}, with a drop in the
accuracy occurring between 0.4 and 0.6. The prediction accuracy for the outliers
c23 = 0 and c23 = 1 is generally lower and does not fit into any of the two
plateaus. Similar results can be found in the other datasets in Figures A6 and
A7 in the Appendix.

At order 4, we can not deduce a general pattern of influence from our results.
Both c24 and c34 are impactful. All results at order 4 can be found in Figures
A8 and A9 in the Appendix.

From our results, it seems that, in summary, the influence of c43 and, to
a lower extent, c42 does not impact much the ratio of true positives at orders
3 and 2, which can indicate a lower influence of 4-events for the prediction of
3-events and 2-events. On the contrary, the influence of c23 and c24 is always
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Figure 5: Ratio of true positives at order 3 as a function of c23, with c43 fixed,
for two datasets.

significant, which suggests a higher importance of 2-events to predict 3-events
and 4-events.

Varying the coefficients does not change much in the absolute value of events
correctly predicted at order 2. We believe this to be due to the fact that the
networks are by far mostly containing events of order 2. Since events of orders
3 and 4 are very scarce compared to events of order 2, it makes sense that their
relative influence in predicting events of order 2 is lower.

7.3 Comparison with pairwise results

Our results are consistent with the pairwise results obtained by Zou et al. [18].
In their work, the prediction quality of a link’s future activity was mostly cor-
related to the contribution of the link itself. Furthermore, a slightly better
prediction quality was achieved when considering the influence of links that
formed a triangle with the target link. In our case, we also find that the predic-
tion quality is mostly influenced by the past activity of the hyperlink of interest
itself. Moreover, we find that small cross-order coefficients improve the predic-
tion quality. As our higher-order temporal networks are formed by promoting
fully-connected cliques of pairwise interactions to higher-order events, we can
draw a parallel between hyperlinks in the higher-order network and links that
form a triangle with the target link in the pairwise network. Therefore, both
results are very consistent with each other, and they are viewed from a different
perspective.

8 Conclusion

In this paper, we proposed a network-based temporal network prediction model
that makes predictions on the activity of higher-order hyperlinks at the next
time step based on the past activity of this hyperlink and of its sub- and super-
hyperlinks. The contributions of the different hyperlinks are weighted with
an exponential decay depending on how far in the past the events occurred.
Our model was shown to perform consistently better than the baseline directly
derived from a pairwise prediction method. We also found a range of values
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for the coefficients for which the prediction accuracy consistently achieves the
highest scores in all datasets.

Furthermore, we found that taking the influence of sub- and super-hyperlinks
into account improves the prediction quality at every order. However, in general,
assigning values for the cross-order influence which are relatively small, com-
pared to the influence of the hyperlink itself, results in better prediction. This
means that the past activity of the hyperlink itself is still the most important
factor for predicting its future state.
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Appendix

(a) Order 2 (b) Order 3

(c) Order 4 (d) Order 5

Figure A1: Jaccard similarities with regard to the time lag, for orders 2, 3, 4,
5, on collaboration networks.
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Figure A2: Ratio of true positives for every order, for all datasets, compared
to the baseline (horizontal bar).
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Figure A3: Pairs of coefficients for which the prediction accuracy is worse than
the baseline, for orders 2, 3, and 4.
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Figure A4: Ratio of true positives at order 2 as a function of c32, with c42
fixed, for all datasets.
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Figure A5: Ratio of true positives at order 2 as a function of c42, with c32
fixed, for all datasets.
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Figure A6: Ratio of true positives at order 3 as a function of c23, with c43
fixed, for all datasets.
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Figure A7: Ratio of true positives at order 3 as a function of c43, with c23
fixed, for all datasets.
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Figure A8: Ratio of true positives at order 4 as a function of c24, with c34
fixed, for all datasets.
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Figure A9: Ratio of true positives at order 4 as a function of c34, with c24
fixed, for all datasets.
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