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Bulk and surface critical behavior of the three-dimensional Ising model and conformal invariance
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Using a continuous cluster Monte Carlo algorithm, we investigate the critical three-dimensional Ising model
in its anisotropic limit. From the ratio of the magnetic correlations in the strong- and the weak-coupling
directions, we determine the length ratio relating the isotropic Ising model and the anisotropic limit. On this
basis, we simulate the critical Ising model on a spherocyliglerR?, i.e., a curved geometry obtained from
a conformal mapping of the infinite spaBé. From correlation lengths along the spherocylinder, combined
with the prediction of conformal invariance, we estimate the magnetic and thermal scaling dimensigns as
=0.5182(6) andX;=1.4197), respectively. The behavior of the Binder cumulant is also determined in the
limit of an infinitely long spherocylinder. Next, free boundary conditions are imposed on the equators of the
spherocylinder, and thus the geome8Yyx S™ x R! is obtained. The surface magnetic scaling dimension is
estimated aSKE,S)= 1.2635). Theconsistency of the aforementioned estimations and existing results confirms
that the three-dimensional Ising model is conformally invariant. Further, the precision of these results reveals
that, as in two dimensions, conformal mappings provide a powerful tool to investigate critical phenomena.
With the continuous cluster algorithm, we also perform simulations of systems inside a conventional solid
cylinder. The surface magnetic correlation length differs, within the estimated error margin, by a#fé&ztor
from that along a half spherocylind&!x S* x R* with the same radius.
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I. INTRODUCTION ping includes Cardy’s transformation as a special case. A
brief report has also been published about the confirmation
Applications of conformal invariance in two dimensions of Cardy’s mapping in three dimensiofg], in which the
have been explored extensively and produced fruitful resultaforementioned geometi$?x R was named a “spherocyl-
both for bulk and for surface critical phenomdra-4]. Con-  inder.” In the present paper, the techniques involved in Ref.
formal mappings provide relations between critical systemg7] will be described in more detail. Moreover, by mapping
in different geometries. A well-known and particularly useful the semiinfinite spac&2xR™ onto the half spherocylinders
example is Cardy’s mapping between an infinite plane an®’xR* and S'XS" X R?, respectively, we investigate the
the surface of an infinitely long cylinder, which transforms surface criticality of the Ising model in three dimensions.
the algebraic decay of correlations in the plane into an expo- The present work also includes simulations of the Ising
nential decay along the cylindgs,6]. Because a cylinder is model inside a conventional solid cylinder. Compared to the
pseudo-one-dimensional, its numerical investigation is simaforementioned half spherocylinder, the conventional solid
pler than that of a two-dimensional plane. This mapping carcylinder has a zero net curvature. However, numerical simu-
be generalized to any number of dimensid6$ In three lations suffer from complications due to its curved surface.
dimensions, Cardy’s mapping transforms an infinite sfiiite  Such a difficulty is avoided by using the Hamiltonian limit of
into a pseudo-one-dimensional geome®yxR!, i.e., a the lattice Ising model and the continuous cluster algorithm.
curved geometry extending the surface of a spi@frénto  Free boundary conditions are imposed on the surface of the
another dimensiofit!. Thus, one also expects that, as in two conventional solid cylinder, and correlation functions along
dimensions, Cardy’s mapping also provides a significant helgphe cylinder are sampled. In fact, the conventional solid cyl-
in numerical studies of critical phenomena. In particular, weinder is closely related to the half spherocylindgrx S*
need such studies because exact results are scarce in thee&!. The former object is obtained by replacing the half
dimensions. However, the nonzero net curvature of the gesphere of the latter object by the interior of a circle.
ometry S’xXR! poses a serious obstacle for numerical The outline of this paper is as follows. In Sec. Il, we
investigations. briefly describe the conformal mapping between the infinite
Recently, we solved this problem for the case of the Isingspacel® and the spherocylinded®x R?, and those between
model by using the Hamiltonian limit of the lattice Ising the semiinfinite spac&?xR* and the half spherocylinders
model and a continuous cluster Monte Carlo algoriffi8].  S?XR* andS'x S* X R. From the prediction of conformal
The key ingredient of this infinitely anisotropic model is that invariance, the expressions of the bulk and surface correla-
one of its dimensions is continuous, so that the problem ofion functions are derived for the spherocylinder and both
discretization for one of the lattice directions is avoided. Inhalf spherocylinders, respectively. Section 1l recalls the
two dimensions, we have numerically studied a conformaHamiltonian limit of the lattice I1sing model, and the continu-
mapping between an infinite plane and a sphef8id Spe-  ous cluster algorithm. During the Monte Carlo simulations,
cial cases of the spheroid include the surfaces of an infinitelghe magnetic correlations over half linear system sizes were
long cylinder, of a sphere, and of a flat disc. Thus, this mapsampled both in the strong- and in the weak-coupling direc-
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tions. By demanding asymptotic symmetry of these correla- (o (F )02(;2), )= b(F )_le(Fz)_X2~ .
tion functions, we obtain the anisotropic rescaling factor re- n ' !
lating the isotropic version of the Ising model and its ><<01(F1)02(Fé). i, (5)

anisotropic limit. On this basis, asymptotically isotropic
Ising models are defined on the spherocylinder and inside th@hereg; is a scaling operatde.g., associated with the mag-

conventional solid cylinder. In Sec. IV, numerical results arepeatization density or the energy densigndb(r) is the res-

presented for the spherocylinder, the half spherocylinders,_,. : S 2
and the solid cylinder, respectively. A short discussion iSCallng fac_to_r, .Wh'Ch reaSS ebir)__—dszlds " .
In the infinite space&i”, the critical two-point correlation

iven in . V. .
give Sec function behaves as
II. CONFORMAL MAPPING (U(Fl)U(F2)>H30<|F2—|71|72X. (6)

In two dimensions, one may parametrize the infinite plan
as a complex numbez=x+iy. Cardy’s transformation is
then expressed @& =R Inz[5]. The geometry of’ can be
interpreted as the surface of an infinitely long cylinder or a (o(uqg,0,0)0(Us,0,0)) 2% Rt
flat strip with periodic boundary conditions. For a critical
system with a scaling dimensiofy Cardy’s mapping yields R~ 2X (g1 uall2R_ g~ lu—ual2Ry =2X = (7)
the correlation length along the cylinder as

E\Equations(Z), (5), and (6) yield the correlation function
along the spherocylinder as

For |u;—u,|>0, Eq.(7) reduces to

=R/X, 1

f W (0(U1,0,0)0(Uy, 0,¢)yxR™ e Xlu-u2lR, )

whereR is the radius of the cylindd#]. . . .
This mapping can be generalized to any number of di=° ;hat the relatl?nshlm) fOfIIOEWS:’L a'galtr:. di :

mensiong 6]. In three dimensions, one may express the flat owever, applications of Eq1) in three dimensions are

spacelR® in spherical coordinates (¢). Cardy’s mapping is rsz;tQ(Tersrc]:arce so far. Thet reaso? 'S tEat the sp_hequcylln?er
then described by the coordinate transformation: + Nas a nonzero net curvature. For numerical investi-

gations, a curved geometry does not readily accommodate a
_(aUR Cwey< sequence of regular lattices. For the special case of the

(r.0,9)=(e"%0,¢)  (—eo<u<e), @ spherical model, Eq(8) has been verified analytically by

whereR is a free parameter. Thus, a geometry expressed b ardyE](;S]. Jar}ke ansﬁvg]e'grﬂ ?rprp)rox;trne;ttarc{[r:ﬁ?a]si[:;lherrﬁ t:jyl

the variables (, 6, ¢) in Eq. (2) is reached. It is obvious that wifhsflijnifcei; Igcuti E (89) y etsu S f r?i i I?t one_,-

this geometry is analogous to the surface of an infinite cyl- tant wr?icsh ﬁassti Efg deqcérmin% doearln%i(r)iggllyo ality co

inder as mentioned earlier. The latter object can be recogs- Under the mapping2). the half infinite spac&?x R*

nized as the extension of a circg* into another dimension onformally transforms into the half spherocvlindgid S*
R. Analogously, the former geometry can be obtained byC y S S| sp Yl

. . . ; g X R, i.e., a geometry also described by the natural metric
extending a spher®’ into another dimensioR. This dimen- '3 . : .
sion is perpendicular to the surface of the sphere, whichds. Itnth' ). ?Ut W'tththog o= 77; Th/gs' tfh;f] geo:retnc
unfortunately, cannot be visualized in three-dimensiona hjec _asasulr ?cea tehequaf g(ﬂ'f)ﬂ? heIfSp e&%eef.
space. Taking into account this analogy, we named in Ref, e+pa|r corrélation on the surface or the hall sp
[7] the three-dimensional geomet®/ X R a spherocylinder. _XR _foIIow_s fror_n the formuld(6), except that the buII_< scal-

The reason why Eq2) is conformal is as follows. First, ing dimensionX is replaced bY the surface dimensid?
the metric of the flat spac&® is expressed, in spherical [4]- Thus,_the sgrface correlfsmon at the equatqrs of the half
coordinates, by the invariant line element ' spherocylinder is also described by E@), but with a sub-
' stitution of X by X(.
—dr2+r2(de?+si 2 << 0<o< _ Next, we consider another conformal mapping between
ds'=dr®+r¥(de*+sirede?)  (0<f<m0<¢ 277)(3) the semi-infinite spac&?xR* and a half spherocylinder
S?XR™, also described by the metrits'? in Eq. (4), but
Under the transformatiof®), Eq. (3) becomeg6] with u>_0. This m_appin_g is different f_rom Eq2) and is
conveniently described in two steps. First, the fornuld]

ds?=R 2R du?+ R?(d 6%+ sirfod ?)], (4) R .

r'ir'2=rlr2+1/2, (9)
where ds’'?=du?+ R?(d6?+ sirf6de?) reflects the natural , _ _
metric of the spherocylinde8?x kY. Equation (4) shows maps spheres onto spheres in three dlmiansmns, and the
that the line elementss? andds'2 differ only by a position- ~ SPaceR® is transformed into itself11]. Here, | is an arbi-
dependent factdR~2e?"/R. Thus, the mappin) is confor- ~ trary fixed unit vector. Under the mapping), the plane

mal. i-r=0, which corresponds to a spherical surface of an infi-
Under a conformal mapping {-r’), a multipoint corre-  Nite radius, is conformally mapped onto the surface of a unit
lation function covariantly transforms §4] sphere with the center &t Meanwhile, the half spacdsr
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>0 andi\F<O are transformed, respective|y’ into the inte- In the limit that the interactions in the direction are

rior and exterior of this unit sphere. The homogeneous trandfinitely strong, the couplingK,, andK, become

fation Ko=€lt, exq—2K,]=¢, (e—0), (16)

r=r—1i (10 , , o

wheret parametrizes the temperature ands an infinitely

shifts the center of the sphere to the origin of the doublesmall number. The anisotropic model defined by E4$)

primed coordinate system. and(16) is equivalent to the quantum transverse Ising model

The profile of a scaling operatar in the semi-infinite  on the square latticgl2,13:
spaceR?xX R* behaves af4]

(1) y ™, (11 Han= = 2 [S5y(Seay ™ Siys) T1) - (47

wherey>0 is the distance of a poimtto the surface. Equa- where S>Z<,y and Si,y are Pauli matrices, antrepresents a

tions (9) and (10) yield the rescaling factap(r) of the con-  transverse field in th& direction.

formal mapping (—r") as[11] For such an infinitely anisotropic system, the physical size
in the z direction diverges as &/ because the correlation
b(ry=1+1-r+r24=4/(r"—1)2. (12)  length in this direction is of the order ofd[12,13. In order
to keep the correlation length finite, one may rescale’as
From Egs.(5) and (9)—(12), the quantity(a(F”)) inside a =Z2e€ so that thez’ dimension becomes continuous. This
unit sphere follows fronj4,11] means that there is an infinite number of spins per physical
length unit. As a result, the simple-cubic lattice reducels%o
(U(F")>oc|1—(r")2|x, (13 lines originating from the sites of lax L square lattice. The

spins on these lines form ranges of/— signs, and the
wherer”<1 is the distance of the poirﬁ’ to the center of total number of interfaces between these ranges is of the

sphere. order ofL3.

Next, we apply Eq.(2) to conformally map this unit Monte Carlo simulations of this continuous system are
sphere onto the half spherocylindgx R*. The profile(13) realized by the application of a continuous cluster algorithm.
is then covariantly transformed into This algorithm uses the positions of the aforementioned in-

terfaces as the dynamical variables. The full description has

(0(U,0,0)) g2y R X(elur™vallZR— g=[ur = Ual/2R) =2X. been given in Ref[8]. Here, we summarize the essential

(14 points. We start from a discrete Ising model and use bond
variables as defined in the random cluster mqddl]. Dur-

ing the formation of a cluster, the bond between nearest-
neighbor spins of the same sign is “frozen” with a probabil-
ity P=1—exp(—2K) or “broken” with the probability 1

which differs from Eq.(7) by a factorR™*.
Moreover, Egs(9), (10), and (2) transform the quarter-
infinite spaceR*XR*XR™ into a quarter of the infinite

: 1 »+ : 12
spherocylinderS' < S* X R”, described byds'® in Eq. (4)  “p A cluster is then formed by spins connected to one

but with O< ¢< /2 andu=0. Therefore, the profile of the  onoiher py these frozen bonds. The formation and flipping of
surface scaling operator at the equators should follow fromyege clusters lead to highly efficient Monte Carlo methods,
Eq. (14) except _that(gw exponeHtis replaced by the surface \yhich suppress the critical slowing down that is prominent in
scaling dimensiorX™. the Metropolis algorithm. In the Swendsen-Wang cluster
method [15], the whole lattice is decomposed into a se-

1. MODEL AND ALGORITHM quence of clusters. In the Wolff version of the cluster algo-

In this section, we briefly recall the Hamiltonian limit of rithm [16], only one cluster IS form_ed a_nd flipped du_rmg a
the Ising model and the continuous cluster algorifl@i The Monte Carlo step. For the anlgqtrop!c Ising model defined by

applications to the spherocylinder and the conventional solidrds: (15) and (16), the probabilityP in the xy plane andz

cylinder are also described. direction is of the order ok and 1- €, respectively. Thus,
The three-dimensional Ising model with anisotropic cou-t_he stro_ng—couphng bonds connect many spins inzttizec-
plings is described by the Hamiltonian tion until a break occurs with a probability of the ordereof

per bond. Spins between these breaks inztbection form
clusters of+/— signs of with lengths of the order of &/

HIkgT=— 2 [KyyScy(Sxr1y,2F Scy+12) After the rescaling described above, theskrection clusters
X,y,Z . . .
reduce to ranges of / — signs, of which the length is now of
+ K Suy 2Sxyz+1s (15  the order of 1. Moreover, the average distance of the frozen

weak-coupling bonds along ttedirection is also of the or-
where the integers€x,y<L and 1<z<L' label the sites der of 1. These weak-coupling bonds serve as “bridges”
of a cubic lattice,K,, and K, are the coupling strengths between neighboring lines to connect ranges of the same
along bonds perpendicular and parallel to théirection, sign, and help to build clusters in the plane. As a result,
respectively. The spins can assume the vagjgs=+1. continuous Wolff-like and Swendsen-Wang-like cluster algo-

066116-3



Y. DENG AND H. W. J. BLOTE PHYSICAL REVIEW E67, 066116 (2003

rithms can be formulated for this anisotropic limit. The ap- =L;/L,,, whereL; andL,,=L are linear system sizes in the
plication of a continuous Wolff-like algorithm, combined z' direction and thexy plane, respectively. In Ref8], we
with finite-size-scaling analysis, yield8] the critical point  determined the critical Binder cumulant as a function of the
ast.=3.04438(2) for the model defined by Eq45) and length ratioa. Matching this universal function with the case
(16). The precision is good in comparison with existing re-of the isotropic Ising mode[19-21], we showed that the
sults [17,18], and reflects the efficiency of the aforemen- asymptotic isotropy of this Hamiltonian limit is restored for
tioned continuous cluster algorithm. ay=0.8847). Here, we proceed differently. We sampled the

Since our purpose is the application of conformal map-critical magnetic correlations over half linear system sizes in
pings, we have to restore isotropy asymptotically. This carthe strong- and weak-coupling directions, respectively, of
be done by choosing an appropriate aspect ratio which the amplitude ratial, is defined as

> f dz' (20(x,y,2")o(X,y,2' + aL/2))
X,y

dn(a,L)= (18

f dz'{o(x,y, 2" ) o(x+L/12y,z" )+ o(x,y+L/12Z")])
X,y

This amplitude ratiad,,, is a function of the length ratiee  radii, the distribution of these weak-coupling bonds still re-
and the linear sizé.. The aforementioned isotropy means quires a length scale. It was chosen as the average length
that the magnetic correlations in taelirection are equal to scale of both circles. Therefore, the circumference of the
those in thex andy directions, and thud,(ag,L)=1. Tak-  sphereis 2, and the radius it/ [7,9]. The validity of this

ing into account finite-size effects, we Taylor expandmethod, i.e., asymptotic spherical symmetry of such systems,

dm(@,L), using logarithmic scales fat,, and«, as has been confirmed in Ref9]. Extension of this lattice
structure of a sphere into anotrgzr diTension yields the ap-
Ind_(a,L)=a;(In a—In ag)+a,(In a—In ag)? proximation of the spherocylindes”x R* [7]. . _
Nn(al)=ayina o) +az(ln e @) The critical point for systems on the spherocylinder is
+blYa+clYa(lna—Inag)+---, (19) identical to that in the flat spadé®. Arguments arda) the

lattice structures in these two geometries are same on a mi-
wherea; ,a,,b, andc are unknown parameters, and the cor-croscopic scale an@) for finite systemd., the discretization _
rection with the exponeng, is due to the microscopic de- In ¢ leads to an integrated effect on the average coupling
viations from isotropy of the Hamiltonian limit of the Ising Strength, which is proportional to~# according to the tra-
model. In two dimensions, such a correction has been inved2€Zium rule. Under renormalization, this effect leads to cor-
tigated in detai[9]. It was found thay,~ — 2=y, , wherey; rections proportional th.Yt"2. Since the the;rmal §cal|ng ex-
is the exponent of the irrelevant field for the two-dimensionalPONent yi<2 for the two- and three-dimensional Ising

Ising model. Here, we assume that this relation also holds iﬁnOdeIS’ this e_ffect wil \_/anish fo —e. In two dimensions,
three dimensions so that,=y;= —0.8245), where the we have studied the Ising model on a sphét®], and con-

value ofy; was taken from Ref9,19-21. On the basis of firmed that the leading corrections for finite systems are of

the least-squares criterion, E4.9) was fitted to the Monte theA(:];dIgr g&yt_:c;ce dures can be anolied to the interior of a
Carlo data. We find that,=0.5082), a,=0.0§1), b gous p P

—0.3797), c=2.8(3), anday=0.88812), which provides circle, i.e., a disc geometry. In this case, the lattice structure

a significant improvement over our previous resulg on the disc is also representedlbgvenly distributed circles,
. - P
—0.886(7)[8]. but thekth circle is simply located at,=(k—3). Thus, the

. radi f the disc is | hat of the largest circtd2L
As a result, the new coordinat® =z'/ «, restores the adius of the disc is just that g ciet

isot totically f " isting ot i —1). The conventional solid cylinder is obtained by extend-
Isotropy asymptoticaily or systems consisting Inés ing this disc geometry into another dimension with a discrete
with physical lengthL in the largek limit. Due to periodic Igttice structure

boundary conditions, each of these lines can be recognize
as a circleS'. This enables onf7,9] to represent the “lattice IV. NUMERICAL RESULTS

structure” on a spher&? by L evenly spaced circles with a

varying radius, such that the strong couplings are alongthe By applying the aforementioned continuous Wolff-like
direction while the weak Coup”ngs are between the adjacerﬁ'USter algorithm, we have simulated the Hamiltonian limit
circles. The location of théth circle is 6,=(k—3)#/L (k  of the Ising model in the following geometries.
=1,2,...L1), and the corresponding circumference is
2L sin#, which accounts for thes® curvature. Since the
probability of a weak-coupling bond is definger unit of For systems on a spherocylinder, the valued ofvere
length and the adjacent circles on a sphere have differentaken as 4,6,8,10,12,14,16,20. The finite size inRthdirec-

A. Spherocylinder with periodic boundary conditions
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tion was taken asmL=8L. Periodic boundary conditions invariance[7]. Including another correctiorclYi in the
were imposed in thel direction U=0 andu=8L). Later, function h does not improve the residual® of the fit
we will show thatn=8 is large enough to approximate the significantly.

geometry X R!. We sampled the magnetic correlation

function g,,,(r) in the u direction, which is defined b}7] B. Binder cumulant on a spherocylinder

1 27 L The dimensionless quantity originally introduced by

gm(r)= v > f de—siné(c(u,0,p)a(u+r,0,¢)). Binder plays an important role in the study of critical phe-
ue 7o ™ nomend22]. An example is Ref[8], in which we obtain the

(20 length ratioay=0.881(6) by sampling the Binder cumulant.

For a system on a hypercubic lattice in generdimensions,

other two directions, there are two ways to represent thdhe universal rati@, which is closely related to the Binder

energy density: the density of the interfaces and of théumulant[22], is defined as

nearest-neighbor interactions in the weak-coupling direc- [ 2\2)) 4

tions. We chose the latter one QUK)={a) (o). 26

Since couplings are different in the direction and in the

1 L For a system on a hypercylinderlike geome8y xR,
i ; however, another definition is desirable. The reason is as
€= de—siné{o(u,8, ut1,6,0)), ' - .
Ty UZH Jo o (o(u,6,9)a ¢)) follows. If the length of the geometr$® *xR! is much
(21)  larger than the correlation length, i.e.=L/R—co, the criti-
cal magnetization density is normally distributed, and thus

in order to sample the energylike correlatigg(r): the value ofQ(K) approaches 1/3. The same value applies to
1 _— a disordered system. As a consequence, little information can
r=— do—siné(o(u, o, u+1,6, be obtained for critical phenomena. In this case, a useful

9e(r) \ ;9 fo 7 (o e)ol 2 dimensionless quantity can be defined 423

Xa(u+r,0,0)o(utr+1,0,0))—e2,. (22 G(K,y)=(3— (M {a?)?)yI3, (27

For finite systems, there is a correctio.Yt? as men-  which plays a similar role as the aforementioned correlation
tioned earlier. Compared to the irrelevant scaling exponentengthég . According to finite-size scaling, the critical quan-
yi=—0.821(5) in three dimension®,19-21, the correc- tity G is universal for infinite systemR and y— .
tion with the powery.=y,—2=-0.413 is expected to In two dimensions, the critical bulk two- and four-point
dominate over that witly; . correlation functions are exactly known for the Ising model

In the continuum limit, the behavior of the magnetic en-[24]. On this basis, the value d& for the surface of an
ergylike correlationsy(r) andge(r), respectively, follows infinitely long cylinder can be calculated according to the
from Eq.(7). Taking into account finite-size effects yields the prediction of conformal invariance. This calculation has been
correlation length¢, as performed by Burkhardt and Derridia3], who evaluated the

resulting integrals by a Monte Carlo method. Their result is
X X
§[l=§(1+aLy°+ bL¥)=-—(1+ale+bLl%). (23 G(K,,»)/2m=2.460442). (28)

For an arbitrary model, it was shown by Caf®pb] that for

Due to the periodicity in the direction, correlations build up the infinitely long strip

over two distances andnL—r. Thus, the correlation func-
tion g(r,L) for finite systems behaves as G(K,,»)/2m~(mXy) "4, (29)

g(r,L)=L"2[Y(r)+Y(nL—r)](A+BLY+CLY), if X;, is small.

(24 In three dimensions, no result for the quant@yis avail-
able yet. Here, we sampled both quantit@émr and G/
on a spherocylinder as a function of the sizeand the
ratio y/m=n. The system sizes were taken ds
=8,10,12,16,20,24,30,40 and the largest valuena$ 20.
Periodic boundary conditions were applied in théirection.
Part of the results is shown in Figs. 1 and 2. The latter figure

Equations(24) and (25) were fitted to the Monte Carlo . o
data. The value oy, is fixed at—0.413 as specified above. suggests that=38 already provides a good approximation of
¢ he geometry8?x RL.

For the magnetic and the energylik rrelations, the expd! . . . )

ngnttxe rep?rgeszmsathdetbilﬁ rigénezccc;n?j atthc;rfﬁgl 2;‘”?1; Fpr finite systems at the critical pomlt, we fitted the fol-
dimensions X, and X;, respectively. We obtainXy owing formula to the Monte Carlo data:
=0.5178(12) anX;=1.423(19), in a good agreement with
the existing resultX,=0.5185(3) and;=1.413(1)[9,19- G(L,n)/7=G, + & + 2 +o(nL)Ye+---. (30
21]. This confirms the assumption of conformal n n?

with the function

Here, the radius iR=L/#w as mentioned before.
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FIG. 1. The dimensionless rat{@, shown as a function of In,
wherens is the ratio of the length to the radius of the spherocyl-
inder. Systems sizes ate=8 (+), L=12 (V), L=16 (Od), L
=20 (O), L=24 (A), andL=40 (<¢). The data collapse indi-
cates that corrections to scaling are small.

In order to obtain an acceptable residudl of the fit, we
applied a cutoff by excluding small system sides6 and
n=<5. The result isG/7=0.64585), which differs signifi-
cantly from that for a two-dimensional strj23].

C. Spherocylinder with fixed boundary conditions

Fixed boundary conditions, i.e., infinitely strong fields,
were imposed on both ends of the spherocylinder 0 and
u=nL). The finite system sizes were taken ds
=4,6,8,10,12,14,16,20,24 amd=8. The magnetization and
the energy densities,

1 27 L
m(r)=v20 jo de—sing(a(r.6,¢)) (32)

and

27 L

dqo;SiﬂB(ﬂ(l’,G,(p)), (32

0.66
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0.62 |

0.6

058 |

056

0.54

10 12 14 16 18
n

6 8 20

FIG. 2. The dimensionless rati@, shown as a function o,

wherenr is the ratio of the length to the radius of the spherocyl-

inder. System size ik=8.
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FIG. 3. The quantities Im(r) (J) and Ing.(r) (4), the loga-
rithms of the magnetization profile and of the magnetic correlation,

respectively, vs the distance along a spherocylinder wittR
=16/ andn=8. The errorbars for Im(r) are smaller than the

symbol size; for Irg,(r), these are at most approximately equal to
the symbol size.

were sampled. Here, we have chosen the density of the in-
terfacesn(r, 0,¢) as the energy density. Compared to the
alternative definition o€ in Eq.(21), sampling the density of
the interfaces consumes much less computer time. This is
due to the fact that, during the Monte Carlo simulations, the
positions of these interfaces are stored in computer memory
as the dynamical variables.

The scaling behavior ain(r) ande(r) follows from Eq.
(14). According to Egs(14) and(7), the magnetization den-
sity m(r) and the correlatiom,,(r) decay in a similar way
with respect to the distanee An example is shown in Fig. 3.
For a given spherocylinder with radit®s however, the pref-
actor ofg,(r) is R™2*n [Eq. (7)] while that ofm(r) is R *n
[Eq. (14)]. This effect, combined with the fact that less com-
puter time is needed, shows thair) is a better quantity
thang,(r) to determine the magnetic scaling dimension. A
similar argument holds for the energy density. Taking into
account finite-size corrections and fixed boundary conditions
at both ends, we have

m(r,L)=L"%[Y(r)+Y(nL—r)](A+BLY) (33

and
e(r,L)=ng+ L X[Y(r)+Y(nL—r)](A+BLY), (34

whereng is the bulk density of the interfaces at criticality
and the functiony(r) is given in Eq.(25).

Formulas(33), (34), and (25) were fitted to the Monte
Carlo data. An example of the energy density is shown in
Fig. 4. The value oh is fixed at 0.901 6(b), asobtained
from numerical simulations in a flat geometry. We obtain
X,=0.5182(6) anK;=1.4197). Theprecision of these re-
sults is comparable to that of other meth¢@sl9-21.

D. Half spherocylinder S'XS*XR?

For the half spherocylinder, fixed and free boundary con-
ditions were applied on both ends£0 andu=nL) and the
equators @=m/2) of S'XS', respectively. The systems
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FIG. 4. Exponential decay of the interface density, shown as

In|e(r)—ny| vs the distancer along a spherocylinder wittR
=24/ andn=28. Errorbars show the statistical uncertainty.

sizes were taken ds=8,10,12 . .. ,26 anch=38. The radius
of the half spherocylinder i®=(2L—1)/, different from
the formulaR=L/# for the spherocylinder. The magnetiza-
tion density on the equators was sampled, defined as

1 2m
m®(r)= ﬂfo do{o(r,m2,p)). (39

The finite-size scaling behavior of this surface magnetization

densities also follows from E@33), except that the exponent
X, is replaced by the surface scaling dimensidﬁ. Equa-

PHYSICAL REVIEW E 67, 066116 (2003

351

45t

nm® @)
»

55t R

-6.5

25
r

10 15 20
FIG. 5. Exponential decay of the surface magnetization density,
shown as Im(r), vs the distance along a conventional solid
cylinder (A) and a spherocylinder (). The radii of these
two objects areR=19.5 and 19.%2/m, respectively; the ratio
isn=8.

accounts for the difference between the surface correlation
length along the solid cylinder and that along the aforemen-
tioned half spherocylinder. The value {” is fixed at 1.263

as specified earlier, and we obtdis 1.5859), very close to
72=1.571.

V. DISCUSSION

We have shown how one can simulate the Ising model in
curved geometries by means of a continuous cluster Monte

tions (33) and(25) were fitted to the Monte Carlo data, and & carig algorithm. We confirm that the three-dimensional Ising

short-distance cutoff was applied. The minimum system siz

included in the fit isL = 14. The result iX(¥ = 1.2635), of

fnodel is conformally invariant. The satisfactory precision of

the numerical results presented in this paper shows that, as in

value obtained by a different methad(® = 1.259(15)[26].

E. Conventional solid cylinder

We have also performed simulations inside a convention

solid cylinder with fixed and free boundary conditions on

both ends (=0 andu=nL) and the surface, respectively.
The system sizes ate=8,10,12,16,18 and=8. The radius
of the cylinder is given byR=L—1/2 in this case, which
differs by a factors/2 from that of the half spherocylinder
with the same.. The surface magnetization density®(r)

along the cylinder was sampled. We found, empirically, that

the decay oin(®(r) along the conventional cylinder is very
similar to that along the half spherocylind&tx S*x R*
with the same finite siz&. An example is shown in Fig. 5.

tool to investigate critical phenomertat least, if one takes
the assumption of conformal invariance for grantéeurther
applications to other models, such as the bond percolation

Jnodel, are also possib[@7].

We have used the same algorithm for Monte Carlo simu-
lations of a system inside a conventional solid cylinder. We
found that the corresponding surface correlation length dif-
fers by a factor close ter/2 from that along a half sphero-
cylinder. However, it is not obvious that this result can be
supported by means of a conformal transformation.
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