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Bulk and surface critical behavior of the three-dimensional Ising model and conformal invariance
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Using a continuous cluster Monte Carlo algorithm, we investigate the critical three-dimensional Ising model
in its anisotropic limit. From the ratio of the magnetic correlations in the strong- and the weak-coupling
directions, we determine the length ratio relating the isotropic Ising model and the anisotropic limit. On this
basis, we simulate the critical Ising model on a spherocylinderS23R1, i.e., a curved geometry obtained from
a conformal mapping of the infinite spaceR3. From correlation lengths along the spherocylinder, combined
with the prediction of conformal invariance, we estimate the magnetic and thermal scaling dimensions asXh

50.5182(6) andXt51.419(7), respectively. The behavior of the Binder cumulant is also determined in the
limit of an infinitely long spherocylinder. Next, free boundary conditions are imposed on the equators of the
spherocylinder, and thus the geometryS13S13R1 is obtained. The surface magnetic scaling dimension is
estimated asXh

(s)51.263(5). Theconsistency of the aforementioned estimations and existing results confirms
that the three-dimensional Ising model is conformally invariant. Further, the precision of these results reveals
that, as in two dimensions, conformal mappings provide a powerful tool to investigate critical phenomena.
With the continuous cluster algorithm, we also perform simulations of systems inside a conventional solid
cylinder. The surface magnetic correlation length differs, within the estimated error margin, by a factorp/2
from that along a half spherocylinderS13S13R1 with the same radius.

DOI: 10.1103/PhysRevE.67.066116 PACS number~s!: 05.50.1q, 64.60.Cn, 64.60.Fr, 75.10.Hk
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I. INTRODUCTION

Applications of conformal invariance in two dimension
have been explored extensively and produced fruitful res
both for bulk and for surface critical phenomena@1–4#. Con-
formal mappings provide relations between critical syste
in different geometries. A well-known and particularly usef
example is Cardy’s mapping between an infinite plane
the surface of an infinitely long cylinder, which transform
the algebraic decay of correlations in the plane into an ex
nential decay along the cylinder@5,6#. Because a cylinder is
pseudo-one-dimensional, its numerical investigation is s
pler than that of a two-dimensional plane. This mapping c
be generalized to any number of dimensions@6#. In three
dimensions, Cardy’s mapping transforms an infinite spaceR3

into a pseudo-one-dimensional geometryS23R1, i.e., a
curved geometry extending the surface of a sphereS2 into
another dimensionR1. Thus, one also expects that, as in tw
dimensions, Cardy’s mapping also provides a significant h
in numerical studies of critical phenomena. In particular,
need such studies because exact results are scarce in
dimensions. However, the nonzero net curvature of the
ometry S23R1 poses a serious obstacle for numeric
investigations.

Recently, we solved this problem for the case of the Is
model by using the Hamiltonian limit of the lattice Isin
model and a continuous cluster Monte Carlo algorithm@7,8#.
The key ingredient of this infinitely anisotropic model is th
one of its dimensions is continuous, so that the problem
discretization for one of the lattice directions is avoided.
two dimensions, we have numerically studied a conform
mapping between an infinite plane and a spheroid@9#. Spe-
cial cases of the spheroid include the surfaces of an infini
long cylinder, of a sphere, and of a flat disc. Thus, this m
1063-651X/2003/67~6!/066116~8!/$20.00 67 0661
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ping includes Cardy’s transformation as a special case
brief report has also been published about the confirma
of Cardy’s mapping in three dimensions@7#, in which the
aforementioned geometryS23R1 was named a ‘‘spherocyl
inder.’’ In the present paper, the techniques involved in R
@7# will be described in more detail. Moreover, by mappin
the semiinfinite spaceR23R1 onto the half spherocylinder
S23R1 and S13S13R1, respectively, we investigate th
surface criticality of the Ising model in three dimensions.

The present work also includes simulations of the Is
model inside a conventional solid cylinder. Compared to
aforementioned half spherocylinder, the conventional so
cylinder has a zero net curvature. However, numerical sim
lations suffer from complications due to its curved surfa
Such a difficulty is avoided by using the Hamiltonian limit o
the lattice Ising model and the continuous cluster algorith
Free boundary conditions are imposed on the surface of
conventional solid cylinder, and correlation functions alo
the cylinder are sampled. In fact, the conventional solid c
inder is closely related to the half spherocylinderS13S1

3R1. The former object is obtained by replacing the h
sphere of the latter object by the interior of a circle.

The outline of this paper is as follows. In Sec. II, w
briefly describe the conformal mapping between the infin
spaceR3 and the spherocylinderS23R1, and those between
the semiinfinite spaceR23R1 and the half spherocylinder
S23R1 andS13S13R1. From the prediction of conforma
invariance, the expressions of the bulk and surface corr
tion functions are derived for the spherocylinder and b
half spherocylinders, respectively. Section III recalls t
Hamiltonian limit of the lattice Ising model, and the contin
ous cluster algorithm. During the Monte Carlo simulation
the magnetic correlations over half linear system sizes w
sampled both in the strong- and in the weak-coupling dir
©2003 The American Physical Society16-1
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tions. By demanding asymptotic symmetry of these corre
tion functions, we obtain the anisotropic rescaling factor
lating the isotropic version of the Ising model and
anisotropic limit. On this basis, asymptotically isotrop
Ising models are defined on the spherocylinder and inside
conventional solid cylinder. In Sec. IV, numerical results a
presented for the spherocylinder, the half spherocylind
and the solid cylinder, respectively. A short discussion
given in Sec. V.

II. CONFORMAL MAPPING

In two dimensions, one may parametrize the infinite pla
as a complex numberz5x1 iy . Cardy’s transformation is
then expressed asz85R ln z @5#. The geometry ofz8 can be
interpreted as the surface of an infinitely long cylinder o
flat strip with periodic boundary conditions. For a critic
system with a scaling dimensionX, Cardy’s mapping yields
the correlation length along the cylinder as

jR5R/X, ~1!

whereR is the radius of the cylinder@4#.
This mapping can be generalized to any number of

mensions@6#. In three dimensions, one may express the
spaceR3 in spherical coordinates (r ,w). Cardy’s mapping is
then described by the coordinate transformation:

~r ,u,w!5~eu/R,u,w! ~2`,u,`!, ~2!

whereR is a free parameter. Thus, a geometry expressed
the variables (u,u,w) in Eq. ~2! is reached. It is obvious tha
this geometry is analogous to the surface of an infinite c
inder as mentioned earlier. The latter object can be rec
nized as the extension of a circleS1 into another dimension
R. Analogously, the former geometry can be obtained
extending a sphereS2 into another dimensionR. This dimen-
sion is perpendicular to the surface of the sphere, wh
unfortunately, cannot be visualized in three-dimensio
space. Taking into account this analogy, we named in R
@7# the three-dimensional geometryS23R a spherocylinder.

The reason why Eq.~2! is conformal is as follows. First
the metric of the flat spaceR3 is expressed, in spherica
coordinates, by the invariant line element

ds25dr21r 2~du21sin2udw2! ~0<u<p,0<w,2p!.
~3!

Under the transformation~2!, Eq. ~3! becomes@6#

ds25R22e2u/R@du21R2~du21sin2udw2!#, ~4!

where ds825du21R2(du21sin2udw2) reflects the natura
metric of the spherocylinderS23R1. Equation ~4! shows
that the line elementsds2 andds82 differ only by a position-
dependent factorR22e2u/R. Thus, the mapping~2! is confor-
mal.

Under a conformal mapping (rW→rW8), a multipoint corre-
lation function covariantly transforms as@4#
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^s1~rW1!s2~rW2!•••& rW5b~rW1!2X1b~rW2!2X2
•••

3^s1~rW18!s2~rW28!•••& rW8 , ~5!

wheres i is a scaling operator~e.g., associated with the mag
netization density or the energy density! andb(rW) is the res-
caling factor, which reads asb(rW)25ds2/ds82.

In the infinite spaceR3, the critical two-point correlation
function behaves as

^s~rW1!s~rW2!&R3}urW22rW1u22X. ~6!

Equations~2!, ~5!, and ~6! yield the correlation function
along the spherocylinder as

^s~u1 ,u,w!s~u2 ,u,w!&S23R1

}R22X~euu12u2u/2R2e2uu12u2u/2R!22X. ~7!

For uu12u2u@0, Eq. ~7! reduces to

^s~u1 ,u,w!s~u2 ,u,w!&}R22Xe2Xuu12u2u/R, ~8!

so that the relationship~1! follows again.
However, applications of Eq.~1! in three dimensions are

rather scarce so far. The reason is that the spherocylin
S23R1 has a nonzero net curvature. For numerical inve
gations, a curved geometry does not readily accommoda
sequence of regular lattices. For the special case of
spherical model, Eq.~8! has been verified analytically b
Cardy @6#. Janke and Weigel approximated theS2 sphere by
the surface of a cube@10#. Their results for the Ising mode
with finite sizeR satisfy Eq.~8! up to a proportionality con-
stant, which has to be determined empirically.

Under the mapping~2!, the half infinite spaceR23R1

conformally transforms into the half spherocylinderS13S1

3R, i.e., a geometry also described by the natural me
ds82 in Eq. ~4!, but with 0<u<p/2. Thus, this geometric
object has a surface at the equators (u5p/2) of the spheres.
The pair correlation on the surface of the half spaceR2

3R1 follows from the formula~6!, except that the bulk scal
ing dimensionX is replaced by the surface dimensionX(s)

@4#. Thus, the surface correlation at the equators of the
spherocylinder is also described by Eq.~7!, but with a sub-
stitution of X by X(s).

Next, we consider another conformal mapping betwe
the semi-infinite spaceR23R1 and a half spherocylinde
S23R1, also described by the metricds82 in Eq. ~4!, but
with u>0. This mapping is different from Eq.~2! and is
conveniently described in two steps. First, the formula@11#

rW8/r 825rW/r 21 Î /2, ~9!

maps spheres onto spheres in three dimensions, and
spaceR3 is transformed into itself@11#. Here, Î is an arbi-
trary fixed unit vector. Under the mapping~9!, the plane
Î •rW50, which corresponds to a spherical surface of an in
nite radius, is conformally mapped onto the surface of a u
sphere with the center atÎ . Meanwhile, the half spacesÎ •rW
6-2
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.0 and Î •rW,0 are transformed, respectively, into the int
rior and exterior of this unit sphere. The homogeneous tra
lation

rW95rW2 Î ~10!

shifts the center of the sphere to the origin of the doub
primed coordinate system.

The profile of a scaling operators in the semi-infinite
spaceR23R1 behaves as@4#

^s~rW !&R23R1}y2X, ~11!

wherey@0 is the distance of a pointrW to the surface. Equa
tions ~9! and~10! yield the rescaling factorb(rW) of the con-
formal mapping (rW→rW9) as @11#

b~rW !511 Î •rW1r 2/454/~rW92 Î !2. ~12!

From Eqs.~5! and ~9!–~12!, the quantity^s(rW9)& inside a
unit sphere follows from@4,11#

^s~rW9!&}u12~r 9!2uX, ~13!

wherer 9<1 is the distance of the pointrW9 to the center of
sphere.

Next, we apply Eq.~2! to conformally map this unit
sphere onto the half spherocylinderS23R1. The profile~13!
is then covariantly transformed into

^s~u,u,w!&S23R1}R2X~euu12u2u/2R2e2uu12u2u/2R!22X,
~14!

which differs from Eq.~7! by a factorR2X.
Moreover, Eqs.~9!, ~10!, and ~2! transform the quarter

infinite spaceR13R13R1 into a quarter of the infinite
spherocylinderS13S13R1, described byds82 in Eq. ~4!
but with 0<u<p/2 andu>0. Therefore, the profile of the
surface scaling operator at the equators should follow fr
Eq. ~14! except that the exponentX is replaced by the surfac
scaling dimensionX(s).

III. MODEL AND ALGORITHM

In this section, we briefly recall the Hamiltonian limit o
the Ising model and the continuous cluster algorithm@8#. The
applications to the spherocylinder and the conventional s
cylinder are also described.

The three-dimensional Ising model with anisotropic co
plings is described by the Hamiltonian

H/kBT52 (
x,y,z

@Kxysx,y,z~sx11,y,z1sx,y11,z!

1Kzsx,y,zsx,y,z11#, ~15!

where the integers 1<x,y<L and 1<z<L8 label the sites
of a cubic lattice,Kxy and Kz are the coupling strength
along bonds perpendicular and parallel to thez direction,
respectively. The spins can assume the valuessx,y,z561.
06611
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In the limit that the interactions in thez direction are
infinitely strong, the couplingsKxy andKz become

Kxy5e/t, exp@22Kz#5e, ~e→0!, ~16!

where t parametrizes the temperature ande is an infinitely
small number. The anisotropic model defined by Eqs.~15!
and~16! is equivalent to the quantum transverse Ising mo
on the square lattice@12,13#:

Hqm52(
x,y

@sx,y
z ~sx11,y

z 1sx,y11
z !1tsx,y

x #, ~17!

where sx,y
z and sx,y

x are Pauli matrices, andt represents a
transverse field in thex direction.

For such an infinitely anisotropic system, the physical s
in the z direction diverges as 1/e, because the correlatio
length in this direction is of the order of 1/e @12,13#. In order
to keep the correlation length finite, one may rescale asz8
5ze so that thez8 dimension becomes continuous. Th
means that there is an infinite number of spins per phys
length unit. As a result, the simple-cubic lattice reduces toL2

lines originating from the sites of aL3L square lattice. The
spins on these lines form ranges of1/2 signs, and the
total number of interfaces between these ranges is of
order ofL3.

Monte Carlo simulations of this continuous system a
realized by the application of a continuous cluster algorith
This algorithm uses the positions of the aforementioned
terfaces as the dynamical variables. The full description
been given in Ref.@8#. Here, we summarize the essent
points. We start from a discrete Ising model and use bo
variables as defined in the random cluster model@14#. Dur-
ing the formation of a cluster, the bond between neare
neighbor spins of the same sign is ‘‘frozen’’ with a probab
ity P512exp(22K) or ‘‘broken’’ with the probability 1
2P. A cluster is then formed by spins connected to o
another by these frozen bonds. The formation and flipping
these clusters lead to highly efficient Monte Carlo metho
which suppress the critical slowing down that is prominent
the Metropolis algorithm. In the Swendsen-Wang clus
method @15#, the whole lattice is decomposed into a s
quence of clusters. In the Wolff version of the cluster alg
rithm @16#, only one cluster is formed and flipped during
Monte Carlo step. For the anisotropic Ising model defined
Eqs. ~15! and ~16!, the probabilityP in the xy plane andz
direction is of the order ofe and 12e, respectively. Thus,
the strong-coupling bonds connect many spins in thez direc-
tion until a break occurs with a probability of the order ofe
per bond. Spins between these breaks in thez direction form
clusters of1/2 signs of with lengths of the order of 1/e.
After the rescaling described above, thesez direction clusters
reduce to ranges of1/2 signs, of which the length is now o
the order of 1. Moreover, the average distance of the fro
weak-coupling bonds along thez direction is also of the or-
der of 1. These weak-coupling bonds serve as ‘‘bridge
between neighboring lines to connect ranges of the sa
sign, and help to build clusters in thexy plane. As a result,
continuous Wolff-like and Swendsen-Wang-like cluster alg
6-3
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rithms can be formulated for this anisotropic limit. The a
plication of a continuous Wolff-like algorithm, combine
with finite-size-scaling analysis, yields@8# the critical point
as tc53.04438(2) for the model defined by Eqs.~15! and
~16!. The precision is good in comparison with existing r
sults @17,18#, and reflects the efficiency of the aforeme
tioned continuous cluster algorithm.

Since our purpose is the application of conformal ma
pings, we have to restore isotropy asymptotically. This c
be done by choosing an appropriate aspect ratioa
s
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5Lz8/Lxy, whereLz8 andLxy5L are linear system sizes in th
z8 direction and thexy plane, respectively. In Ref.@8#, we
determined the critical Binder cumulant as a function of t
length ratioa. Matching this universal function with the cas
of the isotropic Ising model@19–21#, we showed that the
asymptotic isotropy of this Hamiltonian limit is restored fo
a050.886(7). Here, we proceed differently. We sampled t
critical magnetic correlations over half linear system sizes
the strong- and weak-coupling directions, respectively,
which the amplitude ratiodm is defined as
dm~a,L !5

(
x,y

E dz8^2s~x,y,z8!s~x,y,z81aL/2!&

(
x,y

E dz8^s~x,y,z8!@s~x1L/2,y,z8!1s~x,y1L/2,z8!#&

. ~18!
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This amplitude ratiodm is a function of the length ratioa
and the linear sizeL. The aforementioned isotropy mean
that the magnetic correlations in thez direction are equal to
those in thex andy directions, and thusdm(a0 ,L)51. Tak-
ing into account finite-size effects, we Taylor expa
dm(a,L), using logarithmic scales fordm anda, as

ln dm~a,L !5a1~ ln a2 ln a0!1a2~ ln a2 ln a0!2

1bLya1cLya~ ln a2 ln a0!1•••, ~19!

wherea1 ,a2 ,b, andc are unknown parameters, and the c
rection with the exponentya is due to the microscopic de
viations from isotropy of the Hamiltonian limit of the Isin
model. In two dimensions, such a correction has been in
tigated in detail@9#. It was found thatya'225yi , whereyi
is the exponent of the irrelevant field for the two-dimensio
Ising model. Here, we assume that this relation also hold
three dimensions so thatya5yi520.821(5), where the
value ofyi was taken from Refs.@9,19–21#. On the basis of
the least-squares criterion, Eq.~19! was fitted to the Monte
Carlo data. We find thata150.505(2), a250.06(1), b
50.375(7), c52.8(3), anda050.8881(2), which provides
a significant improvement over our previous resulta0
50.886(7) @8#.

As a result, the new coordinatez95z8/a0 restores the
isotropy asymptotically for systems consisting ofL2 lines
with physical lengthL in the large-L limit. Due to periodic
boundary conditions, each of these lines can be recogn
as a circleS1. This enables one@7,9# to represent the ‘‘lattice
structure’’ on a sphereS2 by L evenly spaced circles with
varying radius, such that the strong couplings are along thw
direction while the weak couplings are between the adjac
circles. The location of thekth circle is uk5(k2 1

2 )p/L (k
51,2, . . . ,L), and the corresponding circumference
2L sinuk , which accounts for theS2 curvature. Since the
probability of a weak-coupling bond is definedper unit of
length, and the adjacent circles on a sphere have differ
-

s-

l
in

ed

nt

nt

radii, the distribution of these weak-coupling bonds still r
quires a length scale. It was chosen as the average le
scale of both circles. Therefore, the circumference of
sphere is 2L, and the radius isL/p @7,9#. The validity of this
method, i.e., asymptotic spherical symmetry of such syste
has been confirmed in Ref.@9#. Extension of this lattice
structure of a sphere into another dimension yields the
proximation of the spherocylinderS23R1 @7#.

The critical point for systems on the spherocylinder
identical to that in the flat spaceR3. Arguments are~a! the
lattice structures in these two geometries are same on a
croscopic scale and~b! for finite systemsL, the discretization
in u leads to an integrated effect on the average coup
strength, which is proportional toL22 according to the tra-
pezium rule. Under renormalization, this effect leads to c
rections proportional toLyt22. Since the thermal scaling ex
ponent yt,2 for the two- and three-dimensional Isin
models, this effect will vanish forL→`. In two dimensions,
we have studied the Ising model on a sphere@7,9#, and con-
firmed that the leading corrections for finite systems are
the order ofLyt22.

Analogous procedures can be applied to the interior o
circle, i.e., a disc geometry. In this case, the lattice struct
on the disc is also represented byL evenly distributed circles,
but thekth circle is simply located atr k5(k2 1

2 ). Thus, the
radius of the disc is just that of the largest circlep(2L
21). The conventional solid cylinder is obtained by exten
ing this disc geometry into another dimension with a discr
lattice structure.

IV. NUMERICAL RESULTS

By applying the aforementioned continuous Wolff-lik
cluster algorithm, we have simulated the Hamiltonian lim
of the Ising model in the following geometries.

A. Spherocylinder with periodic boundary conditions

For systems on a spherocylinder, the values ofL were
taken as 4,6,8,10,12,14,16,20. The finite size in theR direc-
6-4
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tion was taken asnL58L. Periodic boundary condition
were imposed in theu direction (u50 andu58L). Later,
we will show thatn58 is large enough to approximate th
geometry S23R1. We sampled the magnetic correlatio
function gm(r ) in the u direction, which is defined by@7#

gm~r !5
1

V (
u,u

E
0

2p

dw
L

p
sinu^s~u,u,w!s~u1r ,u,w!&.

~20!

Since couplings are different in thew direction and in the
other two directions, there are two ways to represent
energy density: the density of the interfaces and of
nearest-neighbor interactions in the weak-coupling dir
tions. We chose the latter one

enn5
1

V (
u,u

E
0

2p

dw
L

p
sinu^s~u,u,w!s~u11,u,w!&,

~21!

in order to sample the energylike correlationge(r ):

ge~r !5
1

V (
u,u

E
0

2p

dw
L

p
sinu^s~u,u,w!s~u11,u,w!

3s~u1r ,u,w!s~u1r 11,u,w!&2enn
2 . ~22!

For finite systems, there is a correction}Lyt22 as men-
tioned earlier. Compared to the irrelevant scaling expon
yi520.821(5) in three dimensions@9,19–21#, the correc-
tion with the power yc5yt22520.413 is expected to
dominate over that withyi .

In the continuum limit, the behavior of the magnetic e
ergylike correlationsgm(r ) andge(r ), respectively, follows
from Eq.~7!. Taking into account finite-size effects yields th
correlation lengthjL as

jL
215

X

R
~11aLyc1bLyi !5

pX

L
~11aLyc1bLyi !. ~23!

Due to the periodicity in theu direction, correlations build up
over two distancesr andnL2r . Thus, the correlation func
tion g(r ,L) for finite systems behaves as

g~r ,L !5L22X@Y~r !1Y~nL2r !#~A1BLyc1CLyi !,
~24!

with the function

Y~r !5~ehr/2R2e2hr/2R!22X ~h511aLyc!. ~25!

Here, the radius isR5L/p as mentioned before.
Equations~24! and ~25! were fitted to the Monte Carlo

data. The value ofyc is fixed at20.413 as specified above
For the magnetic and the energylike correlations, the ex
nent X represents the bulk magnetic and thermal sca
dimensions Xh and Xt , respectively. We obtainXh
50.5178(12) andXt51.423(19), in a good agreement wi
the existing resultsXh50.5185(3) andXt51.413(1)@9,19–
21#. This confirms the assumption of conform
06611
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invariance @7#. Including another correctioncLyi in the
function h does not improve the residualx2 of the fit
significantly.

B. Binder cumulant on a spherocylinder

The dimensionless quantity originally introduced b
Binder plays an important role in the study of critical ph
nomena@22#. An example is Ref.@8#, in which we obtain the
length ratioa050.881(6) by sampling the Binder cumulan
For a system on a hypercubic lattice in generald dimensions,
the universal ratioQ, which is closely related to the Binde
cumulant@22#, is defined as

Q~K !5^s2&2/^s4&. ~26!

For a system on a hypercylinderlike geometrySd213R1,
however, another definition is desirable. The reason is
follows. If the length of the geometrySd213R1 is much
larger than the correlation length, i.e.,g5L/R→`, the criti-
cal magnetization density is normally distributed, and th
the value ofQ(K) approaches 1/3. The same value applies
a disordered system. As a consequence, little information
be obtained for critical phenomena. In this case, a us
dimensionless quantity can be defined as@4,23#

G~K,g!5~32^s4&/^s2&2!g/3, ~27!

which plays a similar role as the aforementioned correlat
lengthjR . According to finite-size scaling, the critical quan
tity G is universal for infinite systemsR andg→`.

In two dimensions, the critical bulk two- and four-poin
correlation functions are exactly known for the Ising mod
@24#. On this basis, the value ofG for the surface of an
infinitely long cylinder can be calculated according to t
prediction of conformal invariance. This calculation has be
performed by Burkhardt and Derrida@23#, who evaluated the
resulting integrals by a Monte Carlo method. Their result

G~Kc ,`!/2p52.46044~2!. ~28!

For an arbitrary model, it was shown by Cardy@25# that for
the infinitely long strip

G~Kc ,`!/2p;~pXh!21, ~29!

if Xh is small.
In three dimensions, no result for the quantityG is avail-

able yet. Here, we sampled both quantitiesQ/p and G/p
on a spherocylinder as a function of the sizeL and the
ratio g/p5n. The system sizes were taken asL
58,10,12,16,20,24,30,40 and the largest value ofn is 20.
Periodic boundary conditions were applied in theu direction.
Part of the results is shown in Figs. 1 and 2. The latter fig
suggests thatn58 already provides a good approximation
the geometryS23R1.

For finite systems at the critical point, we fitted the fo
lowing formula to the Monte Carlo data:

G~L,n!/p5G`1
a1

n
1

a2

n2
1v~nL!yc1•••. ~30!
6-5
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Y. DENG AND H. W. J. BLÖTE PHYSICAL REVIEW E67, 066116 ~2003!
In order to obtain an acceptable residualx2 of the fit, we
applied a cutoff by excluding small system sizesL<6 and
n<5. The result isG/p50.6458(5), which differs signifi-
cantly from that for a two-dimensional strip@23#.

C. Spherocylinder with fixed boundary conditions

Fixed boundary conditions, i.e., infinitely strong field
were imposed on both ends of the spherocylinder (u50 and
u5nL). The finite system sizes were taken asL
54,6,8,10,12,14,16,20,24 andn58. The magnetization and
the energy densities,

m~r !5
1

V (
u
E

0

2p

dw
L

p
sinu^s~r ,u,w!& ~31!

and

e~r !5
1

V (
u
E

0

2p

dw
L

p
sinu^n~r ,u,w!&, ~32!

FIG. 1. The dimensionless ratioQ, shown as a function of lnn,
wherenp is the ratio of the length to the radius of the spheroc
inder. Systems sizes areL58 (1), L512 (,), L516 (h), L
520 (s), L524 (n), and L540 (L). The data collapse indi-
cates that corrections to scaling are small.

FIG. 2. The dimensionless ratioG, shown as a function ofn,
wherenp is the ratio of the length to the radius of the spheroc
inder. System size isL58.
06611
were sampled. Here, we have chosen the density of the
terfacesn(r ,u,w) as the energy density. Compared to t
alternative definition ofe in Eq. ~21!, sampling the density of
the interfaces consumes much less computer time. Thi
due to the fact that, during the Monte Carlo simulations,
positions of these interfaces are stored in computer mem
as the dynamical variables.

The scaling behavior ofm(r ) ande(r ) follows from Eq.
~14!. According to Eqs.~14! and~7!, the magnetization den
sity m(r ) and the correlationgm(r ) decay in a similar way
with respect to the distancer. An example is shown in Fig. 3
For a given spherocylinder with radiusR, however, the pref-
actor ofgm(r ) is R22Xh @Eq. ~7!# while that ofm(r ) is R2Xh

@Eq. ~14!#. This effect, combined with the fact that less com
puter time is needed, shows thatm(r ) is a better quantity
than gm(r ) to determine the magnetic scaling dimension.
similar argument holds for the energy density. Taking in
account finite-size corrections and fixed boundary conditi
at both ends, we have

m~r ,L !5L2Xh@Y~r !1Y~nL2r !#~A1BLyc! ~33!

and

e~r ,L !5n01L2Xt@Y~r !1Y~nL2r !#~A1BLyc!, ~34!

wheren0 is the bulk density of the interfaces at criticalit
and the functionY(r ) is given in Eq.~25!.

Formulas~33!, ~34!, and ~25! were fitted to the Monte
Carlo data. An example of the energy density is shown
Fig. 4. The value ofn0 is fixed at 0.901 60(5), asobtained
from numerical simulations in a flat geometry. We obta
Xh50.5182(6) andXt51.419(7). Theprecision of these re-
sults is comparable to that of other methods@9,19–21#.

D. Half spherocylinder S1ÃS¿ÃR1

For the half spherocylinder, fixed and free boundary co
ditions were applied on both ends (u50 andu5nL) and the
equators (u5p/2) of S13S1, respectively. The system

-

-

FIG. 3. The quantities lnm(r) (h) and lngm(r) (n), the loga-
rithms of the magnetization profile and of the magnetic correlati
respectively, vs the distancer along a spherocylinder withR
516/p and n58. The errorbars for lnm(r) are smaller than the
symbol size; for lngm(r), these are at most approximately equal
the symbol size.
6-6
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sizes were taken asL58,10,12, . . . ,26 andn58. The radius
of the half spherocylinder isR5(2L21)/p, different from
the formulaR5L/p for the spherocylinder. The magnetiz
tion density on the equators was sampled, defined as

m(s)~r !5
1

2pE0

2p

dw^s~r ,p/2,w!&. ~35!

The finite-size scaling behavior of this surface magnetiza
densities also follows from Eq.~33!, except that the exponen
Xh is replaced by the surface scaling dimensionXh

(s) . Equa-
tions ~33! and~25! were fitted to the Monte Carlo data, and
short-distance cutoff was applied. The minimum system s
included in the fit isL514. The result isXh

(s)51.263(5), of
which the precision is good in comparison with the know
value obtained by a different method,Xh

(s)51.259(15)@26#.

E. Conventional solid cylinder

We have also performed simulations inside a conventio
solid cylinder with fixed and free boundary conditions
both ends (u50 andu5nL) and the surface, respectivel
The system sizes areL58,10,12,16,18 andn58. The radius
of the cylinder is given byR5L21/2 in this case, which
differs by a factorp/2 from that of the half spherocylinde
with the sameL. The surface magnetization densitym(s)(r )
along the cylinder was sampled. We found, empirically, t
the decay ofm(s)(r ) along the conventional cylinder is ver
similar to that along the half spherocylinderS13S13R1

with the same finite sizeL. An example is shown in Fig. 5
Thus, we also fitted the Monte Carlo data on the basis
Eqs.~33! and ~25!, but with h5z1aLyc. Here, the factorz

FIG. 4. Exponential decay of the interface density, shown
ln ue(r)2n0u vs the distancer along a spherocylinder withR
524/p andn58. Errorbars show the statistical uncertainty.
.

06611
n

e

al

t

f

accounts for the difference between the surface correla
length along the solid cylinder and that along the aforem
tioned half spherocylinder. The value ofXh

(s) is fixed at 1.263
as specified earlier, and we obtainz51.585(9), very close to
p/2.1.571.

V. DISCUSSION

We have shown how one can simulate the Ising mode
curved geometries by means of a continuous cluster Mo
Carlo algorithm. We confirm that the three-dimensional Isi
model is conformally invariant. The satisfactory precision
the numerical results presented in this paper shows that,
two dimensions, conformal mappings also provide a use
tool to investigate critical phenomena~at least, if one takes
the assumption of conformal invariance for granted!. Further
applications to other models, such as the bond percola
model, are also possible@27#.

We have used the same algorithm for Monte Carlo sim
lations of a system inside a conventional solid cylinder. W
found that the corresponding surface correlation length
fers by a factor close top/2 from that along a half sphero
cylinder. However, it is not obvious that this result can
supported by means of a conformal transformation.
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s FIG. 5. Exponential decay of the surface magnetization dens
shown as lnm(s)(r), vs the distancer along a conventional solid
cylinder (n) and a spherocylinder (s). The radii of these
two objects areR519.5 and 19.532/p, respectively; the ratio
is n58.
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